Powered by Deep Web Technologies
Note: This page contains sample records for the topic "large-scale energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Large Scale Computing and Storage Requirements for Fusion Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

at NERSC HPC Requirements Reviews Requirements for Science: Target 2014 Fusion Energy Sciences (FES) Large Scale Computing and Storage Requirements for Fusion Energy...

2

Large Scale Computing and Storage Requirements for Basic Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

at NERSC HPC Requirements Reviews Requirements for Science: Target 2014 Basic Energy Sciences (BES) Large Scale Computing and Storage Requirements for Basic Energy...

3

Large Scale Computing and Storage Requirements for Fusion Energy Sciences Research  

E-Print Network (OSTI)

strategic plans. Large Scale Computing and Storage Requirements for Fusion Energy Sciences DOE

Gerber, Richard

2012-01-01T23:59:59.000Z

4

Large Scale Computing and Storage Requirements for High Energy Physics  

E-Print Network (OSTI)

Computing and Storage Requirements for High Energy Physics [for High Energy Physics Computational and Storage for High Energy Physics Computational and Storage

Gerber, Richard A.

2011-01-01T23:59:59.000Z

5

Large Scale Computing and Storage Requirements for High Energy Physics  

E-Print Network (OSTI)

Director Editors Richard Gerber Harvey Wasserman NERSC UserServices Group NERSC User Services Group Large ScaleNERSC

Gerber, Richard A.

2011-01-01T23:59:59.000Z

6

Energy storage technology-environmental implications of large scale utilization  

SciTech Connect

Environmental impacts for several energy storage technologies have been identified. State-of-the-art control technology options were similarly identified. Recommendations for research and development on new control technology were made where present controls were either deemed inadequate or non-existent. Specifically, the energy storage technologies under study included: advanced lead-acid battery, compressed air, underground pumped hydroelectric, flywheel, superconducting magnet and various thermal systems (sensible, latent heat and reversible chemical reaction). In addition, a preliminary study was conducted on fuel cell technology. Although not strictly classified as an energy storage system, fuel cells in conjunction with product recycling units can serve an energy storage function. A very large number of potential environmental impacts can be identified for all of these technologies. However, not all are of primary importance. Detailed discussions of a number of environmental impacts from the latest LASL study as they relate to primarily operational situations are emphasized. In addition, a brief discussion on new application for energy storage technologies and the additional costs of controls to be used for mitigation of specific impacts are also presented.

Krupka, M.C.; Moore, J.E.; Keller, W.E.; Baca, G.A.; Brasier, R.I.; Bennett, W.S.

1979-01-01T23:59:59.000Z

7

Large Scale Computing and Storage Requirements for High Energy Physics  

Science Conference Proceedings (OSTI)

The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility for the Department of Energy's Office of Science, providing high-performance computing (HPC) resources to more than 3,000 researchers working on about 400 projects. NERSC provides large-scale computing resources and, crucially, the support and expertise needed for scientists to make effective use of them. In November 2009, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR), and DOE's Office of High Energy Physics (HEP) held a workshop to characterize the HPC resources needed at NERSC to support HEP research through the next three to five years. The effort is part of NERSC's legacy of anticipating users needs and deploying resources to meet those demands. The workshop revealed several key points, in addition to achieving its goal of collecting and characterizing computing requirements. The chief findings: (1) Science teams need access to a significant increase in computational resources to meet their research goals; (2) Research teams need to be able to read, write, transfer, store online, archive, analyze, and share huge volumes of data; (3) Science teams need guidance and support to implement their codes on future architectures; and (4) Projects need predictable, rapid turnaround of their computational jobs to meet mission-critical time constraints. This report expands upon these key points and includes others. It also presents a number of case studies as representative of the research conducted within HEP. Workshop participants were asked to codify their requirements in this case study format, summarizing their science goals, methods of solution, current and three-to-five year computing requirements, and software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, multi-core environment that is expected to dominate HPC architectures over the next few years. The report includes a section that describes efforts already underway or planned at NERSC that address requirements collected at the workshop. NERSC has many initiatives in progress that address key workshop findings and are aligned with NERSC's strategic plans.

Gerber, Richard A.; Wasserman, Harvey

2010-11-24T23:59:59.000Z

8

Large Scale Computing and Storage Requirements for High Energy Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

for High Energy Physics for High Energy Physics Accelerator Physics P. Spentzouris, Fermilab Motivation Accelerators enable many important applications, both in basic research and applied sciences Different machine attributes are emphasized for different applications * Different particle beams and operation principles * Different energies and intensities Accelerator science and technology objectives for all applications * Achieve higher energy and intensity, faster and cheaper machine design, more reliable operation a wide spectrum of requirements for very complex instruments. Assisting their design and operation requires an equally complex set of computational tools. High Energy Physics Priorities High energy frontier * Use high-energy colliders to discover new particles and

9

Large Scale Computing and Storage Requirements for High Energy Physics  

E-Print Network (OSTI)

at NERSC, Intrepid at ALCF, and Linux clusters. Most of themoved to Intrepid at the ALCF. The completion of this taskEnergy Physics Appendix C. ALCF AMR ASCR BAO BELLA CCSE

Gerber, Richard A.

2011-01-01T23:59:59.000Z

10

ESS 2012 Peer Review - Nitrogen-Oxygen Battery for Large Scale Energy Storage - Frank Delnick, SNL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

US DOE Energy Storage Systems Research Program US DOE Energy Storage Systems Research Program Peer Review, Washington, DC Sept. 26-28, 2012 Frank Delnick, David Ingersoll, Karen Waldrip, Peter Feibelman Nitrogen/Oxygen Battery A Transformational Architecture for Large Scale Energy Storage Power Sources Technology Group Sandia National Laboratories Albuquerque, NM SAND2012-7881P N 2 /O 2 Battery Project Overview  Air/Air battery.  N 2 electrochemistry enables the redefinition of a gas (diffusion) electrode and the three phase interface.  Operated as redox flow battery.  Provide a very high energy density, very low cost, environmentally benign electrochemical platform for load leveling and for grid-integrated storage of energy generated by wind, solar and other sustainable but intermittent sources.

11

A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage  

E-Print Network (OSTI)

A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage Yuan Yang develop a new lithium/ polysulfide (Li/PS) semi-liquid battery for large-scale energy storage, with lithium polysulfide (Li2S8) in ether solvent as a catholyte and metallic lithium as an anode. Unlike

Cui, Yi

12

Copyright 2013 IEEE. Reprinted, with permission from: CERTS Microgrid Demonstration with Large-Scale Energy Storage and  

E-Print Network (OSTI)

improving system reliability and optimizing the use of on-site generation to reduce energy costs) with new large- scale energy storage (2-MW, 4-MWh battery), static disconnect switch (12 kV, 300 Amps

13

First U.S. Large-Scale CO2 Storage Project Advances | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

First U.S. Large-Scale CO2 Storage Project Advances First U.S. Large-Scale CO2 Storage Project Advances First U.S. Large-Scale CO2 Storage Project Advances April 6, 2009 - 1:00pm Addthis Washington, DC - Drilling nears completion for the first large-scale carbon dioxide (CO2) injection well in the United States for CO2 sequestration. This project will be used to demonstrate that CO2 emitted from industrial sources - such as coal-fired power plants - can be stored in deep geologic formations to mitigate large quantities of greenhouse gas emissions. The Archer Daniels Midland Company (ADM) hosted an event April 6 for a CO2 injection test at their Decatur, Ill. ethanol facility. The injection well is being drilled into the Mount Simon Sandstone to a depth more than a mile beneath the surface. This is the first drilling into the sandstone geology

14

Large Scale Computing and Storage Requirements for Basic Energy Sciences Research  

E-Print Network (OSTI)

COMPUTING AND STORAGE REQUIREMENTS Basic Energy SciencesEnergy Sciences 8.2.1.4 Computational and Storage Computing and Storage Requirements for Basic Energy

Gerber, Richard

2012-01-01T23:59:59.000Z

15

ARRA-Multi-Level Energy Storage and Controls for Large-Scale Wind Energy Integration  

DOE Green Energy (OSTI)

The Project Objective is to design innovative energy storage architecture and associated controls for high wind penetration to increase reliability and market acceptance of wind power. The project goals are to facilitate wind energy integration at different levels by design and control of suitable energy storage systems. The three levels of wind power system are: Balancing Control Center level, Wind Power Plant level, and Wind Power Generator level. Our scopes are to smooth the wind power fluctuation and also ensure adequate battery life. In the new hybrid energy storage system (HESS) design for wind power generation application, the boundary levels of the state of charge of the battery and that of the supercapacitor are used in the control strategy. In the controller, some logic gates are also used to control the operating time durations of the battery. The sizing method is based on the average fluctuation of wind profiles of a specific wind station. The calculated battery size is dependent on the size of the supercapacitor, state of charge of the supercapacitor and battery wear. To accommodate the wind power fluctuation, a hybrid energy storage system (HESS) consisting of battery energy system (BESS) and super-capacitor is adopted in this project. A probability-based power capacity specification approach for the BESS and super-capacitors is proposed. Through this method the capacities of BESS and super-capacitor are properly designed to combine the characteristics of high energy density of BESS and the characteristics of high power density of super-capacitor. It turns out that the super-capacitor within HESS deals with the high power fluctuations, which contributes to the extension of BESS lifetime, and the super-capacitor can handle the peaks in wind power fluctuations without the severe penalty of round trip losses associated with a BESS. The proposed approach has been verified based on the real wind data from an existing wind power plant in Iowa. An intelligent controller that increases battery life within hybrid energy storage systems for wind application was developed. Comprehensive studies have been conducted and simulation results are analyzed. A permanent magnet synchronous generator, coupled with a variable speed wind turbine, is connected to a power grid (14-bus system). A rectifier, a DC-DC converter and an inverter are used to provide a complete model of the wind system. An Energy Storage System (ESS) is connected to a DC-link through a DC-DC converter. An intelligent controller is applied to the DC-DC converter to help the Voltage Source Inverter (VSI) to regulate output power and also to control the operation of the battery and supercapacitor. This ensures a longer life time for the batteries. The detailed model is simulated in PSCAD/EMTP. Additionally, economic analysis has been done for different methods that can reduce the wind power output fluctuation. These methods are, wind power curtailment, dumping loads, battery energy storage system and hybrid energy storage system. From the results, application of single advanced HESS can save more money for wind turbines owners. Generally the income would be the same for most of methods because the wind does not change and maximum power point tracking can be applied to most systems. On the other hand, the cost is the key point. For short term and small wind turbine, the BESS is the cheapest and applicable method while for large scale wind turbines and wind farms the application of advanced HESS would be the best method to reduce the power fluctuation. The key outcomes of this project include a new intelligent controller that can reduce energy exchanged between the battery and DC-link, reduce charging/discharging cycles, reduce depth of discharge and increase time interval between charge/discharge, and lower battery temperature. This improves the overall lifetime of battery energy storages. Additionally, a new design method based on probability help optimize the power capacity specification for BESS and super-capacitors. Recommendations include experimental imp

David Wenzhong Gao

2012-09-30T23:59:59.000Z

16

Large Scale Computing and Storage Requirements for Fusion Energy Sciences Research  

E-Print Network (OSTI)

Energy Sciences 8.2.3.4 Computational and Storage Energy Sciences 13.1.1.4 Computational and Storage Energy Sciences 8.2.4.4 Computational and Storage

Gerber, Richard

2012-01-01T23:59:59.000Z

17

A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage  

SciTech Connect

Large-scale energy storage represents a key challenge for renewable energy and new systems with low cost, high energy density and long cycle life are desired. In this article, we develop a new lithium/polysulfide (Li/PS) semi-liquid battery for large-scale energy storage, with lithium polysulfide (Li{sub 2}S{sub 8}) in ether solvent as a catholyte and metallic lithium as an anode. Unlike previous work on Li/S batteries with discharge products such as solid state Li{sub 2}S{sub 2} and Li{sub 2}S, the catholyte is designed to cycle only in the range between sulfur and Li{sub 2}S{sub 4}. Consequently all detrimental effects due to the formation and volume expansion of solid Li{sub 2}S{sub 2}/Li{sub 2}S are avoided. This novel strategy results in excellent cycle life and compatibility with flow battery design. The proof-of-concept Li/PS battery could reach a high energy density of 170 W h kg{sup -1} and 190 W h L{sup -1} for large scale storage at the solubility limit, while keeping the advantages of hybrid flow batteries. We demonstrated that, with a 5 M Li{sub 2}S{sub 8} catholyte, energy densities of 97 W h kg{sup -1}) and 108 W h L{sup -1} can be achieved. As the lithium surface is well passivated by LiNO{sub 3} additive in ether solvent, internal shuttle effect is largely eliminated and thus excellent performance over 2000 cycles is achieved with a constant capacity of 200 mA h g{sup -1}. This new system can operate without the expensive ion-selective membrane, and it is attractive for large-scale energy storage.

Yang, Yuan; Zheng, Guangyuan; Cui, Yi

2013-01-01T23:59:59.000Z

18

A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage  

SciTech Connect

Large-scale energy storage represents a key challenge for renewable energy and new systems with low cost, high energy density and long cycle life are desired. In this article, we develop a new lithium/polysulfide (Li/PS) semi-liquid battery for large-scale energy storage, with lithium polysulfide (Li{sub 2}S{sub 8}) in ether solvent as a catholyte and metallic lithium as an anode. Unlike previous work on Li/S batteries with discharge products such as solid state Li{sub 2}S{sub 2} and Li{sub 2}S, the catholyte is designed to cycle only in the range between sulfur and Li{sub 2}S{sub 4}. Consequently all detrimental effects due to the formation and volume expansion of solid Li{sub 2}S{sub 2}/Li{sub 2}S are avoided. This novel strategy results in excellent cycle life and compatibility with flow battery design. The proof-of-concept Li/PS battery could reach a high energy density of 170 W h kg{sup -1} and 190 W h L{sup -1} for large scale storage at the solubility limit, while keeping the advantages of hybrid flow batteries. We demonstrated that, with a 5 M Li{sub 2}S{sub 8} catholyte, energy densities of 97 W h kg{sup -1} and 108 W h L{sup -1} can be achieved. As the lithium surface is well passivated by LiNO{sub 3} additive in ether solvent, internal shuttle effect is largely eliminated and thus excellent performance over 2000 cycles is achieved with a constant capacity of 200 mA h g{sup -1}. This new system can operate without the expensive ion-selective membrane, and it is attractive for large-scale energy storage.

Yang, Yuan; Zheng, Guangyuan; Cui, Yi

2013-01-01T23:59:59.000Z

19

Scenario Development and Analysis of Hydrogen as a Large-Scale Energy Storage Medium (Presentation)  

DOE Green Energy (OSTI)

The conclusions from this report are: (1) hydrogen has several important advantages over competing technologies, including - very high storage energy density (170 kWh/m{sup 3} vs. 2.4 for CAES and 0.7 for pumped hydro) which allows for potential economic viability of above-ground storage and relatively low environmental impact in comparison with other technologies; and (2) the major disadvantage of hydrogen energy storage is cost but research and deployment of electrolyzers and fuel cells may reduce cost significantly.

Steward, D. M.

2009-06-10T23:59:59.000Z

20

Locations of Smart Grid Demonstration and Large-Scale Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Locations of Smart Grid Demonstration and Large-Scale Energy Storage Projects Locations of Smart Grid Demonstration and Large-Scale Energy Storage Projects Map of the United States...

Note: This page contains sample records for the topic "large-scale energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Large Scale Computing and Storage Requirements for Basic Energy Sciences Research  

SciTech Connect

The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility supporting research within the Department of Energy's Office of Science. NERSC provides high-performance computing (HPC) resources to approximately 4,000 researchers working on about 400 projects. In addition to hosting large-scale computing facilities, NERSC provides the support and expertise scientists need to effectively and efficiently use HPC systems. In February 2010, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR) and DOE's Office of Basic Energy Sciences (BES) held a workshop to characterize HPC requirements for BES research through 2013. The workshop was part of NERSC's legacy of anticipating users future needs and deploying the necessary resources to meet these demands. Workshop participants reached a consensus on several key findings, in addition to achieving the workshop's goal of collecting and characterizing computing requirements. The key requirements for scientists conducting research in BES are: (1) Larger allocations of computational resources; (2) Continued support for standard application software packages; (3) Adequate job turnaround time and throughput; and (4) Guidance and support for using future computer architectures. This report expands upon these key points and presents others. Several 'case studies' are included as significant representative samples of the needs of science teams within BES. Research teams scientific goals, computational methods of solution, current and 2013 computing requirements, and special software and support needs are summarized in these case studies. Also included are researchers strategies for computing in the highly parallel, 'multi-core' environment that is expected to dominate HPC architectures over the next few years. NERSC has strategic plans and initiatives already underway that address key workshop findings. This report includes a brief summary of those relevant to issues raised by researchers at the workshop.

Gerber, Richard; Wasserman, Harvey

2011-03-31T23:59:59.000Z

22

Large Scale Computing and Storage Requirements for Basic Energy Sciences Research  

SciTech Connect

The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility supporting research within the Department of Energy's Office of Science. NERSC provides high-performance computing (HPC) resources to approximately 4,000 researchers working on about 400 projects. In addition to hosting large-scale computing facilities, NERSC provides the support and expertise scientists need to effectively and efficiently use HPC systems. In February 2010, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR) and DOE's Office of Basic Energy Sciences (BES) held a workshop to characterize HPC requirements for BES research through 2013. The workshop was part of NERSC's legacy of anticipating users future needs and deploying the necessary resources to meet these demands. Workshop participants reached a consensus on several key findings, in addition to achieving the workshop's goal of collecting and characterizing computing requirements. The key requirements for scientists conducting research in BES are: (1) Larger allocations of computational resources; (2) Continued support for standard application software packages; (3) Adequate job turnaround time and throughput; and (4) Guidance and support for using future computer architectures. This report expands upon these key points and presents others. Several 'case studies' are included as significant representative samples of the needs of science teams within BES. Research teams scientific goals, computational methods of solution, current and 2013 computing requirements, and special software and support needs are summarized in these case studies. Also included are researchers strategies for computing in the highly parallel, 'multi-core' environment that is expected to dominate HPC architectures over the next few years. NERSC has strategic plans and initiatives already underway that address key workshop findings. This report includes a brief summary of those relevant to issues raised by researchers at the workshop.

Gerber, Richard; Wasserman, Harvey

2011-03-31T23:59:59.000Z

23

Large Scale Computing and Storage Requirements for Advanced Scientific...  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research: Target 2014 ASCRFrontcover.png Large Scale Computing and Storage Requirements for...

24

Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large-Scale Industrial Carbon Capture, Storage Plant Begins Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction August 24, 2011 - 1:00pm Addthis Washington, DC - Construction activities have begun at an Illinois ethanol plant that will demonstrate carbon capture and storage. The project, sponsored by the U.S. Department of Energy's Office of Fossil Energy, is the first large-scale integrated carbon capture and storage (CCS) demonstration project funded by the American Recovery and Reinvestment Act (ARRA) to move into the construction phase. Led by the Archer Daniels Midland Company (ADM), a member of DOE's Midwest Geological Sequestration Consortium, the Illinois-ICCS project is designed to sequester approximately 2,500 metric tons of carbon dioxide

25

Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large-Scale Industrial Carbon Capture, Storage Plant Begins Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction August 24, 2011 - 1:00pm Addthis Washington, DC - Construction activities have begun at an Illinois ethanol plant that will demonstrate carbon capture and storage. The project, sponsored by the U.S. Department of Energy's Office of Fossil Energy, is the first large-scale integrated carbon capture and storage (CCS) demonstration project funded by the American Recovery and Reinvestment Act (ARRA) to move into the construction phase. Led by the Archer Daniels Midland Company (ADM), a member of DOE's Midwest Geological Sequestration Consortium, the Illinois-ICCS project is designed to sequester approximately 2,500 metric tons of carbon dioxide

26

Large-scale Utilization of Biomass Energy and Carbon Dioxide Capture and Storage in the Transport and Electricity Sectors under Stri ngent CO2 Concentration Limit Scenarios  

Science Conference Proceedings (OSTI)

Status: Published Citation: Luckow, P; Wise, M; Dooley, J; and Kim S. 2010. Large-scale Utilization of Biomass Energy and Carbon Dioxide Capture and Storage in the Transport and Electricity Sectors under Stringent CO2 Concentration Limit Scenarios. In International Journal of Greenhouse Gas Control, Volume 4, Issue 5, 2010, pp. 865-877. Large-scale, dedicated commercial biomass energy systems are a potentially large contributor to meeting stringent global climate policy targets by the end of the century....

2010-12-31T23:59:59.000Z

27

Use of Large Scale Energy Storage for Transmission System Support: Energy Storage as Black-Start Resource  

Science Conference Proceedings (OSTI)

This project is a continuation of work conducted during 2011 and 2012 that examined the technical feasibility and assessed the potential benefits of the use of storage technologies--in particular, large battery systems--to increase transmission capability of transmission networks. Included in this effort was an analysis of the feasibility and potential benefits of using the same battery installation for multiple purposes, including overload relief, voltage control, stability improvement, and ...

2013-12-20T23:59:59.000Z

28

Energy Basics: Large-Scale Hydropower  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Large-Scale Hydropower Microhydropower Hydropower Resources...

29

Techno-economic Modeling of the Integration of 20% Wind and Large-scale Energy Storage in ERCOT by 2030  

SciTech Connect

This study?¢????s objective is to examine interrelated technical and economic avenues for the Electric Reliability Council of Texas (ERCOT) grid to incorporate up to and over 20% wind generation by 2030. Our specific interests are to look at the factors that will affect the implementation of both high level of wind power penetration (> 20% generation) and installation of large scale storage.

Ross Baldick; Michael Webber; Carey King; Jared Garrison; Stuart Cohen; Duehee Lee

2012-12-21T23:59:59.000Z

30

A Stable Vanadium Redox-Flow Battery with High Energy Density for Large-scale Energy Storage  

SciTech Connect

Low cost, high performance redox flow batteries are highly demanded for up to multi-megawatt levels of renewable and grid energy storage. Here, we report a new vanadium redox flow battery with a significant improvement over the current technologies. This new battery utilizes a sulfate-chloride mixed solution, which is capable of dissolving more than 2.5 M vanadium or about a 70% increase in the energy storage capacity over the current vanadium sulfate system. More importantly, the new electrolyte remains stable over a wide temperature range of -5 to 60oC, potentially eliminating the need of active heat management. Its high energy density, broad operational temperature window, and excellent electrochemical performance would lead to a significant reduction in the cost of energy storage, thus accelerating its market penetration.

Li, Liyu; Kim, Soowhan; Wang, Wei; Vijayakumar, M.; Nie, Zimin; Chen, Baowei; Zhang, Jianlu; Xia, Guanguang; Hu, Jian Z.; Graff, Gordon L.; Liu, Jun; Yang, Zhenguo

2011-05-01T23:59:59.000Z

31

Large Scale Computing and Storage Requirements for Nuclear Physics Research  

E-Print Network (OSTI)

outlined in the 2011 DOE Strategic Plan. U.S. Departmentstrategic plans. Large Scale Computing and Storage Requirements for Nuclear Physics DOE

Gerber, Richard A.

2012-01-01T23:59:59.000Z

32

Energy Department Applauds Nation's First Large-Scale Industrial Carbon  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Applauds Nation's First Large-Scale Industrial Energy Department Applauds Nation's First Large-Scale Industrial Carbon Capture and Storage Facility Energy Department Applauds Nation's First Large-Scale Industrial Carbon Capture and Storage Facility August 24, 2011 - 6:23pm Addthis Washington, D.C. - The U.S. Department of Energy issued the following statement in support of today's groundbreaking for construction of the nation's first large-scale industrial carbon capture and storage (ICCS) facility in Decatur, Illinois. Supported by the 2009 economic stimulus legislation - the American Recovery and Reinvestment Act - the ambitious project will capture and store one million tons of carbon dioxide (CO2) per year produced as the result of processing corn into fuel-grade ethanol from the nearby Archer Daniels Midland biofuels plant. Since all of

33

Energy Department Applauds Nation's First Large-Scale Industrial Carbon  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nation's First Large-Scale Industrial Nation's First Large-Scale Industrial Carbon Capture and Storage Facility Energy Department Applauds Nation's First Large-Scale Industrial Carbon Capture and Storage Facility August 24, 2011 - 6:23pm Addthis Washington, D.C. - The U.S. Department of Energy issued the following statement in support of today's groundbreaking for construction of the nation's first large-scale industrial carbon capture and storage (ICCS) facility in Decatur, Illinois. Supported by the 2009 economic stimulus legislation - the American Recovery and Reinvestment Act - the ambitious project will capture and store one million tons of carbon dioxide (CO2) per year produced as the result of processing corn into fuel-grade ethanol from the nearby Archer Daniels Midland biofuels plant. Since all of

34

Large-Scale Renewable Energy Guide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Guide Renewable Energy Guide Brad Gustafson, FEMP 2 Large-scale RE Guide Large-scale RE Guide: Developing Renewable Energy Projects Larger than 10 MWs at Federal Facilities Introduction and Overview Federal Utility Partnership Working Group May 22, 2013 Federal Energy Management Program Office of Energy Efficiency and Renewable Energy U.S. Department of Energy 3 Federal Energy Management Program FEMP works with key individuals to accomplish energy change within organizations by bringing expertise from all levels of project and policy implementation to enable Federal Agencies to meet energy related goals and to provide energy leadership to the country. 4 FEMP Renewable Energy * Works to increase the proportion of renewable energy in the Federal government's energy mix.

35

Federal Energy Management Program: Large-scale Renewable Energy Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Large-scale Large-scale Renewable Energy Projects (Larger than 10 MWs) to someone by E-mail Share Federal Energy Management Program: Large-scale Renewable Energy Projects (Larger than 10 MWs) on Facebook Tweet about Federal Energy Management Program: Large-scale Renewable Energy Projects (Larger than 10 MWs) on Twitter Bookmark Federal Energy Management Program: Large-scale Renewable Energy Projects (Larger than 10 MWs) on Google Bookmark Federal Energy Management Program: Large-scale Renewable Energy Projects (Larger than 10 MWs) on Delicious Rank Federal Energy Management Program: Large-scale Renewable Energy Projects (Larger than 10 MWs) on Digg Find More places to share Federal Energy Management Program: Large-scale Renewable Energy Projects (Larger than 10 MWs) on

36

Strategies to Finance Large-Scale Deployment of Renewable Energy...  

Open Energy Info (EERE)

Large-Scale Deployment of Renewable Energy Projects: An Economic Development and Infrastructure Approach Jump to: navigation, search Name Strategies to Finance Large-Scale...

37

NIChE Workshop on Materials for Large-Scale Energy ...  

Science Conference Proceedings (OSTI)

... Workshop on Materials for Large-Scale Energy Storage. Purpose: This workshop will delve into the end-use applications and market drivers for large ...

2010-10-05T23:59:59.000Z

38

Large-Scale Utilization of Biomass Energy and Carbon Dioxide Capture and Storage in the Transport and Electricity Sectors under Stringent CO2 Concentration Limit Scenarios  

Science Conference Proceedings (OSTI)

This paper examines the potential role of large scale, dedicated commercial biomass energy systems under global climate policies designed to meet atmospheric concentrations of CO2 at 400ppm and 450ppm by the end of the century. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. A key aspect of the research presented here is that the costs of processing and transporting biomass energy at much larger scales than current experience are explicitly incorporated into the modeling. From the scenario results, 120-160 EJ/year of biomass energy is produced globally by midcentury and 200-250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the majority source, along with growing utilization of waste-to-energy. The ability to draw on a diverse set of biomass based feedstocks helps to reduce the pressure for drastic large-scale changes in land use and the attendant environmental, ecological, and economic consequences those changes would unleash. In terms of the conversion of bioenergy feedstocks into value added energy, this paper demonstrates that biomass is and will continue to be used to generate electricity as well as liquid transportation fuels. A particular focus of this paper is to show how climate policies and technology assumptions - especially the availability of carbon dioxide capture and storage (CCS) technologies - affect the decisions made about where the biomass is used in the energy system. The potential for net-negative electric sector emissions through the use of CCS with biomass feedstocks provides an attractive part of the solution for meeting stringent emissions constraints; we find that at carbon prices above 150$/tCO2, over 90% of biomass in the energy system is used in combination with CCS. Despite the higher technology costs of CCS, it is a very important tool in controlling the cost of meeting a target, offsetting the venting of CO2 from sectors of the energy system that may be more expensive to mitigate, such as oil use in transportation. CCS is also used heavily with other fuels such as coal and natural gas, and by 2095 a total of 1530 GtCO2 has been stored in deep geologic reservoirs. The paper also discusses the role of cellulosic ethanol and Fischer-Tropsch biomass derived transportation fuels as two representative conversion processes and shows that both technologies may be important contributors to liquid fuels production, with unique costs and emissions characteristics.

Luckow, Patrick; Wise, Marshall A.; Dooley, James J.; Kim, Son H.

2010-08-05T23:59:59.000Z

39

Energy Basics: Large-Scale Hydropower  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

These plants are more than 30 MW in size, and there is more than 80,000 MW of installed generation capacity in the United States today. Most large-scale hydropower projects use a...

40

Energy Department Loan Guarantee Would Support Large-Scale Rooftop...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Loan Guarantee Would Support Large-Scale Rooftop Solar Power for U.S. Military Housing Energy Department Loan Guarantee Would Support Large-Scale Rooftop Solar Power for U.S....

Note: This page contains sample records for the topic "large-scale energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Large-Scale Hydropower | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

hydropower projects can also be built as power storage facilities. During periods of peak electricity demand, these facilities operate much like a traditional hydropower...

42

Large Scale GSHP as Alternative Energy for American Farmers Geothermal  

Open Energy Info (EERE)

GSHP as Alternative Energy for American Farmers Geothermal GSHP as Alternative Energy for American Farmers Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Large Scale GSHP as Alternative Energy for American Farmers Project Type / Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type / Topic 2 Topic Area 1: Technology Demonstration Projects Project Description We propose a large scale demonstration of solar assisted GSHP systems on two poultry farms in mid-Missouri. The heating load of Farm A with 4 barns will be 510 tons and Farm B with 5 barns will be 440 tons. Solar assisted GSHP systems will be installed, and new utility business model will be applied to both farms. Farm A will be constructed with commercial products in order to bring immediate impact to the industry. Farm B will also have a thermal energy storage system installed, and improved solar collectors will be used. A comprehensive energy analysis and economic study will be conducted.

43

Large-Scale Hydropower Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large-Scale Hydropower Basics Large-Scale Hydropower Basics Large-Scale Hydropower Basics August 14, 2013 - 3:11pm Addthis Large-scale hydropower plants are generally developed to produce electricity for government or electric utility projects. These plants are more than 30 megawatts (MW) in size, and there is more than 80,000 MW of installed generation capacity in the United States today. Most large-scale hydropower projects use a dam and a reservoir to retain water from a river. When the stored water is released, it passes through and rotates turbines, which spin generators to produce electricity. Water stored in a reservoir can be accessed quickly for use during times when the demand for electricity is high. Dammed hydropower projects can also be built as power storage facilities.

44

Large-Scale Hydropower Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large-Scale Hydropower Basics Large-Scale Hydropower Basics Large-Scale Hydropower Basics August 14, 2013 - 3:11pm Addthis Large-scale hydropower plants are generally developed to produce electricity for government or electric utility projects. These plants are more than 30 megawatts (MW) in size, and there is more than 80,000 MW of installed generation capacity in the United States today. Most large-scale hydropower projects use a dam and a reservoir to retain water from a river. When the stored water is released, it passes through and rotates turbines, which spin generators to produce electricity. Water stored in a reservoir can be accessed quickly for use during times when the demand for electricity is high. Dammed hydropower projects can also be built as power storage facilities.

45

Large-Scale Eucalyptus Energy Farms and Power Cogeneration1  

E-Print Network (OSTI)

Large-Scale Eucalyptus Energy Farms and Power Cogeneration1 Robert C. Noronla2 The initiation of a large-scale cogeneration project, especially one that combines construction of the power generation supplemental fuel source must be sought if the cogeneration facility will consume more fuel than

Standiford, Richard B.

46

Large Scale Computing and Storage Requirements for Nuclear Physics Research  

SciTech Connect

IThe National Energy Research Scientific Computing Center (NERSC) is the primary computing center for the DOE Office of Science, serving approximately 4,000 users and hosting some 550 projects that involve nearly 700 codes for a wide variety of scientific disciplines. In addition to large-scale computing resources NERSC provides critical staff support and expertise to help scientists make the most efficient use of these resources to advance the scientific mission of the Office of Science. In May 2011, NERSC, DOEs Office of Advanced Scientific Computing Research (ASCR) and DOEs Office of Nuclear Physics (NP) held a workshop to characterize HPC requirements for NP research over the next three to five years. The effort is part of NERSCs continuing involvement in anticipating future user needs and deploying necessary resources to meet these demands. The workshop revealed several key requirements, in addition to achieving its goal of characterizing NP computing. The key requirements include: 1. Larger allocations of computational resources at NERSC; 2. Visualization and analytics support; and 3. Support at NERSC for the unique needs of experimental nuclear physicists. This report expands upon these key points and adds others. The results are based upon representative samples, called case studies, of the needs of science teams within NP. The case studies were prepared by NP workshop participants and contain a summary of science goals, methods of solution, current and future computing requirements, and special software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, multi-core environment that is expected to dominate HPC architectures over the next few years. The report also includes a section with NERSC responses to the workshop findings. NERSC has many initiatives already underway that address key workshop findings and all of the action items are aligned with NERSC strategic plans.

Gerber, Richard A.; Wasserman, Harvey J.

2012-03-02T23:59:59.000Z

47

Survey and analysis of selected jointly owned large-scale electric utility storage projects  

DOE Green Energy (OSTI)

The objective of this study was to examine and document the issues surrounding the curtailment in commercialization of large-scale electric storage projects. It was sensed that if these issues could be uncovered, then efforts might be directed toward clearing away these barriers and allowing these technologies to penetrate the market to their maximum potential. Joint-ownership of these projects was seen as a possible solution to overcoming the major barriers, particularly economic barriers, of commercializaton. Therefore, discussions with partners involved in four pumped storage projects took place to identify the difficulties and advantages of joint-ownership agreements. The four plants surveyed included Yards Creek (Public Service Electric and Gas and Jersey Central Power and Light); Seneca (Pennsylvania Electric and Cleveland Electric Illuminating Company); Ludington (Consumers Power and Detroit Edison, and Bath County (Virginia Electric Power Company and Allegheny Power System, Inc.). Also investigated were several pumped storage projects which were never completed. These included Blue Ridge (American Electric Power); Cornwall (Consolidated Edison); Davis (Allegheny Power System, Inc.) and Kttatiny Mountain (General Public Utilities). Institutional, regulatory, technical, environmental, economic, and special issues at each project were investgated, and the conclusions relative to each issue are presented. The major barriers preventing the growth of energy storage are the high cost of these systems in times of extremely high cost of capital, diminishing load growth and regulatory influences which will not allow the building of large-scale storage systems due to environmental objections or other reasons. However, the future for energy storage looks viable despite difficult economic times for the utility industry. Joint-ownership can ease some of the economic hardships for utilites which demonstrate a need for energy storage.

Not Available

1982-05-01T23:59:59.000Z

48

NETL: News Release -Large-Scale Industrial Carbon Capture, Storage...  

NLE Websites -- All DOE Office Websites (Extended Search)

the Illinois Basin region. The injected CO2 will come from the byproduct from processing corn into fuel-grade ethanol at ADM's biofuels plant adjacent to the storage site in...

49

Large-Scale Renewable Energy Development on Public Lands  

NLE Websites -- All DOE Office Websites (Extended Search)

Large-Scale Renewable Energy Large-Scale Renewable Energy Development on Public Lands Boyan Kovacic boyan.kovacic@ee.doe.gov 5/2/12 2 | FEDERAL ENERGY MANAGEMENT PROGRAM femp.energy.gov * BLM RE Drivers * BLM RE Programs * BLM Permitting and Revenues * Case Studies * Withdrawn Military Land Outline 3 | FEDERAL ENERGY MANAGEMENT PROGRAM femp.energy.gov BLM: Bureau of Land Management BO: Biological Opinion CSP: Concentrating Solar Power DOE: Department of Energy DOI: Department of Interior EA: Environmental Assessment EIS: Environmental Impact Statement FONSI: Finding of No Significant Impact FS: U.S. Forrest Service IM: Instruction Memorandum MPDS: Maximum Potential Development Scenario NEPA: National Environmental Policy Act NOI: Notice of Intent NOP: Notice to Proceed

50

Large-Scale Renewable Energy Development on Public Lands  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large-Scale Renewable Energy Large-Scale Renewable Energy Development on Public Lands Boyan Kovacic boyan.kovacic@ee.doe.gov 5/2/12 2 | FEDERAL ENERGY MANAGEMENT PROGRAM femp.energy.gov * BLM RE Drivers * BLM RE Programs * BLM Permitting and Revenues * Case Studies * Withdrawn Military Land Outline 3 | FEDERAL ENERGY MANAGEMENT PROGRAM femp.energy.gov BLM: Bureau of Land Management BO: Biological Opinion CSP: Concentrating Solar Power DOE: Department of Energy DOI: Department of Interior EA: Environmental Assessment EIS: Environmental Impact Statement FONSI: Finding of No Significant Impact FS: U.S. Forrest Service IM: Instruction Memorandum MPDS: Maximum Potential Development Scenario NEPA: National Environmental Policy Act NOI: Notice of Intent NOP: Notice to Proceed

51

Large Scale Computing and Storage Requirements for Biological...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy's Office of Biological & Environmental Research and Advanced Scientific Computing Research (ASCR) to elucidate computing requirements for biological and...

52

Large Scale Computing and Storage Requirements for Nuclear Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Office of Science, Office of Advanced Scientific Computing Research (ASCR), Office of Nuclear Physics (NP), and the National Energy Research Scientific Computing Center (NERSC)...

53

Large Scale Computing and Storage Requirements for Nuclear Physics Research  

E-Print Network (OSTI)

day experimental fusion devices and in nuclear reactors thatnuclear energy both for next-generation fission reactors and for fusion reactors

Gerber, Richard A.

2012-01-01T23:59:59.000Z

54

Large Scale Computing and Storage Requirements for Biological...  

NLE Websites -- All DOE Office Websites (Extended Search)

Sponsored by: U.S. Department of Energy Office of Science Office of Advanced Scientific Computing Research (ASCR) Office of Biological and Environmental Research (BER) National...

55

Energy Department Awards $66.7 Million for Large-Scale Carbon Sequestration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

66.7 Million for Large-Scale Carbon 66.7 Million for Large-Scale Carbon Sequestration Project Energy Department Awards $66.7 Million for Large-Scale Carbon Sequestration Project December 18, 2007 - 4:58pm Addthis Regional Partner to Demonstrate Safe and Permanent Storage of One Million Tons of CO2 at Illinois Site WASHINGTON, DC - Following closely on the heels of three recent awards through the Department of Energy's (DOE) Regional Carbon Sequestration Partnership Program, DOE today awarded $66.7 million to the Midwest Geological Sequestration Consortium (MGSC) for the Department's fourth large-scale carbon sequestration project. The Partnership led by the Illinois State Geological Survey will conduct large volume tests in the Illinois Basin to demonstrate the ability of a geologic formation to

56

Low-Cost Large-Scale PEM Electrolysis for Renewable Energy Storage - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Dr. Katherine Ayers (Primary Contact), Chris Capuano Proton Energy Systems d/b/a Proton OnSite 10 Technology Drive Wallingford, CT 06492 Phone: (203) 678-2190 Email: kayers@protononsite.com DOE Manager HQ: Erika Sutherland Phone: (202) 586-3152 Email: Erika.Sutherland@ee.doe.gov Contract Number: DE-SC0001338 Subcontractors: * 3M, Minneapolis, MN * University of Wyoming, Laramie, WY Project Start Date: June 19, 2010 (Phase 1) Project End Date: August 18, 2013 (with Phase 2 continuation) Fiscal Year (FY) 2012 Project Objectives Demonstrate optimal membrane electrode assembly * (MEA) efficiency through: Refinement of catalyst compositions based on -

57

Energy Department Awards $66.7 Million for Large-Scale Carbon...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

66.7 Million for Large-Scale Carbon Sequestration Project Energy Department Awards 66.7 Million for Large-Scale Carbon Sequestration Project December 18, 2007 - 4:58pm Addthis...

58

Fountain Codes Based Distributed Storage Algorithms for Large-Scale Wireless Sensor Networks  

Science Conference Proceedings (OSTI)

We consider large-scale networks with n nodes, out of which k are in possession, (e.g., have sensed or collected in some other way) k information packets. In the scenarios in which network nodes are vulnerable because of, for example, limited energy ...

Salah A. Aly; Zhenning Kong; Emina Soljanin

2008-04-01T23:59:59.000Z

59

NETL: News Release - First U.S. Large-Scale CO2 Storage Project Advances  

NLE Websites -- All DOE Office Websites (Extended Search)

April 6, 2009 April 6, 2009 First U.S. Large-Scale CO2 Storage Project Advances One Million Metric Tons of Carbon to be Injected at Illinois Site Washington, DC -Drilling nears completion for the first large-scale carbon dioxide (CO2) injection well in the United States for CO2 sequestration. This project will be used to demonstrate that CO2 emitted from industrial sources - such as coal-fired power plants - can be stored in deep geologic formations to mitigate large quantities of greenhouse gas emissions. MORE INFO Link to the Midwest Geological Sequestration Consortium web site The Archer Daniels Midland Company (ADM) hosted an event April 6 for a CO2 injection test at their Decatur, Ill. ethanol facility. The injection well is being drilled into the Mount Simon Sandstone to a depth more than a mile

60

Nevada Weatherizes Large-Scale Complex | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nevada Weatherizes Large-Scale Complex Nevada Weatherizes Large-Scale Complex Nevada Weatherizes Large-Scale Complex July 1, 2010 - 10:11am Addthis What does this project do? This nonprofit weatherized a 22-unit low-income multifamily complex, reducing the building's duct leakage from 90 percent to just 5 percent. The weatherization program of the Rural Nevada Development Corporation (RNDC) reached a recent success in its eleven counties-wide territory. In June, the nonprofit finished weatherizing a 22-unit low-income multifamily complex, reducing the building's duct leakage from 90 percent to just 5 percent. "That is one big savings and is why I am proud of this project," says Dru Simerson, RNDC Weatherization Manager. RNDC's crew replaced all windows and 17 furnaces and installed floor

Note: This page contains sample records for the topic "large-scale energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Lessons from Large-Scale Renewable Energy Integration Studies: Preprint  

Science Conference Proceedings (OSTI)

In general, large-scale integration studies in Europe and the United States find that high penetrations of renewable generation are technically feasible with operational changes and increased access to transmission. This paper describes other key findings such as the need for fast markets, large balancing areas, system flexibility, and the use of advanced forecasting.

Bird, L.; Milligan, M.

2012-06-01T23:59:59.000Z

62

Thermocline Thermal Storage Test for Large-Scale Solar Thermal Power Plants  

DOE Green Energy (OSTI)

Solar thermal-to-electric power plants have been tested and investigated at Sandia National Laboratories (SNL) since the late 1970s, and thermal storage has always been an area of key study because it affords an economical method of delivering solar-electricity during non-daylight hours. This paper describes the design considerations of a new, single-tank, thermal storage system and details the benefits of employing this technology in large-scale (10MW to 100MW) solar thermal power plants. Since December 1999, solar engineers at Sandia National Laboratories' National Solar Thermal Test Facility (NSTTF) have designed and are constructing a thermal storage test called the thermocline system. This technology, which employs a single thermocline tank, has the potential to replace the traditional and more expensive two-tank storage systems. The thermocline tank approach uses a mixture of silica sand and quartzite rock to displace a significant portion of the volume in the tank. Then it is filled with the heat transfer fluid, a molten nitrate salt. A thermal gradient separates the hot and cold salt. Loading the tank with the combination of sand, rock, and molten salt instead of just molten salt dramatically reduces the system cost. The typical cost of the molten nitrate salt is $800 per ton versus the cost of the sand and rock portion at $70 per ton. Construction of the thermocline system will be completed in August 2000, and testing will run for two to three months. The testing results will be used to determine the economic viability of the single-tank (thermocline) storage technology for large-scale solar thermal power plants. Also discussed in this paper are the safety issues involving molten nitrate salts and other heat transfer fluids, such as synthetic heat transfer oils, and the impact of these issues on the system design.

ST.LAURENT,STEVEN J.

2000-08-14T23:59:59.000Z

63

Large-Scale Integration of Deferrable Demand and Renewable Energy Sources  

E-Print Network (OSTI)

1 Large-Scale Integration of Deferrable Demand and Renewable Energy Sources Anthony Papavasiliou model for assessing the impacts of the large-scale integration of renewable energy sources. In order to accurately assess the impacts of renewable energy integration and demand response integration

Oren, Shmuel S.

64

Large-scale Renewable Energy Projects (Larger than 10 MWs) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large-scale Renewable Energy Projects (Larger than 10 MWs) Large-scale Renewable Energy Projects (Larger than 10 MWs) Large-scale Renewable Energy Projects (Larger than 10 MWs) October 7, 2013 - 9:32am Addthis Renewable energy projects larger than 10 megawatts (MW) are complex and typically require private-sector financing. The Federal Energy Management Program (FEMP) developed a guide to help Federal agencies, and the developers and financiers that work with them, to successfully install these projects at Federal facilities. The Large-Scale Renewable Energy Guide: Developing Renewable Energy Projects Larger than 10 MWs at Federal Facilities: A Practical Guide to Getting Large-Scale Renewable Energy Projects Financed with Private Capital provides a framework to allow the Federal Government, private developers, and financiers to work in a

65

Strategies to Finance Large-Scale Deployment of Renewable Energy Projects:  

Open Energy Info (EERE)

Strategies to Finance Large-Scale Deployment of Renewable Energy Projects: Strategies to Finance Large-Scale Deployment of Renewable Energy Projects: An Economic Development and Infrastructure Approach Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Strategies to Finance Large-Scale Deployment of Renewable Energy Projects: An Economic Development and Infrastructure Approach Agency/Company /Organization: International Energy Agency (IEA) Sector: Energy Focus Area: Renewable Energy Topics: Finance, Implementation, Policies/deployment programs Resource Type: Publications Website: iea-retd.org/archives/publications/finance-re Cost: Free Language: English Strategies to Finance Large-Scale Deployment of Renewable Energy Projects: An Economic Development and Infrastructure Approach Screenshot References: Strategies to Finance Large-Scale Deployment of Renewable Energy Projects: An Economic Development and Infrastructure Approach[1]

66

Tax Exemption for Large-Scale Renewable Energy Projects | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for Energy Independence Act'' (IEIA) to promote the development of renewable energy and alternative fuel facilities, energy efficient buildings, alternative fuel vehicles,...

67

Impact of Large Scale Energy Efficiency Programs On Consumer...  

NLE Websites -- All DOE Office Websites (Extended Search)

Date Published 012011 Keywords consumer tarifs, energy efficiency, india, modeling energy futures, models, utility finances Abstract The objective of this paper is to analyze...

68

U.S. Energy Infrastructure Investment: Large-Scale Integrated Smart Grid  

E-Print Network (OSTI)

U.S. Energy Infrastructure Investment: Large-Scale Integrated Smart Grid Solutions with High: LargeScale Integrated Smart Grid Solutions with High Penetration of Renewable Resources, Dispersed- ing electricity grid. Much attention is being given to smart grid development in the U.S. and around

69

Large-Scale Residential Energy Efficiency Programs Based on CFLs | Open  

Open Energy Info (EERE)

Large-Scale Residential Energy Efficiency Programs Based on CFLs Large-Scale Residential Energy Efficiency Programs Based on CFLs Jump to: navigation, search Tool Summary Name: Large-Scale Residential Energy Efficiency Programs Based on CFLs Agency/Company /Organization: Energy Sector Management Assistance Program of the World Bank Sector: Energy Focus Area: Energy Efficiency, Buildings Topics: Implementation, Policies/deployment programs Website: www.esmap.org/filez/pubs/216201021421_CFL_Toolkit_Web_Version_021610_R References: Large-Scale Residential Energy Efficiency Programs Based on CFLs[1] Overview "The World Bank Group and its Energy Sector Management Assitance Progamme (ESMAP) have produced a toolkit for efficient lighting programmes, based on compact fluorescent lamps, that compiles and shares operational (design,

70

Large-Scale Renewable Energy Producers Property Tax Abatement...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

up to 20 years for real and personal property used to generate electricity from renewable energy resources including solar, wind, biomass*, fuel cells, geothermal or hydro....

71

Fossil Energy Techline, DOE Completes Large-Scale Carbon  

E-Print Network (OSTI)

and represents a summary of carbon sequestration news covering the past month. Readers are referred to the actual article(s) for complete information. It is produced by the National Energy Technology Laboratory to provide information on recent activities and publications related to carbon sequestration. It covers domestic, international, public sector, and private sector news.

unknown authors

2008-01-01T23:59:59.000Z

72

Energy Consumption Models and Predictions for Large-Scale Systems  

Science Conference Proceedings (OSTI)

Responsible, efficient and well-planned power consumption is becoming a necessity for monetary returns and scalability of computing infrastructures. While there are numerous sources from which power data can be obtained, analyzing this data is an intrinsically ... Keywords: Energy model, Grid'5000, distrbuted systems

Taghrid Samak, Christine Morin, David Bailey

2013-05-01T23:59:59.000Z

73

Energy Transmission by Barotropic Rossby Waves across Large-Scale Topography  

Science Conference Proceedings (OSTI)

An analytical study investigates the energy transmission by free, barotropic, linear Rossby waves across a large scale bottom topography when topographic and beta-effects have the same order of magnitude. In open ocean regions which are not ...

Bernard Barnier

1984-02-01T23:59:59.000Z

74

Nanocomposite Materials for Energy Storage Devices  

Science Conference Proceedings (OSTI)

Abstract Scope, High power energy storage devices are critical for the development of zero-emission electrical vehicles, large scale smart grid, and energy...

75

U.S. Signs International Fusion Energy Agreement; Large-Scale, Clean Fusion  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Signs U.S. Signs International Fusion Energy Agreement; Large-Scale, Clean Fusion Energy Project to Begin Construction News Featured Articles Science Headlines 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 Presentations & Testimony News Archives Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 11.21.06 U.S. Signs International Fusion Energy Agreement; Large-Scale, Clean Fusion Energy Project to Begin Construction Print Text Size: A A A Subscribe FeedbackShare Page Large-Scale, Clean Fusion Energy Project to Begin Construction November 21, 2006 PARIS, FRANCE - Representing the United States, Dr. Raymond L. Orbach, Under Secretary for Science of the U.S. Department of Energy (DOE), today joined counterparts from China, the European Union, India, Japan, the

76

Economic analysis of large-scale hydrogen storage for renewable utility applications.  

DOE Green Energy (OSTI)

The work reported here supports the efforts of the Market Transformation element of the DOE Fuel Cell Technology Program. The portfolio includes hydrogen technologies, as well as fuel cell technologies. The objective of this work is to model the use of bulk hydrogen storage, integrated with intermittent renewable energy production of hydrogen via electrolysis, used to generate grid-quality electricity. In addition the work determines cost-effective scale and design characteristics and explores potential attractive business models.

Schoenung, Susan M.

2011-08-01T23:59:59.000Z

77

The Association of Large-Scale Climate Variability and Teleconnections on Wind Energy Resource  

E-Print Network (OSTI)

The Association of Large-Scale Climate Variability and Teleconnections on Wind Energy Resource over on Wind Energy Resource over Europe and its Intermittency Pascal Kriesche* and Adam Schlosser* Abstract In times of increasing importance of wind power in the world's energy mix, this study focuses on a better

78

Dark energy, integrated Sachs-Wolfe effect and large-scale magnetic fields  

E-Print Network (OSTI)

The impact of large-scale magnetic fields on the interplay between the ordinary and integrated Sachs-Wolfe effects is investigated in the presence of a fluctuating dark energy component. The modified initial conditions of the Einstein-Boltzmann hierarchy allow for the simultaneous inclusion of dark energy perturbations and of large-scale magnetic fields. The temperature and polarization angular power spectra are compared with the results obtained in the magnetized version of the (minimal) concordance model. Purported compensation effects arising at large scales are specifically investigated. The fluctuating dark energy component modifies, in a computable manner, the shapes of the 1- and 2-$\\sigma$ contours in the parameter space of the magnetized background. The allowed spectral indices and magnetic field intensities turn out to be slightly larger than those determined in the framework of the magnetized concordance model where the dark energy fluctuations are absent.

Massimo Giovannini

2009-07-18T23:59:59.000Z

79

Biomass Energy for Transport and Electricity: Large scale utilization under low CO2 concentration scenarios  

DOE Green Energy (OSTI)

This paper examines the potential role of large scale, dedicated commercial biomass energy systems under global climate policies designed to stabilize atmospheric concentrations of CO2 at 400ppm and 450ppm. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. The costs of processing and transporting biomass energy at much larger scales than current experience are also incorporated into the modeling. From the scenario results, 120-160 EJ/year of biomass energy is produced by midcentury and 200-250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the dominant source. A key finding of this paper is the role that carbon dioxide capture and storage (CCS) technologies coupled with commercial biomass energy can play in meeting stringent emissions targets. Despite the higher technology costs of CCS, the resulting negative emissions used in combination with biomass are a very important tool in controlling the cost of meeting a target, offsetting the venting of CO2 from sectors of the energy system that may be more expensive to mitigate, such as oil use in transportation. The paper also discusses the role of cellulosic ethanol and Fischer-Tropsch biomass derived transportation fuels and shows that both technologies are important contributors to liquid fuels production, with unique costs and emissions characteristics. Through application of the GCAM integrated assessment model, it becomes clear that, given CCS availability, bioenergy will be used both in electricity and transportation.

Luckow, Patrick; Wise, Marshall A.; Dooley, James J.; Kim, Son H.

2010-01-25T23:59:59.000Z

80

Clean Energy Solutions Large Scale CHP and Fuel Cells Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Energy Solutions Large Scale CHP and Fuel Cells Program Clean Energy Solutions Large Scale CHP and Fuel Cells Program Clean Energy Solutions Large Scale CHP and Fuel Cells Program < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Nonprofit State Government Savings Category Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Maximum Rebate CHP: $3,000,000 or 30% of project costs Fuel Cells: $3,000,000 or 45% of project costs Program Info Start Date 01/17/2013 State New Jersey Program Type State Grant Program Rebate Amount CHP greater than 1 MW-3 MW: $0.55/wattt CHP > 3 MW: $0.35/watt Fuel Cells > 1 MW with waste heat utilization: $2.00/watt Fuel Cells > 1 MW without waste heat utilization: $1.50/watt

Note: This page contains sample records for the topic "large-scale energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Ultra high energy cosmic rays and the large scale structure of the galactic magnetic field  

E-Print Network (OSTI)

We study the deflection of ultra high energy cosmic ray protons in different models of the regular galactic magnetic field. Such particles have gyroradii well in excess of 1 kpc and their propagation in the galaxy reflects only the large scale structure of the galactic magnetic field. A future large experimental statistics of cosmic rays of energy above 10$^{19}$ eV could be used for a study of the large scale structure of the galactic magnetic field if such cosmic rays are indeed charged nuclei accelerated at powerful astrophysical objects and if the distribution of their sources is not fully isotropic.

Todor Stanev

1996-07-17T23:59:59.000Z

82

Energy Department Loan Guarantee Would Support Large-Scale Rooftop Solar  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Loan Guarantee Would Support Large-Scale Rooftop Loan Guarantee Would Support Large-Scale Rooftop Solar Power for U.S. Military Housing Energy Department Loan Guarantee Would Support Large-Scale Rooftop Solar Power for U.S. Military Housing September 7, 2011 - 2:10pm Addthis Washington D.C. - U.S. Energy Secretary Steven Chu today announced the offer of a conditional commitment for a partial guarantee of a $344 million loan that will support the SolarStrong Project, which is expected to be a record expansion of residential rooftop solar power in the United States. Under the SolarStrong Project, SolarCity Corporation will install, own and operate up to 160,000 rooftop solar installations on as many as 124 U.S. military bases in up to 33 states. SolarCity expects the project to fund approximately 750 construction jobs over five years and 28 full time

83

Solar total energy: large scale experiment, Shenandoah, Georgia Site. Annual report, June 1978-June 1979  

DOE Green Energy (OSTI)

A background summary and a complete description of the progress and current status of activities relative to the Cooperative Agreement for the Solar Total Energy - Large Scale Experiment at the Bleyle Knitwear Plant at Shenandoah, Georgia are presented. A statement of objectives and an abstract of progress to date are included. This is followed by a short introduction containing a project overview, a summary of the participants and their respective roles, a brief description of the Solar Total Energy System (STES) design concept, and a chronological summary of progress to date. A general description of the site is given, a detailed report of progress is reported, and drawings and equipment lists are included. The closed-loop solar energy system planned for Shenandoah begins with circulation of Syltherm 800, a heat transfer fluid of the Dow-Corning Corporation, through the receiver tubes of a parabolic dish solar collector field. As solar energy is focused on the receivers, the heat transfer fluid is heated to approximately 399/sup 0/C (750/sup 0/F) and is pumped to a heat exchanger for immediate use, or to a thermal storage system for later use. Once in the heat exchanger, the fluid heats a working fluid that produces the steam required for operating the turbine. After performing this task, the heat transfer fluid returns to the collectors to repeat the cycle, while the steam turbine-generator system supplies the electrical demands for the knitwear plant and the STES. During STES operation, maximum thermal and electrical requirements of the application are expected to be at 1.08 MWth and 161 kWe, respectively. During the power generation phase, some of the steam is extracted for use as process steam in the knitwear manufacturing process, while exhaust steam from the turbine is passed through a condenser to produce hot water for heating, domestic use, and absorption air conditioning. (WHK)

Ney, E.J.

1979-07-01T23:59:59.000Z

84

Large-scale Probabilistic Forecasting in Energy Systems using Sparse Gaussian Conditional Random Fields  

E-Print Network (OSTI)

pricing. Although it is known that probabilistic forecasts (which give a distribution over possible futureLarge-scale Probabilistic Forecasting in Energy Systems using Sparse Gaussian Conditional Random Fields Matt Wytock and J. Zico Kolter Abstract-- Short-term forecasting is a ubiquitous practice

Kolter, J. Zico

85

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

Key to Large-Scale Cogeneration?" Public Power, v, 35, no.Thermal Energy Storage for Cogeneration and Solar Systems,"Energy Storage for Cogeneration and Solar Systems, tion from

Authors, Various

2011-01-01T23:59:59.000Z

86

Enhancing availability in large scale storage systems and services: architectures and techniques .  

E-Print Network (OSTI)

??Enterprises today are dealing with extremely large amounts of critical digital information that continues to grow at an astonishing rate. On the other hand, storage (more)

Seshadri, Sangeetha

2009-01-01T23:59:59.000Z

87

Best Practices and Tools for Large-scale Deployment of Renewable Energy and  

Open Energy Info (EERE)

Best Practices and Tools for Large-scale Deployment of Renewable Energy and Best Practices and Tools for Large-scale Deployment of Renewable Energy and Energy Efficiency Techniques Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Best Practices and Tools for Large-scale Deployment of Renewable Energy and Energy Efficiency Techniques in ESCWA Agency/Company /Organization: United Nations Economic and Social Commission for Western Asia Focus Area: Energy Efficiency, Renewable Energy, Solar, Wind Topics: Implementation, Policies/deployment programs, Background analysis Resource Type: Lessons learned/best practices Website: www.escwa.un.org/information/publications/edit/upload/sdpd-09-TP3.pdf Country: Bahrain, Egypt, Iraq, Jordan, Kuwait, Lebanon, Oman, Qatar, Saudi Arabia, Sudan, Syria, United Arab Emirates, Yemen UN Region: "Western Asia & North Africa" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property.

88

Measuring and tuning energy efficiency on large scale high performance computing platforms.  

Science Conference Proceedings (OSTI)

Recognition of the importance of power in the field of High Performance Computing, whether it be as an obstacle, expense or design consideration, has never been greater and more pervasive. While research has been conducted on many related aspects, there is a stark absence of work focused on large scale High Performance Computing. Part of the reason is the lack of measurement capability currently available on small or large platforms. Typically, research is conducted using coarse methods of measurement such as inserting a power meter between the power source and the platform, or fine grained measurements using custom instrumented boards (with obvious limitations in scale). To collect the measurements necessary to analyze real scientific computing applications at large scale, an in-situ measurement capability must exist on a large scale capability class platform. In response to this challenge, we exploit the unique power measurement capabilities of the Cray XT architecture to gain an understanding of power use and the effects of tuning. We apply these capabilities at the operating system level by deterministically halting cores when idle. At the application level, we gain an understanding of the power requirements of a range of important DOE/NNSA production scientific computing applications running at large scale (thousands of nodes), while simultaneously collecting current and voltage measurements on the hosting nodes. We examine the effects of both CPU and network bandwidth tuning and demonstrate energy savings opportunities of up to 39% with little or no impact on run-time performance. Capturing scale effects in our experimental results was key. Our results provide strong evidence that next generation large-scale platforms should not only approach CPU frequency scaling differently, but could also benefit from the capability to tune other platform components, such as the network, to achieve energy efficient performance.

Laros, James H., III

2011-08-01T23:59:59.000Z

89

Redox Flow Batteries for Grid-scale Energy Storage - Energy ...  

Though considered a promising large-scale energy storage device, the real-world deployment of redox flow batteries has been limited by their inability ...

90

Large Scale Computing and Storage Requirements for High Energy Physics  

E-Print Network (OSTI)

Type Ia supernovae, gamma-ray bursts, X-ray bursts and corerelativistic jet, making a gamma-ray burst, the luminositythose that lead to gamma-ray bursts. The current frontier is

Gerber, Richard A.

2011-01-01T23:59:59.000Z

91

Large Scale Computing and Storage Requirements for High Energy Physics  

E-Print Network (OSTI)

in-depth tracking and analysis of job failures, and supportautomatic analysis after batch compute jobs complete.automatic analysis after batch compute jobs complete.

Gerber, Richard A.

2011-01-01T23:59:59.000Z

92

Large Scale Computing and Storage Requirements for High Energy Physics  

E-Print Network (OSTI)

of Science, Advanced Scientific Computing Research (ASCR)Office of Advanced Scientific Computing Research, FacilitiesOffice of Advanced Scientific Computing Research (ASCR), and

Gerber, Richard A.

2011-01-01T23:59:59.000Z

93

Large Scale Computing and Storage Requirements for High Energy Physics  

E-Print Network (OSTI)

Acronyms Argonne Leadership Computing Facility adaptivethe Leadership Computing Facilities at Oak Ridge and Argonne

Gerber, Richard A.

2011-01-01T23:59:59.000Z

94

Large Scale Computing and Storage Requirements for High Energy Physics  

E-Print Network (OSTI)

the application of high performance computing (HPC) to theacceleration and high performance computing. He was thelibraries, and high performance computing. Lee is an active

Gerber, Richard A.

2011-01-01T23:59:59.000Z

95

Research project on CO2 geological storage and groundwaterresources: Large-scale hydrological evaluation and modeling of impact ongroundwater systems  

SciTech Connect

If carbon dioxide capture and storage (CCS) technologies areimplemented on a large scale, the amounts of CO2 injected and sequesteredunderground could be extremely large. The stored CO2 then replaces largevolumes of native brine, which can cause considerable pressureperturbation and brine migration in the deep saline formations. Ifhydraulically communicating, either directly via updipping formations orthrough interlayer pathways such as faults or imperfect seals, theseperturbations may impact shallow groundwater or even surface waterresources used for domestic or commercial water supply. Possibleenvironmental concerns include changes in pressure and water table,changes in discharge and recharge zones, as well as changes in waterquality. In compartmentalized formations, issues related to large-scalepressure buildup and brine displacement may also cause storage capacityproblems, because significant pressure buildup can be produced. Toaddress these issues, a three-year research project was initiated inOctober 2006, the first part of which is summarized in this annualreport.

Birkholzer, Jens; Zhou, Quanlin; Rutqvist, Jonny; Jordan,Preston; Zhang,K.; Tsang, Chin-Fu

2007-10-24T23:59:59.000Z

96

Large Scale Computing and Storage Requirements for Biological and Environmental Research  

E-Print Network (OSTI)

Office (BER), DOE Office of Science National Energy ResearchDepartment of Energy, Office of Science, Advanced ScientificDirectors of the Office of Science, Office of Biological &

DOE Office of Science, Biological and Environmental Research Program Office BER,

2010-01-01T23:59:59.000Z

97

Large Scale Computing and Storage Requirements for Biological and Environmental Research  

E-Print Network (OSTI)

manufacturer, or otherwise, does not necessarily constituteProgram Office (BER), DOE Office of Science National EnergyIn May 2009, NERSC, DOEs Office of Advanced Scientific

DOE Office of Science, Biological and Environmental Research Program Office BER,

2010-01-01T23:59:59.000Z

98

Large Scale Computing and Storage Requirements for Biological and Environmental Research  

Science Conference Proceedings (OSTI)

In May 2009, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR), and DOE's Office of Biological and Environmental Research (BER) held a workshop to characterize HPC requirements for BER-funded research over the subsequent three to five years. The workshop revealed several key points, in addition to achieving its goal of collecting and characterizing computing requirements. Chief among them: scientific progress in BER-funded research is limited by current allocations of computational resources. Additionally, growth in mission-critical computing -- combined with new requirements for collaborative data manipulation and analysis -- will demand ever increasing computing, storage, network, visualization, reliability and service richness from NERSC. This report expands upon these key points and adds others. It also presents a number of"case studies" as significant representative samples of the needs of science teams within BER. Workshop participants were asked to codify their requirements in this"case study" format, summarizing their science goals, methods of solution, current and 3-5 year computing requirements, and special software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel,"multi-core" environment that is expected to dominate HPC architectures over the next few years.

DOE Office of Science, Biological and Environmental Research Program Office (BER),

2009-09-30T23:59:59.000Z

99

Disk Accretion Flow Driven by Large-Scale Magnetic Fields: Solutions with Constant Specific Energy  

E-Print Network (OSTI)

(Abridged) We study the dynamical evolution of a stationary, axisymmetric, and perfectly conducting cold accretion disk containing a large-scale magnetic field around a Kerr black hole, trying to understand the relation between accretion and the transportation of angular momentum and energy. We solve the radial momentum equation for solutions corresponding to an accretion flow that starts from a subsonic state at infinity, smoothly passes the fast critical point, then supersonically falls into the horizon of the black hole. The solutions always have the following features: 1) The specific energy of fluid particles remains constant but the specific angular momentum is effectively removed by the magnetic field. 2) At large radii, where the disk motion is dominantly rotational, the energy density of the magnetic field is equipartitioned with the rotational energy density of the disk. 3) Inside the fast critical point, where radial motion becomes important, the ratio of the electromagnetic energy density to the kinetic energy density drops quickly. The results indicate that: 1) Disk accretion does not necessarily imply energy dissipation since magnetic fields do not have to transport or dissipate a lot of energy as they effectively transport angular momentum. 2) When resistivity is small, the large-scale magnetic field is amplified by the shearing rotation of the disk until the magnetic energy density is equipartitioned with the rotational energy density, ending up with a geometrically thick disk. This is in contrast with the evolution of small-scale magnetic fields where if the resistivity is nonzero the magnetic energy density is likely to be equipartitioned with the kinetic energy density associated with local random motions (e.g., turbulence), making a thin Keplerian disk possible.

Li-Xin Li

2002-12-20T23:59:59.000Z

100

ELECTRIC VEHICLE BASED BATTERY STORAGES FOR LARGE SCALE WIND POWER INTEGRATION  

E-Print Network (OSTI)

Coherent Energy and Environment System Analysis CHP Combined Heat and Power CPP Condensing Power Plant DPL system and the thermal based power systems of Europe through Germany. The Western part of Denmark includes 6500MW of wind power plants (4000MW from distributed onshore wind farms and 2500MW from offshore

Pillai, Jayakrishnan Radhakrishna

Note: This page contains sample records for the topic "large-scale energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

LARGE-SCALE PRODUCTION OF HYDROGEN BY NUCLEAR ENERGY FOR THE HYDROGEN ECONOMY  

DOE Green Energy (OSTI)

OAK B202 LARGE-SCALE PRODUCTION OF HYDROGEN BY NUCLEAR ENERGY FOR THE HYDROGEN ECONOMY. The ''Hydrogen Economy'' will reduce petroleum imports and greenhouse gas emissions. However, current commercial hydrogen production processes use fossil fuels and releases carbon dioxide. Hydrogen produced from nuclear energy could avoid these concerns. The authors have recently completed a three-year project for the US Department of Energy whose objective was to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the energy source''. Thermochemical water-splitting, a chemical process that accomplishes the decomposition of water into hydrogen and oxygen, met this objective. The goal of the first phase of this study was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen and to select one for further detailed consideration. The authors selected the Sulfur-Iodine cycle, In the second phase, they reviewed all the basic reactor types for suitability to provide the high temperature heat needed by the selected thermochemical water splitting cycle and chose the helium gas-cooled reactor. In the third phase they designed the chemical flowsheet for the thermochemical process and estimated the efficiency and cost of the process and the projected cost of producing hydrogen. These results are summarized in this paper.

SCHULTZ,KR; BROWN,LC; BESENBRUCH,GE; HAMILTON,CJ

2003-02-01T23:59:59.000Z

102

A Sequential Cooperative Game Theoretic Approach to Storage-Aware Scheduling of Multiple Large-Scale Workflow Applications in Grids  

Science Conference Proceedings (OSTI)

Scheduling large-scale applications in heterogeneous Grid and Cloud systems is a fundamental NP-complete problem for obtaining good performance and execution costs. We address the problem of scheduling an important class of large-scale Grid applications ...

Rubing Duan; Radu Prodan; Xiaorong Li

2012-09-01T23:59:59.000Z

103

On scale and magnitude of pressure build-up induced by large-scale geologic storage of CO2  

SciTech Connect

The scale and magnitude of pressure perturbation and brine migration induced by geologic carbon sequestration is discussed assuming a full-scale deployment scenario in which enough CO{sub 2} is captured and stored to make relevant contributions to global climate change mitigation. In this scenario, the volumetric rates and cumulative volumes of CO{sub 2} injection would be comparable to or higher than those related to existing deep-subsurface injection and extraction activities, such as oil production. Large-scale pressure build-up in response to the injection may limit the dynamic storage capacity of suitable formations, because over-pressurization may fracture the caprock, may drive CO{sub 2}/brine leakage through localized pathways, and may cause induced seismicity. On the other hand, laterally extensive sedimentary basins may be less affected by such limitations because (i) local pressure effects are moderated by pressure propagation and brine displacement into regions far away from the CO{sub 2} storage domain; and (ii) diffuse and/or localized brine migration into overlying and underlying formations allows for pressure bleed-off in the vertical direction. A quick analytical estimate of the extent of pressure build-up induced by industrial-scale CO{sub 2} storage projects is presented. Also discussed are pressure perturbation and attenuation effects simulated for two representative sedimentary basins in the USA: the laterally extensive Illinois Basin and the partially compartmentalized southern San Joaquin Basin in California. These studies show that the limiting effect of pressure build-up on dynamic storage capacity is not as significant as suggested by Ehlig-Economides and Economides, who considered closed systems without any attenuation effects.

Zhou, Q.; Birkholzer, J. T.

2011-05-01T23:59:59.000Z

104

The Association of Large-Scale Climate Variability and Teleconnections on Wind Energy Resource over Europe and its Intermittency  

E-Print Network (OSTI)

In times of increasing importance of wind power in the worlds energy mix, this study focuses on a better understanding of the influences of large-scale climate variability on wind power resource over Europe. The impact ...

Kriesche, Pascal

105

Impulsive phase flare energy transport by large-scale Alfven waves and the electron acceleration problem  

E-Print Network (OSTI)

The impulsive phase of a solar flare marks the epoch of rapid conversion of energy stored in the pre-flare coronal magnetic field. Hard X-ray observations imply that a substantial fraction of flare energy released during the impulsive phase is converted to the kinetic energy of mildly relativistic electrons (10-100 keV). The liberation of the magnetic free energy can occur as the coronal magnetic field reconfigures and relaxes following reconnection. We investigate a scenario in which products of the reconfiguration - large-scale Alfven wave pulses - transport the energy and magnetic-field changes rapidly through the corona to the lower atmosphere. This offers two possibilities for electron acceleration. Firstly, in a coronal plasma with beta energies on the order of 10 keV and above, including by repeated interactions between electrons and wavefronts. Secondly, when they reflect and mode-convert in the chromosphere, a cascade to high wavenumbers may develop. This will also accelerate electrons by turbulence, in a medium with a locally high electron number density. This concept, which bridges MHD-based and particle-based views of a flare, provides an interpretation of the recently-observed rapid variations of the line-of-sight component of the photospheric magnetic field across the flare impulsive phase, and offers solutions to some perplexing flare problems, such as the flare "number problem" of finding and resupplying sufficient electrons to explain the impulsive-phase hard X-ray emission.

L. Fletcher; H. S. Hudson

2007-12-20T23:59:59.000Z

106

Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Laboratories September 27, 2007 San Francisco, CA PEER REVIEW 2007 DOE(SNL)CEC Energy Storage Program FYO7 Projects Sandia is a multiprogram laboratory operated by...

107

NV Energy Large-Scale Photovoltaic Integration Study: Intra-Hour Dispatch and AGC Simulation  

SciTech Connect

The uncertainty and variability with photovoltaic (PV) generation make it very challenging to balance power system generation and load, especially under high penetration cases. Higher reserve requirements and more cycling of conventional generators are generally anticipated for large-scale PV integration. However, whether the existing generation fleet is flexible enough to handle the variations and how well the system can maintain its control performance are difficult to predict. The goal of this project is to develop a software program that can perform intra-hour dispatch and automatic generation control (AGC) simulation, by which the balancing operations of a system can be simulated to answer the questions posed above. The simulator, named Electric System Intra-Hour Operation Simulator (ESIOS), uses the NV Energy southern system as a study case, and models the systems generator configurations, AGC functions, and operator actions to balance system generation and load. Actual dispatch of AGC generators and control performance under various PV penetration levels can be predicted by running ESIOS. With data about the load, generation, and generator characteristics, ESIOS can perform similar simulations and assess variable generation integration impacts for other systems as well. This report describes the design of the simulator and presents the study results showing the PV impacts on NV Energy real-time operations.

Lu, Shuai; Etingov, Pavel V.; Meng, Da; Guo, Xinxin; Jin, Chunlian; Samaan, Nader A.

2013-01-02T23:59:59.000Z

108

Impact of Large Scale Energy Efficiency Programs On Consumer Tariffs and Utility Finances in India  

E-Print Network (OSTI)

and are added to the utilitys rate base. Large-scale EE2009a, 2009b, 2009c). utilitys rate base, and the utilityto the grid at a higher rate if the utility does not face

Abhyankar, Nikit

2011-01-01T23:59:59.000Z

109

Impact of Large Scale Energy Efficiency Programs On Consumer Tariffs and Utility Finances in India  

E-Print Network (OSTI)

as sources of low-cost baseload power. 4.6.3 LargeScaleEEb is the variable cost of baseload power purchases, and L isbut simply avoids baseload power purchases. Utilities that

Abhyankar, Nikit

2011-01-01T23:59:59.000Z

110

Impact of Large Scale Energy Efficiency Programs On Consumer Tariffs and Utility Finances in India  

Science Conference Proceedings (OSTI)

Large-scale EE programs would modestly increase tariffs but reduce consumers' electricity bills significantly. However, the primary benefit of EE programs is a significant reduction in power shortages, which might make these programs politically acceptable even if tariffs increase. To increase political support, utilities could pursue programs that would result in minimal tariff increases. This can be achieved in four ways: (a) focus only on low-cost programs (such as replacing electric water heaters with gas water heaters); (b) sell power conserved through the EE program to the market at a price higher than the cost of peak power purchase; (c) focus on programs where a partial utility subsidy of incremental capital cost might work and (d) increase the number of participant consumers by offering a basket of EE programs to fit all consumer subcategories and tariff tiers. Large scale EE programs can result in consistently negative cash flows and significantly erode the utility's overall profitability. In case the utility is facing shortages, the cash flow is very sensitive to the marginal tariff of the unmet demand. This will have an important bearing on the choice of EE programs in Indian states where low-paying rural and agricultural consumers form the majority of the unmet demand. These findings clearly call for a flexible, sustainable solution to the cash-flow management issue. One option is to include a mechanism like FAC in the utility incentive mechanism. Another sustainable solution might be to have the net program cost and revenue loss built into utility's revenue requirement and thus into consumer tariffs up front. However, the latter approach requires institutionalization of EE as a resource. The utility incentive mechanisms would be able to address the utility disincentive of forgone long-run return but have a minor impact on consumer benefits. Fundamentally, providing incentives for EE programs to make them comparable to supply-side investments is a way of moving the electricity sector toward a model focused on providing energy services rather than providing electricity.

Abhyankar, Nikit; Phadke, Amol

2011-01-20T23:59:59.000Z

111

Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Development Concept Nitrogen-Air Battery F.M. Delnick, D. Ingersoll, K.Waldrip Sandia National Laboratories Albuquerque, NM presented to U.S. DOE Energy Storage Systems...

112

ANTARES proposal: Towards a large scale high energy cosmic neutrino undersea detector  

E-Print Network (OSTI)

The ANTARES collaboration propose to observe High Energy Cosmic Neutrinos using a Deep Sea Cherenkov detector. The sky survey with high energy neutrinos is complementary to the observations with photons. It is expected that this will shed a new light on the understanding of the origin of cosmics rays, on galactic and extra galactic sources. In this document, we will elaborate on the potential interest of such a study for Astrophysicists and Particle Physicists. For Oceanologists participating in the collaboration, the main goal is a long term measurement of environmental parameters in the deep sea. We propose to explore the possibility of a km-scale detector to be installed in a deep site in the Mediterranean sea, for which a broad collaboration will be needed. A variety of technical problems have to be solved. Strong constraints coming from the deep sea environment and the lack of accessibility, require sea science engineering expertise. For items such as detector deployment in deep water, data transmission through optical cables, corrosion, bio-fouling of optical modules, positioning, we have found technical support from collaborators and partners which have experience in this field (COM, CSTN, CTME, IFREMER, France Telecom Cables, INSU-CNRS...). We will test the sea engineering part of a detector including test deployments close to the Toulon coast (France) where technical support is available and where several sites at depths down to 2500 m are easily accessible. During the same time, issues connected to the accomplishment of a large scale detector and the selection of an optimum site will be addressed. We propose to build and install a demonstrator (a fully equipped 3-dimensional test array) the design of which can be extended to a km^3 scale detector. We plan to reach this goal within the next 2 years.

ANTARES collaboration

1997-07-11T23:59:59.000Z

113

Impact of the Vertical Resolution of Analysis Data on the Estimates of Large-Scale Inertio-Gravity Energy  

Science Conference Proceedings (OSTI)

This paper deals with the large-scale inertio-gravity (IG) wave energy in the operational ECMWF analyses in July 2007. Energy percentages of the IG waves obtained from the standard-pressure-level data are compared to those derived from various ...

Nedjeljka agar; Koji Terasaki; Hiroshi L. Tanaka

2012-07-01T23:59:59.000Z

114

ESS 2012 Peer Review - Nitrogen-Oxygen Battery for Large Scale...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2012 Frank Delnick, David Ingersoll, Karen Waldrip, Peter Feibelman NitrogenOxygen Battery A Transformational Architecture for Large Scale Energy Storage Power Sources...

115

Reducing Plug and Process Loads for a Large Scale, Low Energy Office Building: NREL's Research Support Facility; Preprint  

SciTech Connect

This paper documents the design and operational plug and process load energy efficiency measures needed to allow a large scale office building to reach ultra high efficiency building goals. The appendices of this document contain a wealth of documentation pertaining to plug and process load design in the RSF, including a list of equipment was selected for use.

Lobato, C.; Pless, S.; Sheppy, M.; Torcellini, P.

2011-02-01T23:59:59.000Z

116

Tavichaimpimu: To Catch the Sun: Large Scale Solar Energy Development in the Great Basin and the Cultural Implications for Numic-Speaking Peoples.  

E-Print Network (OSTI)

??The United States government is considering areas in the five states for the large-scale solar energy development. These solar energy zones (SEZs) contain important Native (more)

Van Vlack, Kathleen A.

2013-01-01T23:59:59.000Z

117

Hydrogen/halogen energy storage system  

DOE Green Energy (OSTI)

The hydrogen/chlorine energy storage system has been considered at BNL for large scale energy storage. In FY1978 work included an assessment of system safety and cost, investigations of cell performance under conditions elevated pressure and temperature, determination of the transport properties of Nafion membranes and electrochemical engineering studies. Results are summarized.

Spaziante, P M; Sioli, G C; Trotta, R; Perego, A; McBreen, J

1978-01-01T23:59:59.000Z

118

Large-Scale Renewable Energy Producers Property Tax Abatement (Nevada State Office of Energy)  

Energy.gov (U.S. Department of Energy (DOE))

New or expanded businesses in Nevada may apply to the Director of the State Office of Energy for a property tax abatement of up to 55% for up to 20 years for real and personal property used to...

119

Brownfields to green energy : redeveloping contaminated lands with large-scale renewable energy facilities  

E-Print Network (OSTI)

This thesis uses case studies of one unsuccessful, and three successful brownfield-to-renewable energy projects to identify common barriers such projects face and how those barriers can be overcome. The most significant ...

Jensen, Bjorn B. (Bjorn Benjamin)

2010-01-01T23:59:59.000Z

120

Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development Concept Development Concept Nitrogen-Air Battery F.M. Delnick, D. Ingersoll, K.Waldrip Sandia National Laboratories Albuquerque, NM presented to U.S. DOE Energy Storage Systems Research Program Washington, DC November 2-4, 2010 Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Funded by the Energy Storage Systems Program of the U.S. Department Of Energy through Sandia National Laboratories Full Air Breathing Battery Concept * Concept is to use O 2 and N 2 as the electrodes in a battery * Novel because N 2 is considered inert * Our group routinely reacts N 2 electrochemically

Note: This page contains sample records for the topic "large-scale energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Daniel R. Borneo, PE Daniel R. Borneo, PE Sandia National Laboratories September 27, 2007 San Francisco, CA PEER REVIEW 2007 DOE(SNL)/CEC Energy Storage Program FYO7 Projects Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000. 2 Presentation Outline * DOE(SNL)/CEC Collaboration - Background of DOE(SNL)/CEC Collaboration - FY07 Project Review * Zinc Bromine Battery (ZBB) Demonstration * Palmdale Super capacitor Demonstration * Sacramento Municipal Utility District (SMUD) Regional Transit (RT) Super capacitor demonstration * Beacon Flywheel Energy Storage System (FESS) 3 Background of DOE(SNL)/CEC Collaboration * Memorandum of Understanding Between CEC and DOE (SNL). - In Place since 2004

122

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network (OSTI)

Scale Superconducting Magnetic Energy Storage Plant", IEEEfor SlIperconducting Magnetic Energy Storage Unit", inSuperconducting Magnetic Energy Storage Plant, Advances in

Hassenzahl, W.

2011-01-01T23:59:59.000Z

123

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network (OSTI)

Superconducting 30-MJ Energy Storage Coil", Proc. 19 80 ASC,Superconducting Magnetic Energy Storage Plant", IEEE Trans.SlIperconducting Magnetic Energy Storage Unit", in Advances

Hassenzahl, W.

2011-01-01T23:59:59.000Z

124

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network (OSTI)

aquifers for thermal energy storage. Problems outlined aboveModeling of Thermal Energy Storage in Aquifers," Proceed-ings of Aquifer Thermal Energy Storage Workshop, Lawrence

Tsang, C.-F.

2011-01-01T23:59:59.000Z

125

Storage | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Usage Storage Storage Energy storage isnt just for AA batteries. Thanks to investments from the Energy Department's energy.gov">Advanced Research...

126

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network (OSTI)

using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"Proceed- ings of Aquifer Thermal Energy Storage Workshop,

Tsang, C.-F.

2011-01-01T23:59:59.000Z

127

Behavioral Initiatives for Energy Efficiency: Large-Scale Energy Reductions through Sensors, Feedback & Information Technology  

SciTech Connect

Broad Funding Opportunity Announcement Project: A team of researchers from more than 10 departments at Stanford University is collaborating to transform the way Americans interact with our energy-use data. The team built a web-based platform that collects historical electricity data which it uses to perform a variety of experiments to learn what triggers people to respond. Experiments include new financial incentives, a calculator to understand the potential savings of efficient appliances, new Facebook interface designs, communication studies using Twitter, and educational programs with the Girl Scouts. Economic modeling is underway to better understand how results from the San Francisco Bay Area can be broadened to other parts of the country.

None

2010-01-12T23:59:59.000Z

128

Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage  

Science Conference Proceedings (OSTI)

This report presents the results of an analysis evaluating the economic viability of hydrogen for medium- to large-scale electrical energy storage applications compared with three other storage technologies: batteries, pumped hydro, and compressed air energy storage (CAES).

Steward, D.; Saur, G.; Penev, M.; Ramsden, T.

2009-11-01T23:59:59.000Z

129

Using an Energy Performance Based Design-Build Process to Procure a Large Scale Low-Energy Building: Preprint  

Science Conference Proceedings (OSTI)

This paper will review a procurement, acquisition, and contract process of a large-scale replicable net zero energy (ZEB) office building. The owners developed and implemented an energy performance based design-build process to procure a 220,000 ft2 office building with contractual requirements to meet demand side energy and LEED goals. We will outline the key procurement steps needed to ensure achievement of our energy efficiency and ZEB goals. The development of a clear and comprehensive Request for Proposals (RFP) that includes specific and measurable energy use intensity goals is critical to ensure energy goals are met in a cost effective manner. The RFP includes a contractual requirement to meet an absolute demand side energy use requirement of 25 kBtu/ft2, with specific calculation methods on what loads are included, how to normalize the energy goal based on increased space efficiency and data center allocation, specific plug loads and schedules, and calculation details on how to account for energy used from the campus hot and chilled water supply. Additional advantages of integrating energy requirements into this procurement process include leveraging the voluntary incentive program, which is a financial incentive based on how well the owner feels the design-build team is meeting the RFP goals.

Pless, S.; Torcellini, P.; Shelton, D.

2011-05-01T23:59:59.000Z

130

Environmental Consequences of Large-Scale Deployment of New Energy Systems  

SciTech Connect

This project's scientific goal was to achieve better understanding of where land cover change may mitigate climate change, accounting for both direct climate effects as well as the impacts on the global carbon cycle. As tools for investigating this problem, several models of different complexities were used: an offline land model, a standard coupled climate model, and a model in which coupled carbon-climate interactions were explicitly represented. Results from all model simulations were qualitatively similar: climate mitigation projects involving large-scale re-growth of forests are predicted to be beneficial in mitigating future CO{sub 2}-induced global warming if these are carried out in the tropical latitudes, to be largely ineffectual if conducted in temperate latitudes, and to be counterproductive if implemented at high latitudes. Details of the quantitative differences in these predictions which are exhibited by the chosen climate models also are discussed.

Phillips, T J

2007-02-23T23:59:59.000Z

131

Environmental Consequences of Large-Scale Deployment of New Energy Systems  

DOE Green Energy (OSTI)

This project's scientific goal was to achieve better understanding of where land cover change may mitigate climate change, accounting for both direct climate effects as well as the impacts on the global carbon cycle. As tools for investigating this problem, several models of different complexities were used: an offline land model, a standard coupled climate model, and a model in which coupled carbon-climate interactions were explicitly represented. Results from all model simulations were qualitatively similar: climate mitigation projects involving large-scale re-growth of forests are predicted to be beneficial in mitigating future CO{sub 2}-induced global warming if these are carried out in the tropical latitudes, to be largely ineffectual if conducted in temperate latitudes, and to be counterproductive if implemented at high latitudes. Details of the quantitative differences in these predictions which are exhibited by the chosen climate models also are discussed.

Phillips, T J

2007-02-23T23:59:59.000Z

132

LARGE-SCALE HYDROGEN PRODUCTION FROM NUCLEAR ENERGY USING HIGH TEMPERATURE ELECTROLYSIS  

DOE Green Energy (OSTI)

Hydrogen can be produced from water splitting with relatively high efficiency using high-temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high-temperature process heat. When coupled to an advanced high temperature nuclear reactor, the overall thermal-to-hydrogen efficiency for high-temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. Demand for hydrogen is increasing rapidly for refining of increasingly low-grade petroleum resources, such as the Athabasca oil sands and for ammonia-based fertilizer production. Large quantities of hydrogen are also required for carbon-efficient conversion of biomass to liquid fuels. With supplemental nuclear hydrogen, almost all of the carbon in the biomass can be converted to liquid fuels in a nearly carbon-neutral fashion. Ultimately, hydrogen may be employed as a direct transportation fuel in a hydrogen economy. The large quantity of hydrogen that would be required for this concept should be produced without consuming fossil fuels or emitting greenhouse gases. An overview of the high-temperature electrolysis technology will be presented, including basic theory, modeling, and experimental activities. Modeling activities include both computational fluid dynamics and large-scale systems analysis. We have also demonstrated high-temperature electrolysis in our laboratory at the 15 kW scale, achieving a hydrogen production rate in excess of 5500 L/hr.

James E. O'Brien

2010-08-01T23:59:59.000Z

133

Impact of Large Scale Energy Efficiency Programs On Consumer Tariffs and Utility Finances in India  

E-Print Network (OSTI)

Mechanisms to Promote Energy Efficiency: Case Study of ato improvements in energy efficiency. Energy Policy, 19(10),Deficit through Energy Efficiency in India: An Evaluation of

Abhyankar, Nikit

2011-01-01T23:59:59.000Z

134

Theoretical and practical foundations of large-scale agent-based micro-storage in the smart grid  

Science Conference Proceedings (OSTI)

In this paper, we present a novel decentralised management technique that allows electricity micro-storage devices, deployed within individual homes as part of a smart electricity grid, to converge to profitable and efficient behaviours. Specifically, ...

Perukrishnen Vytelingum; Thomas D. Voice; Sarvapali D. Ramchurn; Alex Rogers; Nicholas R. Jennings

2011-09-01T23:59:59.000Z

135

Survey of Climate Conditions for Demonstration of a Large Scale of Solar Energy Heating in Xi'an  

E-Print Network (OSTI)

A special Energy-Efficiency Plan, for medium and long-term periods, was brought forward by the National Development and Reform Commission of China in 2005. Energy efficiency in buildings is highly emphasized in this energy planning. The Ministry of Finance, together with the Ministry of Construction P.R.C, is selecting cities with different climates to carry out demonstrations of renewable energy applications in buildings. Xi'an, a representative city in the West, is selected to demonstrate large-scale solar energy heating applications in urban residential buildings. In this paper, Xi'an's geographical situation and climate conditions are fully analyzed. The survey on solar energy resources, and the feasibility of solar energy heating on a large scale is also investigated. If this project is completed, the successful experience with respect to the solar energy application in Xi'an will be disseminated in the northwest regions of China. It is expected, after completion of this project, that design methods, procedures and installment of solar energy applications in residential buildings in Xi'an will be obtained.

Li, A.; Liu, Y.

2006-01-01T23:59:59.000Z

136

Developing Renewable Energy Projects Larger Than 10 MWs at Federal Facilities (Book), Large-Scale Renewable Energy Guide, Federal Energy Management Program (FEMP)  

NLE Websites -- All DOE Office Websites (Extended Search)

LARGE-SCALE RENEWABLE ENERGY GUIDE LARGE-SCALE RENEWABLE ENERGY GUIDE Developing Renewable Energy Projects Larger Than 10 MWs at Federal Facilities A Practical Guide to Getting Large-Scale Renewable Energy Projects Financed with Private Capital Cover photos, clockwise from the top: Installing mirrored parabolic trough collectors - (January 19, 2012) Crews work around the clock installing mirrored parabolic trough collectors, built on site, that will cover 3 square miles at Abengoa's Solana Plant. Solana a 280 megawatt utility scale solar power plant (CSP) under construction in Gila Bend, Arizona, USA. When finished it will generate 280 MW 's of clean, sustainable power serving over 70,000 Arizona homes. Photo by Dennis Schroeder, NREL 20097 Dry Lake Wind Power Project in Arizona; Suzlon S88 wind turbines - The 63-MW Dry Lake Wind Power Project in Arizona is the first

137

Developing Renewable Energy Projects Larger Than 10 MWs at Federal Facilities (Book), Large-Scale Renewable Energy Guide, Federal Energy Management Program (FEMP)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LARGE-SCALE RENEWABLE ENERGY GUIDE LARGE-SCALE RENEWABLE ENERGY GUIDE Developing Renewable Energy Projects Larger Than 10 MWs at Federal Facilities A Practical Guide to Getting Large-Scale Renewable Energy Projects Financed with Private Capital Cover photos, clockwise from the top: Installing mirrored parabolic trough collectors - (January 19, 2012) Crews work around the clock installing mirrored parabolic trough collectors, built on site, that will cover 3 square miles at Abengoa's Solana Plant. Solana a 280 megawatt utility scale solar power plant (CSP) under construction in Gila Bend, Arizona, USA. When finished it will generate 280 MW 's of clean, sustainable power serving over 70,000 Arizona homes. Photo by Dennis Schroeder, NREL 20097 Dry Lake Wind Power Project in Arizona; Suzlon S88 wind turbines - The 63-MW Dry Lake Wind Power Project in Arizona is the first

138

MIT Energy Initiative Symposium on Managing Large-Scale Penetration of Intermittent Renewables | April 20, 2011 C Managing Large-Scale  

E-Print Network (OSTI)

EI7135_Industrielle_Energiewirtschaft.xls Allgemeine Daten: Modulnummer: EI7135 Modulbezeichnung (dt.): Industrielle Energiewirtschaft Modulbezeichnung (en.): Industrial Energy Economy Modulniveau Folgesemester: Wiederholung auch am Semesterende: Modulbeschreibung Seite 1 von 4 #12;EI7135_Industrielle_Energiewirtschaft

Polz, Martin

139

Green queue : a framework for selecting energy optimal DVFS congurations in large scale MPI applications  

E-Print Network (OSTI)

settings . . . . . Green Queue Energy Savings with VariousApplication Figure 4.3: Green Queue Energy Savings withBlind Scaling Relative Energy Green Queue Relative Delay

Peraza, Joshua

2012-01-01T23:59:59.000Z

140

Impact of Large Scale Energy Efficiency Programs On Consumer Tariffs and Utility Finances in India  

E-Print Network (OSTI)

23 Estimation of the Cost of Energy Efficiencyfunded cost-effective energy efficiency (EE) programs inEstimationoftheCostofEnergyEfficiencyPrograms Main

Abhyankar, Nikit

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "large-scale energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Greening and adaptation to energy efficiency in large scale public buildings in China.  

E-Print Network (OSTI)

??China, as one of the most vast energy demanding country, and coal is one of the most important primary energy source, therefore energy saving and (more)

Junjie, Wang

2013-01-01T23:59:59.000Z

142

Reducing Data Center Loads for a Large-scale, Low Energy Office Building: NREL's Research Support Facility (Book), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Data Center Loads for a Large- Data Center Loads for a Large- scale, Low-energy Office Building: NREL's Research Support Facility The NREL Approach * December 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. 2 National Renewable Energy Laboratory Reducing Data Center Loads for a Large-Scale, Low-Energy Office Building: NREL's Research Support Facility Michael Sheppy, Chad Lobato, Otto Van Geet, Shanti Pless, Kevin Donovan, Chuck Powers National Renewable Energy Laboratory Golden, Colorado December 2011

143

Determine energy-saving potential in wait-states of large-scale parallel programs  

Science Conference Proceedings (OSTI)

Energy consumption is one of the major topics in high performance computing (HPC) in the last years. However, little effort is put into energy analysis by developers of HPC applications.We present our approach of combined performance and energy analysis ... Keywords: Analysis, Energy, Energy efficiency, MPI, Performance, Power consumption, Scalasca

Michael Knobloch; Bernd Mohr; Timo Minartz

2012-11-01T23:59:59.000Z

144

Impact of Large Scale Energy Efficiency Programs On Consumer Tariffs and Utility Finances in India  

E-Print Network (OSTI)

Scale Energy Efficiency Programs On Consumer Tariffs andtariffs of implementing utility-funded cost-effective energyaverage tariff depends on the percentage reduction in energy

Abhyankar, Nikit

2011-01-01T23:59:59.000Z

145

Accuracy of Estimates of Atmospheric Large-Scale Energy Flux Divergence  

Science Conference Proceedings (OSTI)

A short review of atmospheric energy transport studies is given, and the importance of the Global Weather Experiment for such studies is emphasized. The accuracy of energy flux (divergence) estimates is then discussed, comparing results obtained ...

Eero Holopainen; Carl Fortelius

1986-10-01T23:59:59.000Z

146

A study of Baroclinic Energy Sources for Large-Scale Atmospheric Normal Modes  

Science Conference Proceedings (OSTI)

Observed atmospheric energy peaks in a three-dimensional (3-D) spectral domain are compared with energy peaks predicted by the theory of atmospheric baroclinic instability. The 3-D scale index for global-scale atmospheric motions is represented ...

H. L. Tanaka; Shaojian Sun

1990-11-01T23:59:59.000Z

147

Large-Scale Energy Transformations in the High Latitudes of the Northern Hemisphere  

Science Conference Proceedings (OSTI)

The kinetic energy balance and kinetic energy source are studied for high latitudes north of 55N with twice daily upper air observations during a seven-year period from 1973 to 1979. Energy variables are presented for 5 latitudinal zones from ...

E. C. Kung; S. E. Masters; J. A. M. Corte-Real

1983-05-01T23:59:59.000Z

148

Reducing Plug and Process Loads for a Large Scale, Low Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

cases are considered for business or other justified reasons. Elevators. The RSF employs energy-efficient regenerative traction elevators rather than the standard hydraulic...

149

Enhanced sampling method for free energy calculation and large scale conformational change .  

E-Print Network (OSTI)

??A method of directly computing the partition function (or the corresponding free energy) and accelerating configurational sampling is developed. In an expanded ensemble, the method (more)

[No author

2009-01-01T23:59:59.000Z

150

Approaches to energy efficiency in Chinas large-scale public building.  

E-Print Network (OSTI)

?? In recent years, the energy shortage has become a barrier to social development as there is a shortage of resources, especially non-renewable resources. In (more)

Yu, Wenhe

2010-01-01T23:59:59.000Z

151

Seasonal thermal energy storage  

DOE Green Energy (OSTI)

This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

1984-05-01T23:59:59.000Z

152

Energy Storage Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Testing The Advanced Vehicle Testing Activity is tasked by the U.S. Department of Energys Vehicle Technology Program to conduct various types of energy storage...

153

A large-scale study on predicting and contextualizing building energy usage  

E-Print Network (OSTI)

In this paper we present a data-driven approach to modeling end user energy consumption in residential and commercial buildings. Our model is based upon a data set of monthly electricity and gas bills, collected by a utility ...

Kolter, Jeremy Z.

154

Factors Influencing Water Heating Energy Use and Peak Demand in a Large Scale Residential Monitoring Study  

E-Print Network (OSTI)

A load research project by the Florida Power Corporation (FPC) is monitoring 200 residences in Central Florida, collecting detailed end-use load data. The monitoring is being performed to better estimate the impact of FPC's load control program, as well as obtain improved appliance energy consumption indexes and load profiles. A portion of the monitoring measures water heater energy use and demand in each home on a 15-minute basis.

Bouchelle, M. P.; Parker, D. S.; Anello, M. T.

2000-01-01T23:59:59.000Z

155

NETL: News Release - Energy Department Awards $66.7 Million for Large-Scale  

NLE Websites -- All DOE Office Websites (Extended Search)

29, 2008 29, 2008 DOE Report: Alaska North Slope Has Plenty of Potential Report Examines Future of Oil and Natural Gas Resources in Arctic Alaska Washington, D.C. - The U.S. Department of Energy's Office of Fossil Energy has issued a comprehensive new report Alaska North Slope Oil and Gas: A Promising Future or an Area in Decline? To answer this question, the report examines the potential for Arctic Alaska to remain a major contributor to the Nation's domestic energy supply under different development scenarios. MORE INFO Read the Summary Report [PDF-3MB] Read the Full Report [PDF-7MB] Future projections were viewed from two perspectives, an oil-centered near term (2005 to 2015) and a long term (2015 to 2050) marked by the emergence of gas as a major factor in exploration and development activities. Key

156

Energy Requirement Analysis of Large-Scale Biogas Project in High-Cold Region of China  

Science Conference Proceedings (OSTI)

The annual mean temperature is very low in high cold region of china. The insulating and heating measures on the basis of the energy requirement analysis of biogas project are needed to ensure the normal running of fermentation process. In this paper, ... Keywords: High-cold, Biogas, Fermentation, Heat

Yinsheng Yang; Lili Wang

2012-01-01T23:59:59.000Z

157

Energy based performance tuning for large scale high performance computing systems  

Science Conference Proceedings (OSTI)

Recognition of the importance of power in the field of High Performance Computing, whether it be as an obstacle, expense or design consideration, has never been greater and more pervasive. In response to this challenge, we exploit the unique power measurement ... Keywords: energy efficiency, frequency scaling, high performance computing (HPC), power

James H. Laros, III; Kevin T. Pedretti; Suzanne M. Kelly; Wei Shu; Courtenay T. Vaughan

2012-03-01T23:59:59.000Z

158

Large Scale U.S. Unconventional Fuels Production and the Role of Carbon Dioxide Capture and Storage Technologies in Reducing Their Greenhouse Gas Emissions  

Science Conference Proceedings (OSTI)

This paper examines the role that carbon dioxide capture and storage technologies could play in reducing greenhouse gas emissions if a significant unconventional fuels industry were to develop within the United States. Specifically, the paper examines the potential emergence of a large scale domestic unconventional fuels industry based on oil shale and coal-to-liquids (CTL) technologies. For both of these domestic heavy hydrocarbon resources, this paper models the growth of domestic production to a capacity of 3 MMB/d by 2050. For the oil shale production case, we model large scale deployment of an in-situ retorting process applied to the Eocene Green River formation of Colorado, Utah, and Wyoming where approximately 75% of the high grade oil shale resources within the United States lies. For the CTL case, we examine a more geographically dispersed coal-based unconventional fuel industry. This paper examines the performance of these industries under two hypothetical climate policies and concludes that even with the wide scale availability of cost effective carbon dioxide capture and storage technologies, these unconventional fuels production industries would be responsible for significant increases in CO2 emissions to the atmosphere. The oil shale production facilities required to produce 3MMB/d would result in net emissions to the atmosphere of between 3000-7000 MtCO2 in addition to storing potentially 1000 to 5000 MtCO2 in regional deep geologic formations in the period up to 2050. A similarly sized domestic CTL industry could result in 4000 to 5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000 to 22,000 MtCO2 stored in regional deep geologic formations over the same period up to 2050. Preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. However, additional analyses plus detailed regional and site characterization is needed, along with a closer examination of competing storage demands.

Dooley, James J.; Dahowski, Robert T.

2008-11-18T23:59:59.000Z

159

Large-Scale Industrial CCS Projects Selected for Continued Testing |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large-Scale Industrial CCS Projects Selected for Continued Testing Large-Scale Industrial CCS Projects Selected for Continued Testing Large-Scale Industrial CCS Projects Selected for Continued Testing June 10, 2010 - 1:00pm Addthis Washington, DC - Three Recovery Act funded projects have been selected by the U.S. Department of Energy (DOE) to continue testing large-scale carbon capture and storage (CCS) from industrial sources. The projects - located in Texas, Illinois, and Louisiana - were initially selected for funding in October 2009 as part of a $1.4 billion effort to capture carbon dioxide (CO2) from industrial sources for storage or beneficial use. The first phase of research and development (R&D) included $21.6 million in Recovery Act funding and $22.5 million in private funding for a total initial investment of $44.1 million.

160

Solar total energy-large scale experiment, Shenandoah, Georgia site. Annual report, June 1977--June 1978. [For Bleyle Knitwear Plant  

DOE Green Energy (OSTI)

The site was described in terms of location, suitably, accessibility, and other factors. Detailed descriptions of the Solar Total Energy-Large Scale Experiment Application (STE-LSE) (Bleyle of America, Inc., Knitwear Plant), the DOE owned Meteorology Station operating at the site, and the instrumentation provided by the Georgia Power Company to measure energy usage within the knitwear plant are included. A detailed report of progress is given at the Shenandoah Site, introduced by the STE-LSE schedule and the Cooperative Agreement work tasks. Progress is described in terms of the following major task areas: site/application; instrumentation/data acquisition; meteorology station; site to STES interface; information dissemination. A brief overview of milestones to be accomplished is given, followed by these appendices: solar easement agreement, interface drawing set, and additional site background data. (MHR)

None,

1978-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "large-scale energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Constraints on Dark Energy from Supernovae, Gamma Ray Bursts, Acoustic Oscillations, Nucleosynthesis and Large Scale Structure and the Hubble constant  

E-Print Network (OSTI)

The luminosity distance vs. redshift law is now measured using supernovae and gamma ray bursts, and the angular size distance is measured at the surface of last scattering by the CMB and at z = 0.35 by baryon acoustic oscillations. In this paper this data is fit to models for the equation of state with w = -1, w = const, and w(z) = w_0+w_a(1-a). The last model is poorly constrained by the distance data, leading to unphysical solutions where the dark energy dominates at early times unless the large scale structure and acoustic scale constraints are modified to allow for early time dark energy effects. A flat LambdaCDM model is consistent with all the data.

Edward L. Wright

2007-01-22T23:59:59.000Z

162

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

M.R. Tek. 1970. Storage of Natural Gas in Saline Aquifers.petroleum, underground storage of natural gas, large scale

Authors, Various

2011-01-01T23:59:59.000Z

163

Storage | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Storage Storage Energy storage isn’t just for AA batteries. Thanks to investments from the Energy Department's Advanced Research Projects Agency-Energy (ARPA-E), energy storage may soon play a bigger part in our electricity grid, making it possible to generate more renewable electricity. Learn more. Energy storage isn't just for AA batteries. Thanks to investments from the Energy Department's Advanced Research Projects Agency-Energy (ARPA-E), energy storage may soon play a bigger part in our electricity grid, making it possible to generate more renewable electricity. Learn more.

164

Large Scale Duty Cycle (LSDC) Project: Tractive Energy Analysis Methodology and Results from Long-Haul Truck Drive Cycle Evaluations  

DOE Green Energy (OSTI)

This report addresses the approach that will be used in the Large Scale Duty Cycle (LSDC) project to evaluate the fuel savings potential of various truck efficiency technologies. The methods and equations used for performing the tractive energy evaluations are presented and the calculation approach is described. Several representative results for individual duty cycle segments are presented to demonstrate the approach and the significance of this analysis for the project. The report is divided into four sections, including an initial brief overview of the LSDC project and its current status. In the second section of the report, the concepts that form the basis of the analysis are presented through a discussion of basic principles pertaining to tractive energy and the role of tractive energy in relation to other losses on the vehicle. In the third section, the approach used for the analysis is formalized and the equations used in the analysis are presented. In the fourth section, results from the analysis for a set of individual duty cycle measurements are presented and different types of drive cycles are discussed relative to the fuel savings potential that specific technologies could bring if these drive cycles were representative of the use of a given vehicle or trucking application. Additionally, the calculation of vehicle mass from measured torque and speed data is presented and the accuracy of the approach is demonstrated.

LaClair, Tim J [ORNL

2011-05-01T23:59:59.000Z

165

Carbon Capture, Utilization & Storage | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Capture, Utilization & Storage Carbon Capture, Utilization & Storage Carbon Capture, Utilization & Storage Lawrence Livermore National Laboratory demonstrated coal gasification in large-scale field experiments at the Rocky Mountain Test Facility (above) near Hanna, Wyoming. Coal gasification and sequestration of the carbon dioxide produced are among the technologies being used in a Texas Clean Energy Project. Lawrence Livermore National Laboratory demonstrated coal gasification in large-scale field experiments at the Rocky Mountain Test Facility (above) near Hanna, Wyoming. Coal gasification and sequestration of the carbon dioxide produced are among the technologies being used in a Texas Clean Energy Project. Carbon capture, utilization and storage (CCUS), also referred to as carbon

166

Large-Scale Hydropower  

Energy.gov (U.S. Department of Energy (DOE))

Large-scale hydropower plants are generally developed to produce electricity for government or electric utility projects. These plants are more than 30 MW in size, and there is more than 80,000 MW...

167

HIGH-TEMPERATURE ELECTROLYSIS FOR LARGE-SCALE HYDROGEN AND SYNGAS PRODUCTION FROM NUCLEAR ENERGY SYSTEM SIMULATION AND ECONOMICS  

DOE Green Energy (OSTI)

A research and development program is under way at the Idaho National Laboratory (INL) to assess the technological and scale-up issues associated with the implementation of solid-oxide electrolysis cell technology for efficient high-temperature hydrogen production from steam. This work is supported by the US Department of Energy, Office of Nuclear Energy, under the Nuclear Hydrogen Initiative. This paper will provide an overview of large-scale system modeling results and economic analyses that have been completed to date. System analysis results have been obtained using the commercial code UniSim, augmented with a custom high-temperature electrolyzer module. Economic analysis results were based on the DOE H2A analysis methodology. The process flow diagrams for the system simulations include an advanced nuclear reactor as a source of high-temperature process heat, a power cycle and a coupled steam electrolysis loop. Several reactor types and power cycles have been considered, over a range of reactor outlet temperatures. Pure steam electrolysis for hydrogen production as well as coelectrolysis for syngas production from steam/carbon dioxide mixtures have both been considered. In addition, the feasibility of coupling the high-temperature electrolysis process to biomass and coal-based synthetic fuels production has been considered. These simulations demonstrate that the addition of supplementary nuclear hydrogen to synthetic fuels production from any carbon source minimizes emissions of carbon dioxide during the production process.

J. E. O'Brien; M. G. McKellar; E. A. Harvego; C. M. Stoots

2009-05-01T23:59:59.000Z

168

Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage  

Fuel Cell Technologies Publication and Product Library (EERE)

This report presents the results of an analysis evaluating the economic viability of hydrogen for medium- to large-scale electrical energy storage applications compared with three other storage techno

169

Fuels generated from renewable energy: a possible solution for large scale energy storage  

E-Print Network (OSTI)

-powered engines. Fig. 1 shows its ability to restore the lubricity of sulfur-free (Fischer-Tropsch) diesel fuel-boron additive concentration in 0 ppm sulfur diesel Fischer-Tropsch fuel with Argonne's boron additives at different concentrations Fischer-Tropsch synthetic diesel fuel Number 2 diesel fuel sulfur(500ppm) 0

Franssen, Michael

170

Model As-of Right Zoning Ordinance or Bylaw: Allowing Use of Large-Scale Solar Energy Facilities  

Energy.gov (U.S. Department of Energy (DOE))

Note: This model ordinance was designed to provide guidance to local governments seeking to develop siting rules for large-scale, ground-mounted solar (250 kW and above). While it was developed as...

171

DOE Completes Large-Scale Carbon Sequestration Project Awards | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Completes Large-Scale Carbon Sequestration Project Awards DOE Completes Large-Scale Carbon Sequestration Project Awards DOE Completes Large-Scale Carbon Sequestration Project Awards November 17, 2008 - 4:58pm Addthis Regional Partner to Demonstrate Safe and Permanent Storage of 2 Million Tons of CO2 at Wyoming Site WASHINGTON, DC - Completing a series of awards through its Regional Carbon Sequestration Partnership Program, the U.S. Department of Energy (DOE) today awarded $66.9 million to the Big Sky Regional Carbon Sequestration Partnership for the Department's seventh large-scale carbon sequestration project. Led by Montana State University-Bozeman, the Partnership will conduct a large-volume test in the Nugget Sandstone formation to demonstrate the ability of a geologic formation to safely, permanently and economically

172

DOE Completes Large-Scale Carbon Sequestration Project Awards | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Completes Large-Scale Carbon Sequestration Project Awards Completes Large-Scale Carbon Sequestration Project Awards DOE Completes Large-Scale Carbon Sequestration Project Awards November 17, 2008 - 4:58pm Addthis Regional Partner to Demonstrate Safe and Permanent Storage of 2 Million Tons of CO2 at Wyoming Site WASHINGTON, DC - Completing a series of awards through its Regional Carbon Sequestration Partnership Program, the U.S. Department of Energy (DOE) today awarded $66.9 million to the Big Sky Regional Carbon Sequestration Partnership for the Department's seventh large-scale carbon sequestration project. Led by Montana State University-Bozeman, the Partnership will conduct a large-volume test in the Nugget Sandstone formation to demonstrate the ability of a geologic formation to safely, permanently and economically

173

Effect of Large Scale Transmission Limitations on Renewable Energy Load Matching for Western U.S.: Preprint  

DOE Green Energy (OSTI)

Based on the available geographically dispersed data for the Western U.S. (excluding Alaska), we analyze to what extent the geographic diversity of these resources can offset their variability. Without energy storage and assuming unlimited energy flows between regions, wind and PV can meet up to 80% of loads in Western U.S. while less than 10% of the generated power is curtailed. Limiting hourly energy flows by the aggregated transmission line carrying capacities decreases the fraction of the load that can be met with wind and PV generation to approximately 70%.

Diakov, V.; Short, W.; Gilchrist, B.

2012-06-01T23:59:59.000Z

174

Energy Storage Systems 2007 Peer Review - Utility & Commercial Applications  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility & Commercial Utility & Commercial Applications Presentations Energy Storage Systems 2007 Peer Review - Utility & Commercial Applications Presentations The U.S. DOE Energy Storage Systems Program (ESS) held an annual peer review on September 27, 2007 in San Francisco, CA. Eighteen presentations were divided into categories; those related to utility, commercial, and rail applications of advanced energy storage systems are below. Other presentation categories were: Economics - Benefit Studies and Environment Benefit Studies International Energy Storage Programs Power Electronics Innovations in Energy Storage Systems ESS 2007 Peer Review - Application of Large-Scale ESS in AEP - Ali Nourai, AEP.pdf ESS 2007 Peer Review - Iowa Stored Energy Park - Kent Holst, ISEP.pdf

175

NREL: Energy Storage - News  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage News Below are news stories related to NREL's energy storage research. August 28, 2013 NREL Battery Calorimeters Win R&D 100 Award The award-wining Isothermal...

176

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network (OSTI)

pumped hydro, compressed air, and battery energy storage areto other energy storage sys tem s suc h as pumped hydro andenergy would be $50/MJ whereas the cost of the pumped hydro

Hassenzahl, W.

2011-01-01T23:59:59.000Z

177

Vehicle Technologies Office: Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage to someone by E-mail Share Vehicle Technologies Office: Energy Storage on Facebook Tweet about Vehicle Technologies Office: Energy Storage on Twitter Bookmark...

178

Energy Storage & Delivery  

Science Conference Proceedings (OSTI)

Energy Storage & Delivery. Summary: Schematic of Membrane Molecular Structure The goal of the project is to develop ...

2013-07-23T23:59:59.000Z

179

Implementation of electric vehicle system based on solar energy in Singapore assessment of flow batteries for energy storage  

E-Print Network (OSTI)

For large-scale energy storage application, flow battery has the advantages of decoupled power and energy management, extended life cycles and relatively low cost of unit energy output ($/kWh). In this thesis, an overview ...

Chen, Yaliang

2009-01-01T23:59:59.000Z

180

Uncertainties of Estimates of InertiaGravity Energy in the Atmosphere. Part II: Large-Scale Equatorial Waves  

Science Conference Proceedings (OSTI)

This paper analyzes the spectra and spatiotemporal features of the large-scale inertia-gravity (IG) circulations in four analysis systems in the tropics. Of special interest is the Kelvin wave (KW), which represents between 7% and 25% of the ...

N. agar; J. Tribbia; J. L. Anderson; K. Raeder

2009-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "large-scale energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Reducing Data Center Loads for a Large-Scale, Low-Energy Office Building: NREL's Research Support Facility (Book)  

DOE Green Energy (OSTI)

This publication detailing the design, implementation strategies, and continuous performance monitoring of NREL's Research Support Facility data center. Data centers are energy-intensive spaces that facilitate the transmission, receipt, processing, and storage of digital data. These spaces require redundancies in power and storage, as well as infrastructure, to cool computing equipment and manage the resulting waste heat (Tschudi, Xu, Sartor, and Stein, 2003). Data center spaces can consume more than 100 times the energy of standard office spaces (VanGeet 2011). The U.S. Environmental Protection Agency (EPA) reported that data centers used 61 billion kilowatt-hours (kWh) in 2006, which was 1.5% of the total electricity consumption in the U.S. (U.S. EPA, 2007). Worldwide, data centers now consume more energy annually than Sweden (New York Times, 2009). Given their high energy consumption and conventional operation practices, there is a potential for huge energy savings in data centers. The National Renewable Energy Laboratory (NREL) is world renowned for its commitment to green building construction. In June 2010, the laboratory finished construction of a 220,000-square-foot (ft{sup 2}), LEED Platinum, Research Support Facility (RSF), which included a 1,900-ft{sup 2} data center. The RSF will expand to 360,000 ft{sup 2} with the opening of an additional wing December, 2011. The project's request for proposals (RFP) set a whole-building demand-side energy use requirement of a nominal 35 kBtu/ft{sup 2} per year. On-site renewable energy generation will offset the annual energy consumption. To support the RSF's energy goals, NREL's new data center was designed to minimize its energy footprint without compromising service quality. Several implementation challenges emerged during the design, construction, and first 11 months of operation of the RSF data center. This document highlights these challenges and describes in detail how NREL successfully overcame them. The IT settings and strategies outlined in this document have been used to significantly reduce data center energy requirements in the RSF; however, these can also be used in existing buildings and retrofits.

Sheppy, M.; Lobato, C.; Van Geet, O.; Pless, S.; Donovan, K.; Powers, C.

2011-12-01T23:59:59.000Z

182

CyanoGEBA: A Better Understanding of Cynobacterial Diversity through Large-scale Genomics (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)  

Science Conference Proceedings (OSTI)

Patrick Shih, representing both the University of California, Berkeley and JGI, gives a talk titled "CyanoGEBA: A Better Understanding of Cynobacterial Diversity through Large-scale Genomics" at the JGI 7th Annual Users Meeting: Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, California.

Shih, Patrick [Kerfeld Lab, UC Berkeley and JGI

2012-03-22T23:59:59.000Z

183

NREL: Energy Storage - Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources The National Renewable Energy Laboratory's (NREL) Energy Storage team and partners work within a variety of programs that have created test manuals to establish standard...

184

The Potential for Increased Atmospheric CO2 Emissions and Accelerated Consumption of Deep Geologic CO2 Storage Resources Resulting from the Large-Scale Deployment of a CCS-Enabled Unconventional Fossil Fuels Industry in the U.S.  

Science Conference Proceedings (OSTI)

Desires to enhance the energy security of the United States have spurred significant interest in the development of abundant domestic heavy hydrocarbon resources including oil shale and coal to produce unconventional liquid fuels to supplement conventional oil supplies. However, the production processes for these unconventional fossil fuels create large quantities of carbon dioxide (CO2) and this remains one of the key arguments against such development. Carbon dioxide capture and storage (CCS) technologies could reduce these emissions and preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited within the U.S. indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. Nevertheless, even assuming wide-scale availability of cost-effective CO2 capture and geologic storage resources, the emergence of a domestic U.S. oil shale or coal-to-liquids (CTL) industry would be responsible for significant increases in CO2 emissions to the atmosphere. The authors present modeling results of two future hypothetical climate policy scenarios that indicate that the oil shale production facilities required to produce 3MMB/d from the Eocene Green River Formation of the western U.S. using an in situ retorting process would result in net emissions to the atmosphere of between 3000-7000 MtCO2, in addition to storing potentially 900-5000 MtCO2 in regional deep geologic formations via CCS in the period up to 2050. A similarly sized, but geographically more dispersed domestic CTL industry could result in 4000-5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000-22,000 MtCO2 stored in regional deep geologic formations over the same period. While this analysis shows that there is likely adequate CO2 storage capacity in the regions where these technologies are likely to deploy, the reliance by these industries on large-scale CCS could result in an accelerated rate of utilization of the nations CO2 storage resource, leaving less high-quality storage capacity for other carbon-producing industries including electric power generation.

Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

2009-11-02T23:59:59.000Z

185

Large Scale Computing and Storage Requirements for Fusion Energy Sciences Research  

E-Print Network (OSTI)

National Ignition Facility (NIF) coming online, this is theof SRS/2wp instabilities in NIF relevant regimes. However,parameters relevant to NIF. There are important questions

Gerber, Richard

2012-01-01T23:59:59.000Z

186

Large Scale Computing and Storage Requirements for Basic Energy Sciences Research  

E-Print Network (OSTI)

mp138, m526 Randall Cygan Sandia National Laboratories Jamesm744, m1036 Normand Modine Sandia National LaboratoriesLaboratory m783 Habib Najm Sandia National Laboratory

Gerber, Richard

2012-01-01T23:59:59.000Z

187

Large Scale Computing and Storage Requirements for Fusion Energy Sciences Research  

E-Print Network (OSTI)

which there is no existing project at NERSC (see Chapter 9).NERSC ProjectID (Repo) NERSC Project Title Principal Investigator

Gerber, Richard

2012-01-01T23:59:59.000Z

188

Large Scale Computing and Storage Requirements for Basic Energy Sciences Research  

E-Print Network (OSTI)

Sciences Report of the NERSC / BES / ASCR RequirementsScientific Computing Center (NERSC) Editors Richard A.Gerber, NERSC Harvey J. Wasserman, NERSC Lawrence Berkeley

Gerber, Richard

2012-01-01T23:59:59.000Z

189

Large Scale Computing and Storage Requirements for Basic Energy Sciences Research  

E-Print Network (OSTI)

BES) Office of Advanced Scientific Computing Research (ASCR)of Science, Advanced Scientific Computing Research (ASCR)Office of Advanced Scientific Computing Research, Facilities

Gerber, Richard

2012-01-01T23:59:59.000Z

190

Large Scale Computing and Storage Requirements for Fusion Energy Sciences Research  

E-Print Network (OSTI)

Act of 2009 Advanced Scientific Computing Research Courseof Science, Advanced Scientific Computing Research (ASCR)and for Advanced Scientific Computing Research, Facilities

Gerber, Richard

2012-01-01T23:59:59.000Z

191

Large Scale Computing and Storage Requirements for Fusion Energy Sciences Research  

E-Print Network (OSTI)

ALCF ALE AMR API ARRA ASCR CGP CICART Alfvn Eigenmode / Energetic Particle Mode Argonne Leadership Computing Facility

Gerber, Richard

2012-01-01T23:59:59.000Z

192

Large Scale Computing and Storage Requirements for Basic Energy Sciences Research  

E-Print Network (OSTI)

Overview Andrew Felmy, PNNL The BES Geosciences researchtable (PI, Andrew Felmy, PNNL) and included in the summarySciences Division at PNNL, Chief Scientist for Scientific

Gerber, Richard

2012-01-01T23:59:59.000Z

193

Large Scale Computing and Storage Requirements for Fusion Energy Sciences Research  

E-Print Network (OSTI)

limit of available NERSC and OLCF computing on heterogeneousperspective. Centers like the OLCF have imposed a paradigmNTM Neoclassical Tearing Mode OLCF Oak Ridge Leadership

Gerber, Richard

2012-01-01T23:59:59.000Z

194

Large Scale Computing and Storage Requirements for Basic Energy Sciences Research  

E-Print Network (OSTI)

NERSC and Jaguar at the OLCF. Methodological advances allowNAMD NERSC NGF NIH NSF NSLS OLCF ORNL OS PCET PCM PIMD PNNL

Gerber, Richard

2012-01-01T23:59:59.000Z

195

Large Scale Computing and Storage Requirements for Fusion Energy Sciences Research  

E-Print Network (OSTI)

testing allocations at NCCS and ALCF; and pending productionand Acronyms AE/EPM ALCF ALE AMR API ARRA ASCR CGP CICART

Gerber, Richard

2012-01-01T23:59:59.000Z

196

Large Scale Computing and Storage Requirements for Basic Energy Sciences Research  

E-Print Network (OSTI)

Labs (LBNL), and the NSLS Figure 9-3. Computed II atMRT NAMD NERSC NGF NIH NSF NSLS OLCF ORNL OS PCET PCM PIMD

Gerber, Richard

2012-01-01T23:59:59.000Z

197

Large Scale Computing and Storage Requirements for Fusion Energy Sciences Research  

E-Print Network (OSTI)

providing high-performance computing (HPC) resources to moreof NERSChigh performance computing (HPC) and NERSC haveafforded by high performance computing, advanced simulations

Gerber, Richard

2012-01-01T23:59:59.000Z

198

Role of large scale storage in a UK low carbon energy future Philipp Grunewalda  

E-Print Network (OSTI)

Studie. Institut f¨ur Elektronische Anlagen und Energiewirtschaft RWTH Aachen. Aachen. Howard B. J. Stone

199

Energy Storage | Open Energy Information  

Open Energy Info (EERE)

Storage Storage Jump to: navigation, search TODO: Source information Contents 1 Introduction 2 Benefits 3 Technologies 4 References Introduction Energy storage is a tool that can be used by grid operators to help regulate the electrical grid and help meet demand. In its most basic form, energy storage "stores" excess energy that would otherwise be wasted so that it can be used later when demand is higher. Energy Storage can be used to balance microgrids, perform frequency regulation, and provide more reliable power for high tech industrial facilities.[1] Energy storage will also allow for the expansion of intermittent renewable energy, like wind and solar, to provide electricity around the clock. Some of the major issues concerning energy storage include cost, efficiency, and size.

200

The Energy DataBus: NREL's Open-Source Application for Large-Scale Energy Data Collection and Analysis  

DOE Data Explorer (OSTI)

NRELs Energy DataBus is used for tracking and analyzing energy use on its own campus. The system is applicable to other facilitiesincluding anything from a single building to a large military base or college campusor for other energy data management needs. Managing and minimizing energy consumption on a large campus is usually a difficult task for facility managers: There may be hundreds of energy meters spread across a campus, and the meter data are often recorded by hand. Even when data are captured electronically, there may be measurement issues or time periods that may not coincide. Making sense of this limited and often confusing data can be a challenge that makes the assessment of building performance a struggle for many facility managers. The Energy DataBus software was developed by NREL to address these issues on its own campus, but with an eye toward offering its software solutions to other facilities. Key features include the software's ability to store large amounts of data collected at high frequenciesNREL collects some of its energy data every secondand rich functionality to integrate this wide variety of data into a single database [copied from http://en.openei.org/wiki/NREL_Energy_DataBus].

Note: This page contains sample records for the topic "large-scale energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

HEATS: Thermal Energy Storage  

SciTech Connect

HEATS Project: The 15 projects that make up ARPA-Es HEATS program, short for High Energy Advanced Thermal Storage, seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

None

2012-01-01T23:59:59.000Z

202

Hydrogen-based electrochemical energy storage - Energy ...  

An energy storage device (100) providing high storage densities via hydrogen storage. The device (100) includes a counter electrode (110), a storage ...

203

Energy Storage Systems 2007 Peer Review - International Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International Energy International Energy Storage Program Presentations Energy Storage Systems 2007 Peer Review - International Energy Storage Program Presentations The U.S. DOE Energy Storage Systems Program (ESS) held an annual peer review on September 27, 2007 in San Francisco, CA. Eighteen presentations were divided into categories; those related to international energy storage programs are below. Other presentation categories were: Economics - Benefit Studies and Environment Benefit Studies Utility & Commercial Applications of Advanced Energy Storage Systems Power Electronics Innovations in Energy Storage Systems ESS 2007 Peer Review - DOE-CEC Energy Storage Program FY07 Projects - Daniel Borneo, SNL.pdf ESS 2007 Peer Review - Joint NYSERDA-DOE Energy Storage Initiative Projects

204

NREL: Energy Storage - Webmaster  

NLE Websites -- All DOE Office Websites (Extended Search)

to reply. Your name: Your email address: Your message: Send Message Printable Version Energy Storage Home About the Project Technology Basics Research & Development Awards &...

205

Advanced Energy Storage Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Energy Storage Publications Reports: Advanced Technology Development Program For Lithium-Ion Batteries: Gen 2 Performance Evaluation Final Report Advanced Technology...

206

Fusion Energy Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Scale Production Computing and Storage Requirements for Fusion Energy Sciences: Target 2017 The NERSC Program Requirements Review "Large Scale Production Computing and...

207

Cost-Effective Solar Thermal Energy Storage: Thermal Energy Storage With Supercritical Fluids  

Science Conference Proceedings (OSTI)

Broad Funding Opportunity Announcement Project: UCLA and JPL are creating cost-effective storage systems for solar thermal energy using new materials and designs. A major drawback to the widespread use of solar thermal energy is its inability to cost-effectively supply electric power at night. State-of-the-art energy storage for solar thermal power plants uses molten salt to help store thermal energy. Molten salt systems can be expensive and complex, which is not attractive from a long-term investment standpoint. UCLA and JPL are developing a supercritical fluid-based thermal energy storage system, which would be much less expensive than molten-salt-based systems. The teams design also uses a smaller, modular, single-tank design that is more reliable and scalable for large-scale storage applications.

None

2011-02-01T23:59:59.000Z

208

The Role of Thermal Energy Storage in Industrial Energy Conservation  

E-Print Network (OSTI)

Thermal Energy Storage for Industrial Applications is a major thrust of the Department of Energy's Thermal Energy Storage Program. Utilizing Thermal Energy Storage (TES) with process or reject heat recovery systems has been shown to be extremely beneficial for several applications. Recent system studies resulting from contracts awarded by the Department of Energy (DOE) have identified four especially; significant industries where TES appears attractive - food processing, paper and pulp, iron and steel, and cement. Potential annual fuel savings with large scale implementation of near term TES systems for these industries is over 9 x 106 bbl of oil. This savings is due to recuperation and storage in the food processing industry, direct fuel substitution in the paper and pulp industry and reduction in electric utility peak fuel use through in-plant production of electricity from utilization of reject heat in the steel and cement industries.

Duscha, R. A.; Masica, W. J.

1979-01-01T23:59:59.000Z

209

Thermal Energy Storage  

Science Conference Proceedings (OSTI)

This Technology Brief provides an update on the current state of cool thermal energy storage systems (TES) for end-use applications. Because of its ability to shape energy use, TES is strategic technology that allows end-users to reduce their energy costs while simultaneously providing benefits for electric utilities through persistent peak demand reduction and peak shifting. In addition to discussing the concepts of thermal energy storage, the Brief discusses the current state of TES technologies and dr...

2008-12-16T23:59:59.000Z

210

Large electrical-energy storage facilities  

SciTech Connect

Problems associated with the utilization of various types of energy-storage facilities are considered, three areas being singled out: operation during the variable portion of the load curve with double regulation effect, handling of peaks and the filling in of off-peak dips in the load curve; the generation of power impulses through the use of stored energy for short-term supply of load; and the conversion of one form of energy to another. The present-day state of development and introduction of storage facilities of various kinds is described. The conditions for utilization of large-scale storage on the power systems of the USSR are evaluated, and the principles for determining the economic efficiency are formulated.

Ershevich, V.V.

1985-01-01T23:59:59.000Z

211

Understanding the Impact of Large-Scale Penetration of Micro Combined Heat & Power Technologies within Energy Systems  

E-Print Network (OSTI)

increase with the incorporation of additional features such as a hot water storage unit integrated ........................................................................................................ 30 FIGURE 2.2.4: FUEL CELL BASIC OPERATION............................................................................................................ 32 FIGURE 3.1.1: RESIDENTIAL HEATING & ELECTRIC SYSTEM USING A MICRO-CHP UNIT UNDER A HOT

Rudnick, Hugh

212

Energy storage capacitors  

DOE Green Energy (OSTI)

The properties of capacitors are reviewed in general, including dielectrics, induced polarization, and permanent polarization. Then capacitance characteristics are discussed and modelled. These include temperature range, voltage, equivalent series resistance, capacitive reactance, impedance, dissipation factor, humidity and frequency effects, storage temperature and time, and lifetime. Applications of energy storage capacitors are then discussed. (LEW)

Sarjeant, W.J.

1984-01-01T23:59:59.000Z

213

NREL: Energy Storage - Industry Participants  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry Participants NREL's energy storage project is funded by the DOE's Vehicle Technologies Office. We work closely with automobile manufacturers, energy storage developers,...

214

Flywheel Energy Storage Module  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

kWh100 kW Flywheel Energy Storage Module * 100KWh - 18 cost KWh vs. current State of the Art * Bonded Magnetic Bearings on Rim ID * No Shaft Hub (which limits surface speed)...

215

SERI Solar Energy Storage Program  

DOE Green Energy (OSTI)

The SERI Solar Energy Storage Program provides research on advanced technologies, system analyses, and assessments of thermal energy storage for solar applications in support of the Thermal and Chemical Energy Storage Program of the DOE Division of Energy Storage Systems. Currently, research is in progress on direct contact latent heat storage and thermochemical energy storage and transport. Systems analyses are being performed of thermal energy storage for solar thermal applications, and surveys and assessments are being prepared of thermal energy storage in solar applications.

Copeland, R. J.; Wright, J. D.; Wyman, C. E.

1980-02-01T23:59:59.000Z

216

DRAFT "Energy Advisory Committee" - Energy Storage Subcommittee...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report: Revision 2 DRAFT "Energy Advisory Committee" - Energy Storage Subcommittee Report: Revision 2 Energy storage plays a vital role in all forms of business and affects the...

217

Energy Storage Technologies Available for Licensing - Energy ...  

Energy Storage Technologies Available for Licensing U.S. Department of Energy laboratories and participating research institutions have energy storage technologies ...

218

Large Scale Computing Requirements for Basic Energy Sciences (An BES / ASCR / NERSC Workshop) Hilton Washington DC/Rockville Meeting Center, Rockville MD 3D Geophysical Imaging  

NLE Websites -- All DOE Office Websites (Extended Search)

Requirements Requirements for Basic Energy Sciences (An BES / ASCR / NERSC Workshop) Hilton Washington DC/Rockville Meeting Center, Rockville MD 3D Geophysical Modeling and Imaging G. A. Newman Lawrence Berkeley National Laboratory February 9 - 10 , 2010 Talk Outline * SEAM Geophysical Modeling Project - Its Really Big! * Geophysical Imaging (Seismic & EM) - Its 10 to 100x Bigger! - Reverse Time Migration - Full Waveform Inversion - 3D Imaging & Large Scale Considerations - Offshore Brazil Imaging Example (EM Data Set) * Computational Bottlenecks * Computing Alternatives - GPU's & FPGA's - Issues Why ? So that the resource industry can tackle grand geophysical challenges (Subsalt imaging, land acquisition, 4-D, CO2, carbonates ......) SEAM Mission Advance the science and technology of applied

219

Energy Storage | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Energy Storage Energy Storage One of the distinctive characteristics of the electric power sector is that the amount of electricity that can be generated is relatively fixed over short periods of time, although demand for electricity fluctuates throughout the day. Developing technology to store electrical energy so it can be available to meet demand whenever needed would represent a major breakthrough in electricity distribution. Helping to try and meet this goal, electricity storage devices can manage the amount of power required to supply customers at times when need is greatest, which is during peak load. These devices can also help make renewable energy, whose power output cannot be controlled by grid operators, smooth and dispatchable. They can also balance microgrids to achieve a good match between generation

220

Flywheel Energy Storage Module  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

kWh/100 kW kWh/100 kW Flywheel Energy Storage Module * 100KWh - 1/8 cost / KWh vs. current State of the Art * Bonded Magnetic Bearings on Rim ID * No Shaft / Hub (which limits surface speed) * Flexible Motor Magnets on Rim ID * Develop Touch-down System for Earthquake Flying Rim Eliminate Shaft and Hub Levitate on Passive Magnetic Bearings Increase Rim Tip Speed Larger Diameter Thinner Rim Stores More Energy 4 X increase in Stored Energy with only 60% Increase in Weight Development of a 100 kWh/100 kW Flywheel Energy Storage Module High Speed, Low Cost, Composite Ring with Bore-Mounted Magnetics Current State of the Art Flywheel Limitations of Existing Flywheel * 15 Minutes of storage * Limited to Frequency Regulation Application * Rim Speed (Stored Energy) Limited by Hub Strain and Shaft Dynamics

Note: This page contains sample records for the topic "large-scale energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Energy Conversion, Storage, and Transport News  

Science Conference Proceedings (OSTI)

NIST Home > Energy Conversion, Storage, and Transport News. Energy Conversion, Storage, and Transport News. (showing ...

2010-10-26T23:59:59.000Z

222

Energy Conversion, Storage, and Transport Portal  

Science Conference Proceedings (OSTI)

NIST Home > Energy Conversion, Storage, and Transport Portal. Energy Conversion, Storage, and Transport Portal. Programs ...

2013-04-08T23:59:59.000Z

223

The effect of a fifth large-scale space-time dimension on the conservation of energy in a four dimensional Universe  

E-Print Network (OSTI)

The effect of introducing a fifth large-scale space-time dimension to the equations of orbital dynamics was analysed in an earlier paper by the authors. The results showed good agreement with the observed flat rotation curves of galaxies and the Pioneer Anomaly. This analysis did not require the modification of Newtonian dynamics, but rather only their restatement in a five dimensional framework. The same analysis derived a acceleration parameter ar, which plays an important role in the restated equations of orbital dynamics, and suggested a value for ar. In this companion paper, the principle of conservation of energy is restated within the same five-dimensional framework. The resulting analysis provides an alternative route to estimating the value of ar, without reference to the equations of orbital dynamics, and based solely on key cosmological constants and parameters, including the gravitational constant, G. The same analysis suggests that: (i) the inverse square law of gravity may itself be due to the conservation of energy at the boundary between a four-dimensional universe and a fifth large-scale space-time dimension; and (ii) there is a limiting case for the Tulley-Fisher relationship linking the speed of light to the mass of the Universe.

M. B. Gerrard; T. J. Sumner

2007-04-03T23:59:59.000Z

224

Large-scale impact of CO2 storage in deep saline aquifers: A sensitivity study on pressure response in stratified systems  

E-Print Network (OSTI)

as the primary storage forma- tion, the overlying Eau Claire Shale (henceforth referred to as Eau Claire properties: (1) an upper unit of sandstone and shale that was tidally influenced and deposited, (2) a thick of the Maquoketa Shale (Hart et al. 2006; Eaton et al. 2007). In Situ Temperature and Salinity Profiles Many

Zhou, Quanlin

225

The effect of the geomagnetic field on cosmic ray energy estimates and large scale anisotropy searches on data from the Pierre Auger Observatory  

Science Conference Proceedings (OSTI)

We present a comprehensive study of the influence of the geomagnetic field on the energy estimation of extensive air showers with a zenith angle smaller than 60{sup o}, detected at the Pierre Auger Observatory. The geomagnetic field induces an azimuthal modulation of the estimated energy of cosmic rays up to the {approx} 2% level at large zenith angles. We present a method to account for this modulation of the reconstructed energy. We analyse the effect of the modulation on large scale anisotropy searches in the arrival direction distributions of cosmic rays. At a given energy, the geomagnetic effect is shown to induce a pseudo-dipolar pattern at the percent level in the declination distribution that needs to be accounted for. In this work, we have identified and quantified a systematic uncertainty affecting the energy determination of cosmic rays detected by the surface detector array of the Pierre Auger Observatory. This systematic uncertainty, induced by the influence of the geomagnetic field on the shower development, has a strength which depends on both the zenith and the azimuthal angles. Consequently, we have shown that it induces distortions of the estimated cosmic ray event rate at a given energy at the percent level in both the azimuthal and the declination distributions, the latter of which mimics an almost dipolar pattern. We have also shown that the induced distortions are already at the level of the statistical uncertainties for a number of events N {approx_equal} 32 000 (we note that the full Auger surface detector array collects about 6500 events per year with energies above 3 EeV). Accounting for these effects is thus essential with regard to the correct interpretation of large scale anisotropy measurements taking explicitly profit from the declination distribution.

Abreu, P.; /Lisbon, IST; Aglietta, M.; /IFSI, Turin; Ahn, E.J.; /Fermilab; Albuquerque, I.F.M.; /Sao Paulo U.; Allard, D.; /APC, Paris; Allekotte, I.; /Centro Atomico Bariloche; Allen, J.; /New York U.; Allison, P.; /Ohio State U.; Alvarez Castillo, J.; /Mexico U., ICN; Alvarez-Muniz, J.; /Santiago de Compostela U.; Ambrosio, M.; /Naples U. /INFN, Naples /Nijmegen U., IMAPP

2011-11-01T23:59:59.000Z

226

Understanding the impact of large-scale penetration of micro combined heat & power technologies within energy systems/  

E-Print Network (OSTI)

Significant energy challenges today come from security of supply and environmental concerns. Those surpass the quest for economic efficiency that has been the primary objective until recent times. In an intensive fossil-fuel ...

Tapia-Ahumada, Karen de los ngeles

2011-01-01T23:59:59.000Z

227

Fine Adjustment of Large Scale Air-Sea Energy Flux Parameterizations by Direct Estimates of Ocean Heat Transport  

Science Conference Proceedings (OSTI)

An inverse technique is used to adjust uncertain coefficients and parameters in the bulk formulae of climatological air-sea energy fluxes in order to obtain an agreement of indirect estimates of meridional heat transport with direct estimates in ...

Hans-Jrg Isemer; Jrgen Willebrand; Lutz Hasse

1989-10-01T23:59:59.000Z

228

Superconducting magnetic energy storage  

DOE Green Energy (OSTI)

Long-time varying-daily, weekly, and seasonal-power demands require the electric utility industry to have installed generating capacity in excess of the average load. Energy storage can reduce the requirement for less efficient excess generating capacity used to meet peak load demands. Short-time fluctuations in electric power can occur as negatively damped oscillations in complex power systems with generators connected by long transmission lines. Superconducting inductors with their associated converter systems are under development for both load leveling and transmission line stabilization in electric utility systems. Superconducting magnetic energy storage (SMES) is based upon the phenomenon of the nearly lossless behavior of superconductors. Application is, in principal, efficient since the electromagnetic energy can be transferred to and from the storage coils without any intermediate conversion to other energy forms. Results from a reference design for a 10-GWh SMES unit for load leveling are presented. The conceptual engineering design of a 30-MJ, 10-MW energy storage coil is discussed with regard to system stabilization, and tests of a small scale, 100-KJ SMES system are presented. Some results of experiments are provided from a related technology based program which uses superconducting inductive energy storage to drive fusion plasmas.

Rogers, J.D.; Boenig, H.J.; Hassenzahl, W.V.; Schermer, R.I.

1978-01-01T23:59:59.000Z

229

Solar Total Energy System, Large Scale Experiment, Shenandoah, Georgia. Final technical progress report. Volume III. Appendix. [1. 72 MW thermal and 383. 6 kW electric power for 42,000 ft/sup 2/ knitwear plant  

DOE Green Energy (OSTI)

This is the appendix to the Stearns-Roger Engineering Company conceptual design report on ERDA's Large Scale Experiment No. 2 (LSE No. 2). The object of this LSE is to design, construct, test, evaluate and operate a STES for the purpose of obtaining experience with large scale hardware systems and to establish engineering capability for subsequent demonstration projects. This particular LSE is to be located at Shenandoah, Georgia, and will provide power to the Bleyle knitwear factory. Under this contract Stearns-Roger developed a conceptual design, which was site specific, containing the following major elements: System Requirements Analysis, Site Description, System Conceptual Design, Conceptual Test and Operating Plans, Development Plans, Procurement and Management Plans for Subsequent Phases, and Cost Estimates. The Solar Total Energy system is sized to supply 1.720 MW thermal power and 383.6 KW electrical power. The STES is sized for the extended knitwear plant of 3902 M/sup 2/ (42,000 sq-ft) which will eventually employ 300 people. Drawings, tables, and data sheets are included on hourly temperatures, displacement, utility rates, power conversion system, seasonal design load summary, average collector temperature optimization study, system operating temperature optimization study, power conversion system seasonal performance, thermal storage/fluid loop, system integration, and cost estimates. (WHK)

None,

1977-10-17T23:59:59.000Z

230

Energy Storage Computational Tool | Open Energy Information  

Open Energy Info (EERE)

Energy Storage Computational Tool Energy Storage Computational Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Storage Computational Tool Agency/Company /Organization: Navigant Consulting Sector: Energy Focus Area: Grid Assessment and Integration Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.smartgrid.gov/recovery_act/program_impacts/energy_storage_computat Country: United States Web Application Link: www.smartgrid.gov/recovery_act/program_impacts/energy_storage_computat Cost: Free Northern America Language: English Energy Storage Computational Tool Screenshot References: Energy Storage Computational Tool[1] SmartGrid.gov[2] Logo: Energy Storage Computational Tool This tool is used for identifying, quantifying, and monetizing the benefits

231

Thermal Energy Storage  

Science Conference Proceedings (OSTI)

The Ice Bear30 Hybrid Air Conditionerthermal energy storage system150uses smart integrated controls, ice storage, and a dedicated compressor for cooling. The system is designed to provide cooling to interior spaces by circulating refrigerant within an additional evaporator coil added to a standard unitary air conditioner. The Ice Bear 30 is a relatively small size (5 ton), intended for use in residential and light commercial applications. This report describes EPRI tests of the Ice Bear 30, which is manu...

2009-12-14T23:59:59.000Z

232

Comparing large scale CCS deployment potential in the USA and China: a detailed analysis based on country-specific CO2 transport & storage cost curves  

Science Conference Proceedings (OSTI)

The United States and China are the two largest emitters of greenhouse gases in the world and their projected continued growth and reliance on fossil fuels, especially coal, make them strong candidates for CCS. Previous work has revealed that both nations have over 1600 large electric utility and other industrial point CO2 sources as well as very large CO2 storage resources on the order of 2,000 billion metric tons (Gt) of onshore storage capacity. In each case, the vast majority of this capacity is found in deep saline formations. In both the USA and China, candidate storage reservoirs are likely to be accessible by most sources with over 80% of these large industrial CO2 sources having a CO2 storage option within just 80 km. This suggests a strong potential for CCS deployment as a meaningful option to efforts to reduce CO2 emissions from these large, vibrant economies. However, while the USA and China possess many similarities with regards to the potential value that CCS might provide, including the range of costs at which CCS may be available to most large CO2 sources in each nation, there are a number of more subtle differences that may help us to understand the ways in which CCS deployment may differ between these two countries in order for the USA and China to work together - and in step with the rest of the world - to most efficiently reduce greenhouse gas emissions. This paper details the first ever analysis of CCS deployment costs in these two countries based on methodologically comparable CO2 source and sink inventories, economic analysis, geospatial source-sink matching and cost curve modeling. This type of analysis provides a valuable insight into the degree to which early and sustained opportunities for climate change mitigation via commercial-scale CCS are available to the two countries, and could facilitate greater collaboration in areas where those opportunities overlap.

Dahowski, Robert T.; Davidson, Casie L.; Dooley, James J.

2011-04-18T23:59:59.000Z

233

Hybrid electrical energy storage systems  

Science Conference Proceedings (OSTI)

Electrical energy is a high quality form of energy that can be easily converted to other forms of energy with high efficiency and, even more importantly, it can be used to control lower grades of energy quality with ease. However, building a cost-effective ... Keywords: charge, electrical storage, energy, energy storage, hybrid storage, management

Massoud Pedram; Naehyuck Chang; Younghyun Kim; Yanzhi Wang

2010-08-01T23:59:59.000Z

234

Energy Storage Technologies - Energy Innovation Portal  

Energy Storage Technology Marketing Summaries Here youll find marketing summaries of energy storage technologies available for licensing from U.S. Department of ...

235

Energy Storage Technologies - Energy Innovation Portal  

Energy Storage Technology Marketing Summaries Here youll find marketing summaries of energy storage technologies available for licensing from U.S. ...

236

Large-scale Manufacturing of Nanoparticulate-based Lubrication Additives for Improved Energy Efficiency and Reduced Emissions  

SciTech Connect

This project was funded under the Department of Energy (DOE) Lab Call on Nanomanufacturing for Energy Efficiency and was directed toward the development of novel boron-based nanocolloidal lubrication additives for improving the friction and wear performance of machine components in a wide range of industrial and transportation applications. Argonne?s research team concentrated on the scientific and technical aspects of the project, using a range of state-of-the art analytical and tribological test facilities. Argonne has extensive past experience and expertise in working with boron-based solid and liquid lubrication additives, and has intellectual property ownership of several. There were two industrial collaborators in this project: Ashland Oil (represented by its Valvoline subsidiary) and Primet Precision Materials, Inc. (a leading nanomaterials company). There was also a sub-contract with the University of Arkansas. The major objectives of the project were to develop novel boron-based nanocolloidal lubrication additives and to optimize and verify their performance under boundary-lubricated sliding conditions. The project also tackled problems related to colloidal dispersion, larger-scale manufacturing and blending of nano-additives with base carrier oils. Other important issues dealt with in the project were determination of the optimum size and concentration of the particles and compatibility with various base fluids and/or additives. Boron-based particulate additives considered in this project included boric acid (H{sub 3}BO{sub 3}), hexagonal boron nitride (h-BN), boron oxide, and borax. As part of this project, we also explored a hybrid MoS{sub 2} + boric acid formulation approach for more effective lubrication and reported the results. The major motivation behind this work was to reduce energy losses related to friction and wear in a wide spectrum of mechanical systems and thereby reduce our dependence on imported oil. Growing concern over greenhouse gas emissions was also a major reason. The transportation sector alone consumes about 13 million barrels of crude oil per day (nearly 60% of which is imported) and is responsible for about 30% of the CO{sub 2} emission. When we consider manufacturing and other energy-intensive industrial processes, the amount of petroleum being consumed due to friction and wear reaches more than 20 million barrels per day (from official energy statistics, U.S. Energy Information Administration). Frequent remanufacturing and/or replacement of worn parts due to friction-, wear-, and scuffing-related degradations also consume significant amounts of energy and give rise to additional CO{sub 2} emission. Overall, the total annual cost of friction- and wear-related energy and material losses is estimated to be rather significant (i.e., as much as 5% of the gross national products of highly industrialized nations). It is projected that more than half of the total friction- and wear-related energy losses can be recovered by developing and implementing advanced friction and wear control technologies. In transportation vehicles alone, 10% to 15% of the fuel energy is spent to overcome friction. If we can cut down the friction- and wear-related energy losses by half, then we can potentially save up to 1.5 million barrels of petroleum per day. Also, less friction and wear would mean less energy consumption as well as less carbon emissions and hazardous byproducts being generated and released to the environment. New and more robust anti-friction and -wear control technologies may thus have a significant positive impact on improving the efficiency and environmental cleanliness of the current legacy fleet and future transportation systems. Effective control of friction in other industrial sectors such as manufacturing, power generation, mining and oil exploration, and agricultural and earthmoving machinery may bring more energy savings. Therefore, this project was timely and responsive to the energy and environmental objectives of DOE and our nation. In this project, most of the boron-based mater

Erdemir, Ali [Argonne National Laboratory] [Argonne National Laboratory

2013-09-26T23:59:59.000Z

237

A method for the assessment of the visual impact caused by the large-scale deployment of renewable-energy facilities  

Science Conference Proceedings (OSTI)

The production of energy from renewable sources requires a significantly larger use of the territory compared with conventional (fossil and nuclear) sources. For large penetrations of renewable technologies, such as wind power, the overall visual impact at the national level can be substantial, and may prompt public reaction. This study develops a methodology for the assessment of the visual impact that can be used to measure and report the level of impact caused by several renewable technologies (wind farms, solar photovoltaic plants or solar thermal ones), both at the local and regional (e.g. national) scales. Applications are shown to several large-scale, hypothetical scenarios of wind and solar-energy penetration in Spain, and also to the vicinity of an actual, single wind farm.

Rodrigues, Marcos; Montanes, Carlos [Fluid Mechanics Group, University of Zaragoza, Maria de Luna 3, 50018, Zaragoza (Spain); Fueyo, Norberto, E-mail: Norberto.Fueyo@unizar.e [Fluid Mechanics Group, University of Zaragoza, Maria de Luna 3, 50018, Zaragoza (Spain)

2010-07-15T23:59:59.000Z

238

Inertial energy storage device  

DOE Patents (OSTI)

The inertial energy storage device of the present invention comprises a composite ring formed of circumferentially wound resin-impregnated filament material, a flanged hollow metal hub concentrically disposed in the ring, and a plurality of discrete filament bandsets coupling the hub to the ring. Each bandset is formed of a pair of parallel bands affixed to the hub in a spaced apart relationship with the axis of rotation of the hub being disposed between the bands and with each band being in the configuration of a hoop extending about the ring along a chordal plane thereof. The bandsets are disposed in an angular relationship with one another so as to encircle the ring at spaced-apart circumferential locations while being disposed in an overlapping relationship on the flanges of the hub. The energy storage device of the present invention has the capability of substantial energy storage due to the relationship of the filament bands to the ring and the flanged hub.

Knight, Jr., Charles E. (Knoxville, TN); Kelly, James J. (Oak Ridge, TN); Pollard, Roy E. (Powell, TN)

1978-01-01T23:59:59.000Z

239

Energy Storage Systems 2007 Peer Review - Utility & Commercial Applications  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 Peer Review - Utility & Commercial 7 Peer Review - Utility & Commercial Applications Presentations Energy Storage Systems 2007 Peer Review - Utility & Commercial Applications Presentations The U.S. DOE Energy Storage Systems Program (ESS) held an annual peer review on September 27, 2007 in San Francisco, CA. Eighteen presentations were divided into categories; those related to utility, commercial, and rail applications of advanced energy storage systems are below. Other presentation categories were: Economics - Benefit Studies and Environment Benefit Studies International Energy Storage Programs Power Electronics Innovations in Energy Storage Systems ESS 2007 Peer Review - Application of Large-Scale ESS in AEP - Ali Nourai, AEP.pdf ESS 2007 Peer Review - Iowa Stored Energy Park - Kent Holst, ISEP.pdf

240

Thermal energy storage material  

DOE Patents (OSTI)

A thermal energy storage material which is stable at atmospheric temperature and pressure and has a melting point higher than 32.degree.F. is prepared by dissolving a specific class of clathrate forming compounds, such as tetra n-propyl or tetra n-butyl ammonium fluoride, in water to form a substantially solid clathrate. The resultant thermal energy storage material is capable of absorbing heat from or releasing heat to a given region as it transforms between solid and liquid states in response to temperature changes in the region above and below its melting point.

Leifer, Leslie (Hancock, MI)

1976-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "large-scale energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Implementation of a Large Scale Control System for a High-Energy Physics Detector: The CMS Silicon Strip Tracker  

E-Print Network (OSTI)

Control systems for modern High-Energy Physics (HEP) detectors are large distributed software systems managing a significant data volume and implementing complex operational procedures. The control software for the LHC experiments at CERN is built on top of a commercial software used in industrial automation. However, HEP specific requirements call for extended functionalities. This thesis focuses on the design and implementation of the control system for the CMS Silicon Strip Tracker but presents some general strategies that have been applied in other contexts. Specific design solutions are developed to ensure acceptable response times and to provide the operator with an effective summary of the status of the devices. Detector safety is guaranteed by proper configuration of independent hardware systems. A software protection mechanism is used to avoid the widespread intervention of the hardware safety and to inhibit dangerous commands. A wizard approach allows non expert operators to recover error situations...

Masetti, Lorenzo; Fischer, Peter

2011-01-01T23:59:59.000Z

242

Black Thunder Coal Mine and Los Alamos National Laboratory experimental study of seismic energy generated by large scale mine blasting  

SciTech Connect

In an attempt to better understand the impact that large mining shots will have on verifying compliance with the international, worldwide, Comprehensive Test Ban Treaty (CTBT, no nuclear explosion tests), a series of seismic and videographic experiments has been conducted during the past two years at the Black Thunder Coal Mine. Personnel from the mine and Los Alamos National Laboratory have cooperated closely to design and perform experiments to produce results with mutual benefit to both organizations. This paper summarizes the activities, highlighting the unique results of each. Topics which were covered in these experiments include: (1) synthesis of seismic, videographic, acoustic, and computer modeling data to improve understanding of shot performance and phenomenology; (2) development of computer generated visualizations of observed blasting techniques; (3) documentation of azimuthal variations in radiation of seismic energy from overburden casting shots; (4) identification of, as yet unexplained, out of sequence, simultaneous detonation in some shots using seismic and videographic techniques; (5) comparison of local (0.1 to 15 kilometer range) and regional (100 to 2,000 kilometer range) seismic measurements leading to determine of the relationship between local and regional seismic amplitude to explosive yield for overburden cast, coal bulking and single fired explosions; and (6) determination of the types of mining shots triggering the prototype International Monitoring System for the CTBT.

Martin, R.L.; Gross, D. [Thunder Basin Coal Co., Wright, WY (United States); Pearson, D.C.; Stump, B.W. [Los Alamos National Lab., NM (United States); Anderson, D.P. [Southern Methodist Univ., Dallas, TX (United States). Dept. of Geological Sciences

1996-12-31T23:59:59.000Z

243

Electrochemical Energy Storage for the Grid | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electrochemical Energy Storage for the Grid Electrochemical Energy Storage for the Grid Electrochemical Energy Storage for the Grid Electrochemical Energy Storage for the Grid More...

244

Energy Storage Systems 2007 Peer Review - International Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International Energy Storage Program Presentations Energy Storage Systems 2007 Peer Review - International Energy Storage Program Presentations The U.S. DOE Energy Storage Systems...

245

Regional Opportunities for Carbon Dioxide Capture and Storage in China: A Comprehensive CO2 Storage Cost Curve and Analysis of the Potential for Large Scale Carbon Dioxide Capture and Storage in the Peoples Republic of China  

SciTech Connect

This study presents data and analysis on the potential for carbon dioxide capture and storage (CCS) technologies to deploy within China, including a survey of the CO2 source fleet and potential geologic storage capacity. The results presented here indicate that there is significant potential for CCS technologies to deploy in China at a level sufficient to deliver deep, sustained and cost-effective emissions reductions for China over the course of this century.

Dahowski, Robert T.; Li, Xiaochun; Davidson, Casie L.; Wei, Ning; Dooley, James J.

2009-12-01T23:59:59.000Z

246

Pneumatic energy storage  

DOE Green Energy (OSTI)

An essential component to hybrid electric and electric vehicles is energy storage. A power assist device could also be important to many vehicle applications. This discussion focuses on the use of compressed gas as a system for energy storage and power in vehicle systems. Three possible vehicular applications for which these system could be used are discussed in this paper. These applications are pneumatically driven vehicles, series hybrid electric vehicles, and power boost for electric and conventional vehicles. One option for a compressed gas system is as a long duration power output device for purely pneumatic and hybrid cars. This system must provide enough power and energy to drive under normal conditions for a specified time or distance. The energy storage system for this use has the requirement that it will be highly efficient, compact, and have low mass. Use of a compressed gas energy storage as a short duration, high power output system for conventional motor vehicles could reduce engine size or reduce transient emissions. For electric vehicles this kind of system could lengthen battery life by providing battery load leveling during accelerations. The system requirements for this application are that it be compact and have low mass. The efficiency of the system is a secondary consideration in this application.

Flowers, D.

1995-09-19T23:59:59.000Z

247

Superconducting magnetic energy storage  

DOE Green Energy (OSTI)

Fusion power production requires energy storage and transfer on short time scales to create confining magnetic fields and for heating plasmas. The theta-pinch Scyllac Fusion Test Reactor (SFTR) requires 480 MJ of energy to drive the 5-T compression field with a 0.7-ms rise time. Tokamak Experimental Power Reactors (EPR) require 1 to 2 GJ of energy with a 1 to 2-s rise time for plasma ohmic heating. The design, development, and testing of four 300-kJ energy storage coils to satisfy the SFTR needs are described. Potential rotating machinery and homopolar energy systems for both the Reference Theta-Pinch Reactor (RTPR) and tokamak ohmic-heating are presented.

Rogers, J.D.

1976-01-01T23:59:59.000Z

248

Flywheel Energy Storage  

Science Conference Proceedings (OSTI)

Flywheels are under consideration as an alternative for electrochemical batteries in a variety of applications This summary report provides a discussion of the mechanics of flywheels and magnetic bearings, the general characteristics of inertial energy storage systems, design considerations for flywheel systems, materials for advanced flywheels, and cost considerations.

1997-09-03T23:59:59.000Z

249

Energy Storage: Current landscape for alternative energy  

E-Print Network (OSTI)

Energy Storage: Current landscape for alternative energy storage technologies and what the future may hold for multi-scale storage applications Presented by: Dave Lucero, Director Alternative Energy · Industry initiatives · Technology · Energy Storage Market · EaglePicher initiatives · Summary #12

250

Energy Storage Technologies Available for Licensing ...  

Energy Storage Technologies Available for Licensing U.S. Department of Energy laboratories and participating research institutions have energy storage ...

251

Aquifer thermal energy storage: a survey  

DOE Green Energy (OSTI)

The disparity between energy production and demand in many power plants has led to increased research on the long-term, large-scale storage of thermal energy in aquifers. Field experiments have been conducted in Switzerland, France, the United States, Japan, and the People's Republic of China to study various technical aspects of aquifer storage of both hot and cold water. Furthermore, feasibility studies now in progress include technical, economic, and environmental analyses, regional exploration to locate favorable storage sites, and evaluation and design of pilot plants. Several theoretical and modeling studies are also under way. Among the topics being studied using numerical models are fluid and heat flow, dispersion, land subsidence or uplift, the efficiency of different injection/withdrawal schemes, buoyancy tilting, numerical dispersion, the use of compensation wells to counter regional flow, steam injection, and storage in narrow glacial deposits of high permeability. Experiments to date illustrate the need for further research and development to ensure successful implementation of an aquifer storage system. Some of the areas identified for further research include shape and location of the hydrodynamic and thermal fronts, choice of appropriate aquifers, thermal dispersion, possibility of land subsidence or uplift, thermal pollution, water chemistry, wellbore plugging and heat exchange efficiency, and control of corrosion.

Tsang, C.F.; Hopkins, D.; Hellstroem, G.

1980-01-01T23:59:59.000Z

252

Energy Storage Systems 2010 Update Conference Presentations - Day 1,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 Energy Storage Systems 2010 Update Conference Presentations - Day 1, Session 4 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at the Washington DC Marriott Hotel on Nov. 2 - 4, 2010, with more than 500 attendees. The 2010 agenda reflected increased national interest in energy storage issues. The 3-day conference included 11 sessions plus a poster session on the final day. Presentations from the fourth session of Day 1, chaired by SNL's John Boyes, are below. ESS 2010 Update Conference - Large-Scale Diurnal Storage Study - Poonum Agrawal, SRA.pdf ESS 2010 Update Conference - CAES Modeling - Steve Bauer, SNL.pdf ESS 2010 Update Conference - Iowa Storage Energy Park - Kent Holst, ISEP & Michael King, Hydrodynamics.pdf

253

International Carbon Storage Body Praises Department of Energy Projects |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International Carbon Storage Body Praises Department of Energy International Carbon Storage Body Praises Department of Energy Projects International Carbon Storage Body Praises Department of Energy Projects November 8, 2012 - 12:00pm Addthis Washington, DC - Three U.S. Department of Energy (DOE) projects have been identified by an international carbon storage organization as an important advancement toward commercialization and large-scale deployment of carbon capture, utilization, and storage (CCUS) technologies. The projects were officially recognized by the Carbon Sequestration Leadership Forum (CSLF) at its recent meeting in Perth, Australia for making significant contributions to the development of global carbon dioxide (CO2) mitigation technologies. All three projects will appear in a yearly project portfolio on the CSLF website to keep the global community

254

DOE's Office of Science Seeks Proposals for Expanded Large-Scale Scientific  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Seeks Proposals for Expanded Large-Scale Seeks Proposals for Expanded Large-Scale Scientific Computing DOE's Office of Science Seeks Proposals for Expanded Large-Scale Scientific Computing May 16, 2005 - 12:47pm Addthis WASHINGTON, D.C. -- Secretary of Energy Samuel W. Bodman announced today that DOE's Office of Science is seeking proposals to support innovative, large-scale computational science projects to enable high-impact advances through the use of advanced computers not commonly available in academia or the private sector. Projects currently funded are helping to reduce engine pollution and to improve our understanding of the stars and solar systems and human genetics. Successful proposers will be given the use of substantial computer time and data storage at the department's scientific

255

DOE's Office of Science Seeks Proposals for Expanded Large-Scale Scientific  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE's Office of Science Seeks Proposals for Expanded Large-Scale DOE's Office of Science Seeks Proposals for Expanded Large-Scale Scientific Computing DOE's Office of Science Seeks Proposals for Expanded Large-Scale Scientific Computing May 16, 2005 - 12:47pm Addthis WASHINGTON, D.C. -- Secretary of Energy Samuel W. Bodman announced today that DOE's Office of Science is seeking proposals to support innovative, large-scale computational science projects to enable high-impact advances through the use of advanced computers not commonly available in academia or the private sector. Projects currently funded are helping to reduce engine pollution and to improve our understanding of the stars and solar systems and human genetics. Successful proposers will be given the use of substantial computer time and data storage at the department's scientific

256

Advanced Energy Technologies: Solar Energy and Storage  

Science Conference Proceedings (OSTI)

Advanced Energy Technologies: Solar Energy and Storage (+18 FTE, +$7,500,000). image: Shutterstock, copyright Chayne Gregg. Challenge. ...

2011-10-11T23:59:59.000Z

257

Thermal energy storage application areas  

DOE Green Energy (OSTI)

The use of thermal energy storage in the areas of building heating and cooling, recovery of industrial process and waste heat, solar power generation, and off-peak energy storage and load management in electric utilities is reviewed. (TFD)

Not Available

1979-03-01T23:59:59.000Z

258

Carbon-based Materials for Energy Storage  

E-Print Network (OSTI)

Flexible, lightweight energy-storage devices are of greatstrategy to fabricate flexible energy-storage devices.Flexible, lightweight energy-storage devices (batteries and

Rice, Lynn Margaret

2012-01-01T23:59:59.000Z

259

AQUIFER THERMAL ENERGY STORAGE-A SURVEY  

E-Print Network (OSTI)

High temperature underground thermal energy storage, inProceedings, Thermal Energy Storage in Aquifers Workshop:underground thermal energy storage, in ATES newsletter:

Tsang, Chin Fu

2012-01-01T23:59:59.000Z

260

Nanostructured Materials for Energy Generation and Storage  

E-Print Network (OSTI)

for Electrochemical Energy Storage Nanostructured Electrodesof Electrode Design for Energy Storage and Generation .batteries and their energy storage efficiency. vii Contents

Khan, Javed Miller

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "large-scale energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Energy Storage Demonstration Project Locations | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Storage Demonstration Project Locations Energy Storage Demonstration Project Locations Map of the United States showing the location of Energy Storage Demonstration projects...

262

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

Survey of Thermal Energy Storage in Aquifers Coupled withGeneration and Energy Storage," presented at Frontiers ofStudy of Underground Energy Storage Using High-Pressure,

Authors, Various

2011-01-01T23:59:59.000Z

263

AQUIFER THERMAL ENERGY STORAGE-A SURVEY  

E-Print Network (OSTI)

1978, High temperature underground thermal energy storage,in Proceedings, Thermal Energy Storage in Aquifers Workshop:High temperature underground thermal energy storage, in ATES

Tsang, Chin Fu

2012-01-01T23:59:59.000Z

264

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

B. Quale. Seasonal storage of thermal energy in water in theand J. Schwarz, Survey of Thermal Energy Storage in AquifersSecond Annual Thermal Energy Storage Contractors'

Authors, Various

2011-01-01T23:59:59.000Z

265

Energy Storage - More Information | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Storage - More Information Energy Storage - More Information Energy Storage - More Information As energy storage technology may be applied to a number of areas that differ in power and energy requirements, DOE's Energy Storage Program performs research and development on a wide variety of storage technologies. This broad technology base includes batteries (both conventional and advanced), flywheels, electrochemical capacitors, superconducting magnetic energy storage (SMES), power electronics, and control systems. The Energy Storage Program works closely with industry partners, and many of its projects are highly cost-shared. The Program collaborates with utilities and State energy organizations such as the California Energy Commission and New York State Energy Research and Development Authority to field major pioneering storage installations that

266

Part II Energy Storage Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

II. Energy Storage Technology Overview * Instructor - Haresh Kamath, EPRI PEAC * Short term - Flywheels, Cranking Batteries, Electrochemical Capacitors, SMES * Long term -...

267

Energy Storage & Power Electronics 2008 Peer Review - Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

& Power Electronics 2008 Peer Review - Energy & Power Electronics 2008 Peer Review - Energy Storage Systems (ESS) Presentations Energy Storage & Power Electronics 2008 Peer Review - Energy Storage Systems (ESS) Presentations The 2008 Peer Review Meeting for the DOE Energy Storage and Power Electronics Program (ESPE) was held in Washington DC on Sept. 29-30, 2008. Current and completed program projects were presented and reviewed by a group of industry professionals. The 2008 agenda was composed of 28 projects that covered a broad range of new and ongoing, state-of-the-art, energy storage and power electronics technologies, including updates on the collaborations among DOE/ESPE, CEC in California, and NYSERDA in New York. Energy Storage Systems (ESS) presentations are available below. ESPE 2008 Peer Review - EAC Energy Storage Subcommittee - Brad Roberts, S&C

268

NREL: Energy Analysis: Electric System Flexibility and Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric System Flexibility and Storage Electric System Flexibility and Storage Options for Increasing Electric System Flexibility to Accommodate Higher Levels of Variable Renewable Electricity Increased electric system flexibility, needed to enable electricity supply-demand balance with high levels of renewable generation, can come from a portfolio of supply- and demand-side options, including flexible conventional generation, grid storage, curtailment of some renewable generation, new transmission, and more responsive loads. NREL's electric system flexibility studies investigate the role of various electric system flexibility options on large-scale deployment of renewable energy. NREL's electric system flexibility analyses show that: Key factors in improving grid flexibility include (1) increasing the

269

Superconducting magnetic energy storage  

SciTech Connect

Recent programmatic developments in Superconducting Magnetic Energy Storage (SMES) have prompted renewed and widespread interest in this field. In mid 1987 the Defense Nuclear Agency, acting for the Strategic Defense Initiative Office, issued a request for proposals for the design and construction of SMES Engineering Test Model (ETM). Two teams, one led by Bechtel and the other by Ebasco, are now engaged in the first phase of the development of a 10 to 20 MWhr ETM. This report presents the rationale for energy storage on utility systems, describes the general technology of SMES, and explains the chronological development of the technology. The present ETM program is outlined; details of the two projects for ETM development are described in other papers in these proceedings. The impact of high T/sub c/ materials on SMES is discussed. 69 refs., 3 figs., 3 tabs.

Hassenzahl, W.

1988-08-01T23:59:59.000Z

270

Maui energy storage study.  

SciTech Connect

This report investigates strategies to mitigate anticipated wind energy curtailment on Maui, with a focus on grid-level energy storage technology. The study team developed an hourly production cost model of the Maui Electric Company (MECO) system, with an expected 72 MW of wind generation and 15 MW of distributed photovoltaic (PV) generation in 2015, and used this model to investigate strategies that mitigate wind energy curtailment. It was found that storage projects can reduce both wind curtailment and the annual cost of producing power, and can do so in a cost-effective manner. Most of the savings achieved in these scenarios are not from replacing constant-cost diesel-fired generation with wind generation. Instead, the savings are achieved by the more efficient operation of the conventional units of the system. Using additional storage for spinning reserve enables the system to decrease the amount of spinning reserve provided by single-cycle units. This decreases the amount of generation from these units, which are often operated at their least efficient point (at minimum load). At the same time, the amount of spinning reserve from the efficient combined-cycle units also decreases, allowing these units to operate at higher, more efficient levels.

Ellison, James; Bhatnagar, Dhruv; Karlson, Benjamin

2012-12-01T23:59:59.000Z

271

Grid Applications for Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Applications for Energy Storage Applications for Energy Storage Flow Cells for Energy Storage Workshop Washington DC 7-8 March 2012 Joe Eto jheto@lbl.gov (510) 486-7284 Referencing a Recent Sandia Study,* This Talk Will: Describe and illustrate selected grid applications for energy storage Time-of-use energy cost management Demand charge management Load following Area Regulation Renewables energy time shift Renewables capacity firming Compare Sandia's estimates of the economic value of these applications to the Electricity Storage Association's estimates of the capital costs of energy storage technologies *Eyer, J. and G. Corey. Energy Storage for the Electricity Grid: Benefits and Market Potential Assessment Guide. February 2010. SAND2010-0815 A Recent Sandia Study Estimates the Economic

272

Nanoarchitecture Electrodes for Energy Storage  

Science Conference Proceedings (OSTI)

New materials such as Si nanowires anodes and high-energy layered-layered composite cathode materials have increased the energy storage, but are low in...

273

Sandia Researchers Develop Promising Chemical Technology for Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Researchers Develop Promising Chemical Technology for Energy Researchers Develop Promising Chemical Technology for Energy Storage Sandia Researchers Develop Promising Chemical Technology for Energy Storage March 7, 2012 - 9:50am Addthis DOE-funded researchers at Sandia National Laboratories have developed new chemical technology that could lead to batteries able to cost-effectively store three times more energy than today's batteries. The new family of liquid salt electrolytes, called MetILs, might enable economical and reliable incorporation of large-scale intermittent energy sources, like solar and wind, into the nation's electric grid. The research team is funded by the Department of Energy's Office of Electricity Delivery and Energy Reliability (OE). Imre Gyuk, OE's energy storage systems program manager, notes that the new solution could "lead to

274

Carbon Capture and Storage from Industrial Sources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Carbon Capture and Storage from Industrial Sources Carbon Capture and Storage from Industrial Sources In 2009, the industrial sector accounted for slightly more than one-quarter of total U.S. carbon dioxide (CO2) emissions of 5,405 million metric tons from energy consumption, according to data from DOE's Energy Information Administration. In a major step forward in the fight to reduce CO2 emissions from industrial plants, DOE has allocated Recovery Act funds to more than 25 projects that capture and sequester CO2 emissions from industrial sources - such as cement plants, chemical plants, refineries, paper mills, and manufacturing facilities - into underground formations. Large-Scale Projects Three projects are aimed at testing large-scale industrial carbon capture

275

Development and Analysis of Prognostic Equations for Mesoscale Kinetic Energy and Mesoscale (Subgrid Scale) Fluxes for Large-Scale Atmospheric Models  

Science Conference Proceedings (OSTI)

Mesoscale circulations generated by landscape discontinuities (e.g., sea breezes) are likely to have a significant impact on the hydrologic cycle, the climate, and the weather. However, these processes are not represented in large-scale ...

Roni Avissar; Fei Chen

1993-11-01T23:59:59.000Z

276

Large-Scale Eddies in the Unstably Stratified Atmospheric Surface Layer. Part II: Turbulent Pressure Fluctuations and the Budgets of Heat Flux, Stress and Turbulent Kinetic Energy  

Science Conference Proceedings (OSTI)

A method is developed for retrieving turbulent pressure fluctuations from tower measurements of velocity and temperature, through use of the equations of motion. This method is applied to a series of large-scale eddies which are defined by their ...

J. M. Wilczak; Joost A. Businger

1984-12-01T23:59:59.000Z

277

Large-Scale PV Integration Study  

DOE Green Energy (OSTI)

This research effort evaluates the impact of large-scale photovoltaic (PV) and distributed generation (DG) output on NV Energys electric grid system in southern Nevada. It analyzes the ability of NV Energys generation to accommodate increasing amounts of utility-scale PV and DG, and the resulting cost of integrating variable renewable resources. The study was jointly funded by the United States Department of Energy and NV Energy, and conducted by a project team comprised of industry experts and research scientists from Navigant Consulting Inc., Sandia National Laboratories, Pacific Northwest National Laboratory and NV Energy.

Lu, Shuai; Etingov, Pavel V.; Diao, Ruisheng; Ma, Jian; Samaan, Nader A.; Makarov, Yuri V.; Guo, Xinxin; Hafen, Ryan P.; Jin, Chunlian; Kirkham, Harold; Shlatz, Eugene; Frantzis, Lisa; McClive, Timothy; Karlson, Gregory; Acharya, Dhruv; Ellis, Abraham; Stein, Joshua; Hansen, Clifford; Chadliev, Vladimir; Smart, Michael; Salgo, Richard; Sorensen, Rahn; Allen, Barbara; Idelchik, Boris

2011-07-29T23:59:59.000Z

278

Fact Sheet: Energy Storage Technology Advancement Partnership...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fact Sheet: Energy Storage Technology Advancement Partnership (October 2012) More Documents & Publications Webinar Presentation: Energy Storage Solutions for Microgrids (November...

279

Transportable Energy Storage Systems Project  

Science Conference Proceedings (OSTI)

This project will define the requirements and specification for a transportable energy storage system and then screen various energy storage options and assess their capability to meet that specification. The application will be designed to meet peak electrical loads (3-4 hours of storage) on the electrical distribution system.

2009-10-23T23:59:59.000Z

280

MAXIMIZING MAGNETIC ENERGY STORAGE IN THE SOLAR CORONA  

Science Conference Proceedings (OSTI)

The energy that drives solar eruptive events such as coronal mass ejections (CMEs) almost certainly originates in coronal magnetic fields. Such energy may build up gradually on timescales of days or longer before its sudden release in an eruptive event, and the presence of free magnetic energy capable of rapid release requires nonpotential magnetic fields and associated electric currents. For magnetic energy to power a CME, that energy must be sufficient to open the magnetic field to interplanetary space, to lift the ejecta against solar gravity, and to accelerate the material to speeds of typically several hundred km s{sup -1}. Although CMEs are large-scale structures, many originate from relatively compact active regions on the solar surface-suggesting that magnetic energy storage may be enhanced when it takes place in smaller magnetic structures. This paper builds on our earlier work exploring energy storage in large-scale dipolar and related bipolar magnetic fields. Here we consider two additional cases: quadrupolar fields and concentrated magnetic bipoles intended to simulate active regions. Our models yield stored energies whose excess over that of the corresponding open field state can be greater than 100% of the associated potential field energy; this contrasts with maximum excess energies of only about 20% for dipolar and symmetric bipolar configurations. As in our previous work, energy storage is enhanced when we surround a nonpotential field with a strong overlying potential field that acts to 'hold down' the nonpotential flux as its magnetic energy increases.

Wolfson, Richard; Drake, Christina; Kennedy, Max, E-mail: wolfson@middlebury.edu [Department of Physics, Middlebury College, Middlebury, VT 05753 (United States)

2012-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "large-scale energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network (OSTI)

Adki ns, "Raccoon Mountain Pumped-Storage Plant- Ten Years2J O. D. Johnson, "Worldwide Pumped-Storage Projects", PowerUnderground Pumped Hydro Storage", Proc. 1976 Eng.

Hassenzahl, W.

2011-01-01T23:59:59.000Z

282

Flywheel energy storage workshop  

DOE Green Energy (OSTI)

Since the November 1993 Flywheel Workshop, there has been a major surge of interest in Flywheel Energy Storage. Numerous flywheel programs have been funded by the Advanced Research Projects Agency (ARPA), by the Department of Energy (DOE) through the Hybrid Vehicle Program, and by private investment. Several new prototype systems have been built and are being tested. The operational performance characteristics of flywheel energy storage are being recognized as attractive for a number of potential applications. Programs are underway to develop flywheels for cars, buses, boats, trains, satellites, and for electric utility applications such as power quality, uninterruptible power supplies, and load leveling. With the tremendous amount of flywheel activity during the last two years, this workshop should again provide an excellent opportunity for presentation of new information. This workshop is jointly sponsored by ARPA and DOE to provide a review of the status of current flywheel programs and to provide a forum for presentation of new flywheel technology. Technology areas of interest include flywheel applications, flywheel systems, design, materials, fabrication, assembly, safety & containment, ball bearings, magnetic bearings, motor/generators, power electronics, mounting systems, test procedures, and systems integration. Information from the workshop will help guide ARPA & DOE planning for future flywheel programs. This document is comprised of detailed viewgraphs.

O`Kain, D.; Carmack, J. [comps.

1995-12-31T23:59:59.000Z

283

Energy Storage Laboratory (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Storage Laboratory at the Energy Systems Integration Facility. At NREL's Energy Storage Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on the integration of energy storage systems (both stationary and vehicle-mounted) and interconnection with the utility grid. Focusing on battery technologies, but also hosting ultra-capacitors and other electrical energy storage technologies, the laboratory will provide all resources necessary to develop, test, and prove energy storage system performance and compatibility with distributed energy systems. The laboratory will also provide robust vehicle testing capability, including a drive-in environmental chamber, which can accommodate commercial-sized hybrid, electric, biodiesel, ethanol, compressed natural gas, and hydrogen fueled vehicles. The Energy Storage Laboratory is designed to ensure personnel and equipment safety when testing hazardous battery systems or other energy storage technologies. Closely coupled with the research electrical distribution bus at ESIF, the Energy Storage Laboratory will offer megawatt-scale power testing capability as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Some application scenarios are: The following types of tests - Performance, Efficiency, Safety, Model validation, and Long duration reliability. (2) Performed on the following equipment types - (a) Vehicle batteries (both charging and discharging V2G); (b) Stationary batteries; (c) power conversion equipment for energy storage; (d) ultra- and super-capacitor systems; and (e) DC systems, such as commercial microgrids.

Not Available

2011-10-01T23:59:59.000Z

284

Magnetic energy storage  

DOE Green Energy (OSTI)

The fusion program embraces low loss superconductor strand development with integration into cables capable of carrying 50 kA in pulsed mode at high fields. This evolvement has been paralleled with pulsed energy storage coil development and testing from tens of kJ at low fields to a 20 MJ prototype tokamak induction coil at 7.5 T. Energy transfer times have ranged from 0.7 ms to several seconds. Electric utility magnetic storage for prospective application is for diurnal load leveling with massive systems to store 10 GWh at 1.8 K in a dewar structure supported on bedrock underground. An immediate utility application is a 30 MJ system to be used to damp power oscillations on the Bonneville Power Administration electric transmission lines. An off-shoot of this last work is a new program for electric utility VAR control with the potential for use to suppress subsynchronous resonance. This paper presents work in progress, work planned, and recently completed unusual work.

Rogers, J.D.

1980-01-01T23:59:59.000Z

285

Article for thermal energy storage  

DOE Patents (OSTI)

A thermal energy storage composition is provided which is in the form of a gel. The composition includes a phase change material and silica particles, where the phase change material may comprise a linear alkyl hydrocarbon, water/urea, or water. The thermal energy storage composition has a high thermal conductivity, high thermal energy storage, and may be used in a variety of applications such as in thermal shipping containers and gel packs.

Salyer, Ival O. (Dayton, OH)

2000-06-27T23:59:59.000Z

286

Breakthrough Materials for Energy Storage  

Title: Breakthrough Materials for Energy Storage Subject: A presentation at the 22nd NREL Industry Growth Forum by Amprius about its lithium ion battery technology

287

NREL: Energy Storage - Technology Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Basics Photo of an ultracapacitor. Electrochemical energy storage devices provide the power for many everyday devices-from cars, trains, and laptops to personal digital...

288

Energy storage in carbon nanoparticles.  

E-Print Network (OSTI)

??Hydrogen (H2) and methane (CH4) are clean energy sources, and their storage in carbonaceous materials is a promising technology for safe and cost effective usage (more)

Guan, Cong.

2009-01-01T23:59:59.000Z

289

NV Energy Electricity Storage Valuation  

SciTech Connect

This study examines how grid-level electricity storage may benet the operations of NV Energy in 2020, and assesses whether those benets justify the cost of the storage system. In order to determine how grid-level storage might impact NV Energy, an hourly production cost model of the Nevada Balancing Authority (\\BA") as projected for 2020 was built and used for the study. Storage facilities were found to add value primarily by providing reserve. Value provided by the provision of time-of-day shifting was found to be limited. If regulating reserve from storage is valued the same as that from slower ramp rate resources, then it appears that a reciprocating engine generator could provide additional capacity at a lower cost than a pumped storage hydro plant or large storage capacity battery system. In addition, a 25-MW battery storage facility would need to cost $650/kW or less in order to produce a positive Net Present Value (NPV). However, if regulating reserve provided by storage is considered to be more useful to the grid than that from slower ramp rate resources, then a grid-level storage facility may have a positive NPV even at today's storage system capital costs. The value of having storage provide services beyond reserve and time-of-day shifting was not assessed in this study, and was therefore not included in storage cost-benefit calculations.

Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader A.; Jin, Chunlian

2013-06-30T23:59:59.000Z

290

Energy Storage & Power Electronics 2008 Peer Review - Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Storage Systems (ESS) Presentations Energy Storage & Power Electronics 2008 Peer Review - Energy Storage Systems (ESS) Presentations The 2008 Peer Review Meeting for the...

291

Superconducting energy storage  

DOE Green Energy (OSTI)

This report describes the status of energy storage involving superconductors and assesses what impact the recently discovered ceramic superconductors may have on the design of these devices. Our description is intended for R&D managers in government, electric utilities, firms, and national laboratories who wish an overview of what has been done and what remains to be done. It is assumed that the reader is acquainted with superconductivity, but not an expert on the topics discussed here. Indeed, it is the author`s aim to enable the reader to better understand the experts who may ask for the reader`s attention, support, or funding. This report may also inform scientists and engineers who, though expert in related areas, wish to have an introduction to our topic.

Giese, R.F.

1993-10-01T23:59:59.000Z

292

Superconducting magnetic energy storage  

SciTech Connect

The U.S. electric utility industry transmits power to customers at a rate equivalent to only 60% of generating capacity because, on an annual basis, the demand for power is not constant. Load leveling and peak shaving units of various types are being used to increase the utilization of the base load nuclear and fossil power plants. The Los Alamos Scientific Laboratory (LASL) is developing superconducting magnetic energy storage (SMES) systems which will store and deliver electrical energy for the purpose of load leveling, peak shaving, and the stabilization of electric utility networks. This technology may prove to be an effective means of storing energy for the electric utilities because (1) it has a high efficiency (approximately 90%), (2) it may improve system stability through the fast response of the converter, and (3) there should be fewer siting restrictions than for other load leveling systems. A general SMES system and a reference design for a 10-GWh unit for load leveling are described; and the results of some recent converter tests are presented.

Hassenzahl, W.V.; Boenig, H.J.

1977-01-01T23:59:59.000Z

293

Electricity Energy Storage Technology Options  

Science Conference Proceedings (OSTI)

A confluence of industry drivers8212including increased deployment of renewable generation, the high capital cost of managing grid peak demands, and large capital investments in grid infrastructure for reliability8212is creating new interest in electric energy storage systems. New EPRI research offers a current snapshot of the storage landscape and an analytical framework for estimating the benefits of applications and life-cycle costs of energy storage systems. This paper describes in detail 10 key appl...

2010-12-23T23:59:59.000Z

294

Advanced Vehicle Testing Activity: Energy Storage Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Testing to someone by E-mail Share Advanced Vehicle Testing Activity: Energy Storage Testing on Facebook Tweet about Advanced Vehicle Testing Activity: Energy...

295

Advanced Vehicle Testing Activity: Energy Storage Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Testing The Advanced Vehicle Testing Activity is tasked by the U.S. Department of Energy's Vehicle Technologies Office to conduct various types of energy storage...

296

The Power of Energy Storage  

E-Print Network (OSTI)

including composite materials, mechanical energy storage, nondestructive evaluation, and synchrotronNSEL NuclearScienceandEngineeringLaboratory Nanoscale Science Nano-Bio Interface Sustainable Energy. It draws the expertise of faculty members from different disciplines and promotes nuclear education

Sadoulet, Elisabeth

297

Energy Storage Laboratory (Fact Sheet)  

SciTech Connect

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Storage Laboratory at the Energy Systems Integration Facility. At NREL's Energy Storage Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on the integration of energy storage systems (both stationary and vehicle-mounted) and interconnection with the utility grid. Focusing on battery technologies, but also hosting ultra-capacitors and other electrical energy storage technologies, the laboratory will provide all resources necessary to develop, test, and prove energy storage system performance and compatibility with distributed energy systems. The laboratory will also provide robust vehicle testing capability, including a drive-in environmental chamber, which can accommodate commercial-sized hybrid, electric, biodiesel, ethanol, compressed natural gas, and hydrogen fueled vehicles. The Energy Storage Laboratory is designed to ensure personnel and equipment safety when testing hazardous battery systems or other energy storage technologies. Closely coupled with the research electrical distribution bus at ESIF, the Energy Storage Laboratory will offer megawatt-scale power testing capability as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Some application scenarios are: The following types of tests - Performance, Efficiency, Safety, Model validation, and Long duration reliability. (2) Performed on the following equipment types - (a) Vehicle batteries (both charging and discharging V2G); (b) Stationary batteries; (c) power conversion equipment for energy storage; (d) ultra- and super-capacitor systems; and (e) DC systems, such as commercial microgrids.

2011-10-01T23:59:59.000Z

298

CFES RESEARCH THRUSTS: Energy Storage  

E-Print Network (OSTI)

CFES RESEARCH THRUSTS: Energy Storage Wind Energy Solar Energy Smart Grids Smart Buildings For our industrial partners, the Energy Scholars program is an opportunity to connect with the talent of Rensselaer. Sponsoring a Rensselaer Polytechnic Institute undergraduate as an Energy Scholar enables a company

Lü, James Jian-Qiang

299

Solar total energy: large scale experimental at Shenandoah, Georgia. Phase III. Preliminary design. Final report, October 1, 1977-July 31, 1978  

DOE Green Energy (OSTI)

The basic function of the STES at Shenandoah is to supply the electric power, process steam, and space heating and cooling demands of the expanded 3900 square meters (42,000 ft/sup 2/) Bleyle Plant and for the STES Mechanical Building. The Bleyle factory, initially equipped with its own independent (conventional) energy source, will derive at least 60% of its annual energy needs from the sun when the solar energy system becomes operational in the first quarter of 1981. The design and systems analysis of the STES are detailed. The Solar Collection Substation consists of an array of 192 seven meter diameter, parabolic dish collectors which provide a temperature rise to a flow of Syltherm 800 fluid through each collector in a parallel closed, hydraulic circuit. The receiver is a cavity type with the incident concentrated solar flux impinging upon an absorptive surface enclosed within an insulated cylindrical shell. The trickle oil/dual media concept was selected for the high temperature storage system. The Power Conversion Subsystem consists of a three piece pool-type boiler with preheater, boiler, and superheater, a GFE steam turbine-generator set rated at 400kWe supplied by Mechanical Technology, Inc., a condenser and condensate storage tank, make-up demineralizer, deaerating heater, and boiler feed pump. In normal operation, steam at 655/sup 0/K (720/sup 0/F) and 4.8 x 10/sup 6/ N/m/sup 2/ (700 psig) is generated in the boiler-super-heater, heated by Syltherm 800, and delivered to the turbine inlet. The Thermal Utilization Subsystem major components include a 2.1 x 10/sup 10/ Joule (20 MBtu) capacity, sensible heat water, low temperature storage (LTS) subsystem, a 1.25 x 10/sup 6/ Joules/second (354 ton) absorption chiller derated to provide 6.09 x 10/sup 5/ Joules/second (173 tons) with inlet hot water at 372/sup 0/K (210/sup 0/F), and two separate cooling towers for heat rejection from both the absorption chiller and the PCS condenser. (WHK)

Not Available

1978-09-01T23:59:59.000Z

300

ATU/Fort Hood Solar Total Energy Military Large-Scale Experiment (LSE-1): system design and support activities. Final report, November 23, 1976-November 30, 1977  

SciTech Connect

The ATU/Fort Hood Solar Total Energy System will include a concentrating solar collector field of several acres. During periods of direct insolation, a heat-transfer fluid will be circulated through the collector field and thus heated to 500 to 600/sup 0/F. Some of the fluid will be circulated through a steam generator to drive a turbine-generator set; additional fluid will be stored in insulated tanks for use when solar energy is not available. The electrical output will satisfy a portion of the electrical load at Fort Hood's 87,000 Troop Housing Complex. Heat extracted from the turbine exhaust in the form of hot water will be used for space heating, absorption air conditioning, and domestic water heating at the 87,000 Complex. Storage tanks for the hot water are also included. The systems analysis and program support activities include studies of solar availability and energy requirements at Fort Hood, investigation of interfacing LSE-1 with existing energy systems at the 87,000 Complex, and preliminary studies of environmental, health, and safety considerations. An extensive survey of available concentrating solar collectors and modifications to a computerized system simulation model for LSE-1 use are also reported. Important program support activities are military liaison and information dissemination. The engineering test program reported involved completion of the Solar Engineering Test Module (SETM) and extensive performance testing of a single module of the linear-focusing collector.

1977-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "large-scale energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

FE Carbon Capture and Storage News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 24, 2011 August 24, 2011 Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction Construction activities have begun at an Illinois ethanol plant that will demonstrate carbon capture and storage. July 6, 2011 Confirming CCS Security and Environmental Safety Aim of Newly Selected Field Projects The U.S. Department of Energy's portfolio of field projects aimed at confirming that long-term geologic carbon dioxide storage is safe and environmentally secure has been expanded by three projects selected to collectively receive $34.5 million over four years. June 28, 2011 Redesigned CCS Website Offers Wealth of Information on Worldwide Technology, Projects A wealth of information about worldwide carbon capture and storage technologies and projects is available on the newly launched, updated and

302

NREL: Energy Storage - Laboratory Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory Capabilities Laboratory Capabilities Photo of NREL's Energy Storage Laboratory. NREL's Energy Storage Laboratory. Welcome to our Energy Storage Laboratory at the National Renewable Energy Laboratory (NREL) in Golden, Colorado. Much of our testing is conducted at this state-of-the-art laboratory, where researchers use cutting-edge modeling and analysis tools to focus on thermal management systems-from the cell level to the battery pack or ultracapacitor stack-for electric, hybrid electric, and fuel cell vehicles (EVs, HEVs, and FCVs). In 2010, we received $2 million in funding from the U.S. Department of Energy under the American Recovery and Reinvestment Act of 2009 (ARRA) to enhance and upgrade the NREL Battery Thermal and Life Test Facility. The Energy Storage Laboratory houses two unique calorimeters, along with

303

NREL: Learning - Energy Storage Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Basics Energy Storage Basics The demand for electricity is seldom constant over time. Excess generating capacity available during periods of low demand can be used to energize an energy storage device. The stored energy can then be used to provide electricity during periods of high demand, helping to reduce power system loads during these times. Energy storage can improve the efficiency and reliability of the electric utility system by reducing the requirements for spinning reserves to meet peak power demands, making better use of efficient baseload generation, and allowing greater use of renewable energy technologies. A "spinning reserve" is a generator that is spinning and synchronized with the grid, ready for immediate power generation - like a car engine running with the gearbox

304

Energy Storage and Distributed Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

diagram of molecular structure, spectrocscopic data, low-swirl flame diagram of molecular structure, spectrocscopic data, low-swirl flame Energy Storage and Distributed Resources Energy Storage and Distributed Resources application/pdf icon esdr-org-chart-03-2013.pdf EETD researchers in the energy storage and distributed resources area conduct R&D and develops technologies that provide the electricity grid with significant storage capability for energy generated from renewable sources; real-time monitoring and response technologies for the "smart grid" to optimize energy use and communication between electricity providers and consumers; and technologies for improved electricity distribution reliability. Their goal is to identify and develop technologies, policies and strategies to enable a shift to renewable energy sources at $1 per watt for a

305

Reluctance apparatus for flywheel energy storage - Energy ...  

A motor generator for providing high efficiency, controlled voltage output or storage of energy in a flywheel system. A motor generator includes a stator of a soft ...

306

Energy Storage Success Stories - Energy Innovation Portal  

Energy Storage Success Stories These success stories highlight some of the effective licensing and partnership activity between laboratories and industry in the area ...

307

Energy Storage Technologies - Energy Innovation Portal  

Hydrogen Electrochemical Energy Storage Device. The hydrogen fuel cell market is still in the early stages of development. However, with advances in technology the ...

308

Designing a cost-effective CO2 storage infrastructure using a GIS based linear optimization energy model  

Science Conference Proceedings (OSTI)

Large-scale deployment of carbon capture and storage needs a dedicated infrastructure. Planning and designing of this infrastructure require incorporation of both temporal and spatial aspects. In this study, a toolbox has been developed that integrates ... Keywords: CCS, CHP, CO2 capture transport and storage, Energy systems model, Ft, GIS, IGCC, Linear optimization, MARKAL, NGCC, O&M&M, PC

Machteld van den Broek; Evelien Brederode; Andrea Ramrez; Leslie Kramers; Muriel van der Kuip; Ton Wildenborg; Wim Turkenburg; Andr Faaij

2010-12-01T23:59:59.000Z

309

ESS 2012 Peer Review - Thermoelectrochemical Energy Storage ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Energy's Office of Electricity Delivery & Energy Reliability. Thermoelectrochemical Energy Storage Problem: Flow batteries exhibit inefficiencies that are affected by...

310

Policy Questions on Energy Storage Technologies | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Policy Questions on Energy Storage Technologies Policy Questions on Energy Storage Technologies Memorandum from the Electricity Advisory Committee to Secretary Chu and Assistant...

311

Energy Storage Demonstration Project Locations | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demonstration Project Locations Energy Storage Demonstration Project Locations Map of the United States showing the location of Energy Storage Demonstration projects created with...

312

Energy Storage Systems 2010 Update Conference Presentations ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 Update Conference Presentations - Day 1, Session 2 Energy Storage Systems 2010 Update Conference Presentations - Day 1, Session 2 The U.S. DOE Energy Storage Systems Program...

313

Webinar Presentation: Energy Storage Solutions for Microgrids...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Webinar Presentation: Energy Storage Solutions for Microgrids (November 2012) Webinar Presentation: Energy Storage Solutions for Microgrids (November 2012) On November 7, 2012,...

314

The design of new wind power controller based on Superconducting Magnetic Energy Storage  

Science Conference Proceedings (OSTI)

The fluctuation and intermittent with wind power output, as a key factor to connect a large-scale wind power system to grid, which result s in an adverse impact on the power system continues to grow. In order to reduce the net stability impact of the ... Keywords: Wind Farm, Superconducting Magnetic Energy Storage, Wind Power, Applied Superconductivity

Zhou Xue-Song; Quan Bo; Ma You-Jie; Wu Le

2010-08-01T23:59:59.000Z

315

Department of Energy Will Hold a Batteries and Energy Storage...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Will Hold a Batteries and Energy Storage Information Meeting on October 21, 2011 Department of Energy Will Hold a Batteries and Energy Storage Information...

316

Substation Energy Storage Product Specification  

Science Conference Proceedings (OSTI)

This substation energy storage specification is intended to facilitate utility procurement of large grid-connected electrical energy storage systems that would typically be connected at medium voltage at distribution substations. Few utilities have experience with devices of this type, and industry practices are not extensively developed. Therefore, this update report may be used as a guide to suppliers of these devices (who may be unfamiliar with utility practices) as well as distribution utilities ...

2012-10-25T23:59:59.000Z

317

Lih thermal energy storage device  

DOE Patents (OSTI)

A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures.

Olszewski, Mitchell (Knoxville, TN); Morris, David G. (Knoxville, TN)

1994-01-01T23:59:59.000Z

318

Virtual screening on large scale grids  

Science Conference Proceedings (OSTI)

Large scale grids for in silico drug discovery open opportunities of particular interest to neglected and emerging diseases. In 2005 and 2006, we have been able to deploy large scale virtual docking within the framework of the WISDOM initiative against ... Keywords: Avian influenza, Large scale grids, Malaria, Virtual screening

Nicolas Jacq; Vincent Breton; Hsin-Yen Chen; Li-Yung Ho; Martin Hofmann; Vinod Kasam; Hurng-Chun Lee; Yannick Legr; Simon C. Lin; Astrid Maa; Emmanuel Medernach; Ivan Merelli; Luciano Milanesi; Giulio Rastelli; Matthieu Reichstadt; Jean Salzemann; Horst Schwichtenberg; Ying-Ta Wu; Marc Zimmermann

2007-05-01T23:59:59.000Z

319

Integration of Electric Energy Storage into Power Systems with Renewable Energy Resources  

E-Print Network (OSTI)

This dissertation investigates the distribution and transmission systems reliability and economic impact of energy storage and renewable energy integration. The reliability and economy evaluation framework is presented. Novel operation strategies of energy storage and renewable energy are proposed. The method for optimizing the energy storage sizing and operation strategy in order to achieve optimal reliability and economy level is developed. The objectives of the movement towards the smart grid include making the power systems more reliable and economically efficient. The rapid development of the large scale energy storage technology makes it an excellent candidate in achieving these goals. A novel Model Predictive Control (MPC)-based operation strategy is proposed to optimally manage the charging and discharging operation of energy storage in order to minimize the energy purchasing cost for a distribution system load aggregator in power markets. Different operation strategies of energy storage have different reliability and economic impact on power systems. Simulation results illustrate the importance of the energy storage operation strategies. A hybrid operation strategy which combines the MPC-based operation strategy and the standby backup operation strategy is proposed to flexibly adjust the reliability and economic improvement brought by energy storage. A particle swarm optimization approach is developed to determine the optimal energy storage sizing and operation strategy while maximizing reliability and economic improvement. A reliability and economy assessment framework based on sequential Monte Carlo method integrated with the operation strategies is proposed. The impact on the transmission systems reliability brought by energy storage and renewable energy with the proposed operation strategies is investigated. Case studies are conducted to demonstrate the effectiveness of the proposed operation strategies, optimization approach, and the reliability and economy evaluation framework. Insights into how energy storage and renewable energy affect power system reliability and economy are obtained.

Xu, Yixing 1985-

2012-12-01T23:59:59.000Z

320

Part II Energy Storage Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

II. II. Energy Storage Technology Overview * Instructor - Haresh Kamath, EPRI PEAC * Short term - Flywheels, Cranking Batteries, Electrochemical Capacitors, SMES * Long term - Compressed Air, Pumped Hydro storage, Stationary, Flow Batteries 2 Overview * Technology Types - Batteries, flywheels, electrochemical capacitors, SMES, compressed air, and pumped hydro * Theory of Operation - Brief description of the technologies and the differences between them * State-of-the-art - Past demonstrations, existing hurdles and performance targets for commercialization * Cost and cost projections: - Prototype cost vs. fully commercialized targets Technology Choice for Discharge Time and Power Rating (From ESA) 4 Maturity Levels for Energy Storage Technologies * Mature Technologies - Conventional pumped hydro

Note: This page contains sample records for the topic "large-scale energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

DOE Awards First Three Large-Scale Carbon Sequestration Projects |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

First Three Large-Scale Carbon Sequestration Projects First Three Large-Scale Carbon Sequestration Projects DOE Awards First Three Large-Scale Carbon Sequestration Projects October 9, 2007 - 3:14pm Addthis U.S. Projects Total $318 Million and Further President Bush's Initiatives to Advance Clean Energy Technologies to Confront Climate Change WASHINGTON, DC - In a major step forward for demonstrating the promise of clean energy technology, U.S Deputy Secretary of Energy Clay Sell today announced that the Department of Energy (DOE) awarded the first three large-scale carbon sequestration projects in the United States and the largest single set in the world to date. The three projects - Plains Carbon Dioxide Reduction Partnership; Southeast Regional Carbon Sequestration Partnership; and Southwest Regional Partnership for Carbon

322

Characterization and assessment of novel bulk storage technologies : a study for the DOE Energy Storage Systems program.  

DOE Green Energy (OSTI)

This paper reports the results of a high-level study to assess the technological readiness and technical and economic feasibility of 17 novel bulk energy storage technologies. The novel technologies assessed were variations of either pumped storage hydropower (PSH) or compressed air energy storage (CAES). The report also identifies major technological gaps and barriers to the commercialization of each technology. Recommendations as to where future R&D efforts for the various technologies are also provided based on each technology's technological readiness and the expected time to commercialization (short, medium, or long term). The U.S. Department of Energy (DOE) commissioned this assessment of novel concepts in large-scale energy storage to aid in future program planning of its Energy Storage Program. The intent of the study is to determine if any new but still unproven bulk energy storage concepts merit government support to investigate their technical and economic feasibility or to speed their commercialization. The study focuses on compressed air energy storage (CAES) and pumped storage hydropower (PSH). It identifies relevant applications for bulk storage, defines the associated technical requirements, characterizes and assesses the feasibility of the proposed new concepts to address these requirements, identifies gaps and barriers, and recommends the type of government support and research and development (R&D) needed to accelerate the commercialization of these technologies.

Huff, Georgianne; Tong, Nellie (KEMA Consulting, Fairfax, VA); Fioravanti, Richard (KEMA Consulting, Fairfax, VA); Gordon, Paul (Sentech/SRA International, Bethesda, MD); Markel, Larry (Sentech/SRA International, Bethesda, MD); Agrawal, Poonum (Sentech/SRA International, Bethesda, MD); Nourai, Ali (KEMA Consulting, Fairfax, VA)

2011-04-01T23:59:59.000Z

323

Grid Storage and the Energy Frontier Research Centers | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grid Storage and the Energy Frontier Research Centers Grid Storage and the Energy Frontier Research Centers DOE: Grid Storage and the Energy Frontier Research Centers Grid Storage...

324

Phase Change Thermal Energy Storage and Recovery in a ...  

Science Conference Proceedings (OSTI)

Symposium, Energy Storage III: Materials, Systems and Applications Symposium ... storage (LHTES) devices, particularly for solar energy storage applications.

325

SERI Solar-Energy-Storage Program  

DOE Green Energy (OSTI)

The SERI Solar Energy Storage Program is summarized. The program provides research, systems analysis, and assessments of thermal energy storage and transport in support of the Thermal Energy Storage Program of the DOE Division of Energy Storage Technology; emphasis is on thermal energy storage for solar thermal power and process heat applications and on thermal energy transport. Currently, research is in progress on direct-contact thermal energy storage and thermochemical energy storage and transport. In addition, SERI is directing the definition of new concepts for thermal energy storage and supporting research on thermal energy transport by sensible and latent heat media. SERI is performing systems analyses of thermal energy storage for solar thermal application and coordinating thermal energy storage activities for solar applications.

Wyman, C.E.

1981-08-01T23:59:59.000Z

326

Electrical Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electrochemical Flow Storage System Typical Cell Power Density (Wcm 2 ) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 UTRC Conventional Conventional flow battery cell UTRC flow battery...

327

Energy Programs | Advanced Storage Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Storage Systems Advanced Storage Systems Tapping Into Fuel Cells and Batteries Page 1 of 2 Imagine being able to drive a forty-mile round-trip commute every day without ever going near a gas pump. As the United States moves towards an energy economy with reduced dependence on foreign oil and fewer carbon emissions, development of alternative fuel sources and transmission of the energy they provide is only part of the equation. An increase in energy generated from intermittent renewable sources and the growing need for mobile energy will require new, efficient means of storing it, and technological advancements will be necessary to support the nation's future energy storage needs. A change toward alternative transportation - hydrogen fuel-cell vehicles, hybrid electric vehicles, plug-in hybrid-electric vehicles and electric

328

Addressing the Grand Challenges in Energy Storage  

SciTech Connect

The editorial summarizes the contents of the special issue for energy storage in Advanced Functional Materials.

Liu, Jun

2013-02-25T23:59:59.000Z

329

Research and Development for Novel Thermal Energy Storage Systems (TES) for Concentrating Solar Power (CSP)  

SciTech Connect

The overall objective was to develop innovative heat transfer devices and methodologies for novel thermal energy storage systems for concentrating solar power generation involving phase change materials (PCMs). Specific objectives included embedding thermosyphons and/or heat pipes (TS/HPs) within appropriate phase change materials to significantly reduce thermal resistances within the thermal energy storage system of a large-scale concentrating solar power plant and, in turn, improve performance of the plant. Experimental, system level and detailed comprehensive modeling approaches were taken to investigate the effect of adding TS/HPs on the performance of latent heat thermal energy storage (LHTES) systems.

Faghri, Amir; Bergman, Theodore L; Pitchumani, Ranga

2013-09-26T23:59:59.000Z

330

Energy Storage, Transport, and Conversion in CNST  

Science Conference Proceedings (OSTI)

Energy Storage, Transport, and Conversion in CNST. Nanotribology ... Theory and Modeling of Materials for Renewable Energy. Nanostructures ...

2013-05-02T23:59:59.000Z

331

Fuel Cells, Hydrogen Storage, Ferroelectrics, Wind Energy  

Science Conference Proceedings (OSTI)

Mar 15, 2012 ... Energy Nanomaterials: Fuel Cells, Hydrogen Storage, Ferroelectrics, Wind Energy Sponsored by: The Minerals, Metals and Materials Society,...

332

Smart Storage Pty Ltd | Open Energy Information  

Open Energy Info (EERE)

"Smart Storage Pty Ltd" Retrieved from "http:en.openei.orgwindex.php?titleSmartStoragePtyLtd&oldid351195" Categories: Clean Energy Organizations Companies...

333

High Capacity Hydrogen Storage Nanocomposite - Energy ...  

Energy Storage Advanced Materials High Capacity Hydrogen Storage Nanocomposite Processes to add metal hydrideds to nanocarbon structures to yield high capacity ...

334

A Large-scale Relativistic Configuration-interaction Approach: Application to the 4s2 - 4s4p Transition Energies and E1 Rates for Zn-like Ions  

SciTech Connect

Relativistic configuration-interaction calculations of the 4s4p excitation energies and 4s{sup 2} - 4s4p E1 transitions for Zn-like ions from Z = 30 to 92 are shown. B-spline basis functions are used for these large-scale calculations. QED corrections to the excitation energies are also calculated. Results are in good agreement with other theories and with experiment, and demonstrate the utility of this method for high-precision atomic structure calculations not just for few-electron systems but also for large atomic systems such as Zn-like ions along the entire isoelectronic sequence.

Chen, M H; Cheng, K T

2009-08-28T23:59:59.000Z

335

Carbon Capture and Storage | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Capture and Storage Carbon Capture and Storage Through Office of Fossil Energy R&D the United States has become a world leader in carbon capture and storage science and...

336

The Solar Storage Company | Open Energy Information  

Open Energy Info (EERE)

Storage Company Place Palo Alto, California Zip 1704 Product US-based start-up developing energy production and storage systems. References The Solar Storage Company1 LinkedIn...

337

Post regulation circuit with energy storage  

DOE Patents (OSTI)

A charge regulation circuit provides regulation of an unregulated voltage supply and provides energy storage. The charge regulation circuit according to the present invention provides energy storage without unnecessary dissipation of energy through a resistor as in prior art approaches.

Ball, Don G. (Livermore, CA); Birx, Daniel L. (Oakley, CA); Cook, Edward G. (Livermore, CA)

1992-01-01T23:59:59.000Z

338

Matt Rogers on AES Energy Storage  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Energy and AES Energy Storage recently agreed to a $17.1M conditional loan guarantee commitment. This project will develop the first battery-based energy storage system to provide...

339

EXPERIMENTAL AND THEORETICAL STUDIES OF THERMAL ENERGY STORAGE IN AQUIFERS  

E-Print Network (OSTI)

Department of Energy, Energy Storage Division through thegeneration and energy storage, Presented at Frontiers ofIn Proceed- ings of Thermal Energy Storage in Aquifers Work-

Tsang, Chin Fu

2011-01-01T23:59:59.000Z

340

Breakthrough Large-Scale Industrial Project Begins Carbon Capture and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Breakthrough Large-Scale Industrial Project Begins Carbon Capture Breakthrough Large-Scale Industrial Project Begins Carbon Capture and Utilization Breakthrough Large-Scale Industrial Project Begins Carbon Capture and Utilization January 25, 2013 - 12:00pm Addthis Washington, DC - A breakthrough carbon capture, utilization, and storage (CCUS) project in Texas has begun capturing carbon dioxide (CO2) and piping it to an oilfield for use in enhanced oil recovery (EOR). Read the project factsheet The project at Air Products and Chemicals hydrogen production facility in Port Arthur, Texas, is significant for demonstrating both the effectiveness and commercial viability of CCUS technology as an option in helping mitigate atmospheric CO2 emissions. Funded in part through the American Recovery and Reinvestment Act (ARRA), the project is managed by the U.S.

Note: This page contains sample records for the topic "large-scale energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Breakthrough Large-Scale Industrial Project Begins Carbon Capture and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Breakthrough Large-Scale Industrial Project Begins Carbon Capture Breakthrough Large-Scale Industrial Project Begins Carbon Capture and Utilization Breakthrough Large-Scale Industrial Project Begins Carbon Capture and Utilization January 25, 2013 - 12:00pm Addthis Washington, DC - A breakthrough carbon capture, utilization, and storage (CCUS) project in Texas has begun capturing carbon dioxide (CO2) and piping it to an oilfield for use in enhanced oil recovery (EOR). Read the project factsheet The project at Air Products and Chemicals hydrogen production facility in Port Arthur, Texas, is significant for demonstrating both the effectiveness and commercial viability of CCUS technology as an option in helping mitigate atmospheric CO2 emissions. Funded in part through the American Recovery and Reinvestment Act (ARRA), the project is managed by the U.S.

342

Storage Related News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Related News Storage Related News Storage Related News November 1, 2013 November 13 ESTAP Webinar: Duke Energy's Energy Storage Projects On Wednesday, November 13 from 1 - 2 p.m. ET, Clean Energy States Alliance will host a webinar on Duke Energy's battery energy storage systems. This webinar will be introduced by Dr. Imre Gyuk, Energy Storage Program Manager in the Office of Electricity Delivery and Energy Reliability. August 30, 2013 September 16 ESTAP Webinar: Optimizing the Benefits of a PV with Battery Storage System On Monday, September 16 from 1 - 2 p.m. ET, Clean Energy States Alliance will host a webinar on optimizing the benefits of a photovoltaic (PV) storage system with a battery. This webinar will be introduced by Dr. Imre Gyuk, Energy Storage Program Manager in the Office of Electricity Delivery

343

Role of Energy Storage with Renewable Electricity Generation  

DOE Green Energy (OSTI)

Renewable energy sources, such as wind and solar, have vast potential to reduce dependence on fossil fuels and greenhouse gas emissions in the electric sector. Climate change concerns, state initiatives including renewable portfolio standards, and consumer efforts are resulting in increased deployments of both technologies. Both solar photovoltaics (PV) and wind energy have variable and uncertain (sometimes referred to as intermittent) output, which are unlike the dispatchable sources used for the majority of electricity generation in the United States. The variability of these sources has led to concerns regarding the reliability of an electric grid that derives a large fraction of its energy from these sources as well as the cost of reliably integrating large amounts of variable generation into the electric grid. In this report, we explore the role of energy storage in the electricity grid, focusing on the effects of large-scale deployment of variable renewable sources (primarily wind and solar energy).

Denholm, P.; Ela, E.; Kirby, B.; Milligan, M.

2010-01-01T23:59:59.000Z

344

Ferroelectric opening switches for large-scale pulsed power drivers.  

DOE Green Energy (OSTI)

Fast electrical energy storage or Voltage-Driven Technology (VDT) has dominated fast, high-voltage pulsed power systems for the past six decades. Fast magnetic energy storage or Current-Driven Technology (CDT) is characterized by 10,000 X higher energy density than VDT and has a great number of other substantial advantages, but it has all but been neglected for all of these decades. The uniform explanation for neglect of CDT technology is invariably that the industry has never been able to make an effective opening switch, which is essential for the use of CDT. Most approaches to opening switches have involved plasma of one sort or another. On a large scale, gaseous plasmas have been used as a conductor to bridge the switch electrodes that provides an opening function when the current wave front propagates through to the output end of the plasma and fully magnetizes the plasma - this is called a Plasma Opening Switch (POS). Opening can be triggered in a POS using a magnetic field to push the plasma out of the A-K gap - this is called a Magnetically Controlled Plasma Opening Switch (MCPOS). On a small scale, depletion of electron plasmas in semiconductor devices is used to affect opening switch behavior, but these devices are relatively low voltage and low current compared to the hundreds of kilo-volts and tens of kilo-amperes of interest to pulsed power. This work is an investigation into an entirely new approach to opening switch technology that utilizes new materials in new ways. The new materials are Ferroelectrics and using them as an opening switch is a stark contrast to their traditional applications in optics and transducer applications. Emphasis is on use of high performance ferroelectrics with the objective of developing an opening switch that would be suitable for large scale pulsed power applications. Over the course of exploring this new ground, we have discovered new behaviors and properties of these materials that were here to fore unknown. Some of these unexpected discoveries have lead to new research directions to address challenges.

Brennecka, Geoffrey L.; Rudys, Joseph Matthew; Reed, Kim Warren; Pena, Gary Edward; Tuttle, Bruce Andrew; Glover, Steven Frank

2009-11-01T23:59:59.000Z

345

Advanced research in solar-energy storage  

DOE Green Energy (OSTI)

The Solar Energy Storage Program at the Solar Energy Research Institute is reviewed. The program provides research, systems analyses, and economic assessments of thermal and thermochemical energy storage and transport. Current activities include experimental research into very high temperature (above 800/sup 0/C) thermal energy storage and assessment of novel thermochemical energy storage and transport systems. The applications for such high-temperature storage are thermochemical processes, solar thermal-electric power generation, cogeneration of heat and electricity, industrial process heat, and thermally regenerative electrochemical systems. The research results for five high-temperature thermal energy storage technologies and two thermochemical systems are described.

Luft, W.

1983-01-01T23:59:59.000Z

346

Energy Conversion and Storage Program  

DOE Green Energy (OSTI)

The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

Cairns, E.J.

1992-03-01T23:59:59.000Z

347

Design of Flywheel Energy Storage Structure  

Science Conference Proceedings (OSTI)

In this paper, we have mainly studied the flywheel energy storage system's construction and working principle, which include flywheel battery, integrated driven converting motor (Device of energy converter), and magnetic suspension support system. We ... Keywords: Flywheel principle, Flywheel energy storage, Energy transudcer, Application of flywheel storage

Baoquan Geng; Yiming He

2011-03-01T23:59:59.000Z

348

COMMENTS OF THE LARGE-SCALE SOLAR ASSOCIATION TO DEPARTMENT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COMMENTS OF THE LARGE-SCALE SOLAR ASSOCIATION TO DEPARTMENT COMMENTS OF THE LARGE-SCALE SOLAR ASSOCIATION TO DEPARTMENT OF ENERGY'S RAPID RESPONSE TEAM FOR TRANSMISSION'S REQUEST FOR INFORMATION Submitted by electronic mail to: Lamont.Jackson@hq.doe.gov The Large-scale Solar Association appreciates this opportunity to respond to the Department of Energy's (DOE) Rapid Response Team for Transmission's (RRTT) Request for Information. 1 We applaud the DOE for creating the RRTT and continuing to advance the efforts already made under the Memorandum of Understanding (MOU) entered into by nine Federal agencies in 2009 to expedite electric transmission construction. We also applaud the federal and state agencies that have expanded the Renewable Energy Policy Group and the Renewable Energy Action Team in California to focus on transmission, and hope that the tremendous

349

Prestressed elastomer for energy storage  

DOE Patents (OSTI)

Disclosed is a regenerative braking device for an automotive vehicle. The device includes a power isolating assembly (14), an infinitely variable transmission (20) interconnecting an input shaft (16) with an output shaft (18), and an energy storage assembly (22). The storage assembly includes a plurality of elastomeric rods (44, 46) mounted for rotation and connected in series between the input and output shafts. The elastomeric rods are prestressed along their rotational or longitudinal axes to inhibit buckling of the rods due to torsional stressing of the rods in response to relative rotation of the input and output shafts.

Hoppie, Lyle O. (Birmingham, MI); Speranza, Donald (Canton, MI)

1982-01-01T23:59:59.000Z

350

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 1, FEBRUARY 2001 15 Energy-Efficient Design of Battery-Powered  

E-Print Network (OSTI)

architecture to- gether with energy consumption models for the components modeled. III. SYSTEM MODEL Typical for enhancing cycle-accurate simulators with energy models of typical components used in embedded system design in the source code that will provide largest overall energy sav- ings. A good example of profiler usage is shown

De Micheli, Giovanni

351

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATTION (VLSI) SYSTEMS, VOL. 5, NO. 4, DECEMBER 1997 1 Energy Minimization Using Multiple Supply  

E-Print Network (OSTI)

Energy Minimization Using Multiple Supply Voltages Jui-Ming Chang, Massoud Pedram Abstract|We present dependencies, and the energy cost of level shifters. Experimental results show that using three supply voltage level. Keywords| Energy Minimization, Multiple Supply Volt- ages, Scheduling, Dynamic Programming

Pedram, Massoud

352

Descriptive analysis of aquifer thermal energy storage systems  

DOE Green Energy (OSTI)

The technical and economic feasibility of large-scale aquifer thermal energy storage (ATES) was examined. A key to ATESs attractiveness is its simplicity of design and construction. The storage device consists of two ordinary water wells drilled into an aquifer, connected at the surface by piping and a heat exchanger. During the storage cycle water is pumped out of the aquifer, through the heat exchanger to absorb thermal energy, and then back down into the aquifer through the second well. The thermal storage remains in the aquifer storage bubble until required for use, when it is recovered by reversing the storage operation. For many applications the installation can probably be designed and constructed using existing site-specific information and modern well-drilling techniques. The potential for cost-effective implementation of ATES was investigated in the Twin Cities District Heating-Cogeneration Study in Minnesota. In the study, ATES demonstrated a net energy saving of 32% over the nonstorage scenario, with an annual energy cost saving of $31 million. Discounting these savings over the life of the project, the authors found that the break-even capital cost for ATES construction was $76/kW thermal, far above the estimated ATES development cost of $23 to 50/kW thermal. It appears tht ATES can be highly cost effective as well as achieve substantial fuel savings. ATES would be environmentally beneficial and could be used in many parts of the USA. The existing body of information on ATES indicates that it is a cost-effective, fuel-conserving technique for providing thermal energy for residential, commercial, and industrial users. The negative aspects are minor and highly site-specific, and do not seem to pose a threat to widespread commercialization. With a suitable institutional framework, ATES promises to supply a substantial portion of the nation's future energy needs. (LCL)

Reilly, R.W.

1980-06-01T23:59:59.000Z

353

Regenerative Fuel Cells for Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

11 1 Regenerative Fuel Cells for Energy Storage April 2011 Corky Mittelsteadt April 2011 2 Outline 1. Regenerative Fuel Cells at Giner 2. Regenerative Systems for Energy Storage 1....

354

Energy Storage Systems 2010 Update Conference Presentations ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 Energy Storage Systems 2010 Update Conference Presentations - Day 2, Session 3 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at...

355

Energy Storage Systems 2010 Update Conference Presentations ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1, Session 1 Energy Storage Systems 2010 Update Conference Presentations - Day 1, Session 1 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update...

356

Energy Storage Systems 2010 Update Conference Presentations ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 Energy Storage Systems 2010 Update Conference Presentations - Day 1, Session 3 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at...

357

Energy Storage Systems 2010 Update Conference Presentations ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3, Session 1 Energy Storage Systems 2010 Update Conference Presentations - Day 3, Session 1 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update...

358

Energy Storage Systems 2010 Update Conference Presentations ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Poster Session Energy Storage Systems 2010 Update Conference Presentations - Day 3: Poster Session The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking...

359

Energy Storage Systems 2010 Update Conference Presentations ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 Energy Storage Systems 2010 Update Conference Presentations - Day 2, Session 4 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at...

360

Energy Storage Systems 2010 Update Conference Presentations ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1, Session 4 Energy Storage Systems 2010 Update Conference Presentations - Day 1, Session 4 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update...

Note: This page contains sample records for the topic "large-scale energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Energy Storage Systems 2010 Update Conference Presentations ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 Energy Storage Systems 2010 Update Conference Presentations - Day 1, Session 4 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at...

362

Energy Storage Systems 2010 Update Conference Presentations ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2, Session 2 Energy Storage Systems 2010 Update Conference Presentations - Day 2, Session 2 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update...

363

Energy Storage Systems 2010 Update Conference Presentations ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2, Session 4 Energy Storage Systems 2010 Update Conference Presentations - Day 2, Session 4 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update...

364

Energy Storage Systems 2010 Update Conference Presentations ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 Energy Storage Systems 2010 Update Conference Presentations - Day 3, Session 3 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at...

365

Economic analysis of electric energy storage.  

E-Print Network (OSTI)

??This thesis presents a cost analysis of grid-connected electric energy storage. Various battery energy storage technologies are considered in the analysis. Life-cycle cost analysis is (more)

Poonpun, Piyasak

2006-01-01T23:59:59.000Z

366

Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) DOE's Energy Storage...

367

Thermal Energy Storage for Cooling of Commercial Buildings  

E-Print Network (OSTI)

Building Thermal Energy _Storage in ASEAN Countries,"Company, "Thermal Energy Storage for Cooling," Seminar25393 DE91 ,THERMAL ENERGY STORAGE FOR COOLING OF COMMERCIAL

Akbari, H.

2010-01-01T23:59:59.000Z

368

Implementing a Hydrogen Energy Infrastructure: Storage Options and System Design  

E-Print Network (OSTI)

challenge. Hydrogen energy storage density has been steadilya Hydrogen Energy Infrastructure: Storage Options and Systema Hydrogen Energy Infrastructure: Storage Options and System

Ogden, J; Yang, Christopher

2005-01-01T23:59:59.000Z

369

Fact Sheet: Energy Storage Database (October 2012) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Storage Database (October 2012) Fact Sheet: Energy Storage Database (October 2012) DOE and Sandia National Laboratories are developing a database of energy storage projects...

370

Rational Material Architecture Design for Better Energy Storage  

E-Print Network (OSTI)

in Electrochemical Energy Storage. Science 334, (6058), 917-for electrochemical energy storage. Adv. Funct. Mater. 2009,electrochemical capacitive energy storage. Angew. Chem. Int.

Chen, Zheng

2012-01-01T23:59:59.000Z

371

Thermal Energy Storage for Cooling of Commercial Buildings  

E-Print Network (OSTI)

of Commercial Building Thermal Energy _Storage in ASEANGas Electric Company, "Thermal Energy Storage for Cooling,"LBL--25393 DE91 ,THERMAL ENERGY STORAGE FOR COOLING OF

Akbari, H.

2010-01-01T23:59:59.000Z

372

Implementing a Hydrogen Energy Infrastructure: Storage Options and System Design  

E-Print Network (OSTI)

as a key challenge. Hydrogen energy storage density has beena Hydrogen Energy Infrastructure: Storage Options and Systema Hydrogen Energy Infrastructure: Storage Options and System

Ogden, J; Yang, Christopher

2005-01-01T23:59:59.000Z

373

Explorations of Novel Energy Conversion and Storage Systems  

E-Print Network (OSTI)

hydrogen. Energy storage via molecular hydrogen is, ofhydrogen storage. International Journal of Hydrogen Energy,hydrogen storage. International Journal of Hydrogen Energy,

Duffin, Andrew Mark

2010-01-01T23:59:59.000Z

374

Smart Grid Regional and Energy Storage Demonstration Projects...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regional and Energy Storage Demonstration Projects: Awards Smart Grid Regional and Energy Storage Demonstration Projects: Awards List of Smart Grid Regional and Energy Storage...

375

Electrochemical Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

has been has been actively involved in the development of advanced batteries since the late 1960s when it initiated R&D on high-temperature lithium sulfur batteries. In the early 1970s, the US Department of Energy (DOE) established its first independent battery test facility at Argonne and named it the National Battery Test Laboratory (NBTL), for the purpose of conducting independent evaluations on advanced battery technologies that were potential candidates for use in battery-powered electric vehicles. NBTL incorporated a well equipped post-test analysis laboratory that was instrumental in helping to identify life-limiting mechanisms with several candidate battery technologies. Even in these early days of the battery program, Argonne was internationally

376

Energy Storage Systems 2006 Peer Review | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Systems 2006 Peer Review Energy Storage Systems 2006 Peer Review The 2006 Peer Review Meeting for the DOE Energy Storage Systems (ESS) Program was held in Washington DC on...

377

Bulk Energy Storage Impact and Value Analysis  

Science Conference Proceedings (OSTI)

This paper is intended for planners, R&D managers, and potential investors who manage or interpret results from value and impact analysis of energy storage. Due to performance improvements and cost reductions of battery technologies and the expectation that energy storage may help to manage potential operational challenges of incorporating variable, renewable energy resources, energy storage systems are under renewed investigation as a future electric system resource. Pumped hydro storage ...

2012-12-31T23:59:59.000Z

378

Nanocomposites for Energy Transport, Harvesting and Storage  

Science Conference Proceedings (OSTI)

Mar 14, 2012 ... Nanocomposites: Nanocomposites for Energy Transport, Harvesting and Storage Sponsored by: The Minerals, Metals and Materials Society,...

379

Strategic Intelligence Update: Energy Storage & Distributed Generation  

Science Conference Proceedings (OSTI)

Distributed generation and energy storage technologies add value to a wide range of applications within the electric utility enterprise. Energy storage at megawatt-hour scales can be used to enable generators to better follow load and stabilize transmission voltage and frequency. Both distributed generation and energy storage systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage e...

2009-08-07T23:59:59.000Z

380

Strategic Intelligence Update: Distributed Generation & Energy Storage  

Science Conference Proceedings (OSTI)

Distributed generation and energy storage technologies add value to a wide range of applications within the electric utility enterprise. Energy storage at megawatt-hour scales can be used to enable generators to better follow load and stabilize transmission voltage and frequency. Both distributed generation and energy storage systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage e...

2009-12-17T23:59:59.000Z

Note: This page contains sample records for the topic "large-scale energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Strategic Intelligence Update: Energy Storage & Distributed Generation  

Science Conference Proceedings (OSTI)

Distributed generation and energy storage technologies add value to a wide range of applications within the electric utility enterprise. Energy storage at megawatt-hour scales can be used to enable generators to better follow load and stabilize transmission voltage and frequency. Both distributed generation and energy storage systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage e...

2009-06-22T23:59:59.000Z

382

Hybrid Controller for Multiple Energy Storage Devices ...  

Summary. A new hybrid energy storage controller developed by researchers at Pacific Northwest National Laboratory is designed for a centralized ...

383

Strategic Intelligence Update: Distributed Generation & Energy Storage  

Science Conference Proceedings (OSTI)

Distributed generation and energy storage technologies add value to a wide range of applications within the electric utility enterprise. Energy storage at megawatt-hour scales can be used to enable generators to better follow load and stabilize transmission voltage and frequency. Both distributed generation and energy storage systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage e...

2009-10-08T23:59:59.000Z

384

A Large-scale Relativistic Configuration-Interaction Calculation for the 4s-4p Transition Energies of Copperlike Heavy Ions  

Science Conference Proceedings (OSTI)

The 4s-4p transition energies for high-Z copperlike ions are calculated using the relativistic configuration-interaction (RCI) method. These calculations are based on the relativistic no-pair Hamiltonian which includes Coulomb and frequency-dependent, retarded Breit interactions and use B-spline orbitals as basis functions. Mass polarization and quantum electrodynamic (QED) corrections are also calculated. The present RCI energies agree very well with results from the relativistic many-body perturbation theory. With QED corrections included, our total transition energies are in very good agreement with recent high-precision measurements.

Cheng, K T; Chen, M H

2005-06-30T23:59:59.000Z

385

NREL: News - NREL Offers an Open-Source Solution for Large-Scale...  

NLE Websites -- All DOE Office Websites (Extended Search)

Version News Release NR-3613 NREL Offers an Open-Source Solution for Large-Scale Energy Data Collection and Analysis June 18, 2013 The Energy Department's National...

386

Underground Energy Storage Program. 1983 annual summary  

DOE Green Energy (OSTI)

The Underground Energy Storage Program approach, structure, history, and milestones are described. Technical activities and progress in the Seasonal Thermal Energy Storage and Compressed Air Energy Storage components of the program are then summarized, documenting the work performed and progress made toward resolving and eliminating technical and economic barriers associated with those technologies. (LEW)

Kannberg, L.D.

1984-06-01T23:59:59.000Z

387

Vehicle Technologies Office: Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Energy Storage Improving the batteries for electric drive vehicles, including hybrid electric (HEV) and plug-in electric (PEV) vehicles, is key to improving vehicles' economic, social, and environmental sustainability. In fact, transitioning to a light-duty fleet of HEVs and PEVs could reduce U.S. foreign oil dependence by 30-60% and greenhouse gas emissions by 30-45%, depending on the exact mix of technologies. For a general overview of electric drive vehicles, see the DOE's Alternative Fuel Data Center's pages on Hybrid and Plug-in Electric Vehicles and Vehicle Batteries. While a number of electric drive vehicles are available on the market, further improvements in batteries could make them more affordable and convenient to consumers. In addition to light-duty vehicles, some heavy-duty manufacturers are also pursuing hybridization of medium and heavy-duty vehicles to improve fuel economy and reduce idling.

388

Microwavable thermal energy storage material  

DOE Patents (OSTI)

A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene-vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments.

Salyer, Ival O. (Dayton, OH)

1998-09-08T23:59:59.000Z

389

Microwavable thermal energy storage material  

DOE Patents (OSTI)

A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments. 3 figs.

Salyer, I.O.

1998-09-08T23:59:59.000Z

390

Compact magnetic energy storage module  

DOE Patents (OSTI)

A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module. 4 figures.

Prueitt, M.L.

1994-12-20T23:59:59.000Z

391

Compact magnetic energy storage module  

DOE Patents (OSTI)

A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module.

Prueitt, Melvin L. (Los Alamos, NM)

1994-01-01T23:59:59.000Z

392

Program Management for Large Scale Engineering Programs  

E-Print Network (OSTI)

The goal of this whitepaper is to summarize the LAI research that applies to program management. The context of most of the research discussed in this whitepaper are large-scale engineering programs, particularly in the ...

Oehmen, Josef

393

Large-Scale Offshore Wind Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Large-Scale Offshore Wind Power in the United States EXECUTIVE SUMMARY September 2010 NOTICE This report was prepared as an account of work sponsored by an agency of the United...

394

Large-Scale Hydrogen Combustion Experiments  

Science Conference Proceedings (OSTI)

Large-scale combustion experiments show that deliberate ignition can limit hydrogen accumulation in reactor containments. The collected data allow accurate evaluation of containment pressures and temperatures associated with hydrogen combustion.

1988-10-18T23:59:59.000Z

395

Large-Scale Dynamics and Global Warming  

Science Conference Proceedings (OSTI)

Predictions of future climate change raise a variety of issues in large-scale atmospheric and oceanic dynamics. Several of these are reviewed in this essay, including the sensitivity of the circulation of the Atlantic Ocean to increasing ...

Isaac M. Held

1993-02-01T23:59:59.000Z

396

Flywheel Energy Storage technology workshop  

DOE Green Energy (OSTI)

Advances in recent years of high strength/lightweight materials, high performance magnetic bearings, and power electronics technology has spurred a renewed interest by the transportation, utility, and manufacturing industries in Flywheel Energy Storage (FES) technologies. FES offers several advantages over conventional electro-chemical energy storage, such as high specific energy and specific power, fast charging time, long service life, high turnaround efficiency (energy out/energy in), and no hazardous/toxic materials or chemicals are involved. Potential applications of FES units include power supplies for hybrid and electric vehicles, electric vehicle charging stations, space systems, and pulsed power devices. Also, FES units can be used for utility load leveling, uninterruptable power supplies to protect electronic equipment and electrical machinery, and for intermittent wind or photovoltaic energy sources. The purpose of this workshop is to provide a forum to highlight technologies that offer a high potential to increase the performance of FES systems and to discuss potential solutions to overcome present FES application barriers. This document consists of viewgraphs from 27 presentations.

O`Kain, D.; Howell, D. [comps.

1993-12-31T23:59:59.000Z

397

Introduction to a Large-Scale Biogas Plant in a Dairy Farm  

Science Conference Proceedings (OSTI)

This article describes a large-scale biogas plant in a dairy farm located in the Tongzhou District of Beijing. It is has a treatment capacity of 30t manure and 30t wastewater per day, a total of 60t/d with a residence time of 20 days. Input material ... Keywords: Large scale biogas plant, CHP, Biogas storage within digestor

Xiaolin Fan; Zifu Li; Tingting Wang; Fubin Yin; Xin Jin

2010-12-01T23:59:59.000Z

398

Integratedenergy storage system for optimal energy production.  

E-Print Network (OSTI)

?? This project served to analyze the effects that energy storage can have on energy production. The study was aimed at Johannes CHP bio fuel. (more)

Stevens, Kristoffer

2013-01-01T23:59:59.000Z

399

Redox Flow Batteries for Grid-scale Energy Storage - Energy ...  

Wind Energy; Partners (27) Visual Patent Search; Success Stories; News; Events; Startup America Industrial Technologies Energy Storage Redox ...

400

Power Challenges of Large Scale Research Infrastructures: the Square Kilometer Array and Solar Energy Integration; Towards a zero-carbon footprint next generation telescope  

E-Print Network (OSTI)

The Square Kilometer Array (SKA) will be the largest Global science project of the next two decades. It will encompass a sensor network dedicated to radioastronomy, covering two continents. It will be constructed in remote areas of South Africa and Australia, spreading over 3000Km, in high solar irradiance latitudes. Solar Power supply is therefore an option to power supply the SKA and contribute to a zero carbon footprint next generation telescope. Here we outline the major characteristics of the SKA and some innovation approaches on thermal solar energy Integration with SKA prototypes.

Barbosa, Domingos; Ruiz, Valeriano; Silva, Manuel; Verdes-Montenegro, Lourdes; Santander-Vela, Juande; Maia, Dalmiro; Antn, Sonia; van Ardenne, Arnold; Vetter, Matthias; Kramer, Michael; Keller, Reinhard; Pereira, Nuno; Silva, Vitor

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "large-scale energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Energy Harvesting Communications with Hybrid Energy Storage and Processing Cost  

E-Print Network (OSTI)

Energy Harvesting Communications with Hybrid Energy Storage and Processing Cost Omur Ozel Khurram with an energy harvesting transmitter with non-negligible processing circuitry power and a hybrid energy storage for energy storage while the battery has unlimited space. The transmitter stores the harvested energy either

Ulukus, Sennur

402

Center for Electrical Energy Storage Home  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrical Energy Storage DOE Logo Electrical Energy Storage DOE Logo Focus Areas 3D Interface Architectures Dynamically Responsive Interfaces Control of Interfacial Processes Theory Search Argonne ... Search Argonne Home >Center for Electrical Energy Storage > Home Directorate & Principal Investigators Management Council Executive Committee Research Staff External Advisory Committee News Science Highlights Publications & Presentations CEES-Authored and Co-Authored Cover Stories Peer-Reviewed Publications Presentations Patents Frontiers in Energy Research Awards Jobs at CEES Energy Frontier Research Centers at Argonne Center for Electrical Energy Storage - an Energy Frontier Research Center Above: An artistic rendition showing a metal-fluoride stabilized surface structure at a lithium cobalt oxide

403

High Efficiency Electrical Energy Storage Using Reversible Solid ...  

Science Conference Proceedings (OSTI)

Symposium, Energy Storage III: Materials, Systems and Applications Symposium. Presentation Title, High Efficiency Electrical Energy Storage Using Reversible...

404

Explorations of Novel Energy Conversion and Storage Systems  

E-Print Network (OSTI)

of Novel Energy Conversion and Storage Systems By Andrewof Novel Energy Conversion and Storage Systems by Andrew

Duffin, Andrew Mark

2010-01-01T23:59:59.000Z

405

Energy Storage Systems 2012 Peer Review Presentations - Day 2, Session 1 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 1 Energy Storage Systems 2012 Peer Review Presentations - Day 2, Session 1 The U.S. DOE Energy Storage Systems Program (ESS) conducted a peer review and update meeting in Washington, DC on Sept. 26 - 28, 2012. The 3-day conference included 9 sessions plus two poster sessions. Presentations from the first session of Day 2, chaired by Sandia's Tony Martino, are below. ESS 2012 Peer Review - CAES Geo Performance for Natural Gas and Salt Reservoirs and TMH Response of GSFs - Payton Gardner, SNL ESS 2012 Peer Review - Thermoelectrochemical Energy Storage - Nick Hudak, SNL ESS 2012 Peer Review - Component Research for Redox Flow Batteries - Tom Zawodzinski, ORNL ESS 2012 Peer Review - Nitrogen-Oxygen Battery for Large Scale Energy Storage - Frank Delnick, SNL ESS 2012 Peer Review - Sodium-based Battery Development - Dave Ingersoll,

406

Thermal Energy Storage for Cooling of Commercial Buildings  

E-Print Network (OSTI)

OF THIS DOCUME THERMAL FOR COOLING ENERGY STORAGE BUILDINGSi- LBL-25393 THERMAL FOR COOLING w ENERGY STORAGE BUILDINGSpeak power periods, thermal storage for cooling has become a

Akbari, H.

2010-01-01T23:59:59.000Z

407

FY06 DOE Energy Storage Program PEER Review  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 DOE Energy Storage Program PEER Review FY07 DOE Energy Storage Program PEER Review John D. Boyes Sandia National Laboratories Mission Mission Develop advanced electricity storage...

408

Capacitors for Power Grid Storage | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

presentation Capacitors for Power Grid Storage More Documents & Publications Battery SEAB Presentation Energy Storage & Power Electronics 2008 Peer Review - Energy Storage...

409

NREL: Learning - Energy Delivery and Storage Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Delivery and Storage Basics Helping secure a clean energy future for the nation and the world isn't just about reducing energy usage or producing clean energy. It is about...

410

On-demand computation of policy based routes for large-scale network simulation  

Science Conference Proceedings (OSTI)

Routing table storage demands pose a significant obstacle for large-scale network simulation. On-demand computation of routes can alleviate those problems for models that do not require representation of routing dynamics. However, policy based routes, ...

Michael Liljenstam; David M. Nicol

2004-12-01T23:59:59.000Z

411

Economics of compressed air energy storage employing thermal energy storage  

DOE Green Energy (OSTI)

The approach taken in this study is to adopt system design and capital cost estimates from three independent CAES studies (eight total designs) and, by supplying a common set of fuel/energy costs and economic assumptions in conjunction with a common methodology, to arrive at a series of levelized energy costs over the system's lifetime. In addition, some analyses are provided to gauge the sensitivity of these levelized energy costs to fuel and compression energy costs and to system capacity factors. The systems chosen for comparison are of four generic types: conventional CAES, hybrid CAES, adiabatic CAES, and an advanced-design gas turbine (GT). In conventional CAES systems the heat of compression generated during the storage operation is rejected to the environment, and later, during the energy-generation phase, turbine fuel must be burned to reheat the compressed air. In the hybrid systems some of the heat of compression is stored and reapplied later during the generation phase, thereby reducing turbine fuel requirements. The adiabatic systems store adequate thermal energy to eliminate the need for turbine fuel entirely. The gas turbine is included within the report for comparison purposes; it is an advanced-design turbine, one that is expected to be available by 1985.

Schulte, S.C.; Reilly, R.W.

1979-11-01T23:59:59.000Z

412

Economics of compressed air energy storage employing thermal energy storage  

SciTech Connect

The approach taken in this study is to adopt system design and capital cost estimates from three independent CAES studies (eight total designs) and, by supplying a common set of fuel/energy costs and economic assumptions in conjunction with a common methodology, to arrive at a series of levelized energy costs over the system's lifetime. In addition, some analyses are provided to gauge the sensitivity of these levelized energy costs to fuel and compression energy costs and to system capacity factors. The systems chosen for comparison are of four generic types: conventional CAES, hybrid CAES, adiabatic CAES, and an advanced-design gas turbine (GT). In conventional CAES systems the heat of compression generated during the storage operation is rejected to the environment, and later, during the energy-generation phase, turbine fuel must be burned to reheat the compressed air. In the hybrid systems some of the heat of compression is stored and reapplied later during the generation phase, thereby reducing turbine fuel requirements. The adiabatic systems store adequate thermal energy to eliminate the need for turbine fuel entirely. The gas turbine is included within the report for comparison purposes; it is an advanced-design turbine, one that is expected to be available by 1985.

Schulte, S.C.; Reilly, R.W.

1979-11-01T23:59:59.000Z

413

Energy Storage Systems 2007 Peer Review | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 Peer Review 7 Peer Review Energy Storage Systems 2007 Peer Review The U.S. DOE Energy Storage Systems Program (ESS) held an annual peer review on September 27, 2007 in San Francisco, CA. The agenda and ESS program overview presentation are below. Presentation categories Economics - Benefit Studies and Environment Benefit Studies Utility & Commercial Applications of Advanced Energy Storage Systems International Energy Storage Programs Power Electronics Innovations in Energy Storage Systems ESS 2007 Peer Review - Agenda.pdf ESS 2007 Peer Review - Program Overview - John Boyes, SNL.pdf More Documents & Publications Energy Storage Systems 2006 Peer Review Energy Storage & Power Electronics 2008 Peer Review - Agenda/Presentation List Energy Storage Systems 2007 Peer Review - International Energy Storage

414

Microsoft Word - Grid Energy Storage December 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grid Energy Storage Grid Energy Storage U.S. Department of Energy December 2013 Acknowledgements We would like to acknowledge the members of the core team dedicated to developing this report on grid energy storage: Imre Gyuk (OE), Mark Johnson (ARPA-E), John Vetrano (Office of Science), Kevin Lynn (EERE), William Parks (OE), Rachna Handa (OE), Landis Kannberg (PNNL), Sean Hearne & Karen Waldrip (SNL), Ralph Braccio (Booz Allen Hamilton). 2 Table of Contents Acknowledgements ....................................................................................................................................... 1 Executive Summary ....................................................................................................................................... 4

415

Duke Energy Notrees Wind Storage Demonstration Project  

Science Conference Proceedings (OSTI)

This EPRI technical update is an interim report summarizing the status of Duke Energys Notrees Wind Storage Demonstration Project, which involves integrating a 36-MW battery energy storage system (BESS) from Xtreme Power with the 152.6-MW Notrees Wind Farm. Xtreme Powers solid lead-acid battery represents one of an emerging number of energy storage devices endowed with the potential to serve multiple ...

2012-12-12T23:59:59.000Z

416

Strategic Intelligence Update: Energy Storage & Distributed Generation  

Science Conference Proceedings (OSTI)

Energy Storage and distributed generation technologies add value to a wide range of applications within the electric utility enterprise. Both energy storage and distributed generation systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage has the ability to improve the value of intermittent renewable resources and to provide multiple benefit streams through energy arbitrage and by ...

2012-05-24T23:59:59.000Z

417

Strategic Intelligence Update: Energy Storage & Distributed Generation  

Science Conference Proceedings (OSTI)

Energy Storage and distributed generation technologies add value to a wide range of applications within the electric utility enterprise. Both energy storage and distributed generation systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage has the ability to improve the value of intermittent renewable resources and to provide multiple benefit streams through energy arbitrage and by ...

2012-03-20T23:59:59.000Z

418

Strategic Intelligence Update: Energy Storage & Distributed Generation  

Science Conference Proceedings (OSTI)

Energy Storage and distributed generation technologies add value to a wide range of applications within the electric utility enterprise. Both energy storage and distributed generation systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage has the ability to improve the value of intermittent renewable resources and to provide multiple benefit streams through energy arbitrage and by ...

2012-07-31T23:59:59.000Z

419

The Large Scale Biosphere-Atmosphere Experiment in Amazonia (LBA)  

NLE Websites -- All DOE Office Websites (Extended Search)

LBA (Amazon) LBA (Amazon) The Large Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) Overview [LBA Logo] The Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) is an international research initiative conducted from 1995-2005 and led by Brazil. The LBA Project encompasses several scientific disciplines, or components. The LBA-ECO component focuses on the question: "How do tropical forest conversion, regrowth, and selective logging influence carbon storage, nutrient dynamics, trace gas fluxes, and the prospect for sustainable land use in Amazonia?" The Amazon rain forest or Amazonia, is the largest remaining expanse of tropical rain forest on Earth, harboring approximately one-third of all Earth's species. Although the rain forest's area is so large that it

420

Shekel Technologies | Open Energy Information  

Open Energy Info (EERE)

Turbine), which combines dish-mirror solar concentrators with gas turbines and energy storage for medium and large scale distributed electricity generation. References...

Note: This page contains sample records for the topic "large-scale energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Test report : Milspray Scorpion energy storage device.  

Science Conference Proceedings (OSTI)

The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratory (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors have supplied their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and a subset of these systems were selected for performance evaluation at the BCIL. The technologies tested were electro-chemical energy storage systems comprised of lead acid, lithium-ion or zinc-bromide. MILSPRAY Military Technologies has developed an energy storage system that utilizes lead acid batteries to save fuel on a military microgrid. This report contains the testing results and some limited assessment of the Milspray Scorpion Energy Storage Device.

Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.

2013-08-01T23:59:59.000Z

422

Enabling Utility-Scale Electrical Energy Storage through Underground Hydrogen-Natural Gas Co-Storage.  

E-Print Network (OSTI)

??Energy storage technology is needed for the storage of surplus baseload generation and the storage of intermittent wind power, because it can increase the flexibility (more)

Peng, Dan

2013-01-01T23:59:59.000Z

423

NETL: News Release - DOE Awards First Three Large-Scale Carbon...  

NLE Websites -- All DOE Office Websites (Extended Search)

9, 2007 DOE Awards First Three Large-Scale Carbon Sequestration Projects U.S. Projects Total 318 Million and Further President Bush's Initiatives to Advance Clean Energy...

424

November 13 ESTAP Webinar: Duke Energy's Energy Storage Projects |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 13 ESTAP Webinar: Duke Energy's Energy Storage Projects November 13 ESTAP Webinar: Duke Energy's Energy Storage Projects November 13 ESTAP Webinar: Duke Energy's Energy Storage Projects November 1, 2013 - 5:00pm Addthis On Wednesday, November 13 from 1 - 2 p.m. ET, Clean Energy States Alliance will host a webinar on Duke Energy's battery energy storage systems. This webinar will be introduced by Dr. Imre Gyuk, Energy Storage Program Manager in the Office of Electricity Delivery and Energy Reliability. The webinar will discuss Duke Energy's six deployed battery systems, which cover a wide range of battery chemistries, sizes, locations on the grid, and applications. The deployments include the Notrees Wind Storage project, which OE supports under the Recovery Act-funded Smart Grid Energy Storage Demonstration Program. The other projects are the Rankin

425

November 13 ESTAP Webinar: Duke Energy's Energy Storage Projects...  

NLE Websites -- All DOE Office Websites (Extended Search)

Gyuk, Energy Storage Program Manager in the Office of Electricity Delivery and Energy Reliability. The webinar will discuss Duke Energy's six deployed battery systems, which...

426

FE Carbon Capture and Storage News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 5, 2009 November 5, 2009 DOE-Sponsored Mississippi Project Hits 1-Million-Ton Milestone for Injected CO2 A large-scale carbon dioxide storage project in Mississippi has become the fifth worldwide to reach the important milestone of more than 1 million tons injected. October 21, 2009 DOE Partnership Completes Successful CO2 Injection Test in the Mount Simon Sandstone The Midwest Regional Carbon Sequestration Partnership, one of seven partnerships in the U.S. Department of Energy's Regional Carbon Sequestration Partnerships program, has successfully injected 1,000 metric tons of carbon dioxide (CO2) into the Mount Simon Sandstone, a deep saline formation that is widespread across much of the Midwest. October 13, 2009 Secretary Chu Announces Up To $55 Million in Funding to Develop Advanced

427

Distributed large-scale natural graph factorization  

Science Conference Proceedings (OSTI)

Natural graphs, such as social networks, email graphs, or instant messaging patterns, have become pervasive through the internet. These graphs are massive, often containing hundreds of millions of nodes and billions of edges. While some theoretical models ... Keywords: asynchronous algorithms, distributed optimization, graph algorithms, graph factorization, large-scale machine learning, matrix factorization

Amr Ahmed, Nino Shervashidze, Shravan Narayanamurthy, Vanja Josifovski, Alexander J. Smola

2013-05-01T23:59:59.000Z

428

Scaling Issues for Large-Scale Grids  

E-Print Network (OSTI)

· ESNet Can Play a Very Important Role in the Science Grid ? Security Aspects of Grids · ESNet Can Provide will be important and very useful for managing large-scale virtual org. structures #12;·ESNet Can Play a Very Important Role in the Science Grid · ESNet can provide a rooted and managed namespace, and a place to home

429

Storage Water Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Water Heaters Storage Water Heaters Storage Water Heaters June 15, 2012 - 6:00pm Addthis Consider energy efficiency when selecting a conventional storage water heater to avoid paying more over its lifetime. | Photo courtesy of ©iStockphoto/JulNichols. Consider energy efficiency when selecting a conventional storage water heater to avoid paying more over its lifetime. | Photo courtesy of ©iStockphoto/JulNichols. Conventional storage water heaters remain the most popular type of water heating system for the home. Here you'll find basic information about how storage water heaters work; what criteria to use when selecting the right model; and some installation, maintenance, and safety tips. How They Work A single-family storage water heater offers a ready reservoir -- from 20 to

430

Battery energy storage market feasibility study  

DOE Green Energy (OSTI)

Under the sponsorship of the Department of Energy`s Office of Utility Technologies, the Energy Storage Systems Analysis and Development Department at Sandia National Laboratories (SNL) contracted Frost and Sullivan to conduct a market feasibility study of energy storage systems. The study was designed specifically to quantify the energy storage market for utility applications. This study was based on the SNL Opportunities Analysis performed earlier. Many of the groups surveyed, which included electricity providers, battery energy storage vendors, regulators, consultants, and technology advocates, viewed energy storage as an important enabling technology to enable increased use of renewable energy and as a means to solve power quality and asset utilization issues. There are two versions of the document available, an expanded version (approximately 200 pages, SAND97-1275/2) and a short version (approximately 25 pages, SAND97-1275/1).

Kraft, S. [Frost and Sullivan, Mountain View, CA (United States); Akhil, A. [Sandia National Labs., Albuquerque, NM (United States). Energy Storage Systems Analysis and Development Dept.

1997-07-01T23:59:59.000Z

431

Thermal energy storage for cogeneration applications  

DOE Green Energy (OSTI)

Cogeneration is playing an increasingly important role in providing energy efficient power generation and thermal energy for space heating and industrial process heat applications. However, the range of applications for cogeneration could be further increased if the generation of electricity could be coupled from the generation of process heat. Thermal energy storage (TES) can decouple power generation from the production of process heat, allowing the production of dispatchable power while fully utilizing the thermal energy available from the prime mover. The Pacific Northwest Laboratory (PNL) leads the US Department of Energy`s Thermal Energy Storage Program. The program focuses on developing TES for daily cycling (diurnal storage), annual cycling (seasonal storage), and utility applications (utility thermal energy storage (UTES)). Several of these technologies can be used in a cogeneration facility. This paper discusses TES concepts relevant to cogeneration and describes the current status of these TES systems.

Drost, M.K.; Antoniak, Z.I.

1992-04-01T23:59:59.000Z

432

New Materials for Energy Storage and Electrocatalysis  

Science Conference Proceedings (OSTI)

Enhanced Electrical Capacitance and Energy Storage in Defect Induced ... Silicon-based Electrodes for Li-ion Batteries: Spectroscopic Analysis for Improved...

433

Storage Water Heaters | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

6:00pm Addthis Consider energy efficiency when selecting a conventional storage water heater to avoid paying more over its lifetime. | Photo courtesy of iStockphoto...

434

Webinar Presentation: Energy Storage Solutions for Microgrids...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Aliance (CESA) hosted a webinar with Connecticut DEEP in conjuction with Sandia National Lab and DOE on State and Federal Energy Storage Technology Partnership (ESTAP). The four...

435

NREL: Energy Storage - About the Project  

NLE Websites -- All DOE Office Websites (Extended Search)

more secure transportation future. One important aim of the program is to advance energy storage (ES) technologies for fuel cell, electric, and hybrid electric vehicles...

436

NREL: Energy Storage - Research and Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Research and Development Photo of thermal imaging of a battery. Advancing energy storage devices is a crucial pathway in the development of fuel cell, hybrid electric, and electric...

437

Grid Strategy 2011: Energy Storage Monetization  

Science Conference Proceedings (OSTI)

Energy storage is the only grid asset with the ability to act both as a load and a generation source by first storing energy for a limited duration and then releasing it. It is a flexible grid asset capable of providing multiple grid benefits. However, aside from large pumped hydro storage plants, very little energy storage has been deployed on the grid. Due to the high cost of energy storage, aggregation of multiple benefits is generally required to justify the investment. Due to the limited duration of...

2011-10-14T23:59:59.000Z

438

AQUIFER THERMAL ENERGY STORAGE-A SURVEY  

E-Print Network (OSTI)

energy storage for cogeneration and solar systems, inTwin City district cogeneration system, in Proceedings,proposed system, based on cogeneration of power and heat by

Tsang, Chin Fu

2012-01-01T23:59:59.000Z

439

Energy Storage: Materials, Systems and Applications  

Science Conference Proceedings (OSTI)

Mar 29, 2011 ... The transition from the fossil economy to a greener, sustainable economy cannot, however, be realized without efficient energy storage systems...

440

Energy Storage Research & Development -- 2004 Annual Progress...  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY STORAGE RESEARCH & DEVELOPMENT FreedomCAR and Vehicle Technologies Program Acknowledgement We would like to thank all our program participants for their contributions to the...

Note: This page contains sample records for the topic "large-scale energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Energy Conversion, Storage, and Transport Programs and ...  

Science Conference Proceedings (OSTI)

... The Society of Automotive Engineers International (SAE) has proposed a ... hydrogen storage material satisfies the Department of Energy (DoE) goal ...

2010-05-24T23:59:59.000Z

442

Dealloyed Nanoporous Metals for Energy Storage  

Science Conference Proceedings (OSTI)

Dealloyed Nanoporous Metals for Energy Storage Design of Light Weight Structure for Wind Turbine Tower by Using Nano-Materials Development of Highly...

443

Charting the Future of Energy Storage | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Charting the Future of Energy Storage Charting the Future of Energy Storage August 7, 2013 - 2:53pm Addthis Watch the video above to learn how Urban Electric Power is creating a...

444

Thermal energy storage for cogeneration applications  

SciTech Connect

Cogeneration is playing an increasingly important role in providing energy efficient power generation and thermal energy for space heating and industrial process heat applications. However, the range of applications for cogeneration could be further increased if the generation of electricity could be coupled from the generation of process heat. Thermal energy storage (TES) can decouple power generation from the production of process heat, allowing the production of dispatchable power while fully utilizing the thermal energy available from the prime mover. The Pacific Northwest Laboratory (PNL) leads the US Department of Energy's Thermal Energy Storage Program. The program focuses on developing TES for daily cycling (diurnal storage), annual cycling (seasonal storage), and utility applications (utility thermal energy storage (UTES)). Several of these technologies can be used in a cogeneration facility. This paper discusses TES concepts relevant to cogeneration and describes the current status of these TES systems.

Drost, M.K.; Antoniak, Z.I.

1992-04-01T23:59:59.000Z

445

Thermal energy storage for cogeneration applications  

DOE Green Energy (OSTI)

Cogeneration is playing an increasingly important role in providing energy efficient power generation and thermal energy for space heating and industrial process heat applications. However, the range of applications for cogeneration could be further increased if the generation of electricity could be coupled from the generation of process heat. Thermal energy storage (TES) can decouple power generation from the production of process heat, allowing the production of dispatchable power while fully utilizing the thermal energy available from the prime mover. The Pacific Northwest Laboratory (PNL) leads the US Department of Energy's Thermal Energy Storage Program. The program focuses on developing TES for daily cycling (diurnal storage), annual cycling (seasonal storage), and utility applications (utility thermal energy storage (UTES)). Several of these technologies can be used in a cogeneration facility. This paper discusses TES concepts relevant to cogeneration and describes the current status of these TES systems.

Drost, M.K.; Antoniak, Z.I.

1992-04-01T23:59:59.000Z

446

Energy Storage Technology and Application Cost and Performance Data Base-2012: Bulk Energy Storage Systems  

Science Conference Proceedings (OSTI)

This report updates EPRI reports 1020071, Energy Storage Technology and Application Cost and Performance Data Base-2010, and 1021932, Energy Storage Technology and Application Cost and Performance Data Base-2011, which presents 2011 updated data on the cost, performance, and capabilities of energy storage systems only for bulk energy storage applications in a Excel workbook database. The distributed options detailed in the index can be found in the 2011 product, 1021932. The goal of this research was to ...

2012-02-27T23:59:59.000Z

447

Large-Scale Data Challenges in Future Power Grids  

Science Conference Proceedings (OSTI)

This paper describes technical challenges in supporting large-scale real-time data analysis for future power grid systems and discusses various design options to address these challenges. Even though the existing U.S. power grid has served the nation remarkably well over the last 120 years, big changes are in the horizon. The widespread deployment of renewable generation, smart grid controls, energy storage, plug-in hybrids, and new conducting materials will require fundamental changes in the operational concepts and principal components. The whole system becomes highly dynamic and needs constant adjustments based on real time data. Even though millions of sensors such as phase measurement units (PMUs) and smart meters are being widely deployed, a data layer that can support this amount of data in real time is needed. Unlike the data fabric in cloud services, the data layer for smart grids must address some unique challenges. This layer must be scalable to support millions of sensors and a large number of diverse applications and still provide real time guarantees. Moreover, the system needs to be highly reliable and highly secure because the power grid is a critical piece of infrastructure. No existing systems can satisfy all the requirements at the same time. We examine various design options. In particular, we explore the special characteristics of power grid data to meet both scalability and quality of service requirements. Our initial prototype can improve performance by orders of magnitude over existing general-purpose systems. The prototype was demonstrated with several use cases from PNNLs FPGI and was shown to be able to integrate huge amount of data from a large number of sensors and a diverse set of applications.

Yin, Jian; Sharma, Poorva; Gorton, Ian; Akyol, Bora A.

2013-03-25T23:59:59.000Z

448

Energy Storage Valuation Methodology and Supporting Tool  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ben Kaun Ben Kaun Sr. Project Engineer Electricity Advisory Committee: Storage Valuation Panel 6-6-13 Energy Storage Valuation Methodology and Supporting Tool 2 © 2013 Electric Power Research Institute, Inc. All rights reserved. Electric Power Research Institute (EPRI) * Independent, non-profit, collaborative research institute, with full spectrum electric industry coverage * EPRI members represent ~90% of energy delivered in the U.S. * Energy Storage Research Program has over 30 funding utility members 3 © 2013 Electric Power Research Institute, Inc. All rights reserved. Storage Valuation Can be Confusing! Renewable Integration Frequency Regulation Spinning Reserve Resource Adequacy Asset Utilization Voltage Support Reduced GHG? Lower Production Costs

449

NREL: Vehicles and Fuels Research - Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Research Search More Search Options Site Map NREL's Energy Storage Project is leading the charge on battery thermal management, modeling, and systems solutions to enhance the performance of fuel cell, hybrid electric, and electric vehicles (FCVs, HEVs, and EVs) for a cleaner, more secure transportation future. NREL's experts work closely with the U.S. Department of Energy (DOE), industry, and automotive manufacturers to improve energy storage devices, such as battery modules and ultracapacitors, by enhancing their thermal performance and life-cycle cost. Activities also involve modeling and simulation to evaluate technical targets and energy storage parameters, and investigating combinations of energy storage systems to increase vehicle efficiency. Much of this research is conducted at our state-of-the-art energy storage

450

Energy Harvesting Broadcast Channel with Inefficient Energy Storage  

E-Print Network (OSTI)

Energy Harvesting Broadcast Channel with Inefficient Energy Storage Kaya Tutuncuoglu Aylin Yener with an energy harvesting transmitter equipped with an inefficient energy storage device. For this setting by the energy harvesting process. The convexity of the capacity region for the energy harvesting broadcast

Yener, Aylin

451

ESS 2012 Peer Review - State & Federal Energy Storage Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

leading U.S. public clean energy programs. ESTAP* Overview Purpose: Create new DOE-state energy storage partnerships and advance energy storage, with technical assistance from...

452

Energy Storage Integration Council (ESIC): 2013 Update  

Science Conference Proceedings (OSTI)

Recent electric energy storage deployments have encountered several challenges, including problems stemming from poor system integration, grid integration difficulties, insufficient factory testing and qualification, safety and reliability issues, and inadequate common test protocols. The utility industry needs clear requirements developed so vendors can manufacture cost-effective energy storage products to support the generation, transmission, and distribution system. To address these and related ...

2013-12-26T23:59:59.000Z

453

MTC Envelope: Defining the Capability of Large Scale Computers...  

NLE Websites -- All DOE Office Websites (Extended Search)

MTC Envelope: Defining the Capability of Large Scale Computers in the Context of Parallel Scripting Applications Title MTC Envelope: Defining the Capability of Large Scale...

454

Mechanical energy storage in carbon nanotube springs  

E-Print Network (OSTI)

Energy storage in mechanical springs made of carbon nanotubes is a promising new technology. Springs made of dense, ordered arrays of carbon nanotubes have the potential to surpass both the energy density of electrochemical ...

Hill, Frances Ann

2011-01-01T23:59:59.000Z

455

Batteries and Energy Storage | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

The Joint Center for Energy Storage Research (JCESR) is a major research The Joint Center for Energy Storage Research (JCESR) is a major research partnership that integrates government, academic and industrial researchers from many disciplines to overcome critical scientific and technical barriers and create new breakthrough energy storage technology. Batteries and Energy Storage Argonne's all- encompassing battery research program spans the continuum from basic materials research and diagnostics to scale-up processes and ultimate deployment by industry. At Argonne, our multidisciplinary team of world-renowned researchers are working in overdrive to develop advanced energy storage technologies to aid the growth of the U.S. battery manufacturing industry, transition the U.S. automotive fleet to plug-in hybrid and electric vehicles, and enable

456

The Energy Harvesting Multiple Access Channel with Energy Storage Losses  

E-Print Network (OSTI)

The Energy Harvesting Multiple Access Channel with Energy Storage Losses Kaya Tutuncuoglu and Aylin considers a Gaussian multiple access channel with two energy harvesting transmitters with lossy energy storage. The power allocation policy maximizing the average weighted sum rate given the energy harvesting

Yener, Aylin

457

New York's Energy Storage System Gets Recharged | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

York's Energy Storage System Gets Recharged York's Energy Storage System Gets Recharged New York's Energy Storage System Gets Recharged August 2, 2010 - 1:18pm Addthis Matt Rogers, Senior Advisor to Secretary Chu, explain why grid frequency regulation matters Jonathan Silver Jonathan Silver Executive Director of the Loan Programs Office What does this mean for me? AES Storage in New York got a $17.1M conditional loan guarantee to provide a more stable transmission grid. When thinking of clean technologies, energy storage might not be the first thing to come to mind, but with a $17.1 million conditional commitment for a loan guarantee from the Department of Energy AES Energy Storage will develop a battery-based energy storage system to provide a more stable and efficient electrical grid for New York State's high-voltage transmission

458

Energy Storage Program Planning Document | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Storage Program Planning Document Energy Storage Program Planning Document Energy Storage Program Planning Document Energy storage systems have the potential to extend and optimize the operating capabilities of the grid, since power can be stored and used at a later time. This allows for flexibility in generation and distribution, improving the economic efficiency and utilization of the entire system while making the grid more reliable and robust. Additionally, alternatives to traditional power generation, including variable wind and solar energy technologies, may require back-up power storage. Thus, modernizing the power grid may require a substantial volume of electrical energy storage (EES). Energy Storage Program Planning Document More Documents & Publications CX-008689: Categorical Exclusion Determination

459

Energy Storage Program Planning Document | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Storage Program Planning Document Energy Storage Program Planning Document Energy Storage Program Planning Document Energy storage systems have the potential to extend and optimize the operating capabilities of the grid, since power can be stored and used at a later time. This allows for flexibility in generation and distribution, improving the economic efficiency and utilization of the entire system while making the grid more reliable and robust. Additionally, alternatives to traditional power generation, including variable wind and solar energy technologies, may require back-up power storage. Thus, modernizing the power grid may require a substantial volume of electrical energy storage (EES). Energy Storage Program Planning Document More Documents & Publications CX-010738: Categorical Exclusion Determination

460

Battery energy storage and superconducting magnetic energy storage for utility applications: A qualitative analysis  

DOE Green Energy (OSTI)

This report was prepared at the request of the US Department of Energy`s Office of Energy Management for an objective comparison of the merits of battery energy storage with superconducting magnetic energy storage technology for utility applications. Conclusions are drawn regarding the best match of each technology with these utility application requirements. Staff from the Utility Battery Storage Systems Program and the superconductivity Programs at Sandia National contributed to this effort.

Akhil, A.A.; Butler, P.; Bickel, T.C.

1993-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "large-scale energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Underground Energy Storage Program. 1984 annual summary  

DOE Green Energy (OSTI)

Underground Energy Storage (UES) Program activities during the period from April 1984 through March 1985 are briefly described. Primary activities in seasonal thermal energy storage (STES) involved field testing of high-temperature (>100/sup 0/C (212/sup 0/F)) aquifer thermal energy storage (ATES) at St. Paul, laboratory studies of geochemical issues associated with high-temperatures ATES, monitoring of chill ATES facilities in Tuscaloosa, and STES linked with solar energy collection. The scope of international activities in STES is briefly discussed.

Kannberg, L.D.

1985-06-01T23:59:59.000Z

462

Computing and Data Infrastructure for Large-Scale Science NERSC and the DOE Science Grid  

E-Print Network (OSTI)

-bandwidth connectivity end to end (high-speed links from site systems to ESnet gateways) ­ Storage resources: four ­ Collaboration with ESnet for security and directory services #12;Initial Science Grid Configuration NERSC Supercomputing & Large-Scale Storage PNNL LBNL ANL ESnet Europe DOE Science Grid ORNL ESNet MDS CA Grid Managed

463

FEM Aided Prestress Design for Large-scale Ultra-low-temperature LNG Tank  

Science Conference Proceedings (OSTI)

A large-scale low-temperature aboveground LNG storage tank design is described in detail, especially the process of prestressing tendons configuration using finite element method (FEM). Considering the LNG storage tanks working conditions and corresponding ... Keywords: FEM, LNG, optimize design, prestressing design

Fang-yuan Li; Jin-bao Han

2010-06-01T23:59:59.000Z

464

Design of large-scale agricultural wireless sensor networks: email from the vineyard  

Science Conference Proceedings (OSTI)

We describe the design and implementation of a large-scale Wireless Sensor Network (WSN) for agriculture monitoring. As a part of validation we have deployed a prototype of 64 sensors to monitor a commercial vineyard. The system provides ... Keywords: WSN testbed, agricultural WSNs, agriculture monitoring, commercial vineyards, data collection, data storage, geographical coverage, large-scale WSNs, spatial resolution, vineyeard monitoring, wireless networks, wireless sensor networks

Christine Jardak; Krisakorn Rerkrai; Aleksandar Kovacevic; Janne Riihijarvi; Petri Mahonen

2010-08-01T23:59:59.000Z

465

Energy Storage Systems 2012 Peer Review Presentations - Day 1...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Storage Systems 2012 Peer Review Presentations - Day 1, Session 2 Energy Storage Systems 2012 Peer Review Presentations - Day 1, Session 2 The U.S. DOE Energy Storage...

466

ENERGY STORAGE IN AQUIFERS - - A SURVEY OF RECENT THEORETICAL STUDIES  

E-Print Network (OSTI)

underground thermal energy storage. In Proc. Th~rmal1980), 'I'hermal energy storage? in a confined aquifer--al modeling of thermal energy storage in aquifers. In ~~-

Tsang, Chin Fu

2013-01-01T23:59:59.000Z

467

Fact Sheet: Grid-Scale Flywheel Energy Storage Plant | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Flywheel Energy Storage Plant Fact Sheet: Grid-Scale Flywheel Energy Storage Plant Beacon Power will design, build, and operate a utility-scale 20 MW flywheel energy storage plant...

468

EXPERIMENTAL AND THEORETICAL STUDIES OF THERMAL ENERGY STORAGE IN AQUIFERS  

E-Print Network (OSTI)

In Proceed- ings of Thermal Energy Storage in Aquifers Work-Mathematical Modeling of Thermal Energy storage in Aquifers.In Proceed- ings of Thermal Energy Storage in Aquifers Work-

Tsang, Chin Fu

2011-01-01T23:59:59.000Z

469

Hungary-Employment Impacts of a Large-Scale Deep Building Retrofit  

Open Energy Info (EERE)

Hungary-Employment Impacts of a Large-Scale Deep Building Retrofit Hungary-Employment Impacts of a Large-Scale Deep Building Retrofit Programme Jump to: navigation, search Name Hungary-Employment Impacts of a Large-Scale Deep Building Retrofit Programme Agency/Company /Organization European Climate Foundation Sector Energy Focus Area Energy Efficiency, Buildings, - Building Energy Efficiency Topics Co-benefits assessment, Background analysis Resource Type Publications Website http://3csep.ceu.hu/sites/defa Country Hungary UN Region Eastern Europe References Hungary-Employment Impacts of a Large-Scale Deep Building Retrofit Programme[1] Hungary-Employment Impacts of a Large-Scale Deep Building Retrofit Programme Screenshot "The goal of the present research was to gauge the net employment impacts of a largescale deep building energy-efficiency renovation programme in

470

A SCIENCE-BASED CASE FOR LARGE-SCALE SIMULATION  

E-Print Network (OSTI)

& Engineering Materials for nuclear energy system, fission reactors, nuclear fuels, energy policy solidification; microgravity processing. Xudong Wang Assistant Professor, Materials Sci & Eng Nanomaterials and photoelectrochemical devices; nanomaterials for energy storage; nanoelectronics; nano-biomaterials. Jay Samuel Senior

Gropp, Bill

471

Energy Department Releases Grid Energy Storage Report | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Releases Grid Energy Storage Report Releases Grid Energy Storage Report Energy Department Releases Grid Energy Storage Report December 12, 2013 - 9:48am Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - As part of the Obama Administration's commitment to a cleaner, more secure energy future, Energy Secretary Ernest Moniz today released the Energy Department's Grid Energy Storage report to the members of the Senate Energy and Natural Resources Committee. The report was commissioned at the request of Senator Ron Wyden, Committee Chairman. The report identifies the benefits of grid energy storage, the challenges that must be addressed to enable broader use, and the efforts of the Energy Department, in conjunction with industry and other government organizations, to meet those challenges.

472

Energy Department Releases Grid Energy Storage Report | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Releases Grid Energy Storage Report Releases Grid Energy Storage Report Energy Department Releases Grid Energy Storage Report December 12, 2013 - 9:48am Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - As part of the Obama Administration's commitment to a cleaner, more secure energy future, Energy Secretary Ernest Moniz today released the Energy Department's Grid Energy Storage report to the members of the Senate Energy and Natural Resources Committee. The report was commissioned at the request of Senator Ron Wyden, Committee Chairman. The report identifies the benefits of grid energy storage, the challenges that must be addressed to enable broader use, and the efforts of the Energy Department, in conjunction with industry and other government organizations, to meet those challenges.

473

Solar applications of thermal energy storage. Final report  

DOE Green Energy (OSTI)

A technology assessment is presented on solar energy systems which use thermal energy storage. The study includes characterization of the current state-of-the-art of thermal energy storage, an assessment of the energy storage needs of solar energy systems, and the synthesis of this information into preliminary design criteria which would form the basis for detailed designs of thermal energy storage. (MHR)

Lee, C.; Taylor, L.; DeVries, J.; Heibein, S.

1979-01-01T23:59:59.000Z

474

Fact Sheet: Energy Storage Database (October 2012)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sandia National Laboratories Sandia National Laboratories List of projects, including technology details and status Interactive map of search result project locations Multiple sort options (e.g., state, type, size) to ease navigation Energy storage projects and policies across the United States are rapidly evolving and expanding. A publicly accessible central archive is increasingly essential to document these developments; to facilitate future projects; and to ease cross-sector, national, and international coordination. The U.S. Department of Energy (DOE) and Sandia National Laboratories contracted Strategen Consulting LLC to develop a database of energy storage projects and policies. When completed, the database will present current information about energy storage projects worldwide and U.S. energy storage policy in an easy-to-use and intuitive format. The database will be research-grade, unbiased,

475

Integrated Building Energy Systems Design Considering Storage  

E-Print Network (OSTI)

the fact that the off-peak power plant might be coal and substitute "clean" on- peak natural gas plants@lbl.gov Keywords Combined heat and power, CO2 emissions, demand response, electric storage, energy efficiency, heat storage, micro-generation systems, photovoltaic, software, solar thermal systems Abstract The addition

476

FACTS With Energy Storage: Conceptual Design Study  

Science Conference Proceedings (OSTI)

Inverter-type FACTS controllers are able to independently exchange controllable real and reactive power with the ac power system when coupled to an energy storage device. Combining storage with FACTS may result in more flexible application of the technology and a better cost-benefits ratio.

1999-12-07T23:59:59.000Z

477

Energy Storage Systems 2012 Peer Review Presentations - Poster...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home Energy Storage Systems 2012 Peer Review Presentations - Poster Session 1 (Day 1): National Lab Projects Energy Storage Systems 2012 Peer Review Presentations - Poster...

478

Energy Storage Solutions Industrial Symposium | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Solutions Industrial Symposium Sep 04 2013 09:00 AM - 05:30 PM Energy Storage Solutions Industrial Symposium - Wednesday September 4, 2013 CONTACT : Email: Phone:...

479

Energy Storage Systems 2007 Peer Review - Economics Presentations...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Economics Presentations Energy Storage Systems 2007 Peer Review - Economics Presentations The U.S. DOE Energy Storage Systems Program (ESS) held an annual peer review on September...

480

Fact Sheet: Energy Storage Testing and Validation (October 2012...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Testing and Validation (October 2012) Fact Sheet: Energy Storage Testing and Validation (October 2012) At Sandia National Laboratories, the Energy Storage Analysis Laboratory, in...

Note: This page contains sample records for the topic "large-scale energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

ARPA-E Announces $43 Million for Transformational Energy Storage...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

43 Million for Transformational Energy Storage Projects to Advance Electric Vehicle and Grid Technologies ARPA-E Announces 43 Million for Transformational Energy Storage Projects...

482

300kW Energy Storage Demonstration Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

kW Energy Storage Demonstration Project Technical Overview Presented at: Annual Doe Peer Review Meeting 2008 DOE Energy Storage & Power Electronics Research Programs By Ib I....

483

Energy Storage Systems 2007 Peer Review - Power Electronics Presentati...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Electronics Presentations Energy Storage Systems 2007 Peer Review - Power Electronics Presentations The U.S. DOE Energy Storage Systems Program (ESS) held an annual peer...

484

Fact Sheet: Isothermal Compressed Air Energy Storage (October...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Isothermal Compressed Air Energy Storage (October 2012) Fact Sheet: Isothermal Compressed Air Energy Storage (October 2012) SustainX will demonstrate an isothermal compressed air...

485

Energy Storage Systems 2007 Peer Review - Utility & Commercial...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility & Commercial Applications Presentations Energy Storage Systems 2007 Peer Review - Utility & Commercial Applications Presentations The U.S. DOE Energy Storage Systems...

486

Energy Storage & Power Electronics 2008 Peer Review - Agenda...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AgendaPresentation List Energy Storage & Power Electronics 2008 Peer Review - AgendaPresentation List The 2008 Peer Review Meeting for the DOE Energy Storage and Power...

487

FY06 DOE Energy Storage Program PEER Review  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 DOE Energy Storage and Power Electronics Program (ESPE) PEER Review FY08 DOE Energy Storage and Power Electronics Program (ESPE) PEER Review John D. Boyes Sandia National...

488

2012 Transmission and Energy Storage Peer Review Presentations...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transmission and Energy Storage Peer Review Presentations Available 2012 Transmission and Energy Storage Peer Review Presentations Available December 3, 2012 - 1:26pm Addthis...

489

Energy Storage Systems 2006 Peer Review - Day 2 morning presentations...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 Peer Review - Day 2 morning presentations Energy Storage Systems 2006 Peer Review - Day 2 morning presentations The 2006 Peer Review Meeting for the DOE Energy Storage Systems...

490

Model Predictive Control of Thermal Energy Storage in Building...  

NLE Websites -- All DOE Office Websites (Extended Search)

Model Predictive Control of Thermal Energy Storage in Building Cooling Systems Title Model Predictive Control of Thermal Energy Storage in Building Cooling Systems Publication Type...

491

SunShot Initiative: Innovative Phase Change Thermal Energy Storage...  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovative Phase Change Thermal Energy Storage Solution for Baseload Power to someone by E-mail Share SunShot Initiative: Innovative Phase Change Thermal Energy Storage Solution...

492

Poster: Thermal Energy Storage for Electricity Peak-demand Mitigation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Poster: Thermal Energy Storage for Electricity Peak-demand Mitigation: A Solution in Developing and Developed World Alike Title Poster: Thermal Energy Storage for Electricity...

493

Transmission and Energy Storage Peer Review Presentations Available...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transmission and Energy Storage Peer Review Presentations Available Transmission and Energy Storage Peer Review Presentations Available December 3, 2012 - 1:26pm Addthis...

494

SunShot Initiative: Innovative Thermal Energy Storage for Baseload...  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovative Thermal Energy Storage for Baseload Solar Power Generation to someone by E-mail Share SunShot Initiative: Innovative Thermal Energy Storage for Baseload Solar Power...

495

Energy Storage Valuation Tool (ESVT) Version 3.1  

Science Conference Proceedings (OSTI)

The Energy Storage Valuation Tool (ESVT) Version 3.1 is an energy storage cost-benefit analysis simulation tool, based on ...

2013-04-01T23:59:59.000Z

496

ESS 2012 Peer Review - Energy Storage Program Overview - Ross...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PUC Regulatory Guidebook for Energy Storage National Needs and Successes Providing energy storage information and analysis to public, utilities, partners and decision makers...

497

Underground Storage Tank Regulations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground Storage Tank Regulations Underground Storage Tank Regulations Underground Storage Tank Regulations < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Mississippi Program Type Environmental Regulations Siting and Permitting Provider Department of Environmental Quality The Underground Storage Tank Regulations is relevant to all energy projects

498

University of Arizona Compressed Air Energy Storage  

SciTech Connect

Boiled down to its essentials, the grants purpose was to develop and demonstrate the viability of compressed air energy storage (CAES) for use in renewable energy development. While everyone agrees that energy storage is the key component to enable widespread adoption of renewable energy sources, the development of a viable scalable technology has been missing. The Department of Energy has focused on expanded battery research and improved forecasting, and the utilities have deployed renewable energy resources only to the extent of satisfying Renewable Portfolio Standards. The lack of dispatchability of solar and wind-based electricity generation has drastically increased the cost of operation with these components. It is now clear that energy storage coupled with accurate solar and wind forecasting make up the only combination that can succeed in dispatchable renewable energy resources. Conventional batteries scale linearly in size, so the price becomes a barrier for large systems. Flow batteries scale sub-linearly and promise to be useful if their performance can be shown to provide sufficient support for solar and wind-base electricity generation resources. Compressed air energy storage provides the most desirable answer in terms of scalability and performance in all areas except efficiency. With the support of the DOE, Tucson Electric Power and Science Foundation Arizona, the Arizona Research Institute for Solar Energy (AzRISE) at the University of Arizona has had the opportunity to investigate CAES as a potential energy storage resource.

Simmons, Joseph; Muralidharan, Krishna

2012-12-31T23:59:59.000Z