Powered by Deep Web Technologies
Note: This page contains sample records for the topic "large-scale energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Large Scale Energy Storage: From Nanomaterials to Large Systems  

E-Print Network [OSTI]

Large Scale Energy Storage: From Nanomaterials to Large Systems Wednesday October 26, 2011, Babbio energy storage devices. Specifically, this talk discusses 1) the challenges for grid scale of emergent technologies with ultralow costs on new energy storage materials and mechanisms. Dr. Jun Liu

Fisher, Frank

2

Membraneless hydrogen bromine laminar flow battery for large-scale energy storage  

E-Print Network [OSTI]

Electrochemical energy storage systems have been considered for a range of potential large-scale energy storage applications. These applications vary widely, both in the order of magnitude of energy storage that is required ...

Braff, William Allan

2014-01-01T23:59:59.000Z

3

An Energy-Efficient Framework for Large-Scale Parallel Storage Systems  

E-Print Network [OSTI]

An Energy-Efficient Framework for Large-Scale Parallel Storage Systems Ziliang Zong, Matt Briggs-scale and energy-efficient parallel storage systems. To validate the efficiency of the proposed framework, a buffer that this new framework can significantly improves the energy efficiency of large-scale parallel storage systems

Qin, Xiao

4

Room-temperature stationary sodium-ion batteries for large-scale electric energy storage  

E-Print Network [OSTI]

energy and utility applications, such as pump hydro, compressed air, y-wheel and electrochemicalRoom-temperature stationary sodium-ion batteries for large-scale electric energy storage Huilin Pan attention particularly in large- scale electric energy storage applications for renewable energy and smart

Wang, Wei Hua

5

Large Scale Computing and Storage Requirements for High Energy Physics  

SciTech Connect (OSTI)

The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility for the Department of Energy's Office of Science, providing high-performance computing (HPC) resources to more than 3,000 researchers working on about 400 projects. NERSC provides large-scale computing resources and, crucially, the support and expertise needed for scientists to make effective use of them. In November 2009, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR), and DOE's Office of High Energy Physics (HEP) held a workshop to characterize the HPC resources needed at NERSC to support HEP research through the next three to five years. The effort is part of NERSC's legacy of anticipating users needs and deploying resources to meet those demands. The workshop revealed several key points, in addition to achieving its goal of collecting and characterizing computing requirements. The chief findings: (1) Science teams need access to a significant increase in computational resources to meet their research goals; (2) Research teams need to be able to read, write, transfer, store online, archive, analyze, and share huge volumes of data; (3) Science teams need guidance and support to implement their codes on future architectures; and (4) Projects need predictable, rapid turnaround of their computational jobs to meet mission-critical time constraints. This report expands upon these key points and includes others. It also presents a number of case studies as representative of the research conducted within HEP. Workshop participants were asked to codify their requirements in this case study format, summarizing their science goals, methods of solution, current and three-to-five year computing requirements, and software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, multi-core environment that is expected to dominate HPC architectures over the next few years. The report includes a section that describes efforts already underway or planned at NERSC that address requirements collected at the workshop. NERSC has many initiatives in progress that address key workshop findings and are aligned with NERSC's strategic plans.

Gerber, Richard A.; Wasserman, Harvey

2010-11-24T23:59:59.000Z

6

A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage  

E-Print Network [OSTI]

A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage Yuan Yang,a Guangyuan Zhengb and Yi Cui*ac Large-scale energy storage represents a key challenge for renewable energy develop a new lithium/ polysulfide (Li/PS) semi-liquid battery for large-scale energy storage

Cui, Yi

7

INORGANIC NANOPARTICLES AS PHASE-CHANGE MATERIALS FOR LARGE-SCALE THERMAL ENERGY STORAGE  

E-Print Network [OSTI]

INORGANIC NANOPARTICLES AS PHASE-CHANGE MATERIALS FOR LARGE- SCALE THERMAL ENERGY STORAGE Miroslaw storage performance. The expected immediate outcome of this effort is the demonstration of high-energy generation at high efficiency could revolutionize the development of solar energy. Nanoparticle-based phase

Pennycook, Steve

8

Large Scale Computing and Storage Requirements for Basic Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biological and Environmental Science (BER) Fusion Energy Sciences (FES) High Energy Physics (HEP) Nuclear Physics (NP) Overview Published Reports Case Study FAQs Home Science at...

9

Large Scale Computing and Storage Requirements for High Energy Physics  

E-Print Network [OSTI]

number modeling of type ia supernovae. I. Hydrodynamics.number modeling of type ia supernovae. II. Energy evolution.Mach number modeling of type ia supernovae. III. Reactions.

Gerber, Richard A.

2011-01-01T23:59:59.000Z

10

Large Scale Computing and Storage Requirements for High Energy Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 CERN 73-11Large areaLargefor High Energy

11

Large Scale Computing and Storage Requirements for Fusion Energy Sciences  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs space CombinedValues

12

Large Scale Computing and Storage Requirements for Basic Energy Sciences  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs space CombinedValues shownBiological and

13

Materials Science and Materials Chemistry for Large Scale Electrochemical Energy Storage: From Transportation to Electrical Grid  

SciTech Connect (OSTI)

Large-scale electrical energy storage has become more important than ever for reducing fossil energy consumption in transportation and for the widespread deployment of intermittent renewable energy in electric grid. However, significant challenges exist for its applications. Here, the status and challenges are reviewed from the perspective of materials science and materials chemistry in electrochemical energy storage technologies, such as Li-ion batteries, sodium (sulfur and metal halide) batteries, Pb-acid battery, redox flow batteries, and supercapacitors. Perspectives and approaches are introduced for emerging battery designs and new chemistry combinations to reduce the cost of energy storage devices.

Liu, Jun; Zhang, Jiguang; Yang, Zhenguo; Lemmon, John P.; Imhoff, Carl H.; Graff, Gordon L.; Li, Liyu; Hu, Jian Z.; Wang, Chong M.; Xiao, Jie; Xia, Guanguang; Viswanathan, Vilayanur V.; Baskaran, Suresh; Sprenkle, Vincent L.; Li, Xiaolin; Shao, Yuyan; Schwenzer, Birgit

2013-02-15T23:59:59.000Z

14

ARRA-Multi-Level Energy Storage and Controls for Large-Scale Wind Energy Integration  

SciTech Connect (OSTI)

The Project Objective is to design innovative energy storage architecture and associated controls for high wind penetration to increase reliability and market acceptance of wind power. The project goals are to facilitate wind energy integration at different levels by design and control of suitable energy storage systems. The three levels of wind power system are: Balancing Control Center level, Wind Power Plant level, and Wind Power Generator level. Our scopes are to smooth the wind power fluctuation and also ensure adequate battery life. In the new hybrid energy storage system (HESS) design for wind power generation application, the boundary levels of the state of charge of the battery and that of the supercapacitor are used in the control strategy. In the controller, some logic gates are also used to control the operating time durations of the battery. The sizing method is based on the average fluctuation of wind profiles of a specific wind station. The calculated battery size is dependent on the size of the supercapacitor, state of charge of the supercapacitor and battery wear. To accommodate the wind power fluctuation, a hybrid energy storage system (HESS) consisting of battery energy system (BESS) and super-capacitor is adopted in this project. A probability-based power capacity specification approach for the BESS and super-capacitors is proposed. Through this method the capacities of BESS and super-capacitor are properly designed to combine the characteristics of high energy density of BESS and the characteristics of high power density of super-capacitor. It turns out that the super-capacitor within HESS deals with the high power fluctuations, which contributes to the extension of BESS lifetime, and the super-capacitor can handle the peaks in wind power fluctuations without the severe penalty of round trip losses associated with a BESS. The proposed approach has been verified based on the real wind data from an existing wind power plant in Iowa. An intelligent controller that increases battery life within hybrid energy storage systems for wind application was developed. Comprehensive studies have been conducted and simulation results are analyzed. A permanent magnet synchronous generator, coupled with a variable speed wind turbine, is connected to a power grid (14-bus system). A rectifier, a DC-DC converter and an inverter are used to provide a complete model of the wind system. An Energy Storage System (ESS) is connected to a DC-link through a DC-DC converter. An intelligent controller is applied to the DC-DC converter to help the Voltage Source Inverter (VSI) to regulate output power and also to control the operation of the battery and supercapacitor. This ensures a longer life time for the batteries. The detailed model is simulated in PSCAD/EMTP. Additionally, economic analysis has been done for different methods that can reduce the wind power output fluctuation. These methods are, wind power curtailment, dumping loads, battery energy storage system and hybrid energy storage system. From the results, application of single advanced HESS can save more money for wind turbines owners. Generally the income would be the same for most of methods because the wind does not change and maximum power point tracking can be applied to most systems. On the other hand, the cost is the key point. For short term and small wind turbine, the BESS is the cheapest and applicable method while for large scale wind turbines and wind farms the application of advanced HESS would be the best method to reduce the power fluctuation. The key outcomes of this project include a new intelligent controller that can reduce energy exchanged between the battery and DC-link, reduce charging/discharging cycles, reduce depth of discharge and increase time interval between charge/discharge, and lower battery temperature. This improves the overall lifetime of battery energy storages. Additionally, a new design method based on probability help optimize the power capacity specification for BESS and super-capacitors. Recommendations include experimental imp

David Wenzhong Gao

2012-09-30T23:59:59.000Z

15

A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage  

SciTech Connect (OSTI)

Large-scale energy storage represents a key challenge for renewable energy and new systems with low cost, high energy density and long cycle life are desired. In this article, we develop a new lithium/polysulfide (Li/PS) semi-liquid battery for large-scale energy storage, with lithium polysulfide (Li{sub 2}S{sub 8}) in ether solvent as a catholyte and metallic lithium as an anode. Unlike previous work on Li/S batteries with discharge products such as solid state Li{sub 2}S{sub 2} and Li{sub 2}S, the catholyte is designed to cycle only in the range between sulfur and Li{sub 2}S{sub 4}. Consequently all detrimental effects due to the formation and volume expansion of solid Li{sub 2}S{sub 2}/Li{sub 2}S are avoided. This novel strategy results in excellent cycle life and compatibility with flow battery design. The proof-of-concept Li/PS battery could reach a high energy density of 170 W h kg{sup -1} and 190 W h L{sup -1} for large scale storage at the solubility limit, while keeping the advantages of hybrid flow batteries. We demonstrated that, with a 5 M Li{sub 2}S{sub 8} catholyte, energy densities of 97 W h kg{sup -1} and 108 W h L{sup -1} can be achieved. As the lithium surface is well passivated by LiNO{sub 3} additive in ether solvent, internal shuttle effect is largely eliminated and thus excellent performance over 2000 cycles is achieved with a constant capacity of 200 mA h g{sup -1}. This new system can operate without the expensive ion-selective membrane, and it is attractive for large-scale energy storage.

Yang, Yuan; Zheng, Guangyuan; Cui, Yi

2013-01-01T23:59:59.000Z

16

Scenario Development and Analysis of Hydrogen as a Large-Scale Energy Storage Medium (Presentation)  

SciTech Connect (OSTI)

The conclusions from this report are: (1) hydrogen has several important advantages over competing technologies, including - very high storage energy density (170 kWh/m{sup 3} vs. 2.4 for CAES and 0.7 for pumped hydro) which allows for potential economic viability of above-ground storage and relatively low environmental impact in comparison with other technologies; and (2) the major disadvantage of hydrogen energy storage is cost but research and deployment of electrolyzers and fuel cells may reduce cost significantly.

Steward, D. M.

2009-06-10T23:59:59.000Z

17

Fuels generated from renewable energy: a possible solution for large scale energy storage  

E-Print Network [OSTI]

(CSP)Concentrating solar power (CSP) Light electricity Photovoltaic conversion (PV) #12;4/22/2012 4 Energy System Gas (or fossil) Plant Sun or Wind Energy Plant Sun Fossil Wind Water Liquid fuels or raw #12;4/22/2012 9 Electricity grid Indirect Towards the Renewable Energy System Gas (or fossil) Plant

Franssen, Michael

18

Large Scale Computing and Storage Requirements for Basic Energy Sciences Research  

SciTech Connect (OSTI)

The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility supporting research within the Department of Energy's Office of Science. NERSC provides high-performance computing (HPC) resources to approximately 4,000 researchers working on about 400 projects. In addition to hosting large-scale computing facilities, NERSC provides the support and expertise scientists need to effectively and efficiently use HPC systems. In February 2010, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR) and DOE's Office of Basic Energy Sciences (BES) held a workshop to characterize HPC requirements for BES research through 2013. The workshop was part of NERSC's legacy of anticipating users future needs and deploying the necessary resources to meet these demands. Workshop participants reached a consensus on several key findings, in addition to achieving the workshop's goal of collecting and characterizing computing requirements. The key requirements for scientists conducting research in BES are: (1) Larger allocations of computational resources; (2) Continued support for standard application software packages; (3) Adequate job turnaround time and throughput; and (4) Guidance and support for using future computer architectures. This report expands upon these key points and presents others. Several 'case studies' are included as significant representative samples of the needs of science teams within BES. Research teams scientific goals, computational methods of solution, current and 2013 computing requirements, and special software and support needs are summarized in these case studies. Also included are researchers strategies for computing in the highly parallel, 'multi-core' environment that is expected to dominate HPC architectures over the next few years. NERSC has strategic plans and initiatives already underway that address key workshop findings. This report includes a brief summary of those relevant to issues raised by researchers at the workshop.

Gerber, Richard; Wasserman, Harvey

2011-03-31T23:59:59.000Z

19

Large Scale Computing and Storage Requirements for Fusion Energy Sciences: Target 2017  

SciTech Connect (OSTI)

The National Energy Research Scientific Computing Center (NERSC) is the primary computing center for the DOE Office of Science, serving approximately 4,500 users working on some 650 projects that involve nearly 600 codes in a wide variety of scientific disciplines. In March 2013, NERSC, DOE?s Office of Advanced Scientific Computing Research (ASCR) and DOE?s Office of Fusion Energy Sciences (FES) held a review to characterize High Performance Computing (HPC) and storage requirements for FES research through 2017. This report is the result.

Gerber, Richard

2014-05-02T23:59:59.000Z

20

ABSTRACT--Due to the sun's intermittent nature, there must be energy storage on a large scale in order for solar  

E-Print Network [OSTI]

ABSTRACT--Due to the sun's intermittent nature, there must be energy storage on a large scale electrode). Since this produces no carbon dioxide this is a very clean process. With the growing demand future. Hydrogen is a potential candidate to act as an energy storage medium in a sustainable energy

Honsberg, Christiana

Note: This page contains sample records for the topic "large-scale energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Large Scale Computing and Storage Requirements for Basic Energy Sciences Research  

E-Print Network [OSTI]

photovoltaics; hydrogen storage; ultrathin epitaxial filmsstorage to obtain an accurate power spectrum, especially if the relatively rapid vibrational behavior of hydrogen

Gerber, Richard

2012-01-01T23:59:59.000Z

22

Locations of Smart Grid Demonstration and Large-Scale Energy Storage  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't Happen toLeveragingLindsey GeislerEnergy EfficiencyAward

23

Harvey Wasserman! Large Scale Computing and Storage Requirements for High Energy Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpgcommunity200cell 9Harvey Brooks, 1960 The ErnestHarveyHarvey

24

Techno-economic Modeling of the Integration of 20% Wind and Large-scale Energy Storage in ERCOT by 2030  

SciTech Connect (OSTI)

This study�¹����s objective is to examine interrelated technical and economic avenues for the Electric Reliability Council of Texas (ERCOT) grid to incorporate up to and over 20% wind generation by 2030. Our specific interests are to look at the factors that will affect the implementation of both high level of wind power penetration (> 20% generation) and installation of large scale storage.

Ross Baldick; Michael Webber; Carey King; Jared Garrison; Stuart Cohen; Duehee Lee

2012-12-21T23:59:59.000Z

25

Copyright 2013 IEEE. Reprinted, with permission from: CERTS Microgrid Demonstration with Large-Scale Energy Storage and  

E-Print Network [OSTI]

-Scale Energy Storage and Renewable Generation Eduardo Alegria, Member, IEEE; Tim Brown, Member, IEEE; Erin Minear, Member, IEEE; Robert H. Lasseter, Fellow, IEEE Submitted to "Energy Storage Applications--Distributed Generation, Distributed Resource, Islanding, Microgrid, Smart Grid, Renewable Energy, Advanced Energy Storage

26

Large-Scale Renewable Energy Guide Webinar  

Broader source: Energy.gov [DOE]

Webinar introduces the “Large Scale Renewable Energy Guide." The webinar will provide an overview of this important FEMP guide, which describes FEMP's approach to large-scale renewable energy projects and provides guidance to Federal agencies and the private sector on how to develop a common process for large-scale renewable projects.

27

Large Scale Computing and Storage Requirements for Nuclear Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science at NERSC HPC Requirements Reviews Requirements for Science: Target 2014 Nuclear Physics (NP) Large Scale Computing and Storage Requirements for Nuclear Physics:...

28

Large-Scale Utilization of Biomass Energy and Carbon Dioxide Capture and Storage in the Transport and Electricity Sectors under Stringent CO2 Concentration Limit Scenarios  

SciTech Connect (OSTI)

This paper examines the potential role of large scale, dedicated commercial biomass energy systems under global climate policies designed to meet atmospheric concentrations of CO2 at 400ppm and 450ppm by the end of the century. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. A key aspect of the research presented here is that the costs of processing and transporting biomass energy at much larger scales than current experience are explicitly incorporated into the modeling. From the scenario results, 120-160 EJ/year of biomass energy is produced globally by midcentury and 200-250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the majority source, along with growing utilization of waste-to-energy. The ability to draw on a diverse set of biomass based feedstocks helps to reduce the pressure for drastic large-scale changes in land use and the attendant environmental, ecological, and economic consequences those changes would unleash. In terms of the conversion of bioenergy feedstocks into value added energy, this paper demonstrates that biomass is and will continue to be used to generate electricity as well as liquid transportation fuels. A particular focus of this paper is to show how climate policies and technology assumptions - especially the availability of carbon dioxide capture and storage (CCS) technologies - affect the decisions made about where the biomass is used in the energy system. The potential for net-negative electric sector emissions through the use of CCS with biomass feedstocks provides an attractive part of the solution for meeting stringent emissions constraints; we find that at carbon prices above 150$/tCO2, over 90% of biomass in the energy system is used in combination with CCS. Despite the higher technology costs of CCS, it is a very important tool in controlling the cost of meeting a target, offsetting the venting of CO2 from sectors of the energy system that may be more expensive to mitigate, such as oil use in transportation. CCS is also used heavily with other fuels such as coal and natural gas, and by 2095 a total of 1530 GtCO2 has been stored in deep geologic reservoirs. The paper also discusses the role of cellulosic ethanol and Fischer-Tropsch biomass derived transportation fuels as two representative conversion processes and shows that both technologies may be important contributors to liquid fuels production, with unique costs and emissions characteristics.

Luckow, Patrick; Wise, Marshall A.; Dooley, James J.; Kim, Son H.

2010-08-05T23:59:59.000Z

29

FEMP Helps Federal Facilities Develop Large-Scale Renewable Energy...  

Energy Savers [EERE]

FEMP Helps Federal Facilities Develop Large-Scale Renewable Energy Projects FEMP Helps Federal Facilities Develop Large-Scale Renewable Energy Projects August 21, 2013 - 12:00am...

30

Large Scale GSHP as Alternative Energy for American Farmers  

Broader source: Energy.gov (indexed) [DOE]

Large Scale GSHP as Alternative Energy for American Farmers Shawn Yunsheng Xu University of Missouri May 18, 2010 This presentation does not contain any proprietary confidential,...

31

Large Scale GSHP as Alternative Energy for American Farmers Geothermal...  

Open Energy Info (EERE)

Scale GSHP as Alternative Energy for American Farmers Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Large Scale GSHP as Alternative...

32

Large-Scale Eucalyptus Energy Farms and Power Cogeneration1  

E-Print Network [OSTI]

Large-Scale Eucalyptus Energy Farms and Power Cogeneration1 Robert C. Noronla2 The initiation of a large-scale cogeneration project, especially one that combines construction of the power generation supplemental fuel source must be sought if the cogeneration facility will consume more fuel than

Standiford, Richard B.

33

Large Scale Computing and Storage Requirements for Nuclear Physics Research  

SciTech Connect (OSTI)

IThe National Energy Research Scientific Computing Center (NERSC) is the primary computing center for the DOE Office of Science, serving approximately 4,000 users and hosting some 550 projects that involve nearly 700 codes for a wide variety of scientific disciplines. In addition to large-scale computing resources NERSC provides critical staff support and expertise to help scientists make the most efficient use of these resources to advance the scientific mission of the Office of Science. In May 2011, NERSC, DOE’s Office of Advanced Scientific Computing Research (ASCR) and DOE’s Office of Nuclear Physics (NP) held a workshop to characterize HPC requirements for NP research over the next three to five years. The effort is part of NERSC’s continuing involvement in anticipating future user needs and deploying necessary resources to meet these demands. The workshop revealed several key requirements, in addition to achieving its goal of characterizing NP computing. The key requirements include: 1. Larger allocations of computational resources at NERSC; 2. Visualization and analytics support; and 3. Support at NERSC for the unique needs of experimental nuclear physicists. This report expands upon these key points and adds others. The results are based upon representative samples, called “case studies,” of the needs of science teams within NP. The case studies were prepared by NP workshop participants and contain a summary of science goals, methods of solution, current and future computing requirements, and special software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, “multi-core” environment that is expected to dominate HPC architectures over the next few years. The report also includes a section with NERSC responses to the workshop findings. NERSC has many initiatives already underway that address key workshop findings and all of the action items are aligned with NERSC strategic plans.

Gerber, Richard A.; Wasserman, Harvey J.

2012-03-02T23:59:59.000Z

34

Survey and analysis of selected jointly owned large-scale electric utility storage projects  

SciTech Connect (OSTI)

The objective of this study was to examine and document the issues surrounding the curtailment in commercialization of large-scale electric storage projects. It was sensed that if these issues could be uncovered, then efforts might be directed toward clearing away these barriers and allowing these technologies to penetrate the market to their maximum potential. Joint-ownership of these projects was seen as a possible solution to overcoming the major barriers, particularly economic barriers, of commercializaton. Therefore, discussions with partners involved in four pumped storage projects took place to identify the difficulties and advantages of joint-ownership agreements. The four plants surveyed included Yards Creek (Public Service Electric and Gas and Jersey Central Power and Light); Seneca (Pennsylvania Electric and Cleveland Electric Illuminating Company); Ludington (Consumers Power and Detroit Edison, and Bath County (Virginia Electric Power Company and Allegheny Power System, Inc.). Also investigated were several pumped storage projects which were never completed. These included Blue Ridge (American Electric Power); Cornwall (Consolidated Edison); Davis (Allegheny Power System, Inc.) and Kttatiny Mountain (General Public Utilities). Institutional, regulatory, technical, environmental, economic, and special issues at each project were investgated, and the conclusions relative to each issue are presented. The major barriers preventing the growth of energy storage are the high cost of these systems in times of extremely high cost of capital, diminishing load growth and regulatory influences which will not allow the building of large-scale storage systems due to environmental objections or other reasons. However, the future for energy storage looks viable despite difficult economic times for the utility industry. Joint-ownership can ease some of the economic hardships for utilites which demonstrate a need for energy storage.

Not Available

1982-05-01T23:59:59.000Z

35

Spatial Energy Balancing in Large-scale Wireless Multihop Networks  

E-Print Network [OSTI]

Spatial Energy Balancing in Large-scale Wireless Multihop Networks Seung Jun Baek and Gustavo de is on optimizing trade-offs between the energy cost of spreading traffic and the improved spatial balance of energy. We propose a parameterized family of energy balancing strategies for grids and approximate

de Veciana, Gustavo

36

Large Scale Distribution of Stochastic Control Algorithms for Gas Storage Constantinos Makassikis, Stephane Vialle  

E-Print Network [OSTI]

Large Scale Distribution of Stochastic Control Algorithms for Gas Storage Valuation Constantinos algorithm which is applied to gas storage valuation, and presents its experimental performances on two PC achieved in the field of gas storage valuation (see [2, 3] for example). As a result, many different price

Vialle, Stéphane

37

Large Scale Computing and Storage Requirements for Nuclear Physics Research  

E-Print Network [OSTI]

Low-Energy Nuclear Physics National Joseph Carlson / HPC Initiative: Building a Universal Joseph Carlson Jonathan Engel Nuclear Energy Density Functional Structure and Reactions

Gerber, Richard A.

2012-01-01T23:59:59.000Z

38

Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment ofJared Temanson -

39

FS2You: Peer-Assisted Semi-Persistent Online Storage at a Large Scale  

E-Print Network [OSTI]

Inc. Abstract--It has been widely acknowledged that online storage systems within the "cloud a group. Such online storage services are typically provided by dedicated servers, either in content as an extensive measurement study at a large scale to demonstrate the effectiveness of our design, using real

Wu, Dekai

40

Large Scale Computing and Storage Requirements for Advanced Scientific  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs space CombinedValues shown

Note: This page contains sample records for the topic "large-scale energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Large Scale Computing and Storage Requirements for Biological and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs space CombinedValues shownBiological

42

Large Scale Computing and Storage Requirements for Nuclear Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs space CombinedValues Participants Organizing

43

Large Scale Production Computing and Storage Requirements for Nuclear  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs space CombinedValues Participants

44

Large Scale Computing and Storage Requirements for Biological and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs space CombinedValues shownBiologicalEnvironmental

45

Locations of Smart Grid Demonstration and Large-Scale Energy...  

Broader source: Energy.gov (indexed) [DOE]

the location of all projects created with funding from the Smart Grid Demonstration and Energy Storage Project, funded through the American Recovery and Reinvestment Act....

46

Materials Science and Materials Chemistry for Large Scale Electrochemi...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science and Materials Chemistry for Large Scale Electrochemical Energy Storage: From Transportation to Electrical Grid Materials Science and Materials Chemistry for Large Scale...

47

Large-Scale Renewable Energy Guide | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10 DOEWashington,LM-04-XXXX OfficeLandLarge-Scale

48

Energy Department Awards $66.7 Million for Large-Scale Carbon...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

66.7 Million for Large-Scale Carbon Sequestration Project Energy Department Awards 66.7 Million for Large-Scale Carbon Sequestration Project December 18, 2007 - 4:58pm Addthis...

49

Lessons from Large-Scale Renewable Energy Integration Studies: Preprint  

SciTech Connect (OSTI)

In general, large-scale integration studies in Europe and the United States find that high penetrations of renewable generation are technically feasible with operational changes and increased access to transmission. This paper describes other key findings such as the need for fast markets, large balancing areas, system flexibility, and the use of advanced forecasting.

Bird, L.; Milligan, M.

2012-06-01T23:59:59.000Z

50

Large-Scale Federal Renewable Energy Projects | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartmentJuneWhen IAjaniAs reported inn d eThe newRenewable

51

Harvesting Clean Energy How California Can Deploy Large-Scale Renewable  

E-Print Network [OSTI]

Harvesting Clean Energy How California Can Deploy Large-Scale Renewable Energy Projects Harvesting Clean Energy: How California Can Deploy Large-Scale Renewable Energy Projects on Appropriate acres of impaired lands in the Westlands Water District in the Central Valley may soon have

Kammen, Daniel M.

52

Autonomous and Energy-Aware Management of Large-Scale Cloud Infrastructures  

E-Print Network [OSTI]

Autonomous and Energy-Aware Management of Large-Scale Cloud Infrastructures Eugen Feller Advisor.e. self-organization and healing); (3) energy-awareness. However, existing open-source cloud management, and energy-aware resource management frameworks for large-scale cloud infrastructures. Particularly, a novel

Paris-Sud XI, Université de

53

Large-Scale Integration of Deferrable Demand and Renewable Energy Sources  

E-Print Network [OSTI]

1 Large-Scale Integration of Deferrable Demand and Renewable Energy Sources Anthony Papavasiliou. In order to accurately assess the impacts of renewable energy integration and demand response integration model for assessing the impacts of the large-scale integration of renewable energy sources

Oren, Shmuel S.

54

Tax Exemption for Large-Scale Renewable Energy Projects  

Broader source: Energy.gov [DOE]

In August 2007 Kentucky established the ''Incentives for Energy Independence Act'' (IEIA) to promote the development of renewable energy and alternative fuel facilities, energy efficient buildings,...

55

U.S. Energy Infrastructure Investment: Large-Scale Integrated Smart Grid  

E-Print Network [OSTI]

U.S. Energy Infrastructure Investment: Large-Scale Integrated Smart Grid Solutions with High: LargeScale Integrated Smart Grid Solutions with High Penetration of Renewable Resources, Dispersed- ing electricity grid. Much attention is being given to smart grid development in the U.S. and around

56

The Association of Large-Scale Climate Variability and Teleconnections on Wind Energy Resource  

E-Print Network [OSTI]

The Association of Large-Scale Climate Variability and Teleconnections on Wind Energy Resource over on Wind Energy Resource over Europe and its Intermittency Pascal Kriesche* and Adam Schlosser* Abstract

57

Energy Storage for the Power Grid  

ScienceCinema (OSTI)

The iron vanadium redox flow battery was developed by researchers at Pacific Northwest National Laboratory as a solution to large-scale energy storage for the power grid.

Wang, Wei; Imhoff, Carl; Vaishnav, Dave

2014-06-12T23:59:59.000Z

58

Energy Storage for the Power Grid  

SciTech Connect (OSTI)

The iron vanadium redox flow battery was developed by researchers at Pacific Northwest National Laboratory as a solution to large-scale energy storage for the power grid.

Wang, Wei; Imhoff, Carl; Vaishnav, Dave

2014-04-23T23:59:59.000Z

59

Energy Department Applauds Nation's First Large-Scale Industrial...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

in the global clean energy economy, creating new jobs while reducing carbon pollution," said US Energy Secretary Steven Chu. "This first of its kind project will bring...

60

LARGE SCALE WIND CLIMATOLOGICAL EXAMINATIONS OF WIND ENERGY UTILIZATION  

E-Print Network [OSTI]

The aim of this article is to describe the particular field of climatology which analyzes air movement characteristics regarding utilization of wind for energy generation. The article describes features of wind energy potential available in Hungary compared to wind conditions in other areas of the northern quarter sphere in order to assist the wind energy use development in Hungary. Information on wind climate gives a solid basis for financial and economic decisions of stakeholders in the field of wind energy utilization.

Andrea Kircsi

Note: This page contains sample records for the topic "large-scale energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Probing the imprint of interacting dark energy on very large scales  

E-Print Network [OSTI]

The observed galaxy power spectrum acquires relativistic corrections from lightcone effects, and these corrections grow on very large scales. Future galaxy surveys in optical, infrared and radio bands will probe increasingly large wavelength modes and reach higher redshifts. In order to exploit the new data on large scales, an accurate analysis requires inclusion of the relativistic effects. This is especially the case for primordial non-Gaussianity and for extending tests of dark energy models to horizon scales. Here we investigate the latter, focusing on models where the dark energy interacts non-gravitationally with dark matter. Interaction in the dark sector can also lead to large-scale deviations in the power spectrum. If the relativistic effects are ignored, the imprint of interacting dark energy will be incorrectly identified and thus lead to a bias in constraints on interacting dark energy on very large scales.

Duniya, Didam; Maartens, Roy

2015-01-01T23:59:59.000Z

62

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network [OSTI]

Key to Large-Scale Cogeneration?" Public Power, v, 35, no.Thermal Energy Storage for Cogeneration and Solar Systems,"Energy Storage for Cogeneration and Solar Systems, tion from

Authors, Various

2011-01-01T23:59:59.000Z

63

Large Scale GSHP as Alternative Energy for American Farmers Geothermal  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey, Washington:Lakeville, MN) JumpLarderello Geothermal Area JumpProject |

64

Energy Department Applauds Nation's First Large-Scale Industrial Carbon  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusiness Competition | Department ofDepartment ofDepartment

65

Lessons from Large-Scale Renewable Energy Integration Studies: Preprint  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite--FORRemarksHEATINGI _ _++,J 'ULand UseLessons

66

Economic analysis of large-scale hydrogen storage for renewable utility applications.  

SciTech Connect (OSTI)

The work reported here supports the efforts of the Market Transformation element of the DOE Fuel Cell Technology Program. The portfolio includes hydrogen technologies, as well as fuel cell technologies. The objective of this work is to model the use of bulk hydrogen storage, integrated with intermittent renewable energy production of hydrogen via electrolysis, used to generate grid-quality electricity. In addition the work determines cost-effective scale and design characteristics and explores potential attractive business models.

Schoenung, Susan M.

2011-08-01T23:59:59.000Z

67

Effects of large-scale distribution of wind energy in and around Europe  

E-Print Network [OSTI]

Effects of large-scale distribution of wind energy in and around Europe Gregor Giebel Niels Gylling energy in Europe? · Distribution of wind energy all over Europe leads to smoothing of the wind power energy can easily supply up to ~20% of the European demand. At this stage, · Less than 13% of the wind

68

A Scalable Model for Energy Load Balancing in Large-scale Sensor Networks  

E-Print Network [OSTI]

A Scalable Model for Energy Load Balancing in Large-scale Sensor Networks Seung Jun Baek we consider how one might achieve more balanced energy burdens across the network by spreading sinks change their locations to balance the energy burdens incurred accross the network nodes [1

de Veciana, Gustavo

69

Funding for Large-Scale Sustainable Energy Projects Combining Expert Opinions to Support Decisions  

E-Print Network [OSTI]

Funding for Large-Scale Sustainable Energy Projects Combining Expert Opinions to Support Decisions for a sustainable energy future? Three teams, UMass, Harvard, and FEEM (Fondazione Eni Enrico Mattei), share a goal technologies to fund for optimal success for a sustainable energy future. Progress and Results · Created models

Mountziaris, T. J.

70

Biomass Energy for Transport and Electricity: Large scale utilization under low CO2 concentration scenarios  

SciTech Connect (OSTI)

This paper examines the potential role of large scale, dedicated commercial biomass energy systems under global climate policies designed to stabilize atmospheric concentrations of CO2 at 400ppm and 450ppm. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. The costs of processing and transporting biomass energy at much larger scales than current experience are also incorporated into the modeling. From the scenario results, 120-160 EJ/year of biomass energy is produced by midcentury and 200-250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the dominant source. A key finding of this paper is the role that carbon dioxide capture and storage (CCS) technologies coupled with commercial biomass energy can play in meeting stringent emissions targets. Despite the higher technology costs of CCS, the resulting negative emissions used in combination with biomass are a very important tool in controlling the cost of meeting a target, offsetting the venting of CO2 from sectors of the energy system that may be more expensive to mitigate, such as oil use in transportation. The paper also discusses the role of cellulosic ethanol and Fischer-Tropsch biomass derived transportation fuels and shows that both technologies are important contributors to liquid fuels production, with unique costs and emissions characteristics. Through application of the GCAM integrated assessment model, it becomes clear that, given CCS availability, bioenergy will be used both in electricity and transportation.

Luckow, Patrick; Wise, Marshall A.; Dooley, James J.; Kim, Son H.

2010-01-25T23:59:59.000Z

71

Energy Evaluation of PMCMTP for Large-Scale Wireless Sensor Networks  

E-Print Network [OSTI]

slots inside each Personal Area Network (PAN)), · Energy balancing and saving to prolong networkEnergy Evaluation of PMCMTP for Large-Scale Wireless Sensor Networks Jamila Ben Slimane, Ye-Qiong Song, Anis Koub^aa§¶ and Mounir Frikha Sup'Com-MEDIATRON, City of Communication Technologies, 2083

Paris-Sud XI, Université de

72

Large-scale impact of CO2 storage in deep saline aquifers: A sensitivity study on pressure response in stratified systems  

E-Print Network [OSTI]

Large-scale impact of CO2 storage in deep saline aquifers: A sensitivity study on pressure response storage potential of all the geological CO2 storage options and are widely distributed throughout the globe in all sedimentary basins.ForCO2 storage tohaveasignificantimpact on atmospheric levels

Zhou, Quanlin

73

Identification of Market Power in Large-Scale Electric Energy Markets Bernard C. Lesieutre  

E-Print Network [OSTI]

Identification of Market Power in Large-Scale Electric Energy Markets Bernard C. Lesieutre Hyung and competitive operation of centrally- dispatched electricity markets. Traditional measures for market power demand and reserve requirements, a centrally-dispatched electricity market provides a transparent

74

Studying the energy efficiency of large-scale computer systems requires models of the relationship  

E-Print Network [OSTI]

Abstract Studying the energy efficiency of large-scale computer systems requires models-node clusters using embedded, laptop, desktop, and server processors. These results demonstrate the need usage and power consumption. Therefore, a substantial body of literature models system-level power

Rivoire, Suzanne

75

Measuring and tuning energy efficiency on large scale high performance computing platforms.  

SciTech Connect (OSTI)

Recognition of the importance of power in the field of High Performance Computing, whether it be as an obstacle, expense or design consideration, has never been greater and more pervasive. While research has been conducted on many related aspects, there is a stark absence of work focused on large scale High Performance Computing. Part of the reason is the lack of measurement capability currently available on small or large platforms. Typically, research is conducted using coarse methods of measurement such as inserting a power meter between the power source and the platform, or fine grained measurements using custom instrumented boards (with obvious limitations in scale). To collect the measurements necessary to analyze real scientific computing applications at large scale, an in-situ measurement capability must exist on a large scale capability class platform. In response to this challenge, we exploit the unique power measurement capabilities of the Cray XT architecture to gain an understanding of power use and the effects of tuning. We apply these capabilities at the operating system level by deterministically halting cores when idle. At the application level, we gain an understanding of the power requirements of a range of important DOE/NNSA production scientific computing applications running at large scale (thousands of nodes), while simultaneously collecting current and voltage measurements on the hosting nodes. We examine the effects of both CPU and network bandwidth tuning and demonstrate energy savings opportunities of up to 39% with little or no impact on run-time performance. Capturing scale effects in our experimental results was key. Our results provide strong evidence that next generation large-scale platforms should not only approach CPU frequency scaling differently, but could also benefit from the capability to tune other platform components, such as the network, to achieve energy efficient performance.

Laros, James H., III

2011-08-01T23:59:59.000Z

76

Large Scale Computing and Storage Requirements for High Energy Physics  

E-Print Network [OSTI]

second resulting from a thermonuclear explosion of materialresult from the thermonuclear burning of a carbon-oxygensensitive to how the thermonuclear runaway is ignited (

Gerber, Richard A.

2011-01-01T23:59:59.000Z

77

Large Scale Computing and Storage Requirements for High Energy Physics  

E-Print Network [OSTI]

Type Ia supernovae, gamma-ray bursts, X-ray bursts and corerelativistic jet, making a gamma-ray burst, the luminositythose that lead to gamma-ray bursts. The current frontier is

Gerber, Richard A.

2011-01-01T23:59:59.000Z

78

Research project on CO2 geological storage and groundwaterresources: Large-scale hydrological evaluation and modeling of impact ongroundwater systems  

SciTech Connect (OSTI)

If carbon dioxide capture and storage (CCS) technologies areimplemented on a large scale, the amounts of CO2 injected and sequesteredunderground could be extremely large. The stored CO2 then replaces largevolumes of native brine, which can cause considerable pressureperturbation and brine migration in the deep saline formations. Ifhydraulically communicating, either directly via updipping formations orthrough interlayer pathways such as faults or imperfect seals, theseperturbations may impact shallow groundwater or even surface waterresources used for domestic or commercial water supply. Possibleenvironmental concerns include changes in pressure and water table,changes in discharge and recharge zones, as well as changes in waterquality. In compartmentalized formations, issues related to large-scalepressure buildup and brine displacement may also cause storage capacityproblems, because significant pressure buildup can be produced. Toaddress these issues, a three-year research project was initiated inOctober 2006, the first part of which is summarized in this annualreport.

Birkholzer, Jens; Zhou, Quanlin; Rutqvist, Jonny; Jordan,Preston; Zhang,K.; Tsang, Chin-Fu

2007-10-24T23:59:59.000Z

79

Energy Storage  

ScienceCinema (OSTI)

ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

Paranthaman, Parans

2014-06-23T23:59:59.000Z

80

Energy Storage  

SciTech Connect (OSTI)

ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

Paranthaman, Parans

2014-06-03T23:59:59.000Z

Note: This page contains sample records for the topic "large-scale energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

The Future of the Local Large Scale Structure: the roles of Dark Matter and Dark Energy  

E-Print Network [OSTI]

We study the distinct effects of Dark Matter and Dark Energy on the future evolution of nearby large scale structures using constrained N-body simulations. We contrast a model of Cold Dark Matter and a Cosmological Constant (LCDM) with an Open CDM (OCDM) model with the same matter density Omega_m =0.3 and the same Hubble constant h=0.7. Already by the time the scale factor increased by a factor of 6 (29 Gyr from now in LCDM; 78 Gyr from now in OCDM) the comoving position of the Local Group is frozen. Well before that epoch the two most massive members of the Local Group, the Milky Way and Andromeda, will merge. However, as the expansion rates of the scale factor in the two models are different, the Local Group will be receding in physical coordinates from Virgo exponentially in a LCDM model and at a roughly constant velocity in an OCDM model. More generally, in comoving coordinates the future large scale structure will look like a sharpened image of the present structure: the skeleton of the cosmic web will remain the same, but clusters will be more `isolated' and the filaments will become thinner. This implies that the long-term fate of large scale structure as seen in comoving coordinates is determined primarily by the matter density. We conclude that although the LCDM model is accelerating at present due to its Dark Energy component while the OCDM model is non accelerating, their large scale structure in the future will look very similar in comoving coordinates.

Yehuda Hoffman; Ofer Lahav; Gustavo Yepes; Yaniv Dover

2007-10-10T23:59:59.000Z

82

Survey of Climate Conditions for Demonstration of a Large Scale of Solar Energy Heating in Xi'an  

E-Print Network [OSTI]

-scale solar energy heating applications in urban residential buildings. In this paper, Xi'an's geographical situation and climate conditions are fully analyzed. The survey on solar energy resources, and the feasibility of solar energy heating on a large scale...

Li, A.; Liu, Y.

2006-01-01T23:59:59.000Z

83

Large Scale Computing and Storage Requirements for Biological and Environmental Research  

SciTech Connect (OSTI)

In May 2009, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR), and DOE's Office of Biological and Environmental Research (BER) held a workshop to characterize HPC requirements for BER-funded research over the subsequent three to five years. The workshop revealed several key points, in addition to achieving its goal of collecting and characterizing computing requirements. Chief among them: scientific progress in BER-funded research is limited by current allocations of computational resources. Additionally, growth in mission-critical computing -- combined with new requirements for collaborative data manipulation and analysis -- will demand ever increasing computing, storage, network, visualization, reliability and service richness from NERSC. This report expands upon these key points and adds others. It also presents a number of"case studies" as significant representative samples of the needs of science teams within BER. Workshop participants were asked to codify their requirements in this"case study" format, summarizing their science goals, methods of solution, current and 3-5 year computing requirements, and special software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel,"multi-core" environment that is expected to dominate HPC architectures over the next few years.

DOE Office of Science, Biological and Environmental Research Program Office (BER),

2009-09-30T23:59:59.000Z

84

Sandia National Laboratories: Large-scale storage of low-pressure gaseous  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS ExhibitIowa State UniversityFacilityLIMITS Liquidflamehydrogen

85

On scale and magnitude of pressure build-up induced by large-scale geologic storage of CO2  

SciTech Connect (OSTI)

The scale and magnitude of pressure perturbation and brine migration induced by geologic carbon sequestration is discussed assuming a full-scale deployment scenario in which enough CO{sub 2} is captured and stored to make relevant contributions to global climate change mitigation. In this scenario, the volumetric rates and cumulative volumes of CO{sub 2} injection would be comparable to or higher than those related to existing deep-subsurface injection and extraction activities, such as oil production. Large-scale pressure build-up in response to the injection may limit the dynamic storage capacity of suitable formations, because over-pressurization may fracture the caprock, may drive CO{sub 2}/brine leakage through localized pathways, and may cause induced seismicity. On the other hand, laterally extensive sedimentary basins may be less affected by such limitations because (i) local pressure effects are moderated by pressure propagation and brine displacement into regions far away from the CO{sub 2} storage domain; and (ii) diffuse and/or localized brine migration into overlying and underlying formations allows for pressure bleed-off in the vertical direction. A quick analytical estimate of the extent of pressure build-up induced by industrial-scale CO{sub 2} storage projects is presented. Also discussed are pressure perturbation and attenuation effects simulated for two representative sedimentary basins in the USA: the laterally extensive Illinois Basin and the partially compartmentalized southern San Joaquin Basin in California. These studies show that the limiting effect of pressure build-up on dynamic storage capacity is not as significant as suggested by Ehlig-Economides and Economides, who considered closed systems without any attenuation effects.

Zhou, Q.; Birkholzer, J. T.

2011-05-01T23:59:59.000Z

86

The Association of Large-Scale Climate Variability and Teleconnections on Wind Energy Resource over Europe and its Intermittency  

E-Print Network [OSTI]

In times of increasing importance of wind power in the world’s energy mix, this study focuses on a better understanding of the influences of large-scale climate variability on wind power resource over Europe. The impact ...

Kriesche, Pascal

87

Developing Renewable Energy Projects Larger Than 10 MWs at Federal Facilities: Large-Scale Renewable Energy Guide  

Broader source: Energy.gov [DOE]

Guide helps agency personnel navigate the complexities of developing large-scale renewable energy projects and assists them in attracting the necessary private capital to complete these projects. It also serves as a general resource to develop Federal employees' awareness and understanding of a project developer’s operating environment and the private sector’s awareness and understanding of the Federal environment.

88

Impulsive phase flare energy transport by large-scale Alfven waves and the electron acceleration problem  

E-Print Network [OSTI]

The impulsive phase of a solar flare marks the epoch of rapid conversion of energy stored in the pre-flare coronal magnetic field. Hard X-ray observations imply that a substantial fraction of flare energy released during the impulsive phase is converted to the kinetic energy of mildly relativistic electrons (10-100 keV). The liberation of the magnetic free energy can occur as the coronal magnetic field reconfigures and relaxes following reconnection. We investigate a scenario in which products of the reconfiguration - large-scale Alfven wave pulses - transport the energy and magnetic-field changes rapidly through the corona to the lower atmosphere. This offers two possibilities for electron acceleration. Firstly, in a coronal plasma with beta < m_e/m_p, the waves propagate as inertial Alfven waves. In the presence of strong spatial gradients, these generate field-aligned electric fields that can accelerate electrons to energies on the order of 10 keV and above, including by repeated interactions between el...

Fletcher, L

2007-01-01T23:59:59.000Z

89

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network [OSTI]

using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"ings of Aquifer Thermal Energy Storage Workshop, Lawrence

Tsang, C.-F.

2011-01-01T23:59:59.000Z

90

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network [OSTI]

aquifers for thermal energy storage. Problems outlined aboveModeling of Thermal Energy Storage in Aquifers," Proceed-ings of Aquifer Thermal Energy Storage Workshop, Lawrence

Tsang, C.-F.

2011-01-01T23:59:59.000Z

91

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network [OSTI]

Superconducting 30-MJ Energy Storage Coil", Proc. 19 80 ASC,Superconducting Magnetic Energy Storage Plant", IEEE Trans.SlIperconducting Magnetic Energy Storage Unit", in Advances

Hassenzahl, W.

2011-01-01T23:59:59.000Z

92

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network [OSTI]

using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"Proceed- ings of Aquifer Thermal Energy Storage Workshop,

Tsang, C.-F.

2011-01-01T23:59:59.000Z

93

Large-scale Demonstration and Deployment Project for D&D of Fuel Storage Canals and Associated Facilities at INEEL  

SciTech Connect (OSTI)

The Department of Energy (DOE) Office of Science and Technology (OST), Deactivation and Decommissioning Focus Area (DDFA), sponsored a Large Scale Demonstration and Deployment Project (LSDDP) at the Idaho National Engineering and Environmental Laboratory (INEEL) under management of the DOE National Energy Technology Laboratory (NETL). The INEEL LSDDP is one of several LSDDPs sponsored by DOE. The LSDDP process integrates field demonstrations into actual decontamination and decommissioning (D&D) operations by comparing new or improved technologies against existing baseline technologies using a side-by-side comparison. The goals are (a) to identify technologies that are cheaper, safer, faster, and cleaner (produce less waste), and (b) to incorporate those technologies into D&D baseline operations. The INEEL LSDDP reviewed more than 300 technologies, screened 141, and demonstrated 17. These 17 technologies have been deployed a total of 70 times at facilities other than those where the technology was demonstrated, and 10 have become baseline at the INEEL. Fifteen INEEL D&D needs have been modified or removed from the Needs Management System as a direct result of using these new technologies. Conservatively, the ten-year projected cost savings at the INEEL resulting from use of the technologies demonstrated in this INEEL LSDDP exceeds $39 million dollars.

Whitmill, Larry Joseph

2001-12-01T23:59:59.000Z

94

On scale and magnitude of pressure build-up induced by large-scale geologic storage of CO2  

E-Print Network [OSTI]

activities, such as oil production. Large-scale pressureannual volume of world oil production and the pore volumem 3 . In 2006, the world oil production was 4.3 km 3 (73.46

Zhou, Q.

2012-01-01T23:59:59.000Z

95

Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage  

SciTech Connect (OSTI)

This report presents the results of an analysis evaluating the economic viability of hydrogen for medium- to large-scale electrical energy storage applications compared with three other storage technologies: batteries, pumped hydro, and compressed air energy storage (CAES).

Steward, D.; Saur, G.; Penev, M.; Ramsden, T.

2009-11-01T23:59:59.000Z

96

Optimization Decomposition of Resistive Power Networks with Energy Storage  

E-Print Network [OSTI]

Optimization Decomposition of Resistive Power Networks with Energy Storage Xin Lou and Chee Wei Tan energy through space and time be optimized to benefit the power network with large-scale energy storage integration? With energy storage, there is a possibility to generate more energy when the demand is low

Tan, Chee Wei

97

NV Energy Large-Scale Photovoltaic Integration Study: Intra-Hour Dispatch and AGC Simulation  

SciTech Connect (OSTI)

The uncertainty and variability with photovoltaic (PV) generation make it very challenging to balance power system generation and load, especially under high penetration cases. Higher reserve requirements and more cycling of conventional generators are generally anticipated for large-scale PV integration. However, whether the existing generation fleet is flexible enough to handle the variations and how well the system can maintain its control performance are difficult to predict. The goal of this project is to develop a software program that can perform intra-hour dispatch and automatic generation control (AGC) simulation, by which the balancing operations of a system can be simulated to answer the questions posed above. The simulator, named Electric System Intra-Hour Operation Simulator (ESIOS), uses the NV Energy southern system as a study case, and models the system’s generator configurations, AGC functions, and operator actions to balance system generation and load. Actual dispatch of AGC generators and control performance under various PV penetration levels can be predicted by running ESIOS. With data about the load, generation, and generator characteristics, ESIOS can perform similar simulations and assess variable generation integration impacts for other systems as well. This report describes the design of the simulator and presents the study results showing the PV impacts on NV Energy real-time operations.

Lu, Shuai; Etingov, Pavel V.; Meng, Da; Guo, Xinxin; Jin, Chunlian; Samaan, Nader A.

2013-01-02T23:59:59.000Z

98

Impact of Large Scale Energy Efficiency Programs On Consumer Tariffs and Utility Finances in India  

SciTech Connect (OSTI)

Large-scale EE programs would modestly increase tariffs but reduce consumers' electricity bills significantly. However, the primary benefit of EE programs is a significant reduction in power shortages, which might make these programs politically acceptable even if tariffs increase. To increase political support, utilities could pursue programs that would result in minimal tariff increases. This can be achieved in four ways: (a) focus only on low-cost programs (such as replacing electric water heaters with gas water heaters); (b) sell power conserved through the EE program to the market at a price higher than the cost of peak power purchase; (c) focus on programs where a partial utility subsidy of incremental capital cost might work and (d) increase the number of participant consumers by offering a basket of EE programs to fit all consumer subcategories and tariff tiers. Large scale EE programs can result in consistently negative cash flows and significantly erode the utility's overall profitability. In case the utility is facing shortages, the cash flow is very sensitive to the marginal tariff of the unmet demand. This will have an important bearing on the choice of EE programs in Indian states where low-paying rural and agricultural consumers form the majority of the unmet demand. These findings clearly call for a flexible, sustainable solution to the cash-flow management issue. One option is to include a mechanism like FAC in the utility incentive mechanism. Another sustainable solution might be to have the net program cost and revenue loss built into utility's revenue requirement and thus into consumer tariffs up front. However, the latter approach requires institutionalization of EE as a resource. The utility incentive mechanisms would be able to address the utility disincentive of forgone long-run return but have a minor impact on consumer benefits. Fundamentally, providing incentives for EE programs to make them comparable to supply-side investments is a way of moving the electricity sector toward a model focused on providing energy services rather than providing electricity.

Abhyankar, Nikit; Phadke, Amol

2011-01-20T23:59:59.000Z

99

Large-scale stable interacting dark energy model: Cosmological perturbations and observational constraints  

E-Print Network [OSTI]

Dark energy might interact with cold dark matter in a direct, nongravitational way. However, the usual interacting dark energy models (with constant $w$) suffer from some catastrophic difficulties. For example, the $Q\\propto\\rho_{\\rm c}$ model leads to an early-time large-scale instability, and the $Q\\propto\\rho_{\\rm de}$ model gives rise to the future unphysical result for cold dark matter density (in the case of a positive coupling). In order to overcome these fatal flaws, we propose in this paper an interacting dark energy model (with constant $w$) in which the interaction term is carefully designed to realize that $Q\\propto\\rho_{\\rm de}$ at the early times and $Q\\propto\\rho_{\\rm c}$ in the future, simultaneously solving the early-time superhorizon instability and future unphysical $\\rho_{\\rm c}$ problems. The concrete form of the interaction term in this model is $Q=3\\beta H \\frac{\\rho_{\\rm{de}}\\rho_{\\rm{c}}}{\\rho_{\\rm{de}}+\\rho_{\\rm{c}}}$, where $\\beta$ is the dimensionless coupling constant. We show that this model is actually equivalent to the decomposed new generalized Chaplygin gas (NGCG) model, with the relation $\\beta=-\\alpha w$. We calculate the cosmological perturbations in this model in a gauge-invariant way and show that the cosmological perturbations are stable during the whole expansion history provided that $\\beta>0$. Furthermore, we use the Planck data in conjunction with other astrophysical data to place stringent constraints on this model (with eight parameters), and we find that indeed $\\beta>0$ is supported by the joint constraint at more than 1$\\sigma$ level. The excellent theoretical features and the support from observations all indicate that the decomposed NGCG model deserves more attention and further investigation.

Yun-He Li; Xin Zhang

2014-04-20T23:59:59.000Z

100

Challenges and Opportunities in Large-Scale Deployment of Automated Energy Consumption  

E-Print Network [OSTI]

to the locational marginal price (LMP) at that bus. We show that a key challenge in large- scale deployment of ECS, locational marginal price. I. INTRODUCTION Real-time and time-of-use electricity pricing models can- edge among users on how to respond to time-varying prices and the lack of effective home automation

Mohsenian-Rad, Hamed

Note: This page contains sample records for the topic "large-scale energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Understanding the Impact of Large-Scale Penetration of Micro Combined Heat & Power Technologies within Energy Systems  

E-Print Network [OSTI]

Understanding the Impact of Large-Scale Penetration of Micro Combined Heat & Power Technologies of Micro Combined Heat & Power Technologies within Energy Systems by Karen de los Ángeles Tapia for this purpose. Co-generation of electricity and heat at the residential level, known as micro

Catholic University of Chile (Universidad CatĂłlica de Chile)

102

Reducing Plug and Process Loads for a Large Scale, Low Energy Office Building: NREL's Research Support Facility; Preprint  

SciTech Connect (OSTI)

This paper documents the design and operational plug and process load energy efficiency measures needed to allow a large scale office building to reach ultra high efficiency building goals. The appendices of this document contain a wealth of documentation pertaining to plug and process load design in the RSF, including a list of equipment was selected for use.

Lobato, C.; Pless, S.; Sheppy, M.; Torcellini, P.

2011-02-01T23:59:59.000Z

103

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network [OSTI]

of Discharge Using Ground- Water Storage," Transactions1971. "Storage of Solar Energy in a Sandy-Gravel Ground,"

Tsang, C.-F.

2011-01-01T23:59:59.000Z

104

Seasonal thermal energy storage  

SciTech Connect (OSTI)

This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

1984-05-01T23:59:59.000Z

105

Large-Scale Renewable Energy Producers Property Tax Abatement (Nevada State Office of Energy)  

Broader source: Energy.gov [DOE]

New or expanded businesses in Nevada may apply to the Director of the State Office of Energy for a property tax abatement of up to 55% for up to 20 years for real and personal property used to...

106

Brownfields to green energy : redeveloping contaminated lands with large-scale renewable energy facilities  

E-Print Network [OSTI]

This thesis uses case studies of one unsuccessful, and three successful brownfield-to-renewable energy projects to identify common barriers such projects face and how those barriers can be overcome. The most significant ...

Jensen, Bjorn B. (Bjorn Benjamin)

2010-01-01T23:59:59.000Z

107

Using an Energy Performance Based Design-Build Process to Procure a Large Scale Low-Energy Building: Preprint  

SciTech Connect (OSTI)

This paper will review a procurement, acquisition, and contract process of a large-scale replicable net zero energy (ZEB) office building. The owners developed and implemented an energy performance based design-build process to procure a 220,000 ft2 office building with contractual requirements to meet demand side energy and LEED goals. We will outline the key procurement steps needed to ensure achievement of our energy efficiency and ZEB goals. The development of a clear and comprehensive Request for Proposals (RFP) that includes specific and measurable energy use intensity goals is critical to ensure energy goals are met in a cost effective manner. The RFP includes a contractual requirement to meet an absolute demand side energy use requirement of 25 kBtu/ft2, with specific calculation methods on what loads are included, how to normalize the energy goal based on increased space efficiency and data center allocation, specific plug loads and schedules, and calculation details on how to account for energy used from the campus hot and chilled water supply. Additional advantages of integrating energy requirements into this procurement process include leveraging the voluntary incentive program, which is a financial incentive based on how well the owner feels the design-build team is meeting the RFP goals.

Pless, S.; Torcellini, P.; Shelton, D.

2011-05-01T23:59:59.000Z

108

Behavioral Initiatives for Energy Efficiency: Large-Scale Energy Reductions through Sensors, Feedback & Information Technology  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: A team of researchers from more than 10 departments at Stanford University is collaborating to transform the way Americans interact with our energy-use data. The team built a web-based platform that collects historical electricity data which it uses to perform a variety of experiments to learn what triggers people to respond. Experiments include new financial incentives, a calculator to understand the potential savings of efficient appliances, new Facebook interface designs, communication studies using Twitter, and educational programs with the Girl Scouts. Economic modeling is underway to better understand how results from the San Francisco Bay Area can be broadened to other parts of the country.

None

2010-01-12T23:59:59.000Z

109

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network [OSTI]

to MW/40 MWI-IR Battery Energy Storage Facility", proc. 23rdcompressed air, and battery energy storage are all only 65

Hassenzahl, W.

2011-01-01T23:59:59.000Z

110

New variational Monte Carlo method with an energy variance extrapolation for large-scale shell-model calculations  

E-Print Network [OSTI]

We propose a new variational Monte Carlo (VMC) method with an energy variance extrapolation for large-scale shell-model calculations. This variational Monte Carlo is a stochastic optimization method with a projected correlated condensed pair state as a trial wave function, and is formulated with the M-scheme representation of projection operators, the Pfaffian and the Markov-chain Monte Carlo (MCMC). Using this method, we can stochastically calculate approximated yrast energies and electro-magnetic transition strengths. Furthermore, by combining this VMC method with energy variance extrapolation, we can estimate exact shell-model energies.

Takahiro Mizusaki; Noritaka Shimizu

2012-01-27T23:59:59.000Z

111

No geologic evidence that seismicity causes fault leakage that would render large-scale carbon capture and storage unsuccessful  

E-Print Network [OSTI]

In a recent Perspective (1), Zoback and Gorelick argued that carbon capture and storage (CCS) is likely not a viable strategy for reducing CO[subscript 2] emissions to the atmosphere. They argued that maps of earthquake ...

Juanes, Ruben

112

High Energy Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Large Scale Production Computing and Storage Requirements for High Energy Physics: Target 2017 HEPlogo.jpg The NERSC Program Requirements Review "Large Scale Computing and Storage...

113

LARGE-SCALE HYDROGEN PRODUCTION FROM NUCLEAR ENERGY USING HIGH TEMPERATURE ELECTROLYSIS  

SciTech Connect (OSTI)

Hydrogen can be produced from water splitting with relatively high efficiency using high-temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high-temperature process heat. When coupled to an advanced high temperature nuclear reactor, the overall thermal-to-hydrogen efficiency for high-temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. Demand for hydrogen is increasing rapidly for refining of increasingly low-grade petroleum resources, such as the Athabasca oil sands and for ammonia-based fertilizer production. Large quantities of hydrogen are also required for carbon-efficient conversion of biomass to liquid fuels. With supplemental nuclear hydrogen, almost all of the carbon in the biomass can be converted to liquid fuels in a nearly carbon-neutral fashion. Ultimately, hydrogen may be employed as a direct transportation fuel in a “hydrogen economy.” The large quantity of hydrogen that would be required for this concept should be produced without consuming fossil fuels or emitting greenhouse gases. An overview of the high-temperature electrolysis technology will be presented, including basic theory, modeling, and experimental activities. Modeling activities include both computational fluid dynamics and large-scale systems analysis. We have also demonstrated high-temperature electrolysis in our laboratory at the 15 kW scale, achieving a hydrogen production rate in excess of 5500 L/hr.

James E. O'Brien

2010-08-01T23:59:59.000Z

114

Impact of Large Scale Energy Efficiency Programs On Consumer Tariffs and Utility Finances in India  

E-Print Network [OSTI]

Mechanisms to Promote Energy Efficiency: Case Study of ato improvements in energy efficiency. Energy Policy, 19(10),Deficit through Energy Efficiency in India: An Evaluation of

Abhyankar, Nikit

2011-01-01T23:59:59.000Z

115

Green queue : a framework for selecting energy optimal DVFS congurations in large scale MPI applications  

E-Print Network [OSTI]

settings . . . . . Green Queue Energy Savings with VariousApplication Figure 4.3: Green Queue Energy Savings withBlind Scaling Relative Energy Green Queue Relative Delay

Peraza, Joshua

2012-01-01T23:59:59.000Z

116

Copyright 2014 IEEE. Reprinted, with permission from: CERTS Microgrid Demonstration With Large-Scale Energy  

E-Print Network [OSTI]

diesel generators. Adding a 2-MW, 4-MWh storage system, a fast static switch, and a power factor cor not in any way imply IEEE endorsement of any of the Power Systems Engineering Research Center 's products), but also may dis- connect intentionally when the quality of power from the grid falls below certain

117

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network [OSTI]

hydro, compressed air, and battery energy storage are allenergy storage sys tem s suc h as pumped hydro and compressed air.

Hassenzahl, W.

2011-01-01T23:59:59.000Z

118

Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage  

Fuel Cell Technologies Publication and Product Library (EERE)

This report presents the results of an analysis evaluating the economic viability of hydrogen for medium- to large-scale electrical energy storage applications compared with three other storage techno

119

Large scale solubilization of coal and bioconversion to utilizable energy. Quarterly report, October 1--December 31, 1996  

SciTech Connect (OSTI)

In order to develop a system for a large scale coal solubilization and its bioconversion to utilizable fuel, the author plans to clone the genes encoding Neurospora protein that facilitate depolymerization of coal. He also plans to use desulfurizing bacteria to remove the sulfur in situ and use other microorganisms to convert biosolubilized coal into utilizable energy following an approach utilizing several microorganisms. In addition the product of coal solubilized by fungus will be characterized to determine their chemical nature and the mechanism of reaction catalyzed by fungal product during in vivo and in vitro solubilization by the fungus or purified fungal protein.

Mishra, N.C.

1996-12-22T23:59:59.000Z

120

Large scale solubilization of coal and bioconversion to utilizable energy. Fifth quarterly technical report, January 1, 1995--March 31, 1995  

SciTech Connect (OSTI)

In order to develop a system for a large scale coal solubilization and its bioconversion to utilizable fuel, we plan to clone the genes encoding Neurospora protein that facilitate depolymerization of coal. We also plan to use desulfurizing bacteria to remove the sulfur in situ and use other microorganisms to convert biosolubilized coal into utilizable energy following an approach utilizing several microorganisms. In addition the product of coal solubilized by fungus will be characterized to determine their chemical nature and the mechanism of reaction catalyzed by fungal product during in vivo and in vitro solubilization by the fungus or purified fungal protein.

Mishra, N.C.

1995-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "large-scale energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Green queue : a framework for selecting energy optimal DVFS congurations in large scale MPI applications  

E-Print Network [OSTI]

the future of energy-performance trade-off via dvfs in hpcinformed trade-offs in performance and energy consumption.trade-off. Many researchers have used DVFS to either reduce total energy

Peraza, Joshua

2012-01-01T23:59:59.000Z

122

Impact of Large Scale Energy Efficiency Programs On Consumer Tariffs and Utility Finances in India  

E-Print Network [OSTI]

like refrigerator and air conditioner replacements. Thisiv) Replacement of conventional air conditioners by energy-ii) Replacement of conventional air conditioners by energy-

Abhyankar, Nikit

2011-01-01T23:59:59.000Z

123

Large Scale U.S. Unconventional Fuels Production and the Role of Carbon Dioxide Capture and Storage Technologies in Reducing Their Greenhouse Gas Emissions  

SciTech Connect (OSTI)

This paper examines the role that carbon dioxide capture and storage technologies could play in reducing greenhouse gas emissions if a significant unconventional fuels industry were to develop within the United States. Specifically, the paper examines the potential emergence of a large scale domestic unconventional fuels industry based on oil shale and coal-to-liquids (CTL) technologies. For both of these domestic heavy hydrocarbon resources, this paper models the growth of domestic production to a capacity of 3 MMB/d by 2050. For the oil shale production case, we model large scale deployment of an in-situ retorting process applied to the Eocene Green River formation of Colorado, Utah, and Wyoming where approximately 75% of the high grade oil shale resources within the United States lies. For the CTL case, we examine a more geographically dispersed coal-based unconventional fuel industry. This paper examines the performance of these industries under two hypothetical climate policies and concludes that even with the wide scale availability of cost effective carbon dioxide capture and storage technologies, these unconventional fuels production industries would be responsible for significant increases in CO2 emissions to the atmosphere. The oil shale production facilities required to produce 3MMB/d would result in net emissions to the atmosphere of between 3000-7000 MtCO2 in addition to storing potentially 1000 to 5000 MtCO2 in regional deep geologic formations in the period up to 2050. A similarly sized domestic CTL industry could result in 4000 to 5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000 to 22,000 MtCO2 stored in regional deep geologic formations over the same period up to 2050. Preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. However, additional analyses plus detailed regional and site characterization is needed, along with a closer examination of competing storage demands.

Dooley, James J.; Dahowski, Robert T.

2008-11-18T23:59:59.000Z

124

Factors Influencing Water Heating Energy Use and Peak Demand in a Large Scale Residential Monitoring Study  

E-Print Network [OSTI]

, as well as obtain improved appliance energy consumption indexes and load profiles. A portion of the monitoring measures water heater energy use and demand in each home on a 15-minute basis....

Bouchelle, M. P.; Parker, D. S.; Anello, M. T.

2000-01-01T23:59:59.000Z

125

A Large-scale Study on Predicting and Contextualizing Building Energy Usage J. Zico Kolter  

E-Print Network [OSTI]

fuels (Multiple 2009). In the United States, 41% of all energy is consumed in residential and commercial people with feedback about their energy use can itself produce behavior changes that significantly reduce the value of normative energy feedback, showing users how their usage relates to that of their peers

Kolter, J. Zico

126

Impact of Large Scale Energy Efficiency Programs On Consumer Tariffs and Utility Finances in India  

E-Print Network [OSTI]

India. Prayas. (2005). Demand-Side Management (DSM) in theEnergy Efficiency and Demand Side Management (DSM). PlanningDemand Growth Demand Side Management Delhi Transco Limited

Abhyankar, Nikit

2011-01-01T23:59:59.000Z

127

Impact of Large Scale Energy Efficiency Programs On Consumer Tariffs and Utility Finances in India  

E-Print Network [OSTI]

like refrigerator and air conditioner replacements. This5-star air conditioners are the efficient replacement, withiv) Replacement of conventional air conditioners by energy-

Abhyankar, Nikit

2011-01-01T23:59:59.000Z

128

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network [OSTI]

Design of the BPA Superconducting 30-MJ Energy Storagefor a Utility Scale Superconducting Magnetic Energy Storagefor a Lnrge Scale Superconducting Magnetic Energy Storage

Hassenzahl, W.

2011-01-01T23:59:59.000Z

129

Development of Graphical Indices for Displaying Large Scale Building Energy Data Sets  

E-Print Network [OSTI]

analyst view large amounts of hourly building energy consumption data in order to quickly and efficiently analyze the data, check for errors, or establish time and temperature related trends over a large period of time. The objective is to demonstrate...

Abbas, M.; Haberl, J. S.

1994-01-01T23:59:59.000Z

130

A large-scale study on predicting and contextualizing building energy usage  

E-Print Network [OSTI]

In this paper we present a data-driven approach to modeling end user energy consumption in residential and commercial buildings. Our model is based upon a data set of monthly electricity and gas bills, collected by a utility ...

Kolter, Jeremy Z.

131

Microsoft Word - NRAP-TRS-III-002-2012_Modeling the Performance of Large Scale CO2 Storage_20121024.docx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMappingENVIRONMENTALHYDROPOWERFebruarySavebased on an analysis DOEUse

132

QCD Thermodynamics at High Temperature Peter Petreczky Large Scale Computing and Storage Requirements for Nuclear Physics (NP),  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedlesAdvancedJanuary 13,Putting veterans to8 (ReleasedQA/QCQCD

133

Energy Storage Systems  

SciTech Connect (OSTI)

Energy Storage Systems – An Old Idea Doing New Things with New Technology article for the International Assoication of ELectrical Inspectors

Conover, David R.

2013-12-01T23:59:59.000Z

134

Best Practices and Tools for Large-scale Deployment of Renewable Energy and  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre Biomass FacilityOregon: EnergyBiofuels LLC Jump to:Buy

135

U.S. Signs International Fusion Energy Agreement; Large-Scale, Clean Fusion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layeredof EnergyLease andStocks Area: U.S.Sales Type:

136

FEMP Helps Federal Facilities Develop Large-Scale Renewable Energy Projects  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -DepartmentNovemberEnergy Nuclear1, 201414,April|On March|

137

Energy Department Awards $66.7 Million for Large-Scale Carbon Sequestration  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusiness Competition | DepartmentDepartmentProject | Department of

138

Implementation of electric vehicle system based on solar energy in Singapore assessment of flow batteries for energy storage  

E-Print Network [OSTI]

For large-scale energy storage application, flow battery has the advantages of decoupled power and energy management, extended life cycles and relatively low cost of unit energy output ($/kWh). In this thesis, an overview ...

Chen, Yaliang

2009-01-01T23:59:59.000Z

139

Computer Energy Modeling Techniques for Simulation Large Scale Correctional Institutes in Texas  

E-Print Network [OSTI]

using the DOE-2.1E building enegy simulation program to model a 1,000 bed case study correctional unit located in Texas. INTRODUCTION The Texas Department of Criminal Justice (TDCJ) Stephenson unit located in Cuero, Texas was N. Saman, Ph.D., P... building enegy simulation program (LBL 1980; 1981; 1982; 1989; 1994). The second part of the project included evaluating the energy consumption of this prototype unit. This paper presents a methodology that may be used to view and improve simulation...

Heneghan, T.; Haberl, J. S.; Saman, N.; Bou-Saada, T. E.

1996-01-01T23:59:59.000Z

140

Strategies to Finance Large-Scale Deployment of Renewable Energy Projects:  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop, Inc Place: MissouriPrograms | OpenSEI) JumpTexasOpen EnergyAn

Note: This page contains sample records for the topic "large-scale energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Energy Department Loan Guarantee Would Support Large-Scale Rooftop Solar  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusiness CompetitionDepartment ofNatural GasPower for U.S.

142

Large-Scale Renewable Energy Projects (Larger than 10 MWs) | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIanJennifer SomersKnownLabor StandardsSite |2014) |Department

143

NREL: News - NREL Offers an Open-Source Solution for Large-Scale Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and AchievementsResearch Staff Materials and Chemical30214 NREL

144

Large scale solubilization of coal and bioconversion to utilizable energy. Technical progress report, January 1--March 31, 1996  

SciTech Connect (OSTI)

In order develop a system for a large scale coal solubilization and its bioconversion to utilizable fuel, the authors plan to clone the genes encoding Neurospora protein that facilitates depolymerization of coal. They also plan to use desulfurizing bacteria to remove the sulfur in situ and use other microorganisms to convert biosolubilized coal into utilizable energy following an approach utilizing several microorganisms. In addition the products of coal solubilized by fungus will be characterized to determine their chemical nature and the mechanism of reaction catalyzed by fungal product during in vivo and in vitro solubilization by the fungus or purified fungal protein. Results are presented for the cloning of genes for Neurospora CSA-protein.

Mishra, N.C.

1996-05-01T23:59:59.000Z

145

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network [OSTI]

and R. W . BOOIll, "Superconductive Energy Storage Inducand H. A. Peterson, "Superconductive E nergy S torage forMeeting, Janua ry N. Mohan, "Superconductive Energy S torage

Hassenzahl, W.

2011-01-01T23:59:59.000Z

146

Energy Storage and Transportation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Storage and Transportation INL Logo Search Skip Navigation Links Home Newsroom About INL Careers Research Programs Energy and Environment National and Homeland Security New Energy...

147

The optical depth of the Universe to ultrahigh energy cosmic ray scattering in the magnetized large scale structure  

E-Print Network [OSTI]

This paper provides an analytical description of the transport of ultrahigh energy cosmic rays in an inhomogeneously magnetized intergalactic medium. This latter is modeled as a collection of magnetized scattering centers such as radio cocoons, magnetized galactic winds, clusters or magnetized filaments of large scale structure, with negligible magnetic fields in between. Magnetic deflection is no longer a continuous process, it is rather dominated by scattering events. We study the interaction between high energy cosmic rays and the scattering agents. We then compute the optical depth of the Universe to cosmic ray scattering and discuss the phenomological consequences for various source scenarios. For typical parameters of the scattering centers, the optical depth is greater than unity at 5x10^{19}eV, but the total angular deflection is smaller than unity. One important consequence of this scenario is the possibility that the last scattering center encountered by a cosmic ray be mistaken with the source of this cosmic ray. In particular, we suggest that part of the correlation recently reported by the Pierre Auger Observatory may be affected by such delusion: this experiment may be observing in part the last scattering surface of ultrahigh energy cosmic rays rather than their source population. Since the optical depth falls rapidly with increasing energy, one should probe the arrival directions of the highest energy events beyond 10^{20}eV on an event by event basis to circumvent this effect.

Kumiko Kotera; Martin Lemoine

2008-04-30T23:59:59.000Z

148

Sandia National Laboratories: Energy Storage Multimedia Gallery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

StorageEnergy Storage Multimedia Gallery Energy Storage Multimedia Gallery Images Videos Energy Storage Image Gallery Energy Storage B-Roll Videos Battery Abuse Testing Laboratory...

149

Large Scale Duty Cycle (LSDC) Project: Tractive Energy Analysis Methodology and Results from Long-Haul Truck Drive Cycle Evaluations  

SciTech Connect (OSTI)

This report addresses the approach that will be used in the Large Scale Duty Cycle (LSDC) project to evaluate the fuel savings potential of various truck efficiency technologies. The methods and equations used for performing the tractive energy evaluations are presented and the calculation approach is described. Several representative results for individual duty cycle segments are presented to demonstrate the approach and the significance of this analysis for the project. The report is divided into four sections, including an initial brief overview of the LSDC project and its current status. In the second section of the report, the concepts that form the basis of the analysis are presented through a discussion of basic principles pertaining to tractive energy and the role of tractive energy in relation to other losses on the vehicle. In the third section, the approach used for the analysis is formalized and the equations used in the analysis are presented. In the fourth section, results from the analysis for a set of individual duty cycle measurements are presented and different types of drive cycles are discussed relative to the fuel savings potential that specific technologies could bring if these drive cycles were representative of the use of a given vehicle or trucking application. Additionally, the calculation of vehicle mass from measured torque and speed data is presented and the accuracy of the approach is demonstrated.

LaClair, Tim J [ORNL

2011-05-01T23:59:59.000Z

150

HEATS: Thermal Energy Storage  

SciTech Connect (OSTI)

HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

None

2012-01-01T23:59:59.000Z

151

1100 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 5, MAY 2005 Energy Efficiency of Large-Scale Wireless Networks  

E-Print Network [OSTI]

1100 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 5, MAY 2005 Energy Efficiency of large-scale wireless networks is presented. The radio model includes energy consumption of nodes at var- ious operating states. We analyze the total energy consumption of the proactive and the reactive

Zhao, Qing

152

Time-and Energy-efficient Detection of Unknown Tags in Large-scale RFID Systems Xiulong Liu, Heng Qi, Keqiu Li  

E-Print Network [OSTI]

Time- and Energy-efficient Detection of Unknown Tags in Large-scale RFID Systems Xiulong Liu, Heng by reducing more than 90% of the required execution time and energy consumption. I. INTRODUCTION Radio, this is the first piece of work taking both time-efficiency and energy-efficiency into consideration, where

Liu, Alex X.

153

COMPRESSED-AIR ENERGY STORAGE SYSTEMS FOR STAND-ALONE OFF-GRID PHOTOVOLTAIC MODULES  

E-Print Network [OSTI]

COMPRESSED-AIR ENERGY STORAGE SYSTEMS FOR STAND-ALONE OFF-GRID PHOTOVOLTAIC MODULES Dominique materials, flywheels, pumped hydro (PH), superconducting magnetic energy storage (SMES) and compressed air-grid alternative to the large-scale compressed air energy storage systems we propose to examine the viability

Deymier, Pierre

154

HIGH-TEMPERATURE ELECTROLYSIS FOR LARGE-SCALE HYDROGEN AND SYNGAS PRODUCTION FROM NUCLEAR ENERGY – SYSTEM SIMULATION AND ECONOMICS  

SciTech Connect (OSTI)

A research and development program is under way at the Idaho National Laboratory (INL) to assess the technological and scale-up issues associated with the implementation of solid-oxide electrolysis cell technology for efficient high-temperature hydrogen production from steam. This work is supported by the US Department of Energy, Office of Nuclear Energy, under the Nuclear Hydrogen Initiative. This paper will provide an overview of large-scale system modeling results and economic analyses that have been completed to date. System analysis results have been obtained using the commercial code UniSim, augmented with a custom high-temperature electrolyzer module. Economic analysis results were based on the DOE H2A analysis methodology. The process flow diagrams for the system simulations include an advanced nuclear reactor as a source of high-temperature process heat, a power cycle and a coupled steam electrolysis loop. Several reactor types and power cycles have been considered, over a range of reactor outlet temperatures. Pure steam electrolysis for hydrogen production as well as coelectrolysis for syngas production from steam/carbon dioxide mixtures have both been considered. In addition, the feasibility of coupling the high-temperature electrolysis process to biomass and coal-based synthetic fuels production has been considered. These simulations demonstrate that the addition of supplementary nuclear hydrogen to synthetic fuels production from any carbon source minimizes emissions of carbon dioxide during the production process.

J. E. O'Brien; M. G. McKellar; E. A. Harvego; C. M. Stoots

2009-05-01T23:59:59.000Z

155

Model As-of Right Zoning Ordinance or Bylaw: Allowing Use of Large-Scale Solar Energy Facilities  

Broader source: Energy.gov [DOE]

Note: This model ordinance was designed to provide guidance to local governments seeking to develop siting rules for large-scale, ground-mounted solar (250 kW and above). While it was developed as...

156

Effect of Large Scale Transmission Limitations on Renewable Energy Load Matching for Western U.S.: Preprint  

SciTech Connect (OSTI)

Based on the available geographically dispersed data for the Western U.S. (excluding Alaska), we analyze to what extent the geographic diversity of these resources can offset their variability. Without energy storage and assuming unlimited energy flows between regions, wind and PV can meet up to 80% of loads in Western U.S. while less than 10% of the generated power is curtailed. Limiting hourly energy flows by the aggregated transmission line carrying capacities decreases the fraction of the load that can be met with wind and PV generation to approximately 70%.

Diakov, V.; Short, W.; Gilchrist, B.

2012-06-01T23:59:59.000Z

157

Fusion Energy Sciences  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Large Scale Production Computing and Storage Requirements for Fusion Energy Sciences: Target 2017 The NERSC Program Requirements Review "Large Scale Production Computing and...

158

Cost-Effective Solar Thermal Energy Storage: Thermal Energy Storage With Supercritical Fluids  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: UCLA and JPL are creating cost-effective storage systems for solar thermal energy using new materials and designs. A major drawback to the widespread use of solar thermal energy is its inability to cost-effectively supply electric power at night. State-of-the-art energy storage for solar thermal power plants uses molten salt to help store thermal energy. Molten salt systems can be expensive and complex, which is not attractive from a long-term investment standpoint. UCLA and JPL are developing a supercritical fluid-based thermal energy storage system, which would be much less expensive than molten-salt-based systems. The team’s design also uses a smaller, modular, single-tank design that is more reliable and scalable for large-scale storage applications.

None

2011-02-01T23:59:59.000Z

159

The Potential for Increased Atmospheric CO2 Emissions and Accelerated Consumption of Deep Geologic CO2 Storage Resources Resulting from the Large-Scale Deployment of a CCS-Enabled Unconventional Fossil Fuels Industry in the U.S.  

SciTech Connect (OSTI)

Desires to enhance the energy security of the United States have spurred significant interest in the development of abundant domestic heavy hydrocarbon resources including oil shale and coal to produce unconventional liquid fuels to supplement conventional oil supplies. However, the production processes for these unconventional fossil fuels create large quantities of carbon dioxide (CO2) and this remains one of the key arguments against such development. Carbon dioxide capture and storage (CCS) technologies could reduce these emissions and preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited within the U.S. indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. Nevertheless, even assuming wide-scale availability of cost-effective CO2 capture and geologic storage resources, the emergence of a domestic U.S. oil shale or coal-to-liquids (CTL) industry would be responsible for significant increases in CO2 emissions to the atmosphere. The authors present modeling results of two future hypothetical climate policy scenarios that indicate that the oil shale production facilities required to produce 3MMB/d from the Eocene Green River Formation of the western U.S. using an in situ retorting process would result in net emissions to the atmosphere of between 3000-7000 MtCO2, in addition to storing potentially 900-5000 MtCO2 in regional deep geologic formations via CCS in the period up to 2050. A similarly sized, but geographically more dispersed domestic CTL industry could result in 4000-5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000-22,000 MtCO2 stored in regional deep geologic formations over the same period. While this analysis shows that there is likely adequate CO2 storage capacity in the regions where these technologies are likely to deploy, the reliance by these industries on large-scale CCS could result in an accelerated rate of utilization of the nation’s CO2 storage resource, leaving less high-quality storage capacity for other carbon-producing industries including electric power generation.

Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

2009-11-02T23:59:59.000Z

160

Sandia National Laboratories: Batteries & Energy Storage Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

StorageBatteries & Energy Storage Publications Batteries & Energy Storage Publications Batteries & Energy Storage Fact Sheets Achieving Higher Energy Density in Flow Batteries at...

Note: This page contains sample records for the topic "large-scale energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

CyanoGEBA: A Better Understanding of Cynobacterial Diversity through Large-scale Genomics (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)  

ScienceCinema (OSTI)

Patrick Shih, representing both the University of California, Berkeley and JGI, gives a talk titled "CyanoGEBA: A Better Understanding of Cynobacterial Diversity through Large-scale Genomics" at the JGI 7th Annual Users Meeting: Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, California.

Shih, Patrick [Kerfeld Lab, UC Berkeley and JGI

2013-01-22T23:59:59.000Z

162

CyanoGEBA: A Better Understanding of Cynobacterial Diversity through Large-scale Genomics (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)  

SciTech Connect (OSTI)

Patrick Shih, representing both the University of California, Berkeley and JGI, gives a talk titled "CyanoGEBA: A Better Understanding of Cynobacterial Diversity through Large-scale Genomics" at the JGI 7th Annual Users Meeting: Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, California.

Shih, Patrick [Kerfeld Lab, UC Berkeley and JGI] [Kerfeld Lab, UC Berkeley and JGI

2012-03-22T23:59:59.000Z

163

Reducing Data Center Loads for a Large-Scale, Low-Energy Office Building: NREL's Research Support Facility (Book)  

SciTech Connect (OSTI)

This publication detailing the design, implementation strategies, and continuous performance monitoring of NREL's Research Support Facility data center. Data centers are energy-intensive spaces that facilitate the transmission, receipt, processing, and storage of digital data. These spaces require redundancies in power and storage, as well as infrastructure, to cool computing equipment and manage the resulting waste heat (Tschudi, Xu, Sartor, and Stein, 2003). Data center spaces can consume more than 100 times the energy of standard office spaces (VanGeet 2011). The U.S. Environmental Protection Agency (EPA) reported that data centers used 61 billion kilowatt-hours (kWh) in 2006, which was 1.5% of the total electricity consumption in the U.S. (U.S. EPA, 2007). Worldwide, data centers now consume more energy annually than Sweden (New York Times, 2009). Given their high energy consumption and conventional operation practices, there is a potential for huge energy savings in data centers. The National Renewable Energy Laboratory (NREL) is world renowned for its commitment to green building construction. In June 2010, the laboratory finished construction of a 220,000-square-foot (ft{sup 2}), LEED Platinum, Research Support Facility (RSF), which included a 1,900-ft{sup 2} data center. The RSF will expand to 360,000 ft{sup 2} with the opening of an additional wing December, 2011. The project's request for proposals (RFP) set a whole-building demand-side energy use requirement of a nominal 35 kBtu/ft{sup 2} per year. On-site renewable energy generation will offset the annual energy consumption. To support the RSF's energy goals, NREL's new data center was designed to minimize its energy footprint without compromising service quality. Several implementation challenges emerged during the design, construction, and first 11 months of operation of the RSF data center. This document highlights these challenges and describes in detail how NREL successfully overcame them. The IT settings and strategies outlined in this document have been used to significantly reduce data center energy requirements in the RSF; however, these can also be used in existing buildings and retrofits.

Sheppy, M.; Lobato, C.; Van Geet, O.; Pless, S.; Donovan, K.; Powers, C.

2011-12-01T23:59:59.000Z

164

Energy storage capacitors  

SciTech Connect (OSTI)

The properties of capacitors are reviewed in general, including dielectrics, induced polarization, and permanent polarization. Then capacitance characteristics are discussed and modelled. These include temperature range, voltage, equivalent series resistance, capacitive reactance, impedance, dissipation factor, humidity and frequency effects, storage temperature and time, and lifetime. Applications of energy storage capacitors are then discussed. (LEW)

Sarjeant, W.J.

1984-01-01T23:59:59.000Z

165

Large Scale Computing and Storage Requirements for Fusion Energy Sciences: Target 2017  

E-Print Network [OSTI]

in   the   Swarthmore   Spheromak   Experiment   showing  of  the  Swarthmore  Spheromak   Experiment  (SSX)  the   Swarthmore   Spheromak   Experiment   is   shown  

Gerber, Richard

2014-01-01T23:59:59.000Z

166

Large Scale Computing and Storage Requirements for Fusion Energy Sciences Research  

E-Print Network [OSTI]

National Ignition Facility (NIF) coming online, this is theof SRS/2wp instabilities in NIF relevant regimes. However,parameters relevant to NIF. There are important questions

Gerber, Richard

2012-01-01T23:59:59.000Z

167

Large Scale Computing and Storage Requirements for Fusion Energy Sciences Research  

E-Print Network [OSTI]

of focus include magnetohydrodynamics, plasma turbulence andsystems, with a focus on the physics of plasmas in magneticas well as space plasmas. The focus of his work is on

Gerber, Richard

2012-01-01T23:59:59.000Z

168

First U.S. Large-Scale CO2 Storage Project Advances | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecordFederal Registry CommentsOverview »FINDINGDepartment ofPlant |First

169

Panel 1, Towards Sustainable Energy Systems: The Role of Large-Scale Hydrogen Storage in Germany  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSalesOE0000652 Srivastava,Pacific1of PageHYDROGEN ENERGYHanno

170

Role of large scale storage in a UK low carbon energy future Philipp Grunewalda  

E-Print Network [OSTI]

) and enable demand side management (DSM) of electric appliances, including ground source heat pumps, air, 311 Mechanical Engineering Building, London SW7 2AZ, UK bLow Carbon Research Institute, Cardiff University, Welsh School of Architecture, Bute Building, King Edward VII Avenue, Cardiff, CF10 3NB Abstract

171

DRAFT "Energy Advisory Committee" - Energy Storage Subcommittee...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Report: Revision 2 DRAFT "Energy Advisory Committee" - Energy Storage Subcommittee Report: Revision 2 Energy storage plays a vital role in all forms of business and affects the...

172

Large-Scale in the United  

E-Print Network [OSTI]

Large-Scale Offshore Wind Power in the United States ASSESSMENT OF OPPORTUNITIES AND BARRIERS, including 10% post consumer waste. #12;Large-Scale Offshore Wind Power in the United States ASSESSMENT Energy, Office of Wind and Water Power Technologies for their financial and technical support

173

The Energy DataBus: NREL's Open-Source Application for Large-Scale Energy Data Collection and Analysis  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

NREL’s Energy DataBus is used for tracking and analyzing energy use on its own campus. The system is applicable to other facilities—including anything from a single building to a large military base or college campus—or for other energy data management needs. Managing and minimizing energy consumption on a large campus is usually a difficult task for facility managers: There may be hundreds of energy meters spread across a campus, and the meter data are often recorded by hand. Even when data are captured electronically, there may be measurement issues or time periods that may not coincide. Making sense of this limited and often confusing data can be a challenge that makes the assessment of building performance a struggle for many facility managers. The Energy DataBus software was developed by NREL to address these issues on its own campus, but with an eye toward offering its software solutions to other facilities. Key features include the software's ability to store large amounts of data collected at high frequencies—NREL collects some of its energy data every second—and rich functionality to integrate this wide variety of data into a single database [copied from http://en.openei.org/wiki/NREL_Energy_DataBus].

174

DOE Global Energy Storage Database  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The DOE International Energy Storage Database has more than 400 documented energy storage projects from 34 countries around the world. The database provides free, up-to-date information on grid-connected energy storage projects and relevant state and federal policies. More than 50 energy storage technologies are represented worldwide, including multiple battery technologies, compressed air energy storage, flywheels, gravel energy storage, hydrogen energy storage, pumped hydroelectric, superconducting magnetic energy storage, and thermal energy storage. The policy section of the database shows 18 federal and state policies addressing grid-connected energy storage, from rules and regulations to tariffs and other financial incentives. It is funded through DOE’s Sandia National Laboratories, and has been operating since January 2012.

175

Energy storage connection system  

DOE Patents [OSTI]

A power system for connecting a variable voltage power source, such as a power controller, with a plurality of energy storage devices, at least two of which have a different initial voltage than the output voltage of the variable voltage power source. The power system includes a controller that increases the output voltage of the variable voltage power source. When such output voltage is substantially equal to the initial voltage of a first one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the first one of the energy storage devices. The controller then causes the output voltage of the variable voltage power source to continue increasing. When the output voltage is substantially equal to the initial voltage of a second one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the second one of the energy storage devices.

Benedict, Eric L.; Borland, Nicholas P.; Dale, Magdelena; Freeman, Belvin; Kite, Kim A.; Petter, Jeffrey K.; Taylor, Brendan F.

2012-07-03T23:59:59.000Z

176

Journal of Machine Learning Research 10 (2009) 743-746 Submitted 11/07; Revised 7/08; Published 3/09 Nieme: Large-Scale Energy-Based Models  

E-Print Network [OSTI]

for large-scale classification, re- gression and ranking. NIEME relies on the framework of energy learning, classification, ranking, regression, energy-based mod- els, machine learning software 1/09 Nieme: Large-Scale Energy-Based Models Francis Maes FRANCIS.MAES@LIP6.FR Universite Pierre et Marie

Kaski, Samuel

177

Large-scale impact of CO2 storage in deep saline aquifers: A sensitivity study on pressure response in stratified systems  

E-Print Network [OSTI]

aquifer near the ground surface to the storage formation.below the ground surface. The storage formation is boundedstorage formation, and Aquifer 8 the uppermost aquifer nearest to the ground

Birkholzer, J.T.

2008-01-01T23:59:59.000Z

178

Using an Energy Performance Based Design-Build Process to Procure a Large Scale Low-Energy Building: PReprint  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500II Field Emission SEMUsedUserUsingelectronEnergyThemonitor

179

Energy Storage: Current landscape for alternative energy  

E-Print Network [OSTI]

Energy Storage: Current landscape for alternative energy storage technologies and what the future may hold for multi-scale storage applications Presented by: Dave Lucero, Director Alternative Energy · Industry initiatives · Technology · Energy Storage Market · EaglePicher initiatives · Summary #12

180

Nanostructured Materials for Energy Generation and Storage  

E-Print Network [OSTI]

for Electrochemical Energy Storage Nanostructured Electrodesof the batteries and their energy storage efficiency. viifor Nanostructure-Based Energy Storage and Generation Tech-

Khan, Javed Miller

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "large-scale energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

AQUIFER THERMAL ENERGY STORAGE-A SURVEY  

E-Print Network [OSTI]

High temperature underground thermal energy storage, inProceedings, Thermal Energy Storage in Aquifers Workshop:underground thermal energy storage, in ATES newsletter:

Tsang, Chin Fu

2012-01-01T23:59:59.000Z

182

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network [OSTI]

Survey of Thermal Energy Storage in Aquifers Coupled withconcept of thermal energy storage in aquifers was suggestedLow Temperature Thermal Energy Storage Program of Oak Ridge

Authors, Various

2011-01-01T23:59:59.000Z

183

AQUIFER THERMAL ENERGY STORAGE-A SURVEY  

E-Print Network [OSTI]

1978, High temperature underground thermal energy storage,in Proceedings, Thermal Energy Storage in Aquifers Workshop:High temperature underground thermal energy storage, in ATES

Tsang, Chin Fu

2012-01-01T23:59:59.000Z

184

Large scale tracking algorithms.  

SciTech Connect (OSTI)

Low signal-to-noise data processing algorithms for improved detection, tracking, discrimination and situational threat assessment are a key research challenge. As sensor technologies progress, the number of pixels will increase signi cantly. This will result in increased resolution, which could improve object discrimination, but unfortunately, will also result in a significant increase in the number of potential targets to track. Many tracking techniques, like multi-hypothesis trackers, suffer from a combinatorial explosion as the number of potential targets increase. As the resolution increases, the phenomenology applied towards detection algorithms also changes. For low resolution sensors, "blob" tracking is the norm. For higher resolution data, additional information may be employed in the detection and classfication steps. The most challenging scenarios are those where the targets cannot be fully resolved, yet must be tracked and distinguished for neighboring closely spaced objects. Tracking vehicles in an urban environment is an example of such a challenging scenario. This report evaluates several potential tracking algorithms for large-scale tracking in an urban environment.

Hansen, Ross L.; Love, Joshua Alan; Melgaard, David Kennett; Karelitz, David B.; Pitts, Todd Alan; Zollweg, Joshua David; Anderson, Dylan Z.; Nandy, Prabal; Whitlow, Gary L.; Bender, Daniel A.; Byrne, Raymond Harry

2015-01-01T23:59:59.000Z

185

Compressed Air Energy Storage System  

E-Print Network [OSTI]

/expanders are crucial for the economical viability of a Compressed Air Energy Storage (CAES) system such as the

Farzad A. Shirazi; Mohsen Saadat; Bo Yan; Perry Y. Li; Terry W. Simon

186

Electrical Energy Storage: Stan Whittingham  

E-Print Network [OSTI]

1 p. 1 Electrical Energy Storage: Stan Whittingham Report of DOE workshop, April 2007 A Cleaner and Energy Independent America through Chemistry Chemical Storage: Batteries, today and tomorrow http needed in Energy Storage Lithium Economy not Hydrogen Economy #12;9 p. 9 Batteries are key to an economy

Suzuki, Masatsugu

187

The Power of Energy Storage  

E-Print Network [OSTI]

The Power of Energy Storage How to Increase Deployment in California to Reduce Greenhouse Gas;1Berkeley Law \\ UCLA Law The Power of Energy Storage: How to Increase Deployment in California to Reduce Greenhouse Gas Emissions Executive Summary: Expanding Energy Storage in California Sunshine and wind, even

Sadoulet, Elisabeth

188

Superconducting magnetic energy storage  

SciTech Connect (OSTI)

Recent programmatic developments in Superconducting Magnetic Energy Storage (SMES) have prompted renewed and widespread interest in this field. In mid 1987 the Defense Nuclear Agency, acting for the Strategic Defense Initiative Office, issued a request for proposals for the design and construction of SMES Engineering Test Model (ETM). Two teams, one led by Bechtel and the other by Ebasco, are now engaged in the first phase of the development of a 10 to 20 MWhr ETM. This report presents the rationale for energy storage on utility systems, describes the general technology of SMES, and explains the chronological development of the technology. The present ETM program is outlined; details of the two projects for ETM development are described in other papers in these proceedings. The impact of high T/sub c/ materials on SMES is discussed. 69 refs., 3 figs., 3 tabs.

Hassenzahl, W.

1988-08-01T23:59:59.000Z

189

Large scale solubilization of coal and bioconversion to utilizable energy. Eighth quarterly technical progress report, July 1, 1995--September 30, 1995  

SciTech Connect (OSTI)

In order to develop a system for a large scale coal solubilization and its bioconversion to utilizable fuel, we plan to clone the genes encoding Neurospora protein that facilitate depolymerization of coal. We also plan to use desulfurizing bacteria to remove the sulfur in situ and use other microorganisms to convert biosolubilized coal into utilizable energy following an approach utilizing several microorganisms. In addition the product of coal solubilized by fungus will be characterized to determine their chemical nature and the mechanism of reaction catalyzed by fungal product during in vivo and in vitro solubilization by the fungus or purified fungal protein.

Mishra, N.C.

1996-02-01T23:59:59.000Z

190

Large scale solubilization of coal and bioconversion to utilizable energy. Seventh quarterly technical progress report, April 1, 1995--June 30, 1995  

SciTech Connect (OSTI)

In order to develop a system for a large scale coal solubilization and its bioconversion to utilizable fuel, we plan to clone the genes encoding Neurospora protein that facilitate depolymerization of coal. We also plan to use desulfurizing bacteria to remove the sulfur in situ and use other microorganisms to convert biosolubilized coal into utilizable energy following an approach utilizing several microorganisms. In addition the product of coal solubilized by fungus will be characterized to determine their chemical nature and the mechanism of reaction catalyzed by fungal product during in vivo and in vitro solubilization by the fungus or purified fungal protein.

Mishra, N.C.

1995-12-01T23:59:59.000Z

191

Maui energy storage study.  

SciTech Connect (OSTI)

This report investigates strategies to mitigate anticipated wind energy curtailment on Maui, with a focus on grid-level energy storage technology. The study team developed an hourly production cost model of the Maui Electric Company (MECO) system, with an expected 72 MW of wind generation and 15 MW of distributed photovoltaic (PV) generation in 2015, and used this model to investigate strategies that mitigate wind energy curtailment. It was found that storage projects can reduce both wind curtailment and the annual cost of producing power, and can do so in a cost-effective manner. Most of the savings achieved in these scenarios are not from replacing constant-cost diesel-fired generation with wind generation. Instead, the savings are achieved by the more efficient operation of the conventional units of the system. Using additional storage for spinning reserve enables the system to decrease the amount of spinning reserve provided by single-cycle units. This decreases the amount of generation from these units, which are often operated at their least efficient point (at minimum load). At the same time, the amount of spinning reserve from the efficient combined-cycle units also decreases, allowing these units to operate at higher, more efficient levels.

Ellison, James; Bhatnagar, Dhruv; Karlson, Benjamin

2012-12-01T23:59:59.000Z

192

Fact Sheet: Energy Storage Technology Advancement Partnership...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technology Advancement Partnership (October 2012) Fact Sheet: Energy Storage Technology Advancement Partnership (October 2012) The Energy Storage Technology Advancement Partnership...

193

The effect of the geomagnetic field on cosmic ray energy estimates and large scale anisotropy searches on data from the Pierre Auger Observatory  

SciTech Connect (OSTI)

We present a comprehensive study of the influence of the geomagnetic field on the energy estimation of extensive air showers with a zenith angle smaller than 60{sup o}, detected at the Pierre Auger Observatory. The geomagnetic field induces an azimuthal modulation of the estimated energy of cosmic rays up to the {approx} 2% level at large zenith angles. We present a method to account for this modulation of the reconstructed energy. We analyse the effect of the modulation on large scale anisotropy searches in the arrival direction distributions of cosmic rays. At a given energy, the geomagnetic effect is shown to induce a pseudo-dipolar pattern at the percent level in the declination distribution that needs to be accounted for. In this work, we have identified and quantified a systematic uncertainty affecting the energy determination of cosmic rays detected by the surface detector array of the Pierre Auger Observatory. This systematic uncertainty, induced by the influence of the geomagnetic field on the shower development, has a strength which depends on both the zenith and the azimuthal angles. Consequently, we have shown that it induces distortions of the estimated cosmic ray event rate at a given energy at the percent level in both the azimuthal and the declination distributions, the latter of which mimics an almost dipolar pattern. We have also shown that the induced distortions are already at the level of the statistical uncertainties for a number of events N {approx_equal} 32 000 (we note that the full Auger surface detector array collects about 6500 events per year with energies above 3 EeV). Accounting for these effects is thus essential with regard to the correct interpretation of large scale anisotropy measurements taking explicitly profit from the declination distribution.

Abreu, P.; /Lisbon, IST; Aglietta, M.; /IFSI, Turin; Ahn, E.J.; /Fermilab; Albuquerque, I.F.M.; /Sao Paulo U.; Allard, D.; /APC, Paris; Allekotte, I.; /Centro Atomico Bariloche; Allen, J.; /New York U.; Allison, P.; /Ohio State U.; Alvarez Castillo, J.; /Mexico U., ICN; Alvarez-Muniz, J.; /Santiago de Compostela U.; Ambrosio, M.; /Naples U. /INFN, Naples /Nijmegen U., IMAPP; ,

2011-11-01T23:59:59.000Z

194

CFES RESEARCH THRUSTS: Energy Storage  

E-Print Network [OSTI]

CFES RESEARCH THRUSTS: Energy Storage Wind Energy Solar Energy Smart Grids Smart Buildings For our with the student to finalize the project plan. To sponsor an Energy Scholar, a company agrees to: · Assign

Lü, James Jian-Qiang

195

Regional Opportunities for Carbon Dioxide Capture and Storage in China: A Comprehensive CO2 Storage Cost Curve and Analysis of the Potential for Large Scale Carbon Dioxide Capture and Storage in the People’s Republic of China  

SciTech Connect (OSTI)

This study presents data and analysis on the potential for carbon dioxide capture and storage (CCS) technologies to deploy within China, including a survey of the CO2 source fleet and potential geologic storage capacity. The results presented here indicate that there is significant potential for CCS technologies to deploy in China at a level sufficient to deliver deep, sustained and cost-effective emissions reductions for China over the course of this century.

Dahowski, Robert T.; Li, Xiaochun; Davidson, Casie L.; Wei, Ning; Dooley, James J.

2009-12-01T23:59:59.000Z

196

Flywheel energy storage workshop  

SciTech Connect (OSTI)

Since the November 1993 Flywheel Workshop, there has been a major surge of interest in Flywheel Energy Storage. Numerous flywheel programs have been funded by the Advanced Research Projects Agency (ARPA), by the Department of Energy (DOE) through the Hybrid Vehicle Program, and by private investment. Several new prototype systems have been built and are being tested. The operational performance characteristics of flywheel energy storage are being recognized as attractive for a number of potential applications. Programs are underway to develop flywheels for cars, buses, boats, trains, satellites, and for electric utility applications such as power quality, uninterruptible power supplies, and load leveling. With the tremendous amount of flywheel activity during the last two years, this workshop should again provide an excellent opportunity for presentation of new information. This workshop is jointly sponsored by ARPA and DOE to provide a review of the status of current flywheel programs and to provide a forum for presentation of new flywheel technology. Technology areas of interest include flywheel applications, flywheel systems, design, materials, fabrication, assembly, safety & containment, ball bearings, magnetic bearings, motor/generators, power electronics, mounting systems, test procedures, and systems integration. Information from the workshop will help guide ARPA & DOE planning for future flywheel programs. This document is comprised of detailed viewgraphs.

O`Kain, D.; Carmack, J. [comps.

1995-12-31T23:59:59.000Z

197

Understanding the impact of large-scale penetration of micro combined heat & power technologies within energy systems/  

E-Print Network [OSTI]

Significant energy challenges today come from security of supply and environmental concerns. Those surpass the quest for economic efficiency that has been the primary objective until recent times. In an intensive fossil-fuel ...

Tapia-Ahumada, Karen de los Ángeles

2011-01-01T23:59:59.000Z

198

Large scale solubilization of coal and bioconversion to utilizable energy. Third quarterly technical progress report, April 1, 1994--June 30, 1994  

SciTech Connect (OSTI)

In order to develop a system for a large scale coal solubilization and its bioconversion to utilizable fuel, the investigators plan to clone the genes encoding Neurospora protein that facilitate depolymerization of coal. They also plan to use desulfurizing bacteria to remove the sulfur in situ and use other microorganisms to convert biosolubilized coal into utilizable energy following an approach utilizing several microorganisms. In addition the product of coal solubilized by fungus will be characterized to determine their chemical nature and the mechanism of reaction catalyzed by fungal product during in vivo and in vitro solubilization by the fungus or purified fungal protein. Main objectives are: (1) cloning of Neurospora gene for coal depolymerization protein controlling solubilization in different host cells, utilizing Neurospora plasmid and other vector(s); (2) (a) development of a large scale electrophoretic separation of coal drived products obtained after microbial solubilization; (b) identification of the coal derived products obtained after biosolubilization by Neurospora cultures or obtained after Neurospora enzyme catalyzed reaction in in vitro by the wildtype and mutant enzymes; (3) bioconversion of coal drived products into utilizable fuel; and (4) characterization of Neurospora wildtype and mutant CSA protein(s) involved in solubilization of coal in order to assess the nature of the mechanism of solubilization and the role of Neurospora proteins in this process.

Mishra, N.C.

1994-08-01T23:59:59.000Z

199

Energy Storage Laboratory (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Storage Laboratory at the Energy Systems Integration Facility. At NREL's Energy Storage Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on the integration of energy storage systems (both stationary and vehicle-mounted) and interconnection with the utility grid. Focusing on battery technologies, but also hosting ultra-capacitors and other electrical energy storage technologies, the laboratory will provide all resources necessary to develop, test, and prove energy storage system performance and compatibility with distributed energy systems. The laboratory will also provide robust vehicle testing capability, including a drive-in environmental chamber, which can accommodate commercial-sized hybrid, electric, biodiesel, ethanol, compressed natural gas, and hydrogen fueled vehicles. The Energy Storage Laboratory is designed to ensure personnel and equipment safety when testing hazardous battery systems or other energy storage technologies. Closely coupled with the research electrical distribution bus at ESIF, the Energy Storage Laboratory will offer megawatt-scale power testing capability as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Some application scenarios are: The following types of tests - Performance, Efficiency, Safety, Model validation, and Long duration reliability. (2) Performed on the following equipment types - (a) Vehicle batteries (both charging and discharging V2G); (b) Stationary batteries; (c) power conversion equipment for energy storage; (d) ultra- and super-capacitor systems; and (e) DC systems, such as commercial microgrids.

Not Available

2011-10-01T23:59:59.000Z

200

Reducing Plug and Process Loads for a Large Scale, Low Energy Office Building: NREL's Research Support Facility: Preprint  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST 800-53 National Renewable Energy Laboratory

Note: This page contains sample records for the topic "large-scale energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Sandia National Laboratories: energy storage requirements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Accomplishments On March 3, 2015, in Capabilities, Distribution Grid Integration, Energy, Energy Storage, Energy Storage Systems, Energy Surety, Grid Integration, Infrastructure...

202

Large-scale Manufacturing of Nanoparticulate-based Lubrication Additives for Improved Energy Efficiency and Reduced Emissions  

SciTech Connect (OSTI)

This project was funded under the Department of Energy (DOE) Lab Call on Nanomanufacturing for Energy Efficiency and was directed toward the development of novel boron-based nanocolloidal lubrication additives for improving the friction and wear performance of machine components in a wide range of industrial and transportation applications. Argonne?s research team concentrated on the scientific and technical aspects of the project, using a range of state-of-the art analytical and tribological test facilities. Argonne has extensive past experience and expertise in working with boron-based solid and liquid lubrication additives, and has intellectual property ownership of several. There were two industrial collaborators in this project: Ashland Oil (represented by its Valvoline subsidiary) and Primet Precision Materials, Inc. (a leading nanomaterials company). There was also a sub-contract with the University of Arkansas. The major objectives of the project were to develop novel boron-based nanocolloidal lubrication additives and to optimize and verify their performance under boundary-lubricated sliding conditions. The project also tackled problems related to colloidal dispersion, larger-scale manufacturing and blending of nano-additives with base carrier oils. Other important issues dealt with in the project were determination of the optimum size and concentration of the particles and compatibility with various base fluids and/or additives. Boron-based particulate additives considered in this project included boric acid (H{sub 3}BO{sub 3}), hexagonal boron nitride (h-BN), boron oxide, and borax. As part of this project, we also explored a hybrid MoS{sub 2} + boric acid formulation approach for more effective lubrication and reported the results. The major motivation behind this work was to reduce energy losses related to friction and wear in a wide spectrum of mechanical systems and thereby reduce our dependence on imported oil. Growing concern over greenhouse gas emissions was also a major reason. The transportation sector alone consumes about 13 million barrels of crude oil per day (nearly 60% of which is imported) and is responsible for about 30% of the CO{sub 2} emission. When we consider manufacturing and other energy-intensive industrial processes, the amount of petroleum being consumed due to friction and wear reaches more than 20 million barrels per day (from official energy statistics, U.S. Energy Information Administration). Frequent remanufacturing and/or replacement of worn parts due to friction-, wear-, and scuffing-related degradations also consume significant amounts of energy and give rise to additional CO{sub 2} emission. Overall, the total annual cost of friction- and wear-related energy and material losses is estimated to be rather significant (i.e., as much as 5% of the gross national products of highly industrialized nations). It is projected that more than half of the total friction- and wear-related energy losses can be recovered by developing and implementing advanced friction and wear control technologies. In transportation vehicles alone, 10% to 15% of the fuel energy is spent to overcome friction. If we can cut down the friction- and wear-related energy losses by half, then we can potentially save up to 1.5 million barrels of petroleum per day. Also, less friction and wear would mean less energy consumption as well as less carbon emissions and hazardous byproducts being generated and released to the environment. New and more robust anti-friction and -wear control technologies may thus have a significant positive impact on improving the efficiency and environmental cleanliness of the current legacy fleet and future transportation systems. Effective control of friction in other industrial sectors such as manufacturing, power generation, mining and oil exploration, and agricultural and earthmoving machinery may bring more energy savings. Therefore, this project was timely and responsive to the energy and environmental objectives of DOE and our nation. In this project, most of the boron-based mater

Erdemir, Ali [Argonne National Laboratory] [Argonne National Laboratory

2013-09-26T23:59:59.000Z

203

Evaluation of the Potential Environmental Impacts from Large-Scale Use and Production of Hydrogen in Energy and Transportation Applications  

SciTech Connect (OSTI)

The purpose of this project is to systematically identify and examine possible near and long-term ecological and environmental effects from the production of hydrogen from various energy sources based on the DOE hydrogen production strategy and the use of that hydrogen in transportation applications. This project uses state-of-the-art numerical modeling tools of the environment and energy system emissions in combination with relevant new and prior measurements and other analyses to assess the understanding of the potential ecological and environmental impacts from hydrogen market penetration. H2 technology options and market penetration scenarios will be evaluated using energy-technology-economics models as well as atmospheric trace gas projections based on the IPCC SRES scenarios including the decline in halocarbons due to the Montreal Protocol. Specifically we investigate the impact of hydrogen releases on the oxidative capacity of the atmosphere, the long-term stability of the ozone layer due to changes in hydrogen emissions, the impact of hydrogen emissions and resulting concentrations on climate, the impact on microbial ecosystems involved in hydrogen uptake, and criteria pollutants emitted from distributed and centralized hydrogen production pathways and their impacts on human health, air quality, ecosystems, and structures under different penetration scenarios

Wuebbles, D.J.; Dubey, M.K., Edmonds, J.; Layzell, D.; Olsen, S.; Rahn, T.; Rocket, A.; Wang, D.; Jia, W.

2010-06-01T23:59:59.000Z

204

Article for thermal energy storage  

DOE Patents [OSTI]

A thermal energy storage composition is provided which is in the form of a gel. The composition includes a phase change material and silica particles, where the phase change material may comprise a linear alkyl hydrocarbon, water/urea, or water. The thermal energy storage composition has a high thermal conductivity, high thermal energy storage, and may be used in a variety of applications such as in thermal shipping containers and gel packs.

Salyer, Ival O. (Dayton, OH)

2000-06-27T23:59:59.000Z

205

Large-Scale Offshore Wind Power in the United States: Assessment of Opportunities and Barriers, NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 CERN 73-11Large areaLargefor HighDepartment

206

NV Energy Electricity Storage Valuation  

SciTech Connect (OSTI)

This study examines how grid-level electricity storage may benet the operations of NV Energy in 2020, and assesses whether those benets justify the cost of the storage system. In order to determine how grid-level storage might impact NV Energy, an hourly production cost model of the Nevada Balancing Authority (\\BA") as projected for 2020 was built and used for the study. Storage facilities were found to add value primarily by providing reserve. Value provided by the provision of time-of-day shifting was found to be limited. If regulating reserve from storage is valued the same as that from slower ramp rate resources, then it appears that a reciprocating engine generator could provide additional capacity at a lower cost than a pumped storage hydro plant or large storage capacity battery system. In addition, a 25-MW battery storage facility would need to cost $650/kW or less in order to produce a positive Net Present Value (NPV). However, if regulating reserve provided by storage is considered to be more useful to the grid than that from slower ramp rate resources, then a grid-level storage facility may have a positive NPV even at today's storage system capital costs. The value of having storage provide services beyond reserve and time-of-day shifting was not assessed in this study, and was therefore not included in storage cost-benefit calculations.

Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader A.; Jin, Chunlian

2013-06-30T23:59:59.000Z

207

Running Large Scale Jobs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »SubmitterJ. NorbyN.RocksRoyOverviewjobsRunning

208

Energy Storage & Power Electronics 2008 Peer Review - Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Storage Systems (ESS) Presentations Energy Storage & Power Electronics 2008 Peer Review - Energy Storage Systems (ESS) Presentations The 2008 Peer Review Meeting for the DOE...

209

Black Thunder Coal Mine and Los Alamos National Laboratory experimental study of seismic energy generated by large scale mine blasting  

SciTech Connect (OSTI)

In an attempt to better understand the impact that large mining shots will have on verifying compliance with the international, worldwide, Comprehensive Test Ban Treaty (CTBT, no nuclear explosion tests), a series of seismic and videographic experiments has been conducted during the past two years at the Black Thunder Coal Mine. Personnel from the mine and Los Alamos National Laboratory have cooperated closely to design and perform experiments to produce results with mutual benefit to both organizations. This paper summarizes the activities, highlighting the unique results of each. Topics which were covered in these experiments include: (1) synthesis of seismic, videographic, acoustic, and computer modeling data to improve understanding of shot performance and phenomenology; (2) development of computer generated visualizations of observed blasting techniques; (3) documentation of azimuthal variations in radiation of seismic energy from overburden casting shots; (4) identification of, as yet unexplained, out of sequence, simultaneous detonation in some shots using seismic and videographic techniques; (5) comparison of local (0.1 to 15 kilometer range) and regional (100 to 2,000 kilometer range) seismic measurements leading to determine of the relationship between local and regional seismic amplitude to explosive yield for overburden cast, coal bulking and single fired explosions; and (6) determination of the types of mining shots triggering the prototype International Monitoring System for the CTBT.

Martin, R.L.; Gross, D. [Thunder Basin Coal Co., Wright, WY (United States); Pearson, D.C.; Stump, B.W. [Los Alamos National Lab., NM (United States); Anderson, D.P. [Southern Methodist Univ., Dallas, TX (United States). Dept. of Geological Sciences

1996-12-31T23:59:59.000Z

210

Integrated Renewable Energy and Energy Storage Systems  

E-Print Network [OSTI]

Integrated Renewable Energy and Energy Storage Systems Prepared for the U.S. Department of Energy and Energy Storage Systems TABLE OF CONTENTS 1 Office of Electricity Delivery and Energy Reliability Under Award No. DE-FC-06NT42847 Hawai`i Distributed

211

LARGE SCALE SIMULATIONS OF THE MECHANCIAL PROPERTIES OF LAYERED TRANSITION METAL TERNARY COMPOUNDS FOR FOSSIL ENERGY POWER SYSTEM APPLICATIONS  

SciTech Connect (OSTI)

Advanced materials with applications in extreme conditions such as high temperature, high pressure, and corrosive environments play a critical role in the development of new technologies to significantly improve the performance of different types of power plants. Materials that are currently employed in fossil energy conversion systems are typically the Ni-based alloys and stainless steels that have already reached their ultimate performance limits. Incremental improvements are unlikely to meet the more stringent requirements aimed at increased efficiency and reduce risks while addressing environmental concerns and keeping costs low. Computational studies can lead the way in the search for novel materials or for significant improvements in existing materials that can meet such requirements. Detailed computational studies with sufficient predictive power can provide an atomistic level understanding of the key characteristics that lead to desirable properties. This project focuses on the comprehensive study of a new class of materials called MAX phases, or Mn+1AXn (M = a transition metal, A = Al or other group III, IV, and V elements, X = C or N). The MAX phases are layered transition metal carbides or nitrides with a rare combination of metallic and ceramic properties. Due to their unique structural arrangements and special types of bonding, these thermodynamically stable alloys possess some of the most outstanding properties. We used a genomic approach in screening a large number of potential MAX phases and established a database for 665 viable MAX compounds on the structure, mechanical and electronic properties and investigated the correlations between them. This database if then used as a tool for materials informatics for further exploration of this class of intermetallic compounds.

Ching, Wai-Yim

2014-12-31T23:59:59.000Z

212

Panel 3, Electrolysis for Grid Energy Storage  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Electrolysis for Grid Energy Storage DOE-Industry Canada Workshop May 15, 2014 INTRODUCTION HYDROGEN ENERGY SYSTEMS FOR ENERGY STORAGE AND CLEAN FUEL PRODUCTION ITM POWER INC. ITM...

213

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network [OSTI]

and J. Schwarz, Survey of Thermal Energy Storage in AquifersLow Temperature Thermal Energy Storage Program of Oak RidgeAquifers for Seasonal Thermal Energy Storage: An Overview of

Authors, Various

2011-01-01T23:59:59.000Z

214

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network [OSTI]

and J. Schwarz, Survey of Thermal Energy Storage in AquifersB. Quale. Seasonal storage of thermal energy in water in theSecond Annual Thermal Energy Storage Contractors'

Authors, Various

2011-01-01T23:59:59.000Z

215

Panel 4, Hydrogen Energy Storage Policy Considerations  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Storage Policy Considerations Hydrogen Storage Workshop Jeffrey Reed Southern California Gas Company May 15, 2014 0 Methane is a Great Storage Medium 1 SoCalGas' storage...

216

NREL: Vehicles and Fuels Research - Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage Vehicles and Fuels Research Cutaway image of an automobile showing the location of energy storage components (battery and inverter), as well as electric motor, power...

217

Webinar Presentation: Energy Storage Solutions for Microgrids...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Presentation: Energy Storage Solutions for Microgrids (November 2012) Webinar Presentation: Energy Storage Solutions for Microgrids (November 2012) On November 7, 2012, Clean...

218

Thermal Energy Storage Potential in Supermarkets.  

E-Print Network [OSTI]

?? The objective of this research is to evaluate the potential of thermal energy storage in supermarkets with CO2 refrigeration systems. Suitable energy storage techniques… (more)

Ohannessian, Roupen

2014-01-01T23:59:59.000Z

219

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network [OSTI]

Encrgy Storage Plant" , EPRI Report EM-3457, April 1984. [4521st century. REFERENCES The EPRI Regional Systems preparedby J. J. Mulvaney, EPRI Report EPRI P-19S0SR, (1981). [2J O.

Hassenzahl, W.

2011-01-01T23:59:59.000Z

220

Large-Scale PV Integration Study  

SciTech Connect (OSTI)

This research effort evaluates the impact of large-scale photovoltaic (PV) and distributed generation (DG) output on NV Energy’s electric grid system in southern Nevada. It analyzes the ability of NV Energy’s generation to accommodate increasing amounts of utility-scale PV and DG, and the resulting cost of integrating variable renewable resources. The study was jointly funded by the United States Department of Energy and NV Energy, and conducted by a project team comprised of industry experts and research scientists from Navigant Consulting Inc., Sandia National Laboratories, Pacific Northwest National Laboratory and NV Energy.

Lu, Shuai; Etingov, Pavel V.; Diao, Ruisheng; Ma, Jian; Samaan, Nader A.; Makarov, Yuri V.; Guo, Xinxin; Hafen, Ryan P.; Jin, Chunlian; Kirkham, Harold; Shlatz, Eugene; Frantzis, Lisa; McClive, Timothy; Karlson, Gregory; Acharya, Dhruv; Ellis, Abraham; Stein, Joshua; Hansen, Clifford; Chadliev, Vladimir; Smart, Michael; Salgo, Richard; Sorensen, Rahn; Allen, Barbara; Idelchik, Boris

2011-07-29T23:59:59.000Z

Note: This page contains sample records for the topic "large-scale energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Department of Energy Will Hold a Batteries and Energy Storage...  

Broader source: Energy.gov (indexed) [DOE]

Department of Energy Will Hold a Batteries and Energy Storage Information Meeting on October 21, 2011 Department of Energy Will Hold a Batteries and Energy Storage Information...

222

Lih thermal energy storage device  

DOE Patents [OSTI]

A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures.

Olszewski, Mitchell (Knoxville, TN); Morris, David G. (Knoxville, TN)

1994-01-01T23:59:59.000Z

223

Grid Storage and the Energy Frontier Research Centers | Department...  

Broader source: Energy.gov (indexed) [DOE]

Grid Storage and the Energy Frontier Research Centers Grid Storage and the Energy Frontier Research Centers DOE: Grid Storage and the Energy Frontier Research Centers Grid Storage...

224

Characterization and assessment of novel bulk storage technologies : a study for the DOE Energy Storage Systems program.  

SciTech Connect (OSTI)

This paper reports the results of a high-level study to assess the technological readiness and technical and economic feasibility of 17 novel bulk energy storage technologies. The novel technologies assessed were variations of either pumped storage hydropower (PSH) or compressed air energy storage (CAES). The report also identifies major technological gaps and barriers to the commercialization of each technology. Recommendations as to where future R&D efforts for the various technologies are also provided based on each technology's technological readiness and the expected time to commercialization (short, medium, or long term). The U.S. Department of Energy (DOE) commissioned this assessment of novel concepts in large-scale energy storage to aid in future program planning of its Energy Storage Program. The intent of the study is to determine if any new but still unproven bulk energy storage concepts merit government support to investigate their technical and economic feasibility or to speed their commercialization. The study focuses on compressed air energy storage (CAES) and pumped storage hydropower (PSH). It identifies relevant applications for bulk storage, defines the associated technical requirements, characterizes and assesses the feasibility of the proposed new concepts to address these requirements, identifies gaps and barriers, and recommends the type of government support and research and development (R&D) needed to accelerate the commercialization of these technologies.

Huff, Georgianne; Tong, Nellie (KEMA Consulting, Fairfax, VA); Fioravanti, Richard (KEMA Consulting, Fairfax, VA); Gordon, Paul (Sentech/SRA International, Bethesda, MD); Markel, Larry (Sentech/SRA International, Bethesda, MD); Agrawal, Poonum (Sentech/SRA International, Bethesda, MD); Nourai, Ali (KEMA Consulting, Fairfax, VA)

2011-04-01T23:59:59.000Z

225

2013 IREP Symposium-Bulk Power System Dynamics and Control -IX (IREP), August 25-30, 2013, Rethymnon, Greece A Comparative Assessment of Demand Response and Energy Storage Resource  

E-Print Network [OSTI]

energy for discharge over periods of hours, such as large-scale battery storage, compressed air energy, Rethymnon, Greece A Comparative Assessment of Demand Response and Energy Storage Resource Economic system operators, policy makers and other grid stakeholders in the expanded utilization of energy storage

Gross, George

226

Breakthrough materials for energy storage  

E-Print Network [OSTI]

Breakthrough materials for energy storage November 4, 2009 #12;#12;This revolution is happening;Electronics: our early market 5 hours #12;Progress on energy density... #12;Has reached a limit #12;Battery basics Anode Cathode #12;Battery basics Anode Cathode #12;Silicon leads in energy density

227

Research and Development for Novel Thermal Energy Storage Systems (TES) for Concentrating Solar Power (CSP)  

SciTech Connect (OSTI)

The overall objective was to develop innovative heat transfer devices and methodologies for novel thermal energy storage systems for concentrating solar power generation involving phase change materials (PCMs). Specific objectives included embedding thermosyphons and/or heat pipes (TS/HPs) within appropriate phase change materials to significantly reduce thermal resistances within the thermal energy storage system of a large-scale concentrating solar power plant and, in turn, improve performance of the plant. Experimental, system level and detailed comprehensive modeling approaches were taken to investigate the effect of adding TS/HPs on the performance of latent heat thermal energy storage (LHTES) systems.

Faghri, Amir; Bergman, Theodore L; Pitchumani, Ranga

2013-09-26T23:59:59.000Z

228

Matt Rogers on AES Energy Storage | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Matt Rogers on AES Energy Storage Matt Rogers on AES Energy Storage Addthis Description The Department of Energy and AES Energy Storage recently agreed to a 17.1M conditional loan...

229

Energy Storage Program Overview  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPC ENABLE:2009Applications - Report |ofSectorSTORAGE 101The

230

National Energy Storage Strategy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2 to:DieselEnergy AuditorWesternNational Grid Energy

231

Visualization of Large-Scale Distributed Data  

E-Print Network [OSTI]

that are now considered the "lenses" for examining large-scale data. THE LARGE-SCALE DATA VISUALIZATIONVisualization of Large-Scale Distributed Data Jason Leigh1 , Andrew Johnson1 , Luc Renambot1 representation of data and the interactive manipulation and querying of the visualization. Large-scale data

Johnson, Andrew

232

Nanostructured Materials for Energy Generation and Storage  

E-Print Network [OSTI]

energy generation and battery storage via the use ofenergy generation and battery storage via the use of nanos-and storage (e.g lithium-ion rechargeable battery)

Khan, Javed Miller

2012-01-01T23:59:59.000Z

233

AQUIFER THERMAL ENERGY STORAGE-A SURVEY  

E-Print Network [OSTI]

solid-fluid heat storage systems in the ground; extractions0 Thermal storage of cold water in ground water aquifers forA. 8 1971, Storage of solar energy in a sandy-gravel ground:

Tsang, Chin Fu

2012-01-01T23:59:59.000Z

234

A Stable Vanadium Redox-Flow Battery with High Energy Density...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Stable Vanadium Redox-Flow Battery with High Energy Density for Large-scale Energy Storage. A Stable Vanadium Redox-Flow Battery with High Energy Density for Large-scale Energy...

235

Post regulation circuit with energy storage  

DOE Patents [OSTI]

A charge regulation circuit provides regulation of an unregulated voltage supply and provides energy storage. The charge regulation circuit according to the present invention provides energy storage without unnecessary dissipation of energy through a resistor as in prior art approaches.

Ball, Don G. (Livermore, CA); Birx, Daniel L. (Oakley, CA); Cook, Edward G. (Livermore, CA)

1992-01-01T23:59:59.000Z

236

EXPERIMENTAL AND THEORETICAL STUDIES OF THERMAL ENERGY STORAGE IN AQUIFERS  

E-Print Network [OSTI]

Department of Energy, Energy Storage Division through thegeneration and energy storage, Presented at Frontiers ofIn Proceed- ings of Thermal Energy Storage in Aquifers Work-

Tsang, Chin Fu

2011-01-01T23:59:59.000Z

237

Role of Energy Storage with Renewable Electricity Generation  

SciTech Connect (OSTI)

Renewable energy sources, such as wind and solar, have vast potential to reduce dependence on fossil fuels and greenhouse gas emissions in the electric sector. Climate change concerns, state initiatives including renewable portfolio standards, and consumer efforts are resulting in increased deployments of both technologies. Both solar photovoltaics (PV) and wind energy have variable and uncertain (sometimes referred to as intermittent) output, which are unlike the dispatchable sources used for the majority of electricity generation in the United States. The variability of these sources has led to concerns regarding the reliability of an electric grid that derives a large fraction of its energy from these sources as well as the cost of reliably integrating large amounts of variable generation into the electric grid. In this report, we explore the role of energy storage in the electricity grid, focusing on the effects of large-scale deployment of variable renewable sources (primarily wind and solar energy).

Denholm, P.; Ela, E.; Kirby, B.; Milligan, M.

2010-01-01T23:59:59.000Z

238

Energy Storage, Conversion and Utilization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage, Conversion and Utilization A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Al-Ghadhban, Samir - Electrical Engineering Department, King Fahd University of...

239

Energy Conversion and Storage Program  

SciTech Connect (OSTI)

The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

Cairns, E.J.

1992-03-01T23:59:59.000Z

240

Energy Storage 101  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department oftoThese WebThese caseEnergyA123Sector(PE)

Note: This page contains sample records for the topic "large-scale energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Prestressed elastomer for energy storage  

DOE Patents [OSTI]

Disclosed is a regenerative braking device for an automotive vehicle. The device includes a power isolating assembly (14), an infinitely variable transmission (20) interconnecting an input shaft (16) with an output shaft (18), and an energy storage assembly (22). The storage assembly includes a plurality of elastomeric rods (44, 46) mounted for rotation and connected in series between the input and output shafts. The elastomeric rods are prestressed along their rotational or longitudinal axes to inhibit buckling of the rods due to torsional stressing of the rods in response to relative rotation of the input and output shafts.

Hoppie, Lyle O. (Birmingham, MI); Speranza, Donald (Canton, MI)

1982-01-01T23:59:59.000Z

242

Storage Solutions for Hawaii's Smart Energy  

E-Print Network [OSTI]

Storage Solutions for Hawaii's Smart Energy Future Presented to CMRU August 12, 2012 University of Hawaii at Manoa Hawaii Natural Energy Institute #12;Current Energy Storage Projects in Hawaii · 15 (2) · Spinning reserve/reserve support (2) #12;· Select and deploy Grid-scale energy storage systems

243

Sandia National Laboratories: Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandiaConsortiumAct EnergyEnergy Storage Sandian Spoke

244

Storage | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Burst Buffer Archive Home » R & D

245

Energy Storage Systems 2010 Update Conference Presentations ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

3 Energy Storage Systems 2010 Update Conference Presentations - Day 2, Session 3 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at...

246

Energy Storage Systems 2010 Update Conference Presentations ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2 Energy Storage Systems 2010 Update Conference Presentations - Day 2, Session 2 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at...

247

Energy Storage Systems 2010 Update Conference Presentations ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

4 Energy Storage Systems 2010 Update Conference Presentations - Day 1, Session 4 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at...

248

Energy Storage Systems 2010 Update Conference Presentations ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 Energy Storage Systems 2010 Update Conference Presentations - Day 1, Session 1 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at...

249

Energy Storage Systems 2010 Update Conference Presentations ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

3 Energy Storage Systems 2010 Update Conference Presentations - Day 1, Session 3 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at...

250

Regenerative Fuel Cells for Energy Storage  

Broader source: Energy.gov (indexed) [DOE]

1 1 Regenerative Fuel Cells for Energy Storage April 2011 Corky Mittelsteadt April 2011 2 Outline 1. Regenerative Fuel Cells at Giner 2. Regenerative Systems for Energy Storage 1....

251

Rational Material Architecture Design for Better Energy Storage  

E-Print Network [OSTI]

energy and power storage systems, Renewable and Sustainable Energyeconomical and sustainable energy storage devices. Moreover,performance and sustainable energy storage systems. Figure.

Chen, Zheng

2012-01-01T23:59:59.000Z

252

ENERGY STORAGE IN AQUIFERS - - A SURVEY OF RECENT THEORETICAL STUDIES  

E-Print Network [OSTI]

temperature underground thermal energy storage. In Proc. Th~al modeling of thermal energy storage in aquifers. In ~~-Mathematical modeling; thermal energy storage; aquifers;

Tsang, Chin Fu

2013-01-01T23:59:59.000Z

253

Thermal Energy Storage for Cooling of Commercial Buildings  

E-Print Network [OSTI]

of Commercial Building Thermal Energy _Storage in ASEANGas Electric Company, "Thermal Energy Storage for Cooling,"LBL--25393 DE91 ,THERMAL ENERGY STORAGE FOR COOLING OF

Akbari, H.

2010-01-01T23:59:59.000Z

254

Energy Storage Systems 2007 Peer Review - Power Electronics Presentati...  

Broader source: Energy.gov (indexed) [DOE]

Studies and Environment Benefit Studies Utility & Commercial Applications of Advanced Energy Storage Systems International Energy Storage Programs Innovations in Energy Storage...

255

Panel 3, Necessary Conditions for Hydrogen Energy Storage Projects...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Necessary Conditions for Hydrogen Energy Storage Projects to Succeed in North America Rob Harvey Director, Energy Storage Hydrogen Energy Storage for Grid and Transportation...

256

Thermal Energy Storage for Cooling of Commercial Buildings  

E-Print Network [OSTI]

Building Thermal Energy _Storage in ASEAN Countries,"Company, "Thermal Energy Storage for Cooling," SeminarTHERMAL FOR COOLING ENERGY STORAGE BUILDINGS OF COMMERCIAL

Akbari, H.

2010-01-01T23:59:59.000Z

257

Modeling and simulations of electrical energy storage in electrochemical capacitors  

E-Print Network [OSTI]

3D nanoarchitec- tures for energy storage and conversion,”functionality in energy storage materials and devices byto electrochemical energy storage in TiO 2 (anatase)

Wang, Hainan

2013-01-01T23:59:59.000Z

258

Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage...  

Energy Savers [EERE]

Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) DOE's Energy Storage...

259

Rational Material Architecture Design for Better Energy Storage  

E-Print Network [OSTI]

for electrochemical energy storage. Adv. Funct. Mater. 2009,electrochemical capacitive energy storage. Angew. Chem. Int.for Electrochemical Energy Storage. Adv. Funct. Mater. 2009,

Chen, Zheng

2012-01-01T23:59:59.000Z

260

Energy Storage | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember 2011District |Department of Energy

Note: This page contains sample records for the topic "large-scale energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Energy Storage | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia NanoparticlesSmart Grocer Program Sign-up FormEnergy

262

Energy Storage | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia NanoparticlesSmart Grocer Program Sign-up FormEnergy StorageEnergy

263

Materialized community ground models for large-scale earthquake simulation  

E-Print Network [OSTI]

Materialized community ground models for large-scale earthquake simulation Steven W. Schlosser to ground motion sim- ulations, in which ground model datasets are fully materi- alized into octress stored as a service techniques in which scientific computation and storage services become more tightly intertwined. 1

Shewchuk, Jonathan

264

Underground Energy Storage Program. 1983 annual summary  

SciTech Connect (OSTI)

The Underground Energy Storage Program approach, structure, history, and milestones are described. Technical activities and progress in the Seasonal Thermal Energy Storage and Compressed Air Energy Storage components of the program are then summarized, documenting the work performed and progress made toward resolving and eliminating technical and economic barriers associated with those technologies. (LEW)

Kannberg, L.D.

1984-06-01T23:59:59.000Z

265

Nanotubular metalinsulatormetal capacitor arrays for energy storage  

E-Print Network [OSTI]

Nanotubular metal­insulator­metal capacitor arrays for energy storage Parag Banerjee1,2 , Israel be possible to scale devices fabricated with this approach to make viable energy storage systems that provide, with speeds limited only by external circuit RCs. However, energy storage is limited because only surface

Rubloff, Gary W.

266

Energy Storage Structural Composites: TONY PEREIRA  

E-Print Network [OSTI]

Energy Storage Structural Composites: a Review TONY PEREIRA 1, *, ZHANHU GUO 1 , S. NiEH 2 , J: This study demonstrates the construction of a multifunctional composite structure capable of energy storage) composites were laminated with energy storage all-solid-state thin- film lithium cells. The processes

Guo, John Zhanhu

267

Microwavable thermal energy storage material  

DOE Patents [OSTI]

A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene-vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments.

Salyer, Ival O. (Dayton, OH)

1998-09-08T23:59:59.000Z

268

Microwavable thermal energy storage material  

DOE Patents [OSTI]

A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments. 3 figs.

Salyer, I.O.

1998-09-08T23:59:59.000Z

269

Conundrum of the Large Scale Streaming  

E-Print Network [OSTI]

The etiology of the large scale peculiar velocity (large scale streaming motion) of clusters would increasingly seem more tenuous, within the context of the gravitational instability hypothesis. Are there any alternative testable models possibly accounting for such large scale streaming of clusters?

T. M. Malm

1999-09-12T23:59:59.000Z

270

Energy Storage Technologies - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4: Networking for37Energy Storage & Battery Leading theStorage

271

Compact magnetic energy storage module  

DOE Patents [OSTI]

A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module.

Prueitt, Melvin L. (Los Alamos, NM)

1994-01-01T23:59:59.000Z

272

Compact magnetic energy storage module  

DOE Patents [OSTI]

A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module. 4 figures.

Prueitt, M.L.

1994-12-20T23:59:59.000Z

273

Power Electronics and Motor Drives Laboratory Integrating Energy Storage withIntegrating Energy Storage with  

E-Print Network [OSTI]

Power Electronics and Motor Drives Laboratory Integrating Energy Storage withIntegrating Energy Storage with Renewable Energy SystemsRenewable Energy Systems Power Electronics and Motor Drives Introduction Wind Energy Profile Solar Energy Profile Energy Storage Options Role of Industrial Electronics

Saldin, Dilano

274

Flywheel Energy Storage technology workshop  

SciTech Connect (OSTI)

Advances in recent years of high strength/lightweight materials, high performance magnetic bearings, and power electronics technology has spurred a renewed interest by the transportation, utility, and manufacturing industries in Flywheel Energy Storage (FES) technologies. FES offers several advantages over conventional electro-chemical energy storage, such as high specific energy and specific power, fast charging time, long service life, high turnaround efficiency (energy out/energy in), and no hazardous/toxic materials or chemicals are involved. Potential applications of FES units include power supplies for hybrid and electric vehicles, electric vehicle charging stations, space systems, and pulsed power devices. Also, FES units can be used for utility load leveling, uninterruptable power supplies to protect electronic equipment and electrical machinery, and for intermittent wind or photovoltaic energy sources. The purpose of this workshop is to provide a forum to highlight technologies that offer a high potential to increase the performance of FES systems and to discuss potential solutions to overcome present FES application barriers. This document consists of viewgraphs from 27 presentations.

O`Kain, D.; Howell, D. [comps.

1993-12-31T23:59:59.000Z

275

Reducing Data Center Loads for a Large-scale, Low Energy Office Building: NREL's Research Support Facility (Book), NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST 800-53 RevisionDivisionReducedof EnergyData

276

Integratedenergy storage system for optimal energy production.  

E-Print Network [OSTI]

?? This project served to analyze the effects that energy storage can have on energy production.  The study was aimed at Johannes CHP bio fuel.… (more)

Stevens, Kristoffer

2013-01-01T23:59:59.000Z

277

Hydrogen Storage | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS Cable ProjectsHistory HistoryEducation » IncreaseStorage

278

Energy Harvesting Communications with Hybrid Energy Storage and Processing Cost  

E-Print Network [OSTI]

Energy Harvesting Communications with Hybrid Energy Storage and Processing Cost Omur Ozel Khurram with an energy harvesting transmitter with non-negligible processing circuitry power and a hybrid energy storage for energy storage while the battery has unlimited space. The transmitter stores the harvested energy either

Ulukus, Sennur

279

Microsoft Word - Energy Storage 092209 BAR.docx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

offer the broadest potential. Superconducting Magnetic Energy Storage (SMES), Compressed Air Energy Storage (CAES), and pumped hydroelectric storage all have value as large...

280

FY06 DOE Energy Storage Program PEER Review  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

7 DOE Energy Storage Program PEER Review FY07 DOE Energy Storage Program PEER Review John D. Boyes Sandia National Laboratories Mission Mission Develop advanced electricity storage...

Note: This page contains sample records for the topic "large-scale energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Charging Graphene for Energy Storage  

SciTech Connect (OSTI)

Since 2004, graphene, including single atomic layer graphite sheet, and chemically derived graphene sheets, has captured the imagination of researchers for energy storage because of the extremely high surface area (2630 m2/g) compared to traditional activated carbon (typically below 1500 m2/g), excellent electrical conductivity, high mechanical strength, and potential for low cost manufacturing. These properties are very desirable for achieving high activity, high capacity and energy density, and fast charge and discharge. Chemically derived graphene sheets are prepared by oxidation and reduction of graphite1 and are more suitable for energy storage because they can be made in large quantities. They still contain multiply stacked graphene sheets, structural defects such as vacancies, and oxygen containing functional groups. In the literature they are also called reduced graphene oxide, or functionalized graphene sheets, but in this article they are all referred to as graphene for easy of discussion. Two important applications, batteries and electrochemical capacitors, have been widely investigated. In a battery material, the redox reaction occurs at a constant potential (voltage) and the energy is stored in the bulk. Therefore, the energy density is high (more than 100 Wh/kg), but it is difficult to rapidly charge or discharge (low power, less than 1 kW/kg)2. In an electrochemical capacitor (also called supercapacitors or ultracapacitor in the literature), the energy is stored as absorbed ionic species at the interface between the high surface area carbon and the electrolyte, and the potential is a continuous function of the state-of-charge. The charge and discharge can happen rapidly (high power, up to 10 kW/kg) but the energy density is low, less than 10 Wh/kg2. A device that can have both high energy and high power would be ideal.

Liu, Jun

2014-10-06T23:59:59.000Z

282

Optimal Scheduling for Energy Harvesting Transmitters with Hybrid Energy Storage  

E-Print Network [OSTI]

Optimal Scheduling for Energy Harvesting Transmitters with Hybrid Energy Storage Omur Ozel Khurram with an energy harvesting transmitter which has a hybrid energy storage unit composed of a perfectly efficient super-capacitor (SC) and an inefficient battery. The SC has finite space for energy storage while

Ulukus, Sennur

283

Enabling Utility-Scale Electrical Energy Storage through Underground Hydrogen-Natural Gas Co-Storage.  

E-Print Network [OSTI]

??Energy storage technology is needed for the storage of surplus baseload generation and the storage of intermittent wind power, because it can increase the flexibility… (more)

Peng, Dan

2013-01-01T23:59:59.000Z

284

Test report : Milspray Scorpion energy storage device.  

SciTech Connect (OSTI)

The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratory (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors have supplied their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and a subset of these systems were selected for performance evaluation at the BCIL. The technologies tested were electro-chemical energy storage systems comprised of lead acid, lithium-ion or zinc-bromide. MILSPRAY Military Technologies has developed an energy storage system that utilizes lead acid batteries to save fuel on a military microgrid. This report contains the testing results and some limited assessment of the Milspray Scorpion Energy Storage Device.

Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.

2013-08-01T23:59:59.000Z

285

Ferroelectric opening switches for large-scale pulsed power drivers.  

SciTech Connect (OSTI)

Fast electrical energy storage or Voltage-Driven Technology (VDT) has dominated fast, high-voltage pulsed power systems for the past six decades. Fast magnetic energy storage or Current-Driven Technology (CDT) is characterized by 10,000 X higher energy density than VDT and has a great number of other substantial advantages, but it has all but been neglected for all of these decades. The uniform explanation for neglect of CDT technology is invariably that the industry has never been able to make an effective opening switch, which is essential for the use of CDT. Most approaches to opening switches have involved plasma of one sort or another. On a large scale, gaseous plasmas have been used as a conductor to bridge the switch electrodes that provides an opening function when the current wave front propagates through to the output end of the plasma and fully magnetizes the plasma - this is called a Plasma Opening Switch (POS). Opening can be triggered in a POS using a magnetic field to push the plasma out of the A-K gap - this is called a Magnetically Controlled Plasma Opening Switch (MCPOS). On a small scale, depletion of electron plasmas in semiconductor devices is used to affect opening switch behavior, but these devices are relatively low voltage and low current compared to the hundreds of kilo-volts and tens of kilo-amperes of interest to pulsed power. This work is an investigation into an entirely new approach to opening switch technology that utilizes new materials in new ways. The new materials are Ferroelectrics and using them as an opening switch is a stark contrast to their traditional applications in optics and transducer applications. Emphasis is on use of high performance ferroelectrics with the objective of developing an opening switch that would be suitable for large scale pulsed power applications. Over the course of exploring this new ground, we have discovered new behaviors and properties of these materials that were here to fore unknown. Some of these unexpected discoveries have lead to new research directions to address challenges.

Brennecka, Geoffrey L.; Rudys, Joseph Matthew; Reed, Kim Warren; Pena, Gary Edward; Tuttle, Bruce Andrew; Glover, Steven Frank

2009-11-01T23:59:59.000Z

286

Investigation of energy storage options for sustainable energy systems.  

E-Print Network [OSTI]

??Determination of the possible energy storage options for a specific source of energy requires a thorough analysis from the points of energy, exergy, and exergoeconomics.… (more)

Hosseini, Mehdi

2013-01-01T23:59:59.000Z

287

Energy Storage Testing and Analysis High Power and High Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Testing and Analysis High Power and High Energy Development Energy Storage Testing and Analysis High Power and High Energy Development 2009 DOE Hydrogen Program and Vehicle...

288

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network [OSTI]

III, "Man-made Geothermal Energy," presented at MiamiA.C.Meyers III; "Manmade Geothermal Energy", Proc. of Miamiin soils extraction of geothermal energy heat storage in the

Authors, Various

2011-01-01T23:59:59.000Z

289

Nanostructured Materials for Energy Generation and Storage  

E-Print Network [OSTI]

efficiency of the thermoelectric energy generation and battery storageefficiency of the thermoelectric energy generation and battery storagebattery electrodes suggest that the use of nanostructured materials can substantially improve the thermal management of the batteries and their energy storage efficiency.

Khan, Javed Miller

2012-01-01T23:59:59.000Z

290

Matt Rogers on AES Energy Storage  

ScienceCinema (OSTI)

The Department of Energy and AES Energy Storage recently agreed to a $17.1M conditional loan guarantee commitment. This project will develop the first battery-based energy storage system to provide a more stable and efficient electrical grid for New York State's high-voltage transmission network. Matt Rogers is the Senior Advisor to the Secretary for Recovery Act Implementation.

Rogers, Matt

2013-05-29T23:59:59.000Z

291

Battery energy storage market feasibility study  

SciTech Connect (OSTI)

Under the sponsorship of the Department of Energy`s Office of Utility Technologies, the Energy Storage Systems Analysis and Development Department at Sandia National Laboratories (SNL) contracted Frost and Sullivan to conduct a market feasibility study of energy storage systems. The study was designed specifically to quantify the energy storage market for utility applications. This study was based on the SNL Opportunities Analysis performed earlier. Many of the groups surveyed, which included electricity providers, battery energy storage vendors, regulators, consultants, and technology advocates, viewed energy storage as an important enabling technology to enable increased use of renewable energy and as a means to solve power quality and asset utilization issues. There are two versions of the document available, an expanded version (approximately 200 pages, SAND97-1275/2) and a short version (approximately 25 pages, SAND97-1275/1).

Kraft, S. [Frost and Sullivan, Mountain View, CA (United States); Akhil, A. [Sandia National Labs., Albuquerque, NM (United States). Energy Storage Systems Analysis and Development Dept.

1997-07-01T23:59:59.000Z

292

Hydrogen for Energy Storage Analysis Overview (Presentation)  

SciTech Connect (OSTI)

Overview of hydrogen for energy storage analysis presented at the National Hydrogen Association Conference & Expo, May 3-6, 2010, Long Beach, CA.

Steward, D. M.; Ramsden, T.; Harrison, K.

2010-06-01T23:59:59.000Z

293

Energy Storage Systems 2010 Update Conference Presentations ...  

Broader source: Energy.gov (indexed) [DOE]

session are below. ESS 2010 Update Conference - Fuel-Free, Ubiquitous, Compressed Air Energy Storage and Power Conditioning - David Marcus, General Compression.pdf ESS 2010...

294

Energy Storage Systems 2010 Update Conference Presentations ...  

Broader source: Energy.gov (indexed) [DOE]

by SNL's Ross Guttromson, are below. ESS 2010 Update Conference - NYSERDA-DOE Joint Energy Storage Initiative - Georgianne Huff, SNL.pdf ESS 2010 Update Conference - Testing...

295

Energy Storage Systems 2010 Update Conference Presentations ...  

Broader source: Energy.gov (indexed) [DOE]

- Bulk Gallium Nitride Substrates - Karen Waldrip, SNL.pdf More Documents & Publications Energy Storage & Power Electronics 2008 Peer Review - Power Electronics (PE) Systems...

296

Energy Storage Systems 2010 Update Conference Presentations ...  

Broader source: Energy.gov (indexed) [DOE]

and Peak Shifting - Steve Willard, PNM.pdf ESS 2010 Update Conference - Tehachapi Wind Energy Storage - Loic Gaillac, SCE.pdf ESS 2010 Update Conference - Flow Battery Solution...

297

Local electrochemical functionality in energy storage materials...  

Office of Scientific and Technical Information (OSTI)

devices by scanning probe microscopies: Status and perspectives Re-direct Destination: Energy storage and conversion systems are an integral component of emerging green...

298

AQUIFER THERMAL ENERGY STORAGE-A SURVEY  

E-Print Network [OSTI]

energy storage for cogeneration and solar systems, inTwin City district cogeneration system, in Proceedings,proposed system, based on cogeneration of power and heat by

Tsang, Chin Fu

2012-01-01T23:59:59.000Z

299

MISO Energy Storage Study DRAFT Scope MISO Page 1  

E-Print Network [OSTI]

, compressed air, and pumped hydro energy storage. This study will explore reliability, market, and planning such as battery storage, compressed air energy storage (CAES), and pumped hydro storage 2. Identify the valueMISO Energy Storage Study DRAFT Scope MISO Page 1 MISO Energy Storage Study DRAFT Scope July 19

300

Holographic principle and large scale structure in the universe  

E-Print Network [OSTI]

A reasonable representation of large scale structure, in a closed universe so large it's nearly flat, can be developed by extending the holographic principle and assuming the bits of information describing the distribution of matter density in the universe remain in thermal equilibrium with the cosmic microwave background radiation. The analysis identifies three levels of self-similar large scale structure, corresponding to superclusters, galaxies, and star clusters, between today's observable universe and stellar systems. The self-similarity arises because, according to the virial theorem, the average gravitational potential energy per unit volume in each structural level is the same and depends only on the gravitational constant. The analysis indicates stellar systems first formed at z\\approx62, consistent with the findings of Naoz et al, and self-similar large scale structures began to appear at redshift z\\approx4. It outlines general features of development of self-similar large scale structures at redshift z<4. The analysis is consistent with observations for angular momentum of large scale structures as a function of mass, and average speed of substructures within large scale structures. The analysis also indicates relaxation times for star clusters are generally less than the age of the universe and relaxation times for more massive structures are greater than the age of the universe.

T. R. Mongan

2011-08-10T23:59:59.000Z

Note: This page contains sample records for the topic "large-scale energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Influence of Western North Pacific Tropical Cyclones on Their Large-Scale Environment  

E-Print Network [OSTI]

water vapor, and sea surface tem- perature (SST)] on an index of TC activity [accumulated cyclone energyInfluence of Western North Pacific Tropical Cyclones on Their Large-Scale Environment ADAM H. SOBEL) tropical cyclones (TCs) on their large-scale environment by lag regressing various large-scale climate

Sobel, Adam

302

Energy Storage Success Stories - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4: Networking for37Energy Storage & Battery Leading the

303

Microfluidic Large-Scale Integration: The Evolution  

E-Print Network [OSTI]

Microfluidic Large-Scale Integration: The Evolution of Design Rules for Biological Automation, polydimethylsiloxane Abstract Microfluidic large-scale integration (mLSI) refers to the develop- ment of microfluidic, are discussed. Several microfluidic components used as building blocks to create effective, complex, and highly

Quake, Stephen R.

304

DLFM library tools for large scale dynamic applications.  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DLFM library tools for large scale dynamic applications DLFM library tools for large scale dynamic applications Large scale Python and other dynamic applications may spend huge...

305

Energy Storage Systems 2007 Peer Review - International Energy...  

Broader source: Energy.gov (indexed) [DOE]

international energy storage programs are below. Other presentation categories were: Economics - Benefit Studies and Environment Benefit Studies Utility & Commercial Applications...

306

Rational Material Architecture Design for Better Energy Storage  

E-Print Network [OSTI]

and their cryogenic hydrogen storage capacities. J. Phys.Hydrogen Spillover for Hydrogen Storage J. Am. Chem. Soc.electrostatic energy storage, hydrogen (H 2 )-based chemical

Chen, Zheng

2012-01-01T23:59:59.000Z

307

Explorations of Novel Energy Conversion and Storage Systems  

E-Print Network [OSTI]

Vehicular Hydrogen Storage http://www.hydrogen.energy.gov/et al. , Reversible hydrogen storage in calcium borohydridereversible hydrogen storage. Chemical Communications, 2010.

Duffin, Andrew Mark

2010-01-01T23:59:59.000Z

308

Nuclear Hybrid Energy Systems: Molten Salt Energy Storage  

SciTech Connect (OSTI)

With growing concerns in the production of reliable energy sources, the next generation in reliable power generation, hybrid energy systems, are being developed to stabilize these growing energy needs. The hybrid energy system incorporates multiple inputs and multiple outputs. The vitality and efficiency of these systems resides in the energy storage application. Energy storage is necessary for grid stabilizing and storing the overproduction of energy to meet peak demands of energy at the time of need. With high thermal energy production of the primary nuclear heat generation source, molten salt energy storage is an intriguing option because of its distinct properties. This paper will discuss the different energy storage options with the criteria for efficient energy storage set forth, and will primarily focus on different molten salt energy storage system options through a thermodynamic analysis

P. Sabharwall; M. Green; S.J. Yoon; S.M. Bragg-Sitton; C. Stoots

2014-07-01T23:59:59.000Z

309

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATTION (VLSI) SYSTEMS, VOL. 5, NO. 4, DECEMBER 1997 1 Energy Minimization Using Multiple Supply  

E-Print Network [OSTI]

dependencies, and the energy cost of level shifters. Experimental results show that using three supply voltage energy dissipation and higher rout- ing cost. The remaining issues (that is, level shifter cost and lack levels on a number of standard benchmarks, an average energy saving of 40.19% (with a computation time

Pedram, Massoud

310

Large-scale Nanostructure Simulations from X-ray Scattering Data On Graphics Processor Clusters  

E-Print Network [OSTI]

photovoltaic, energy storage, battery, fuel, and car- bonphotovoltaic, energy storage, battery, fuel, and carbon

Sarje, Abhinav

2012-01-01T23:59:59.000Z

311

Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage  

E-Print Network [OSTI]

Electrochemical Capacitor Energy Storage Using Direct WriteD. O. Energy, “Energy Storage-A Key Enabler of the Smartof storage [electric energy storage],” Power and Energy

Wang, Zuoqian

2013-01-01T23:59:59.000Z

312

Rational Material Architecture Design for Better Energy Storage  

E-Print Network [OSTI]

Webb, C. Nelson, Compressed Air Energy Storage in Hard RockEnergy Program: Compressed Air Energy Storage, United StatesOn the other hand, compressed air energy storage is based on

Chen, Zheng

2012-01-01T23:59:59.000Z

313

Rational Material Architecture Design for Better Energy Storage  

E-Print Network [OSTI]

onto carbon nanotubes for energy-storage applications.and Carbon Nanotubes, Advanced Energy Materials, 2011, 1,Energy Storage Architectures from Carbon Nanotubes and

Chen, Zheng

2012-01-01T23:59:59.000Z

314

Energy Storage Systems 2012 Peer Review Presentations - Poster...  

Broader source: Energy.gov (indexed) [DOE]

- Notrees Wind Storage - Jeff Gates, Duke Energy ESS 2012 Peer Review - Compressed Air Energy Storage - Robert Booth, PG&E-BAI ESS 2012 Peer Review - Tehachapi Wind Energy...

315

Panel 4, CPUCs Energy Storage Mandate  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ix CPUC's Energy Storage Mandate: Hydrogen Energy Storage Workshop May 15, 2014 Melicia Charles California Public Utilities Commission ix Overview of CPUC Energy Oversight * The...

316

Hydrogen Energy Storage for Grid and Transportation Services...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Storage for Grid and Transportation Services Workshop Hydrogen Energy Storage for Grid and Transportation Services Workshop The U.S. Department of Energy (DOE) and Industry...

317

Implementing a Hydrogen Energy Infrastructure: Storage Options and System Design  

E-Print Network [OSTI]

to International Journal of Hydrogen Energy (November 2005).05—28 Implementing a Hydrogen Energy Infrastructure: StorageImplementing a Hydrogen Energy Infrastructure: Storage

Ogden, Joan M; Yang, Christopher

2005-01-01T23:59:59.000Z

318

Energy Harvesting Broadcast Channel with Inefficient Energy Storage  

E-Print Network [OSTI]

Energy Harvesting Broadcast Channel with Inefficient Energy Storage Kaya Tutuncuoglu Aylin Yener with an energy harvesting transmitter equipped with an inefficient energy storage device. For this setting by the energy harvesting process. The convexity of the capacity region for the energy harvesting broadcast

Yener, Aylin

319

Joint Center for Energy Storage Research  

SciTech Connect (OSTI)

The Joint Center for Energy Storage Research (JCESR) is a major public-private research partnership that integrates U.S. Department of Energy national laboratories, major research universities and leading industrial companies to overcome critical scientific challenges and technical barriers, leading to the creation of breakthrough energy storage technologies. JCESR, centered at Argonne National Laboratory, outside of Chicago, consolidates decades of basic research experience that forms the foundation of innovative advanced battery technologies. The partnership has access to some of the world's leading battery researchers as well as scientific research facilities that are needed to develop energy storage materials that will revolutionize the way the United States and the world use energy.

Eric Isaacs

2012-11-30T23:59:59.000Z

320

Mechanical energy storage in carbon nanotube springs  

E-Print Network [OSTI]

Energy storage in mechanical springs made of carbon nanotubes is a promising new technology. Springs made of dense, ordered arrays of carbon nanotubes have the potential to surpass both the energy density of electrochemical ...

Hill, Frances Ann

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "large-scale energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Batteries and electrochemical energy storage are central to any future alternative energy scenario. Future energy generation  

E-Print Network [OSTI]

Batteries and electrochemical energy storage are central to any future alternative energy scenario. Future energy generation sources are likely to be intermittent, requiring storage capacity energy storage for uninterrupted power supply units, the electrical grid, and transportation. Of all

Kemner, Ken

322

The Energy Harvesting Multiple Access Channel with Energy Storage Losses  

E-Print Network [OSTI]

The Energy Harvesting Multiple Access Channel with Energy Storage Losses Kaya Tutuncuoglu and Aylin considers a Gaussian multiple access channel with two energy harvesting transmitters with lossy energy storage. The power allocation policy maximizing the average weighted sum rate given the energy harvesting

Yener, Aylin

323

Battery energy storage and superconducting magnetic energy storage for utility applications: A qualitative analysis  

SciTech Connect (OSTI)

This report was prepared at the request of the US Department of Energy`s Office of Energy Management for an objective comparison of the merits of battery energy storage with superconducting magnetic energy storage technology for utility applications. Conclusions are drawn regarding the best match of each technology with these utility application requirements. Staff from the Utility Battery Storage Systems Program and the superconductivity Programs at Sandia National contributed to this effort.

Akhil, A.A.; Butler, P.; Bickel, T.C.

1993-11-01T23:59:59.000Z

324

Program Management for Large Scale Engineering Programs  

E-Print Network [OSTI]

The goal of this whitepaper is to summarize the LAI research that applies to program management. The context of most of the research discussed in this whitepaper are large-scale engineering programs, particularly in the ...

Oehmen, Josef

325

J.M. Tarascon, et al. , Electrochemical energy storage  

E-Print Network [OSTI]

opportunities for Electrochemical Energy Storage (EES) Mass storage (MW): Which technology? Compressed air #12J.M. Tarascon, et al. , Electrochemical energy storage for renewable energies CNRS, Jeudi 3 Octobre 28 TW Renewable EnergiesRenewable EnergiesRenewable Energies WHY ENERGY STORAGE ? Billionsdebarils

Canet, LĂ©onie

326

Self-Adaptive Management of The Sleep Depths of Idle Nodes in Large Scale Systems to Balance Between Energy Consumption and Response Times  

E-Print Network [OSTI]

Between Energy Consumption and Response Times Yongpeng Liu(1) , Hong Zhu(2) , Kai Lu(1) , Xiaoping Wang(1.659 MW, which equals the power usage of a middle scale city. In 2006, US servers and data centers U.S. electricity consumption or the output of about 15 typical power plants [2]. In 2007

Zhu, Hong

327

EXPERIMENTAL AND THEORETICAL STUDIES OF THERMAL ENERGY STORAGE IN AQUIFERS  

E-Print Network [OSTI]

In Proceed- ings of Thermal Energy Storage in Aquifers Work-Mathematical Modeling of Thermal Energy storage in Aquifers.In Proceed- ings of Thermal Energy Storage in Aquifers Work-

Tsang, Chin Fu

2011-01-01T23:59:59.000Z

328

ENERGY STORAGE IN AQUIFERS - - A SURVEY OF RECENT THEORETICAL STUDIES  

E-Print Network [OSTI]

underground thermal energy storage. In Proc. Th~rmal1980), 'I'hermal energy storage? in a confined aquifer·--al modeling of thermal energy storage in aquifers. In ~~-

Tsang, Chin Fu

2013-01-01T23:59:59.000Z

329

High Speed Flywheels for Integrated Energy Storage and Attitude Control  

E-Print Network [OSTI]

High Speed Flywheels for Integrated Energy Storage and Attitude Control Christopher D. Hall. Decomposition of the space of internal torques separates the attitude control functionfrom the energy storage simultaneously performing energy storage and extraction operations. 1 Introduction The power engineering

Hall, Christopher D.

330

Chemical Hydrogen Storage R & D | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen Storage Chemical Hydrogen Storage R & D Chemical Hydrogen Storage R & D DOE's chemical hydrogen storage R&D is focused on developing low-cost energy-efficient...

331

Thermal Energy Storage for Vacuum Precoolers  

E-Print Network [OSTI]

radically creating high peak demands and low load factors. An ice bank thermal energy storage (TES) and ice water vapor condenser were installed. The existing equipment and TES system were computer monitored to determine energy consumption and potential... efficiency at night. The ice bank thermal energy storage system has a 4.4 year simple payback. While building ice, the refrigeration system operated at a 6.26 Coefficient of Performance (COP). The refrigeration system operated more efficiently at night...

Nugent, D. M.

332

Electrical Energy Storage for Renewable Energy Systems  

SciTech Connect (OSTI)

This program focused on development of the fundamental understanding necessary to significantly improve advanced battery and ultra-capacitor materials and systems to achieve significantly higher power and energy density on the one hand, and significantly lower cost on the other. This program spanned all the way from atomic-level theory, to new nanomaterials syntheses and characterization, to system modeling and bench-scale technology demonstration. Significant accomplishments are detailed in each section. Those particularly noteworthy include: • Transition metal silicate cathodes with 2x higher storage capacity than commercial cobalt oxide cathodes were demonstrated. • MnO? nanowires, which are a promising replacement for RuO?, were synthesized • PAN-based carbon nanofibers were prepared and characterized with an energy density 30-times higher than current ultracapacitors on the market and comparable to lead-acid batteries • An optimization-based control strategy for real-time power management of battery storage in wind farms was developed and demonstrated. • PVDF films were developed with breakdown strengths of > 600MVm?č, a maximum energy density of approximately 15 Jcm?ł, and an average dielectric constant of 9.8 (±1.2). Capacitors made from these films can support a 10-year lifetime operating at an electric field of 200 MV m?č. This program not only delivered significant advancements in fundamental understanding and new materials and technology, it also showcased the power of the cross-functional, multi-disciplinary teams at UT Dallas and UT Tyler for such work. These teams are continuing this work with other sources of funding from both industry and government.

Helms, C. R.; Cho, K. J.; Ferraris, John; Balkus, Ken; Chabal, Yves; Gnade, Bruce; Rotea, Mario; Vasselli, John

2012-08-31T23:59:59.000Z

333

Improving Energy Efficiency and Security for Disk Systems  

E-Print Network [OSTI]

optimization with security services to enhance the security of energy-efficient large- scale storage systems, to conserve energy in secure storage systems. In this study we develop two ways of integrating confidentiality power consumption are crucial for large-scale data storage systems. Although a handful of studies have

Qin, Xiao

334

Power Challenges of Large Scale Research Infrastructures: the Square Kilometer Array and Solar Energy Integration; Towards a zero-carbon footprint next generation telescope  

E-Print Network [OSTI]

The Square Kilometer Array (SKA) will be the largest Global science project of the next two decades. It will encompass a sensor network dedicated to radioastronomy, covering two continents. It will be constructed in remote areas of South Africa and Australia, spreading over 3000Km, in high solar irradiance latitudes. Solar Power supply is therefore an option to power supply the SKA and contribute to a zero carbon footprint next generation telescope. Here we outline the major characteristics of the SKA and some innovation approaches on thermal solar energy Integration with SKA prototypes.

Barbosa, Domingos; Ruiz, Valeriano; Silva, Manuel; Verdes-Montenegro, Lourdes; Santander-Vela, Juande; Maia, Dalmiro; Antón, Sonia; van Ardenne, Arnold; Vetter, Matthias; Kramer, Michael; Keller, Reinhard; Pereira, Nuno; Silva, Vitor

2012-01-01T23:59:59.000Z

335

Large Scale Computing Requirements for Basic Energy Sciences (An BES / ASCR / NERSC Workshop) Hilton Washington DC/Rockville Meeting Center, Rockville MD 3D Geophysical Imaging  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 CERN 73-11Large areaLarge

336

Chemical engineers design, control and optimize large-scale chemical,  

E-Print Network [OSTI]

Emphasis in Nanotechnology · ChemicalEngineering Emphasis in Petroleum Engineering · ChemicalEngineering38 Chemical engineers design, control and optimize large-scale chemical, physicochemical and electronics fields. Chemical Engineers are employed in areas as diverse as the chemical, materials, energy

Rohs, Remo

337

Project Profile: Reducing the Cost of Thermal Energy Storage...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power Plants Project Profile: Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power...

338

SUSTAINABLE AND HOLISTIC INTEGRATION OF ENERGY STORAGE AND SOLAR...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

SUSTAINABLE AND HOLISTIC INTEGRATION OF ENERGY STORAGE AND SOLAR PV (SHINES) SUSTAINABLE AND HOLISTIC INTEGRATION OF ENERGY STORAGE AND SOLAR PV (SHINES) Funding Number:...

339

Project Profile: Degradation Mechanisms for Thermal Energy Storage...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Degradation Mechanisms for Thermal Energy Storage and Heat Transfer Fluid Containment Materials Project Profile: Degradation Mechanisms for Thermal Energy Storage and Heat Transfer...

340

Self-Assembled, Nanostructured Carbon for Energy Storage and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Self-Assembled, Nanostructured Carbon for Energy Storage and Water Treatment Self-Assembled, Nanostructured Carbon for Energy Storage and Water Treatment nanostructuredcarbon.pdf...

Note: This page contains sample records for the topic "large-scale energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Project Profile: Innovative Phase Change Thermal Energy Storage...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Phase Change Thermal Energy Storage Solution for Baseload Power Project Profile: Innovative Phase Change Thermal Energy Storage Solution for Baseload Power Infinia logo Infinia,...

342

2012 Transmission and Energy Storage Peer Review Presentations...  

Broader source: Energy.gov (indexed) [DOE]

Transmission and Energy Storage Peer Review Presentations Available 2012 Transmission and Energy Storage Peer Review Presentations Available December 3, 2012 - 1:26pm Addthis...

343

In-Situ Electron Microscopy of Electrical Energy Storage Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications In-Situ Electron Microscopy of Electrical Energy Storage Materials In-Situ Electron Microscopy of Electrical Energy Storage...

344

USABC Energy Storage Testing - High Power and PHEV Development...  

Energy Savers [EERE]

Energy Storage Testing - High Power and PHEV Development USABC Energy Storage Testing - High Power and PHEV Development Presentation from the U.S. DOE Office of Vehicle...

345

Extreme Temperature Energy Storage and Generation, for Cost and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Extreme Temperature Energy Storage and Generation, for Cost and Risk Reduction in Geothermal Exploration Extreme Temperature Energy Storage and Generation, for Cost and Risk...

346

Energy Storage Systems 2014 Peer Review Presentations - Poster...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

4 Energy Storage Systems 2014 Peer Review Presentations - Poster Session 4 OE's Energy Storage Systems (ESS) Program conducted a peer review and update meeting in Washington, DC on...

347

Thermal Energy Storage Technology for Transportation and Other...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Storage Technology for Transportation and Other Applications D. Bank, M. Maurer, J. Penkala, K. Sehanobish, A. Soukhojak Thermal Energy Storage Technology for Transportation...

348

US DRIVE Electrochemical Energy Storage Technical Team Roadmap...  

Broader source: Energy.gov (indexed) [DOE]

This U.S. DRIVE electrochemical energy storage roadmap describes ongoing and planned efforts to develop electrochemical energy storage technologies for plug-in electric vehicles...

349

2012 Annual Merit Review Results Report - Energy Storage Technologies...  

Energy Savers [EERE]

Energy Storage Technologies 2012 Annual Merit Review Results Report - Energy Storage Technologies Merit review of DOE Vehicle Technologies research activities 2012amr02.pdf More...

350

Record-Setting Microscopy Illuminates Energy Storage Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Record-Setting Microscopy Illuminates Energy Storage Materials Record-Setting Microscopy Illuminates Energy Storage Materials Print Thursday, 22 January 2015 12:10 X-ray microscopy...

351

Energy Storage Solutions Industrial Symposium | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage Solutions Industrial Symposium Sep 04 2013 09:00 AM - 05:30 PM Energy Storage Solutions Industrial Symposium - Wednesday September 4, 2013 CONTACT : Email: Phone:...

352

A National Grid Energy Storage Strategy - Electricity Advisory...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

A National Grid Energy Storage Strategy - Electricity Advisory Committee - January 2014 A National Grid Energy Storage Strategy - Electricity Advisory Committee - January 2014 The...

353

2012 Annual Merit Review Results Report - Energy Storage Technologies...  

Energy Savers [EERE]

2 Annual Merit Review Results Report - Energy Storage Technologies 2012 Annual Merit Review Results Report - Energy Storage Technologies Merit review of DOE Vehicle Technologies...

354

Project Profile: CSP Energy Storage Solutions - Multiple Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Storage Solutions - Multiple Technologies Compared Project Profile: CSP Energy Storage Solutions - Multiple Technologies Compared US Solar Holdings logo US Solar Holdings,...

355

Energy Storage Systems 2014 Peer Review Presentations - Poster...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

8 Energy Storage Systems 2014 Peer Review Presentations - Poster Session 8 OE's Energy Storage Systems (ESS) Program conducted a peer review and update meeting in Washington, DC on...

356

2011 Annual Merit Review Results Report - Energy Storage Technologies...  

Energy Savers [EERE]

Energy Storage Technologies 2011 Annual Merit Review Results Report - Energy Storage Technologies Merit review of DOE Vehicle Technologies research activities 2011amr02.pdf More...

357

Increasing Renewable Energy with Hydrogen Storage and Fuel Cell...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies Download presentation...

358

2014 Annual Merit Review Results Report - Energy Storage Technologies...  

Energy Savers [EERE]

Energy Storage Technologies 2014 Annual Merit Review Results Report - Energy Storage Technologies Merit review of DOE Vehicle Technologies research activities 2014amr02.pdf More...

359

Project Profile: Innovative Thermal Energy Storage for Baseload...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal Energy Storage for Baseload Solar Power Generation Project Profile: Innovative Thermal Energy Storage for Baseload Solar Power Generation University of South Florida logo...

360

Surface-Driven Sodium Ion Energy Storage in Nanocellular Carbon...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Surface-Driven Sodium Ion Energy Storage in Nanocellular Carbon Foams. Surface-Driven Sodium Ion Energy Storage in Nanocellular Carbon Foams. Abstract: Sodium ion (Na+) batteries...

Note: This page contains sample records for the topic "large-scale energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Compressed air energy storage system  

DOE Patents [OSTI]

An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustible fuel. Preferably the internal combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

Ahrens, Frederick W. (Naperville, IL); Kartsounes, George T. (Naperville, IL)

1981-01-01T23:59:59.000Z

362

University of Arizona Compressed Air Energy Storage  

SciTech Connect (OSTI)

Boiled down to its essentials, the grant’s purpose was to develop and demonstrate the viability of compressed air energy storage (CAES) for use in renewable energy development. While everyone agrees that energy storage is the key component to enable widespread adoption of renewable energy sources, the development of a viable scalable technology has been missing. The Department of Energy has focused on expanded battery research and improved forecasting, and the utilities have deployed renewable energy resources only to the extent of satisfying Renewable Portfolio Standards. The lack of dispatchability of solar and wind-based electricity generation has drastically increased the cost of operation with these components. It is now clear that energy storage coupled with accurate solar and wind forecasting make up the only combination that can succeed in dispatchable renewable energy resources. Conventional batteries scale linearly in size, so the price becomes a barrier for large systems. Flow batteries scale sub-linearly and promise to be useful if their performance can be shown to provide sufficient support for solar and wind-base electricity generation resources. Compressed air energy storage provides the most desirable answer in terms of scalability and performance in all areas except efficiency. With the support of the DOE, Tucson Electric Power and Science Foundation Arizona, the Arizona Research Institute for Solar Energy (AzRISE) at the University of Arizona has had the opportunity to investigate CAES as a potential energy storage resource.

Simmons, Joseph; Muralidharan, Krishna

2012-12-31T23:59:59.000Z

363

Energy Storage Systems 2005 Peer Review  

Broader source: Energy.gov [DOE]

The U.S. DOE Energy Storage Systems Program (ESS) held an annual peer review on October 20, 2005 in San Francisco, CA. The agenda and ESS program overview presentation are below.

364

Energy Storage Systems 2010 Update Conference Presentations ...  

Broader source: Energy.gov (indexed) [DOE]

of Day 2, chaired by NETL's Kim Nuhfer, are below. ESS 2010 Update Conference - Low Cost Energy Storage - Ted Wiley, Aquion.pdf Ess 2010 Update Conference - Solid State Li Metal...

365

Energy Storage Systems 2010 Update Conference Presentations ...  

Broader source: Energy.gov (indexed) [DOE]

Terry Aselage, are below. ESS 2010 Update Conference - Advanced Stationary Electrical Energy Storage R&D at PNNL - Z Gary Yang, PNNL.pdf ESS 2010 Update Conference - A New...

366

Energy Storage Systems 2010 Update Conference Presentations ...  

Broader source: Energy.gov (indexed) [DOE]

chaired by ARPA-E's Mark Johnson, are below. ESS 2010 Update Conference - Electrochemical Energy Storage for the Grid - Yet-Ming Chiang, MIT.pdf ESS 2010 Update Conference - DOE...

367

Energy Proportionality for Disk Storage Using Replication  

E-Print Network [OSTI]

energy consumed in a datacenter. Recent work introduced theoperational costs in a datacenter, and if we consider power-the many components in the datacenter, storage is the next

Kim, Jinoh

2010-01-01T23:59:59.000Z

368

Improving the Technical, Environmental, and Social Performance of Wind Energy Systems Using Biomass-Based Energy Storage  

SciTech Connect (OSTI)

A completely renewable baseload electricity generation system is proposed by combining wind energy, compressed air energy storage, and biomass gasification. This system can eliminate problems associated with wind intermittency and provide a source of electrical energy functionally equivalent to a large fossil or nuclear power plant. Compressed air energy storage (CAES) can be economically deployed in the Midwestern US, an area with significant low-cost wind resources. CAES systems require a combustible fuel, typically natural gas, which results in fuel price risk and greenhouse gas emissions. Replacing natural gas with synfuel derived from biomass gasification eliminates the use of fossil fuels, virtually eliminating net CO{sub 2} emissions from the system. In addition, by deriving energy completely from farm sources, this type of system may reduce some opposition to long distance transmission lines in rural areas, which may be an obstacle to large-scale wind deployment.

Denholm, P.

2006-01-01T23:59:59.000Z

369

Solar energy thermalization and storage device  

DOE Patents [OSTI]

A passive solar thermalization and thermal energy storage assembly which is visually transparent. The assembly consists of two substantial parallel, transparent wall members mounted in a rectangular support frame to form a liquid-tight chamber. A semitransparent thermalization plate is located in the chamber, substantially paralled to and about equidistant from the transparent wall members to thermalize solar radiation which is stored in a transparent thermal energy storage liquid which fills the chamber. A number of the devices, as modules, can be stacked together to construct a visually transparent, thermal storage wall for passive solar-heated buildings.

McClelland, John F. (Ames, IA)

1981-09-01T23:59:59.000Z

370

Energy Storage Architecture Northwest Power and Conservation Council Symposium  

E-Print Network [OSTI]

Modular Energy Storage Architecture (MESA) Northwest Power and Conservation Council Symposium: Innovations in Energy Storage Technologies February 13, 2013 Portland, OR #12;2 Agenda 2/13/2013 Renewable energy challenges Vision for energy storage Energy storage barriers MESA ­ Standardization & software

371

Hydrogen-based electrochemical energy storage  

DOE Patents [OSTI]

An energy storage device (100) providing high storage densities via hydrogen storage. The device (100) includes a counter electrode (110), a storage electrode (130), and an ion conducting membrane (120) positioned between the counter electrode (110) and the storage electrode (130). The counter electrode (110) is formed of one or more materials with an affinity for hydrogen and includes an exchange matrix for elements/materials selected from the non-noble materials that have an affinity for hydrogen. The storage electrode (130) is loaded with hydrogen such as atomic or mono-hydrogen that is adsorbed by a hydrogen storage material such that the hydrogen (132, 134) may be stored with low chemical bonding. The hydrogen storage material is typically formed of a lightweight material such as carbon or boron with a network of passage-ways or intercalants for storing and conducting mono-hydrogen, protons, or the like. The hydrogen storage material may store at least ten percent by weight hydrogen (132, 134) at ambient temperature and pressure.

Simpson, Lin Jay

2013-08-06T23:59:59.000Z

372

ORNL/TM-2011/455 Large Scale Duty Cycle (LSDC) Project  

E-Print Network [OSTI]

ORNL/TM-2011/455 Large Scale Duty Cycle (LSDC) Project: Tractive Energy Analysis Methodology and Results from Long-Haul Truck Drive Cycle Evaluations May 2011 Prepared by Tim LaClair #12;#12;ORNL/TM-2011/455 Energy and Transportation Science Division LARGE SCALE DUTY CYCLE (LSDC) PROJECT: TRACTIVE ENERGY

373

Energy storage systems cost update : a study for the DOE Energy Storage Systems Program.  

SciTech Connect (OSTI)

This paper reports the methodology for calculating present worth of system and operating costs for a number of energy storage technologies for representative electric utility applications. The values are an update from earlier reports, categorized by application use parameters. This work presents an update of energy storage system costs assessed previously and separately by the U.S. Department of Energy (DOE) Energy Storage Systems Program. The primary objective of the series of studies has been to express electricity storage benefits and costs using consistent assumptions, so that helpful benefit/cost comparisons can be made. Costs of energy storage systems depend not only on the type of technology, but also on the planned operation and especially the hours of storage needed. Calculating the present worth of life-cycle costs makes it possible to compare benefit values estimated on the same basis.

Schoenung, Susan M. (Longitude 122 West, Menlo Park, CA)

2011-04-01T23:59:59.000Z

374

ENERGY EFFICIENCY AND ENVIRONMENTALLY FRIENDLY DISTRIBUTED ENERGY STORAGE BATTERY  

SciTech Connect (OSTI)

Electro Energy, Inc. conducted a research project to develop an energy efficient and environmentally friendly bipolar Ni-MH battery for distributed energy storage applications. Rechargeable batteries with long life and low cost potentially play a significant role by reducing electricity cost and pollution. A rechargeable battery functions as a reservoir for storage for electrical energy, carries energy for portable applications, or can provide peaking energy when a demand for electrical power exceeds primary generating capabilities.

LANDI, J.T.; PLIVELICH, R.F.

2006-04-30T23:59:59.000Z

375

Autonomie Large Scale Deployment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: Scope ChangeL-01-06 AuditAugust 5,ReDevelopments |1 DOE0Large

376

Solar energy in the context of energy use, energy transportation, and energy storage  

E-Print Network [OSTI]

Solar energy in the context of energy use, energy transportation, and energy storage By David J C to the following journal article, published July 2013: MacKay DJC. 2013 Solar energy in the context of energy use, energy trans- portation and energy storage. Phil Trans R Soc A 371: 20110431. http://dx.doi.org/10

MacKay, David J.C.

377

Solar energy in the context of energy use, energy transportation, and energy storage  

E-Print Network [OSTI]

Solar energy in the context of energy use, energy transportation, and energy storage By David J C to the following journal article, published July 2013: MacKay DJC. 2013 Solar energy in the context of energy use, energy trans­ portation and energy storage. Phil Trans R Soc A 371: 20110431. http://dx.doi.org/10

MacKay, David J.C.

378

Kauai Island Utility Cooperative energy storage study.  

SciTech Connect (OSTI)

Sandia National Laboratories performed an assessment of the benefits of energy storage for the Kauai Island Utility Cooperative. This report documents the methodology and results of this study from a generation and production-side benefits perspective only. The KIUC energy storage study focused on the economic impact of using energy storage to shave the system peak, which reduces generator run time and consequently reduces fuel and operation and maintenance (O&M) costs. It was determined that a 16-MWh energy storage system would suit KIUC's needs, taking into account the size of the 13 individual generation units in the KIUC system and a system peak of 78 MW. The analysis shows that an energy storage system substantially reduces the run time of Units D1, D2, D3, and D5 - the four smallest and oldest diesel generators at the Port Allen generating plant. The availability of stored energy also evens the diurnal variability of the remaining generation units during the off- and on-peak periods. However, the net economic benefit is insufficient to justify a load-leveling type of energy storage system at this time. While the presence of storage helps reduce the run time of the smaller and older units, the economic dispatch changes and the largest most efficient unit in the KIUC system, the 27.5-MW steam-injected combustion turbine at Kapaia, is run for extra hours to provide the recharge energy for the storage system. The economic benefits of the storage is significantly reduced because the charging energy for the storage is derived from the same fuel source as the peak generation source it displaces. This situation would be substantially different if there were a renewable energy source available to charge the storage. Especially, if there is a wind generation resource introduced in the KIUC system, there may be a potential of capturing the load-leveling benefits as well as using the storage to dampen the dynamic instability that the wind generation could introduce into the KIUC grid. General Electric is presently conducting such a study and results of this study will be available in the near future. Another study conducted by Electric Power Systems, Inc. (EPS) in May 2006 took a broader approach to determine the causes of KIUC system outages. This study concluded that energy storage with batteries will provide stability benefits and possibly eliminate the load shedding while also providing positive voltage control. Due to the lack of fuel diversity in the KIUC generation mix, SNL recommends that KIUC continue its efforts to quantify the dynamic benefits of storage. The value of the dynamic benefits, especially as an enabler of renewable generation such as wind energy, may be far greater than the production cost benefits alone. A combination of these benefits may provide KIUC sufficient positive economic and operational benefits to implement an energy storage project that will contribute to the overall enhancement of the KIUC system.

Akhil, Abbas Ali; Yamane, Mike (Kauai Island Utility Cooperative, Lihu'e, HI); Murray, Aaron T.

2009-06-01T23:59:59.000Z

379

Original article Energy balance storage terms and big-leaf  

E-Print Network [OSTI]

), biomass heat storage (Sv) and photosynthetic energy storage (Sp). Soil heat storage Sg can be furtherOriginal article Energy balance storage terms and big-leaf evapotranspiration in a mixed deciduous not be omitted. On a seasonal basis soil heat storage seems to be the most important term. The overall heat

Boyer, Edmond

380

Large scale structure of the Universe: Introduction  

E-Print Network [OSTI]

The changes of main paradigms on the structure and evolution of the Universe are reviewed. Two puzzles of the modern cosmology, the mean density of matter and the regularity of the Universe on large scales, as well as the possibility to solve these puzzles by the introduction of more complicated form of inflation, are discussed.

J. Einasto

1997-11-26T23:59:59.000Z

Note: This page contains sample records for the topic "large-scale energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Dark Matter and Large Scale Structure  

E-Print Network [OSTI]

A review of the study of dark matter and large scale structure of the Universe at Tartu Observatory is given. Tartu astronomers have participated in this development, starting from Ernst "Opik and Grigori Kuzmin, and continuing with the present generation of astronomers. Our goal was to understand better the structure, origin and evolution of the Universe.

J. Einasto

2000-12-07T23:59:59.000Z

382

7, 1553315563, 2007 Large-scale  

E-Print Network [OSTI]

the Pacific, correlations with CO, CO2, CH4, and C2Cl4 were dif- fuse overall, but recognizable on flights out Chemistry and Physics Discussions Factors influencing the large-scale distribution of Hg in the Mexico City the Intercontinental Chemical Transport Experiment Phase B (INTEX-B) cam- paign in spring 2006. Flights were conducted

Paris-Sud XI, Université de

383

Large-Scale Data Challenges in Future Power Grids  

SciTech Connect (OSTI)

This paper describes technical challenges in supporting large-scale real-time data analysis for future power grid systems and discusses various design options to address these challenges. Even though the existing U.S. power grid has served the nation remarkably well over the last 120 years, big changes are in the horizon. The widespread deployment of renewable generation, smart grid controls, energy storage, plug-in hybrids, and new conducting materials will require fundamental changes in the operational concepts and principal components. The whole system becomes highly dynamic and needs constant adjustments based on real time data. Even though millions of sensors such as phase measurement units (PMUs) and smart meters are being widely deployed, a data layer that can support this amount of data in real time is needed. Unlike the data fabric in cloud services, the data layer for smart grids must address some unique challenges. This layer must be scalable to support millions of sensors and a large number of diverse applications and still provide real time guarantees. Moreover, the system needs to be highly reliable and highly secure because the power grid is a critical piece of infrastructure. No existing systems can satisfy all the requirements at the same time. We examine various design options. In particular, we explore the special characteristics of power grid data to meet both scalability and quality of service requirements. Our initial prototype can improve performance by orders of magnitude over existing general-purpose systems. The prototype was demonstrated with several use cases from PNNL’s FPGI and was shown to be able to integrate huge amount of data from a large number of sensors and a diverse set of applications.

Yin, Jian; Sharma, Poorva; Gorton, Ian; Akyol, Bora A.

2013-03-25T23:59:59.000Z

384

Page Digest for Large-Scale Web Services Daniel Rocco, David Buttler, Ling Liu  

E-Print Network [OSTI]

Page Digest for Large-Scale Web Services Daniel Rocco, David Buttler, Ling Liu Georgia Institute this storage and processing efficiently. In this paper, we introduce Page Digest, a mechanism for efficient storage and processing of Web documents. The Page Digest design encourages a clean separation

Rocco, Daniel

385

Aquifer thermal energy storage. International symposium: Proceedings  

SciTech Connect (OSTI)

Aquifers have been used to store large quantities of thermal energy to supply process cooling, space cooling, space heating, and ventilation air preheating, and can be used with or without heat pumps. Aquifers are used as energy sinks and sources when supply and demand for energy do not coincide. Aquifer thermal energy storage may be used on a short-term or long-term basis; as the sole source of energy or as a partial storage; at a temperature useful for direct application or needing upgrade. The sources of energy used for aquifer storage are ambient air, usually cold winter air; waste or by-product energy; and renewable energy such as solar. The present technical, financial and environmental status of ATES is promising. Numerous projects are operating and under development in several countries. These projects are listed and results from Canada and elsewhere are used to illustrate the present status of ATES. Technical obstacles have been addressed and have largely been overcome. Cold storage in aquifers can be seen as a standard design option in the near future as it presently is in some countries. The cost-effectiveness of aquifer thermal energy storage is based on the capital cost avoidance of conventional chilling equipment and energy savings. ATES is one of many developments in energy efficient building technology and its success depends on relating it to important building market and environmental trends. This paper attempts to provide guidance for the future implementation of ATES. Individual projects have been processed separately for entry onto the Department of Energy databases.

NONE

1995-05-01T23:59:59.000Z

386

Underground-Energy-Storage Program, 1982 annual report  

SciTech Connect (OSTI)

Two principal underground energy storage technologies are discussed--Seasonal Thermal Energy Storage (STES) and Compressed Air Energy Storage (CAES). The Underground Energy Storage Program objectives, approach, structure, and milestones are described, and technical activities and progress in the STES and CAES areas are summarized. STES activities include aquifer thermal energy storage technology studies and STES technology assessment and development. CAES activities include reservoir stability studies and second-generation concepts studies. (LEW)

Kannberg, L.D.

1983-06-01T23:59:59.000Z

387

Macroencapsulation of Phase Change Materials for Thermal Energy Storage.  

E-Print Network [OSTI]

??The use of a latent heat storage system using phase change materials (PCMs) is an effective way of storing thermal energy. Latent heat storage enables… (more)

Pendyala, Swetha

2012-01-01T23:59:59.000Z

388

FY06 DOE Energy Storage Program PEER Review  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

9 DOE Energy Storage PEER Review John D. Boyes Sandia National Laboratories Mission Develop advanced electricity storage and PE technologies, in partnership with industry, for...

389

Impact of Wind and Solar on the Value of Energy Storage  

SciTech Connect (OSTI)

This analysis evaluates how the value of energy storage changes when adding variable generation (VG) renewable energy resources to the grid. A series of VG energy penetration scenarios from 16% to 55% were generated for a utility system in the western United States. This operational value of storage (measured by its ability to reduce system production costs) was estimated in each VG scenario, considering provision of different services and with several sensitivities to fuel price and generation mix. Overall, the results found that the presence of VG increases the value of energy storage by lowering off-peak energy prices more than on-peak prices, leading to a greater opportunity to arbitrage this price difference. However, significant charging from renewables, and consequently a net reduction in carbon emissions, did not occur until VG penetration was in the range of 40%-50%. Increased penetration of VG also increases the potential value of storage when providing reserves, mainly by increasing the amount of reserves required by the system. Despite this increase in value, storage may face challenges in capturing the full benefits it provides. Due to suppression of on-/off-peak price differentials, reserve prices, and incomplete capture of certain system benefits (such as the cost of power plant starts), the revenue obtained by storage in a market setting appears to be substantially less than the net benefit (reduction in production costs) provided to the system. Furthermore, it is unclear how storage will actually incentivize large-scale deployment of renewables needed to substantially increase VG penetration. This demonstrates some of the additional challenges for storage deployed in restructured energy markets.

Denholm, P.; Jorgenson, J.; Hummon, M.; Palchak, D.; Kirby, B.; Ma, O.; O'Malley, M.

2013-11-01T23:59:59.000Z

390

A New Storage Scheme for Approximate Location Queries in Object Tracking Sensor Networks  

E-Print Network [OSTI]

for energy efficiency. We develop an Energy-conserving Approximate StoragE (EASE) scheme to efficiently the network lifetime by a factor of 2-5. Index Terms: Energy efficiency, data dissemination, data storage.g., in a hard-to-reach area). Thus, energy efficiency is a critical consideration in the design of large- scale

Lee, Dongwon

391

Economical Energy Storage Option Enhances Energy Purchasing Strategies  

E-Print Network [OSTI]

Chilled Water Thermal Energy Storage (TES) offers benefits to both the electricity supplier and the electricity user. This well-established technology uses stratified chilled water to store energy in thermal form so that electricity can be purchased...

Hansen, D. W.; Winters, P. J.

392

Hybrid Parallelism for Volume Rendering at Large Scale at NERSC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Volume Rendering at Large Scale Hybrid Parallelism for Volume Rendering at Large Scale volrend-swes.png We studied the performance and scalability characteristics of hybrid''...

393

On the Energy Overhead of Mobile Storage Systems Anirudh Badam*  

E-Print Network [OSTI]

On the Energy Overhead of Mobile Storage Systems Jing Li Anirudh Badam* Ranveer Chandra* Steven the energy consumption of the storage stack on mobile platforms. We conduct several experiments on mobile plat- forms to analyze the energy requirements of their re- spective storage stacks. Software storage

Narasayya, Vivek

394

Valuation of Energy Storage: An Optimal Switching Rene Carmona  

E-Print Network [OSTI]

Valuation of Energy Storage: An Optimal Switching Approach RenÂŽe Carmona Department of Operations://www.pstat.ucsb.edu/faculty/ludkovski We consider the valuation of energy storage facilities within the framework of stochastic control;Carmona and Ludkovski: Optimal Switching for Energy Storage 2 in the commodity financial markets. Storage

Carmona, Rene

395

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network [OSTI]

The Legalization of Ground Water Storage," Water Resourcesprocedure to above ground storage of heat in huge insulatedthis project is heat storage in ground-water regions storage

Authors, Various

2011-01-01T23:59:59.000Z

396

EXPERIMENTAL AND THEORETICAL STUDIES OF THERMAL ENERGY STORAGE IN AQUIFERS  

E-Print Network [OSTI]

1971, storage of Solar Energy in a Bandy- Gravel Ground. 2.Aquifer Storage of Heated Water: A Field Experuuent. GroundStorage of Heated Water: Part II - Numerical Simulation of Field Results. Ground

Tsang, Chin Fu

2011-01-01T23:59:59.000Z

397

Suppression of large-scale perturbations by stiff solid  

E-Print Network [OSTI]

Evolution of large-scale scalar perturbations in the presence of stiff solid (solid with pressure to energy density ratio > 1/3) is studied. If the solid dominated the dynamics of the universe long enough, the perturbations could end up suppressed by as much as several orders of magnitude. To avoid too steep large-angle power spectrum of CMB, radiation must have prevailed over the solid long enough before recombination.

Vladimír Balek; Matej Škovran

2015-01-28T23:59:59.000Z

398

Suppression of large-scale perturbations by stiff solid  

E-Print Network [OSTI]

Evolution of large-scale scalar perturbations in the presence of stiff solid (solid with pressure to energy density ratio > 1/3) is studied. If the solid dominated the dynamics of the universe long enough, the perturbations could end up suppressed by as much as several orders of magnitude. To avoid too steep large-angle power spectrum of CMB, radiation must have prevailed over the solid long enough before recombination.

Balek, Vladimír

2015-01-01T23:59:59.000Z

399

Large Scale Deployment of Renewables for Electricity Generation  

E-Print Network [OSTI]

).38 The small scale of renewable energy projects multiplies the relative costs incurred through multiple administrative processes. For example, biogas plants in Germany require several parallel permit processes designed to address issues such as EU... -cellulose material. Anaerobic digestion or gasification of biomass produces gas that can be used in similar applications to natural gas. Small-scale biogas production is now a well-established technology and large-scale application is in the advanced stages...

Neuhoff, Karsten

2006-03-14T23:59:59.000Z

400

Optimal Demand Response with Energy Storage Management  

E-Print Network [OSTI]

In this paper, we consider the problem of optimal demand response and energy storage management for a power consuming entity. The entity's objective is to find an optimal control policy for deciding how much load to consume, how much power to purchase from/sell to the power grid, and how to use the finite capacity energy storage device and renewable energy, to minimize his average cost, being the disutility due to load- shedding and cost for purchasing power. Due to the coupling effect of the finite size energy storage, such problems are challenging and are typically tackled using dynamic programming, which is often complex in computation and requires substantial statistical information of the system dynamics. We instead develop a low-complexity algorithm called Demand Response with Energy Storage Management (DR-ESM). DR-ESM does not require any statistical knowledge of the system dynamics, including the renewable energy and the power prices. It only requires the entity to solve a small convex optimization pr...

Huang, Longbo; Ramchandran, Kannan

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "large-scale energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Aquifer thermal energy (heat and chill) storage  

SciTech Connect (OSTI)

As part of the 1992 Intersociety Conversion Engineering Conference, held in San Diego, California, August 3--7, 1992, the Seasonal Thermal Energy Storage Program coordinated five sessions dealing specifically with aquifer thermal energy storage technologies (ATES). Researchers from Sweden, The Netherlands, Germany, Switzerland, Denmark, Canada, and the United States presented papers on a variety of ATES related topics. With special permission from the Society of Automotive Engineers, host society for the 1992 IECEC, these papers are being republished here as a standalone summary of ATES technology status. Individual papers are indexed separately.

Jenne, E.A. (ed.)

1992-11-01T23:59:59.000Z

402

LiH thermal energy storage device  

DOE Patents [OSTI]

A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures. 5 figures.

Olszewski, M.; Morris, D.G.

1994-06-28T23:59:59.000Z

403

Carbon Capture and Storage | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartment of4 Federal6CleanCaithness ShepherdsCapturingStorageStorage

404

Transportation Storage Interface | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNGInternationalTechnologyDepartmentStorage Interface Transportation Storage

405

The assessment of battery-ultracapacitor hybrid energy storage systems  

E-Print Network [OSTI]

Battery-ultracapacitors hybrid energy storage systems (ESS) could combine the high power density and high life cycle of ultracapacitors with the high energy density of batteries, which forms a promising energy storage ...

He, Yiou

2014-01-01T23:59:59.000Z

406

Sandia National Laboratories: Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Exhibition (EU PVSC) EC Top Publications Reference Model 5 (RM5): Oscillating Surge Wave Energy Converter Experimental Wave Tank Test for Reference Model 3 Floating- Point...

407

NREL: Energy Storage - Battery Ownership  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

publications. Updating United States Advanced Battery Consortium and Department of Energy Battery Technology Targets for Battery Electric Vehicles Sensitivity of Plug-In Hybrid...

408

Sandia National Laboratories: Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandiaConsortiumAct Energy SavingsNuclear EnergyStoring

409

Modeling of Thermal Storage Systems in MILP Distributed Energy Resource Models  

E-Print Network [OSTI]

potential materials for thermal energy storage in buildingcoupled with thermal energy storage," Applied Energy, vol.N. Fumo, "Benefits of thermal energy storage option combined

Steen, David

2014-01-01T23:59:59.000Z

410

Energy Storage & Power Electronics 2008 Peer Review - Energy Storage  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department oftoThese WebThese caseEnergyA123Sector

411

Energy Storage Systems 2007 Peer Review - International Energy Storage  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department oftoThese WebTheseof Energy| Department of

412

STATE OF CALIFORNIA DISTRIBUTED ENERGY STORAGE DX AC SYSTEMES ACCEPTANCE  

E-Print Network [OSTI]

STATE OF CALIFORNIA DISTRIBUTED ENERGY STORAGE DX AC SYSTEMES ACCEPTANCE CEC-MECH-14A (Revised 08/09) CALIFORNIA ENERGY COMMISSION CERTIFICATE OF ACCEPTANCE MECH-14A NA7.5.13 Distributed Energy Storage DX AC DISTRIBUTED ENERGY STORAGE DX AC SYSTEMES ACCEPTANCE CEC-MECH-14A (Revised 08/09) CALIFORNIA ENERGY COMMISSION

413

Energy Storage System Sizing for Smoothing Power Generation , P. Bydlowski  

E-Print Network [OSTI]

Energy Storage System Sizing for Smoothing Power Generation of Direct J. Aubry1 , P. Bydlowski 1 E-mail: judicael.aubry Abstract This paper examines the sizing energy storage system (ESS) for energy converter. Keywords: Energy Storage System (ESS), power smoothing, Direct Wave Energy Converter, Supercapacitor, Power

Boyer, Edmond

414

STATE OF CALIFORNIA THERMAL ENERGY STORAGE (TES) SYSTEM ACCEPTANCE  

E-Print Network [OSTI]

STATE OF CALIFORNIA THERMAL ENERGY STORAGE (TES) SYSTEM ACCEPTANCE CEC-MECH-15A (Revised 07/10) CALIFORNIA ENERGY COMMISSION CERTIFICATE OF ACCEPTANCE MECH-15A NA7.5.14 Thermal Energy Storage (TES) System THERMAL ENERGY STORAGE (TES) SYSTEM ACCEPTANCE CEC-MECH-15A (Revised 07/10) CALIFORNIA ENERGY COMMISSION

415

Control Algorithms for Grid-Scale Battery Energy Storage Systems  

E-Print Network [OSTI]

Control Algorithms for Grid-Scale Battery Energy Storage Systems This report describes development-connected battery energy storage system. The report was submitted by HNEI to the U.S. Department of Energy Office.2: Energy Storage Systems August 2014 HAWAI`I NATURAL ENERGY INSTITUTE School of Ocean & Earth Science

416

Sandia National Laboratories: Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducation Programs:CRFProvideAids EnergyUFDSunShot On NovemberEnergy

417

Sandia National Laboratories: Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandiaConsortiumAct Energy SavingsNuclear

418

Sandia National Laboratories: Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandiaConsortiumAct Energy SavingsNuclearMore Efficient

419

Sandia National Laboratories: Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandiaConsortiumAct Energy SavingsNuclearMore

420

Sandia National Laboratories: Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandiaConsortiumAct Energy

Note: This page contains sample records for the topic "large-scale energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Diffuse Gamma-Ray Emission from Large Scale Structures  

E-Print Network [OSTI]

For more than a decade now the complete origin of the diffuse gamma-ray emission background (EGRB) has been unknown. Major components like unresolved star-forming galaxies (making 10GeV. Moreover, we show that, even though the gamma-ray emission arising from structure formation shocks at galaxy clusters is below previous estimates, these large scale shocks can still give an important, and even dominant at high energies, contribution to the EGRB. Future detections of cluster gamma-ray emission would make our upper limit of the extragalactic gamma-ray emission from structure-formation process, a firm prediction, and give us deeper insight in evolution of these large scale shock.

Dobardzic, Aleksandra

2012-01-01T23:59:59.000Z

422

Impacts of Large-Scale Wind Generators Penetration on the Voltage Stability of Power Systems  

E-Print Network [OSTI]

development of wind energy tech- nology and the current world-wide status of grid-connected as well as standImpacts of Large-Scale Wind Generators Penetration on the Voltage Stability of Power Systems M. J systems and their dynamic behaviours to identify critical issues that limit the large-scale integration

Pota, Himanshu Roy

423

National Hydrogen Storage Project | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2 to:DieselEnergyHydrogen Storage » DOE R&D

424

MODELING OF HYDRO-PNEUMATIC ENERGY STORAGE USING PUMP TURBINES  

E-Print Network [OSTI]

of delivered power and energy capacities. Hydraulic storage or compressed air energy storage (CAES) can be used-turbine to displace a virtual liquid piston for air compression (Figure 1). A dynamic model of the storage system. It is based upon air compression storage using a hydraulic drive, which allows relatively high conversion

Paris-Sud XI, Université de

425

Role of Energy Storage with Renewable Electricity Generation (Report Summary) (Presentation)  

SciTech Connect (OSTI)

Renewable energy sources, such as wind and solar, have vast potential to reduce dependence on fossil fuels and greenhouse gas emissions in the electric sector. Climate change concerns, state initiatives including renewable portfolio standards, and consumer efforts are resulting in increased deployments of both technologies. Both solar photovoltaics (PV) and wind energy have variable and uncertain (sometimes referred to as "intermittent") output, which are unlike the dispatchable sources used for the majority of electricity generation in the United States. The variability of these sources has led to concerns regarding the reliability of an electric grid that derives a large fraction of its energy from these sources as well as the cost of reliably integrating large amounts of variable generation into the electric grid. In this report, we explore the role of energy storage in the electricity grid, focusing on the effects of large-scale deployment of variable renewable sources (primarily wind and solar energy).

Denholm, P.; Ela, E.; Kirby, B.; Milligan, M.

2010-03-01T23:59:59.000Z

426

Sun Also Rises: Planning for Large-Scale Solar Power  

SciTech Connect (OSTI)

Wind, solar, and other renewable energy are an important part of any present-day energy. The portion of energy they supply will certainly be increasing over the next few years. Arguably, large-scale wind power has reached technological maturity, and with more than 100 GW of capacity, ample experience exists on integrating wind systems. Solar technologies, on the other hand, are emerging, and substantial R&D investments are being made to achieve parity with retail electricity costs in the near future. As this happens, annual capacity additions of solar power will become significant.

Bebic, J.; Walling, R.; O'Brien, K.; Kroposki, B.

2009-05-01T23:59:59.000Z

427

Potential Climatic Impacts and Reliability of Very Large-Scale Wind Farms  

E-Print Network [OSTI]

Meeting future world energy needs while addressing climate change requires large-scale deployment of low or zero greenhouse gas (GHG) emission technologies such as wind energy. The widespread availability of wind power has ...

Wang, Chien

428

Storage - Challenges and Opportunities | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScopingOverviewFranklinStatusJ.R.StevenStop.Storage -

429

Storage Gas Water Heaters | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScopingOverviewFranklinStatusJ.R.StevenStop.Storage

430

Southern company energy storage study : a study for the DOE energy storage systems program.  

SciTech Connect (OSTI)

This study evaluates the business case for additional bulk electric energy storage in the Southern Company service territory for the year 2020. The model was used to examine how system operations are likely to change as additional storage is added. The storage resources were allowed to provide energy time shift, regulation reserve, and spinning reserve services. Several storage facilities, including pumped hydroelectric systems, flywheels, and bulk-scale batteries, were considered. These scenarios were tested against a range of sensitivities: three different natural gas price assumptions, a 15% decrease in coal-fired generation capacity, and a high renewable penetration (10% of total generation from wind energy). Only in the elevated natural gas price sensitivities did some of the additional bulk-scale storage projects appear justifiable on the basis of projected production cost savings. Enabling existing peak shaving hydroelectric plants to provide regulation and spinning reserve, however, is likely to provide savings that justify the project cost even at anticipated natural gas price levels. Transmission and distribution applications of storage were not examined in this study. Allowing new storage facilities to serve both bulk grid and transmission/distribution-level needs may provide for increased benefit streams, and thus make a stronger business case for additional storage.

Ellison, James; Bhatnagar, Dhruv; Black, Clifton [Southern Company Services, Inc., Birmingham, AL; Jenkins, Kip [Southern Company Services, Inc., Birmingham, AL

2013-03-01T23:59:59.000Z

431

The Economic Case for Bulk Energy Storage in Transmission Systems  

E-Print Network [OSTI]

The Economic Case for Bulk Energy Storage in Transmission Systems with High Percentages to Engineer the Future Electric Energy System #12;#12;The Economic Case for Bulk Energy Storage Economic Case for Bulk Energy Storage in Transmission Sys- tems with High Percentages of Renewable

432

Thermochemical energy storage systems: modelling, analysis and design.  

E-Print Network [OSTI]

??Thermal energy storage (TES) is an advanced technology for storing thermal energy that can mitigate environmental impacts and facilitate more efficient and clean energy systems.… (more)

Haji Abedin, Ali

2010-01-01T23:59:59.000Z

433

Fact Sheet: Codes and Standards for Energy Storage System Performance...  

Broader source: Energy.gov (indexed) [DOE]

The U.S. Department of Energy's Office of Electricity Delivery and Energy Reliability Energy Storage Systems Program, with the support of Pacific Northwest National Laboratory...

434

Fact Sheet Available: Codes and Standards for Energy Storage...  

Broader source: Energy.gov (indexed) [DOE]

U.S. Department of Energy's Office of Electricity Delivery and Energy Reliability Energy Storage Systems Program, with the support of Pacific Northwest National Laboratory (PNNL)...

435

Crosstalk compensation in analysis of energy storage devices...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial...

436

Energy Storage Computational Tool | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The followingDirectLowDiscussion PageOpenEIenergy_storage_computat

437

1 National Roadmap Committee for Large-Scale Research Facilities the netherlands' roadmap for large-scale research facilities  

E-Print Network [OSTI]

#12;1 National Roadmap Committee for Large-Scale Research Facilities the netherlands' roadmap for large-scale research facilities #12;2 National Roadmap Committee for Large-Scale Research Facilities1 by Roselinde Supheert) #12;3 National Roadmap Committee for Large-Scale Research Facilities The Netherlands

Horn, David

438

Ocean Renewable Energy Storage (ORES) System: Analysis of an Undersea Energy Storage Concept  

E-Print Network [OSTI]

Due to its higher capacity factor and proximity to densely populated areas, offshore wind power with integrated energy storage could satisfy > 20% of U.S. electricity demand. Similar results could also be obtained in many ...

Slocum, Alexander H.

439

Test profiles for stationary energy storage applications  

SciTech Connect (OSTI)

Evaluation of battery and other energy storage technologies for stationary uses is progressing rapidly toward application-specific testing that uses computer-based data acquisition and control equipment, active electronic loads and power supplies, and customized software, to enable sophisticated test regimes that simulate actual use conditions. These simulated-use tests provide more accurate performance and life evaluations than simple constant resistance or current testing regimes. Some of the tests use stepped constant-power charge and discharge regimes to simulate conditions created by electric utility applications such as frequency regulation and spinning reserve. Other test profiles under development simulate conditions for the energy storage component of Remote Area Power Supplies (RAPS) that include renewable and/or fossil-fueled generators. Various RAPS applications have unique sets of service conditions that require specialized test profiles. However, almost all RAPS tests and many tests that represent other stationary applications need to simulate significant time periods during which storage devices operate at low-to-medium states-of-charge without full recharge. Consideration of these and similar issues in simulated-use test regimes is necessary to effectively predict the responses of the various types of batteries in specific stationary applications. This paper describes existing and evolving stationary applications for energy storage technologies and test regimes that are designed to simulate them. The paper also discusses efforts to develop international testing standards.

Butler, P.C. [Sandia National Labs., Albuquerque, NM (United States); Cole, J.F. [International Lead Zinc Research Organization, Research Triangle Park, NC (United States); Taylor, P.A. [Energetics, Inc., Columbia, MD (United States)

1998-09-01T23:59:59.000Z

440

Sandia National Laboratories: Energy Storage Multimedia Gallery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandiaConsortiumAct EnergyEnergy Storage Sandian

Note: This page contains sample records for the topic "large-scale energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Sandia National Laboratories: Energy Storage Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandiaConsortiumAct EnergyEnergy Storage

442

Sandia National Laboratories: Energy Storage Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandiaConsortiumAct EnergyEnergy StorageHigh-Efficiency

443

Improving energy storage devices | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation for planning experimental workImprovingImproving

444

The Phoenix series large scale LNG pool fire experiments.  

SciTech Connect (OSTI)

The increasing demand for natural gas could increase the number and frequency of Liquefied Natural Gas (LNG) tanker deliveries to ports across the United States. Because of the increasing number of shipments and the number of possible new facilities, concerns about the potential safety of the public and property from an accidental, and even more importantly intentional spills, have increased. While improvements have been made over the past decade in assessing hazards from LNG spills, the existing experimental data is much smaller in size and scale than many postulated large accidental and intentional spills. Since the physics and hazards from a fire change with fire size, there are concerns about the adequacy of current hazard prediction techniques for large LNG spills and fires. To address these concerns, Congress funded the Department of Energy (DOE) in 2008 to conduct a series of laboratory and large-scale LNG pool fire experiments at Sandia National Laboratories (Sandia) in Albuquerque, New Mexico. This report presents the test data and results of both sets of fire experiments. A series of five reduced-scale (gas burner) tests (yielding 27 sets of data) were conducted in 2007 and 2008 at Sandia's Thermal Test Complex (TTC) to assess flame height to fire diameter ratios as a function of nondimensional heat release rates for extrapolation to large-scale LNG fires. The large-scale LNG pool fire experiments were conducted in a 120 m diameter pond specially designed and constructed in Sandia's Area III large-scale test complex. Two fire tests of LNG spills of 21 and 81 m in diameter were conducted in 2009 to improve the understanding of flame height, smoke production, and burn rate and therefore the physics and hazards of large LNG spills and fires.

Simpson, Richard B.; Jensen, Richard Pearson; Demosthenous, Byron; Luketa, Anay Josephine; Ricks, Allen Joseph; Hightower, Marion Michael; Blanchat, Thomas K.; Helmick, Paul H.; Tieszen, Sheldon Robert; Deola, Regina Anne; Mercier, Jeffrey Alan; Suo-Anttila, Jill Marie; Miller, Timothy J.

2010-12-01T23:59:59.000Z

445

Large-scale Intelligent Transporation Systems simulation  

SciTech Connect (OSTI)

A prototype computer system has been developed which defines a high-level architecture for a large-scale, comprehensive, scalable simulation of an Intelligent Transportation System (ITS) capable of running on massively parallel computers and distributed (networked) computer systems. The prototype includes the modelling of instrumented ``smart`` vehicles with in-vehicle navigation units capable of optimal route planning and Traffic Management Centers (TMC). The TMC has probe vehicle tracking capabilities (display position and attributes of instrumented vehicles), and can provide 2-way interaction with traffic to provide advisories and link times. Both the in-vehicle navigation module and the TMC feature detailed graphical user interfaces to support human-factors studies. The prototype has been developed on a distributed system of networked UNIX computers but is designed to run on ANL`s IBM SP-X parallel computer system for large scale problems. A novel feature of our design is that vehicles will be represented by autonomus computer processes, each with a behavior model which performs independent route selection and reacts to external traffic events much like real vehicles. With this approach, one will be able to take advantage of emerging massively parallel processor (MPP) systems.

Ewing, T.; Canfield, T.; Hannebutte, U.; Levine, D.; Tentner, A.

1995-06-01T23:59:59.000Z

446

EPRI Energy Storage Talking Points  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord of DecisionDraftDepartmentofEnergyPortfolioEPAct Section

447

NREL: Transportation Research - Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData and ResourcesOtherForecastingAlternativeVehicleHydrogen

448

Large Scale Computing and Storage Requirements for Nuclear Physics Research  

E-Print Network [OSTI]

in the process of thermonuclear incineration of theircore-collapse and thermonuclear events to test predictionsprocesses. In contrast to thermonuclear supernova modeling,

Gerber, Richard A.

2012-01-01T23:59:59.000Z

449

Automatic Reconfiguration for Large-Scale Reliable Storage Systems  

E-Print Network [OSTI]

Byzantine-fault-tolerant replication enhances the availability and reliability of Internet services that store critical state and preserve it despite attacks or software errors. However, existing Byzantine-fault-tolerant ...

Rodrigues, Rodrigo

450

Large Scale Computing and Storage Requirements for Nuclear Physics Research  

E-Print Network [OSTI]

proceedings of High Performance Computing – 2011 (HPC-2011)In recent years, high performance computing has becomeNERSC is the primary high-performance computing facility for

Gerber, Richard A.

2012-01-01T23:59:59.000Z

451

Large Scale Computing and Storage Requirements for Nuclear Physics Research  

E-Print Network [OSTI]

neutrino matrix. Neutrinoless double beta decay experiments,process called neutrinoless double beta decay in nuclei,

Gerber, Richard A.

2012-01-01T23:59:59.000Z

452

The Promise Of Data Grouping In Large Scale Storage Systems  

E-Print Network [OSTI]

primary and mirror copy [118]. PDC attempts to concen- tratewe could follow the lead of PDC [80] and use a multi-queueare interested in comes from the PDC work [80] and involves

Wildani, Avani

2013-01-01T23:59:59.000Z

453

Large Scale Production Computing and Storage Requirements for...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

research. Final Report PDF version Date and Location April 29-30, 2014 Hyatt Regency Bethesda One Bethesda Metro Center (7400 Wisconsin Ave) Bethesda, Maryland, USA 20814...

454

24M Technologies: Using Innovation to Solve the Energy Storage...  

Broader source: Energy.gov (indexed) [DOE]

24M Technologies: Using Innovation to Solve the Energy Storage Challenge 24M Technologies: Using Innovation to Solve the Energy Storage Challenge February 1, 2011 - 3:30pm Addthis...

455

Vehicle Technologies Office: 2013 Energy Storage R&D Progress...  

Broader source: Energy.gov (indexed) [DOE]

1-3 Vehicle Technologies Office: 2013 Energy Storage R&D Progress Report, Sections 1-3 The FY 2013 Progress Report for Energy Storage R&D focuses on advancing the development of...

456

Vehicle Technologies Office: 2013 Energy Storage R&D Progress...  

Broader source: Energy.gov (indexed) [DOE]

4-6 Vehicle Technologies Office: 2013 Energy Storage R&D Progress Report, Sections 4-6 The FY 2013 Progress Report for Energy Storage R&D focuses on advancing the development of...

457

Energy Storage Systems 2012 Peer Review Presentations - Poster...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ARPA-E Projects Energy Storage Systems 2012 Peer Review Presentations - Poster Session 1 (Day 1): ARPA-E Projects The U.S. DOE Energy Storage Systems Program (ESS) conducted a peer...

458

Large-Scale Anisotropy of EGRET Gamma Ray Sources  

E-Print Network [OSTI]

In the course of its operation, the EGRET experiment detected high-energy gamma ray sources at energies above 100 MeV over the whole sky. In this communication, we search for large-scale anisotropy patterns among the catalogued EGRET sources using an expansion in spherical harmonics, accounting for EGRET's highly non-uniform exposure. We find significant excess in the quadrupole and octopole moments. This is consistent with the hypothesis that, in addition to the galactic plane, a second mid-latitude (5^{\\circ} < |b| < 30^{\\circ}) population, perhaps associated with the Gould belt, contributes to the gamma ray flux above 100 MeV.

Luis Anchordoqui; Thomas McCauley; Thomas Paul; Olaf Reimer; Diego F. Torres

2005-06-24T23:59:59.000Z

459

Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage  

E-Print Network [OSTI]

J. Űstergaard, “Battery energy storage technology for powerBattery for Grid Energy Storage..Energy Storage for the Grid: A Battery of Choices,” Science,

Wang, Zuoqian

2013-01-01T23:59:59.000Z

460

AQUIFER THERMAL ENERGY STORAGE. A NUMERICAL SIMULATION OF AUBURN UNIVERSITY FIELD EXPERIMENTS  

E-Print Network [OSTI]

Auburn University Thermal Energy Storage , LBL No. 10194.Mathematical modeling of thermal energy storage in aquifers,of Current Aquifer Thermal Energy Storage Programs (in

Tsang, Chin Fu

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "large-scale energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Optimal Deployment of Thermal Energy Storage under Diverse Economic and Climate Conditions  

E-Print Network [OSTI]

Deployment  of  Thermal  Energy   Storage  under  Diverse  Dincer I. On thermal energy storage systems and applicationsin research on cold thermal energy storage, International

DeForest, Nicolas

2014-01-01T23:59:59.000Z

462

THEORETICAL STUDIES IN LONG-TERM THERMAL ENERGY STORAGE IN AQUIFERS  

E-Print Network [OSTI]

Mathematical Modeling of Thermal Energy Storage in Aquifers.of Aquifer Thermal Energy Storage Workshop, Lawrencewithin the Seasonal Thermal Energy Storage program managed

Tsang, C.F.

2013-01-01T23:59:59.000Z

463

SEASONAL THERMAL ENERGY STORAGE IN AQUIFERS-MATHEMATICAL MODELING STUDIES IN 1979  

E-Print Network [OSTI]

of Aquifer Thermal Energy Storage." Lawrence Berkeleythe Auburn University Thermal Energy Storage Experiment."LBL~l0208 SEASONAL THERMAL ENERGY STORAGE IN AQUIFERS~

Tsang, Chin Fu

2013-01-01T23:59:59.000Z

464

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network [OSTI]

PHASE CHANGE THERMAL ENERGY STORAGE FOR CONCENTRATING SOLARChange Materials for Thermal Energy Storage in ConcentratedChange Materials for Thermal Energy Storage in Concentrated

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

465

A COMPARISON OF THE CONDUCTOR REQUIREMENTS FOR ENERGY STORAGE DEVICES MADE WITH IDEAL COIL GEOMETRIES  

E-Print Network [OSTI]

Superconducting Magnetic Energy Storage Program," Los AlamosWisconsin Superconductive Energy Storage Project. Y2!.l,J. J. Stekly, "Magnetic Energy Storage Using Superconducting

Hassenzahl, W.

2011-01-01T23:59:59.000Z

466

Graphene-based Material Systems for Nanoelectronics and Energy Storage Devices  

E-Print Network [OSTI]

conductive paper for energy-storage devices" Proceedings ofChemical Capacitive Energy Storage" Advanced Materials 2011,conductive paper for energy-storage devices" Proceedings of

Guo, Shirui

2012-01-01T23:59:59.000Z

467

THEORETICAL STUDIES IN LONG-TERM THERMAL ENERGY STORAGE IN AQUIFERS  

E-Print Network [OSTI]

Mathematical Modeling of Thermal Energy Storage in Aquifers.of Aquifer Thermal Energy Storage Workshop, Lawrencethe Seasonal Thermal Energy Storage program managed by

Tsang, C.F.

2013-01-01T23:59:59.000Z

468

Electrochemical Capacitors as Energy Storage in Hybrid-Electric Vehicles: Present Status and Future Prospects  

E-Print Network [OSTI]

Capacitors as Energy Storage in Hybrid- Electric Vehicles:uncertainty regarding the energy storage technologies.Whether a particular energy storage technology is suitable

Burke, Andy; Miller, Marshall

2009-01-01T23:59:59.000Z

469

SEASONAL THERMAL ENERGY STORAGE IN AQUIFERS-MATHEMATICAL MODELING STUDIES IN 1979  

E-Print Network [OSTI]

of Aquifer Thermal Energy Storage." Lawrence BerkeleyP, Andersen, "'rhermal Energy Storage in a Confined Aquifer~University Thermal Energy Storage Experiment." Lawrence

Tsang, Chin Fu

2013-01-01T23:59:59.000Z

470

Synthesis and characterization of nanostructured transition metal oxides for energy storage devices  

E-Print Network [OSTI]

Figure 1.1. Ragone plot of various energy storage systems [metal oxides for energy storage devices A dissertationmetal oxides for energy storage devices by Jong Woung Kim

Kim, Jong Woung

2012-01-01T23:59:59.000Z

471

Optimal Deployment of Thermal Energy Storage under Diverse Economic and Climate Conditions  

E-Print Network [OSTI]

2012. [8] Dincer I. On thermal energy storage systems andin research on cold thermal energy storage, InternationalLF. Overview of thermal energy storage (TES) potential

DeForest, Nicolas

2014-01-01T23:59:59.000Z

472

SEASONAL THERMAL ENERGY STORAGE IN AQUIFERS-MATHEMATICAL MODELING STUDIES IN 1979  

E-Print Network [OSTI]

Aspects of Aquifer Thermal Energy Storage." Lawrencethe Auburn University Thermal Energy Storage Experiment."LBL~l0208 SEASONAL THERMAL ENERGY STORAGE IN AQUIFERS~

Tsang, Chin Fu

2013-01-01T23:59:59.000Z

473

Modeling of Thermal Storage Systems in MILP Distributed Energy Resource Models  

E-Print Network [OSTI]

potential materials for thermal energy storage in buildingcogeneration coupled with thermal energy storage," AppliedN. Fumo, "Benefits of thermal energy storage option combined

Steen, David

2014-01-01T23:59:59.000Z

474

THEORETICAL STUDIES IN LONG-TERM THERMAL ENERGY STORAGE IN AQUIFERS  

E-Print Network [OSTI]

Mathematical Modeling of Thermal Energy Storage in Aquifers.Proceedings of Aquifer Thermal Energy Storage Workshop,within the Seasonal Thermal Energy Storage program managed

Tsang, C.F.

2013-01-01T23:59:59.000Z

475

BAdvanced adiabatic compressed air energy storage for the article has been accepted for inclusion  

E-Print Network [OSTI]

advantages, only compressed air energy storage (“CAES”) has the storage capacity of pumped hydro, but with

Chris Bullough; Christoph Gatzen; Christoph Jakiel; Martin Koller; Andreas Nowi; Stefan Zunft; Alstom Power; Technology Centre; Leicester Le Lh

2004-01-01T23:59:59.000Z

476

Boosting CSP Production with Thermal Energy Storage  

SciTech Connect (OSTI)

Combining concentrating solar power (CSP) with thermal energy storage shows promise for increasing grid flexibility by providing firm system capacity with a high ramp rate and acceptable part-load operation. When backed by energy storage capability, CSP can supplement photovoltaics by adding generation from solar resources during periods of low solar insolation. The falling cost of solar photovoltaic (PV) - generated electricity has led to a rapid increase in the deployment of PV and projections that PV could play a significant role in the future U.S. electric sector. The solar resource itself is virtually unlimited; however, the actual contribution of PV electricity is limited by several factors related to the current grid. The first is the limited coincidence between the solar resource and normal electricity demand patterns. The second is the limited flexibility of conventional generators to accommodate this highly variable generation resource. At high penetration of solar generation, increased grid flexibility will be needed to fully utilize the variable and uncertain output from PV generation and to shift energy production to periods of high demand or reduced solar output. Energy storage is one way to increase grid flexibility, and many storage options are available or under development. In this article, however, we consider a technology already beginning to be used at scale - thermal energy storage (TES) deployed with concentrating solar power (CSP). PV and CSP are both deployable in areas of high direct normal irradiance such as the U.S. Southwest. The role of these two technologies is dependent on their costs and relative value, including how their value to the grid changes as a function of what percentage of total generation they contribute to the grid, and how they may actually work together to increase overall usefulness of the solar resource. Both PV and CSP use solar energy to generate electricity. A key difference is the ability of CSP to utilize high-efficiency TES, which turns CSP into a partially dispatchable resource. The addition of TES produces additional value by shifting the delivery of solar energy to periods of peak demand, providing firm capacity and ancillary services, and reducing integration challenges. Given the dispatchability of CSP enabled by TES, it is possible that PV and CSP are at least partially complementary. The dispatchability of CSP with TES can enable higher overall penetration of the grid by solar energy by providing solar-generated electricity during periods of cloudy weather or at night, when PV-generated power is unavailable. Such systems also have the potential to improve grid flexibility, thereby enabling greater penetration of PV energy (and other variable generation sources such as wind) than if PV were deployed without CSP.

Denholm, P.; Mehos, M.

2012-06-01T23:59:59.000Z

477

Energy Storage Activities in the United States Electricity Grid...  

Broader source: Energy.gov (indexed) [DOE]

Activities in the United States Electricity Grid Electricity Advisory Committee Energy Storage Technologies Subcommittee Members Ralph Masiello, Subcommittee Chair Senior...

478

Solar Energy Grid Integration Systems -- Energy Storage (SEGIS-ES).  

SciTech Connect (OSTI)

This paper describes the concept for augmenting the SEGIS Program (an industry-led effort to greatly enhance the utility of distributed PV systems) with energy storage in residential and small commercial applications (SEGIS-ES). The goal of SEGIS-ES is to develop electrical energy storage components and systems specifically designed and optimized for grid-tied PV applications. This report describes the scope of the proposed SEGIS-ES Program and why it will be necessary to integrate energy storage with PV systems as PV-generated energy becomes more prevalent on the nation's utility grid. It also discusses the applications for which energy storage is most suited and for which it will provide the greatest economic and operational benefits to customers and utilities. Included is a detailed summary of the various storage technologies available, comparisons of their relative costs and development status, and a summary of key R&D needs for PV-storage systems. The report concludes with highlights of areas where further PV-specific R&D is needed and offers recommendations about how to proceed with their development.

Hanley, Charles J.; Ton, Dan T. (U.S. Department of Energy, Washington, D.C.); Boyes, John D.; Peek, Georgianne Huff

2008-07-01T23:59:59.000Z

479

Energy conversion & storage program. 1994 annual report  

SciTech Connect (OSTI)

The Energy Conversion and Storage Program investigates state-of-the-art electrochemistry, chemistry, and materials science technologies for: (1) development of high-performance rechargeable batteries and fuel cells; (2) development of high-efficiency thermochemical processes for energy conversion; (3) characterization of complex chemical processes and chemical species; (4) study and application of novel materials for energy conversion and transmission. Research projects focus on transport process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

Cairns, E.J.

1995-04-01T23:59:59.000Z

480

Energy Conversion & Storage Program, 1993 annual report  

SciTech Connect (OSTI)

The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in: production of new synthetic fuels; development of high-performance rechargeable batteries and fuel cells; development of high-efficiency thermochemical processes for energy conversion; characterization of complex chemical processes and chemical species; and the study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

Cairns, E.J.

1994-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "large-scale energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Atypical Behavior Identification in Large Scale Network Traffic  

SciTech Connect (OSTI)

Cyber analysts are faced with the daunting challenge of identifying exploits and threats within potentially billions of daily records of network traffic. Enterprise-wide cyber traffic involves hundreds of millions of distinct IP addresses and results in data sets ranging from terabytes to petabytes of raw data. Creating behavioral models and identifying trends based on those models requires data intensive architectures and techniques that can scale as data volume increases. Analysts need scalable visualization methods that foster interactive exploration of data and enable identification of behavioral anomalies. Developers must carefully consider application design, storage, processing, and display to provide usability and interactivity with large-scale data. We present an application that highlights atypical behavior in enterprise network flow records. This is accomplished by utilizing data intensive architectures to store the data, aggregation techniques to optimize data access, statistical techniques to characterize behavior, and a visual analytic environment to render the behavioral trends, highlight atypical activity, and allow for exploration.

Best, Daniel M.; Hafen, Ryan P.; Olsen, Bryan K.; Pike, William A.

2011-10-23T23:59:59.000Z

482

Exploiting Redundancy to Conserve Energy in Storage Systems  

E-Print Network [OSTI]

Exploiting Redundancy to Conserve Energy in Storage Systems Eduardo Pinheiro Rutgers University redundancy configura- tion for new energy-aware storage systems. To study Diverted Ac- cesses for realistic, and wide-area storage utilities, con- sume significant amounts of energy. For example, one report indi

Bianchini, Ricardo

483

SRCMap: Energy Proportional Storage using Dynamic Consolidation Akshat Verma  

E-Print Network [OSTI]

SRCMap: Energy Proportional Storage using Dynamic Consolidation Akshat Verma Ricardo Koller Luis-Replicate- Consolidate Mapping (SRCMap), is a storage virtual- ization layer optimization that enables energy propor of SRCMap in minimizing the power con- sumption of enterprise storage systems. 1 Introduction Energy

Rangaswami, Raju

484

Examining Energy Use in Heterogeneous Archival Storage Systems  

E-Print Network [OSTI]

Examining Energy Use in Heterogeneous Archival Storage Systems Ian F. Adams*, Ethan L. Miller to consume upwards of 35% the total energy used [2]. As systems grow to encompass thousands of storage to power and cool storage devices, and energy costs are no longer the only issues--data center architects

Polyzotis, Neoklis (Alkis)

485

Ris-M-2191 RESEARCH ON ENERGY STORAGE AT  

E-Print Network [OSTI]

RisĂž-M-2191 RESEARCH ON ENERGY STORAGE AT RISĂ? NATIONAL LABORATORY K. Jensen, S. Krenk, N. This paper was presented at the International Assembly on Energy Storage held from May 27 to June 1, 1979 in Dubrovnik, Yugoslavia. It contains a review of some of the research projects on energy storage at RisĂž

486

The Role of Energy Storage for Mini-Grid Stabilization  

E-Print Network [OSTI]

The Role of Energy Storage for Mini-Grid Stabilization Report IEA-PVPS T11-02:2011 hal-00802927 Program The role of energy storage for mini-grid stabilization IEA PVPS Task 11 Report IEA-PVPS T11 Foreword 5 Executive Summary 7 1 Introduction 10 2 Scope of the study 14 3 The role of energy storage

Boyer, Edmond

487

Stationary Applications of Energy Storage Technologies for Transit Systems  

E-Print Network [OSTI]

Stationary Applications of Energy Storage Technologies for Transit Systems Paul Radcliffe, James S, Ontario, Canada paul.radcliffe@utoronto.ca Abstract ­ Stationary energy storage technologies can improve the efficiency of transit systems. In this paper, three different demonstrations of energy storage technologies

Shu, Lily H.

488

Modeling of Field Distribution and Energy Storage in Diphasic Dielectrics  

E-Print Network [OSTI]

Modeling of Field Distribution and Energy Storage in Diphasic Dielectrics S. K. Patil, M. Y, USA Modeling of electrostatic field distribution and energy storage in diphasic dielectrics containing to the increased energy storage density. For composites with lower volume fractions of high-permittivity inclusions

Koledintseva, Marina Y.

489

Optimal Energy Storage Control Policies for the Smart Power Grid  

E-Print Network [OSTI]

Optimal Energy Storage Control Policies for the Smart Power Grid Iordanis Koutsopoulos Vassiliki Center for Research and Technology Hellas (CERTH), Greece Abstract--Electric energy storage devices the optimal energy storage control problem from the side of the utility operator. The operator controller

Koutsopoulos, Iordanis

490

Large-scale anisotropy in stably stratified rotating flows  

SciTech Connect (OSTI)

We present results from direct numerical simulations of the Boussinesq equations in the presence of rotation and/or stratification, both in the vertical direction. The runs are forced isotropically and randomly at small scales and have spatial resolutions of up to $1024^3$ grid points and Reynolds numbers of $\\approx 1000$. We first show that solutions with negative energy flux and inverse cascades develop in rotating turbulence, whether or not stratification is present. However, the purely stratified case is characterized instead by an early-time, highly anisotropic transfer to large scales with almost zero net isotropic energy flux. This is consistent with previous studies that observed the development of vertically sheared horizontal winds, although only at substantially later times. However, and unlike previous works, when sufficient scale separation is allowed between the forcing scale and the domain size, the total energy displays a perpendicular (horizontal) spectrum with power law behavior compatible with $\\sim k_\\perp^{-5/3}$, including in the absence of rotation. In this latter purely stratified case, such a spectrum is the result of a direct cascade of the energy contained in the large-scale horizontal wind, as is evidenced by a strong positive flux of energy in the parallel direction at all scales including the largest resolved scales.

Marino, Dr. Raffaele [National Center for Atmospheric Research (NCAR); Mininni, Dr. Pablo D. [Universidad de Buenos Aires, Argentina; Rosenberg, Duane L [ORNL; Pouquet, Dr. Annick [National Center for Atmospheric Research (NCAR)

2014-01-01T23:59:59.000Z

491

Large-scale simulations of reionization  

SciTech Connect (OSTI)

We use cosmological simulations to explore the large-scale effects of reionization. Since reionization is a process that involves a large dynamic range--from galaxies to rare bright quasars--we need to be able to cover a significant volume of the universe in our simulation without losing the important small scale effects from galaxies. Here we have taken an approach that uses clumping factors derived from small scale simulations to approximate the radiative transfer on the sub-cell scales. Using this technique, we can cover a simulation size up to 1280h{sup -1} Mpc with 10h{sup -1} Mpc cells. This allows us to construct synthetic spectra of quasars similar to observed spectra of SDSS quasars at high redshifts and compare them to the observational data. These spectra can then be analyzed for HII region sizes, the presence of the Gunn-Peterson trough, and the Lyman-{alpha} forest.

Kohler, Katharina; /JILA, Boulder /Fermilab; Gnedin, Nickolay Y.; /Fermilab; Hamilton, Andrew J.S.; /JILA, Boulder

2005-11-01T23:59:59.000Z

492

Reluctance apparatus for flywheel energy storage  

DOE Patents [OSTI]

A motor generator for providing high efficiency, controlled voltage output or storage of energy in a flywheel system. A motor generator includes a stator of a soft ferromagnetic material, a motor coil and a generator coil, and a rotor has at least one embedded soft ferromagnetic piece. Control of voltage output is achieved by use of multiple stator pieces and multiple rotors with controllable gaps between the stator pieces and the soft ferromagnetic piece.

Hull, John R. (Downers Grove, IL)

2000-01-01T23:59:59.000Z

493

Thermochemical Energy Storage | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment of Energy TheAgedMachines

494

Advanced Thermal Energy Storage: Novel Tuning of Critical Fluctuations for Advanced Thermal Energy Storage  

SciTech Connect (OSTI)

HEATS Project: NAVITASMAX is developing a novel thermal energy storage solution. This innovative technology is based on simple and complex supercritical fluids— substances where distinct liquid and gas phases do not exist, and tuning the properties of these fluid systems to increase their ability to store more heat. In solar thermal storage systems, heat can be stored in NAVITASMAX’s system during the day and released at night—when the sun is not shining—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in NAVITASMAX’s system at night and released to produce electricity during daytime peak-demand hours.

None

2011-12-01T23:59:59.000Z

495

Generation of large-scale winds in horizontally anisotropic convection  

E-Print Network [OSTI]

We simulate three-dimensional, horizontally periodic Rayleigh-B\\'enard convection between free-slip horizontal plates, rotating about a horizontal axis. When both the temperature difference between the plates and the rotation rate are sufficiently large, a strong horizontal wind is generated that is perpendicular to both the rotation vector and the gravity vector. The wind is turbulent, large-scale, and vertically sheared. Horizontal anisotropy, engendered here by rotation, appears necessary for such wind generation. Most of the kinetic energy of the flow resides in the wind, and the vertical turbulent heat flux is much lower on average than when there is no wind.

von Hardenberg, J; Provenzale, A; Spiegel, E A

2015-01-01T23:59:59.000Z

496

Modeling and simulations of electrical energy storage in electrochemical capacitors  

E-Print Network [OSTI]

energy storage systems (EES) have been the subject of intense study as they constitute an essential element in the development of sustainable energy

Wang, Hainan

2013-01-01T23:59:59.000Z

497

QER Report: Energy Transmission, Storage, and Distribution Infrastruct...  

Office of Environmental Management (EM)

Report: Energy Transmission, Storage, and Distribution Infrastructure | April 2015 S-1 Summary SUMMARY FOR POLICYMAKERS The U.S. energy landscape is changing. The United States has...

498

Comments by the Energy Storage Association to the Department...  

Broader source: Energy.gov (indexed) [DOE]

Public comments by the Energy Storage Association to the Department of Energy Electricity Advisory Council presented at the March 13, 2014 meeting of the EAC. Comments by the...

499

Increasing Renewable Energy with Hydrogen Storage and Fuel Cell...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hydrogen Energy Storage: Experimental analysis and modeling Monterey Gardiner U.S. Department of Energy Fuel Cell Technologies Office 2 Question and Answer * Please type your...

500

Storage Water Heaters | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »ExchangeDepartmentResolveFuture |Energy Steps toStorage Water