Powered by Deep Web Technologies
Note: This page contains sample records for the topic "large volume co2" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Predictions of long-term behavior of a large-volume pilot test for CO2 geological storage in a saline formation in the Central Valley, California  

SciTech Connect

The long-term behavior of a CO{sub 2} plume injected into a deep saline formation is investigated, focusing on mechanisms that lead to plume stabilization. Key measures are plume migration distance and the time evolution of CO{sub 2} phase-partitioning, which are examined by developing a numerical model of the subsurface at a proposed power plant with CO{sub 2} capture in the San Joaquin Valley, California, where a large-volume pilot test of CO{sub 2} injection will be conducted. The numerical model simulates a four-year CO{sub 2} injection period and the subsequent evolution of the CO{sub 2} plume until it stabilizes. Sensitivity studies are carried out to investigate the effect of poorly constrained model parameters permeability, permeability anisotropy, and residual gas saturation.

Doughty, Christine; Myer, Larry R.; Oldenburg, Curtis M.

2008-11-01T23:59:59.000Z

2

NETL: IEP – CO2 Compression - Novel Concepts for the Compression of Large  

NLE Websites -- All DOE Office Websites (Extended Search)

Novel Concepts for the Compression of Large Volumes of Carbon Dioxide Novel Concepts for the Compression of Large Volumes of Carbon Dioxide Project No.: FC26-05NT42650 The Southwest Research Institute (SwRI) will design an efficient and cost-effective compression system to reduce the overall cost of carbon dioxide (CO2) capture and storage for coal-based power plants. SwRI will develop two novel concepts that have the potential to reduce CO2 compression power requirements by 35 percent compared to conventional compressor designs. The first concept is a semi-isothermal compression process where the CO2 is continually cooled using an internal cooling jacket rather than using conventional interstage cooling. This concept can potentially reduce power requirements because less energy is required to boost the pressure of a cool gas. The second concept involves the use of refrigeration to liquefy the CO2 so that its pressure can be increased using a pump, rather than a compressor. The primary power requirements are the initial compression required to boost the CO2 to approximately 250 pounds per square inch absolute and the refrigeration power required to liquefy the gaseous CO2. Once the CO2 is liquefied, the pumping power to boost the pressure to pipeline supply pressure is minimal. Prototype testing of each concept will be conducted.

3

Physical Constraints on Geologic CO2 Sequestration in Low-Volume Basalt Formations  

SciTech Connect

Deep basalt formations within large igneous provinces have been proposed as target reservoirs for carbon capture and sequestration on the basis of favorable CO2-water-rock reaction kinetics that suggest carbonate mineralization rates on the order of 102–103 d. Although these results are encouraging, there exists much uncertainty surrounding the influence of fracture-controlled reservoir heterogeneity on commercial-scale CO2 injections in basalt formations. This work investigates the physical response of a low-volume basalt reservoir to commercial-scale CO2 injections using a Monte Carlo numerical modeling experiment such that model variability is solely a function of spatially distributed reservoir heterogeneity. Fifty equally probable reservoirs are simulated using properties inferred from the deep eastern Snake River Plain aquifer in southeast Idaho, and CO2 injections are modeled within each reservoir for 20 yr at a constant mass rate of 21.6 kg s–1. Results from this work suggest that (1) formation injectivity is generally favorable, although injection pressures in excess of the fracture gradient were observed in 4% of the simulations; (2) for an extensional stress regime (as exists within the eastern Snake River Plain), shear failure is theoretically possible for optimally oriented fractures if Sh is less than or equal to 0.70SV; and (3) low-volume basalt reservoirs exhibit sufficient CO2 confinement potential over a 20 yr injection program to accommodate mineral trapping rates suggested in the literature.

Ryan M. Pollyea; Jerry P. Fairley; Robert K. Podgorney; Travis L. McLing

2014-03-01T23:59:59.000Z

4

First U.S. Large-Scale CO2 Storage Project Advances | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

First U.S. Large-Scale CO2 Storage Project Advances First U.S. Large-Scale CO2 Storage Project Advances First U.S. Large-Scale CO2 Storage Project Advances April 6, 2009 - 1:00pm Addthis Washington, DC - Drilling nears completion for the first large-scale carbon dioxide (CO2) injection well in the United States for CO2 sequestration. This project will be used to demonstrate that CO2 emitted from industrial sources - such as coal-fired power plants - can be stored in deep geologic formations to mitigate large quantities of greenhouse gas emissions. The Archer Daniels Midland Company (ADM) hosted an event April 6 for a CO2 injection test at their Decatur, Ill. ethanol facility. The injection well is being drilled into the Mount Simon Sandstone to a depth more than a mile beneath the surface. This is the first drilling into the sandstone geology

5

NETL: News Release - First U.S. Large-Scale CO2 Storage Project Advances  

NLE Websites -- All DOE Office Websites (Extended Search)

April 6, 2009 April 6, 2009 First U.S. Large-Scale CO2 Storage Project Advances One Million Metric Tons of Carbon to be Injected at Illinois Site Washington, DC -Drilling nears completion for the first large-scale carbon dioxide (CO2) injection well in the United States for CO2 sequestration. This project will be used to demonstrate that CO2 emitted from industrial sources - such as coal-fired power plants - can be stored in deep geologic formations to mitigate large quantities of greenhouse gas emissions. MORE INFO Link to the Midwest Geological Sequestration Consortium web site The Archer Daniels Midland Company (ADM) hosted an event April 6 for a CO2 injection test at their Decatur, Ill. ethanol facility. The injection well is being drilled into the Mount Simon Sandstone to a depth more than a mile

6

GLOBAL EMISSIONS Greenhouse gas (GHG) emissions, largely carbon dioxide (CO2)  

E-Print Network (OSTI)

GLOBAL EMISSIONS Greenhouse gas (GHG) emissions, largely carbon dioxide (CO2) from the combustion. Figure 1 Global Carbon Dioxide Emissions: 1850­2030 1850 1860 1870 1880 1890 1900 1910 1920 1930 1940- related CO2 emissions have risen 130-fold since 1850--from 200 million tons to 27 billion tons a year

Green, Donna

7

NETL: CO2 Emissions Control  

NLE Websites -- All DOE Office Websites (Extended Search)

Post-Combustion CO2 Control Post-Combustion CO2 Control Post-combustion CO2 control systems separate CO2 from the flue gas produced by conventional coal combustion in air. The flue gas is at atmospheric pressure and has a CO2 concentration of 10-15 volume percent. Read More! Capturing CO2 under these conditions is challenging because: (1) the low pressure and dilute concentration dictate a high total volume of gas to be treated; (2) trace impurities in the flue gas tend to reduce the effectiveness of the CO2 separation processes; and (3) compressing captured CO2 from atmospheric pressure to pipeline pressure (1,200 - 2,200 pounds per square inch) represents a large parasitic energy load. Plant Picture DOE/NETL's post-combustion CO2 control technology R&D program includes

8

Feasibility of Large-Scale Ocean CO2 Sequestration  

SciTech Connect

Scientific knowledge of natural clathrate hydrates has grown enormously over the past decade, with spectacular new findings of large exposures of complex hydrates on the sea floor, the development of new tools for examining the solid phase in situ, significant progress in modeling natural hydrate systems, and the discovery of exotic hydrates associated with sea floor venting of liquid CO{sub 2}. Major unresolved questions remain about the role of hydrates in response to climate change today, and correlations between the hydrate reservoir of Earth and the stable isotopic evidence of massive hydrate dissociation in the geologic past. The examination of hydrates as a possible energy resource is proceeding apace for the subpermafrost accumulations in the Arctic, but serious questions remain about the viability of marine hydrates as an economic resource. New and energetic explorations by nations such as India and China are quickly uncovering large hydrate findings on their continental shelves. In this report we detail research carried out in the period October 1, 2007 through September 30, 2008. The primary body of work is contained in a formal publication attached as Appendix 1 to this report. In brief we have surveyed the recent literature with respect to the natural occurrence of clathrate hydrates (with a special emphasis on methane hydrates), the tools used to investigate them and their potential as a new source of natural gas for energy production.

Peter Brewer

2008-08-31T23:59:59.000Z

9

Assessment Hydrogen Production with CO2 Capture, Volume 1: Baseline State of the Art Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Hydrogen Production with CO 2 Capture Volume 1: Baseline State-of- the-Art Plants August 30, 2010 DOE/NETL-2010/1434 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States

10

Reversible Ionic Liquids as Double-action Solvents for Efficient CO2 Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Reversible Ionic Liquids as Double-action Reversible Ionic Liquids as Double-action Solvents for Efficient CO 2 Capture Background Post-combustion carbon dioxide (CO 2 ) capture presents technical challenges because the flue gas is at atmospheric pressure and the CO 2 concentration is 10 to 15 volume percent, resulting in a low CO 2 partial pressure and a large volume of gas that needs to be treated. In spite of this difficulty, post-combustion CO 2 capture offers the

11

Estimating Plume Volume for Geologic Storage of CO2 in Saline Aquifers  

SciTech Connect

Typically, when a new subsurface flow and transport problem is first being considered, very simple models with a minimal number of parameters are used to get a rough idea of how the system will evolve. For a hydrogeologist considering the spreading of a contaminant plume in an aquifer, the aquifer thickness, porosity, and permeability might be enough to get started. If the plume is buoyant, aquifer dip comes into play. If regional groundwater flow is significant or there are nearby wells pumping, these features need to be included. Generally, the required parameters tend to be known from pre-existing studies, are parameters that people working in the field are familiar with, and represent features that are easy to explain to potential funding agencies, regulators, stakeholders, and the public. The situation for geologic storage of carbon dioxide (CO{sub 2}) in saline aquifers is quite different. It is certainly desirable to do preliminary modeling in advance of any field work since geologic storage of CO{sub 2} is a novel concept that few people have much experience with or intuition about. But the parameters that control CO{sub 2} plume behavior are a little more daunting to assemble and explain than those for a groundwater flow problem. Even the most basic question of how much volume a given mass of injected CO{sub 2} will occupy in the subsurface is non-trivial. However, with a number of simplifying assumptions, some preliminary estimates can be made, as described below. To make efficient use of the subsurface storage volume available, CO{sub 2} density should be large, which means choosing a storage formation at depths below about 800 m, where pressure and temperature conditions are above the critical point of CO{sub 2} (P = 73.8 bars, T = 31 C). Then CO{sub 2} will exist primarily as a free-phase supercritical fluid, while some CO{sub 2} will dissolve into the aqueous phase.

Doughty, Christine

2008-07-11T23:59:59.000Z

12

Research project on CO2 geological storage and groundwaterresources: Large-scale hydrological evaluation and modeling of impact ongroundwater systems  

SciTech Connect

If carbon dioxide capture and storage (CCS) technologies areimplemented on a large scale, the amounts of CO2 injected and sequesteredunderground could be extremely large. The stored CO2 then replaces largevolumes of native brine, which can cause considerable pressureperturbation and brine migration in the deep saline formations. Ifhydraulically communicating, either directly via updipping formations orthrough interlayer pathways such as faults or imperfect seals, theseperturbations may impact shallow groundwater or even surface waterresources used for domestic or commercial water supply. Possibleenvironmental concerns include changes in pressure and water table,changes in discharge and recharge zones, as well as changes in waterquality. In compartmentalized formations, issues related to large-scalepressure buildup and brine displacement may also cause storage capacityproblems, because significant pressure buildup can be produced. Toaddress these issues, a three-year research project was initiated inOctober 2006, the first part of which is summarized in this annualreport.

Birkholzer, Jens; Zhou, Quanlin; Rutqvist, Jonny; Jordan,Preston; Zhang,K.; Tsang, Chin-Fu

2007-10-24T23:59:59.000Z

13

Quantification of fossil fuel CO2 emissions at the building/street scale for a large US city  

SciTech Connect

In order to advance the scientific understanding of carbon exchange with the land surface, build an effective carbon monitoring system and contribute to quantitatively-based U.S. climate change policy interests, fine spatial and temporal quantification of fossil fuel CO2 emissions, the primary greenhouse gas, is essential. Called the ‘Hestia Project’, this research effort is the first to use bottom-up methods to quantify all fossil fuel CO2 emissions down to the scale of individual buildings, road segments, and industrial/electricity production facilities on an hourly basis for an entire urban landscape. a large city (Indianapolis, Indiana USA). Here, we describe the methods used to quantify the on-site fossil fuel CO2 emissions across the city of Indianapolis, Indiana. This effort combines a series of datasets and simulation tools such as a building energy simulation model, traffic data, power production reporting and local air pollution reporting. The system is general enough to be applied to any large U.S. city and holds tremendous potential as a key component of a carbon monitoring system in addition to enabling efficient greenhouse gas mitigation and planning. We compare our estimate of fossil fuel emissions from natural gas to consumption data provided by the local gas utility. At the zip code level, we achieve a bias adjusted pearson r correlation value of 0.92 (p<0.001).

Gurney, Kevin R.; Razlivanov, I.; Song, Yang; Zhou, Yuyu; Benes, Bedrich; Abdul- Massih, Michel

2012-08-15T23:59:59.000Z

14

DOE Regional Partnership Begins Core Sampling for Large-Volume  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regional Partnership Begins Core Sampling for Large-Volume Regional Partnership Begins Core Sampling for Large-Volume Sequestration Test DOE Regional Partnership Begins Core Sampling for Large-Volume Sequestration Test May 22, 2009 - 1:00pm Addthis Washington, DC - The Plains CO2 Reduction (PCOR) Partnership, one of seven members of the U.S. Department of Energy's Regional Carbon Sequestration Partnerships program, has begun collecting core samples from a new characterization well near Spectra Energy's Fort Nelson natural gas processing plant in British Columbia, Canada. Core sampling, along with a sophisticated well logging program that the partnership is conducting, is an important step in proving the viability of carbon storage in brine-saturated formations. The Fort Nelson project is on track to become one of the first

15

DOE Regional Partnership Begins Core Sampling for Large-Volume  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regional Partnership Begins Core Sampling for Large-Volume Regional Partnership Begins Core Sampling for Large-Volume Sequestration Test DOE Regional Partnership Begins Core Sampling for Large-Volume Sequestration Test May 22, 2009 - 1:00pm Addthis Washington, DC - The Plains CO2 Reduction (PCOR) Partnership, one of seven members of the U.S. Department of Energy's Regional Carbon Sequestration Partnerships program, has begun collecting core samples from a new characterization well near Spectra Energy's Fort Nelson natural gas processing plant in British Columbia, Canada. Core sampling, along with a sophisticated well logging program that the partnership is conducting, is an important step in proving the viability of carbon storage in brine-saturated formations. The Fort Nelson project is on track to become one of the first

16

The Potential for Increased Atmospheric CO2 Emissions and Accelerated Consumption of Deep Geologic CO2 Storage Resources Resulting from the Large-Scale Deployment of a CCS-Enabled Unconventional Fossil Fuels Industry in the U.S.  

SciTech Connect

Desires to enhance the energy security of the United States have spurred significant interest in the development of abundant domestic heavy hydrocarbon resources including oil shale and coal to produce unconventional liquid fuels to supplement conventional oil supplies. However, the production processes for these unconventional fossil fuels create large quantities of carbon dioxide (CO2) and this remains one of the key arguments against such development. Carbon dioxide capture and storage (CCS) technologies could reduce these emissions and preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited within the U.S. indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. Nevertheless, even assuming wide-scale availability of cost-effective CO2 capture and geologic storage resources, the emergence of a domestic U.S. oil shale or coal-to-liquids (CTL) industry would be responsible for significant increases in CO2 emissions to the atmosphere. The authors present modeling results of two future hypothetical climate policy scenarios that indicate that the oil shale production facilities required to produce 3MMB/d from the Eocene Green River Formation of the western U.S. using an in situ retorting process would result in net emissions to the atmosphere of between 3000-7000 MtCO2, in addition to storing potentially 900-5000 MtCO2 in regional deep geologic formations via CCS in the period up to 2050. A similarly sized, but geographically more dispersed domestic CTL industry could result in 4000-5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000-22,000 MtCO2 stored in regional deep geologic formations over the same period. While this analysis shows that there is likely adequate CO2 storage capacity in the regions where these technologies are likely to deploy, the reliance by these industries on large-scale CCS could result in an accelerated rate of utilization of the nation’s CO2 storage resource, leaving less high-quality storage capacity for other carbon-producing industries including electric power generation.

Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

2009-11-02T23:59:59.000Z

17

Application of CFB technology for large power generating units and CO2 capture  

Science Journals Connector (OSTI)

Data on the development of the circulating fluidized bed (CFB) technology for combustion of fuels in large ... feasibility of raising the efficiency of units with CFB boilers through deep recovery of the heat ......

G. A. Ryabov; O. M. Folomeev; D. A. Sankin…

2010-07-01T23:59:59.000Z

18

NETL: CO2 Compression  

NLE Websites -- All DOE Office Websites (Extended Search)

CO2 Compression CO2 Compression The CO2 captured from a power plant will need to be compressed from near atmospheric pressure to a pressure between 1,500 and 2,200 psi in order to be transported via pipeline and then injected into an underground sequestration site. Read More! CO2 Compression The compression of CO2 represents a potentially large auxiliary power load on the overall power plant system. For example, in an August 2007 study conducted for DOE/NETL, CO2 compression was accomplished using a six-stage centrifugal compressor with interstage cooling that required an auxiliary load of approximately 7.5 percent of the gross power output of a subcritical pressure, coal-fired power plant. As a result, DOE/NETL is sponsoring R&D to develop novel methods that can significantly decrease the

19

A quantitative comparison of the cost of employing EOR-coupled CSS supplemented with secondary DSF storage for two large CO2 point sources  

SciTech Connect

This paper explores the impact of the temporally dynamic demand for CO2 for enhanced hydrocarbon recovery with CO2 storage. Previous evaluations of economy-wide CO2 capture and geologic storage (CCS) deployment have typically applied a simplifying assumption that 100% of the potential storage capacity for a given formation is available on the first day of the analysis, and that the injection rate impacts only the number of wells required to inject a given volume of fluid per year, making it a cost driver rather than a technical one. However, as discussed by Dahowski and Bachu [1], storing CO2 in a field undergoing CO2 flooding for enhanced oil recovery (EOR) is subject to a set of constraints to which storage in DSFs is not, and these constraints combined with variable demand for CO2 may strongly influence the ability of an EOR field to serve as a baseload storage formation for commercial scale CCS projects undertaken as a means of addressing climate change mitigation targets. This analysis assumes that CCS is being undertaken in order to reduce CO2 emissions from the industrial sources evaluated and that there is enough of a disincentive associated with venting CO2 to the atmosphere that any CO2 not used within the EOR field will be stored in a suitable nearby deep saline formation (DSF). The authors have applied a CO2 demand profile to two cases chosen to illustrate the differences in cost impacts of employing EOR-based CCS as a part of a given source’s CCS portfolio. The first scenario is a less-than-ideal case in which a single EOR field is used for storage and all CO2 not demanded by the EOR project is stored in a DSF; the second scenario is designed to optimize costs by minimizing storage in the DSF and maximizing lower-cost EOR-based storage. Both scenarios are evaluated for two facilities emitting 3 and 6 MtCO2/y, corresponding to a natural gas processing facility and an IGCC electric power plant, respectively. Annual and lifetime average CO2 transport and storage costs are presented, and the impact of added capture and compression costs on overall project economics is examined.

Davidson, Casie L.; Dahowski, Robert T.; Dooley, James J.

2011-04-18T23:59:59.000Z

20

Comparing large scale CCS deployment potential in the USA and China: a detailed analysis based on country-specific CO2 transport & storage cost curves  

SciTech Connect

The United States and China are the two largest emitters of greenhouse gases in the world and their projected continued growth and reliance on fossil fuels, especially coal, make them strong candidates for CCS. Previous work has revealed that both nations have over 1600 large electric utility and other industrial point CO2 sources as well as very large CO2 storage resources on the order of 2,000 billion metric tons (Gt) of onshore storage capacity. In each case, the vast majority of this capacity is found in deep saline formations. In both the USA and China, candidate storage reservoirs are likely to be accessible by most sources with over 80% of these large industrial CO2 sources having a CO2 storage option within just 80 km. This suggests a strong potential for CCS deployment as a meaningful option to efforts to reduce CO2 emissions from these large, vibrant economies. However, while the USA and China possess many similarities with regards to the potential value that CCS might provide, including the range of costs at which CCS may be available to most large CO2 sources in each nation, there are a number of more subtle differences that may help us to understand the ways in which CCS deployment may differ between these two countries in order for the USA and China to work together - and in step with the rest of the world - to most efficiently reduce greenhouse gas emissions. This paper details the first ever analysis of CCS deployment costs in these two countries based on methodologically comparable CO2 source and sink inventories, economic analysis, geospatial source-sink matching and cost curve modeling. This type of analysis provides a valuable insight into the degree to which early and sustained opportunities for climate change mitigation via commercial-scale CCS are available to the two countries, and could facilitate greater collaboration in areas where those opportunities overlap.

Dahowski, Robert T.; Davidson, Casie L.; Dooley, James J.

2011-04-18T23:59:59.000Z

Note: This page contains sample records for the topic "large volume co2" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Current status of MHI CO2 capture plant technology, large scale demonstration project and road map to commercialization for coal fired flue gas application  

Science Journals Connector (OSTI)

(1) It is becoming increasingly evident that the prolonged utilization of fossil fuels for primary energy production, especially coal which is relatively cheap and abundant, is inevitable and that Carbon Capture and Storage (CCS) technology can significantly reduce CO2 emissions from this sector thus allowing the continued environmentally sustainable use of this important energy commodity on a global basis. (2) MHI has co-developed the Kansai Mitsubishi Carbon Dioxide Recovery Process (KM-CDR Process™) and KS-1™ absorbent, which has been deployed in seven CO2 capture plants, now under commercial operation operating at a CO2 capture capacity of 450 metric tons per day (tpd). In addition, a further two commercial plants are now under construction all of which capture CO2 from natural gas fired flue gas boilers and steam reformers. Accordingly this technology is now available for commercial scale CO2 capture for gas boiler and gas turbine application. (3) However before offering commercial CO2 capture plants for coal fired flue gas application, it is necessary to verify the influence of, and develop countermeasures for, related impurities contained in coal fired flue gas. This includes the influence on both the absorbent and the entire system of the CO2 capture plant to achieve high operational reliability and minimize maintenance requirements. (4) Preventing the accumulation of impurities, especially the build up of dust, is very important when treating coal fired flue gas and MHI has undertaken significant work to understand the impact of impurities in order to achieve reliable and stable operating conditions and to efficiently optimize integration between the CO2 capture plant, the coal fired power plant and the flue gas clean up equipment. (5) To achieve this purpose, MHI constructed a 10 tpd CO2 capture demonstration plant at the Matsushima 1000 MW Power Station and confirmed successful, long term demonstration following ?5000 hours of operation in 2006–07 with 50% financial support by RITE, as a joint program to promote technological development with the private sector, and cooperation from J-POWER. (6) Following successful demonstration testing at Matsushima, additional testing was undertaken in 2008 to examine the impact of entrainment of higher levels of flue gas impurities (primarily \\{SOx\\} and dust by bypassing the existing FGD) and to determine which components of the CO2 recovery process are responsible for the removal of these impurities. Following an additional 1000 demonstration hours, results indicated stable operational performance in relation to the following impurities; (1) SO2: Even at higher SO2 concentrations were almost completely removed from the flue gas before entering the CO2 absorber. (2) Dust: The accumulation of dust in the absorbent was higher, leading to an advanced understanding of the behavior of dust in the CO2 capture plant and the dust removal efficiency of each component within the CO2 recovery system. The data obtained is useful for the design of large-scale units and confirms the operating robustness of the CO2 capture plant accounting for wide fluctuations in impurity concentrations. (7) This important coal fired flue gas testing showed categorically that minimizing the accumulation of large concentrations of impurities, and to suppress dust concentrations below a prescribed level, is important to achieve long-term stable operation and to minimize maintenance work for the CO2 capture plant. To comply with the above requirement, various countermeasures have been developed which include the optimization of the impurity removal technology, flue gas pre treatment and improved optimization with the flue gas desulfurization facility. (8) In case of a commercial scale CO2 capture plant applied for coal fired flue gas, its respective size will be several thousand tpd which represents a considerable scale-up from the 10 tpd demonstration plant. In order to ensure the operational reliability and to accurately confirm the influence and the behavior of the impurities in coal fired fl

Takahiko Endo; Yoshinori Kajiya; Hiromitsu Nagayasu; Masaki Iijima; Tsuyoshi Ohishi; Hiroshi Tanaka; Ronald Mitchell

2011-01-01T23:59:59.000Z

22

Hybrid Parallelism for Volume Rendering at Large Scale at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Volume Rendering at Large Scale Hybrid Parallelism for Volume Rendering at Large Scale volrend-swes.png We studied the performance and scalability characteristics of hybrid''...

23

Quantification of Fossil Fuel CO2 Emissions on the Building/Street Scale for a Large U.S. City  

Science Journals Connector (OSTI)

In order to advance the scientific understanding of carbon exchange with the land surface, build an effective carbon monitoring system, and contribute to quantitatively based U.S. climate change policy interests, fine spatial and temporal quantification of fossil fuel CO2 emissions, the primary greenhouse gas, is essential. ... Ammonia (NH3) is a key precursor species to atmospheric fine particulate matter with strong implications for regional air quality and global climate change. ...

Kevin R. Gurney; Igor Razlivanov; Yang Song; Yuyu Zhou; Bedrich Benes; Michel Abdul-Massih

2012-08-15T23:59:59.000Z

24

On scale and magnitude of pressure build-up induced by large-scale geologic storage of CO2  

SciTech Connect

The scale and magnitude of pressure perturbation and brine migration induced by geologic carbon sequestration is discussed assuming a full-scale deployment scenario in which enough CO{sub 2} is captured and stored to make relevant contributions to global climate change mitigation. In this scenario, the volumetric rates and cumulative volumes of CO{sub 2} injection would be comparable to or higher than those related to existing deep-subsurface injection and extraction activities, such as oil production. Large-scale pressure build-up in response to the injection may limit the dynamic storage capacity of suitable formations, because over-pressurization may fracture the caprock, may drive CO{sub 2}/brine leakage through localized pathways, and may cause induced seismicity. On the other hand, laterally extensive sedimentary basins may be less affected by such limitations because (i) local pressure effects are moderated by pressure propagation and brine displacement into regions far away from the CO{sub 2} storage domain; and (ii) diffuse and/or localized brine migration into overlying and underlying formations allows for pressure bleed-off in the vertical direction. A quick analytical estimate of the extent of pressure build-up induced by industrial-scale CO{sub 2} storage projects is presented. Also discussed are pressure perturbation and attenuation effects simulated for two representative sedimentary basins in the USA: the laterally extensive Illinois Basin and the partially compartmentalized southern San Joaquin Basin in California. These studies show that the limiting effect of pressure build-up on dynamic storage capacity is not as significant as suggested by Ehlig-Economides and Economides, who considered closed systems without any attenuation effects.

Zhou, Q.; Birkholzer, J. T.

2011-05-01T23:59:59.000Z

25

CO2 sequestration | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

CO2 sequestration CO2 sequestration Leads No leads are available at this time. Low-Temperature Carbon Monoxide Oxidation Catalysed by Regenerable Atomically Dispersed Palladium on...

26

A verification study on saving energy cost and reducing CO2 emission with large-scale geothermal heat pump systems in Korea  

Science Journals Connector (OSTI)

This paper presents economic and environmental effects by using monitoring data collected over a 2-yr period in geothermal heating and cooling facilities in Jungwon University Korea. The facility has heating capacity of 7045?kW and cooling capacity of 5947?kW. Such monitoring data are rarely reported in the literature; thus the evaluation based on long-term operational data will contribute greatly to the objective assessment of the geothermal heat pump system (GHPS) as a renewable energy resource. The effects of relative energy cost saving and reductions in CO2 emission were predicted for comparison with conventional heating and cooling systems. The GHPS was estimated to reduce energy costs by 76.4%–85.3% and yield a reduction of CO2 emission of 398–595 tons annually. We also conducted an economic analysis using the benefit/cost ratio (BCR) method according to scenarios in which the lifespan and discount rate for the GHPS were varied. Since the BCR for the GHPS was in the range of 1.99–3.58 (case 1) and 1.67–3.01 (case 2) GHPS is considered to be more economic than other types of heating and cooling systems. These results provide evidentiary data to help overcome skepticism over the applicability of large-scale GHPSs.

Byeong-Hak Park; Hyoung-Soo Kim; Kang-Kun Lee

2013-01-01T23:59:59.000Z

27

Orbital and CO2 forcing of late Paleozoic continental ice sheets Daniel E. Horton,1  

E-Print Network (OSTI)

) produce large changes in late Paleozoic ice volume ($1.3 � 108 km3 ) and sea level ($20 to 245 m). Between cold summer orbit, but still produces significant ice volumes ($8­12 � 107 km3 ). Our results highlightOrbital and CO2 forcing of late Paleozoic continental ice sheets Daniel E. Horton,1 Christopher J

Poulsen, Chris J.

28

Geologic CO2 Sequestration  

NLE Websites -- All DOE Office Websites (Extended Search)

Geologic CO2 Sequestration Geologic CO2 Sequestration Geologic reservoirs offer promising option for long- term storage of captured CO 2 Accumulations of gases (including CO 2 ) in geologic reservoirs, by natural processes or through enhanced oil recovery operations, demonstrate that gas can be stored for long periods of time and provide insights to the efficacy and impacts of geological gas storage. Los Alamos scientists in the Earth and Environmental Sciences (EES) Division have been involved in geologic CO 2 storage research for over a decade. Research Highlights * Led first-ever US field test on CO 2 sequestration in depleted oil reservoirs * Participant in two Regional Carbon Sequestration Partnerships (Southwest Regional and Big Sky) * Part of the National Risk Assessment Partnership (NRAP) for CO

29

Restoration of Large Damage Volumes in Polymers  

Science Journals Connector (OSTI)

Restoration of Large...regenerative power of tissues...synthetic system that restores...hours. After restoration of impact damage...tripodal ligand system based on the...Ed., CRC Handbook of Chemistry...construction. Restoration of Large...

S. R. White; J. S. Moore; N. R. Sottos; B. P. Krull; W. A. Santa Cruz; R. C. R. Gergely

2014-05-09T23:59:59.000Z

30

EMSL - CO2 sequestration  

NLE Websites -- All DOE Office Websites (Extended Search)

co2-sequestration en Low-Temperature Carbon Monoxide Oxidation Catalysed by Regenerable Atomically Dispersed Palladium on Alumina. http:www.emsl.pnl.govemslwebpublications...

31

Is CO2 an Indoor Pollutant? Direct Effects of Low-to-Moderate CO2  

NLE Websites -- All DOE Office Websites (Extended Search)

Is CO2 an Indoor Pollutant? Direct Effects of Low-to-Moderate CO2 Is CO2 an Indoor Pollutant? Direct Effects of Low-to-Moderate CO2 Concentrations on Human Decision-Making Performance Title Is CO2 an Indoor Pollutant? Direct Effects of Low-to-Moderate CO2 Concentrations on Human Decision-Making Performance Publication Type Journal Article Refereed Designation Refereed LBNL Report Number LBNL-6196E Year of Publication 2012 Authors Satish, Usha, Mark J. Mendell, Krishnamurthy Shekhar, Toshifumi Hotchi, Douglas P. Sullivan, Siegfried Streufert, and William J. Fisk Journal Environmental Health Perspectives Volume 120 Issue 12 Pagination 1671-1677 Date Published 09/20/2012 Keywords carbon dioxide, cognition, Decision Making, human performance, indoor environmental quality, ventilation Abstract Background - Associations of higher indoor carbon dioxide (CO2) concentrations with impaired

32

BNL | CO2 Laser  

NLE Websites -- All DOE Office Websites (Extended Search)

CO2 Laser CO2 Laser The ATF is one of the only two facilities worldwide operating picosecond, terawatt-class CO2 lasers. Our laser system consists of a picoseconds pulse-injector based on fast optical switching from the output of a conventional CO2 laser oscillator, and a chain of high-pressure laser amplifiers. It starts with a wavelength converter wherein a near-IR picosecond solid-state laser with l»1 μm produces a mid-IR 10-μm pulse. This process employs two methods; semiconductor optical switching, and the Kerr effect. First, we combine the outputs from a multi-nanosecond CO2 laser oscillator with a picosecond Nd:YAG laser on a germanium Brewster-plate to produce an ~200 ps, 10μm pulse by semiconductor optical switching. Co-propagating this pulse with a Nd:YAG's 2nd harmonic in a

33

Modeling CO2 Sequestration in a Saline Reservoir and Depleted Oil Reservoir to Evaluate The Regional CO2 Sequestration Potential of The Ozark Plateau Aquifer System, South-Central Kansas  

NLE Websites -- All DOE Office Websites (Extended Search)

CO CO 2 Sequestration in a Saline Reservoir and Depleted Oil Reservoir to Evaluate The Regional CO 2 Sequestration Potential of The Ozark Plateau Aquifer System, South-Central Kansas Background Carbon capture, utilization and storage (CCUS) technologies offer the potential for reducing CO 2 emissions without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires adequate geologic formations capable of (1) storing large volumes of CO 2 , (2) receiving injected CO 2 at efficient and economic rates, and (3) retaining CO 2 safely over extended periods. Research efforts are currently focused on conventional and unconventional storage formations within depositional environments such as: deltaic, fluvial, alluvial,

34

CO2 http://andrew.ucsd.edu/co2qc/ University of California, San Diego  

E-Print Network (OSTI)

by sublimation and the CO2 is transferred into an electronic constant-volume manometer [ECM]. There its pressure of total alkalinity. Marine Chemistry 80, 185­197). Nutrients Nutrient levels were determined using

35

CO2 maritime transportation  

Science Journals Connector (OSTI)

The objective of this study is to describe the complete transport chain of CO2 between capture and storage including a ship transport. This last one is composed by the following steps: Shore terminal including the liquefaction, temporary storage and CO2 loading. Ship with a capacity of 30,000 m3. On or off shore terminal including an unloading system, temporary storage and export towards the final storage. Between all the possible thermodynamic states, the liquid one is most relevant two options are compared in the study (?50 °C, 7 bar) and (?30 °C, 15 bar). The ship has an autonomy of 6 days, is able to cover 1000 km with a cargo of 2.5 Mt/year. Several scenarios are studied varying the geographical position of the CO2 source, the number of harbours and the way the CO2 is finally stored. Depending on the option, the transport cost varies from 24 to 32 €/tCO2. This study confirms the conclusion of a previous study supported by ADEME, the cost transport is not negligible regarding the capture one when ships are considered. Transport by ship becomes a more economical option compared with an off shore pipeline when the distance exceeds 350 km and with an onshore pipeline when it exceeds 1100 km.

Sandrine Decarre; Julien Berthiaud; Nicolas Butin; Jean-Louis Guillaume-Combecave

2010-01-01T23:59:59.000Z

36

Enhanced CO2 Gas Storage in Coal  

Science Journals Connector (OSTI)

Greenhouse gas (GHG) such as carbon dioxide (CO2) is largely believed to be a primary contributor to global warming. ... Four coals of various rank exploited from four main coal seams in China were tested. ...

Shu-Qing Hao; Sungho Kim; Yong Qin; Xue-Hai Fu

2013-12-05T23:59:59.000Z

37

On Leakage from Geologic Storage Reservoirs of CO2  

SciTech Connect

Large amounts of CO2 would need to be injected underground to achieve a significant reduction of atmospheric emissions. The large areal extent expected for CO2 plumes makes it likely that caprock imperfections will be encountered, such as fault zones or fractures, which may allow some CO2 to escape from the primary storage reservoir. Leakage of CO2 could also occur along wellbores. Concerns with escape of CO2 from a primary geologic storage reservoir include (1) acidification of groundwater resources, (2) asphyxiation hazard when leaking CO2 is discharged at the land surface, (3) increase in atmospheric concentrations of CO2, and (4) damage from a high-energy, eruptive discharge (if such discharge is physically possible). In order to gain public acceptance for geologic storage as a viable technology for reducing atmospheric emissions of CO2, it is necessary to address these issues and demonstrate that CO2 can be injected and stored safely in geologic formations.

Pruess, Karsten

2006-02-14T23:59:59.000Z

38

NETL: CO2 Emissions Control  

NLE Websites -- All DOE Office Websites (Extended Search)

Home > Technologies > Coal & Power Systems > Innovations for Existing Plants > CO2 Emissions Control Home > Technologies > Coal & Power Systems > Innovations for Existing Plants > CO2 Emissions Control Innovations for Existing Plants CO2 Emissions Control RD&D Roadmap Technology Update DOE/NETL Advanced CO2 Capture R&D Program: Technology Update DOE/NETL Advanced CO2 Capture R&D Program Accomplishments DOE/NETL Carbon Dioxide Capture and Storage RD&D Roadmap 2013 NETL CO2 Capture Technology Meeting Presentations DOE/NETL's Monthly Carbon Sequestration Newsletter Program Goals and Targets Pre-Combustion CO2 Control Post-Combustion CO2 Control Advanced Combustion CO2 Compression Other Systems Analysis Regulatory Drivers Reference Shelf Carbon capture involves the separation of CO2 from coal-based power plant flue gas or syngas. There are commercially available 1st-Generation CO2

39

Issues Related to Seismic Activity Induced by the Injection of CO2 in Deep Saline Aquifiers  

NLE Websites -- All DOE Office Websites (Extended Search)

ISSUES RELATED TO SEISMIC ACTIVITY INDUCED BY THE INJECTION ISSUES RELATED TO SEISMIC ACTIVITY INDUCED BY THE INJECTION OF CO 2 IN DEEP SALINE AQUIFERS Joel Sminchak (sminchak@battelle.org; 614-424-7392) Neeraj Gupta (gupta@battelle.org; 614-424-3820) Battelle Memorial Institute 505 King Avenue Columbus, Ohio 43201 Charles Byrer (a) and Perry Bergman (b) National Energy Technology Laboratory (a) P.O. Box 880, Morgantown, WV, 26507-0880 (b) P.O. Box 10940, Pittsburgh, PA, 15236-0940 Abstract Case studies, theory, regulation, and special considerations regarding the disposal of carbon dioxide (CO 2 ) into deep saline aquifers were investigated to assess the potential for induced seismic activity. Formations capable of accepting large volumes of CO 2 make deep well injection of CO 2 an attractive option. While seismic implications must be considered for injection

40

Large discharge-volume, silent discharge spark plug  

DOE Patents (OSTI)

A large discharge-volume spark plug for providing self-limiting microdischarges. The apparatus includes a generally spark plug-shaped arrangement of a pair of electrodes, where either of the two coaxial electrodes is substantially shielded by a dielectric barrier from a direct discharge from the other electrode, the unshielded electrode and the dielectric barrier forming an annular volume in which self-terminating microdischarges occur when alternating high voltage is applied to the center electrode. The large area over which the discharges occur, and the large number of possible discharges within the period of an engine cycle, make the present silent discharge plasma spark plug suitable for use as an ignition source for engines. In the situation, where a single discharge is effective in causing ignition of the combustible gases, a conventional single-polarity, single-pulse, spark plug voltage supply may be used.

Kang, Michael (Los Alamos, NM)

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "large volume co2" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

CO2.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

STORAGE & ENHANCED OIL RECOVERY STORAGE & ENHANCED OIL RECOVERY Objective R MOTC can play a signifi cant role in carbon dioxide (CO 2 ) storage and enhanced oil recovery technology development and fi eld demonstra- tions. RMOTC completed a scoping engineering study on Naval Petroleum Reserve No. 3's (NPR-3) CO 2 enhanced oil recovery potential. More recent character- ization studies indicate geologic carbon storage would also be an excellent use of NPR-3 resources beyond their economic life in conventional production. Geologic Storage Fossil fuels will remain the mainstay of energy production well into the 21st century. Availability of these fuels to provide clean, affordable energy is es- sential for the prosperity and security of the United States. However, increased atmospheric concentrations

42

Synthesis, characterization and performance of single-component CO2-binding organic liquids (CO2BOL) for post combustion CO2 capture  

SciTech Connect

Carbon dioxide (CO2) emission to the atmosphere will increase significantly with the shift to coal powered plants for energy generation. This increase in CO2 emission will contribute to climate change. There is need to capture and sequester large amounts of CO2 emitted from these coal power plants in order to mitigate the environmental effects. Here we report the synthesis, characterization and system performance of multiple third generation CO2 binding organic liquids (CO2BOLs) as a solvent system for post combustion gas capture. Alkanolguanidines and alkanolamidines are single component CO2BOLs that reversibly bind CO2 chemically as liquid zwitterionic amidinium / guanidinium alkylcarbonates. Three different alkanolguanidines and alkanolamidines were synthesized and studied for CO2 capacity and binding energetics. Solvent performance of these three CO2BOLs was evaluated by batch-wise CO2 uptake and release over multiple cycles. Synthesis of CO2BOLs, characterization, CO2 uptake, selectivity towards CO2 as well as solvent tolerance to water will be discussed.

Koech, Phillip K.; Heldebrant, David J.; Rainbolt, James E.; Zheng, Feng; Smurthwaite, Tricia D.

2010-03-31T23:59:59.000Z

43

Vehicular Sensing System for CO2 Monitoring Applications  

E-Print Network (OSTI)

--We are interested in monitoring the concentration of carbon dioxide (CO2) gas in a large field such as an urban area sensor, vehicular sensing system, wireless sensor network. I. INTRODUCTION Carbon dioxide (CO2) gas has1 Vehicular Sensing System for CO2 Monitoring Applications Shu-Chiung Hu, You-Chiun Wang, Chiuan

Tseng, Yu-Chee

44

India Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

India India India Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends India's 2008 total fossil-fuel CO2 emissions rose 8.1% over the 2007 level to 475 million metric tons of carbon. From 1950 to 2008, India experienced dramatic growth in fossil-fuel CO2 emissions averaging 5.7% per year and becoming the world's third largest fossil-fuel CO2-emitting country. Indian total emissions from fossil-fuel consumption and cement production have more than doubled since 1994. Fossil-fuel emissions in India continue to result largely from coal burning with India being the world's third largest producer of coal. Coal contributed 87% of the emissions in 1950 and 71% in 2008; at the same time, the oil fraction increased from 11% to 20%. Indian emissions data reveal little impact from the oil price increases that

45

Novel CO2 - Philic Absorbents  

NLE Websites -- All DOE Office Websites (Extended Search)

Novel Co Novel Co 2 - PhiliC AbsorbeNts Summary The ability to separate a high pressure mixture of CO 2 and H 2 such that a high pressure stream of CO 2 for sequestration and a high pressure stream of H 2 for energy are produced remains an elusive goal. This research has identified a class of compounds that melt in the presence of high pressure CO 2 , forming a liquid phase composed of roughly 50wt% CO 2 and 50wt% of the compound. Unlike conventional solvents that require substantial depressurization during regeneration to release a low pressure CO 2 stream, these novel compounds completely release the CO 2 at many hundreds of psia as the compound solidifies. This work will reveal whether one of more of these compounds can selectively remove CO 2 from a mixture

46

Large volume recycling of oceanic lithosphere over short time scales: geochemical constraints from the Caribbean Large  

E-Print Network (OSTI)

Large volume recycling of oceanic lithosphere over short time scales: geochemical constraints from with derivation from recycled oceanic crust, while the depleted lavas are derived from a highly residual source source mantle could have been 9 500 Ma before CLIP formation and interpreted to reflect the recycling

Graham, David W.

47

ARM - Instrument - co2flx  

NLE Websites -- All DOE Office Websites (Extended Search)

govInstrumentsco2flx govInstrumentsco2flx Documentation CO2FLX : Handbook CO2FLX : Instrument Mentor Monthly Summary (IMMS) reports CO2FLX : Data Quality Assessment (DQA) reports ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Carbon Dioxide Flux Measurement Systems (CO2FLX) Instrument Categories Atmospheric Carbon General Overview The Southern Great Plains (SGP) carbon dioxide flux (CO2 flux) measurement systems provide half-hour average fluxes of CO2, H2O (latent heat), and sensible heat. The fluxes are obtained by the eddy covariance technique, which computes the flux as the mean product of the vertical wind component with CO2 and H2O densities, or estimated virtual temperature. A three-dimensional sonic anemometer is used to obtain the orthogonal wind

48

Abstract 1516: Automated circulating DNA purification from large volumes of plasma  

Science Journals Connector (OSTI)

...Automated circulating DNA purification from large volumes of plasma...The current commercial DNA purification methods limit researchers...microl of nuclease-free water in either plates or tubes...Automated circulating DNA purification from large volumes of plasma...

Sydnor T. Withers; Mary Dressler; and Cristopher A. Cowan

2014-10-01T23:59:59.000Z

49

VolumeExplorer: Roaming Large Volumes to Couple Visualization and Data Processing for Oil and Gas Exploration  

E-Print Network (OSTI)

VolumeExplorer: Roaming Large Volumes to Couple Visualization and Data Processing for Oil and Gas dedicated to oil and gas exploration. Our system combines probe- based volume rendering with data processing Seismic interpretation is an important task in the oil and gas exploration-production (EP) workflow [9, 26

Paris-Sud XI, Université de

50

Hyperspectral Geobotanical Remote Sensing For Co2 Storage Monitoring | Open  

Open Energy Info (EERE)

Hyperspectral Geobotanical Remote Sensing For Co2 Storage Monitoring Hyperspectral Geobotanical Remote Sensing For Co2 Storage Monitoring Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Hyperspectral Geobotanical Remote Sensing For Co2 Storage Monitoring Details Activities (1) Areas (1) Regions (0) Abstract: This project's goal is to develop remote sensing methods for early detection and spatial mapping, over whole regions simultaneously, of any surface areas under which there are significant CO2 leaks from deep underground storage formations. If large amounts of CO2 gas percolated up from a storage formation below to within plant root depth of the surface, the CO2 soil concentrations near the surface would become elevated and would affect individual plants and their local plant ecologies. Excessive soil CO2 concentrations are observed to significantly affect local plant

51

Aminosilane-Grafted Polymer/Silica Hollow Fiber Adsorbents for CO2 Capture from Flue Gas  

Science Journals Connector (OSTI)

In this approach, polymeric hollow fibers similar to those already prepared on commercial scales for membrane gas separations are prepared and loaded with large volumes of solid CO2 adsorbing materials. ... In this regard, the hollow fiber RTSA process is ideally suited for application of typical silica amine adsorbents, as it (i) allows for effective heat integration,(11) (ii) gives fast cycle times (expected to be on the order of 2–4 min),(8) and (iii) minimizes contact of aminosilica-adsorbents with high-temperature steam, which can degrade the adsorbent. ... The moles of CO2 adsorbed were calculated by integration of the area bounded by the CO2 breakthrough front and the He breakthrough front from the initial concentration to the final equilibration concentration. ...

Fateme Rezaei; Ryan P. Lively; Ying Labreche; Grace Chen; Yanfang Fan; William J. Koros; Christopher W. Jones

2013-03-29T23:59:59.000Z

52

CO2 interaction with geomaterials.  

SciTech Connect

This work compares the sorption and swelling processes associated with CO2-coal and CO2-clay interactions. We investigated the mechanisms of interaction related to CO2 adsortion in micropores, intercalation into sub-micropores, dissolution in solid matrix, the role of water, and the associated changes in reservoir permeability, for applications in CO2 sequestration and enhanced coal bed methane recovery. The structural changes caused by CO2 have been investigated. A high-pressure micro-dilatometer was equipped to investigate the effect of CO2 pressure on the thermoplastic properties of coal. Using an identical dilatometer, Rashid Khan (1985) performed experiments with CO2 that revealed a dramatic reduction in the softening temperature of coal when exposed to high-pressure CO2. A set of experiments was designed for -20+45-mesh samples of Argonne Premium Pocahontas No.3 coal, which is similar in proximate and ultimate analysis to the Lower Kittanning seam coal that Khan used in his experiments. No dramatic decrease in coal softening temperature has been observed in high-pressure CO2 that would corroborate the prior work of Khan. Thus, conventional polymer (or 'geopolymer') theories may not be directly applicable to CO2 interaction with coals. Clays are similar to coals in that they represent abundant geomaterials with well-developed microporous structure. We evaluated the CO2 sequestration potential of clays relative to coals and investigated the factors that affect the sorption capacity, rates, and permanence of CO2 trapping. For the geomaterials comparison studies, we used source clay samples from The Clay Minerals Society. Preliminary results showed that expandable clays have CO2 sorption capacities comparable to those of coal. We analyzed sorption isotherms, XRD, DRIFTS (infrared reflectance spectra at non-ambient conditions), and TGA-MS (thermal gravimetric analysis) data to compare the effects of various factors on CO2 trapping. In montmorillonite, CO2 molecules may remain trapped for several months following several hours of exposure to high pressure (supercritical conditions), high temperature (above boiling point of water) or both. Such trapping is well preserved in either inert gas or the ambient environment and appears to eventually result in carbonate formation. We performed computer simulations of CO2 interaction with free cations (normal modes of CO2 and Na+CO2 were calculated using B3LYP / aug-cc-pVDZ and MP2 / aug-cc-pVDZ methods) and with clay structures containing interlayer cations (MD simulations with Clayff potentials for clay and a modified CO2 potential). Additionally, interaction of CO2 with hydrated Na-montmorillonite was studied using density functional theory with dispersion corrections. The sorption energies and the swelling behavior were investigated. Preliminary modeling results and experimental observations indicate that the presence of water molecules in the interlayer region is necessary for intercalation of CO2. Our preliminary conclusion is that CO2 molecules may intercalate into interlayer region of swelling clay and stay there via coordination to the interlayer cations.

Guthrie, George D. (U.S. Department of Energy, Pittsburgh, PA); Al-Saidi, Wissam A. (University of Pittsburgh, Pittsburgh, PA); Jordan, Kenneth D. (University of Pittsburgh, Pittsburgh, PA); Voora, Vamsee, K. (University of Pittsburgh, Pittsburgh, PA); Romanov, Vyacheslav N. (U.S. Department of Energy, Pittsburgh, PA); Lopano, Christina L (U.S. Department of Energy, Pittsburgh, PA); Myshakin, Eugene M. (URS Corporation, Pittsburgh, PA); Hur, Tae Bong (University of Pittsburgh, Pittsburgh, PA); Warzinski, Robert P. (U.S. Department of Energy, Pittsburgh, PA); Lynn, Ronald J. (URS Corporation, Pittsburgh, PA); Howard, Bret H. (U.S. Department of Energy, Pittsburgh, PA); Cygan, Randall Timothy

2010-09-01T23:59:59.000Z

53

Investigation of CO2 plume behavior for a large-scale pilot test of geologic carbon storage in a saline formation  

SciTech Connect

The hydrodynamic behavior of carbon dioxide (CO{sub 2}) injected into a deep saline formation is investigated, focusing on trapping mechanisms that lead to CO{sub 2} plume stabilization. A numerical model of the subsurface at a proposed power plant with CO{sub 2} capture is developed to simulate a planned pilot test, in which 1,000,000 metric tons of CO{sub 2} is injected over a four-year period, and the subsequent evolution of the CO{sub 2} plume for hundreds of years. Key measures are plume migration distance and the time evolution of the partitioning of CO{sub 2} between dissolved, immobile free-phase, and mobile free-phase forms. Model results indicate that the injected CO{sub 2} plume is effectively immobilized at 25 years. At that time, 38% of the CO{sub 2} is in dissolved form, 59% is immobile free phase, and 3% is mobile free phase. The plume footprint is roughly elliptical, and extends much farther up-dip of the injection well than down-dip. The pressure increase extends far beyond the plume footprint, but the pressure response decreases rapidly with distance from the injection well, and decays rapidly in time once injection ceases. Sensitivity studies that were carried out to investigate the effect of poorly constrained model parameters permeability, permeability anisotropy, and residual CO{sub 2} saturation indicate that small changes in properties can have a large impact on plume evolution, causing significant trade-offs between different trapping mechanisms.

Doughty, C.

2009-04-01T23:59:59.000Z

54

Evaluation of Activated Carbon Adsorbents for CO2 Capture in Gasification  

Science Journals Connector (OSTI)

A linear relationship is also observed for the pore volume of the adsorbents (Figure 8b) when Vp and an estimation of the micropore volume (Vp ? Vmeso) of the adsorbents are plotted against the volume of adsorbed CO2 at 4.1 MPa. ... Modified HMS materials demonstrated to be reversibly adsorb substantially more CO2 than previously obsd. ... The anthracite with the highest CO2 adsorption capacity is the sample activated at 800 °C for 2 h, whose surface area was only 540 m2/g, and the adsorbed amt. of CO2 was 65.7 mg-CO2/g-adsorbent. ...

Trevor C. Drage; James M. Blackman; Cova Pevida; Colin E. Snape

2009-04-10T23:59:59.000Z

55

CO2 Sequestration short course  

SciTech Connect

Given the public’s interest and concern over the impact of atmospheric greenhouse gases (GHGs) on global warming and related climate change patterns, the course is a timely discussion of the underlying geochemical and mineralogical processes associated with gas-water-mineral-interactions encountered during geological sequestration of CO2. The geochemical and mineralogical processes encountered in the subsurface during storage of CO2 will play an important role in facilitating the isolation of anthropogenic CO2 in the subsurface for thousands of years, thus moderating rapid increases in concentrations of atmospheric CO2 and mitigating global warming. Successful implementation of a variety of geological sequestration scenarios will be dependent on our ability to accurately predict, monitor and verify the behavior of CO2 in the subsurface. The course was proposed to and accepted by the Mineralogical Society of America (MSA) and The Geochemical Society (GS).

DePaolo, Donald J. [Lawrence Berkeley National Laboratory; Cole, David R [The Ohio State University; Navrotsky, Alexandra [University of California-Davis; Bourg, Ian C [Lawrence Berkeley National Laboratory

2014-12-08T23:59:59.000Z

56

Reducing the CO2 emissions and the energy dependence of a large city area with zero-emission vehicles and nuclear energy  

Science Journals Connector (OSTI)

Abstract This paper aims to study the feasibility of implementing a strategic plan for a gradual introduction of zero-emission vehicles in the city of Madrid during 2014–2024. The study estimate the amount of emissions saved if the electrical energy needed for the vehicles is generated with nuclear power plants. The use of zero-emission vehicles could play an important role in reducing our dependence on oil and, therefore, changing the economy structure of the country. Therefore, as a representing city, Madrid's nowadays situation is studied. The city's vehicle fleet is first considered and classified. An average both daily and annually fuel consumption is made, in order to know the city's gasoline investment. Moreover, the health effects of air pollution, which is largely due to the city's vehicles, are statistically considered in order to analyze the economic impact of treating these effects. Furthermore, noise pollution and it's both direct and indirect consequences are studied. After having analyzed Madrid's situation, a comparison between some international cities and the Spanish capital is made, regarding their vehicle fleet and their environmental and economical consequences. European environmental policy and future criteria are exposed. Regarding the technical feasibility, two types of zero-emission technologies are considered, the battery-electric car and de hydrogen fuel cell vehicle (FCV). After having described the benefits and disadvantages of the use of zero-emission vehicles, a macroeconomic analysis is done in order to study the economic feasibility of the project. To do this, not only several economic variables, such as gross domestic product in the area, but also survey data, such as the average daily driving time are considered. Finally, a strategic plan for a gradual implementation of zero-emission vehicles in the city of Madrid is proposed, taking into account the quantity of emissions saved if the electrical energy needed is generated with nuclear power plants. In this plan, some policy actions are proposed for a gradual implementation. Policy actions such as special fees for those driving internal combustion engine vehicles, free parking for zero-emission vehicles or even a subsidized car replacement plan.

Gonzalo Jimenez; Jose Miguel Flores

2015-01-01T23:59:59.000Z

57

NETL: IEP – Post-Combustion CO2 Emissions Control - CO2 Capture from Flue  

NLE Websites -- All DOE Office Websites (Extended Search)

from Flue Gas by Phase Transitional Absorption from Flue Gas by Phase Transitional Absorption Project No.: FG26-05NT42488 Basic Illustration of the Phase Transitional Absorption Process. Basic Illustration of the Phase Transitional Absorption Process. Hampton University researched a novel carbon dioxide (CO2) absorption concept, phase transitional absorption, that utilizes a two-part proprietary absorbent consisting of an activated agent dissolved in a solvent. Phase separation of the activated agent from the chemical solvent occurs during CO2 absorption and physical separation of the two phases exiting the absorber reduces the volume of process liquid requiring thermal regeneration. This unique aspect of phase transitional absorption also decreases the amount of energy (i.e., steam) required to liberate the CO2. If the proper liquid

58

CANMET CO2 Consortium - O2/CO2 Recycle Combustion  

NLE Websites -- All DOE Office Websites (Extended Search)

CANMET CO CANMET CO 2 Consortium - O 2 /CO 2 Recycle Combustion Background The mission of the U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) Existing Plants, Emissions & Capture (EPEC) Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental

59

NETL: IEP - Post-Combustion CO2 Emissions Control - Post-Combustion CO2  

NLE Websites -- All DOE Office Websites (Extended Search)

Post-Combustion CO2 Capture for Existing PC Boilers by Self-concentrating Amine Absorbent Post-Combustion CO2 Capture for Existing PC Boilers by Self-concentrating Amine Absorbent Project No.: DE-FE0004274 3H Company will evaluate the feasibility of its "Self-Concentrating Absorbent CO2 Capture Process." The process is based on amines in a non-aqueous solvent which, upon reaction with CO2, separate into two distinct phases: a CO2-rich liquid phase and a dilute lean phase. The proposed process offers several potential advantages. Preliminary experimental data show that the process has the potential of reducing the total regeneration energy by as much as 70 percent. The solvent has high working capacity, thus required solvent volume would be lower than that required in a currently available amine system. This results in lower pumping requirements, lower auxiliary power demands, and reduced equipment size. In addition, since the solvent is non-aqueous, corrosion issues would be reduced. During the three-year project, an engineering design supported by laboratory data and economic justification will be developed to construct and operate a slipstream demonstration facility at an E-ON power plant in the United States as a next stage of commercialization development.

60

High Co2 Emissions Through Porous Media- Transport Mechanisms And  

Open Energy Info (EERE)

Co2 Emissions Through Porous Media- Transport Mechanisms And Co2 Emissions Through Porous Media- Transport Mechanisms And Implications For Flux Measurement And Fractionation Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: High Co2 Emissions Through Porous Media- Transport Mechanisms And Implications For Flux Measurement And Fractionation Details Activities (1) Areas (1) Regions (0) Abstract: Diffuse emissions of CO2 are known to be large around some volcanoes and hydrothermal areas. Accumulation-chamber measurements of CO2 flux are increasingly used to estimate the total magmatic or metamorphic CO2 released from such areas. To assess the performance of accumulation chamber systems at fluxes one to three orders of magnitude higher than normally encountered in soil respiration studies, a test system was

Note: This page contains sample records for the topic "large volume co2" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Uncertainty quantification for CO2 sequestration and enhanced oil recovery  

E-Print Network (OSTI)

This study develops a statistical method to perform uncertainty quantification for understanding CO2 storage potential within an enhanced oil recovery (EOR) environment at the Farnsworth Unit of the Anadarko Basin in northern Texas. A set of geostatistical-based Monte Carlo simulations of CO2-oil-water flow and reactive transport in the Morrow formation are conducted for global sensitivity and statistical analysis of the major uncertainty metrics: net CO2 injection, cumulative oil production, cumulative gas (CH4) production, and net water injection. A global sensitivity and response surface analysis indicates that reservoir permeability, porosity, and thickness are the major intrinsic reservoir parameters that control net CO2 injection/storage and oil/gas recovery rates. The well spacing and the initial water saturation also have large impact on the oil/gas recovery rates. Further, this study has revealed key insights into the potential behavior and the operational parameters of CO2 sequestration at CO2-EOR s...

Dai, Zhenxue; Fessenden-Rahn, Julianna; Middleton, Richard; Pan, Feng; Jia, Wei; Lee, Si-Yong; McPherson, Brian; Ampomah, William; Grigg, Reid

2014-01-01T23:59:59.000Z

62

AZ CO2 Storage Pilot  

NLE Websites -- All DOE Office Websites (Extended Search)

CO2 Storage Pilot Regional Carbon Sequestration Partnerships Initiative Review Meeting Pittsburgh, Pennsylvania October 7, 2008 John Henry Beyer, Ph.D. WESTCARB Program Manager, Geophysicist 510-486-7954, jhbeyer@lbl.gov Lawrence Berkeley National Laboratory Earth Sciences Division, MS 90-1116 Berkeley, CA 94720 2 WESTCARB region has major CO2 point sources 3 WESTCARB region has many deep saline formations - candidates for CO2 storage WESTCARB also created GIS layers for oil/gas fields and deep coal basins Source: DOE Carbon Sequestration Atlas of the United States and Canada 4 - Aspen Environmental - Bevilacqua-Knight, Inc. Arizona Utilities CO2 Storage Pilot Contracting and Funding Flow Department of Energy National Energy Technology Laboratory Lawrence Berkeley National

63

Enhanced Miscibility of Low-Molecular-Weight Polystyrene/Polyisoprene Blends in Supercritical CO2  

E-Print Network (OSTI)

with nitrogen decouple the plasticization efficacy of CO2 from free-volume compression due to hydrostaticEnhanced Miscibility of Low-Molecular-Weight Polystyrene/Polyisoprene Blends in Supercritical CO2 solution temperature (UCST) polymer blend in the presence of supercritical carbon dioxide (scCO2

Raghavan, Srinivasa

64

CO2 Utilization | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CO2 CO2 Utilization CO2 Utilization Carbon dioxide (CO2) use and reuse efforts focus on the conversion of CO2 to useable products and fuels that will reduce CO2 emissions in areas where geologic storage may not be an optimal solution. These include: Enhanced Oil/Gas Recovery - Injecting CO2 into depleting oil or gas bearing fields to maximize the amount of CO2 that could be stored as well as maximize hydrocarbon production. CO2 as Feedstock - Use CO2 as a feedstock to produce chemicals (including fuels and polymers) and find applications for the end products. Non-Geologic Storage of CO2 - Use CO2 from an effluent stream to immobilize the CO2 permanently by producing stable solid material that are either useful products with economic value or a low cost produced material.

65

Efficient Compression of CO2 and Pipeline Transport Considerations  

NLE Websites -- All DOE Office Websites (Extended Search)

CONCEPTS FOR THE COMPRESSION OF CONCEPTS FOR THE COMPRESSION OF LARGE VOLUMES OF CARBON DIOXIDE - PHASE III Southwest Research Institute Team: J. Jeffrey Moore, Ph.D. Neal Evans Timothy Allison, Ph.D. Brian Moreland Klaus Brun, Ph.D. Dresser-Rand Team: Jorge Pacheco, Ph.D. Jason Kerth Michael Dollinger Project Funded by DOE NETL DOE PM: Travis Shultz 2 SOUTHWEST RESEARCH INSTITUTE 11 Divisions *Engine Emissions *Fuels & Lubricants *Automation *Aerospace Electronics *Space Science *Nuclear Waste *Applied Physics *Applied Power *Chemistry *Electronics *Mechanical Engineering * Rotating Machinery Group *1200 Acres *2 million Ft 2 *3200 Employees *1200 Engineers *170 Buildings Project Motivation * CO 2 capture has a significant compression penalty - as high as 8 to 12%.

66

Energy and Climate Impacts of Producing Synthetic Hydrocarbon Fuels from CO2  

Science Journals Connector (OSTI)

These platforms make the case for (more) research on the conversion of CO2 into synthetic fuels as means to utilize CO2 and thereby mitigate its accumulation in the atmosphere. ... Stechel, E. B.; Miller, J. E.Re-energizing CO2 to fuels with the sun: Issues of efficiency, scale, and economics J. CO2 Util. ... Published analyses suggest these air capture systems may cost a few hundred dollars per ton of CO2, making it cost competitive with mainstream CO2 mitigation options like renewable energy, nuclear power, and carbon dioxide capture and storage from large CO2 emitting point sources. ...

Coen van der Giesen; René Kleijn; Gert Jan Kramer

2014-05-15T23:59:59.000Z

67

CBM and CO2-ECBM related sorption processes in coal: A review  

Science Journals Connector (OSTI)

This article reviews the state of research on sorption of gases (CO2, CH4) and water on coal for primary recovery of coalbed methane (CBM), secondary recovery by an enhancement with carbon dioxide injection (CO2-ECBM), and for permanent storage of CO2 in coal seams. Especially in the last decade a large amount of data has been published characterizing coals from various coal basins world-wide for their gas sorption capacity. This research was either related to commercial CBM production or to the usage of coal seams as a permanent sink for anthropogenic CO2 emissions. Presently, producing methane from coal beds is an attractive option and operations are under way or planned in many coal basins around the globe. Gas-in-place determinations using canister desorption tests and CH4 isotherms are performed routinely and have provided large datasets for correlating gas transport and sorption properties with coal characteristic parameters. Publicly funded research projects have produced large datasets on the interaction of CO2 with coals. The determination of sorption isotherms, sorption capacities and rates has meanwhile become a standard approach. In this study we discuss and compare the manometric, volumetric and gravimetric methods for recording sorption isotherms and provide an uncertainty analysis. Using published datasets and theoretical considerations, water sorption is discussed in detail as an important mechanisms controlling gas sorption on coal. Most sorption isotherms are still recorded for dry coals, which usually do not represent in-seam conditions, and water present in the coal has a significant control on CBM gas contents and CO2 storage potential. This section is followed by considerations of the interdependence of sorption capacity and coal properties like coal rank, maceral composition or ash content. For assessment of the most suitable coal rank for CO2 storage data on the CO2/CH4 sorption ratio data have been collected and compared with coal rank. Finally, we discuss sorption rates and gas diffusion in the coal matrix as well as the different unipore or bidisperse models used for describing these processes. This review does not include information on low-pressure sorption measurements (BET approach) to characterize pore sizes or pore volume since this would be a review of its own. We also do not consider sorption of gas mixtures since the data base is still limited and measurement techniques are associated with large uncertainties.

Andreas Busch; Yves Gensterblum

2011-01-01T23:59:59.000Z

68

CO2 | OpenEI  

Open Energy Info (EERE)

CO2 CO2 Dataset Summary Description Emissions from energy use in buildings are usually estimated on an annual basis using annual average multipliers. Using annual numbers provides a reasonable estimation of emissions, but it provides no indication of the temporal nature of the emissions. Therefore, there is no way of understanding the impact on emissions from load shifting and peak shaving technologies such as thermal energy storage, on-site renewable energy, and demand control. Source NREL Date Released April 11th, 2011 (3 years ago) Date Updated April 11th, 2011 (3 years ago) Keywords buildings carbon dioxide emissions carbon footprinting CO2 commercial buildings electricity emission factors ERCOT hourly emission factors interconnect nitrogen oxides NOx SO2 sulfur dioxide emissions

69

Update on CO2 emissions  

SciTech Connect

Emissions of CO2 are the main contributor to anthropogenic climate change. Here we present updated information on their present and near-future estimates. We calculate that global CO2 emissions from fossil fuel burning decreased by 1.3% in 2009 owing to the global financial and economic crisis that started in 2008; this is half the decrease anticipated a year ago1. If economic growth proceeds as expected2, emissions are projected to increase by more than 3% in 2010, approaching the high emissions growth rates that were observed from 2000 to 20081, 3, 4. We estimate that recent CO2 emissions from deforestation and other land-use changes (LUCs) have declined compared with the 1990s, primarily because of reduced rates of deforestation in the tropics5 and a smaller contribution owing to forest regrowth elsewhere.

Friedingstein, P. [University of Exeter, Devon, England; Houghton, R.A. [Woods Hole Research Center, Woods Hole, MA; Marland, Gregg [ORNL; Hackler, J. [Woods Hole Research Center, Woods Hole, MA; Boden, Thomas A [ORNL; Conway, T.J. [NOAA, Boulder, CO; Canadell, J.G. [CSIRO Marine and Atmospheric Research; Raupach, Mike [GCP, Canberra, Australia; Ciais, Philippe [Laboratoire des Sciences du Climat et de l'Environement, France; Le Quere, Corrine [University of East Anglia, Norwich, United Kingdom

2010-12-01T23:59:59.000Z

70

Northern California CO2 Reduction Project  

SciTech Connect

C6 Resources LLC, a wholly owned subsidiary of Shell Oil Company, worked with the US Department of Energy (DOE) under a Cooperative Agreement to develop the Northern California CO2 Reduction Project. The objective of the Project is to demonstrate the viability of using Carbon Capture and Sequestration (CCS) to reduce existing greenhouse gas emissions from industrial sources on a large-scale. The Project will capture more than 700,000 metric tonnes of CO2 per year, which is currently being vented to the atmosphere from the Shell Martinez Refinery in Contra Costa County. The CO2 will be compressed and dehydrated at the refinery and then transported via pipeline to a sequestration site in a rural area in neighboring Solano County. The CO2 will be sequestered into a deep saline formation (more than two miles underground) and will be monitored to assure secure, long-term containment. The pipeline will be designed to carry as much as 1,400,000 metric tonnes of CO2 per year, so additional capacity will be available to accommodate CO2 captured from other industrial sources. The Project is expected to begin operation in 2015. The Project has two distinct phases. The overall objective of Phase 1 was to develop a fully definitive design basis for the Project. The Cooperative Agreement with the DOE provided cost sharing for Phase 1 and the opportunity to apply for additional DOE cost sharing for Phase 2, comprising the design, construction and operation of the Project. Phase 1 has been completed. DOE co-funding is provided by the American Recovery and Reinvestment Act (ARRA) of 2009. As prescribed by ARRA, the Project will stimulate the local economy by creating manufacturing, transportation, construction, operations, and management jobs while addressing the need to reduce greenhouse gas emissions at an accelerated pace. The Project, which will also assist in meeting the CO2 reduction requirements set forth in California?s Climate Change law, presents a major opportunity for both the environment as well as the region. C6 Resources is conducting the Project in collaboration with federally-funded research centers, such as Lawrence Berkeley National Lab and Lawrence Livermore National Lab. C6 Resources and Shell have identified CCS as one of the critical pathways toward a worldwide goal of providing cleaner energy. C6 Resources, in conjunction with the West Coast Regional Carbon Sequestration Partnership (WESTCARB), has conducted an extensive and ongoing public outreach and CCS education program for local, regional and state-wide stakeholders. As part of a long term relationship, C6 Resources will continue to engage directly with community leaders and residents to ensure public input and transparency. This topical report summarizes the technical work from Phase 1 of the Project in the following areas: ? Surface Facility Preliminary Engineering: summarizes the preliminary engineering work performed for CO2 capture, CO2 compression and dehydration at the refinery, and surface facilities at the sequestration site ? Pipeline Preliminary Engineering: summarizes the pipeline routing study and preliminary engineering design ? Geologic Sequestration: summarizes the work to characterize, model and evaluate the sequestration site ? Monitoring, Verification and Accounting (MVA): summarizes the MVA plan to assure long-term containment of the sequestered CO2

Hymes, Edward

2010-06-16T23:59:59.000Z

71

CO2 Mineral Sequestration Studies  

NLE Websites -- All DOE Office Websites (Extended Search)

Sequestration Studies Sequestration Studies Introduction, Issues and Plans Philip Goldberg National Energy Technology Laboratory Workshop on CO 2 Sequestration with Minerals August 8, 2001 Mineral Sequestration Program Research effort seeks to refine and validate a promising CO 2 sequestration technology option, mineral sequestration also known as mineral carbonation Goals: * Understand the fundamental mechanisms involved in mineral carbonation * Generate data to support process development * Operate continuous, integrated small-scale process unit to support design Current Partnerships In order to effectively develop Mineral Sequestration, a multi-laboratory Working Group was formed in the Summer of 1998, participants include: * Albany Research Center * Arizona State University * Los Alamos National Laboratory

72

Carbon Capture and a Commercial Market for CO2  

Science Journals Connector (OSTI)

With increasing evidence that the earth is warming at a faster rate than previously expected, there is pressure to reduce carbon dioxide (CO2) emissions on a large scale. Because carbon capture helps to internali...

Thomas R. Sadler

2013-05-01T23:59:59.000Z

73

electroseismic monitoring of co2 sequestration: a finite element ...  

E-Print Network (OSTI)

The injection of large amounts of man-produced CO2 in depleted oil wells below ..... [7] SANTOS, J. E., Global and domain-decomposed mixed methods for the ...

Fabio Zyserman

74

Synthetic fuel concept to steal CO2 from air  

NLE Websites -- All DOE Office Websites (Extended Search)

to steal CO2 from air Lab has developed a low-risk, transformational concept, called Green Freedom(tm), for large-scale production of carbon-neutral, sulfur-free fuels and...

75

An Improved Model To Forecast Co2 Leakage Rates Along A Wellbore | Open  

Open Energy Info (EERE)

Model To Forecast Co2 Leakage Rates Along A Wellbore Model To Forecast Co2 Leakage Rates Along A Wellbore Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: An Improved Model To Forecast Co2 Leakage Rates Along A Wellbore Details Activities (0) Areas (0) Regions (0) Abstract: Large-scale geological storage of CO2 is likely to bring CO2 plumes into contact with a large number of existing wellbores. Wellbores that no longer provide proper zonal isolation establish a primary pathway for a buoyant CO2-rich phase to escape from the intended storage formation. The hazard of CO2 leakage along these pathways will depend on the rate of leakage. Thus a useful component of a risk assessment framework is a model of CO2 leakage. Predicting the flux of CO2 along a leaking wellbore requires a model of fluid properties and of transport along the leakage

76

A brief study into the impact University of Bath has had on CO2 emissions and the cost of ownership of passenger cars.  

E-Print Network (OSTI)

to demonstrate fuel economy improvements totalling 4% including: · 3% improvement due to the optimised use of oil needed to protect the engine at any particular time thereby saving energy, fuel and reducing CO2 in fuel economy.[4]. These improvements are now in production in very large volumes. The 2.2L Duratorq

Burton, Geoffrey R.

77

Analysis of Hydroxide Sorbents for CO2 Capture from Warm Syngas  

Science Journals Connector (OSTI)

Analysis of Hydroxide Sorbents for CO2 Capture from Warm Syngas ... (1, 2) However, conventional coal combustion releases large amounts of the greenhouse gas CO2 into the atmosphere. ...

David J. Couling; Ujjal Das; William H. Green

2012-09-04T23:59:59.000Z

78

Geological Sequestration of CO2: The GEO-SEQ Project  

NLE Websites -- All DOE Office Websites (Extended Search)

GeoloGical SequeStration of co GeoloGical SequeStration of co 2 : the Geo-Seq Project Background Growing concern over the potential adverse effects of carbon dioxide (CO 2 ) buildup in the atmosphere leading to global climate change may require reductions in carbon emissions from industrial, transportation, and other sources. One promising option is the capture of CO 2 from large point sources and subsequent sequestration in geologic formations. For this approach to achieve wide acceptance, t assurances that safe, permanent, and verifiable CO 2 geologic storage is attained during sequestration operations must be made. Project results are made available to potential CO 2 storage operators and other interested stakeholders. The primary performing organizations of the GEO-SEQ project team are Lawrence

79

Performance of large electron energy filter in large volume plasma device  

SciTech Connect

This paper describes an in-house designed large Electron Energy Filter (EEF) utilized in the Large Volume Plasma Device (LVPD) [S. K. Mattoo, V. P. Anita, L. M. Awasthi, and G. Ravi, Rev. Sci. Instrum. 72, 3864 (2001)] to secure objectives of (a) removing the presence of remnant primary ionizing energetic electrons and the non-thermal electrons, (b) introducing a radial gradient in plasma electron temperature without greatly affecting the radial profile of plasma density, and (c) providing a control on the scale length of gradient in electron temperature. A set of 19 independent coils of EEF make a variable aspect ratio, rectangular solenoid producing a magnetic field (B{sub x}) of 100?G along its axis and transverse to the ambient axial field (B{sub z} ? 6.2?G) of LVPD, when all its coils are used. Outside the EEF, magnetic field reduces rapidly to 1?G at a distance of 20 cm from the center of the solenoid on either side of target and source plasma. The EEF divides LVPD plasma into three distinct regions of source, EEF and target plasma. We report that the target plasma (n{sub e} ? 2 × 10{sup 11}?cm{sup ?3} and T{sub e} ? 2?eV) has no detectable energetic electrons and the radial gradients in its electron temperature can be established with scale length between 50?and?600 cm by controlling EEF magnetic field. Our observations reveal that the role of the EEF magnetic field is manifested by the energy dependence of transverse electron transport and enhanced transport caused by the plasma turbulence in the EEF plasma.

Singh, S. K.; Srivastava, P. K.; Awasthi, L. M.; Mattoo, S. K.; Sanyasi, A. K.; Kaw, P. K. [Institute for Plasma Research, Gandhinagar 382 428, Gujarat (India)] [Institute for Plasma Research, Gandhinagar 382 428, Gujarat (India); Singh, R. [Institute for Plasma Research, Gandhinagar 382 428, Gujarat (India) [Institute for Plasma Research, Gandhinagar 382 428, Gujarat (India); WCI Center for Fusion Theory, National Fusion Research Institute Gwahangno 113, Yu-seong-gu, Daejeon, 305-333 (Korea, Republic of)

2014-03-15T23:59:59.000Z

80

8, 73737389, 2008 Scientists' CO2  

E-Print Network (OSTI)

ACPD 8, 7373­7389, 2008 Scientists' CO2 emissions A. Stohl Title Page Abstract Introduction substantial emissions of carbon dioxide (CO2). In this pa- per, the CO2 emissions of the employees working, the total annual per capita CO2 emissions are 4.5 t worldwide, 1.2 t for India, 3.8 t for China, 5

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "large volume co2" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Short communication Satellite-derived surface water pCO2 and airsea CO2 fluxes  

E-Print Network (OSTI)

Short communication Satellite-derived surface water pCO2 and air­sea CO2 fluxes in the northern for the estimation of the partial pressure of carbon dioxide (pCO2) and air­sea CO2 fluxes in the northern South), respectively, the monthly pCO2 fields were computed. The derived pCO2 was compared with the shipboard pCO2

82

Industrial CO2 Removal: CO2 Capture from Ambient Air and Geological Sequestration  

SciTech Connect

This abstract and its accompanying presentation will provide an overview of two distinct industrial processes for removing carbon dioxide (CO2) from the atmosphere as a means of addressing anthropogenic climate change. The first of these is carbon dioxide capture and storage (CCS) coupled with large scale biomass production (hereafter referred to as bioCCS). The second is CO2 capture from ambient air via industrial systems (hereafter referred to as direct air capture (DAC)). In both systems, the captured CO2 would be injected into deep geologic formations so as to isolate it from the atmosphere. The technical literature is clear that both of these technologies are technically feasible as of today (IPCC, 2005; Keith, 2009; Lackner, 2009; Luckow et al., 2010; Ranjan and Herzog, 2011). What is uncertain is the relative cost of these industrial ambient-air CO2 removal systems when compared to other emissions mitigation measures, the ultimate timing and scale of their deployment, and the resolution of potential site specific constraints that would impact their ultimate commercial deployment.

Dooley, James J.

2011-06-08T23:59:59.000Z

83

Production of CO2 in Soil Profiles of a California Annual Grassland  

E-Print Network (OSTI)

Production of CO2 in Soil Profiles of a California Annual Grassland Noah Fierer,1 * Oliver A play a key role in the global cycling of carbon (C), storing organic C, and releasing CO2 to the atmosphere. Although a large number of studies have focused on the CO2 flux at the soil­air inter- face

Fierer, Noah

84

Measurement, Standards, and Data Needs for CO2 Capture Materials: A Critical Review  

Science Journals Connector (OSTI)

(45) Porous solids must also have large pore volumes with pore sizes big enough to allow the target CO2 molecules to enter,(36c, 65) which have a kinetic diameter of approximately 3.30 Å (0.33 nm). ... Electric Power Monthly with Data for December 2012. ... data show a decrease in parasitic energy loss from 30% to 18% when compared to the benchmark monoethanolamine (MEA) process and a concomitant lowering of the cost of electricity (COE) from 74% to 44% increase vs. a plant without carbon capture. ...

Laura Espinal; Dianne L. Poster; Winnie Wong-Ng; Andrew J. Allen; Martin L. Green

2013-09-23T23:59:59.000Z

85

CO2 http://andrew.ucsd.edu/co2qc/ University of California, San Diego  

E-Print Network (OSTI)

cooled by liquid nitrogen. The water and CO2 are separated from one another by sublimation and the CO2 for oceanic CO2 analysis: A method for the certification of total alkalinity. Marine Chemistry 80, 185

86

NETL: CO2 Emissions Control  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems Analysis Systems Analysis DOE/NETL possesses strong systems analysis and policy-support capabilities. Systems analysis in support of the Innovations for Existing Plants Program consists of conducting various energy analyses that provide input to decisions on issues such as national plans and programs, resource use, environmental and energy security policies, technology options for research and development programs, and paths to deployment of energy technology. This work includes technology, benefits, and current situation and trends analyses related to CO2 emissions control. Systems analyses and economic modeling of potential new processes are crucial to providing sound guidance to R&D efforts. Since the majority of new CO2 capture technologies are still at a bench scale level of development, a conceptual design is first generated with emphasis on mass and energy balances. Based on available data and/or engineering estimates, these systems are optimized, and "what-if" scenarios are evaluated to identify barriers to deployment and help the process developers establish system performance targets. Reports that have been generated describing systems analyses in support of carbon capture efforts are shown in the table below.

87

CO2 Injection Begins in Illinois | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Begins in Illinois Begins in Illinois CO2 Injection Begins in Illinois November 17, 2011 - 12:00pm Addthis Washington, DC - The Midwest Geological Sequestration Consortium (MGSC), one of seven regional partnerships created by the U.S. Department of Energy (DOE) to advance carbon storage technologies nationwide, has begun injecting carbon dioxide (CO2) for their large-scale CO2 injection test in Decatur, Illinois. The test is part of the development phase of the Regional Carbon Sequestration Partnerships program, an Office of Fossil Energy initiative launched in 2003 to determine the best approaches for capturing and permanently storing gases that can contribute to global climate change. "Establishing long-term, environmentally safe and secure underground CO2 storage is a critical component in achieving successful commercial

88

CO2-Emissionszertifikate - Preismodellierung und Derivatebewertung.  

E-Print Network (OSTI)

??EU-Unternehmen müssen seit 2005 entsprechend ihrem CO2-Ausstoß genügend Emissionszertifikate einreichen. Da die Zertifikate frei handelbar sind, stellt sich ihnen CO2 als ein zusätzlicher Produktionsfaktor mit… (more)

Wagner, Michael W.

2007-01-01T23:59:59.000Z

89

Engineered yeast for enhanced CO2 mineralization  

E-Print Network (OSTI)

In this work, a biologically catalysed CO2 mineralization process for the capture of CO2 from point sources was designed, constructed at a laboratory scale, and, using standard chemical process scale-up protocols, was ...

Barbero, Roberto Juan

2013-01-01T23:59:59.000Z

90

QGESS: CO2 Impurity Design Parameters  

NLE Websites -- All DOE Office Websites (Extended Search)

10. Shah, Minish. Capturing CO2 from Oxy-Fuel Combustion Flue Gas. Cottbus, Germany : Praxair Inc., 2005. 11. Spitznogle, Gary O. CO2 Impurity Specification at AEP Mountaineer....

91

Legal Implications of CO2 Ocean Storage  

E-Print Network (OSTI)

, ocean currents may prevent stagnation or accumulatioLegal Implications of CO2 Ocean Storage Jason Heinrich Working Paper Laboratory for Energy #12;Introduction Ocean sequestration of CO2, a potentially significant technique to be used

92

CO2 please | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

CO2 please CO2 please ORNL researchers look to carbon dioxide as a more environmentally friendly refrigerant gas In an indoor research area, Brian Fricke preps display cases for...

93

CO2 laser frequency multiplication  

SciTech Connect

The duration of the mode-locked CO(2) laser pulses was measured to be 0.9 + or - nsec by the technique of (second harmonic) autocorrelation. Knowing the pulse duration, the spot size, and the harmonic conversion efficiency, a detailed fit of experiment to theory gave an estimate of the nonlinear coefficient of AgGaSe(2). d36 = 31 + or - V(1), in agreement with the most accurate literature values. A number of experiments were made with longer pulse trains in which the highest harmonic energy conversion reached 78%. The damage threshold was measured and it turned out to be related much more strongly to fluence than intensity. The shorter pulse trains had peak intensities of close to 300 MW 1/cm squared whereas the longer trains (3 usec) had intensities up to 40 MW 1/cm squared.

Not Available

1992-03-01T23:59:59.000Z

94

MAC-Kaust Project P1 CO2 Sequestration Modeling of CO2 sequestration including parameter  

E-Print Network (OSTI)

MAC-Kaust Project P1 ­ CO2 Sequestration Modeling of CO2 sequestration including parameter identification and numerical simulation M. Brokate, O. A. PykhteevHysteresis aspects of CO2 sequestration modeling K-H. Hoffmann, N. D. Botkin Objectives and methods of CO2 sequestration There is a popular belief

Turova, Varvara

95

Production of large resonant plasma volumes in microwave electron cyclotron resonance ion sources  

DOE Patents (OSTI)

Microwave injection methods are disclosed for enhancing the performance of existing electron cyclotron resonance (ECR) ion sources. The methods are based on the use of high-power diverse frequency microwaves, including variable-frequency, multiple-discrete-frequency, and broadband microwaves. The methods effect large resonant ``volume`` ECR regions in the ion sources. The creation of these large ECR plasma volumes permits coupling of more microwave power into the plasma, resulting in the heating of a much larger electron population to higher energies, the effect of which is to produce higher charge state distributions and much higher intensities within a particular charge state than possible in present ECR ion sources. 5 figs.

Alton, G.D.

1998-11-24T23:59:59.000Z

96

Opportunities for Using Anthropogenic CO2 for Enhanced Oil Recovery and CO2 Storage  

Science Journals Connector (OSTI)

Colorado and Wyoming ... At the end of a CO2 flood, essentially all of the CO2 that is originally purchased is stored in the reservoir when the operator closes the field at pressure. ... Under special conditions, such as gravity-stable CO2 flooding, the CO2-EOR process can store considerably more CO2 than the carbon content of the oil (Figure 7). ...

Michael L. Godec; Vello A. Kuuskraa; Phil Dipietro

2013-02-07T23:59:59.000Z

97

A Novel CO2 Separation System  

NLE Websites -- All DOE Office Websites (Extended Search)

Novel CO Novel CO 2 Separation System Robert J. Copeland (copeland@tda.com 303-940-2323) Gokhan Alptekin (galtpekin@tda.com 303 940-2349) Mike Cesario (czar@tda.com 303-940-2336) Yevgenia Gershanovich (ygershan@tda.com 303-940-2346) TDA Research, Inc. 12345 West 52 nd Avenue Wheat Ridge, Colorado 80033-1917 Project Summary NEED Concern over global climate change has led to a need to reduce CO 2 emissions from power plants. Unfortunately, current CO 2 capture processes reduce the efficiency with which fuel can be converted to electricity by 9-37%, and CO 2 capture costs can exceed $70 per tonne 1 of CO 2 (Herzog, Drake, and Adams 1997). OBJECTIVE To generate electricity with little reduction in conversion efficiency while emitting little or no CO 2 to the atmosphere, TDA Research, Inc. (TDA) is developing a Novel CO

98

CO2 Sequestration in Basalt Formations  

NLE Websites -- All DOE Office Websites (Extended Search)

CO CO 2 SequeStratiOn in BaSalt FOrmatiOnS Background There is growing concern that buildup of greenhouse gases, especially carbon dioxide (CO 2 ), in the atmosphere is contributing to global climate change. One option for mitigating this effect is to sequester CO 2 in geologic formations. Numerous site assessments for geologic sequestration of CO 2 have been conducted in virtually every region of the United States. For the most part, these studies have involved storing CO 2 in saline formation, deep coal seams, and depleted oil and gas reservoirs. Another option, however, is basalt formations. Basalt is a dark-colored, silica-rich, volcanic rock that contains cations-such as calcium, magnesium, and iron-that can combine with CO 2 to form carbonate minerals. Basalt formations have not received much

99

Alabama Project Testing Potential for Combining CO2 Storage with Enhanced  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alabama Project Testing Potential for Combining CO2 Storage with Alabama Project Testing Potential for Combining CO2 Storage with Enhanced Methane Recovery Alabama Project Testing Potential for Combining CO2 Storage with Enhanced Methane Recovery June 16, 2010 - 1:00pm Addthis Washington, DC -- Field testing the potential for combining geologic carbon dioxide (CO2) storage with enhanced methane recovery is underway at a site in Alabama by a U.S. Department of Energy (DOE) team of regional partners. Members of the Southeast Regional Carbon Sequestration Partnership (SECARB) are injecting CO2 into a coalbed methane well in Tuscaloosa County to assess the capability of mature coalbed methane reservoirs to receive and adsorb significant volumes of carbon dioxide (CO2). Southern Company, El Paso Exploration & Production, the Geological Survey of Alabama, and the

100

Surface Condensation of CO2 onto Kaolinite. | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

Condensation of CO2 onto Kaolinite. Surface Condensation of CO2 onto Kaolinite. Abstract: The fundamental adsorption behavior of gaseous and supercritical carbon dioxide (CO2) onto...

Note: This page contains sample records for the topic "large volume co2" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Improving Access to Large Volumes of Online Data Egemen Tanin Hanan Samet  

E-Print Network (OSTI)

selection conditions from a variety of menus and dialog boxes. The SAND Internet Browser forms a good at College Park {egemen, hjs}@cs.umd.edu Abstract The Internet has recently become the medium of interaction the Internet. Working with such large volumes of online data is a challenging task. For efficient access

Samet, Hanan

102

Probing the Earth's interior with a large-volume liquid scintillator detector  

E-Print Network (OSTI)

A future large-volume liquid scintillator detector would provide a high-statistics measurement of terrestrial antineutrinos originating from $\\beta$-decays of the uranium and thorium chains. In addition, the forward displacement of the neutron in the detection reaction $\\bar\

Kathrin A. Hochmuth; Franz v. Feilitzsch; Brian D. Fields; Teresa Marrodan Undagoitia; Lothar Oberauer; Walter Potzel; Georg G. Raffelt; Michael Wurm

2005-09-13T23:59:59.000Z

103

Role mining algorithm evaluation and improvement in large volume android applications  

Science Journals Connector (OSTI)

Role mining is a very useful engineering method to help administrators set up the mechanism of role based access control for information systems, but not applied in the Android security framework so far. This paper uses large volume Android applications ... Keywords: android, permission-based access control, rolemining, tag-based description

Xinyi Zhang; Weili Han; Zheran Fang; Yuliang Yin; Hossen Mustafa

2013-05-01T23:59:59.000Z

104

Upper bound of polymeric membranes for mixed-gas CO2/CH4 separations  

Science Journals Connector (OSTI)

Abstract Membrane polymers with high permeability and high selectivity are preferred for gas separations. However, there exists a trade-off or upper bound, i.e., polymers with higher permeability often exhibit lower selectivity, and vice versa. The upper bound for separation of various gas pairs has been empirically drawn and theoretically rationalized using pure-gas data. However, for CO2/CH4 separation, the high pressure CO2 and non-methane hydrocarbons can plasticize polymers, increasing mixed-gas CO2 permeability and decreasing mixed-gas CO2/CH4 selectivity. This study aims to apply a modified free volume theory to interpret CO2/CH4 separation performance in polymeric membranes. The model satisfactorily describes the pure-gas upper bounds for various gas pairs including CO2/CH4, the effect of high pressure CO2 on mixed-gas CO2/CH4 separation properties, and the practical mixed-gas upper bound for CO2/CH4 separations. The CO2 is found to have an estimated glass transition temperature of 108 K. The assumptions of this model are discussed, and future work to improve this model is proposed.

Haiqing Lin; Milad Yavari

2015-01-01T23:59:59.000Z

105

CO2 Heat Pump Water Heater  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

CO 2 Heat Pump Water Heater 2014 Building Technologies Office Peer Review Evaporator Kyle Gluesenkamp, gluesenkampk@ornl.gov Oak Ridge National Laboratory Project Summary Timeline:...

106

Modeling of CO2 storage in aquifers  

E-Print Network (OSTI)

Feb 6, 2011 ... atmosphere, increasing its temperature (greenhouse effect). To minimize climate change impacts, geological sequestration of CO2 is an ...

santos,,,

107

PRODUCTION OF LARGE VOLUME CYLINDRICAL RF PLASMA USING CIRCULAR MAGNETIC LINE CUSP FIELD  

Science Journals Connector (OSTI)

A large volume cylindrical rf (radio frequency) plasma source using a circular magnetic line cusp field has been developed for various large scale plasma processings. In this type of plasma source, a capacitively coupled 13.56 \\{MHz\\} rf plasma is produced in a circular magnetic line cusp field. Two versions of the plasma source have been constructed and tasted. The first version has a pair of peripheral rf electrodes placed outside the ionization chamber and is suitable for preparing a large volume uniform plasma. This plasma source can attain uniformity within 107 cm?3 over a 30 cm diameter region. The other which is provided with parallel doughnut plate electrodes forming part of the chamber wall serves as a high current plasma source, where the electron density is proportional to the rf power and equal to 7 × 109 cm?3 for 500 W.

K. YAMAUCHI; M. SHIBAGAKI; A. KONO; K. TAKAHASHI; T. SHEBUYA; E. YABE; K. TAKAYAMA

1993-01-01T23:59:59.000Z

108

Development of Novel Carbon Sorbents for CO2 Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Sorbents Carbon Sorbents for CO 2 Capture Background The mission of the U.S. Department of Energy's (DOE) Existing Plants, Emissions & Capture (EPEC) Research and Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal re- serves, while at the same time allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. The EPEC R&D Program portfolio of post- and oxy-combustion carbon dioxide (CO 2 ) emissions control technologies and CO 2 compression is focused on advancing technological options for the existing fleet of coal-fired power plants in the event of carbon constraints. Pulverized coal (PC)-fired power plants are large, stationary sources of CO

109

Modeling the Sequestration of CO2 in Deep Geological Formations  

NLE Websites -- All DOE Office Websites (Extended Search)

the Sequestration of CO the Sequestration of CO 2 in Deep Geological Formations K. Prasad Saripalli, B. Peter McGrail, and Mark D. White Pacific Northwest National Laboratory, Richland, Washington 99352 corresponding author Prasad Saripalli Senior Research Scientist Pacific Northwest National Laboratory 1313 Sigma V Complex (K6-81) Richland, WA 99352 ph: (509) 376-1667 fax: (509) 376-5368 prasad.saripalli@pnl.gov 2 Modeling the Sequestration of CO 2 in Deep Geological Formations K. Prasad Saripalli, B. Peter McGrail, and Mark D. White Pacific Northwest National Laboratory, Richland, Washington 99352 Modeling the injection of CO 2 and its sequestration will require simulations of a multi- well injection system in a large reservoir field. However, modeling at the injection well

110

Advanced Research Power Program--CO2 Mineral Sequestration  

NLE Websites -- All DOE Office Websites (Extended Search)

Sequestration Sequestration Robert Romanosky National Energy Technology Laboratory Mineral Carbonation Workshop August 8, 2001 Advanced Research Power Program Descriptor - include initials, /org#/date Mineral Sequestration Research Research effort seeks to refine and validate a promising CO 2 sequestration technology option, mineral sequestration also known as mineral carbonation Descriptor - include initials, /org#/date What is Mineral Carbonation * Reaction of CO 2 with Mg or Ca containing minerals to form carbonates * Lowest energy state of carbon is a carbonate and not CO 2 * Occurs naturally in nature as weathering of rock * Already proven on large scale - Carbonate formation linked to formation of the early atmosphere Descriptor - include initials, /org#/date Advantages of Mineral Carbonation

111

Cost Comparison Among Concepts of Injection for CO2 Offshore Underground Sequestration Envisaged in Japan  

Science Journals Connector (OSTI)

Publisher Summary Japan is in the process of 5-year R&D program of underground storage of CO2, and this study was carried out as part of this program. Offshore saline aquifers are the target geological formation in this program because (1) most of large-scale emission sources of CO2 are located near the coast in Japan, (2) aquifers of large volume are expected to be found more in offshore than on land, and (3) site acquisition is much more costly on land. At present, the total time scheme of the sequestration process is assumed, which is based on practical results from similar processes such as large-scale underground storage of natural gas in aquifers. The total system of underground sequestration can be roughly divided into three processes: recovery, transportation, and injection. Although the methods of recovery and transportation have been well studied, the injection process has not been established as it is significantly affected by geographic, geological, and topographic features of the site. The cost of injection into an offshore aquifer varies with the method applied. One reason is that there are a variety of applicable designs and construction methods of wells and surface facilities (especially offshore) that depend on the conditions of injection site. The other reason is that there are many uncertainties in exploration and operation, as is the case with petroleum development. This chapter presents the results of the preliminary analysis on the costs of injection facilities.

Hironori Kotsubo; Takashi Ohsumi; Hitoshi Koide; Motoo Uno; Takeshi Ito; Toshio Kobayashi; Kozo Ishida

2003-01-01T23:59:59.000Z

112

The supply chain of CO2 emissions  

Science Journals Connector (OSTI)

...secondary fuels (e.g., diesel, gasoline, electricity, etc.), which...Warming and Energy Policy , Free-market approaches to controlling...ofnatural gas (MtCO2) GDP[B$, Market Exchange Rate(MER...ofnatural gas (MtCO2) GDP[B$, Market Exchange Rate(MER...

Steven J. Davis; Glen P. Peters; Ken Caldeira

2011-01-01T23:59:59.000Z

113

Interactions of Supercritical CO2 with Coal  

Science Journals Connector (OSTI)

Carbon dioxide (CO2) mainly emitted from fossil fuel combustion causes global warming. ... (23) CO2 and methane might penetrate the coal matrix and cause coals to expand to some extent. ... Four coals ranging in carbon content from 77 to 84% C were warmed in the weak swelling solvent chlorobenzene at 132°C for 2 wk, and samples were withdrawn at intervals. ...

Dengfeng Zhang; Lili Gu; Songgeng Li; Peichao Lian; Jun Tao

2012-12-15T23:59:59.000Z

114

Sequestration of CO2 by Concrete Carbonation  

Science Journals Connector (OSTI)

Sequestration of CO2 by Concrete Carbonation ... Carbonation of reinforced concrete is one of the causes of corrosion, but it is also a way to sequester CO2. ... This work attempts to advance the knowledge of the carbon footprint of cement. ...

Isabel Galan; Carmen Andrade; Pedro Mora; Miguel A. Sanjuan

2010-03-12T23:59:59.000Z

115

Absorption of 9.6-?m CO2 laser radiation by CO2 at elevated temperatures  

Science Journals Connector (OSTI)

Absorption of 9.6-?m CO2 laser radiation by CO2 at temperatures between 296 and 625 K has been measured at a pressure of 200 Torr. Experimental results for the...

Robinson, A M

1983-01-01T23:59:59.000Z

116

Study of CO 2 Mobility Control in Heterogeneous Media Using CO 2 Thickening Agents  

E-Print Network (OSTI)

CO 2 injection is an effective method for performing enhanced oil recovery (EOR). There are several factors that make CO 2 useful for EOR, including promoting swelling, reducing oil viscosity, decreasing oil density, and vaporizing and extracting...

Al Yousef, Zuhair

2012-10-19T23:59:59.000Z

117

Interactions between reducing CO2 emissions, CO2 removal and solar radiation management  

Science Journals Connector (OSTI)

...World Energy Council. 41 World Energy Council.2009 Survey of energy resources interim update 2009. London, UK: World Energy Council. 42 Haszeldine, R. S...CO2 emissions, CO2 removal and solar radiation management. | We use...

2012-01-01T23:59:59.000Z

118

If Anthropogenic CO2 Emissions Cease, Will Atmospheric CO2 Concentration Continue to Increase?  

Science Journals Connector (OSTI)

If anthropogenic CO2 emissions were to suddenly cease, the evolution of the atmospheric CO2 concentration would depend on the magnitude and sign of natural carbon sources and sinks. Experiments using Earth system models indicate that the overall ...

Andrew H. MacDougall; Michael Eby; Andrew J. Weaver

2013-12-01T23:59:59.000Z

119

NETL: IEP – Oxy-Combustion CO2 Emissions Control - CANMET CO2  

NLE Websites -- All DOE Office Websites (Extended Search)

– Oxy-Combustion CO2 Emissions Control – Oxy-Combustion CO2 Emissions Control CANMET CO2 Consortium-O2/CO2 Recycle Combustion Project No.: IEA-CANMET-CO2 (International Agreement) Photograph of CANMET's Vertical Combustor Research Facility. Photograph of CANMET’s Vertical Combustor Research Facility. The CANMET carbon dioxide (CO2) consortium will conduct research to further the development of oxy-combustion for retrofit to coal-fired power plants. Research activities include: (1) modeling of an advanced, supercritical pressure oxy-coal plant, including an analysis of the impact of oxygen (O2) purity and O2 partial enrichment, overall process performance, and cost; (2) testing of pilot-scale CO2 capture and compression; (3) investigating CO2 phase change at liquid and supercritical states in gas mixtures

120

NETL: NATCARB - CO2 Storage Formations  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Formations Storage Formations NATCARB CO2 Storage Formations CO2 Storage Resource Methodology NATCARB Viewer The NATCARB Viewer is available at: http://www.natcarbviewer.com. 2012 Atlas IV DOE's Regional Carbon Sequestration Partnerships (RCSPs) were charged with providing a high-level, quantitative estimate of carbon dioxide (CO2) storage resource available in subsurface environments of their regions. Environments considered for CO2 storage were categorized into five major geologic systems: oil and gas reservoirs, unmineable coal areas, saline formations, shale, and basalt formations. Where possible, CO2 storage resource estimates have been quantified for oil and gas reservoirs, saline formations, and unmineable coal in the fourth edition of the United States Carbon Utilization and Storage Atlas (Atlas IV). Shale and basalt

Note: This page contains sample records for the topic "large volume co2" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Vegetation Response to CO2 and Climate  

NLE Websites -- All DOE Office Websites (Extended Search)

Vegetation Response to CO2 and Climate Vegetation Response to CO2 and Climate Area and Carbon Content of Sphagnum Since Last Glacial Maximum (2002) TDE Model Intercomparison Project Data Archive Presentations and abstracts from the recent DOE Terrestrial Science Team Meeting (Argonne National Laboratory, October 29-31, 2001) FACE (Free-Air CO2 Enrichment) Walker Branch Throughfall Displacement Experiment Data Report: Site Characterization, System Performance, Weather, Species Composition, and Growth (2001), NDP-078A | PDF Bibliography on CO2 Effects on Vegetation and Ecosystems: 1990-1999 Literature (2000), CDIAC-129 Direct effects of atmospheric CO2 enrichment on plants and ecosystems: An updated bibliographic data base (1994), CDIAC-70 A Database of Herbaceous Vegetation Responses to Elevated

122

Sustainable Carbon Sequestration: Increasing CO2-Storage Efficiency through a CO2-Brine Displacement Approach  

E-Print Network (OSTI)

CO2 sequestration is one of the proposed methods for reducing anthropogenic CO2 emissions to the atmosphere and therefore mitigating global climate change. Few studies on storing CO2 in an aquifer have been conducted on a regional scale. This study...

Akinnikawe, Oyewande

2012-10-19T23:59:59.000Z

123

meters in CO2 euthanasia chambers. All CO2 euthanasia chambers in both  

E-Print Network (OSTI)

meters in CO2 euthanasia chambers. All CO2 euthanasia chambers in both the facilities and laboratories will need flow meters. ULAR is currently in the process of identifying a cost-effective, accurate, and durable flow meter to install in all of the CO2 chambers in all of the vivaria. When a specific model

Bushman, Frederic

124

Assembly, operation and disassembly manual for the Battelle Large Volume Water Sampler (BLVWS)  

SciTech Connect

Assembly, operation and disassembly of the Battelle Large Volume Water Sampler (BLVWS) are described in detail. Step by step instructions of assembly, general operation and disassembly are provided to allow an operator completely unfamiliar with the sampler to successfully apply the BLVWS to his research sampling needs. The sampler permits concentration of both particulate and dissolved radionuclides from large volumes of ocean and fresh water. The water sample passes through a filtration section for particle removal then through sorption or ion exchange beds where species of interest are removed. The sampler components which contact the water being sampled are constructed of polyvinylchloride (PVC). The sampler has been successfully applied to many sampling needs over the past fifteen years. 9 references, 8 figures.

Thomas, V.W.; Campbell, R.M.

1984-12-01T23:59:59.000Z

125

High Temperature, Large Sample Volume, Constant Flow Magic Angle Spinning NMR Probe for a 11  

NLE Websites -- All DOE Office Websites (Extended Search)

High Temperature, Large Sample Volume, Constant Flow Magic Angle Spinning NMR Probe for a High Temperature, Large Sample Volume, Constant Flow Magic Angle Spinning NMR Probe for a 11.7 T Magnetic Field for In Situ Catalytic Reaction Characterization Project start date: April 1, 2007 EMSL Lead Investigator: Joseph Ford, EMSL High Field Magnetic Resonance Facility Co-investigators: Jian Zhi Hu, Macromolecular Structure and Dynamics, Biological Science Division, FCSD Jesse Sears and David W. Hoyt, EMSL High Field Magnetic Resonance Facility Detailed understanding of the mechanisms involved in a catalytic reaction requires identification of the nature of the active sites and the temporal evolution of reaction intermediates. Although optical methods such as UV-visible and infrared (IR) spectroscopies can be used for some types of reactions, these do not

126

CO2 Emissions from Fuel Combustion | Open Energy Information  

Open Energy Info (EERE)

CO2 Emissions from Fuel Combustion CO2 Emissions from Fuel Combustion Jump to: navigation, search Tool Summary Name: CO2 Emissions from Fuel Combustion Agency/Company /Organization: International Energy Agency Sector: Energy Topics: Baseline projection, GHG inventory Resource Type: Dataset, Publications Website: www.iea.org/co2highlights/co2highlights.pdf CO2 Emissions from Fuel Combustion Screenshot References: CO2 Emissions from Fuel Combustion[1] Overview "This annual publication contains: estimates of CO2 emissions by country from 1971 to 2008 selected indicators such as CO2/GDP, CO2/capita, CO2/TPES and CO2/kWh CO2 emissions from international marine and aviation bunkers, and other relevant information" Excel Spreadsheet References ↑ "CO2 Emissions from Fuel Combustion"

127

Carbon Storage Partner Completes First Year of CO2 Injection Operations in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Partner Completes First Year of CO2 Injection Storage Partner Completes First Year of CO2 Injection Operations in Illinois Carbon Storage Partner Completes First Year of CO2 Injection Operations in Illinois November 19, 2012 - 12:00pm Addthis Washington, DC - A project important to demonstrating the commercial viability of carbon capture, utilization and storage (CCUS) technology has completed the first year of injecting carbon dioxide (CO2) from an industrial plant at a large-scale test site in Illinois. Led by the Illinois State Geological Survey, the Illinois Basin-Decatur Project is the first demonstration-scale project in the United States to use CO2 from an industrial source and inject it into a saline reservoir. The CO2 is being captured from an ethanol production facility operated by the Archer Daniels Midland Company in Decatur, Ill., and is being injected

128

Midwest Has Potential to Store Hundreds of Years of CO2 Emissions |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Midwest Has Potential to Store Hundreds of Years of CO2 Emissions Midwest Has Potential to Store Hundreds of Years of CO2 Emissions Midwest Has Potential to Store Hundreds of Years of CO2 Emissions November 16, 2011 - 12:00pm Addthis Washington, DC - Geologic capacity exists to permanently store hundreds of years of regional carbon dioxide (CO2) emissions in nine states stretching from Indiana to New Jersey, according to injection field tests conducted by the Midwest Regional Carbon Sequestration Partnership (MRCSP). MRCSP's just-released Phase II final report indicates the region has likely total storage of 245.5 billion metric tons of CO2, mostly in deep saline rock formations, a large capacity compared to present day emissions. While distributed sources such as agriculture, transportation, and home heating account for a significant amount of CO2 emissions in the MRCSP

129

CO2/EOR and Geological Carbon Storage Resource Potential in the Niagaran Pinnacle Reef Trend, Lower Michigan, USA  

Science Journals Connector (OSTI)

Abstract Early Silurian age, Niagaran pinnacle reef trend (NPRT) oil fields in the Guelph Formation in Northern Lower Michigan (NNPRT) comprise a giant oil province with nearly 63.6 million cubic meters (Mm3) of cumulative petroleum and 680 billion cubic meters (Bm3) of natural gas production (through 2010) from over 700 discrete reservoirs at depths of 800-2100 m. Several NNPRT fields are the main target of a proposed, DOE-NETL funded, large scale carbon dioxide (CO2) utilization and sequestration project. The NNPRT comprises closely-spaced, but highly geologically compartmentalized and laterally discontinuous oil and gas fields many of which have either reached or are nearing their economic limit in primary production mode. Total oil production from the largest 207 oil fields in the NNPRT, each with more than 80,000 m3 of cumulative oil production per field, constitutes 86% or 54.6 Mm3 of trend oil production totals and are considered most likely targets for CO2/EOR activities in the future. We have evaluated regional CO2/Enhanced Oil Recovery (EOR) potential in these NNPRT fields from historic production data in addition to recovery efficiencies observed in seven, on-going, commercial CO2/EOR projects and determined that incremental CO2/EOR potential in these fields ranges from 22-33 Mm3. We have also evaluated trend-wide Geological Storage Resource (GSR) potential using 2 different approaches: 1) a produced fluid volumes approach, and 2) a gross storage capacity approach using petrophysical well log estimates of net, effective porosity in NNPRT field wells and estimates of reservoir acreage from GIS data. These approaches provide robust low and high estimates of more than 200 Mmt but less than 500 Mmt (respectively) for Geological Storage Resource (GSR) potential in the NNPRT.

David Barnes; Bill Harrison; G. Michael Grammer; Jason Asmus

2013-01-01T23:59:59.000Z

130

Microsoft Word - CO2 Supplement.doc  

Gasoline and Diesel Fuel Update (EIA)

Understanding the Decline in Carbon Dioxide Understanding the Decline in Carbon Dioxide Emissions in 2009 1 EIA projects carbon dioxide (CO2) emissions from fossil fuels in 2009 to be 5.9 percent below the 2008 level in the Short-Term Energy Outlook, October 2009 (STEO) (Table 1). Projected coal CO2 emissions fall by 10.1 percent in 2009, primarily because of lower consumption for electricity generation. Coal accounts for 63 percent of the total decline in CO2 emissions from fossil fuels this year. Forecast lower natural gas and petroleum emissions this year make up 7 percent and 30 percent of the projected total decline in CO2 emissions from fossil fuels, respectively. Table 1. Short-Term Energy Outlook CO

131

Increasing CO2 Storage in Oil Recovery  

NLE Websites -- All DOE Office Websites (Extended Search)

Increasing CO Increasing CO 2 Storage in Oil Recovery Kristian Jessen (krisj@pangea.stanford.edu, 650-723-6348) Linda C. Sam-Olibale (chizoba@pangea.stanford.edu, 650-725-0831) Anthony R. Kovscek (kovscek@pangea.stanford.edu, 650-723-1218) Franklin M. Orr, Jr. (fmorr@pangea.stanford.edu, 650-723-2750) Department of Petroleum Engineering, Stanford University 65 Green Earth Sciences Building 367 Panama Street Stanford, CA 94305-2220 Introduction Carbon dioxide (CO 2 ) injection has been used as a commercial process for enhanced oil recovery (EOR) since the 1970's. Because the cost of oil recovered is closely linked to the purchase cost of the CO 2 injected, considerable reservoir engineering design effort has gone into reducing the total amount of CO 2 required to recover each barrel of oil. If,

132

Microsoft Word - TURBO EXPO CO2 draft  

NLE Websites -- All DOE Office Websites (Extended Search)

MAN TURBO MAN TURBO CO2 Compression Challenges presented on May 15, 2007 at the ASME Turbo Expo, Montreal, CO2 Compression Panel By Pierre L. Bovon, MAN TURBO Calgary (pierre.bovon@ca.manturbo.com, tel. +403 233 7151) And Dr. Rolf Habel, MAN TURBO Berlin (rolf.habel@de.manturbo.com, tel. +49 304 301 2224) CO2 has been used for a very long time, for instance in the food industry, and most applications have required it to be compressed. For Sequestration or Enhanced Oil Recovery, the traditional approach to CO2 compression has been to use high-speed reciprocating compressors. The main reasons are: - Flexibility with regards to pressure ratio, and capacity (if equipped with variable speed drive or valve unloaders). - Short delivery times, since many recip. packagers dispose of a selection of frames

133

081001 CA CO2 Storage Pilot  

NLE Websites -- All DOE Office Websites (Extended Search)

California California CO2 Storage Pilot Regional Carbon Sequestration Partnerships Initiative Review Meeting Pittsburgh, Pennsylvania October 7, 2008 John Henry Beyer, Ph.D. WESTCARB Program Manager, Geophysicist 510-486-7954, jhbeyer@lbl.gov Lawrence Berkeley National Laboratory Earth Sciences Division, MS 90-1116 Berkeley, CA 94720 2 Industry Partner: Shell Oil Company Committed to reducing global CO2 emissions Extensive technical expertise in: - Geologic evaluation - Well log analysis - Porosity and permeability evaluation - Geophysics - Deep well drilling - CO2 injection A welcome industry partner 3 - Bevilacqua-Knight, Inc. (DOE/PIER) - Lawrence Berkeley National Lab (PIER) - Sandia Technologies, LLC (DOE/PIER) - Terralog (DOE) Northern California CO2 Storage Pilot Contracting and Funding Flow

134

CO2 Europipe | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » CO2 Europipe Jump to: navigation, search Tool Summary LAUNCH TOOL Name: CO2 Europipe Focus Area: Clean Fossil Energy Topics: Potentials & Scenarios Website: www.co2europipe.eu/ Equivalent URI: cleanenergysolutions.org/content/co2-europipe Language: English Policies: "Deployment Programs,Regulations,Financial Incentives" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Project Development Regulations: "Emissions Mitigation Scheme,Emissions Standards,Enabling Legislation" is not in the list of possible values (Agriculture Efficiency Requirements, Appliance & Equipment Standards and Required Labeling, Audit Requirements, Building Certification, Building Codes, Cost Recovery/Allocation, Emissions Mitigation Scheme, Emissions Standards, Enabling Legislation, Energy Standards, Feebates, Feed-in Tariffs, Fuel Efficiency Standards, Incandescent Phase-Out, Mandates/Targets, Net Metering & Interconnection, Resource Integration Planning, Safety Standards, Upgrade Requirements, Utility/Electricity Service Costs) for this property.

135

NETL: NATCARB - CO2 Stationary Sources  

NLE Websites -- All DOE Office Websites (Extended Search)

Stationary Sources Stationary Sources NATCARB CO2 Stationary Sources CO2 Stationary Source Emission Estimation Methodology NATCARB Viewer The NATCARB Viewer is available at: http://www.natcarbviewer.com. 2012 Atlas IV DOE's Regional Carbon Sequestration Partnerships (RCSPs) employed carbon dioxide (CO2) emissions estimate methodologies that are based on the most readily available representative data for that particular industry type within the respective partnership area. Carbon dioxide emissions data provided by databases (for example, eGRID, IEA GHG, or NATCARB) were the first choice for all of the RCSPs, both for identifying major CO2 stationary sources and for providing reliable emission estimations. Databases are considered to contain reliable and accurate data obtained

136

co2-transport | netl.doe.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Tools and Data Baseline Studies Quality Guidelines (QGESS) About Energy Analysis FENETL CO2 Transport Cost Model About the model: This model was developed to estimate the cost of...

137

Research on CO2 Emission Control  

NLE Websites -- All DOE Office Websites (Extended Search)

of Clean Energy Utilization of Clean Energy Utilization Zhejing University 29 th May, 2008 Status of CCS in China 2 nd U.S.-China Symposium on CO 2 Emission Control Science & Technology, Hangzhou China 28 th -30 th , May, 2008 Prof. Zhongyang Luo Global CO 2 Emissions Country CO 2 Emissions (Million Tons Carbon) 1990 1997 2001 2010 USA 1345 1480 1559 1800 China 620 822 832 1109 Former USSR 1034 646 654 825 Japan 274 297 316 334 World 5836 6175 6522 8512 Source: Energy Information Administration/International Energy Outlook 2001 Global CO 2 Emissions from Fossil Fuel Use in 2006 11.72 3,330 EU-15 5.75 1,620 Russia 4.3 1,210 Japan 20.17 5,680 China 20.42 5,750 USA 100 28,160 Total Percentage (%) CO 2 Emissions (1 million metric tons CO 2 ) Country BP Statistical Review of World Energy, June 2007 (http://www.bp.com/sectiongenericarticle.do?categoryId=6914&contentI

138

Risk Assessment and Monitoring of Stored CO2 in Organic Rocks Under Non-Equilibrium Conditions  

SciTech Connect

The USA is embarking upon tackling the serious environmental challenges posed to the world by greenhouse gases, especially carbon dioxide (CO2). The dimension of the problem is daunting. In fact, according to the Energy Information Agency, nearly 6 billion metric tons of CO2 were produced in the USA in 2007 with coal-burning power plants contributing about 2 billion metric tons. To mitigate the concerns associated with CO2 emission, geological sequestration holds promise. Among the potential geological storage sites, unmineable coal seams and shale formations in particular show promise because of the probability of methane recovery while sequestering the CO2. However. the success of large-scale sequestration of CO2 in coal and shale would hinge on a thorough understanding of CO2's interactions with host reservoirs. An important parameter for successful storage of CO2 reservoirs would be whether the pressurized CO2 would remain invariant in coal and shale formations under reasonable internal and/or external perturbations. Recent research has brought to the fore the potential of induced seismicity, which may result in caprock compromise. Therefore, to evaluate the potential risks involved in sequestering CO2 in Illinois bituminous coal seams and shale, we studied: (i) the mechanical behavior of Murphysboro (Illinois) and Houchin Creek (Illinois) coals, (ii) thermodynamic behavior of Illinois bituminous coal at - 100oC ? T ? 300oC, (iii) how high pressure CO2 (up to 20.7 MPa) modifies the viscosity of the host, (iv) the rate of emission of CO2 from Illinois bituminous coal and shale cores if the cores, which were pressurized with high pressure (? 20.7 MPa) CO2, were exposed to an atmospheric pressure, simulating the development of leakage pathways, (v) whether there are any fractions of CO2 stored in these hosts which are resistance to emission by simply exposing the cores to atmospheric pressure, and (vi) how compressive shockwaves applied to the coal and shale cores, which were pressurized with high pressure CO2, determine the fate of sequestered CO2 in these cores. Our results suggested that Illinois bituminous coal in its unperturbed state, i.e., when not pressurized with CO2, showed large variations in the mechanical properties. Modulus varied from 0.7 GPa to 3.4 GPa even though samples were extracted from a single large chunk of coal. We did not observe any glass transition for Illinois bituminous coal at - 100oC ? T ? 300oC, however, when the coal was pressurized with CO2 at ambient ? P ? 20.7 MPa, the viscosity of the coal decreased and inversely scaled with the CO2 pressure. The decrease in viscosity as a function of pressure could pose CO2 injection problems for coal as lower viscosity would allow the solid coal to flow to plug the fractures, fissures, and cleats. Our experiments also showed a very small fraction of CO2 was absorbed in coal; and when CO2 pressurized coals were exposed to atmospheric conditions, the loss of CO2 from coals was massive. Half of the sequestered gas from the coal cores was lost in less than 20 minutes. Our shockwave experiments on Illinois bituminous coal, New Albany shale (Illinois), Devonian shale (Ohio), and Utica shale (Ohio) presented clear evidence that the significant emission of the sequestered CO2 from these formations cannot be discounted during seismic activity, especially if caprock is compromised. It is argued that additional shockwave studies, both compressive and transverse, would be required for successfully mapping the risks associated with sequestering high pressure CO2 in coal and shale formations.

Malhotra, Vivak

2014-06-30T23:59:59.000Z

139

Design trade-off study for a large volume short pulse neutron assembly  

SciTech Connect

There is a continuing need within the radiation effects research community for more intense and larger volume pulsed neutron facilities. To fulfill these requirements a study was performed to examine conceptual designs for a neutron assembly that could produce high-intensity, short pulse neutron environments over a large experimental volume. The desired system characteristics were a cylindrical experimental cavity 60 inches long (152.4 cm) with a 24 inch diameter (60.96 cm), a cavity fluence of {phi}{sub r} = 8{times}10{sup 14} n/cm{sup 2}, and a neutron pulse width of {tau} = 10--20 {mu}s. Attention was focused on booster assemblies which have been studied since the 1950s at Harwell, General Atomic, and at Sandia National Laboratories. Five conceptual designs were developed and evaluated. Only a two-stage coupled core design with a NpO{sub 2} primary core assembly was found to meet the design goals. A program is proposed to refine the design and to construct this nuclear assembly. The proposed three-phase effort represents a conservative approach that will yield large increases in the experiment volume even if the final coupled-core design is not realized.

Griffin, P.J.; Miller, J.D.; Harms, G.A.; Parma, E.J.; Coats, R.L.; Fan, W.C. [Sandia National Labs., Albuquerque, NM (United States); Petraglia, J.P. [Battelle Pantex, Amarillo, TX (United States)

1994-09-01T23:59:59.000Z

140

CO2 adsorption capacity of argonne premium coals  

Science Journals Connector (OSTI)

Adsorption and desorption isotherms of CO2 on dried Argonne Premium coal samples were investigated. A small hysteresis was detected between the adsorption and desorption isotherms. The hysteresis was small or negligible for high rank coals but discernable for low rank coals. The isotherms were found to be rectilinear and to fit the conventional adsorption equations poorly. The rectilinear shape of the adsorption isotherms was related to the solubility of the CO2 in the coal and to coal swelling. Using an adsorption model that accounted for volumetric effects provided good agreement between the surface areas calculated from the high-pressure isotherms and the literature values obtained under traditional low-pressure conditions. Ignoring the volumetric effects resulted in estimated surface areas that were 40% larger for the higher-ranked coals and 60–100% larger for the lower-ranked coals. The heat of adsorption, after correcting for volumetric effects, was fairly constant (26±1 kJ/mol) regardless of rank. The adsorption capacity, average pore size, and volume effect for each of the Argonne coals were also estimated employing the same model. The model equation explicitly accounts for volumetric effects, attributable to the solubility of CO2 in the organic matrix and the coal swelling, and estimates the actual adsorbed amount.

Ekrem Ozdemir; Badie I Morsi; Karl Schroeder

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "large volume co2" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

First-Generation Risk Profiles Help Predict CO2 Storage Site Obstacles |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

First-Generation Risk Profiles Help Predict CO2 Storage Site First-Generation Risk Profiles Help Predict CO2 Storage Site Obstacles First-Generation Risk Profiles Help Predict CO2 Storage Site Obstacles September 18, 2012 - 1:00pm Addthis Washington, DC - In support of large-scale carbon capture, utilization and storage (CCUS) projects, a collaboration of five U.S. Department of Energy (DOE) national laboratories has completed first-generation risk profiles that, for the first time, offer a means to predict the probability of complications that could arise from specific carbon dioxide (CO2) storage sites. With their detailed methodology for quantifying risk potential at underground carbon storage sites, the profiles will help support safe, large-scale CCUS projects, an important option in the effort to reduce human-generated CO2 emissions linked by many experts to global climate

142

Development of Novel CO2 Adsorbents for Capture of CO2 from Flue...  

Office of Scientific and Technical Information (OSTI)

Bloomfield Avenue, University of Hartford, West Hartford, Connecticut 06117-1599 ABSTRACT Carbon Sequestration, the capturing and storing of carbon dioxide (CO 2 ) emissions...

143

Annular-coupled concave–convex stable resonator for large-volume high-quality energy extraction  

Science Journals Connector (OSTI)

A theoretical investigation of a stable concave–convex resonator configuration, which appears suitable for single-mode high-power energy extraction from large volume gain media, is...

Cheng, Zhaogu; Seguin, H J J; Nikumb, S K; Seguin, V A; Reshef, H

1988-01-01T23:59:59.000Z

144

CO2 Heat Pump Water Heater | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heater CO2 Heat Pump Water Heater CO2 Heat Pump Water Heater Prototype
Credit: Oak Ridge National Lab CO2 Heat Pump Water Heater Prototype Credit: Oak Ridge National Lab...

145

Poland Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Europe Europe » Poland Poland Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends Carbon dioxide emissions from Poland's use of fossil-fuels and cement production climbed at a remarkably steady rate of 3.9% per year from 1800 until 1980, when they dropped abruptly (11.7%). Fossil-fuel CO2 emissions crept back up throughout the 1980s peaking in 1987 at 127 million metric tons of carbon. Since the 1987 high, CO2 emissions have plummeted 32% to early 1970s levels while per capita emissions have dropped to late 1960s levels. Poland is the world's ninth largest producer of coal and emissions are predominantly from coal burning: 97% in 1950 and 68% in 2008. The drop following 1980 is apparent in rates of liquid fuel burning but releases from consumption of petroleum products have returned and surpassed 1980s

146

Japan Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Oceania » Japan Oceania » Japan Japan Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends The history of fossil-fuel CO2 emissions from Japan is remarkable for the abrupt change that occurred in 1973. With postwar growth at 9.8% per year from 1950 to 1973, total emissions were virtually constant from 1974-1987. From 1987-96, emissions grew 25.3% reaching 329 million metric tons of carbon. Growth during this period was characterized by a return to mid-1970s consumption levels for liquid petroleum products and increased contributions from coal and natural gas use. Since 1996, Japan's fossil-fuel CO2 emissions have vacilated and now total 329 million metric tons of carbon in 2008. Based on United Nations energy trade data for 2008, Japan is the world's largest importer of coal (184 million metric tons) and

147

10 MW Supercritical CO2 Turbine Test  

SciTech Connect

The Supercritical CO2 Turbine Test project was to demonstrate the inherent efficiencies of a supercritical carbon dioxide (s-CO2) power turbine and associated turbomachinery under conditions and at a scale relevant to commercial concentrating solar power (CSP) projects, thereby accelerating the commercial deployment of this new power generation technology. The project involved eight partnering organizations: NREL, Sandia National Laboratories, Echogen Power Systems, Abengoa Solar, University of Wisconsin at Madison, Electric Power Research Institute, Barber-Nichols, and the CSP Program of the U.S. Department of Energy. The multi-year project planned to design, fabricate, and validate an s-CO2 power turbine of nominally 10 MWe that is capable of operation at up to 700°C and operates in a dry-cooled test loop. The project plan consisted of three phases: (1) system design and modeling, (2) fabrication, and (3) testing. The major accomplishments of Phase 1 included: Design of a multistage, axial-flow, s-CO2 power turbine; Design modifications to an existing turbocompressor to provide s-CO2 flow for the test system; Updated equipment and installation costs for the turbomachinery and associated support infrastructure; Development of simulation tools for the test loop itself and for more efficient cycle designs that are of greater commercial interest; Simulation of s-CO2 power cycle integration into molten-nitrate-salt CSP systems indicating a cost benefit of up to 8% in levelized cost of energy; Identification of recuperator cost as a key economic parameter; Corrosion data for multiple alloys at temperatures up to 650ºC in high-pressure CO2 and recommendations for materials-of-construction; and Revised test plan and preliminary operating conditions based on the ongoing tests of related equipment. Phase 1 established that the cost of the facility needed to test the power turbine at its full power and temperature would exceed the planned funding for Phases 2 and 3. Late in Phase 1 an opportunity arose to collaborate with another turbine-development team to construct a shared s-CO2 test facility. The synergy of the combined effort would result in greater facility capabilities than either separate project could produce and would allow for testing of both turbine designs within the combined budgets of the two projects. The project team requested a no-cost extension to Phase 1 to modify the subsequent work based on this collaborative approach. DOE authorized a brief extension, but ultimately opted not to pursue the collaborative facility and terminated the project.

Turchi, Craig

2014-01-29T23:59:59.000Z

148

Mechanically Cooled Large-Volume Germanium Detector Systems for Nuclear Explosion Monitoring  

SciTech Connect

Compact maintenance free mechanical cooling systems are being developed to operate large volume (~570 cm3, ~3 kg, 140% or larger) germanium detectors for field applications. We are using a new generation of Stirling-cycle mechanical coolers for operating the very largest volume germanium detectors with absolutely no maintenance or liquid nitrogen requirements. The user will be able to leave these systems unplugged on the shelf until needed. The flip of a switch will bring a system to life in ~1 hour for measurements. The maintenance-free operating lifetime of these detector systems will exceed five years. These features are necessary for remote long-duration liquid-nitrogen free deployment of large-volume germanium gamma-ray detector systems for Nuclear Explosion Monitoring (NEM). The Radionuclide Aerosol Sampler/Analyzer (RASA) will greatly benefit from the availability of such detectors by eliminating the need for liquid nitrogen at RASA sites while still allowing the very largest available germanium detectors to be utilized. These mechanically cooled germanium detector systems being developed here will provide the largest, most sensitive detectors possible for use with the RASA. To provide such systems, the appropriate technical fundamentals are being researched. Mechanical cooling of germanium detectors has historically been a difficult endeavor. The success or failure of mechanically cooled germanium detectors stems from three main technical issues: temperature, vacuum, and vibration. These factors affect one another. There is a particularly crucial relationship between vacuum and temperature. These factors will be experimentally studied both separately and together to insure a solid understanding of the physical limitations each factor places on a practical mechanically cooled germanium detector system for field use. Using this knowledge, a series of mechanically cooled germanium detector prototype systems are being designed and fabricated. Our collaborators at Pacific Northwest National Laboratory (PNNL) will evaluate these detector systems on the bench top and eventually in RASA systems to insure reliable and practical operation.

Hull, Ethan L.; Pehl, Richard H.; Lathrop, James R.; Martin, Gregory N.; Mashburn, R. B.; Miley, Harry S.; Aalseth, Craig E.; Hossbach, Todd W.; Bowyer, Ted W.

2006-09-21T23:59:59.000Z

149

Probability distribution of wave run up and dynamic response on a large volume semi-submersible  

Science Journals Connector (OSTI)

Abstract The wave run up under semi-submersible platform deck and the dynamic response are important design factors, and determine the expected minimum air gap in extreme design conditions. For a semi-submersible, the prediction of probabilities wave run up in harsh environments is a challenging task. This paper addresses the problem of expressing the probability density and cumulative distribution functions that utilize Weibull distribution to model estimates the waves run up for a large volume semi-submersible squared-section columns platform in two sea states. The two parameters Weibull distribution, namely shape parameter and scale parameter were considered. The analysis interpreted the measured data of 9 realizations with different seeds in the moored model experiments. The length of total measured data analyzed included approximately 9 times 250 waves for each sea state. The wave run up was found by model estimates using a Rayleigh distribution, and some waves run up were identical apart from one another for different seeds. Finally, by this model with a sequence return for two sea states the associated motions distribution for the large volume semi-submersible platform were numerically predicted.

A. Priyanto; A. Maimun; A.S.A. Kader; I. Nasrudin; M.P.A. Ghani; Izzudin Nur; K. Jaswar

2014-01-01T23:59:59.000Z

150

Efficient parallel simulation of CO2 geologic sequestration insaline aquifers  

SciTech Connect

An efficient parallel simulator for large-scale, long-termCO2 geologic sequestration in saline aquifers has been developed. Theparallel simulator is a three-dimensional, fully implicit model thatsolves large, sparse linear systems arising from discretization of thepartial differential equations for mass and energy balance in porous andfractured media. The simulator is based on the ECO2N module of the TOUGH2code and inherits all the process capabilities of the single-CPU TOUGH2code, including a comprehensive description of the thermodynamics andthermophysical properties of H2O-NaCl- CO2 mixtures, modeling singleand/or two-phase isothermal or non-isothermal flow processes, two-phasemixtures, fluid phases appearing or disappearing, as well as saltprecipitation or dissolution. The new parallel simulator uses MPI forparallel implementation, the METIS software package for simulation domainpartitioning, and the iterative parallel linear solver package Aztec forsolving linear equations by multiple processors. In addition, theparallel simulator has been implemented with an efficient communicationscheme. Test examples show that a linear or super-linear speedup can beobtained on Linux clusters as well as on supercomputers. Because of thesignificant improvement in both simulation time and memory requirement,the new simulator provides a powerful tool for tackling larger scale andmore complex problems than can be solved by single-CPU codes. Ahigh-resolution simulation example is presented that models buoyantconvection, induced by a small increase in brine density caused bydissolution of CO2.

Zhang, Keni; Doughty, Christine; Wu, Yu-Shu; Pruess, Karsten

2007-01-01T23:59:59.000Z

151

NETL: Carbon Storage - CO2 Utilization Focus Area  

NLE Websites -- All DOE Office Websites (Extended Search)

CO2 Utilization CO2 Utilization Carbon Storage CO2 Utilization Focus Area Carbon dioxide (CO2) utilization efforts focus on pathways and novel approaches for reducing CO2 emissions by developing beneficial uses for the CO2 that will mitigate CO2 emissions in areas where geologic storage may not be an optimal solution. CO2 can be used in applications that could generate significant benefits. It is possible to develop alternatives that can use captured CO2 or convert it to useful products such chemicals, cements, or plastics. Revenue generated from the utilized CO2 could also offset a portion of the CO2 capture cost. Processes or concepts must take into account the life cycle of the process to ensure that additional CO2 is not produced beyond what is already being removed from or going into the atmosphere. Furthermore, while the utilization of CO2 has some potential to reduce greenhouse gas emissions to the atmosphere, CO2 has certain disadvantages as a chemical reactant. Carbon dioxide is rather inert and non-reactive. This inertness is the reason why CO2 has broad industrial and technical applications. Each potential use of CO2 has an energy requirement that needs to be determined; and the CO2 produced to create the energy for the specific utilization process must not exceed the CO2 utilized.

152

Geologic CO2 sequestration inhibits microbial growth | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

community and could improve overall efficiency of CO2 sequestration. The Science Carbon dioxide (CO2) sequestration in deep subsurface environments has received...

153

Cryogenic CO2 Formation on Oxidized Gold Clusters Synthesized...  

NLE Websites -- All DOE Office Websites (Extended Search)

Cryogenic CO2 Formation on Oxidized Gold Clusters Synthesized via Reactive Layer Assisted Deposition. Cryogenic CO2 Formation on Oxidized Gold Clusters Synthesized via Reactive...

154

Exsolution Enhanced Oil Recovery with Concurrent CO2 Sequestration...  

NLE Websites -- All DOE Office Websites (Extended Search)

Exsolution Enhanced Oil Recovery with Concurrent CO2 Sequestration. Exsolution Enhanced Oil Recovery with Concurrent CO2 Sequestration. Abstract: A novel EOR method using...

155

Reaction of Water-Saturated Supercritical CO2 with Forsterite...  

NLE Websites -- All DOE Office Websites (Extended Search)

Water-Saturated Supercritical CO2 with Forsterite: Evidence for Magnesite Formation at Low Temperatures. Reaction of Water-Saturated Supercritical CO2 with Forsterite: Evidence for...

156

numerical methodology to model and monitor co2 sequestration  

E-Print Network (OSTI)

CO2 sequestration is a means of mitigating the greenhouse effect [1]. Geologic sequestration involves injecting CO2 into a target geologic formation at depths ...

santos,,,

157

The Effects of CO2 Disposal on Marine Nitrification Processes  

NLE Websites -- All DOE Office Websites (Extended Search)

Effects of CO Effects of CO 2 Disposal on Marine Nitrification Processes Michael H. Huesemann (michael.huesemann@pnl.gov, 360-681-3618) Pacific Northwest National Laboratory - Marine Sciences Laboratory 1529 West Sequim Bay Road Sequim, WA 98382 Ann D. Skillman (ann.skillman@pnl.gov, 360-681-3649) Pacific Northwest National Laboratory - Marine Sciences Laboratory 1529 West Sequim Bay Road Sequim, WA 98382 Eric A. Crecelius (eric.crecelius@pnl.gov, 360-681-3604) Pacific Northwest National Laboratory - Marine Sciences Laboratory 1529 West Sequim Bay Road Sequim, WA 98382 Abstract In an attempt to reduce the threat of global warming, it has been proposed that the rise of atmospheric carbon dioxide concentrations be reduced by the ocean disposal of CO 2 from the flue gases of fossil fuel-fired power plants. The release of large amounts of

158

Trace gases, CO2, climate, and the greenhouse effect  

Science Journals Connector (OSTI)

Weather is driven by the sun’s energy input and the difference between insolation per unit area of the poles and the equator. The energy flux of the Earth is in long?term balance—as much is radiated away by the Earth as is absorbed or the mean temperature would have to increase or decrease steadily (and of course this is not observed). CO2 and other ‘‘trace gases’’ can cause the Earth’s mean temperature to rise through the Greenhouse Effect. The mean temperature in the Little Ice Age was only 1?°C cooler but large effects were felt especially toward the poles. The CO2 which stays in the atmosphere will raise Earth’s mean temperature with effects which are relatively certain: a lot of warming at the poles and a very small amount of warming at the equator.

Gordon J. Aubrecht II

1988-01-01T23:59:59.000Z

159

Numerical Simulation of CO2 Sequestration in Natural CO2 Reservoirs on the Colorado Plateau  

NLE Websites -- All DOE Office Websites (Extended Search)

Simulation of CO Simulation of CO 2 Sequestration in Natural CO 2 Reservoirs on the Colorado Plateau Stephen P. White (S.White@irl.cri.nz, (64) 4 5690000) Graham J. Weir (G.Weir@irl.cri.nz, (64) 4 5690000) Warwick M. Kissling (W.Kissling@irl.cri.nz, (64) 4 5690000) Industrial Research Ltd. P.O. Box 31310 Lower Hutt, New Zealand Abstract This paper outlines the proposed research and summarizes pre-project work that forms a basis for a new research program on CO 2 sequestration in saline aquifers. The pre-project work considers storage and disposal of CO 2 several kilometers beneath the surface in generic aquifers and demonstrates the use of reactive chemical transport modeling to simulate mineral sequestration of CO 2. The current research project applies these techniques to particular saline

160

Large volume susy breaking with a chiral solution to the decompactification problem  

E-Print Network (OSTI)

We study heterotic ground states in which supersymmetry is broken by coupling the momentum and winding charges of two large extra dimensions to the R-charges of the supersymmetry generators. The large dimensions give rise to towers of heavy string thresholds that contribute to the running of the gauge couplings. In the general case, these contributions are proportional to the volume of the two large dimensions and invalidate the perturbative string expansion. The problem is evaded if the susy breaking sectors arise as a spontaneously broken phase of N=4 -> N=2 -> N=0 supersymmetry, provided that N=4 supersymmetry is restored on the boundary of the moduli space. We discuss the mechanism in the case of Z_2 x Z_2 orbifolds, which requires that the twisted sector that contains the large extra dimensions has no fixed points. We analyse the full string partition function and show that the twisted sectors distribute themselves in non aligned N=2 orbits, hence preserving the solution to the string decompactification problem. Remarkably, we find that the contribution to the vacuum energy from the N=2 -> N=0 sectors is suppressed, and the only substantial contribution arises from the breaking of the N=4 sector to N=0. Implementation of the mechanism in three net chiral generations quasi-realistic models requires that the two other twisted sectors produce 1 and 2 chiral generations, respectively.

Alon E. Faraggi; Costas Kounnas; Herve Partouche

2014-10-22T23:59:59.000Z

Note: This page contains sample records for the topic "large volume co2" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Large volume susy breaking with a chiral solution to the decompactification problem  

E-Print Network (OSTI)

We study heterotic ground states in which supersymmetry is broken by coupling the momentum and winding charges of two large extra dimensions to the R-charges of the supersymmetry generators. The large dimensions give rise to towers of heavy string thresholds that contribute to the running of the gauge couplings. In the general case, these contributions are proportional to the volume of the two large dimensions and invalidate the perturbative string expansion. The problem is evaded if the susy breaking sectors arise as a spontaneously broken phase of N=4 -> N=2 -> N=0 supersymmetry, provided that N=4 supersymmetry is restored on the boundary of the moduli space. We discuss the mechanism in the case of Z_2 x Z_2 orbifolds, which requires that the twisted sector that contains the large extra dimensions has no fixed points. We analyse the full string partition function and show that the twisted sectors distribute themselves in non aligned N=2 orbits, hence preserving the solution to the string decompactification ...

Faraggi, Alon E; Partouche, Herve

2014-01-01T23:59:59.000Z

162

Field Demonstration of CO2 Leakage Detection in Potable Aquifers with a Pulselike CO2-Release Test  

Science Journals Connector (OSTI)

Field Demonstration of CO2 Leakage Detection in Potable Aquifers with a Pulselike CO2-Release Test ... This study presents two field pulselike CO2-release tests to demonstrate CO2 leakage detection in a shallow aquifer by monitoring groundwater pH, alkalinity, and dissolved inorganic carbon (DIC) using the periodic groundwater sampling method and a fiber-optic CO2 sensor for real-time in situ monitoring of dissolved CO2 in groundwater. ...

Changbing Yang; Susan D. Hovorka; Jesus Delgado-Alonso; Patrick J. Mickler; Ramón H. Treviño; Straun Phillips

2014-11-10T23:59:59.000Z

163

Commitment accounting of CO2 emissions  

Science Journals Connector (OSTI)

The world not only continues to build new coal-fired power plants, but built more new coal plants in the past decade than in any previous decade. Worldwide, an average of 89 gigawatts per year (GW yr–1) of new coal generating capacity was added between 2010 and 2012, 23 GW yr–1 more than in the 2000–2009 time period and 56 GW yr–1 more than in the 1990–1999 time period. Natural gas plants show a similar pattern. Assuming these plants operate for 40 years, the fossil-fuel burning plants built in 2012 will emit approximately 19 billion tons of CO2 (Gt CO2) over their lifetimes, versus 14 Gt CO2 actually emitted by all operating fossil fuel power plants in 2012. We find that total committed emissions related to the power sector are growing at a rate of about 4% per year, and reached 307 (with an estimated uncertainty of 192–439) Gt CO2 in 2012. These facts are not well known in the energy policy community, where annual emissions receive far more attention than future emissions related to new capital investments. This paper demonstrates the potential for 'commitment accounting' to inform public policy by quantifying future emissions implied by current investments.

Steven J Davis; Robert H Socolow

2014-01-01T23:59:59.000Z

164

Amine Scrubbing for CO2 Capture  

Science Journals Connector (OSTI)

...distillation columns in the air separation unit...excess and leakage air along with the CO...will not provide solutions as energy-efficient...tf9363201291 2 National Air Pollution Control Administration...CO 2 Removal from Fossil-Fuel–Fired Power Plants” (IE-7365...

Gary T. Rochelle

2009-09-25T23:59:59.000Z

165

Aquifer Management for CO2 Sequestration  

E-Print Network (OSTI)

Storage of carbon dioxide is being actively considered for the reduction of green house gases. To make an impact on the environment CO2 should be put away on the scale of gigatonnes per annum. The storage capacity of deep saline aquifers...

Anchliya, Abhishek

2010-07-14T23:59:59.000Z

166

Illinois CO2 Injection Project Moves Another Step Forward | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Illinois CO2 Injection Project Moves Another Step Forward Illinois CO2 Injection Project Moves Another Step Forward Illinois CO2 Injection Project Moves Another Step Forward March 15, 2010 - 1:00pm Addthis Washington, DC - The recent completion of a three-dimensional (3-D) seismic survey at a large Illinois carbon dioxide (CO2) injection test site is an important step forward for the carbon capture and storage (CCS) project's planned early 2011 startup. The survey - essential to determine the geometry and internal structures of the deep underground saline reservoir where CO2 will be injected - was completed by the Midwest Geological Sequestration Consortium (MGSC), one of seven regional partnerships created by the U.S. Department of Energy (DOE) to advance CCS technologies nationwide. CCS is seen by many experts as a

167

Large-Volume Resonant Microwave Discharge for Plasma Cleaning of a CEBAF 5-Cell SRF Cavity  

SciTech Connect

We report the preliminary results on plasma generation in a 5-cell CEBAF superconducting radio-frequency (SRF) cavity for the application of cavity interior surface cleaning. CEBAF currently has {approx}300 of these five cell cavities installed in the Jefferson Lab accelerator which are mostly limited by cavity surface contamination. The development of an in-situ cavity surface cleaning method utilizing a resonant microwave discharge could lead to significant CEBAF accelerator performance improvement. This microwave discharge is currently being used for the development of a set of plasma cleaning procedures targeted to the removal of various organic, metal and metal oxide impurities. These contaminants are responsible for the increase of surface resistance and the reduction of RF performance in installed cavities. The CEBAF five cell cavity volume is {approx} 0.5 m2, which places the discharge in the category of large-volume plasmas. CEBAF cavity has a cylindrical symmetry, but its elliptical shape and transversal power coupling makes it an unusual plasma application, which requires special consideration of microwave breakdown. Our preliminary study includes microwave breakdown and optical spectroscopy, which was used to define the operating pressure range and the rate of removal of organic impurities.

J. Mammosser, S. Ahmed, K. Macha, J. Upadhyay, M. Nikoli, S. Popovi, L. Vuakovi

2012-07-01T23:59:59.000Z

168

Evaluation of Large Volume SrI2(Eu) Scintillator Detectors  

SciTech Connect

There is an ever increasing demand for gamma-ray detectors which can achieve good energy resolution, high detection efficiency, and room-temperature operation. We are working to address each of these requirements through the development of large volume SrI{sub 2}(Eu) scintillator detectors. In this work, we have evaluated a variety of SrI{sub 2} crystals with volumes >10 cm{sup 3}. The goal of this research was to examine the causes of energy resolution degradation for larger detectors and to determine what can be done to mitigate these effects. Testing both packaged and unpackaged detectors, we have consistently achieved better resolution with the packaged detectors. Using a collimated gamma-ray source, it was determined that better energy resolution for the packaged detectors is correlated with better light collection uniformity. A number of packaged detectors were fabricated and tested and the best spectroscopic performance was achieved for a 3% Eu doped crystal with an energy resolution of 2.93% FWHM at 662keV. Simulations of SrI{sub 2}(Eu) crystals were also performed to better understand the light transport physics in scintillators and are reported. This study has important implications for the development of SrI{sub 2}(Eu) detectors for national security purposes.

Sturm, B W; Cherepy, N J; Drury, O B; Thelin, P A; Fisher, S E; Magyar, A F; Payne, S A; Burger, A; Boatner, L A; Ramey, J O; Shah, K S; Hawrami, R

2010-11-18T23:59:59.000Z

169

A large volume 2000 MPA air source for the radiatively driven hypersonic wind tunnel  

SciTech Connect

An ultra-high pressure air source for a hypersonic wind tunnel for fluid dynamics and combustion physics and chemistry research and development must provide a 10 kg/s pure air flow for more than 1 s at a specific enthalpy of more than 3000 kJ/kg. The nominal operating pressure and temperature condition for the air source is 2000 MPa and 900 K. A radial array of variable radial support intensifiers connected to an axial manifold provides an arbitrarily large total high pressure volume. This configuration also provides solutions to cross bore stress concentrations and the decrease in material strength with temperature. [hypersonic, high pressure, air, wind tunnel, ground testing

Constantino, M

1999-07-14T23:59:59.000Z

170

Cost Assessment of CO2 Sequestration by Mineral Carbonation  

E-Print Network (OSTI)

Cost Assessment of CO2 Sequestration by Mineral Carbonation Frank E. Yeboah Tuncel M. Yegulalp Harmohindar Singh Research Associate Professor Professor Center for Energy Research... them carbon dioxide (CO 2 ). This paper assesses the cost of sequestering CO 2 produced by a ZEC power plant using solid sequestration process. INTRODUCTION CO 2 is produced when electrical energy is generated using conventional fossil...

Yeboah, F. E.; Yegulalp, T. M.; Singh, H.

2006-01-01T23:59:59.000Z

171

A 40-million-year history of atmospheric CO2  

Science Journals Connector (OSTI)

...40-million-year history of atmospheric CO2 Yi Ge Zhang 1 Mark Pagani 1 Zhonghui Liu...Pleistocene epochs). The present long-term CO2 record is a composite of data from multiple...growth conditions that potentially bias CO2 results. In this study, we present a pCO2...

2013-01-01T23:59:59.000Z

172

A Vehicular Wireless Sensor Network for CO2 Monitoring  

E-Print Network (OSTI)

the concentration of carbon dioxide (CO2) gas in areas of interest. The reported data are sent to a server, which the concentration of carbon dioxide (CO2) gas in areas of interest. CO2 gas is a critical index of air qualityA Vehicular Wireless Sensor Network for CO2 Monitoring Shu-Chiung Hu1, You-Chiun Wang1, Chiuan

Tseng, Yu-Chee

173

Diurnal tracking of anthropogenic CO2 emissions in the Los Angeles basin  

NLE Websites -- All DOE Office Websites (Extended Search)

Diurnal tracking of anthropogenic CO2 emissions in the Los Angeles basin Diurnal tracking of anthropogenic CO2 emissions in the Los Angeles basin megacity during spring 2010 Title Diurnal tracking of anthropogenic CO2 emissions in the Los Angeles basin megacity during spring 2010 Publication Type Journal Article Year of Publication 2012 Authors Newman, Sally, Seongeun Jeong, Marc L. Fischer, Xiaomei Xu, Christine L. Haman, Barry Lefer, Sergio Alvarez, Bernhard Rappenglueck, Eric A. Kort, Arlyn E. Andrews, Jeffrey Peischl, Kevin R. Gurney, Charles E. Miller, and Yuk L. Yung Journal Atmospheric Chemistry and Physics Volume 13 Pagination 4359-4372 Abstract Attributing observed CO2 variations to human or natural cause is critical to deducing and tracking emissions from observations. We have used in situ CO2, CO, and planetary boundary layer height (PBLH) measurements recorded during the CalNex-LA (CARB et al., 2008) ground campaign of 15 May-15 June 2010, in Pasadena, CA, to deduce the diurnally varying anthropogenic component of observed CO2 in the megacity of Los Angeles (LA). This affordable and simple technique, validated by carbon isotope observations and WRF-STILT (Weather Research and Forecasting model - Stochastic Time-Inverted Lagrangian Transport model) predictions, is shown to robustly attribute observed CO2 variation to anthropogenic or biogenic origin over the entire diurnal cycle. During CalNex-LA, local fossil fuel combustion contributed up to ~50% of the observed CO2 enhancement overnight, and ~100% of the enhancement near midday. This suggests that sufficiently accurate total column CO2 observations recorded near midday, such as those from the GOSAT or OCO-2 satellites, can potentially be used to track anthropogenic emissions from the LA megacity.

174

Novel Solvent System for CO2 Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Solvent System for CO Solvent System for CO 2 Capture Background The mission of the U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) Existing Plants, Emissions & Capture (EPEC) Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental

175

CO2 Laser CVD of Disilane  

Science Journals Connector (OSTI)

Amorphous silicon films were deposited by a CO2 laser CVD (chemical vapor deposition) method using disilane gas. With this gas, the films were deposited reasonably fast at relatively low substrate temperatures of 350°C or above. Unlike monosilane, photo-induced effects in the gas phase following light absorption were negligible in deposition processes, and only the pyrolytic process taking place at the laser-heated substrate was important. Some of the physical properties of deposited films were described.

Takehiko Iwanaga; Mitsugu Hanabusa

1984-01-01T23:59:59.000Z

176

Continuous CO2 extractor and methods  

SciTech Connect

The purpose of this CRADA was to assist in technology transfer from Russia to the US and assist in development of the technology improvements and applications for use in the U.S. and worldwide. Over the period of this work, ORNL has facilitated design, development and demonstration of a low-pressure liquid extractor and development of initial design for high-pressure supercritical CO2 fluid extractor.

None listed

2010-06-15T23:59:59.000Z

177

An estimate of monthly global emissions of anthropogenic CO2: Impact on the seasonal cycle of atmospheric CO2  

E-Print Network (OSTI)

An estimate of monthly global emissions of anthropogenic CO2: Impact on the seasonal cycle of anthropogenic CO2 are presented. Approximating the seasonal CO2 emission cycle using a 2-harmonic Fourier series with regions of strong anthropogenic CO2 emissions. Citation: Erickson, D. J., III, R. T. Mills, J. Gregg, T. J

Hoffman, Forrest M.

178

The response of soil CO2 ux to changes in atmospheric CO2, nitrogen supply and plant diversity  

E-Print Network (OSTI)

three major anthropogenic global changes: atmos- pheric carbon dioxide (CO2) concentration, nitrogen (N atmospheric carbon dioxide (CO2) concentra- tions, increasing rates of nitrogen (N) deposition, and decliningThe response of soil CO2 ¯ux to changes in atmospheric CO2, nitrogen supply and plant diversity J O

Minnesota, University of

179

Study of CO2 Mobility Control Using Cross-linked Gel Conformance Control and CO2 Viscosifiers in Heterogeneous Media  

E-Print Network (OSTI)

result, early gas breakthrough has been a very common problem in CO2-related projects, reducing the overall sweep efficiency of CO2 flooding. This research aims at improving the CO2 flood efficiency using cross-linked gel conformance control and CO2...

Cai, Shuzong

2011-10-21T23:59:59.000Z

180

A superstructure-based optimal synthesis of PSA cycles for post-combustion CO2 capture  

SciTech Connect

Recent developments have shown pressure/vacuum swing adsorption (PSA/VSA) to be a promising option to effectively capture CO2 from flue gas streams. In most commercial PSA cycles, the weakly adsorbed component in the mixture is the desired product, and enriching the strongly adsorbed CO2 is not a concern. On the other hand, it is necessary to concentrate CO2 to high purity to reduce CO2 sequestration costs and minimize safety and environmental risks. Thus, it is necessary to develop PSA processes specifically targeted to obtain pure strongly adsorbed component. A multitude of PSA/VSA cycles have been developed in the literature for CO2 capture from feedstocks low in CO2 concentration. However, no systematic methodology has been suggested to develop, evaluate, and optimize PSA cycles for high purity CO2 capture. This study presents a systematic optimization-based formulation to synthesize novel PSA cycles for a given application. In particular, a novel PSA superstructure is presented to design optimal PSA cycle configurations and evaluate CO2 capture strategies. The superstructure is rich enough to predict a number of different PSA operating steps. The bed connections in the superstructure are governed by time-dependent control variables, which can be varied to realize most PSA operating steps. An optimal sequence of operating steps is achieved through the formulation of an optimal control problem with the partial differential and algebraic equations of the PSA system and the cyclic steady state condition. Large-scale optimization capabilities have enabled us to adopt a complete discretization methodology to solve the optimal control problem as a largescale nonlinear program, using the nonlinear optimization solver IPOPT. The superstructure approach is demonstrated for case studies related to post-combustion CO2 capture. In particular, optimal PSA cycles were synthesized, which maximize CO2 recovery for a given purity, and minimize overall power consumption. The results show the potential of the superstructure to predict PSA cycles with up to 98% purity and recovery of CO2. Moreover, for recovery of around 85% and purity of over 90%, these cycles can recover CO2 from atmospheric flue gas with a low power consumption of 465 kWh tonne#1;1 CO2. The approach presented is, therefore, very promising and quite useful for evaluating the suitability of different adsorbents, feedstocks, and operating strategies for PSA, and assessing its usefulness for CO2 capture.

Agarwal, A.; Biegler, L.; Zitney, S.

2010-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "large volume co2" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Uncertainty analyses of CO2 plume expansion subsequent to wellbore CO2 leakage into aquifers  

SciTech Connect

In this study, we apply an uncertainty quantification (UQ) framework to CO2 sequestration problems. In one scenario, we look at the risk of wellbore leakage of CO2 into a shallow unconfined aquifer in an urban area; in another scenario, we study the effects of reservoir heterogeneity on CO2 migration. We combine various sampling approaches (quasi-Monte Carlo, probabilistic collocation, and adaptive sampling) in order to reduce the number of forward calculations while trying to fully explore the input parameter space and quantify the input uncertainty. The CO2 migration is simulated using the PNNL-developed simulator STOMP-CO2e (the water-salt-CO2 module). For computationally demanding simulations with 3D heterogeneity fields, we combined the framework with a scalable version module, eSTOMP, as the forward modeling simulator. We built response curves and response surfaces of model outputs with respect to input parameters, to look at the individual and combined effects, and identify and rank the significance of the input parameters.

Hou, Zhangshuan; Bacon, Diana H.; Engel, David W.; Lin, Guang; Fang, Yilin; Ren, Huiying; Fang, Zhufeng

2014-08-01T23:59:59.000Z

182

Life cycle assessment of CO2 emissions from wind power plants: Methodology and case studies  

Science Journals Connector (OSTI)

Wind energy plays an increasingly important role in the world’s electricity market with rapid growth projected in the future. In order to evaluate the potential for wind energy to mitigate the effects of climate change by reducing CO2 intensity of the energy sector, this study developed a new direct and simple method for estimating CO2 emissions per kWh produced during the life cycle of four representative wind power plants (three in developed countries and one in China). The life cycle analysis focuses on the wind power plant as the basic functional object instead of a single wind turbine. Our results show that present-day wind power plants have a lifetime emission intensity of 5.0–8.2 g CO2/kWh electricity, a range significantly lower than estimates in previous studies. Our estimate suggests that wind is currently the most desirable renewable energy in terms of minimizing CO2 emissions per kWh of produced electricity. The production phase contributes the most to overall CO2 emissions, while recycling after decommission could reduce emissions by nearly half, representing an advantage of wind when compared with other energy generation technologies such as nuclear. Compared with offshore wind plants, onshore plants have lower CO2 emissions per kWh electricity and require less transmission infrastructure. Analysis of a case in China indicates that a large amount of CO2 emissions could be saved in the transport phase in large countries by using shorter alternative routes of transportation. As the world’s fastest growing market for wind power, China could potentially save 780 Mtons of CO2 emissions annually by 2030 with its revised wind development target. However, there is still ample room for even more rapid development of wind energy in China, accompanied by significant opportunities for reducing overall CO2 emissions.

Yuxuan Wang; Tianye Sun

2012-01-01T23:59:59.000Z

183

PLAINS CO2 REDUCTION (PCOR) PARTNERSHIP  

SciTech Connect

During the period of October 1, 2003, through September 30, 2005, the Plains CO2 Reduction (PCOR) Partnership, identified geologic and terrestrial candidates for near-term practical and environmentally sound carbon dioxide (CO2) sequestration demonstrations in the heartland of North America. The PCOR Partnership region covered nine states and three Canadian provinces. The validation test candidates were further vetted to ensure that they represented projects with (1) commercial potential and (2) a mix that would support future projects both dependent and independent of CO2 monetization. This report uses the findings contained in the PCOR Partnership's two dozen topical reports and half-dozen fact sheets as well as the capabilities of its geographic information system-based Decision Support System to provide a concise picture of the sequestration potential for both terrestrial and geologic sequestration in the PCOR Partnership region based on assessments of sources, sinks, regulations, deployment issues, transportation, and capture and separation. The report also includes concise action plans for deployment and public education and outreach as well as a brief overview of the structure, development, and capabilities of the PCOR Partnership. The PCOR Partnership is one of seven regional partnerships under Phase I of the U.S. Department of Energy National Energy Technology Laboratory's Regional Carbon Sequestration Partnership program. The PCOR Partnership, comprising 49 public and private sector members, is led by the Energy & Environmental Research Center at the University of North Dakota. The international PCOR Partnership region includes the Canadian provinces of Alberta, Saskatchewan, and Manitoba and the states of Montana (part), Wyoming (part), North Dakota, South Dakota, Nebraska, Missouri, Iowa, Minnesota, and Wisconsin.

Edward N. Steadman; Daniel J. Daly; Lynette L. de Silva; John A. Harju; Melanie D. Jensen; Erin M. O'Leary; Wesley D. Peck; Steven A. Smith; James A. Sorensen

2006-01-01T23:59:59.000Z

184

Natural CO2 Reservoirs on the Colorado Plateau Â… Candidates for CO2 Sequestration  

NLE Websites -- All DOE Office Websites (Extended Search)

CO CO 2 Reservoirs on the Colorado Plateau and Southern Rocky Mountains: Candidates for CO 2 Sequestration. R. Allis (nrugs.rallis@state.ut.us; 801-537-3301) T. Chidsey (nrugs.tchidsey@state.ut.us; 801-537-3364) W. Gwynn (nrugs.wgwynn@state.ut.us; 801-537-3366) C. Morgan (nrugs.cmorgan@state.ut.us; 801-537-3370) Utah Geological Survey P.O. Box 146100 Salt Lake City, UT 84114 S. White (s.white@irl.cri.nz; 64-4-569-0000) Industrial Research Ltd. P.O. Box 31-310 Lower Hutt, New Zealand M. Adams (madams@egi.utah.edu; 801-585-7784) J. Moore (jmoore@egi.utah.edu; 801-585-6931) Energy and Geoscience Institute, 427 Wakara Way, Suite 300 Salt Lake City, UT84107 Abstract Numerous natural accumulations of CO 2 -dominant gases have been discovered as a result of

185

Physical and Economic Potential of Geological CO2 Storage in Saline Aquifers  

Science Journals Connector (OSTI)

Physical and Economic Potential of Geological CO2 Storage in Saline Aquifers ... To put this result in context, a minimum of approximately 0.7 km3 of reservoir volume at the optimal depth would be required to store the emissions from a typical 500 MW coal plant capturing 7389 tons of CO2 per day for 20 years with an 80% capacity factor (2). ... Since our analysis is performed on a single-well basis, though, we do not account for possible economies of scale in a multiwell system. ...

Jordan K. Eccles; Lincoln Pratson; Richard G. Newell; Robert B. Jackson

2009-02-06T23:59:59.000Z

186

Gulf of Mexico Miocene CO2 Site Characterization Mega Transect  

SciTech Connect

This project characterized the Miocene-age sub-seafloor stratigraphy in the near-offshore portion of the Gulf of Mexico adjacent to the Texas coast. The large number of industrial sources of carbon dioxide (CO2) in coastal counties and the high density of onshore urbanization and environmentally sensitive areas make this offshore region extremely attractive for long-term storage of carbon dioxide emissions from industrial sources (CCS). The study leverages dense existing geologic data from decades of hydrocarbon exploration in and around the study area to characterize the regional geology for suitability and storage capacity. Primary products of the study include: regional static storage capacity estimates, sequestration “leads” and prospects with associated dynamic capacity estimates, experimental studies of CO2-brine-rock interaction, best practices for site characterization, a large-format ‘Atlas’ of sequestration for the study area, and characterization of potential fluid migration pathways for reducing storage risks utilizing novel high-resolution 3D (HR3D) seismic surveys. In addition, three subcontracted studies address source-to-sink matching optimization, offshore well bore management and environmental aspects. The various geologic data and interpretations are integrated and summarized in a series of cross-sections and maps, which represent a primary resource for any near-term commercial deployment of CCS in the area. The regional study characterized and mapped important geologic features (e.g., Clemente-Tomas fault zone, the regionally extensive Marginulina A and Amphistegina B confining systems, etc.) that provided an important context for regional static capacity estimates and specific sequestration prospects of the study. A static capacity estimate of the majority of the Study area (14,467 mi2) was estimated at 86 metric Gigatonnes. While local capacity estimates are likely to be lower due to reservoir-scale characteristics, the offshore Miocene interval is a storage resource of National interest for providing CO2 storage as an atmospheric emissions abatement strategy. The natural petroleum system was used as an analog to infer seal quality and predict possible migration pathways of fluids in an engineered system of anthropogenic CO2 injection and storage. The regional structural features (e.g., Clemente-Tomas fault zone) that exert primary control on the trapping and distribution of Miocene hydrocarbons are expected to perform similarly for CCS. Industrial?scale CCS will require storage capacity utilizing well?documented Miocene hydrocarbon (dominantly depleted gas) fields and their larger structural closures, as well as barren (unproductive, brine?filled) closures. No assessment was made of potential for CO2 utilization for enhanced oil and gas recovery. The use of 3D numerical fluid flow simulations have been used in the study to greatly assist in characterizing the potential storage capacity of a specific reservoir. Due to the complexity of geologic systems (stratigraphic heterogeneity) and inherent limitations on producing a 3D geologic model, these simulations are typically simplified scenarios that explore the influence of model property variability (sensitivity study). A specific site offshore San Luis Pass (southern Galveston Island) was undertaken successfully, indicating stacked storage potential. Downscaling regional capacity estimates to the local scale (and the inverse) has proven challenging, and remains an outstanding gap in capacity assessments. In order to characterize regional seal performance and identify potential brine and CO2 leakage pathways, results from three high-resolution 3D (HR3D) seismic datasets acquired by the study using novel HR3D (P-Cable) acquisition system showed steady and significant improvements in data quality because of improved acquisition and processing technique. Finely detailed faults and stratigraphy in the shallowest 1000 milliseconds (~800 m) of data allowed for the identification and mapping of unconformable surfaces including what is probably

Meckel, Timothy; Trevino, Ramon

2014-09-30T23:59:59.000Z

187

Carbon Sequestration Partner Initiates Drilling of CO2 Injection Well in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sequestration Partner Initiates Drilling of CO2 Injection Sequestration Partner Initiates Drilling of CO2 Injection Well in Illinois Basin Carbon Sequestration Partner Initiates Drilling of CO2 Injection Well in Illinois Basin February 17, 2009 - 12:00pm Addthis Washington, D.C. -- The Midwest Geological Sequestration Consortium (MGSC), one of seven regional partnerships created by the U.S. Department of Energy (DOE) to advance carbon sequestration technologies nationwide, has begun drilling the injection well for their large-scale carbon dioxide (CO2) injection test in Decatur, Illinois. The test is part of the development phase of the Regional Carbon Sequestration Partnerships program, an Office of Fossil Energy initiative launched in 2003 to determine the best approaches for capturing and permanently storing gases that can contribute

188

Modern Records of Atmospheric Carbon Dioxide (CO2) and a 2000-year Ice-core  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide (CO2) » Ice Cores Carbon Dioxide (CO2) » Ice Cores Modern Records of Atmospheric Carbon Dioxide (CO2) and a 2000-year Ice-core Record from Law Dome, Antarctica Introduction This page provides an introduction and links to records of atmospheric carbon dioxide (CO2) concentrations over the last 2000 years, emphasizing large data bases each representing many currently active stations. Records since about 1960 (depending on location) have been obtained from samples of ambient-air at remote stations, which represent changing global atmospheric concentrations rather than influences of local sources. The longer (2000-year) record is from the Law Dome ice core in Antarctica. The ice-core record has been merged with modern annual data from Cape Grim, Tasmania to provide a 2000-year record ending with the most recent data. A

189

Department of Energy Announces 15 Projects Aimed at Secure CO2 Underground  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

15 Projects Aimed at Secure CO2 15 Projects Aimed at Secure CO2 Underground Storage Department of Energy Announces 15 Projects Aimed at Secure CO2 Underground Storage August 11, 2010 - 12:00am Addthis Washington, D.C. - U.S. Energy Secretary Steven Chu announced today the selection of 15 projects to develop technologies aimed at safely and economically storing carbon dioxide in geologic formations. Funded with $21.3 million over three years, today's selections will complement existing DOE initiatives to help develop the technology and infrastructure to implement large-scale CO2 storage in different geologic formations across the Nation. The projects selected today will support the goals of helping reduce U.S. greenhouse gas emissions, developing and deploying near-zero-emission coal technologies and making the U.S. a leader in

190

NETL: SO2-Resistent Immobilized Amine Sorbents for CO2 Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Post-Combustion CO2 Emissions Control Post-Combustion CO2 Emissions Control SO2-Resistent Immobilized Amine Sorbents for CO2 Capture Project No.: DE-FE0001780 DOE is partnering with the University of Akron (Akron) to conduct research and training to develop an effective solid amine sorbent for large scale post-combustion CO2 capture from power plant flue gas. Sorbent materials developed by Akron consist of immobilized carbon and hydrogen structures (paraffin) distributed inside of the amine pores and aromatic amines located on the external surface and the pore mouth of the sorbent. The immobilized paraffinic amines have been shown to display excellent CO2 capture capacity by adsorbing CO2 at temperatures below 55 °C and releasing it at temperatures between 80-120 °C. This effort will focus on increasing scientific understanding of the chemical and physical principles affecting amines deposited on a series of porous solids that generally have large pore space, high surface area, and/or high thermal conductivity.

191

Plains CO2 Reduction Partnership PCOR | Open Energy Information  

Open Energy Info (EERE)

CO2 Reduction Partnership PCOR CO2 Reduction Partnership PCOR Jump to: navigation, search Name Plains CO2 Reduction Partnership (PCOR) Place Grand Forks, North Dakota Zip 58202-9018 Product North Dakota-based consortium researching CO2 storage options. PCOR is busy with the ECBM in the Unminable Lignite Research Project. References Plains CO2 Reduction Partnership (PCOR)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Plains CO2 Reduction Partnership (PCOR) is a company located in Grand Forks, North Dakota . References ↑ "Plains CO2 Reduction Partnership (PCOR)" Retrieved from "http://en.openei.org/w/index.php?title=Plains_CO2_Reduction_Partnership_PCOR&oldid=349772"

192

NETL: 2013 Conference Proceedings - 2013 NETL CO2 Capture Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 NETL CO2 Capture Technology Meeting 2013 NETL CO2 Capture Technology Meeting July 8-11, 2013 Previous Proceedings 2012: NETL CO2 Capture Technology Meeting 2011: NETL CO2 Capture Technology Meeting 2010: NETL CO2 Capture Technology Meeting 2009: Annual NETL CO2 Capture Technology for Existing Plants R&D Meeting Proceedings of the 2013 NETL CO2 Capture Technology Meeting Table of Contents Presentations Monday, July 8 Opening/Overview Post-Combustion Sorbent-Based Capture Tuesday, July 9 Post-Combustion Solvent-Based Capture CO2 Compression Wednesday, July 10 Post-Combustion Membrane-Based Capture Pre-Combustion Capture Projects Thursday, July 11 ARPA-E Capture Projects System Studies and Modeling Oxy-Combustion and Chemical Looping Posters PRESENTATIONS Monday, July 8, 2013 Opening/Overview Introduction [PDF-MB]

193

CO2 Capture by Absorption with Potassium Carbonate  

E-Print Network (OSTI)

CO2 Capture by Absorption with Potassium Carbonate Fourth Quarterly Report 2005 Quarterly Progress. #12;3 Abstract The objective of this work is to improve the process for CO2 capture by alkanolamine

Rochelle, Gary T.

194

CO2 Capture by Absorption with Potassium Carbonate  

E-Print Network (OSTI)

CO2 Capture by Absorption with Potassium Carbonate Third Quarterly Report 2005 Quarterly Progress. #12;3 Abstract The objective of this work is to improve the process for CO2 capture by alkanolamine

Rochelle, Gary T.

195

CO2 Capture by Absorption with Potassium Carbonate  

E-Print Network (OSTI)

CO2 Capture by Absorption with Potassium Carbonate First Quarterly Report 2006 Quarterly Progress the process for CO2 capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous

Rochelle, Gary T.

196

Formation Damage due to CO2 Sequestration in Saline Aquifers  

E-Print Network (OSTI)

Carbon dioxide (CO2) sequestration is defined as the removal of gas that would be emitted into the atmosphere and its subsequent storage in a safe, sound place. CO2 sequestration in underground formations is currently being considered to reduce...

Mohamed, Ibrahim Mohamed 1984-

2012-10-25T23:59:59.000Z

197

CO2-laser gas discharges in narrow gaps  

Science Journals Connector (OSTI)

We have studied RF discharges as excitation mechanisms for distributed feedback (DFB) CO2 lasers. For CO2 laser plasmas the reduced electric fieldE/N has to be in a well-defined range. The reduced electric fields

W. Leuthard; F. K. Kneubühl; H. J. Schötzau

1989-01-01T23:59:59.000Z

198

Summary Report on CO2 Geologic Sequestration & Water Resources Workshop  

E-Print Network (OSTI)

2 exposure in both CO 2 -EOR and natural CO 2 reservoirs (as enhanced oil recovery (EOR) and enhanced gas recovery (2 field injections for CCS-EOR, where the water quality of

Varadharajan, C.

2013-01-01T23:59:59.000Z

199

Integrated Assessment of Energy-Options for CO2 Reduction  

Science Journals Connector (OSTI)

Energy technology options for CO2 reduction are evaluated in a process-oriented dynamic national costs minimizing LP-model of the Dutch energy system. To identify cost-effective CO2 reduction strategies two scena...

T. Kram; P. A. Okken

1989-01-01T23:59:59.000Z

200

Chemical Impact of Elevated CO2on Geothermal Energy Production...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chemical Impact of Elevated CO2on Geothermal Energy Production Chemical Impact of Elevated CO2on Geothermal Energy Production This is a two phase project to assess the geochemical...

Note: This page contains sample records for the topic "large volume co2" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Enhanced Geothermal Systems (EGS) with CO2as Heat Transmission...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

study heat extraction from hot porous systems by injection of cold CO 2 . * Reactive chemistry experiments for CO 2 -brine-rock are being assembled (INL). 6 | US DOE Geothermal...

202

CO2 Capture Membrane Process for Power Plant Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

CO CO 2 Capture Membrane Process for Power Plant Flue Gas Background The U.S. Department of Energy's (DOE) Existing Plants, Emissions & Capture (EPEC) Program is performing research to develop advanced technologies focusing on carbon dioxide (CO 2 ) emissions control for existing pulverized coal-fired plants. This new focus on post-combustion and oxy-combustion CO 2 emissions control technology, CO 2 compression, and beneficial reuse is in response to the priority for advanced

203

CHARACTERIZATION OF MIXED CO2-TBPB HYDRATE FOR REFRIGERATION APPLICATIONS  

E-Print Network (OSTI)

in a dynamic loop and an Ostwald-de Waele model was obtained. Keywords: CO2, TBPB, mixed hydrates, solubility

Paris-Sud XI, Université de

204

CO2 Capture by Absorption with Potassium Carbonate  

E-Print Network (OSTI)

CO2 Capture by Absorption with Potassium Carbonate Second Quarterly Report 2006 Quarterly Progress of this work is to improve the process for CO2 capture by alkanolamine absorption/stripping by developing for simultaneous removal of CO2 and SO2. Corrosion of carbon steel in uninhibited MEA solution is increased

Rochelle, Gary T.

205

Central serotonin neurons are required for arousal to CO2  

E-Print Network (OSTI)

Central serotonin neurons are required for arousal to CO2 Gordon F. Buchanana,b,1 and George B neurons are stimulated by CO2, and sero- tonin activates thalamocortical networks, we hypothesized any arousal response to inhalation of 10% CO2 (with 21% O2 in balance N2) but had normal arousal

206

Monitoring and interpreting the ocean uptake of atmospheric CO2  

Science Journals Connector (OSTI)

...interpreting the ocean uptake of atmospheric CO2 Andrew J. Watson 1 * Nicolas Metzl 2 Ute...important sink for anthropogenically produced CO2, and on time scales longer than a century they will be the main repository for the CO2 that humans are emitting. Our knowledge...

2011-01-01T23:59:59.000Z

207

On the scatteringgreenhouse effect of CO 2 ice clouds  

E-Print Network (OSTI)

that young Mars was warm enough to support flowing water present a continuing enigma (Squyres and Kasting 1994). Kasting (1991) showed that, owing to the effects of CO 2 condensation on temperature lapse rate the optical effects of CO 2 ­ice clouds, but remarked that because CO 2 ­ice (unlike water­ice) has very low

Pierrehumbert, Raymond

208

In situ carbonation of peridotite for CO2 storage  

Science Journals Connector (OSTI)

...reaction in 1 region can be pumped into an adjacent area to...dissolved CO 2 in convecting seawater—only ?10 4 tons of CO 2 per km 3...convection, near-surface seawater would descend one hole...dissolved CO 2 from evolving seawater along the flow path...

Peter B. Kelemen; Jürg Matter

2008-01-01T23:59:59.000Z

209

Aqueous Carbonation of Natural Brucite: Relevance to CO2 Sequestration  

Science Journals Connector (OSTI)

Aqueous Carbonation of Natural Brucite: Relevance to CO2 Sequestration ... Products and reaction kinetics of natural brucite carbonation are studied at room temperature and moderate pCO2. ... Carbonation of natural brucite in H2O and diluted HCl is investigated at room temperature and moderate pCO2 to explore the products’ mineralogy and reaction kinetics. ...

Liang Zhao; Liqin Sang; Jun Chen; Junfeng Ji; H. Henry Teng

2009-11-30T23:59:59.000Z

210

Energy consumption analysis for CO2 separation from gas mixtures  

Science Journals Connector (OSTI)

Abstract CO2 separation is an energy intensive process, which plays an important role in both energy saving and CO2 capture and storage (CCS) implementation to deal with global warming. To quantitatively investigate the energy consumption of CO2 separation from different CO2 streams and analyze the effect of temperature, pressure and composition on energy consumption, in this work, the theoretical energy consumption of CO2 separation from flue gas, lime kiln gas, biogas and bio-syngas was calculated. The results show that the energy consumption of CO2 separation from flue gas is the highest and that from biogas is the lowest, and the concentration of CO2 is the most important factor affecting the energy consumption when the CO2 concentration is lower than 0.15 in mole fraction. Furthermore, if the CO2 captured from flue gases in CCS was replaced with that from biogases, i.e. bio-CO2, the energy saving would be equivalent to 7.31 million ton standard coal for China and 28.13 million ton standard coal globally, which corresponds to 0.30 billion US$ that can be saved for China and 1.36 billion US$ saved globally. This observation reveals the importance of trading fossil fuel-based CO2 with bio-CO2.

Yingying Zhang; Xiaoyan Ji; Xiaohua Lu

2014-01-01T23:59:59.000Z

211

CO2 Hydrate Composite for Ocean Carbon Sequestration  

Science Journals Connector (OSTI)

CO2 Hydrate Composite for Ocean Carbon Sequestration ... Further studies are needed to address hydrate conversion efficiency, scale-up criteria, sequestration longevity, and impact on the ocean biota before in-situ production of sinking CO2 hydrate composite can be applied to oceanic CO2 storage and sequestration. ...

Sangyong Lee; Liyuan Liang; David Riestenberg; Olivia R. West; Costas Tsouris; Eric Adams

2003-07-18T23:59:59.000Z

212

B.2 Subproject Brokate Simulating CO2 Sequestration  

E-Print Network (OSTI)

79 B.2 Subproject Brokate Simulating CO2 Sequestration Hysteretic Aspects of CO2 Sequestration and implement models describing the hysteresis in the context of the CO2 sequestration process. The hysteresis's law but in contrast to most Darcy's law based models it assumes the phases to be weakly compressible

Turova, Varvara

213

Mesoporous Organosilica with Amidoxime Groups for CO2 Sorption  

Science Journals Connector (OSTI)

Mesoporous Organosilica with Amidoxime Groups for CO2 Sorption ... This work reports a successful use of the aforementioned strategy for the development of ordered mesoporous organosilica (OMO) with amidoxime groups for CO2 sorption. ... The resulting series of amidoxime-containing OMO was prepared and used for CO2 sorption at low (25 °C) and elevated (60, 120 °C) temperatures. ...

Chamila Gunathilake; Mietek Jaroniec

2014-07-03T23:59:59.000Z

214

Enhanced CO2 Storage and Sequestration in Deep Saline Aquifers by Nanoparticles: Commingled Disposal of Depleted Uranium and CO2  

Science Journals Connector (OSTI)

Geological storage of anthropogenic CO2 emissions in deep saline aquifers has recently received tremendous attention in the scientific literature. Injected buoyant CO2 accumulates at the top part of the aquifer u...

Farzam Javadpour; Jean-Philippe Nicot

2011-09-01T23:59:59.000Z

215

CO2 Flux Estimated from Air-Sea Difference in CO2 Partial Pressure  

NLE Websites -- All DOE Office Websites (Extended Search)

CO2 Flux Estimated from Air-Sea Difference in CO2 Partial Pressure (Revised October 2009) CO2 Flux Estimated from Air-Sea Difference in CO2 Partial Pressure (Revised October 2009) The files in this site contain a revised (October 2009) version of the climatological mean values in 4° Latitude X 5° Longitude box areas and the distribution maps. These were originally published in: Takahashi, et al. (2009), DSR II, 56, 554-577. The data file containing annual flux data for each 4° X 5° box is located here. The data file from which this map was created, including all 12 months of data is here. This data file, in ASCII form, also contains the flux data and the intermediate values used to calculate that flux for each month. In December 2010 our colleague, R. Wanninkhof pointed out a problem with the flux data for the month of December. The file of ice coverage for December was corrupted and showed zero ice for the entire month, worldwide. This has been corrected with the estimated percent of ice and the flux recalculated. Version "c" of the data files contain this correction.

216

Interactions between reducing CO2 emissions, CO2 removal and solar radiation management  

Science Journals Connector (OSTI)

...the geological storage capacity for CO2. For the SRM...reduction in incoming solar radiation that fully...3. Results (a) Solar radiation management...scale set by the heat capacity in the model. For s2030srm2015...reduction in incoming solar radiation in the first...

2012-01-01T23:59:59.000Z

217

IMPLEMENTING A NOVEL CYCLIC CO2 FLOOD IN PALEOZOIC REEFS  

SciTech Connect

Recycled CO2 is being used in this demonstration project to produce bypassed oil from the Silurian Dover 35 Niagaran pinnacle reef located in Otsego County, Michigan. CO2 injection in the Dover 35 field into the Salling-Hansen 4-35A well began on May 6, 2004. A second injection well, the Salling-Hansen 1-35, commenced injection in August 2004. Oil production in the Pomerzynski 5-35 producing well increased from 9 BOPD prior to operations to an average of 165 BOPD in December, 2004 and has produced at an average rate of 61 BOPD (Jan-Dec, 2005). The Salling-Hansen 4-35A also produced during this reporting period an average of 29 BOPD. These increases have occurred as a result of CO2 injection and the production rate appears to be stabilizing. CO2 injection volume has reached approximately 2.18 BCF. The CO2 injection phase of this project has been fully operational since December 2004 and most downhole mechanical issues have been solved and surface facility modifications have been completed. It is anticipated that filling operations will run for another 6-12 months from July 1, 2005. In most other aspects, the demonstration is going well and hydrocarbon production has been stabilized at an average rate of 57 BOPD (July-Dec, 2005). Our industry partners continue to experiment with injection rates and pressures, various downhole and surface facility mechanical configurations, and the huff-n-puff technique to develop best practices for these types of enhanced recovery projects. Subsurface characterization was completed using well log tomography and 3D visualizations to map facies distributions and reservoir properties in the Belle River Mills, Chester 18, Dover 35, and Dover 36 Fields. The Belle River Mills and Chester 18 fields are being used as type-fields because they have excellent log and/or core data coverage. Amplitude slicing of the log porosity, normalized gamma ray, core permeability, and core porosity curves are showing trends that indicate significant heterogeneity and compartmentalization in these reservoirs associated with the original depositional fabric and pore types of the carbonate reservoir rocks. Accumulated pressure data supports the hypothesis of extreme heterogeneity in the Dover 35. Some intervals now have pressure readings over 2345 psig (April 29, 2005) in the A-1 Carbonate while nearby Niagaran Brown intervals only show 1030 psig (March 7, 2005). This is a pressure differential over 1300 psig and suggests significant vertical barriers in the reef, consistent with the GR tomography modeling. Digital and hard copy data have been compiled for the Niagaran reefs in the Michigan Basin, including a detailed summary of 20 fields in the vicinity of the demonstration well. Technology transfer took place through technical presentations regarding visualization of the reservoir heterogeneity in these Niagaran reefs. Oral presentations were given at two Petroleum Technology Transfer Council workshops, a Michigan Oil and Gas Association Conference, a Michigan Basin Geological Society meeting, and the Eastern American Association of Petroleum Geologist's Annual meeting. In addition, we met with our industry partners several times during the first half of 2005 to communicate and discuss the reservoir characterization and field site aspects of the demonstration project. A technical paper was published in the April 2005 issue of the AAPG Bulletin on the characterization of the Belle River Mills Field.

James R. Wood; W. quinlan; A. Wylie

2006-06-01T23:59:59.000Z

218

Laboratory Measurement of Geophysical Properties for Monitoring of CO2 Sequestration  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory Measurement of Geophysical Properties for Monitoring of Laboratory Measurement of Geophysical Properties for Monitoring of CO 2 Sequestration Larry R. Myer (LRMyer@lbl.gov; 510/486-6456) Lawrence Berkeley National Laboratory Earth Science Division One Cyclotron Road, MS 90-1116 Berkeley, CA 94720 Introduction Geophysical techniques will be used in monitoring of geologic sequestration projects. Seismic and electrical geophysical techniques will be used to map the movement of CO 2 in the subsurface and to establish that the storage volume is being efficiently utilized and the CO 2 is being safely contained within a known region. Rock physics measurements are required for interpretation of the geophysical surveys. Seismic surveys map the subsurface velocities and attenuation while electrical surveys map the conductivity. Laboratory measurements are required to convert field

219

CO2 Mineral Sequestration Studies in US  

NLE Websites -- All DOE Office Websites (Extended Search)

Mineral Sequestration Studies in US Mineral Sequestration Studies in US Philip Goldberg 1 , Zhong-Ying Chen 2 , William O'Connor 3 , Richard Walters 3 , and Hans Ziock 4 1 National Energy Technology Laboratory, P.O. Box 10940, Pittsburgh, PA 15236, goldberg@netl.doe.gov, (412)386-5806 2 Science Applications International Corporation, 1710 Goodridge Dr. McLean, VA, zhong- ying.chen@saic.com, (703)676-7328 3 Albany Research Center, Albany, OR oconner@arc.doe.gov, walters@alrc.doe, (541)967-5834 4 Los Alamos National Laboratory, Los Alamos, NM, ksl@lanl.gov, ziock@lanl.gov, (505)667- 7265 Abstract Carbon sequestration by reacting naturally occurring Mg and Ca containing minerals with CO 2 to form carbonates has many unique advantages. Most notably is the fact that carbonates have a lower energy state than CO

220

CINETIQUES DE SORPTION DU CO2 DANS LE CADRE DU STOCKAGE GEOLOGIQUE DU CO2 DANS LE CHARBON  

E-Print Network (OSTI)

CINETIQUES DE SORPTION DU CO2 DANS LE CADRE DU STOCKAGE GEOLOGIQUE DU CO2 DANS LE CHARBON KINETIC PROCESSES OF CO2 SORPTION FOR CO2 STORAGE IN COAL SEAMS Delphine CHARRIERE1, 2 , Zbigniew POKRYSZKA1 récupération assistée du méthane requiert des informations sur les mécanismes de sorption de gaz. Dans ce

Boyer, Edmond

Note: This page contains sample records for the topic "large volume co2" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Relationships between soil CO2 concentration and CO2 production, temperature, water content, and gas diffusivity: implications for field studies through sensitivity analyses  

Science Journals Connector (OSTI)

Soil CO2 levels reflect CO2 production and transport in soil and provide valuable information about soil CO2 dynamics. However, extracting information from soil CO2 profiles is often difficult because of the comp...

Shoji Hashimoto; Hikaru Komatsu

2006-02-01T23:59:59.000Z

222

Adsorption separation of CO2 from simulated flue gas mixtures by novel CO2 ''molecular basket'' adsorbents  

Science Journals Connector (OSTI)

Adsorption separation of CO2 from simulated flue gas mixtures containing CO2, O2, and N2 by using a novel CO2 ''molecular basket'' adsorbent was investigated in a flow adsorption separation system. The novel CO2 ''molecular basket'' adsorbents were developed by synthesising mesoporous molecular sieve MCM-41 and modifying it with polyethylenimine (PEI). The influence of operation conditions, including feed flow rate, temperature, feed CO2 concentration, and sweep gas flow rate, on the CO2 adsorption/desorption separation performance and CO2 breakthrough were examined. The CO2 adsorption capacity was 91.0 ml (STP)/g-PEI, which was 27 times higher than that of the MCM-41 alone. Further, the adsorbent showed separation selectivity of greater than 1000 for CO2/N2 ratio and approximately 180 for CO2/O2, which are significantly higher than those of the MCM-41, zeolites, and activated carbons. Cyclic adsorption/desorption measurements showed that the CO2 ''molecular basket'' adsorbent was stable at 75°C. However, the CO2 ''molecular basket'' adsorbent was not stable when the operation temperature was higher than 100°C.

Xiaochun Xu; Chunshan Song; John M. Andresen; Bruce G. Miller; Alan W. Scaroni

2004-01-01T23:59:59.000Z

223

Photosynthetic Traits in Wheat Grown under Decreased and Increased CO2 Concentration, and after Transfer to Natural CO2 concentration  

Science Journals Connector (OSTI)

Wheat plants were grown from sowing to day 18 in 26-dm3 chambers at three different CO2 concentrations: 150 (-CO2), 350 (C, control), 800 (+CO2) ?mol mol-1. Afterwards, plants of the three variants were grown at ...

P. Ulman; J. ?atský; J. Pospíšilová

2000-08-01T23:59:59.000Z

224

Selection of coals of different maturities for CO2 Storage by modelling of CH4 and CO2 adsorption isotherms  

E-Print Network (OSTI)

of this study is to compare and model pure gas sorption isotherms (CO2 and CH4) for well-characterised coals of different maturities to determine the most suitable coal for CO2 storage. Carbon dioxide and methane; Coals; Methane and carbon dioxide adsorption; Modelling isotherms 1. Introduction CO2 is a greenhouse

Paris-Sud XI, Université de

225

TOUGH+CO2: A multiphase fluid-flow simulator for CO2 geologic sequestration in saline aquifers  

Science Journals Connector (OSTI)

TOUGH+CO"2 is a new simulator for modeling of CO"2 geologic sequestration in saline aquifers. It is a member of TOUGH+, the successor to the TOUGH2 family of codes for multicomponent, multiphase fluid and heat flow simulation. The code accounts for heat ... Keywords: CO2 geologic sequestration, Modeling, Multiphase flow, Parallel computing, Saline aquifer, TOUGH+, TOUGH2

Keni Zhang; George Moridis; Karsten Pruess

2011-06-01T23:59:59.000Z

226

Nanoclay-Based Solid Sorbents for CO2 Capture  

Science Journals Connector (OSTI)

Nanoclay-Based Solid Sorbents for CO2 Capture ... As seen from the figure, the untreated nanoclay shows very little CO2 capture, while amine-treated nanoclays show considerably higher CO2 capture capacities, demonstrating the effectiveness of the amine treatment. ... The CO2 sorption capacity increases as the temperature is increased from 50 to 85 °C, and it reaches as high as 7.5% at 85 °C for the nanoclay treated with both APTMS and PEI, although the nanoclays treated with either APTMS or PEI show about 6% CO2 capture capacity. ...

Elliot A. Roth; Sushant Agarwal; Rakesh K. Gupta

2013-03-19T23:59:59.000Z

227

Dual-phase membrane for High temperature CO2 separation  

NLE Websites -- All DOE Office Websites (Extended Search)

Jerry Y.S. Lin Jerry Y.S. Lin Chemical Engineering Arizona State University Tempe, AZ 85287 Jerry.lin@asu.edu Pre-Combustion Carbon Dioxide Capture by a New Dual-Phase Ceramic-Carbonate Membrane Reactor 2 Background 3 CO 2 Capture Methods and Efficiency Improvement Coal, Natural gas, Biomass CO 2 separation Power plant CO 2 compression, conditioning for sequestration Gasification Reforming Shift CO 2 Separation Power plant Power plant Air separation N 2 /O 2 CO 2 Post- combustion H 2 /CO H 2 /CO H 2 CO 2 H 2 O/N 2 /O 2 CO 2 H 2 Pre- combustion Air N 2 O 2 or O 2 /CO 2 CO 2 Oxyfuel Combustion Air separation Air Air separation Air Air separation Air Air Air Air Air separation Air Air separation Air N 2 Air separation Air O 2 or O 2 /CO 2 N 2 Air separation Air N 2 Air O 2 or O 2 /CO 2 N 2 Air Air separation N 2 Air 4 Water-Gas-Shift Reaction and Membrane Reactor Reforming

228

Integration of the steam cycle and CO2 capture process in a decarbonization power plant  

Science Journals Connector (OSTI)

Abstract A new integrated system with power generation and CO2 capture to achieve higher techno-economic performance is proposed in this study. In the new system, three measures are adopted to recover the surplus energy from the CO2 capture process. The three measures are as follows: (1) using a portion of low-pressure steam instead of high-pressure extracted steam by installing the steam ejector, (2) mixing a portion of flash-off water with the extracted steam to utilize the superheat degree of the extracted steam, and (3) recycling the low-temperature waste heat from the CO2 capture process to heat the condensed water. As a result, the power output of the new integrated system is 107.61 MW higher than that of a decarbonization power plant without integration. The efficiency penalty of CO2 capture is expected to decrease by 4.91%-points. The increase in investment produced by the new system is 3.25 M$, which is only 0.88% more than the total investment of a decarbonization power plant without integration. Lastly, the cost of electricity and CO2 avoided is 15.14% and 33.1% lower than that of a decarbonization power generation without integration, respectively. The promising results obtained in this study provide a new approach for large-scale CO2 removal with low energy penalty and economic cost.

Gang Xu; Yue Hu; Baoqiang Tang; Yongping Yang; Kai Zhang; Wenyi Liu

2014-01-01T23:59:59.000Z

229

NETL - World CO2 Emissions - Projected Trends Tool | Open Energy  

Open Energy Info (EERE)

NETL - World CO2 Emissions - Projected Trends Tool NETL - World CO2 Emissions - Projected Trends Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: NETL - World CO2 Emissions - Projected Trends Tool Agency/Company /Organization: National Energy Technology Laboratory Sector: Energy Topics: GHG inventory Resource Type: Software/modeling tools Website: www.netl.doe.gov/energy-analyses/refshelf/results.asp?ptype=Models/Too References: NETL - World CO2 Emissions - Projected Trends Tool [1] NETL - World CO2 Emissions - Projected Trends Tool This interactive tool enables the user to look at both total and power sector CO2 emissions from the use of coal, oil, or natural gas, over the period 1990 to 2030. One can use the tool to compare five of the larger CO2 emitters to each other or to overall world emissions. The data are from the

230

Site Characterization of Promising Geologic Formations for CO2 Storage |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site Characterization of Promising Geologic Formations for CO2 Site Characterization of Promising Geologic Formations for CO2 Storage Site Characterization of Promising Geologic Formations for CO2 Storage In September 2009, the U.S. Department of Energy announced the award of 11 projects with a total project value of $75.5 million* to conduct site characterization of promising geologic formations for CO2 storage. These Recovery Act projects will increase our understanding of the potential for these formations to safely and permanently store CO2. The information gained from these projects (detailed below) will further DOE's efforts to develop a national assessment of CO2 storage capacity in deep geologic formations. Site Characterization of Promising Geologic Formations for CO2 Storage * Subsequently, the Board of Public Works project in Holland, MI has been

231

ARM - Datastreams - 30co2flx60m  

NLE Websites -- All DOE Office Websites (Extended Search)

flx60m flx60m Documentation Data Quality Plots Citation DOI: 10.5439/1025038 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : 30CO2FLX60M Eddy Correlation CO2 Flux Data: 60 m samples, 30-min avg Active Dates 2001.01.01 - 2013.01.27 Measurement Categories Atmospheric Carbon, Atmospheric State, Surface Properties Originating Instrument Carbon Dioxide Flux Measurement Systems (CO2FLX) Measurements The measurements below provided by this product are those considered scientifically relevant. Measurement Variable Atmospheric turbulence Lmoni CO2 flux fc_corr CO2 flux fc_wpl_h CO2 flux fc_wpl_le Sensible heat flux h Latent heat flux le CO2 concentration mean_c Atmospheric moisture

232

Carbon Dioxide Transport and Sorption Behavior in Confined Coal Cores for Enhanced Coalbed Methane and CO2 Sequestration  

SciTech Connect

Measurements of sorption isotherms and transport properties of CO2 in coal cores are important for designing enhanced coalbed methane/CO2 sequestration field projects. Sorption isotherms measured in the lab can provide the upper limit on the amount of CO2 that might be sorbed in these projects. Because sequestration sites will most likely be in unmineable coals, many of the coals will be deep and under considerable lithostatic and hydrostatic pressures. These lithostatic pressures may significantly reduce the sorption capacities and/or transport rates. Consequently, we have studied apparent sorption and diffusion in a coal core under confining pressure. A core from the important bituminous coal Pittsburgh #8 was kept under a constant, three-dimensional external stress; the sample was scanned by X-ray computer tomography (CT) before, then while it sorbed, CO2. Increases in sample density due to sorption were calculated from the CT images. Moreover, density distributions for small volume elements inside the core were calculated and analyzed. Qualitatively, the computerized tomography showed that gas sorption advanced at different rates in different regions of the core, and that diffusion and sorption progressed slowly. The amounts of CO2 sorbed were plotted vs. position (at fixed times) and vs. time (for various locations in the sample). The resulting sorption isotherms were compared to isotherms obtained from powdered coal from the same Pittsburgh #8 extended sample. The results showed that for this single coal at specified times, the apparent sorption isotherms were dependent on position of the volume element in the core and the distance from the CO2 source. Also, the calculated isotherms showed that less CO2 was sorbed than by a powdered (and unconfined) sample of the coal. Changes in density distributions during the experiment were also observed. After desorption, the density distribution of calculated volume elements differed from the initial distribution, suggesting hysteresis and a possible rearrangement of coal structure due to CO2 sorption.

Jikich, S.A.; McLendon, T.R.; Seshadri, K.S.; Irdi, G.A.; Smith, D.H.

2007-11-01T23:59:59.000Z

233

CO2 sorption and reaction kinetic performance of K2CO3/AC in low temperature and CO2 concentration  

Science Journals Connector (OSTI)

Abstract Reducing or removing CO2 is critical to the confined spaces such as submarines, space-crafts or aircrafts while using solid sorbents has been regarded as a promising method. In this work, K2CO3 loaded on activated carbon (K2CO3/AC) was developed as a new and regenerable sorbent for CO2 removing in confined spaces. CO2 sorption performances of K2CO3/AC were investigated under different conditions by varying the K2CO3 loadings, CO2 concentrations, H2O concentrations, CO2 sorption temperatures and water pretreatment durations as well as the purge gas flow rates. The CO2 sorption capacity and carbonation conversion of K2CO3/AC decrease with increasing temperature and increase with increasing mole ratio of H2O concentration over CO2 concentration. Sufficient water vapor pretreatment is found to be beneficial to the sorption-enhanced performance. Increasing flow rate will weaken the CO2 sorption performance. The carbonation kinetics was also investigated with the correlation between the shrinking core model and experimental data. Additionally, the sorbent is proved to be regenerable and stable during 20-cycle CO2 sorption–desorption experiments. K2CO3/AC presents high carbonation conversion efficiency, high thermal stability, and low dependency on CO2 partial pressure. Therefore, it can be considered as a new option for CO2 removal in confined spaces.

Yafei Guo; Chuanwen Zhao; Changhai Li; Ye Wu

2015-01-01T23:59:59.000Z

234

NETL: IEP - Post-Combustion CO2 Emissions Control - CO2 Capture Membrane  

NLE Websites -- All DOE Office Websites (Extended Search)

CO2 Capture Membrane Process for Power Plant Flue Gas CO2 Capture Membrane Process for Power Plant Flue Gas Project No.: DE-NT0005313 CLICK ON IMAGE TO ENLARGE Research Triangle Institute (RTI) International is researching fluorinated polymer membranes for carbon dioxide capture. RTI's research effort includes membrane materials development, module design, and process design. RTI is pursuing the development of two hollow-fiber membrane materials. First, RTI is working with Generon to develop a membrane material constructed of polycarbonate-based polymers. Lab-scale membrane modules are being studied with simulated flue-gas mixtures with and without flue gas emission contaminants. Two larger-scale polycarbonate membrane module prototypes are being tested with a slipstream of actual flue gas from the U.S. Environmental Protection Agency's (EPA) Multipollutant

235

Supersonic Technology for CO2 Capture: A High Efficiency Inertial CO2 Extraction System  

SciTech Connect

IMPACCT Project: Researchers at ATK and ACENT Laboratories are developing a device that relies on aerospace wind-tunnel technologies to turn CO2 into a condensed solid for collection and capture. ATK’s design incorporates a special nozzle that converges and diverges to expand flue gas, thereby cooling it off and turning the CO2 into solid particles which are removed from the system by a cyclonic separator. This technology is mechanically simple, contains no moving parts and generates no chemical waste, making it inexpensive to construct and operate, readily scalable, and easily integrated into existing facilities. The increase in the cost to coal-fired power plants associated with introduction of this system would be 50% less than current technologies.

None

2010-07-01T23:59:59.000Z

236

System-level modeling for geological storage of CO2  

SciTech Connect

One way to reduce the effects of anthropogenic greenhousegases on climate is to inject carbon dioxide (CO2) from industrialsources into deep geological formations such as brine formations ordepleted oil or gas reservoirs. Research has and is being conducted toimprove understanding of factors affecting particular aspects ofgeological CO2 storage, such as performance, capacity, and health, safetyand environmental (HSE) issues, as well as to lower the cost of CO2capture and related processes. However, there has been less emphasis todate on system-level analyses of geological CO2 storage that considergeological, economic, and environmental issues by linking detailedrepresentations of engineering components and associated economic models.The objective of this study is to develop a system-level model forgeological CO2 storage, including CO2 capture and separation,compression, pipeline transportation to the storage site, and CO2injection. Within our system model we are incorporating detailedreservoir simulations of CO2 injection and potential leakage withassociated HSE effects. The platform of the system-level modelingisGoldSim [GoldSim, 2006]. The application of the system model is focusedon evaluating the feasibility of carbon sequestration with enhanced gasrecovery (CSEGR) in the Rio Vista region of California. The reservoirsimulations are performed using a special module of the TOUGH2 simulator,EOS7C, for multicomponent gas mixtures of methane and CO2 or methane andnitrogen. Using this approach, the economic benefits of enhanced gasrecovery can be directly weighed against the costs, risks, and benefitsof CO2 injection.

Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan; Bodvarsson, Gudmundur S.

2006-04-24T23:59:59.000Z

237

QGESS: CO2 Impurity Design Parameters  

NLE Websites -- All DOE Office Websites (Extended Search)

Q Q U U A A L L I I T T Y Y G G U U I I D D E E L L I I N N E E S S F F O O R R E E N N E E R R G G Y Y S S Y Y S S T T E E M M S S T T U U D D I I E E S S C C O O 2 2 I I m m p p u u r r i i t t y y D D e e s s i i g g n n P P a a r r a a m m e e t t e e r r s s DOE/NETL-2010/???? DOE/NETL-341/011212 August 2013 CO 2 Impurity Design Parameters Quality Guidelines for Energy System Studies Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.

238

Oxygen supply for oxyfuel CO2 capture  

Science Journals Connector (OSTI)

This paper presents the results of a study to develop Air Products’ air separation unit (ASU) offerings for oxyfuel coal CO2 capture projects. A scalable “reference plant” concept is described to match particular sizes of power generation equipment, taking into account factors such as safety, reliability, operating flexibility, efficiency, and low capital cost. We describe the selection of a process cycle to exploit the low purity requirements, as well as the options for compression machinery and drivers as the scale of the plant increases and the sizes of referenced equipment limit the possibilities. We also explore integration with other elements of the system, such as preheating condensate or heating and expanding pressurised nitrogen. In addition, we consider how the ASU affects the flexibility of the oxyfuel system and discuss how its power consumption can be reduced during periods of high power demand. Finally, the advantages and disadvantages of different execution strategies for air separation unit projects are discussed, as well as alternative commercial models for the supply of oxygen.

Paul Higginbotham; Vince White; Kevin Fogash; Galip Guvelioglu

2011-01-01T23:59:59.000Z

239

Silica–titania aerogel monoliths with large pore volume and surface area by ambient pressure drying  

Science Journals Connector (OSTI)

Ambient pressure drying has been carried out for the synthesis of silica–titania aerogel monoliths. The prepared aerogels show densities in the range 0.34–0.38 g/cm3. The surface area and pore volume of these mix...

P. R. Aravind; P. Shajesh; P. Mukundan…

2009-12-01T23:59:59.000Z

240

Efficiency of Sequestrating CO2 in the Ocean  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficiency of Sequestrating CO Efficiency of Sequestrating CO 2 in the Ocean Richard Dewey (RDewey@uvic.ca ; 250-472-4009) University of Victoria, P.O. Box 3055, Victoria BC Canada V8N 3P6 Gilbert Stegen (Dr_Stegen@hotmail.com ; 425-869-7236) SAIC and GRS Associates 17257 NE 116 th St., Redmond WA USA 98052 Abstract Ocean disposal of CO 2 continues to be of great interest as a possible mitigation strategy for reducing atmospheric emissions of anthropogenic CO 2 . The ocean, and ultimately ocean sediments, naturally represents the single largest sink of CO 2 , and annually sequesters several gigatons of carbon from the atmosphere. The injection of additional CO 2 to artificially accelerate the use of the ocean as a sink for atmospheric CO 2 and avoid a short-term build-up of greenhouse gases has been investigated for

Note: This page contains sample records for the topic "large volume co2" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

NETL: 2011 Conference Proceedings - 2011 NETL CO2 Capture Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

2011 NETL CO2 Capture Technology Meeting 2011 NETL CO2 Capture Technology Meeting August 22 - 26, 2011 Previous Proceedings 2009: Annual NETL CO2 Capture Technology for Existing Plants R&D Meeting 2010: 2010 NETL CO2 Capture Technology Meeting Proceedings of the 2011 NETL CO2 Capture Technology Meeting Table of Contents Presentations Monday, August 22 Opening/Overview Post-combustion Sorbent-Based Capture Post-combustion Membrane-Based Capture Tuesday, August 23 Post-combustion Solvent-Based Capture ARPA-E Capture Projects Wednesday, August 24 Oxy-Combustion and Oxygen Production Chemical Looping Process CO2 Compression Thursday, August 25 FutureGen 2.0, CCPI and ICCS Demonstration Projects System Studies and Modeling Pre-Combustion Capture Projects Friday, August 26 Pre-combustion Capture Projects Posters

242

People's Republic of China Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Asia Asia » People's Republic of China People's Republic of China Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends According to reported energy statistics, coal production and use in China has increased ten-fold since the 1960s. As a result, Chinese fossil-fuel CO2 emissions have more than doubled 2000 alone. At 1.92 billion metric tons of carbon in 2008, the People's Republic of China is the world's largest emitter of CO2 due to fossil-fuel use and cement production. Even with the reported decline in Chinese emissions from 1997 to 1999, China's industrial emissions of CO2 have grown phenomenally since 1950, when China stood tenth among nations based on annual fossil-fuel CO2 emissions. From 1970 to 1997, China's fossil-fuel CO2 emissions grew at an annual rate of

243

Atmospheric Concentrations of CO2 from Mauna Loa, Hawaii  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Concentrations of CO2 from Mauna Loa, Hawaii Atmospheric Concentrations of CO2 from Mauna Loa, Hawaii The graphs on this page are generated from data taken from "Trends in Carbon Dioxide" page on the Department of Commerce/National Oceanic and Atmospheric Administration (NOAA) website. The NOAA website presents monthly and weekly atmospheric CO2 concentrations measured at the Mauna Loa Observatory in Hawaii. It offers weekly and monthly data, additional graphs, analysis, descriptions of how the data are collected, and an animation of historical changes in atmospheric CO2. Mauna Loa constitutes the longest record of direct measurements of CO2 in the atmosphere. The measurents were started by C. David Keeling of the Scripps Institution of Oceanography in March of 1958. Recent Monthly Average CO2

244

CO2 Sequestration Potential of Texas Low-Rank Coals  

NLE Websites -- All DOE Office Websites (Extended Search)

Co Co 2 SequeStration Potential of texaS low-rank CoalS Background Fossil fuel combustion is the primary source of emissions of carbon dioxide (CO 2 ), a major greenhouse gas. Sequestration of CO 2 by injecting it into geologic formations, such as coal seams, may offer a viable method for reducing atmospheric CO 2 emissions. Injection into coal seams has the potential added benefit of enhanced coalbed methane recovery. The potential for CO 2 sequestration in low-rank coals, while as yet undetermined, is believed to differ significantly from that for bituminous coals. To evaluate the feasibility and the environmental, technical, and economic impacts of CO 2 sequestration in Texas low-rank coal beds, the Texas Engineering Experimental Station is conducting a four-year study

245

ARM - Datastreams - 30co2flx4mmet  

NLE Websites -- All DOE Office Websites (Extended Search)

mmet mmet Documentation Data Quality Plots Citation DOI: 10.5439/1025037 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : 30CO2FLX4MMET Eddy Correlation CO2 Flux Data: 4 m samples, meteorological data, 30-min stats Active Dates 2002.12.18 - 2013.01.27 Measurement Categories Atmospheric Carbon, Atmospheric State, Radiometric, Surface Properties Originating Instrument Carbon Dioxide Flux Measurement Systems (CO2FLX) Measurements The measurements below provided by this product are those considered scientifically relevant. Measurement Variable Atmospheric turbulence Lmoni Atmospheric pressure bar_pres CO2 flux fc_corr CO2 flux fc_wpl_h CO2 flux fc_wpl_le Sensible heat flux

246

Reaction of Cp*(CO)2ReRe(CO)2Cp* with Alkynes Produces Dimetallacyclopentenones Cp*(CO)2Re(?-?1,?3-CRCR‘CO)Re(CO)Cp* Which React with Acid To Form Cationic Bridging Vinyl Complexes  

Science Journals Connector (OSTI)

Reaction of Cp*(CO)2ReRe(CO)2Cp* with Alkynes Produces Dimetallacyclopentenones Cp*(CO)2Re(?-?1,?3-CRCR‘CO)Re(CO)Cp* Which React with Acid To Form Cationic Bridging Vinyl Complexes ... Cp*(CO)2ReRe(CO)2Cp* reacted with terminal alkynes HC?CR to produce dimetallacyclopentenones Cp*(CO)2Re(?-?1,?3-CHCRCO)Re(CO)Cp*. ... Protonation of the dimetallacyclopentenones with CF3CO2H produced (?-vinyl)dirhenium cations [Cp*(CO)2Re(?-?1,?2-CHCHR)Re(CO)2Cp*]+. ...

Charles P. Casey; Ronald S. Cariño; Hiroyuki Sakaba

1997-02-04T23:59:59.000Z

247

VOLUME  

NLE Websites -- All DOE Office Websites (Extended Search)

term must make a large positive contribution. As there is no external source of momentum input, V must be self-generated. The floating and plasma potentials (Fig. 2) are related...

248

Aquatic primary production in a high-CO2 world  

E-Print Network (OSTI)

Aquatic primary production in a high-CO2 world Etienne Low-De´carie, Gregor F. Fussmann, and Graham-Penfield, Montreal, QC, H3A 1B1, Canada Here, we provide a review of the direct effect of increas- ing CO2 on aquatic: the assessment of theories about limitation of productivity and the integration of CO2 into the co

Fussman, Gregor

249

Spatial Disaggregation of CO2 Emissions for the State of California  

SciTech Connect

This report allocates California's 2004 statewide carbon dioxide (CO2) emissions from fuel combustion to the 58 counties in the state. The total emissions are allocated to counties using several different methods, based on the availability of data for each sector. Data on natural gas use in all sectors are available by county. Fuel consumption by power and combined heat and power generation plants is available for individual plants. Bottom-up models were used to distribute statewide fuel sales-based CO2 emissions by county for on-road vehicles, aircraft, and watercraft. All other sources of CO2 emissions were allocated to counties based on surrogates for activity. CO2 emissions by sector were estimated for each county, as well as for the South Coast Air Basin. It is important to note that emissions from some sources, notably electricity generation, were allocated to counties based on where the emissions were generated, rather than where the electricity was actually consumed. In addition, several sources of CO2 emissions, such as electricity generated in and imported from other states and international marine bunker fuels, were not included in the analysis. California Air Resource Board (CARB) does not include CO2 emissions from interstate and international air travel, in the official California greenhouse gas (GHG) inventory, so those emissions were allocated to counties for informational purposes only. Los Angeles County is responsible for by far the largest CO2 emissions from combustion in the state: 83 Million metric tonnes (Mt), or 24percent of total CO2 emissions in California, more than twice that of the next county (Kern, with 38 Mt, or 11percent of statewide emissions). The South Coast Air Basin accounts for 122 MtCO2, or 35percent of all emissions from fuel combustion in the state. The distribution of emissions by sector varies considerably by county, with on-road motor vehicles dominating most counties, but large stationary sources and rail travel dominating in other counties.The CO2 emissions data by county and source are available upon request.

de la Rue du Can, Stephane; de la Rue du Can, Stephane; Wenzel, Tom; Fischer, Marc

2008-06-11T23:59:59.000Z

250

Capture and Sequestration of CO2 at the Boise White Paper Mill  

SciTech Connect

This report documents the efforts taken to develop a preliminary design for the first commercial-scale CO2 capture and sequestration (CCS) project associated with biomass power integrated into a pulp and paper operation. The Boise Wallula paper mill is located near the township of Wallula in Southeastern Washington State. Infrastructure at the paper mill will be upgraded such that current steam needs and a significant portion of the current mill electric power are supplied from a 100% biomass power source. A new biomass power system will be constructed with an integrated amine-based CO2 capture plant to capture approximately 550,000 tons of CO2 per year for geologic sequestration. A customized version of Fluor Corporation’s Econamine Plus™ carbon capture technology will be designed to accommodate the specific chemical composition of exhaust gases from the biomass boiler. Due to the use of biomass for fuel, employing CCS technology represents a unique opportunity to generate a net negative carbon emissions footprint, which on an equivalent emissions reduction basis is 1.8X greater than from equivalent fossil fuel sources (SPATH and MANN, 2004). Furthermore, the proposed project will offset a significant amount of current natural gas use at the mill, equating to an additional 200,000 tons of avoided CO2 emissions. Hence, the total net emissions avoided through this project equates to 1,100,000 tons of CO2 per year. Successful execution of this project will provide a clear path forward for similar kinds of emissions reduction that can be replicated at other energy-intensive industrial facilities where the geology is suitable for sequestration. This project also represents a first opportunity for commercial development of geologic storage of CO2 in deep flood basalt formations. The Boise paper mill site is host to a Phase II pilot study being carried out under DOE’s Regional Carbon Partnership Program. Lessons learned from this pilot study and other separately funded projects studying CO2 sequestration in basalts will be heavily leveraged in developing a suitable site characterization program and system design for permanent sequestration of captured CO2. The areal extent, very large thickness, high permeability in portions of the flows, and presence of multiple very low permeability flow interior seals combine to produce a robust sequestration target. Moreover, basalt formations are quite reactive with water-rich supercritical CO2 and formation water that contains dissolved CO2 to generate carbonate minerals, providing for long-term assurance of permanent sequestration. Sub-basalt sediments also exist at the site providing alternative or supplemental storage capacity.

B.P. McGrail; C.J. Freeman; G.H. Beeman; E.C. Sullivan; S.K. Wurstner; C.F. Brown; R.D. Garber; D. Tobin E.J. Steffensen; S. Reddy; J.P. Gilmartin

2010-06-16T23:59:59.000Z

251

Grangemouth Advanced CO2 Capture Project GRACE | Open Energy...  

Open Energy Info (EERE)

GRACE is a project consortium that aims to develop cost improving technologies for carbon capture and separation. References: Grangemouth Advanced CO2 Capture Project...

252

Synthesis and CO2 Adsorption Properties of Molecularly Imprinted Adsorbents  

Science Journals Connector (OSTI)

Synthesis and CO2 Adsorption Properties of Molecularly Imprinted Adsorbents ... Adsorption Separation of Carbon Dioxide from Flue Gas by a Molecularly Imprinted Adsorbent ...

Yi Zhao; Yanmei Shen; Lu Bai; Rongjie Hao; Liyan Dong

2012-01-12T23:59:59.000Z

253

Characterization New CO2 Laser Universidad del Valle Cali Colombia  

Science Journals Connector (OSTI)

The new CO2 laser constructed in Cali Colombia was characterized. Include power vs. pressure, for a constant voltage and constant pressure, spectrum visible for mixture, stability of...

Bedoya, Alvaro Casas; Goyes, Clara E; Garcia, Hans; Rodríguez, Efrain Solarte

254

Validation of CO2 line parameters used in temperature retrievals  

Science Journals Connector (OSTI)

A simultaneous retrieval procedure is utilized to investigate CO2 spectroscopic line parameters in order to reduce systematic errors in temperature retrievals. Provided are initial...

Shephard, Mark W; Clough, Shepard A; Delamere, Jennifer; Tobin, David C; Turner, David D; Revercomb, Hank E; Knuteson, Robert; Beer, Reinhard

255

CO2-SELECTIVE MEMBRANE FOR FUEL CELL APPLICATIONS.  

E-Print Network (OSTI)

??We have developed CO2-selective membranes to purified hydrogen and nitrogenfor fuel cell processes. Hydrogen purification impacts other industries such as ammoniaproduction and flue gas purification… (more)

El-Azzami, Louei Abdel Raouf

2006-01-01T23:59:59.000Z

256

Novel Processes for Power Plant with CO2 Capture.  

E-Print Network (OSTI)

?? The purpose of this thesis was to examine different technologies, which enhances the CO2 partial pressure in the flue gas from the natural gas… (more)

Ekre, Kjetil Vinjerui

2012-01-01T23:59:59.000Z

257

Technological Options for Reducing Non-CO2 GHG Emissions  

Science Journals Connector (OSTI)

A project titled Clearinghouse of Technological Options for Reducing Anthropogenic Non-CO 2 GHG Emissions from All Sectors was recently conducted. The o...

Prof. Dr. Jeff Kuo Ph.D.; P.E.

2012-01-01T23:59:59.000Z

258

Supercontinuum generation versus optical breakdown in CO2 gas  

Science Journals Connector (OSTI)

Threshold powers for optical breakdown (OB) and supercontinuum (SC) generation in high-pressure CO2 gas have been measured at different focusing conditions. It has been...

Ilkov, F A; Ilkova, L Sh; Chin, S L

1993-01-01T23:59:59.000Z

259

Gravity monitoring of CO2 movement during sequestration: Model studies  

E-Print Network (OSTI)

CO 2 enhanced oil recovery (EOR) and sequestration in afor a coalbed methane formation. EOR/sequestration petroleumbut shallow compared to either EOR or brine formations. The

Gasperikova, E.

2008-01-01T23:59:59.000Z

260

CO2ReMoVe - Progress Report  

E-Print Network (OSTI)

Seismic characterization of thin beds containing patchy carbon dioxide-brine .... different fluids involved in the CO2 sequestration procedure at variable formation

Danilo R. Velis

Note: This page contains sample records for the topic "large volume co2" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Enhanced Geothermal Systems (EGS) with CO2as Heat Transmission...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

precipitation with spatial and temporal flow variations in CO2brinerock systems Tracer Methods for Characterizing Fracture Stimulation in Engineered Geothermal Systems (EGS)...

262

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network (OSTI)

EOR) and enhanced coalbed methane recovery (ECBMR) becauseand potential for coalbed methane. The Mannville coals areCO 2 injectivity and coalbed methane producibility. Thus,

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

263

Chemical Impact of Elevated CO2on Geothermal Energy Production  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chemical Impact of Elevated CO 2 on Geothermal Energy Production Principal Investigator Susan Carroll Lawrence Livermore National Lab Track Name May 18-20, 2010 This presentation...

264

Influence of capillary pressure on CO2 storage and monitoring  

E-Print Network (OSTI)

solutions to mitigate the greenhouse effect. We are interested in analyzing the influence of capillary pressure on CO2 in- jection, storage and monitoring in saline ...

gabriela

265

Geothermal: Sponsored by OSTI -- Integrated, Geothermal-CO2 Storage...  

Office of Scientific and Technical Information (OSTI)

Integrated, Geothermal-CO2 Storage Reservoirs: Adaptable, Multi-Stage, Sustainable, Energy-Recovery Strategies that Reduce Carbon Intensity and Environmental Risk...

266

The urgency of the development of CO2 capture from ambient air  

Science Journals Connector (OSTI)

...large and thus rapidly overwhelm local markets for commercial CO 2 . The scale of CO...carriers such as methanol, synthetic diesel, or gasoline or more exotic alternatives...the first entry into a new electric car market. Therefore, it is not surprising that...

Klaus S. Lackner; Sarah Brennan; Jürg M. Matter; A.-H. Alissa Park; Allen Wright; Bob van der Zwaan

2012-01-01T23:59:59.000Z

267

Electricity generation from coal with CO2 capture by means of a novel power cycle  

SciTech Connect

Climate modelers have estimated that anthropogenic emissions of CO2 must be reduced substantially from the present rate to stabilize atmospheric concentration. To achieve this, electricity generation from fossil fuels with CO2 capture and direct sequestration may play an important role. If so, it will be worthwhile to consider power cycles that are designed to minimize atmospheric CO2 emissions and deliver CO2 ready for pipeline transport in addition to providing other desirable attributes of environmental performance and efficiency. One such novel approach, named the Matiant cycle, employs self generated CO2 as the working fluid with both Bryton and Rankine cycle turbines. Process modeling studies are being conducted at the NETL to investigate the promise of this cycle. In the work to be reported, synthesis gas is provided to the Matiant cycle by oxygen-blown dry coal entrained gasification. Oxygen for both the gasifier and the Matiant cycle is provided by use of an Ion Transport Membrane (ITM). ITM is a revolutionary approach for producing high purity oxygen from a high temperature pressurized air stream. ASPEC Plus is used as the simulation tool to compute energy balances and system performance. Two flowsheets are analyzed, the difference being the treatment of the low oxygen content raffinate stream from the ITM. Computed thermal efficiencies of the ITM/Matiant cycle are comparable to those of conventional IGCC without carbon capture. Specific carbon emissions per net MWh are many times lower for the new cycle than for other approaches being developed for power generation with CO2 capture, however. As much as 99.5% of the carbon in synthesis gas fed to the Matiant cycle could be recovered and removed in a pipeline as a high pressure liquid. Such high capture efficiencies at large central generating stations could allow use of fossil fuels without capture at smaller installations or by mobile sources, yielding a modest overall rate of CO2 emissions.

Ruether, J.; Le, P.; White, C.

2000-07-01T23:59:59.000Z

268

A shallow subsurface controlled release facility in Bozeman, Montana, USA, for testing near surface CO2 detection techniques and transport models  

SciTech Connect

A facility has been constructed to perform controlled shallow releases of CO2 at flow rates that challenge near surface detection techniques and can be scalable to desired retention rates of large scale CO2 storage projects. Preinjection measurements were made to determine background conditions and characterize natural variability at the site. Modeling of CO2 transport and concentration in saturated soil and the vadose zone was also performed to inform decisions about CO2 release rates and sampling strategies. Four releases of CO2 were carried out over the summer field seasons of 2007 and 2008. Transport of CO2 through soil, water, plants, and air was studied using near surface detection techniques. Soil CO2 flux, soil gas concentration, total carbon in soil, water chemistry, plant health, net CO2 flux, atmospheric CO2 concentration, movement of tracers, and stable isotope ratios were among the quantities measured. Even at relatively low fluxes, most techniques were able to detect elevated levels of CO2 in the soil, atmosphere, or water. Plant stress induced by CO2 was detectable above natural seasonal variations.

Spangler, Lee H.; Dobeck, Laura M.; Repasky, Kevin S.; Nehrir, Amin R.; Humphries, Seth D.; Barr, Jamie L.; Keith, Charlie J.; Shaw, Joseph A.; Rouse, Joshua H.; Cunningham, Alfred B.; Benson, Sally M.; Oldenburg, Curtis M.; Lewicki, Jennifer L.; Wells, Arthur W.; Diehl, J. R.; Strazisar, Brian; Fessenden, Julianna; Rahn, Thom A.; Amonette, James E.; Barr, Jonathan L.; Pickles, William L.; Jacobson, James D.; Silver, Eli A.; Male, Erin J.; Rauch, Henry W.; Gullickson, Kadie; Trautz, Robert; Kharaka, Yousif; Birkholzer, Jens; Wielopolski, Lucien

2010-03-01T23:59:59.000Z

269

Optimale Energisystemer for LNG-anlegg med CO2-fangst; Optimal Energy Systems for LNG Plants with CO2 Capture.  

E-Print Network (OSTI)

?? Produksjon av LNG er en energikrevende prosess, spesielt på grunn av høyt kraftbehov for å gjøre naturgassen flytende. Utfordringer knyttet til utslipp av CO2… (more)

Bratseth, Arne

2008-01-01T23:59:59.000Z

270

Using of the tunable CO2-laser without frequency stabilization for diagnostics of CO2 gas mixture at barometric pressure  

Science Journals Connector (OSTI)

It is presented a technique for determining temperature and pressure of CO2 in gas mixture using absorption factor spectral distribution. Errors calculated for tunable frequency...

Arshinov, K

271

Metal Organic Framework Research: High Throughput Discovery of Robust Metal Organic Framework for CO2 Capture  

SciTech Connect

IMPACCT Project: LBNL is developing a method for identifying the best metal organic frameworks for use in capturing CO2 from the flue gas of coal-fired power plants. Metal organic frameworks are porous, crystalline compounds that, based on their chemical structure, vary considerably in terms of their capacity to grab hold of passing CO2 molecules and their ability to withstand the harsh conditions found in the gas exhaust of coal-fired power plants. Owing primarily to their high tunability, metal organic frameworks can have an incredibly wide range of different chemical and physical properties, so identifying the best to use for CO2 capture and storage can be a difficult task. LBNL uses high-throughput instrumentation to analyze nearly 100 materials at a time, screening them for the characteristics that optimize their ability to selectively adsorb CO2 from coal exhaust. Their work will identify the most promising frameworks and accelerate their large-scale commercial development to benefit further research into reducing the cost of CO2 capture and storage.

None

2010-08-01T23:59:59.000Z

272

A Comparative Study on the Environmental Impact of CO2 Supermarket Refrigeration Systems  

SciTech Connect

Supermarket refrigeration systems have high environmental impact due to their large refrigerant charge and high leak rates. Accordingly, the interest in using natural refrigerants, such as carbon dioxide (CO2), and new refrigerant blends with low GWP in such systems is increasing. In this paper, an open-source Life Cycle Climate Performance (LCCP) framework is presented and used to compare the environmental impact of three supermarket refrigeration systems. These systems include a transcritical CO2 booster system, a cascade CO2/N-40 system, and a baseline R-404A multiplex direct expansion system. The study is performed for cities representing different climates within the USA using EnergyPlus to simulate the systems' hourly performance. Finally, a parametric analysis is performed to study the impact of annual leak rate on the systems' LCCP.

Beshr, Mohamed [University of Maryland, College Park; Aute, Vikrant [University of Maryland, College Park; Sharma, Vishaldeep [ORNL; Abdelaziz, Omar [ORNL; Fricke, Brian A [ORNL; Radermacher, Reinhard [University of Maryland, College Park

2014-01-01T23:59:59.000Z

273

CO2-Binding Organic Liquids, an Integrated Acid Gas Capture System  

SciTech Connect

Amine systems are effective for CO2 capture, but they are still inefficient because the solvent regeneration energy is largely defined by the amount of water in the process. Most amines form heat-stable salts with SO2 and COS resulting in parasitic solvent loss and degradation. Stripping the CO2-rich solvent is energy intensive it requires temperatures above 100 ?C due to the high specific heat and heat of vaporization of water. CO2-capture processes could be much more energy efficient in a water free amine process. In addition, if the capture-material is chemically compatible with other acid gases, less solvent would be lost to heat-stable salts and the process economics would be further improved. One such system that can address these concerns is Binding Organic Liquids (BOLs), a class of switchable ionic liquids.

Heldebrant, David J.; Koech, Phillip K.; Rainbolt, James E.; Zheng, Feng

2011-04-01T23:59:59.000Z

274

A Theoretical Study of CO2 Anions on Anatase (101) Surface. ...  

NLE Websites -- All DOE Office Websites (Extended Search)

CO2 Anions on Anatase (101) Surface. A Theoretical Study of CO2 Anions on Anatase (101) Surface. Abstract: Binding configurations of CO2 and CO2 - on perfect and oxygen-deficient...

275

Highlights of the 2009 SEG summer research workshop on "CO2 Sequestration Geophysics"  

E-Print Network (OSTI)

CO 2 saturation at the Weyburn CO 2 EOR injection project inMonitoring CO 2 storage during EOR at the Weyburn-Midalean excellent example of a CO 2 EOR (enhanced oil recovery)

Lumley, D.

2010-01-01T23:59:59.000Z

276

Single photon ionization of van der Waals clusters with a soft x-ray laser: ,,CO2...n and ,,CO2...n,,H2O...m  

E-Print Network (OSTI)

Single photon ionization of van der Waals clusters with a soft x-ray laser: ,,CO2...n and ,,CO2...n 2006; published online 20 October 2006 Pure neutral CO2 n clusters and mixed CO2 n H2O m clustersV. The distribution of pure CO2 n clusters decreases roughly exponentially with increasing cluster size. During

Rocca, Jorge J.

277

CO2 Capture by Absorption with Potassium Carbonate  

E-Print Network (OSTI)

CO2 Capture by Absorption with Potassium Carbonate Fourth Quarterly Report 2006 Quarterly Progress of this work is to improve the process for CO2 capture by alkanolamine absorption/stripping by developing% in the order: thiosulfatecarbonate is ineffective in the absence of oxygen

Rochelle, Gary T.

278

CO2 Capture by Absorption with Potassium Carbonate  

E-Print Network (OSTI)

CO2 Capture by Absorption with Potassium Carbonate First Quarterly Report 2007 Quarterly Progress of this work is to improve the process for CO2 capture by alkanolamine absorption/stripping by developing% to 160% in the order: thiosulfatecarbonate is ineffective

Rochelle, Gary T.

279

CO2 Capture by Absorption with Potassium Carbonate  

E-Print Network (OSTI)

CO2 Capture by Absorption with Potassium Carbonate Third Quarterly Report 2006 Quarterly Progress of this work is to improve the process for CO2 capture by alkanolamine absorption/stripping by developing by Jou and Mather. Corrosion of carbon steel without inhibitors increases from 19 to 181 mpy in lean

Rochelle, Gary T.

280

Oxidation in Environments with Elevated CO2 Levels  

SciTech Connect

Efforts to reduce greenhouse gas emissions from fossil energy power productions focus primarily on either pre- or post-combustion removal of CO2. The research presented here examines corrosion and oxidation issues associated with two types of post-combustion CO2 removal processes—oxyfuel combustion in refit boilers and oxyfuel turbines.

Gordon H. Holcomb

2009-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "large volume co2" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Chemical Impact of Elevated CO2on Geothermal Energy Production  

Energy.gov (U.S. Department of Energy (DOE))

This is a two phase project to assess the geochemical impact of CO2on geothermal energy production by: analyzing the geochemistry of existing geothermal fields with elevated natural CO2; measuring realistic rock-water rates for geothermal systems using laboratory and field-based experiments to simulate production scale impacts.

282

Implementation of the El Mar (Delaware) Unit CO2 flood  

SciTech Connect

Union Royalty, Inc., Amoco Production Company, and Enron Liquids Pipeline Company recently announced that they have commenced operations of an innovative enhanced oil recovery project at the El Mar (Delaware) Unit in Loving County, Texas, about 100 miles west of Midland, Texas. The project will convert the unit`s existing oil recovery system from a secondary (waterflood) system to a tertiary (CO2 flood) system designed to use carbon dioxide and water to increase crude oil production from the unit. What makes this EOR project unique is the creative deal structured by the partners involved. Amoco, Union Royalty, and Enron have worked out an unprecedented arrangement whereby Amoco essentially trades CO2 for an interest in Union Royalty`s future oil production from the unit. By pioneering this innovative deal new production life has been restored to a field that otherwise might dry up. Enron is participating in the project by transporting CO2 to the unit via a 40-mile expansion of its Central Basin Pipeline system from the Dollarhide oil field in Andrews county, Texas. The project will be implemented in four phases. The first phase in operation today comprises seven CO2 injection wells which have begun to process the reservoir with CO2. Plans now call for more CO2 injectors to be installed during the next three to five years until a total of 65 CO2 injectors and an on-site CO2 compression facility serve the unit`s 70 production wells.

McKnight, T.N. Jr. [Union Royalty, Inc., Midland, TX (United States); Merchant, D.L.

1995-12-31T23:59:59.000Z

283

Energy Resonances between Molecular Species in CO2 Gas Lasers  

Science Journals Connector (OSTI)

... to a, number of other close energy resonances which exist, between laser levels of CO2, and the diatomic and triatomic; species expected to be present in various discharges in ... the diatomic and triatomic; species expected to be present in various discharges in. which CO2 laser action has been achieved. ...

R. W. NICHOLLS

1970-04-25T23:59:59.000Z

284

THERMOCATALYTIC CO2-FREE PRODUCTION OF HYDROGEN FROM HYDROCARBON FUELS  

E-Print Network (OSTI)

THERMOCATALYTIC CO2- FREE PRODUCTION OF HYDROGEN FROM HYDROCARBON FUELS N. Muradov Florida Solar Energy Center 1679 Clearlake Road, Cocoa, Florida 32922 tel. 321-638-1448, fax. 321-638-1010, muradov (except for the start-up operation). This results in the following advantages: (1) no CO/CO2 byproducts

285

Energy solutions for CO2 emission peak and subsequent decline  

E-Print Network (OSTI)

Energy solutions for CO2 emission peak and subsequent decline Edited by Leif Sønderberg Petersen and Hans Larsen Risø-R-1712(EN) September 2009 Proceedings Risø International Energy Conference 2009 #12;Editors: Leif Sønderberg Petersen and Hans Larsen Title: Energy solutions for CO2 emission peak

286

Distribution of anthropogenic CO2 in the Pacific Ocean  

E-Print Network (OSTI)

Distribution of anthropogenic CO2 in the Pacific Ocean C. L. Sabine,1 R. A. Feely,2 R. M. Key,3 J] This work presents an estimate of anthropogenic CO2 in the Pacific Ocean based on measurements from the WOCE tracers; 9355 Information Related to Geographic Region: Pacific Ocean; KEYWORDS: Pacific Ocean

287

Falsification Of The Atmospheric CO2 Greenhouse Effects  

E-Print Network (OSTI)

Falsification Of The Atmospheric CO2 Greenhouse Effects Within The Frame Of Physics Version 4 Gerlich and Ralf D. Tscheuschner Abstract The atmospheric greenhouse effect, an idea that many authors Of The Atmospheric CO2 Greenhouse Effects . . . 3 Contents Abstract 2 1 Introduction 6 1.1 Problem background

Learned, John

288

Quantifying Regional Economic Impacts of CO2 Intensity Targets in China  

E-Print Network (OSTI)

To address rising energy use and CO2 emissions, China’s leadership has enacted energy and CO2 intensity

Zhang, Da

2012-09-01T23:59:59.000Z

289

DOE Regional Partnership Successfully Demonstrates Terrestrial CO2 Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Successfully Demonstrates Terrestrial CO2 Successfully Demonstrates Terrestrial CO2 Storage Practices in Great Plains Region of U.S. and Canada DOE Regional Partnership Successfully Demonstrates Terrestrial CO2 Storage Practices in Great Plains Region of U.S. and Canada August 19, 2010 - 1:00pm Addthis Washington, DC - A field test demonstrating the best approaches for terrestrial carbon dioxide (CO2) storage in the heartland of North America has been successfully completed by one of the U.S. Department of Energy's (DOE) seven Regional Carbon Sequestration Partnerships (RCSPs). The Plains CO2 Reduction (PCOR) Partnership , a collaboration of over 80 U.S. and Canadian stakeholders, conducted the field test at sites in the Prairie Pothole Region, extending from central Iowa into Northern Alberta,

290

North Korea Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Far East » North Korea Far East » North Korea North Korea Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends The total fossil-fuel CO2 emissions for North Korea, or the Democratic People's Republic of Korea, averaged 11.2% growth from 1950-93, reaching 71 million metric tons of carbon. Since 1993 according to published UN energy statistics, fossil-fuel CO2 emissions have declined 70% to 21.4 million metric tons of carbon. As the world's 14th largest producer of coal, it is no surprise North Korea's fossil-fuel CO2 emissions record is dominated by emissions from coal burning. Coal consumption accounted for 93% of the 2008 CO2 emission total. With no natural gas usage, another 3.4% currently comes from liquid petroleum consumption, and the remainder is from cement

291

Super Building Insulation by CO2 Foaming Process Research Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emerging Technologies » Super Building Insulation by CO2 Foaming Emerging Technologies » Super Building Insulation by CO2 Foaming Process Research Project Super Building Insulation by CO2 Foaming Process Research Project The Department of Energy is currently researching the development of building superinsulation through a carbon dioxide (CO2) foaming process. Project Description This project seeks to develop building super insulation through a carbon dioxide foaming process that does not use hydrofluorocarbons (HFCs), and which produces insulation with a high R-value. Project Partners Research is being undertaken between the Department of Energy and The Industrial Science & Technology Network. Project Goals The goal of this project is to develop advanced insulation without HFC, and to achieve a competitive processing cost for CO2 foaming technology.

292

South Korea Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Far East » South Korea Far East » South Korea South Korea Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends South Korea, or the Republic of Korea, is the world's tenth largest emitter of CO2 based on 2008 fossil-fuel consumption and cement production with 139 million metric tons of carbon. From 1946-1997 South Korea experienced phenomenal growth in fossil-fuel CO2 emissions with a growth rate that averaged 11.5%. Initial growth in emissions was due to coal consumption, which still accounts for 46.9% of South Korea's fossil-fuel CO2 emissions. Since the late 1960s oil consumption has been a major source of emissions. South Korea is the world's fifth largest importer of crude oil. Natural gas became a significant source of CO2 for the first time in 1987, as South

293

CO2 Injection in Kansas Oilfield Could Greatly Increase Production,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CO2 Injection in Kansas Oilfield Could Greatly Increase Production, CO2 Injection in Kansas Oilfield Could Greatly Increase Production, Permanently Store Carbon Dioxide, DOE Study Says CO2 Injection in Kansas Oilfield Could Greatly Increase Production, Permanently Store Carbon Dioxide, DOE Study Says August 31, 2011 - 1:00pm Addthis Washington, DC - The feasibility of using carbon dioxide (CO2) injection for recovering between 250 million and 500 million additional barrels of oil from Kansas oilfields has been established in a study funded by the U.S. Department of Energy (DOE). The University of Kansas Center for Research studied the possibility of near-miscible CO2 flooding for extending the life of mature oilfields in the Arbuckle Formation while simultaneously providing permanent geologic storage of carbon dioxide, a major greenhouse gas.

294

NETL: Low-Pressure Membrane Contactors for CO2 Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-Pressure Membrane Contactors for CO2 Capture Low-Pressure Membrane Contactors for CO2 Capture Project No.: DE-FE0007553 Membrane Technology and Research, Inc. (MTR) is developing a new type of membrane contactor (or mega-module) to separate carbon dioxide (CO2) from power plant flue gas. This module's membrane area is 500 square meters, 20 to 25 times larger than that of current modules used for CO2 capture. A 500-MWe coal power plant requires 0.5 to 1 million square meters of membrane to achieve 90 percent CO2 capture. The new mega-modules can drastically reduce the cost, complexity, and footprint of commercial-scale membrane module integration. Energy savings due to low-pressure drops for gases circulated through the modules, as well as improved countercurrent flow, are additional benefits. The feasibility of using mega-modules in several different hybrid process designs is being evaluated for future development potential.

295

NETL: 2010 Conference Proceedings - 2010 NETL CO2 Capture Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

2010 NETL CO2 Capture Technology Meeting 2010 NETL CO2 Capture Technology Meeting September 13-17, 2010 Table of Contents Presentations Monday, September 13 Opening/Overview Post-combustion Sorbent Based Capture Post-combustion Solvent Based Capture Tuesday, September 14 Post-combustion Membrane Based Capture Pulverized Coal Oxy-combustion ARPA-E Projects Wednesday, September 15 National Carbon Capture Center Chemical Looping Processes Systems Studies and Modeling Efforts CO2 Compression New CO2 Capture Projects Thursday, September 16 New CO2 Capture Projects - Cont'd CCPI and ICCS Demonstration Projects Pre-combustion Capture Projects Friday, September 17 Pre-combustion Capture Projects - Cont'd Posters Advanced Research Projects Agency - Energy (ARPA-E) NETL Office of Research and Development Research Projects

296

CO2 Geologic Storage (Kentucky) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CO2 Geologic Storage (Kentucky) CO2 Geologic Storage (Kentucky) CO2 Geologic Storage (Kentucky) < Back Eligibility Industrial Program Info State Kentucky Program Type Industry Recruitment/Support Provider Consultant, Division of Carbon Management Division staff, in partnership with the Kentucky Geological Survey (KGS), continued to support projects to investigate and demonstrate the technical feasibility of geologic storage of carbon dioxide (CO2) in Kentucky. In 2012, KGS conducted a test of carbon dioxide enhanced natural gas recovery in the Devonian Ohio Shale, Johnson County, east Kentucky. During the test, 87 tons of CO2 were injected through perforations in a cased, shut-in shale gas well. Industry partners for this research included Crossrock Drilling, Advanced Resources International, Schlumberger, Ferus Industries, and

297

Definition: Reduced Co2 Emissions | Open Energy Information  

Open Energy Info (EERE)

Co2 Emissions Co2 Emissions Jump to: navigation, search Dictionary.png Reduced Co2 Emissions Functions that provide this benefit can lead to avoided vehicle miles, decrease the amount of central generation needed to their serve load (through reduced electricity consumption, reduced electricity losses, more optimal generation dispatch), and or reduce peak generation. These impacts translate into a reduction in CO2 emissions produced by fossil-based electricity generators and vehicles.[1] Related Terms electricity generation, reduced electricity losses, smart grid References ↑ SmartGrid.gov 'Description of Benefits' An in LikeLike UnlikeLike You like this.Sign Up to see what your friends like. line Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Reduced_Co2_Emissions&oldid=502618

298

Conference on Physics with Large Gamma-Ray Detector Arrays, Volume II Proceedings  

E-Print Network (OSTI)

CONFERENCE ON PHYSICS FROM LARGE Y-RRV DETECTOR HRRRVS ClarkHa.gema.nn, lecture at this conference [4] G . Baldsiefen etHiïbel, lecture at this conference [7] R. M . Clark, lecture

Lawler editor, G.

2010-01-01T23:59:59.000Z

299

The supply chain of CO2 emissions  

Science Journals Connector (OSTI)

...and F Pr. China is an exception...modest net imports of fuels...large net exports of consumer...economies like China, Brazil...combined net imports of fuels...contrast, net export of fuels from...countries by net imports, net exports, and extraction...Australia China Japan US...Wearing Apparel Petroleum and Coal...

Steven J. Davis; Glen P. Peters; Ken Caldeira

2011-01-01T23:59:59.000Z

300

NETL: IEP - Post-Combustion CO2 Emissions Control - Hybrid  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Membrane/Absorption Process for Post-Combustion CO2 Capture Hybrid Membrane/Absorption Process for Post-Combustion CO2 Capture Project No.: DE-FE0004787 Gas Technology Institute is partnering with PoroGen Corporation and Aker Process Systems in a three-year effort to develop a hybrid technology for CO2 capture from flue gases based on a combination of solvent absorption and hollow fiber membrane technologies. The technology could also apply to removal of numerous other gas pollutants such as NOx and SOx, separation of CO2 from hydrogen in refinery streams, and separation of CO2 from natural gas (natural gas sweetening). The technology increases interfacial gas/liquid area by a factor of ten over conventional packed or tray columns, thus increasing mass transfer. The selectivity is controlled by the chemical affinity of CO2 with a hindered amine. The process results in lower steam regeneration energy, and the CO2 is generated at pressure, reducing compression costs. The project includes bench-scale testing on a 25 kWe-equivalent slipstream at Midwest Generation's Joliet Power Station.

Note: This page contains sample records for the topic "large volume co2" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Combustion-Assisted CO2 Capture Using MECC Membranes  

SciTech Connect

Mixed Electron and Carbonate ion Conductor (MECC) membranes have been proposed as a means to separate CO2 from power plant flue gas. Here a modified MECC CO2 capture process is analyzed that supplements retentate pressurization and permeate evacuation as a means to create a CO2 driving force with a process assisted by the catalytic combustion of syngas on the permeate side of the membrane. The combustion reactions consume transported oxygen, making it unavailable for the backwards transport reaction. With this change, the MECC capture system becomes exothermic, and steam for electricity production may be generated from the waste heat. Greater than 90% of the CO2 in the flue gas may be captured, and a compressed CO2 product stream is produced. A fossil-fueled power plant using this process would consume 14% more fuel per unit electricity produced than a power plant with no CO2 capture system, and has the potential to meet U.S. DOE s goal that deployment of a CO2 capture system at a fossil-fueled power plant should not increase the cost of electricity from the combined facility by more than 30%.

Sherman, Steven R [ORNL; Gray, Dr. Joshua R. [Savannah River National Laboratory (SRNL), Aiken, S.C.; Brinkman, Dr. Kyle S. [Savannah River National Laboratory (SRNL), Aiken, S.C.; Huang, Dr. Kevin [University of South Carolina, Columbia

2012-01-01T23:59:59.000Z

302

Integrated Energy System with Beneficial Carbon Dioxide (CO2) Use  

SciTech Connect

To address the public concerns regarding the consequences of climate change from anthropogenic carbon dioxide (CO2) emissions, the U.S. Department of Energy National Energy Technology Laboratory (DOE-NETL) is actively funding a CO2 management program to develop technologies capable of reducing the CO2 emissions from fossil fuel power plants and other industrial facilities. Over the past decade, this program has focused on reducing the costs of carbon capture and storage technologies. Recently, DOE-NETL launched an alternative CO2 mitigation program focusing on beneficial CO2 reuse and supporting the development of technologies that mitigate emissions by converting CO2 to solid mineral form that can be utilized for enhanced oil recovery, in the manufacturing of concrete or as a benign landfill, in the production of valuable chemicals and/or fuels. This project was selected as a CO2 reuse activity which would conduct research and development (R&D) at the pilot scale via a cost-shared Cooperative Agreement number DE-FE0001099 with DOE-NETL and would utilize funds setaside by the American Recovery and Reinvestment Act (ARRA) of 2009 for Industrial Carbon Capture and Sequestration R&D,

Sun, Xiaolei; Rink, Nancy

2011-04-30T23:59:59.000Z

303

Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations  

DOE Data Explorer (OSTI)

The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal energy production. Phase 1 includes reservoir analyses to determine injector/producer well schemes that balance the generation of economically useful flow rates at the producers with the need to manage reservoir overpressure to reduce the risks associated with overpressure, such as induced seismicity and CO2 leakage to overlying aquifers. Based on a range of well schemes, techno-economic analyses of the levelized cost of electricity (LCOE) are conducted to determine the economic benefits of integrating GCS with geothermal energy production. In addition to considering CO2 injection, reservoir analyses are conducted for nitrogen (N2) injection to investigate the potential benefits of incorporating N2 injection with integrated geothermal-GCS, as well as the use of N2 injection as a potential pressure-support and working-fluid option. Phase 1 includes preliminary environmental risk assessments of integrated geothermal-GCS, with the focus on managing reservoir overpressure. Phase 1 also includes an economic survey of pipeline costs, which will be applied in Phase 2 to the analysis of CO2 conveyance costs for techno-economics analyses of integrated geothermal-GCS reservoir sites. Phase 1 also includes a geospatial GIS survey of potential integrated geothermal-GCS reservoir sites, which will be used in Phase 2 to conduct sweet-spot analyses that determine where promising geothermal resources are co-located in sedimentary settings conducive to safe CO2 storage, as well as being in adequate proximity to large stationary CO2 sources.

Buscheck, Thomas A.

304

Spatial Relationships of Sector-Specific Fossil-fuel CO2 Emissions in the United States  

SciTech Connect

Quantification of the spatial distribution of sector-specific fossil fuel CO2 emissions provides strategic information to public and private decision-makers on climate change mitigation options and can provide critical constraints to carbon budget studies being performed at the national to urban scales. This study analyzes the spatial distribution and spatial drivers of total and sectoral fossil fuel CO2 emissions at the state and county levels in the United States. The spatial patterns of absolute versus per capita fossil fuel CO2 emissions differ substantially and these differences are sector-specific. Area-based sources such as those in the residential and commercial sectors are driven by a combination of population and surface temperature with per capita emissions largest in the northern latitudes and continental interior. Emission sources associated with large individual manufacturing or electricity producing facilities are heterogeneously distributed in both absolute and per capita metrics. The relationship between surface temperature and sectoral emissions suggests that the increased electricity consumption due to space cooling requirements under a warmer climate may outweigh the savings generated by lessened space heating. Spatial cluster analysis of fossil fuel CO2 emissions confirms that counties with high (low) CO2 emissions tend to be clustered close to other counties with high (low) CO2 emissions and some of the spatial clustering extends to multi-state spatial domains. This is particularly true for the residential and transportation sectors, suggesting that emissions mitigation policy might best be approached from the regional or multi-state perspective. Our findings underscore the potential for geographically focused, sector-specific emissions mitigation strategies and the importance of accurate spatial distribution of emitting sources when combined with atmospheric monitoring via aircraft, satellite and in situ measurements. Keywords: Fossil-fuel; Carbon dioxide emissions; Sectoral; Spatial cluster; Emissions mitigation policy

Zhou, Yuyu; Gurney, Kevin R.

2011-07-01T23:59:59.000Z

305

NETL: IEP – Post-Combustion CO2 Emissions Control - Carbon Dioxide Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide Capture from Large Point Sources Carbon Dioxide Capture from Large Point Sources Project No.: FG02-04ER83925 SBIR CLICK ON IMAGE TO ENLARGE Commercial hollow fiber membrane cartridge [6" (D) X 17" (L)] Compact Membrane Systems, Inc. developed and tested a carbon dioxide (CO2) removal system for flue gas streams from large point sources that offers improved mass transfer rates compared to conventional technologies. The project fabricated perfluorinated membranes on hydrophobic hollow fiber membrane contactors, demonstrated CO2 removal from a simulated flue gas mixture via amine absorption using the fabricated membranes, examine chemical compatibility of the membrane with amines, and demonstrate enhanced stability of the perfluoro-coated membranes. In addition, an economic analysis was performed to demonstrate that the perfluoro-coated

306

Argonne Coal Structure Rearrangement Caused by Sorption of CO2  

Science Journals Connector (OSTI)

Argonne Coal Structure Rearrangement Caused by Sorption of CO2 ... The sorption of CO2 on seven Argonne premium coals was measured by using attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy as a function of time at constant CO2 pressure (0.62 MPa) and temperature (55 °C). ... The following seven Argonne premium coals were investigated:? Upper Freeport (medium volatile bituminous), Pittsburgh No. 8 (high volatile bituminous), Lewiston?Stockton (high volatile bituminous), Blind Canyon (high volatile bituminous), Illinois No. 6 (high volatile bituminous), Wyodak (sub-bituminous), and Beulah Zap (lignite). ...

A. L. Goodman; R. N. Favors; John W. Larsen

2006-10-05T23:59:59.000Z

307

Energy use, cost and CO2 emissions of electric cars  

Science Journals Connector (OSTI)

We examine efficiency, costs and greenhouse gas emissions of current and future electric cars (EV), including the impact from charging EV on electricity demand and infrastructure for generation and distribution. Uncoordinated charging would increase national peak load by 7% at 30% penetration rate of EV and household peak load by 54%, which may exceed the capacity of existing electricity distribution infrastructure. At 30% penetration of EV, off-peak charging would result in a 20% higher, more stable base load and no additional peak load at the national level and up to 7% higher peak load at the household level. Therefore, if off-peak charging is successfully introduced, electric driving need not require additional generation capacity, even in case of 100% switch to electric vehicles. GHG emissions from electric driving depend most on the fuel type (coal or natural gas) used in the generation of electricity for charging, and range between 0 g km?1 (using renewables) and 155 g km?1 (using electricity from an old coal-based plant). Based on the generation capacity projected for the Netherlands in 2015, electricity for EV charging would largely be generated using natural gas, emitting 35–77 g CO2 eq km?1. We find that total cost of ownership (TCO) of current EV are uncompetitive with regular cars and series hybrid cars by more than 800 € year?1. TCO of future wheel motor PHEV may become competitive when batteries cost 400 € kWh?1, even without tax incentives, as long as one battery pack can last for the lifespan of the vehicle. However, TCO of future battery powered cars is at least 25% higher than of series hybrid or regular cars. This cost gap remains unless cost of batteries drops to 150 € kWh?1 in the future. Variations in driving cost from charging patterns have negligible influence on TCO. GHG abatement costs using plug-in hybrid cars are currently 400–1400 € tonne?1 CO2 eq and may come down to ?100 to 300 € tonne?1. Abatement cost using battery powered cars are currently above 1900 € tonne?1 and are not projected to drop below 300–800 € tonne?1.

Oscar van Vliet; Anne Sjoerd Brouwer; Takeshi Kuramochi; Machteld van den Broek; André Faaij

2011-01-01T23:59:59.000Z

308

Modelling of CO2 content in the atmosphere until 2300: influence of energy intensity of gross domestic product and carbon intensity of energy  

Science Journals Connector (OSTI)

The study provides a model of CO2 content in the atmosphere based on the global carbon cycle and the Kaya identity. The influences of: 1) energy intensity of GDP; 2) carbon intensity of energy on CO2 trajectories are given under four scenarios. The results from the most optimistic and technologically challenging scenario show that the atmospheric CO2 concentration can stabilise at 610 ppmv. It is also shown that the annual growth rates of atmospheric CO2 peak for all the scenarios before 2100 due to the expected world population peak in 2075 and the large share of fossil fuel energy.

Wojciech M. Budzianowski

2013-01-01T23:59:59.000Z

309

Ultrasonic flowmeter offers new approach to large-volume gas measurement  

SciTech Connect

Objective was to provide a measurement tool for performing transmission-pipeline efficiency studies and aid in gas control and intercompany gas transfer. A single path, contrapropagating ultrasonic flowmeter can be calibrated to accurately measure gas flow rates in large-diameter pipelines over a wide range of flows. The agreement between a multiple-run orifice measurement station and the ultrasonic flowmeter is within + 0.5%. Uncertainty in the meter calibration is a function of the ability to predict the flow profile of the gas stream.

Munk, W.D.

1982-09-06T23:59:59.000Z

310

CO2 Geologic Storage (Kentucky) | Open Energy Information  

Open Energy Info (EERE)

CO2 Geologic Storage (Kentucky) CO2 Geologic Storage (Kentucky) No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Last modified on February 12, 2013. EZFeed Policy Place Kentucky Name CO2 Geologic Storage (Kentucky) Policy Category Other Policy Policy Type Industry Recruitment/Support , Technical Feasibility Projects Affected Technologies Coal with CCS Active Policy Yes Implementing Sector State/Province Program Administrator Brandon Nutall, Division of Carbon Management Primary Website http://energy.ky.gov/carbon/Pages/default.aspx Summary Division staff, in partnership with the Kentucky Geological Survey (KGS), continued to support projects to investigate and demonstrate the technical feasibility of geologic storage of carbon dioxide (CO2) in Kentucky. In

311

CO2 Separation from Low-Temperature Flue Gases  

NLE Websites -- All DOE Office Websites (Extended Search)

partners interested in implementing United States Patent Number 7,842,126 entitled "Co 2 Separation from Low-Temperature Flue Gases." Disclosed in this patent are novel methods for processing carbon dioxide (CO 2 ) from combustion gas streams. Researchers at NETL are focused on the development of novel sorbent systems that can effectively remove CO 2 and other gases in an economically feasible manner with limited impact on energy production cost. The current invention will help in reducing greenhouse gas emissions by using an improved, regenerable aqueous amine and soluble potassium carbonate sorbent system. This novel solvent system may be capable of achieving CO 2 capture from larger emission streams at lower overall cost. Overview Sequestration of CO

312

CO2 Storage and Sink Enhancements: Developing Comparable Economics  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage and Sink Enhancements: Storage and Sink Enhancements: Developing Comparable Economics Richard G. Rhudy (rrhudy@epri.com; 650-855-2421) Electric Power Research Institute P.O. Box 10412 Palo Alto, CA 94303-0813 Bert R. Bock (brbock@tva.gov; 256-386-3095) David E. Nichols (denichols@tva.gov; 256-386-2489) Tennessee Valley Authority P.O. Box 1010 Muscle Shoals, AL 35662-1010 Abstract One of the major difficulties in evaluating CO 2 sequestration technologies and practices, both geologic storage of captured CO 2 and storage in biological sinks, is obtaining consistent, transparent, accurate, and comparable economics. This paper reports on a project that compares the economics of major technologies and practices under development for CO 2 sequestration, including captured CO 2 storage options, such as active oil reservoirs, depleted oil and gas

313

Italy (including San Marino) Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Western Europe » Italy Western Europe » Italy (including San Marino) Italy (including San Marino) Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends As occurred in many industrialized nations, CO2 emissions from Italy rose steeply since the late 1940's until the growth was abruptly terminated in 1974. Since 1974, emissions from liquid fuels have vacillated, dropping from 76% to 46% of a static but varying total. Significant increases in natural gas consumption have compensated for the drop in oil consumption. In 2008, 35.8% of Italy's fossil-fuel CO2 emissions were due to natural gas consumption. Coal usage grew steadily until 1985 when CO2 emissions from coal consumption reached 16 million metric tons of carbon. Not until 2004 did coal usage exceed 1985 levels and now accounts for 13.9% of Italy's

314

NETL: Alstom's Chemical Looping Combustion Technology with CO2 Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxy-Combustion CO2 Emissions Control Oxy-Combustion CO2 Emissions Control Commercialization of the Iron Based Coal Direct Chemical Looping Process for Power Production with in situ CO2 Capture Project No.: DE-FE0009761 CDLC Process Concept CDLC Process Concept (click to enlarge) Babcock & Wilcox Power Generation Group (B&W) is developing the coal direct chemical looping (CDCL) process. The CDCL process consists of a unique moving bed reactor - the reducer - where pulverized coal is fully converted using iron-based oxygen carriers. The oxygen carrier is reduced from Fe2O3 to FeO/Fe and the flue gas is a concentrated stream of CO2 that is available for storage or beneficial use. The reduced FeO/Fe is oxidized to Fe2O3 using air in the combustor, liberating heat to produce steam for a

315

Kyoto-Related Fossil-Fuel CO2 Emission Totals  

NLE Websites -- All DOE Office Websites (Extended Search)

Kyoto-Related Emissions Kyoto-Related Emissions Kyoto-Related Fossil-Fuel CO2 Emission Totals DOI: 10.3334/CDIAC/ffe.007_V2012 world map Kyoto-Related Fossil-Fuel CO2 Emission Totals Year Annex B Countries Non Annex B Countries Fossil-Fuel CO2 Emissions (million metric tonnes C) Bunkers (million metric tonnes C) Fossil-Fuel CO2 Emissions (million metric tonnes C) Bunkers (million metric tonnes C) 1990 3894 90 2111 46 1991 3801 94 2299 38 1992 3750 109 2263 44 1993 3685 107 2339 48 1994 3656 107 2469 54 1995 3681 110 2570 59 1996 3704 111 2657 72 1997 3727 114 2737 74 1998 3746 118 2698 82 1999 3678 124 2718 90 2000 3725 130 2821 90 2001 3781 120 2936 92 2002 3764 128 3013 94 2003 3853 123 3347 98 2004 3888 135 3683 107 2005 3933 142 3926 106

316

Direct Solar Energy Conversion by the Reduction of CO2  

NLE Websites -- All DOE Office Websites (Extended Search)

Direct Solar Energy Conversion by the Reduction of CO2 Direct Solar Energy Conversion by the Reduction of CO2 Speaker(s): Reed Jensen Date: August 25, 2005 - 12:00pm Location: Bldg. 90 Reed Jensen has successfully demonstrated the direct solar reduction of CO2 to CO and O2 using a solar concentrator dish and ceramic converter that grew out of his work at Los Alamos National Laboratory. He will discuss the thermochemical, kinetic and spectral properties of the CO2 /CO/ O2 system that enable this process and how the CO is subsequently converted to useful fuels by a range of catalytic processes. He will also discuss the technical difficulties associated with the design, construction and operation of a multi-component optical system that must operate at high temperatures. Results from a prototype system will be discussed defining the efficiencies

317

ARM - Field Campaign - Boundary Layer CO2 Using CW Lidar  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsBoundary Layer CO2 Using CW Lidar govCampaignsBoundary Layer CO2 Using CW Lidar Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Boundary Layer CO2 Using CW Lidar 2005.05.21 - 2005.05.24 Lead Scientist : Michael Dobbs Description Overflights Underway at ACRF Southern Great Plains Site (M.Dobbs/J.Liljegren) Science collaborators at ITT Industries and the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) conducted flights over the Central Facility at ACRF's Southern Great Plains (SGP) site as part of the Climate Sources and Sink (CO2) Intensive Operational Period (IOP), using a CW lidar. The objective of the flights was to validate, by demonstration and comparison with SGP ground observations, the performance of the ITT system when used in conjunction with retrieval

318

Coal-CO2 Slurry Feeding System for Pressurized Gasifiers  

NLE Websites -- All DOE Office Websites (Extended Search)

Feed Systems Feed Systems Coal-CO2 Slurry Feeding System for Pressurized Gasifiers Massachusetts Institute of Technology Project Number: FE0012500 Project Description This project will develop and assess a slurry feeding system based on a suspension of coal in liquid CO2 that can be pumped into a high-pressure gasifier. The advantages of this solution are that CO2 has a low heat capacity, a low heat of vaporization and low viscosity. Thus, the liquid CO2 imposes a much smaller thermal load on the gasifier relative to a water slurry, and has the potential to improve the efficiency and economics of integrated gasification combined cycle (IGCC) power plants with carbon capture and dramatically reduce greenhouse gas emissions from coal fired power plants. Project Details

319

The Role of CO2 Reduction Catalysis in Carbon Capture  

Science Journals Connector (OSTI)

In addition to the algae-mediated process discussed in Chap. 7, to generate hydrocarbon-based fuels and useful chemicals from CO2, it is also possible to use electrochemical and photocatalytic processes to carry ...

Prof. Jennifer Wilcox

2012-01-01T23:59:59.000Z

320

co2-use-reuse | netl.doe.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

under certain conditions that do not necessarily require intensive energy input. Using CO2 as a feedstock for a variety of products is a promising research area, particularly in...

Note: This page contains sample records for the topic "large volume co2" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Split system CO2 heat pump water heaters  

NLE Websites -- All DOE Office Websites (Extended Search)

Split-system-CO2-heat-pump-water-heaters- Sign In About | Careers | Contact | Investors | bpa.gov Search Policy & Reporting Expand Policy & Reporting EE Sectors Expand EE...

322

Novel CO2-Thickeners for Improved Mobility Control  

SciTech Connect

The objective of this contract was to design, synthesize, and characterize thickening agents for dense carbon dioxide and to evaluate their solubility and viscosity-enhancing potential in CO2.

Enick, Dr. Robert M.; Beckman, Dr. Eric J.; Hamilton, Dr. Andrew

2002-01-15T23:59:59.000Z

323

Hierarchically Porous Aminosilica Monolith as a CO2 Adsorbent  

Science Journals Connector (OSTI)

Danon, A.; Stair, P. C.; Weitz, E.FTIR Study of CO2 Adsorption on Amine-Grafted SBA-15: Elucidation of Adsorbed Species J. Phys. ... Danon, Alon; Stair, Peter C.; Weitz, Eric ...

Young Gun Ko; Hyun Jeong Lee; Jae Yong Kim; Ung Su Choi

2014-07-07T23:59:59.000Z

324

Satellite vibration measurements with an autodyne CO2 laser radar  

Science Journals Connector (OSTI)

Vibration signatures of the Low Power Atmospheric Compensation Experiment satellite were obtained with a ground-based CO2 laser radar. The laser radar operated in a cw mode...

Schultz, K I; Kocher, D G; Daley, J A; Theriault, J R; Spinks, J; Fisher, S

1994-01-01T23:59:59.000Z

325

From CO2 to Methanol via Novel Nanocatalysts  

NLE Websites -- All DOE Office Websites (Extended Search)

have found novel nanocatalysts that lower the barrier to converting carbon dioxide (CO2)-an abundant greenhouse gas-into methanol (CH3OH)-a key commodity used to produce...

326

Magnetic behaviour of synthetic Co2SiO4  

Science Journals Connector (OSTI)

The magnetic structure of the synthetic cobalt olivine, Co2SiO4, is determined by means of non-polarized and polarized neutron diffraction on single-crystal and powder samples.

Sazonov, A.

2009-11-16T23:59:59.000Z

327

LED-based CO2 Sensor for Balloon Deployment  

Science Journals Connector (OSTI)

We are developing a sensor for monitoring ambient CO2 from unmanned aircraft and balloons. The sensor consists of a mid-IR LED coupled with a high dynamic range gated integrator. The...

Sonnenfroh, David; Parameswaran, Krishnan

328

Electron drift velocity in CO2 laser mixtures  

Science Journals Connector (OSTI)

A modified Bradbury-Nielsen grid system has been used to measure...W in two gas mixtures of special interest when modelling h.p. CO2 lasers. The results are compared with the theoretical values obtained with the ...

G. L. Braglia; L. Romanò; W. Roznerski

329

Improving CO2 Efficiency for Recovering Oil in Heterogeneous Reservoirs  

SciTech Connect

The work strived to improve industry understanding of CO2 flooding mechanisms with the ultimate goal of economically recovering more of the U.S. oil reserves. The principle interests are in the related fields of mobility control and injectivity.

Grigg, Reid B.; Svec, Robert K.

2003-03-10T23:59:59.000Z

330

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network (OSTI)

FEASIBILITY: TEAPOT DOME EOR PILOT L. Chiaramonte, M.TO IDENTIFY OPTIMAL CO 2 EOR STORAGE SITES V. Núñez Lopez,from a carbon dioxide EOR/sequestration project. Energy

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

331

Near Miscible CO2 Application to Improve Oil Recovery  

E-Print Network (OSTI)

...................................................................................................................... XIV 1 INTRODUCTION AND LITERATURE REVIEW ....................................................................... 1 1.1 THE BASICS OF CO2 EOR... ....................................................................................................................................... 104 APPENDICES ....................................................................................................................................... 107 vii LIST OF FIGURES FIGURE 1-1 GAS INJECTION EOR IN U.S [1...

Bui, Ly H.

2010-07-26T23:59:59.000Z

332

Carbon Dioxide Flux Measurement Systems (CO2Flux) Handbook  

SciTech Connect

The Southern Great Plains (SGP) carbon dioxide flux (CO2 flux) measurement systems provide half-hour average fluxes of CO2, H2O (latent heat), and sensible heat. The fluxes are obtained by the eddy covariance technique, which computes the flux as the mean product of the vertical wind component with CO2 and H2O densities, or estimated virtual temperature. A three-dimensional sonic anemometer is used to obtain the orthogonal wind components and the virtual (sonic) temperature. An infrared gas analyzer is used to obtain the CO2 and H2O densities. A separate sub-system also collects half-hour average measures of meteorological and soil variables from separate 4-m towers.

Fischer, M

2005-01-01T23:59:59.000Z

333

Renewable Energy and CO2: Current Status and Costs  

Science Journals Connector (OSTI)

In this chapter, it is exposed a brief description of the current use and theoretical potential of renewable and conventional energies, the evolution of the CO2 emissions and atmospheric concentration and their i...

Ricardo Guerrero-Lemus; José Manuel Martínez-Duart

2013-01-01T23:59:59.000Z

334

A Regional Atmospheric Continuous CO2 Network in the Rocky Mountains (Rocky RACCOON) Panel 2. Storm Peak Laboratory (SPL), near Steamboat Springs, Colorado  

E-Print Network (OSTI)

A Regional Atmospheric Continuous CO2 Network in the Rocky Mountains (Rocky RACCOON) Panel 2. Storm in the Rocky Mountains to improve our understanding of regional carbon fluxes and to fill key gaps in the North Sep. 16, 2005. Large increases and a relatively flat profile at night indicate pooling of CO2 respired

Stephens, Britton B.

335

Biominetic Membrane for Co2 Capture from Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomimetic Membrane for CO Biomimetic Membrane for CO 2 Capture from Flue Gas Background Carbon Capture and Sequestration (CCS) is a three-step process including capture, pipeline transport, and geologic storage of which the capture of carbon dioxide (CO 2 ) is the most costly and technically challenging. Current available methods impose significant energy burdens that severely impact their overall effectiveness as a significant deployment option. Of the available capture technologies for post

336

Dehydrated Prussian Blues for CO2 Storage and Separation Applications  

SciTech Connect

Adsorption isotherms of pure gases present in flue and natural gas including CO2, N2, CH4 and water were studied using prussian blues of chemical formula M3[Co(CN)6]2 (M = Cu, Ni, Mn). These materials adsorbed 8-12 wt % of CO2 at room temperature and 1 bar of pressure with heats of adsorption ranging from 6 to 16 kcal/mol.

Motkuri, Radha K.; Thallapally, Praveen K.; McGrail, B. Peter; Ghorishi, Behrooz S.

2010-08-13T23:59:59.000Z

337

NETL: Bench-Scale Development of a Hybrid Membrane-Absorption CO2 Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Bench-Scale Development of a Hybrid Membrane-Absorption CO2 Capture Process Bench-Scale Development of a Hybrid Membrane-Absorption CO2 Capture Process Project No.: DE-FE0013118 Membrane Technology and Research (MTR) is developing and evaluating a hybrid membrane-absorption CO2 capture system. This work builds on prior DOE-funded work and combines MTR's Polaris(tm) membrane, in a low-pressure-drop, large area, plate-and-frame module, with UT Austin's piperazine (PZ) solvent and advanced, high-temperature and pressure regeneration technology. Preliminary estimates indicate that this hybrid system could lower the regeneration energy by 30 percent compared to that required with 30 weight percent monoethanolamine (MEA). MTR is evaluating two variations of the hybrid design consisting of the cross-flow Polaris membrane, which enriches flue gas to approximately 20 percent CO2, and an advanced 5 molal PZ advanced flash stripper with cold-rich bypass. The flash stripper will be optimized to take advantage of the higher CO2 concentration. In the first variation, the two systems are operated in series; in the second, the flue gas flow is split and treated by each system in parallel. The first phase of this project will include an examination of both hybrid configurations, using an integrated process model and a preliminary techno-economic assessment. In the second phase, MTR will manufacture and test a low pressure drop, large-area membrane module and UT Austin will modify their 0.1 MWe pilot plant and operate it under simulated series and parallel configurations. Based on the model and test results, the most promising configuration will be identified. In the final stage of the project, the membrane module will be integrated into the pilot plant where the fully integrated hybrid system, in its most promising cost optimized configuration, will be tested on simulated flue gas.

338

3D CFD Model of High Temperature H2O/CO2 Co-electrolysis  

SciTech Connect

3D CFD Model of High Temperature H2O/CO2 Co-Electrolysis Grant Hawkes1, James O’Brien1, Carl Stoots1, Stephen Herring1 Joe Hartvigsen2 1 Idaho National Laboratory, Idaho Falls, Idaho, grant.hawkes@inl.gov 2 Ceramatec Inc, Salt Lake City, Utah INTRODUCTION A three-dimensional computational fluid dynamics (CFD) model has been created to model high temperature co-electrolysis of steam and carbon dioxide in a planar solid oxide electrolyzer (SOE) using solid oxide fuel cell technology. A research program is under way at the Idaho National Laboratory (INL) to simultaneously address the research and scale-up issues associated with the implementation of planar solid-oxide electrolysis cell technology for syn-gas production from CO2 and steam. Various runs have been performed under different run conditions to help assess the performance of the SOE. This paper presents CFD results of this model compared with experimental results. The Idaho National Laboratory (INL), in conjunction with Ceramatec Inc. (Salt Lake City, USA) has been researching for several years the use of solid-oxide fuel cell technology to electrolyze steam for large-scale nuclear-powered hydrogen production. Now, an experimental research project is underway at the INL to produce syngas by simultaneously electrolyzing at high-temperature steam and carbon dioxide (CO2) using solid oxide fuel cell technology. A strong interest exists in the large-scale production of syn-gas from CO2 and steam to be reformed into a usable transportation fuel. If biomass is used as the carbon source, the overall process is climate neutral. Consequently, there is a high level of interest in production of syn-gas from CO2 and steam electrolysis. With the price of oil currently around $60 / barrel, synthetically-derived hydrocarbon fuels (synfuels) have become economical. Synfuels are typically produced from syngas – hydrogen (H2) and carbon monoxide (CO) -- using the Fischer-Tropsch process, discovered by Germany before World War II. High-temperature nuclear reactors have the potential for substantially increasing the efficiency of syn-gas production from CO2 and water, with no consumption of fossil fuels, and no production of greenhouse gases. Thermal CO2-splitting and water splitting for syn-gas production can be accomplished via high-temperature electrolysis, using high-temperature nuclear process heat and electricity. A high-temperature advanced nuclear reactor coupled with a high-efficiency high-temperature electrolyzer could achieve a competitive thermal-to-syn-gas conversion efficiency of 45 to 55%.

Grant Hawkes; James O'Brien; Carl Stoots; Stephen Herring; Joe Hartvigsen

2007-06-01T23:59:59.000Z

339

NETL: IEP - Post-Combustion CO2 Emissions Control - Evaluation of Solid  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of Solid Sorbents as a Retrofit Technology for CO2 Capture from Coal-Fired Power Plants Evaluation of Solid Sorbents as a Retrofit Technology for CO2 Capture from Coal-Fired Power Plants Project No.: DE-NT0005649 ADA-ES Sorbent Test Equipment. ADA-ES Sorbent Test Equipment. ADA-ES Inc. is developing and scaling-up a sorbent-based, post-combustion carbon dioxide (CO2 ) capture process. Investigators are evaluating the performance of sorbents from laboratory- to bench-scale. Various sorbents are being screened in a fixed-bed contactor in the laboratory on simulated flue gas, as well as in the field on actual flue gas. Bench-scale tests are being performed on slip-streams of simulated and actual flue gas with a moving-bed reactor large enough to treat flue gas containing nominally 1 tons of CO2 per day (~100 acfm). The criteria for optimal sorbents will

340

International Collaboration on CO2 Sequestration  

SciTech Connect

On December 4, 1997, the US Department of Energy (USDOE), the New Energy and Industrial Technology Development Organization of Japan (NEDO), and the Norwegian Research Council (NRC) entered into a Project Agreement for International Collaboration on CO{sub 2} Ocean Sequestration. Government organizations from Japan, Canada, and Australia, and a Swiss/Swedish engineering firm later joined the agreement, which outlined a research strategy for ocean carbon sequestration via direct injection. The members agreed to an initial field experiment, with the hope that if the initial experiment was successful, there would be subsequent field evaluations of increasingly larger scale to evaluate environmental impacts of sequestration and the potential for commercialization. The evolution of the collaborative effort, the supporting research, and results for the International Collaboration on CO{sub 2} Ocean Sequestration were documented in almost 100 papers and reports, including 18 peer-reviewed journal articles, 46 papers, 28 reports, and 4 graduate theses. These efforts were summarized in our project report issued January 2005 and covering the period August 23, 1998-October 23, 2004. An accompanying CD contained electronic copies of all the papers and reports. This report focuses on results of a two-year sub-task to update an environmental assessment of acute marine impacts resulting from direct ocean sequestration. The approach is based on the work of Auerbach et al. [6] and Caulfield et al. [20] to assess mortality to zooplankton, but uses updated information concerning bioassays, an updated modeling approach and three modified injection scenarios: a point release of negatively buoyant solid CO{sub 2} hydrate particles from a moving ship; a long, bottom-mounted diffuser discharging buoyant liquid CO{sub 2} droplets; and a stationary point release of hydrate particles forming a sinking plume. Results suggest that in particular the first two discharge modes could be successfully designed to largely avoid zooplankton mortality. Sub-lethal and ecosystem effects are discussed qualitatively, but not analyzed quantitatively.

Peter H. Israelsson; E. Eric Adams

2007-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "large volume co2" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

NETL: News Release - Carbon Sequestration Partner Initiates Drilling of CO2  

NLE Websites -- All DOE Office Websites (Extended Search)

7, 2009 7, 2009 Carbon Sequestration Partner Initiates Drilling of CO2 Injection Well in Illinois Basin Large-Scale Test to Inject One Million Metric Tonnes of Carbon Dioxide into Saline Formation Washington, DC-The Midwest Geological Sequestration Consortium (MGSC), one of seven regional partnerships created by the U.S. Department of Energy (DOE) to advance carbon sequestration technologies nationwide, has begun drilling the injection well for their large-scale carbon dioxide (CO2) injection test in Decatur, Illinois. The test is part of the development phase of the Regional Carbon Sequestration Partnerships program, an Office of Fossil Energy initiative launched in 2003 to determine the best approaches for capturing and permanently storing gases that can contribute to global climate change.

342

Generation of a Doubly Bridging CO2 Ligand and Deoxygenation of CO2 by an (NHC)Ni(0) Complex  

E-Print Network (OSTI)

for CO2, µ-2,2-CO2, at a dinickel core. The reaction of [(IPr)Ni(µ-Cl)]2 18 (IPr ) 1,3-bis(2,6-diisopro, (IPr)- Ni(6-C6D6). We note that this symmetric pattern for the backbone protons is observed in reacted isolation of the product as a solid. Reaction of [(IPr)Ni(µ-Cl)]2 with Li(HBEt3) or with NaOt-Bu followed

Müller, Peter

343

Assessment of Methanol Synthesis Utilizing Exhaust CO2 for Chemical Storage of Electrical Energy  

Science Journals Connector (OSTI)

(1, 2) Sequestration is principally an available and technologically feasible way to reduce the CO2 emission into the atmosphere, although there are still obvious ecological, environmental, and safety aspects to clarify before it can be implemented in large scale. ... Furthermore, these chemicals could be used also as traffic fuel, where they are applicable easily with minor modifications with the existing infrastructure and vehicle fleet. ... The product H is considered a fuel for fuel cell vehicles and a substitute for gasoline. ...

Liisa K. Rihko-Struckmann; Andreas Peschel; Richard Hanke-Rauschenbach; Kai Sundmacher

2010-09-17T23:59:59.000Z

344

Abstract Atmospheric CO2 partial pressure (pCO2) was as low as 18 Pa during the Pleistocene and is projected to  

E-Print Network (OSTI)

Abstract Atmospheric CO2 partial pressure (pCO2) was as low as 18 Pa during the Pleistocene and is projected to increase from 36 to 70 Pa CO2 before the end of the 21st century. High pCO2 often increases the growth and repro- duction of C3 annuals, whereas low pCO2 decreases growth and may reduce or prevent

Antonovics, Janis

345

CO2-selective, Hybrid Membranes by Silation of Alumina  

SciTech Connect

Hybrid membranes are feasible candidates for the separation of CO2 from gas produced in coal-based power generation since they have the potential to combine the high selectivity of polymer membranes and the high permeability of inorganic membranes. An interesting method for producing hybrid membranes is the silation of an inorganic membrane. In this method, trichloro- or alkoxy-silanes interact with hydroxyl groups on the surface of ?-AlO3 or TiO2, binding organic groups to that surface. By varying the length of these organic groups on the organosilane, it should be possible to tailor the effective pore size of the membrane. Similarly, the addition of “CO2-phillic” groups to the silating agent allows for the careful control of surface affinity and the enhancement of surface diffusion mechanisms. This method of producing hybrid membranes selective to CO2 was first attempted by Hyun [1] who silated TiO2 with phenyltriethoxysilane. Later, Way [2] silated ?-AlO3 with octadecyltrichlorosilane. Both researchers were successful in producing membranes with improved selectivity toward CO2, but permeability was not maintained at a commercially applicable level. XPS data indicated that the silating agent did not penetrate into the membrane pores and separation actually occurred in a thin “polymer-like” surface layer. The present study attempts to overcome the mass transfer problems associated with this technique by producing the desired monolayer coverage of silane, and thus develop a highly-permeable CO2-selective hybrid membrane.

Luebke, D.R.; Pennline, H.W.

2007-09-01T23:59:59.000Z

346

Surface Ocean CO2 Atlas (SOCAT) gridded data products  

SciTech Connect

A well documented, publicly available, global data set for surface ocean carbon dioxide (CO2) parameters has been called for by international groups for nearly two decades. The Surface Ocean CO2 Atlas (SOCAT) project was initiated by the international marine carbon science community in 2007 with the aim of providing a comprehensive, publicly available, regularly updated, global data set of marine surface CO2, which had been subject to quality control (QC). SOCAT version 1.5 was made public in September 2011 and holds 6.3 million quality controlled surface CO2 data from the global oceans and coastal seas, spanning four decades (1968 2007). The SOCAT gridded data is the second data product to come from the SOCAT project. Recognizing that some groups may have trouble working with millions of measurements, the SOCAT gridded product was generated to provide a robust regularly spaced fCO2 product with minimal spatial and temporal interpolation which should be easier to work with for many applications. Gridded SOCAT is rich with information that has not been fully explored yet, but also contains biases and limitations that the user needs to recognize and address.

Sabine, Christopher [NOAA Pacific Marine Environmental Laboratory; Hankin, S. [Pacific Northwest National Laboratory (PNNL); Koyuk, H [Joint Institute for the Study of the Atmosphere and Ocean, University of Washington; Bakker, D C E [School of Environmental Sciences, University of East Anglia, Norwich, UK; Pfeil, B [Geophysical Institute, University of Bergen; Uni Research AS, Bergen, Norway; Olsen, A [Bjerknes Centre for Climate Research, UNIFOB AS, Bergen, Norway; Metzl, N [Universite Pierre et Marie Curie, LOCEAN/IPSL, Paris, France; Kozyr, Alexander [ORNL; Fassbender, A [School of Oceanography, University of Washington, Seattle, WA; Manke, A [Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration; Malczyk, J [Jetz Laboratory, Department of Ecology and Evolutionary Biology, Yale University; Akl, J [CSIRO Wealth from Oceans Flagship, Hobart, Tasmania, Australia; Alin, S R [Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration; Bellerby, R G J [Geophysical Institute, University of Bergen, Bergen, Norway; Borges, A [University of Liege, Chemical Oceanography Unit, Institut de Physique, Liege, Belgium; Boutin, J [Universite Pierre et Marie Curie, LOCEAN/IPSL, Paris, France; Brown, P J [School of Environmental Sciences, University of East Anglia, Norwich, UK; Cai, W-J [Department of Marine Sciences, University of Georgia; Chavez, F P [Monterey Bay Aquarium Research Institute, Moss Landing, CA; Chen, A [Institute of Marine Geology and Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan; Cosa, C [Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration; Feely, R A [Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration; Gonzalez-Davila, M [Universidad de Las Palmas de Gran Canaria, Facultad de Ciencias del Mar, Las Palmas de Gran Canaria,; Goyet, C [Institut de Modélisation et d'Analyse en Géo-Environnement et Santé, Université de Perpignan; Hardman-Mountford, N [CSIRO, Marine and Atmospheric Research, Wembley, Western Australia, Australia; Heinze, C [Geophysical Institute, University of Bergen, Bergen, Norway; Hoppema, M [Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany; Hunt, C W [Ocean Process Analysis Lab, University of New Hampshire, Durham, New Hampshire; Hydes, D [National Oceanography Centre, Southampton, UK; Ishii, M [Japan Meteorological Agency, Meteorological Research Institute, Tsukuba, Japan; Johannessen, T [Geophysical Institute, University of Bergen, Bergen, Norway; Key, R M [Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey; Kortzinger, A [GEOMAR, Helmholtz Centre for Ocean Research, Kiel, Germany; Landschutzer, P [School of Environmental Sciences, University of East Anglia, Norwich, UK; Lauvset, S K [Geophysical Institute, University of Bergen, Bergen, Norway; Lefevre, N [Université Pierre et Marie Curie, LOCEAN/IPSL, Paris, France; Lenton, A [Centre for Australian Weather and Climate Research, Hobart, Tasmania, Australia; Lourantou, A [Université Pierre et Marie Curie, LOCEAN/IPSL, Paris, France; Merlivat, L [Université Pierre et Marie Curie, LOCEAN/IPSL, Paris, France; Midorikawa, T [Nagasaki Marine Observatory, Nagasaki, Japan; Mintrop, L [MARIANDA, Kiel, Germany; Miyazaki, C [Faculty of Environmental Earth Science, Hokkaido University, Hokkaido, Japan; Murata, A [Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan; Nakadate, A [Marine Division, Global Environment and Marine Department, Japan Meteorological Agency, Tokyo, Japan; Nakano, Y [Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan; Nakaoka, S [National Institute for Environmental Studies (NIES), Tsukuba, Japan; Nojiri, Y [National Institute for Environmental Studies, Tsukuba, Japan; et al.

2013-01-01T23:59:59.000Z

347

Enhancement of CO2/N2 selectivity in a metal-organic framework by cavity modification  

E-Print Network (OSTI)

electricity is a major source of CO2 in the atmosphere, but the capture and sequestration of CO2 from flue gas two-thirds), CO2, water vapor, oxygen, and minor components such as carbon monoxide, nitrogen oxides

348

Analysis of mineral trapping for CO2 disposal in deep aquifers  

E-Print Network (OSTI)

of Mineral Trapping for CO2 Disposal in Deep Aquifers Tianfue~mail: Tianfu Xu@lbl. gov) CO2 disposal into deep aquiferspermit significant sequestration of CO2. We performed batch

Xu, Tianfu

2014-01-01T23:59:59.000Z

349

Syngas Production from Coal Gasification with CO2 Rich Gas Mixtures  

Science Journals Connector (OSTI)

Coal gasification with CO2 rich gas mixture is one of several promising new technologies associated with CO2 reduction in the atmosphere. Coal gasification with high CO2 concentration is suitable for producing la...

M. S. Alam; A. T. Wijayanta; K. Nakaso…

2013-01-01T23:59:59.000Z

350

Practical and Economic Aspects of the Ex-Situ Process: Implications for CO2 Sequestration  

Science Journals Connector (OSTI)

Practical and Economic Aspects of the Ex-Situ Process: Implications for CO2 Sequestration ... The cost for capturing CO2 from a coal and/or gas fired plant varies between 30 to 60 $/t CO2. ...

Sohrab Zendehboudi; Alireza Bahadori; Ali Lohi; Ali Elkamel; Ioannis Chatzis

2012-11-13T23:59:59.000Z

351

Biomimetric Membrane for CO2 Capture from Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomimetic memBrane for co Biomimetic memBrane for co 2 capture from flue Gas Background Carbon Capture and Sequestration (CCS) is a three-step process including capture, pipeline transport and geologic storage of which the capture of carbon dioxide (CO 2 ) is the most costly and technically challenging. Current available methods impose significant energy burdens that severely impact their overall effectiveness as a significant deployment option. Of the available capture technologies for post combustion applications - absorption, adsorption, reaction and membranes chemically facilitated absorption promises to be the most cost-effective membrane solution for post combustion application. The Carbozyme technology extracts CO 2 from low concentration, low pressure sources by means of chemical facilitation of a polymer membrane. The chemical

352

CO2 Injection in Kansas Oilfield Could Greatly Increase Production,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

in Kansas Oilfield Could Greatly Increase Production, in Kansas Oilfield Could Greatly Increase Production, Permanently Store Carbon Dioxide, DOE Study Says CO2 Injection in Kansas Oilfield Could Greatly Increase Production, Permanently Store Carbon Dioxide, DOE Study Says August 31, 2011 - 1:00pm Addthis Washington, DC - The feasibility of using carbon dioxide (CO2) injection for recovering between 250 million and 500 million additional barrels of oil from Kansas oilfields has been established in a study funded by the U.S. Department of Energy (DOE). The University of Kansas Center for Research studied the possibility of near-miscible CO2 flooding for extending the life of mature oilfields in the Arbuckle Formation while simultaneously providing permanent geologic storage of carbon dioxide, a major greenhouse gas.

353

Pre-Combustion CO2 Removal System Â… Demonstration Unit  

NLE Websites -- All DOE Office Websites (Extended Search)

Post-Combustion CO Post-Combustion CO 2 Capture System for Existing Coal-fired Power Plant Project Review (DE-FE-0007580) Gökhan Alptekin, PhD Ambal Jayaraman, PhD Robert Copeland, PhD DOE/NETL CO 2 Capture Technology Meeting Meeting Pittsburgh, PA July 8, 2013 TDA R e s e a r c h Project Summary * The objective is to develop a post-combustion capture process for coal-fired power plants and demonstrate technical feasibility (at bench-scale) and economic viability of the new concept * A mesoporous carbon adsorbent is used to selectively remove CO 2 from the flue gas, regenerating under very mild conditions Budget Period 1 * Sorbent Optimization/scale-up and Laboratory Evaluations * Process Design and System Analysis Budget Period 2 * Long-term Sorbent Cycling * Design of a Breadboard Prototype Test Unit

354

Distributed Optical Sensor for CO2 Leak Detection  

NLE Websites -- All DOE Office Websites (Extended Search)

Optical Sensor for CO Optical Sensor for CO 2 Leak Detection Opportunity Research is active on the technology "Distributed Optical Sensor for CO 2 Leak Detection," for which a Patent Application has been filed. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory (NETL). Overview The availability of fossil fuels to provide clean, affordable energy is essential for domestic and global prosperity and security well into the 21st century. However, there are concerns over the impacts of greenhouse gases (GHGs) in the atmosphere-particularly carbon dioxide (CO 2 ). Carbon capture and storage in geologic formations is a promising technology to reduce the impact of CO

355

Calculating CO2 Emissions from Mobile Sources | Open Energy Information  

Open Energy Info (EERE)

Calculating CO2 Emissions from Mobile Sources Calculating CO2 Emissions from Mobile Sources Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Calculating CO2 Emissions from Mobile Sources,GHG Protocol Agency/Company /Organization: Aether, Environmental Data Services, Aether, Environmental Data Services Sector: Energy Focus Area: GHG Inventory Development, Industry, Transportation Topics: GHG inventory, Potentials & Scenarios Resource Type: Guide/manual Complexity/Ease of Use: Not Available Website: cf.valleywater.org/Water/Where_Your_Water_Comes_From/Water%20Supply%20 Cost: Free References: http://cf.valleywater.org/Water/Where_Your_Water_Comes_From/Water%20Supply%20and%20Infrastructure%20Planning/Climate%20Change/Guidance_for_mobile_emissions_GHG_protocol.pdf Related Tools Tool and Calculator (Transit, Fuel)

356

Light-Duty Vehicle CO2 Targets Consistent with 450 ppm CO2 Stabilization  

Science Journals Connector (OSTI)

We include increased shares of unconventional petroleum such as oil sands in the WTT factors, but assume those processes also have efficiency gains (Table S1 in SI-1). ... In a scenario simulating international trade of biofuel, we allow NA and LA to export ethanol to OECD Europe and China so that each of the four regions has the same volume of biofuel available for LDVs beginning in 2030. ... China and OECD Europe’s glide paths are relaxed by the ethanol imports, increasing 8% and up to 96%, respectively. ...

Sandra L. Winkler; Timothy J. Wallington; Heiko Maas; Heinz Hass

2014-05-05T23:59:59.000Z

357

Ligand Additions to Cp*(CO)2ReRe(CO)2Cp* and Fragmentation and Rearrangement Reactions of Cp*(CO)2Re(?-CO)Re(CO)(L)Cp*  

Science Journals Connector (OSTI)

Ligand Additions to Cp*(CO)2ReRe(CO)2Cp* and Fragmentation and Rearrangement Reactions of Cp*(CO)2Re(?-CO)Re(CO)(L)Cp* ... Cp*(CO)2ReRe(CO)2Cp* (1) reacted with 2-butyne at ?78 °C to form the 1:1 adduct Cp*(CO)2Re(?-CO)Re(CO)(2-butyne)Cp* (8). ... At ?40 °C, 8 was converted to a mixture of the dimetallacyclopentenone Cp*(CO)2Re[?-?1,?3-(CH3)CC(CH3)CO]Re(CO)Cp* (9) and two fragmentation products:? Cp*Re(CO)3 and Cp*Re(CO)(CH3C?CCH3) (14). ...

Charles P. Casey; Ronald S. Cariño; Hiroyuki Sakaba; Randy K. Hayashi

1996-05-28T23:59:59.000Z

358

Co-optimising CO2 storage and enhanced recovery in gas and gas condensate reservoirs.  

E-Print Network (OSTI)

??Burning fossil fuels supply energy and releases carbon dioxide (CO2). Carbon capture and storage (CCS) can reduce CO2 emissions. However, CCS is an expensive process.… (more)

Tan, Jo Ann

2012-01-01T23:59:59.000Z

359

The CO2 Reforming of Natural Gas in a Pulsed Corona Discharge Reactor  

Science Journals Connector (OSTI)

The conversion of CO 2 and (CH 4+CO 2 ) mixtures to CO, at room temperature and atmospheric pressure conditions, in...

M. A. Malik; X. Z. Jiang

1999-12-01T23:59:59.000Z

360

A Feasibility Study of Non-Seismic Geophysical Methods for Monitoring Geologic CO2 Sequestration  

E-Print Network (OSTI)

CO 2 enhanced oil recovery (EOR) and sequestration in athe measurement configuration. EOR/sequestration projects inshow that a CO 2 –based EOR could increase oil recovery by

Gasperikova, Erika; Hoversten, G. Michael

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "large volume co2" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

The Rosetta Resources CO2 Storage Project - A WESTCARB Geologic Pilot Test  

E-Print Network (OSTI)

of enhanced oil recovery (EOR) using injected CO 2 to driveof enhanced oil recovery (EOR) using injected CO 2 to swell

2006-01-01T23:59:59.000Z

362

A parametric study on reservoir cooling for enhanced oil recovery from CO2 injection.  

E-Print Network (OSTI)

??Whorton et al. (1952) received a patent for their development of an oil recovery method by CO2 injection. Since then, CO2 flooding for secondary and… (more)

Wang, Zhenzhen

2013-01-01T23:59:59.000Z

363

Temporary CO2 Capture Shut Down: Implications on Low Pressure Steam Turbine Design and Efficiency  

Science Journals Connector (OSTI)

Abstract The Natural gas Combined Cycle (NGCC) with post combustion capture using liquid solvents may in some cases be of interest to design with a flexible steam bottoming cycle, so that it can operate both with and without CO2 capture. It is then important that the choice of the low pressure (LP) steam turbine exhaust size is made accordingly. The paper describes why a flexible NGCC requires a LP steam turbine with smaller exhaust than the corresponding NGCC without CO2 capture, and how this will affect the LP turbine exhaust loss and NGCC process efficiency. Handling large variations in LP steam flow is in fact well- known technology in combined heat and power (CHP) plants, and the use of 3D simulation tools can further help making the best LP steam turbine design choice.

Marcus Thern; Kristin Jordal; Magnus Genrup

2014-01-01T23:59:59.000Z

364

NETL: Alstom's Chemical Looping Combustion Technology with CO2 Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Alstom's Chemical Looping Combustion Technology with CO2 Capture for New and Existing Coal-Fired Power Plants Alstom's Chemical Looping Combustion Technology with CO2 Capture for New and Existing Coal-Fired Power Plants Project No.: DE-FE0009484 Alstom is advancing the development of Limestone Chemical Looping Combustion (LCL-C(tm)) technology. Chemical looping has no direct contact between air and fuel. The looping process usually utilizes oxygen from a metal carrier, but in this case, limestone is used. Economic evaluations will be made of four LCL-C plant configurations. The base configuration plant has already been completed and will be updated from previous reports. A second case will compare the effects of designing the reducer reactor using CFB sizing standards. A third case will investigate the effects of using a pressurized reducer reactor. Pressurizing the reducer reduces the reactor size and reduces the amount of compression required for the CO2 outlet gas stream. A fourth case will investigate the use of an advanced ultra-supercritical (USC) steam cycle. The advanced USC steam cycle should increase overall plant efficiency and lower the cost of electricity. Mass and energy balances will be done for each case. The four LCL-CTM cases will be compared against a supercritical pulverized coal-fired plant without CO2 capture.

365

NETL: Ion Advanced Solvent CO2 Capture Pilot Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Ion Advanced Solvent CO2 Capture Pilot Project Ion Advanced Solvent CO2 Capture Pilot Project Project No.: DE-FE0013303 ION Engineering is conducting small pilot-scale (~ 0.7 MW) testing of an advanced CO2 capture solvent technology that has previously undergone bench-scale testing. The small pilot-scale testing will involve continuous long-term operation in order to gather the necessary data ultimately required for further scale-up. Activities will include the design and fabrication of the 0.5-0.7 MWe (equivalent) slipstream pilot plant; scale-up of solvent manufacturing; testing, data collection, and analysis of solvent performance; degradation and air emission analysis; modeling and simulation for the detailed preliminary and final techno-economic analyses; and decommissioning of pilot plant equipment upon completion of solvent testing. The advanced solvent is anticipated to have significant operating and capital cost advantages over other solvents currently in development. Advantages include significant reductions in parasitic load and liquid flow rates which directly translate to smaller more efficient CO2 capture processes. Make-up water and amine emissions rates will be examined during this project. There is the potential that additional solvent, system, and integration savings will be identified, which could result in further operating and capital cost reductions.

366

Carbonation: An Efficient and Economical Process for CO2 Sequestration  

E-Print Network (OSTI)

Carbonation: An Efficient and Economical Process for CO2 Sequestration Tarun R Naik1 and Rakesh sequestration. Most of the studies related to the carbonation are limited to its effects on corrosion. The possibility of using carbonation process as a direct means for carbon dioxide sequestration is yet

Wisconsin-Milwaukee, University of

367

Using CO2 & Algae to Treat Wastewater and  

E-Print Network (OSTI)

,000 million gallons per day 24,000 million liters per day 1.5 MWh/MG additional Nutrient Removal 2016 2 with CO2 Addition · N Removal vs. Bioflocculation · Cell Recycle Rate vs. Bioflocculation & Effluent removal 80 - 95% Natural Disinfection 1 - 2 log removal per pond N removal 20% - 70% P removal 10% - 50

Keller, Arturo A.

368

Consumption-based accounting of CO2 emissions  

Science Journals Connector (OSTI)

...non-CO 2 greenhouse gases (SI Text...valued at exporter prices. In contrast...Republic, and Egypt are among...economies with limited natural resources...National Greenhouse Gas Inventories ( IPCC WGI...Climate, and the Natural World , Socioeconomic...of greenhouse gas emission responsibilities...

Steven J. Davis; Ken Caldeira

2010-01-01T23:59:59.000Z

369

Center for By-Products Utilization CO2 SEQUESTRATION  

E-Print Network (OSTI)

Center for By-Products Utilization CO2 SEQUESTRATION IN NON-AIR ENTRAINED CONCRETE By Tarun R. Naik. Maximize environmental benefits: resource conservation, clean water, and clean air. #12;Center for By-Products, Italy, June 30, 2010. #12;Center for By-Products Utilization UWM Center for By-Products Utilization

Saldin, Dilano

370

UPDATE ON THE INTERNATIONAL EXPERIMENT ON CO2 OCEAN SEQUESTRATION  

E-Print Network (OSTI)

in the deep ocean, forming a buoyant plume. Sea water will be entrained into the rising droplet plume Center, Bergen, Norway 4 Norwegian Institute for Water Research (NIVA), Bergen, Norway 5 University objective of our project on CO2 ocean sequestration is to investigate its technical feasibility

371

A 40-million-year history of atmospheric CO2  

Science Journals Connector (OSTI)

...ecosystems. Proc. Natl Acad. Sci. USA 105, 449-453. ( doi:10...2011 Convergent Cenozoic CO2 history. Nat. Geosci. 4, 418-420...Yellowlees, W Leggat, and GD Price. 1998 The diversity and coevolution...Washington, DC: US Department of Energy. 96 Pagani, M . In press Biomarker-based...

2013-01-01T23:59:59.000Z

372

ORIGINAL ARTICLE Navajo SandstonebrineCO2 interaction: implications  

E-Print Network (OSTI)

in the western US (Loope and Rowe 2003), and is thus potentially sig- nificant with respect to carbonORIGINAL ARTICLE Navajo Sandstone­brine­CO2 interaction: implications for geological carbon a source of carbon for the precipitation of carbonate minerals. Mineral trapping through the precipitation

Zhu, Chen

373

Reducing CO2 in the transport sector in Japan  

Science Journals Connector (OSTI)

In this paper, we have investigated the cost-effectiveness of alternative fuel vehicles as a measure for CO2 reduction. Computed results indicate that the installation of alternative fuel vehicles is much more expensive than fuel switching in industry or the power generation sector. However, some economic incentives will make the price go down to the level at which alternative fuel vehicles are competitive with conventional vehicles. At the same time, mass production makes their prices go down although it is rather expensive at present. Then, we developed the scenarios in which CO2 emissions could be stabilised at the level in 1990. In the higher demand case (1.2%/yr.), it is indispensable to introduce alternative fuel vehicles into the market. Our model selects electric vehicles and compressed natural gas vehicles as cost-effective options. In the scenario where carbon tax revenue is not offset by subsidy, we have to impose prohibitively high carbon tax to suppress CO2. However, CO2 emission can be suppressed by a reasonable carbon tax if the tax revenue is returned to the market to subsidise alternative fuel vehicles and their infrastructures.

Yoshikuni Yoshida; Hisashi Ishitani; Ryuji Matsuhashi; Osamu Kobayashi; Tetsuo Takeishi

2001-01-01T23:59:59.000Z

374

Large volume high-pressure cell for inelastic neutron scattering W. Wang, D. A. Sokolov, A. D. Huxley, and K. V. Kamenev  

E-Print Network (OSTI)

Large volume high-pressure cell for inelastic neutron scattering W. Wang, D. A. Sokolov, A. D for inelastic neutron scattering measurements of quantum fluids and solids Rev. Sci. Instrum. 84, 015101 (2013) TOF-SEMSANS--Time-of-flight spin-echo modulated small-angle neutron scattering J. Appl. Phys. 112

Hall, Christopher

375

Influence of propane on CO2/CH4 and N2/CH4 separations in CHA zeolite membranes  

Science Journals Connector (OSTI)

Abstract Two types of CHA zeolite membranes (SAPO-34, SSZ-13) were used for CO2/CH4, N2/CH4, and CO2/i-butane separations at both low (270 and 350 kPa) and high (1.73 MPa) pressures. The SSZ-13 membranes were more selective, with CO2/CH4 separation selectivities as high as 280 and N2/CH4 separation selectivities of 12 at 270 kPa feed pressure. For both types of membranes, selectivities and permeances decreased as the feed pressure increased. The CO2/i-butane separation selectivities were greater than 500,000 for SAPO-34 membranes, indicating extremely low densities of defects because i-butane is too large to enter the CHA pores. The CO2/i-butane selectivities were smaller for SSZ-13 membranes (2,800–20,000), in part because the SSZ-13 layer was on the outside of the porous mullite tubes and sealing the membrane on the zeolite surface was more difficult than for the SAPO-34 membranes that were grown on the inside of glazed alumina tubes. Propane, in feed concentrations from 1 to 9%, significantly influenced separations by decreasing permeances in most cases. The effect was larger for N2/CH4 than for CO2/CH4 mixtures, apparently because the more strongly-adsorbing CO2 competes better than N2 with propane for adsorption sites. Although propane caused permeances to decrease significantly over time, selectivities decreased much less. Propane decreased permeances more for SAPO-34 membranes than for SSZ-13 membranes at 350 kPa, and at high pressure propane even increased CO2 permeances and decreased CH4 permeances in SSZ-13 membranes, thus significantly increasing CO2/CH4 selectivities. Propane permeances reached steady state relatively quickly because its permeation was mostly through defects, but CO2, N2, and CH4 permeances did not stabilize in the presence of propane, even after seven days. The effects of propane were reversible when it was removed from the feed and the membranes were heated.

Ting Wu; Merritt C. Diaz; Yihong Zheng; Rongfei Zhou; Hans H. Funke; John L. Falconer; Richard D. Noble

2015-01-01T23:59:59.000Z

376

Frequency measurements of saturated-fluorescence-stabilized CO2 laser lines: comparison with an OsO4-stabilized CO2 laser standard  

Science Journals Connector (OSTI)

frequency grid, to test the performance of the saturated fluorescence method for CO2 laser frequency stabilization. The Allan variance for the saturated-fluorescence-stabilized CO2 laser reached 60 Hz for an int...

B. Frech; L.F. Constantin; A. Amy-Klein; O. Phavorin; C. Daussy…

1998-08-01T23:59:59.000Z

377

A comparison of air, CO2 and an air/CO2 mixture as insufflation agents for double contrast barium enema*  

Science Journals Connector (OSTI)

Using CO2 for DCBE is recommended as it may decrease pain afterwards but recent studies suggest it produces inferior distension. This prospective double blind study was designed to evaluate the use of an air/CO2 ...

J. A. Holemans; M. B. Matson; J. A. Hughes; P. Seed; S. C. Rankin

1998-02-01T23:59:59.000Z

378

Predicting PVT data for CO2brine mixtures for black-oil simulation of CO2 geological storage  

E-Print Network (OSTI)

trapping mechanism. In the petroleum industry, compositional reservoir simu- lators use EOS thermodynamic Leonenko a a Department of Chemical and Petroleum Engineering, University of Calgary, Canada b Department of Petroleum Engineering, Kuwait University, Kuwait 1. Introduction The sequestration of anthropogenic CO2

Santos, Juan

379

GAS HYDRATE EQUILIBRIA FOR CO2-N2 AND CO2-CH4 GAS MIXTURES, EXPERIMENTS AND MODELLING  

E-Print Network (OSTI)

to remove those industrial gases that have an impact on the global warming before being emitted CO2 capture in industry is regarded as a possible tool that is suitable for reducing the global steelmaking plants, gas or coal power plants, chemical plants or natural gas production plants. Facing

Paris-Sud XI, Université de

380

Tropical forest responses to increasing [CO2]: current knowledge and opportunities for future research  

SciTech Connect

Elevated atmospheric [CO2] (ca) will undoubtedly affect the metabolism of tropical forests worldwide; however, critical aspects of how tropical forests will respond remain largely unknown. Here we review the current state of knowledge about physiological and ecological responses, with the aim of providing a framework that can help to guide future experimental research. Modelling studies have indicated that elevated ca can potentially stimulate photosynthesis more in the tropics than at higher latitudes, because suppression of photorespiration by elevated ca increases with temperature. However, canopy leaves in tropical forests could also potentially reach a high temperature threshold under elevated ca that will moderate the rise in photosynthesis. Belowground responses, including fine root production, nutrient foraging, and soil organic matter processing, will be especially important to the integrated ecosystem response to elevated CO2. Water-use efficiency will increase as ca rises, potentially impacting upon soil moisture status and nutrient availability. Recruitment may be differentially altered for some functional groups, potentially decreasing ecosystem carbon storage. Whole-forest CO2 enrichment experiments are urgently needed to test predictions of tropical forest functioning under elevated ca. Smaller scale experiments in the understory and in gaps would also be informative, and could provide stepping stones toward stand-scale manipulations.

Cernusak, Lucas [Australian National University, Canberra, Australia; Winter, Klaus [Smithsonian Tropical Research Institute; Dalling, James [University of Illinois, Urbana-Champaign; Holtum, Joseph [James Cook University; Jaramillo, Carlos [Smithsonian Tropical Research Institute; Korner, Christian [University of Basel; Leakey, Andrew D.B. [University of Illinois; Norby, Richard J [ORNL; Poulter, Benjamin [Laboratoire des Sciences du Climat et de l'Environement, France; Turner, Benjamin [Smithsonian Tropical Research Institute; Wright, S. Joseph [Smithsonian Tropical Research Institute

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "large volume co2" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

A Phase-Partitioning Model for CO2–Brine Mixtures at Elevated Temperatures and Pressures: Application to CO2-Enhanced Geothermal Systems  

E-Print Network (OSTI)

Simulations of dry-out and halite precipitation due to CO 2a reasonable approximation up to halite saturation (Spycher

Spycher, Nicolas; Pruess, Karsten

2010-01-01T23:59:59.000Z

382

A Review of Hazardous Chemical Species Associated with CO2 Capture from Coal-Fired Power Plants and Their Potential Fate in CO2 Geologic Storage  

E-Print Network (OSTI)

capture of CO 2 from gasifier process producing electricalPlaquemine, Louisiana. The gasifier is a proprietary designGasifier .

Apps, J.A.

2006-01-01T23:59:59.000Z

383

Tri-reforming of Natural Gas Using CO2 in Flue Gas of Power Plants without CO2 Pre-separation for Production of Synthesis Gas with Desired H2/CO Ratios  

Science Journals Connector (OSTI)

Most existing CO2 conversion processes use pure CO2 that comes from CO2 recovery, separation and subsequent purification, which are all energy- consuming steps that add up the cost and can lead to additional CO2 ...

Chunshan Song; Wei Pan; Srinivas T. Srimat

2002-01-01T23:59:59.000Z

384

Edinburgh Research Explorer Can seasonal and interannual variation in landscape CO2 fluxes  

E-Print Network (OSTI)

Edinburgh Research Explorer Can seasonal and interannual variation in landscape CO2 fluxes be detected by atmospheric observations of CO2 concentrations made at a tall tower? Citation for published in landscape CO2 fluxes be detected by atmospheric observations of CO2 concentrations made at a tall tower

Millar, Andrew J.

385

Observations and simulations of synoptic, regional, and local variations in atmospheric CO2  

E-Print Network (OSTI)

Observations and simulations of synoptic, regional, and local variations in atmospheric CO2 Jih] Synoptic events may play an important role in determining the CO2 spatial distribution and temporal 2001, which had the most significant CO2 concentration variation in our case pool. The CO2

Collett Jr., Jeffrey L.

386

Joint CO2 and CH4 accountability for global warming Kirk R. Smitha,1,2  

E-Print Network (OSTI)

debt index incorporating both methane (CH4) and carbon dioxide (CO2) emissions. We develop national for global perspectives. We include CO2 emissions from fossil sources [CO2(f)], as well as, in a separate by decreasing CH4 emissions by 46% as stopping CO2 emissions entirely, but with substantial differences among

Silver, Whendee

387

The Anthropogenic Perturbation of Atmospheric CO2 and the Climate System  

E-Print Network (OSTI)

of carbon dioxide (CO2), a powerful greenhouse gas (GHG), are redistributed within the climate system

Fortunat, Joos

388

CO2 + CH4 Chemistry over Pd: Results of Kinetic Simulations Relevant to  

E-Print Network (OSTI)

-component feed gas consisted of CO2 and CH4 with total pressure of 1 bar. The CO2 ­ CH4 partial pressures reactions in certain situations. Even in the gas-phase for example the reaction between CO2 and CH4 yielding reactor employing CO2 and CH4 as the two-component feed gas. We discuss the pred

Spiteri, Raymond J.

389

Economic and energetic analysis of capturing CO2 from ambient air  

Science Journals Connector (OSTI)

...the CO 2 from a feed gas. After absorption...concentrated stream of CO 2 gas is produced, with the...purify CO 2 from coal-fired power plant flue gases, where the CO 2 concentration...capture using current-generation capture and compression...

Kurt Zenz House; Antonio C. Baclig; Manya Ranjan; Ernst A. van Nierop; Jennifer Wilcox; Howard J. Herzog

2011-01-01T23:59:59.000Z

390

DOI: 10.1002/cssc.201000032 The Immobility of CO2 in Marine Sediments Beneath 1500  

E-Print Network (OSTI)

of seawater has been suggested for the permanent storage of an- thropogenic CO2. At the pressures of injecting CO2 into marine sediments at depths shallower than required for denser-than-seawater CO2 storage and temperature conditions compress CO2 to a liquid phase that is denser than seawater.[11] Storing denser

Schrag, Daniel

391

Extracting CO2 from seawater: Climate change mitigation and renewable liquid fuel  

E-Print Network (OSTI)

Photosynthesis Biomass Renewable liquid fuel Fuel synthesis #12;Renewable liquid fuel Combustion CO2 separation emissions from all sectors IEA, 2012; CO2 emissions from fuel combustion: Highlights. · Solar · Wind · CO2. R. Soc. A, 368, 3343, 2010 #12;Biological renewable liquid fuel Combustion Water CO2 in air

Homes, Christopher C.

392

Stomatal proxy record of CO2 concentrations from the last termination suggests an important role for CO2 at climate change transitions  

E-Print Network (OSTI)

Stomatal proxy record of CO2 concentrations from the last termination suggests an important role for CO2 at climate change transitions Margret Steinthorsdottir a,*, Barbara Wohlfarth a , Malin E2 reconstruction Betula nana Sweden a b s t r a c t A new stomatal proxy-based record of CO2

Wohlfarth, Barbara

393

1M. Panahi, S. Skogestad ' Optimal Operation of a CO2 Capturing Plant for a Wide Range of Disturbances' Optimal Operation of a CO2 Capturing  

E-Print Network (OSTI)

disturbances: flue gas flowrate, CO2 composition in flue gas + active constraint values Step 4. Optimization 41M. Panahi, S. Skogestad ' Optimal Operation of a CO2 Capturing Plant for a Wide Range of Disturbances' Optimal Operation of a CO2 Capturing Plant for a Wide Range of Disturbances Mehdi Panahi Sigurd

Skogestad, Sigurd

394

Consumption-based CO2 accounting of China's megacities: The case of Beijing, Tianjin, Shanghai and Chongqing  

Science Journals Connector (OSTI)

Abstract China has experienced rapid urbanization in the last three decades, with more than half of the population living in cities since 2012. The extent of urban production and urban lifestyles has become one of the main drivers for China's CO2 emissions. To analyze drivers of CO2 emissions we use a consumption-based accounting approach that allocates all emissions along the production chain to the product and place of final consumption, whereas a production-based approach would allocate all emissions to the place of origin. In this study, we focus on the spatial distribution of production activities leading to CO2 emissions across China as a consequence of final consumption in four Chinese mega cities: Beijing, Shanghai, Tianjin, and Chongqing. Urban consumption not only causes a large amount of emissions within its territory, but also imposes even much more emissions to its surrounding provinces via interregional supply chains. Results show that more than 48% of CO2 emissions related to goods consumed in Chongqing and more than 70% for Beijing, Shanghai and Tianjin occurred outside of the respective city boundary. In addition to the usual focus on efficiency, our analysis adds insights into the causes of CO2 emissions by looking at the drivers and types of consumption. Addressing consumption patterns in China's cities is critical for China's low carbon development.

Kuishuang Feng; Klaus Hubacek; Laixiang Sun; Zhu Liu

2014-01-01T23:59:59.000Z

395

Telechelic Fluoroether Polyurethanes As Direct CO2 Thickeners  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 Oil & Natural Gas Technology DOE Award No.: DE-FG26-04NT-15533 Final Report Synthesis and Evaluation of CO 2 Thickeners Designed with Molecular Modeling Submitted by: Dr. Robert M. Enick, Dr. Eric J. Beckman, Dr. J. Karl Johnson Chemical and Petroleum Engineering 1249 Benedum Hall, Swanson School of Engineering, University of Pittsburgh Pittsburgh PA 15261 Prepared for: United States Department of Energy National Energy Technology Laboratory February 1, 2010 Office of Fossil Energy 1 Synthesis and Evaluation of CO 2 Thickeners Designed with Molecular Modeling Final Report Start Date: Sept. 1, 2004 End Date: August 31, 2009 Dr. Robert M. Enick Dr. Eric J. Beckman Dr. J. Karl Johnson Chemical and Petroleum Engineering University of Pittsburgh

396

Recovery of CO2 from Flue Gases: Commercial Trends  

NLE Websites -- All DOE Office Websites (Extended Search)

CO CO 2 from Flue Gases: Commercial Trends Originally presented at the Canadian Society of Chemical Engineers annual meeting October 4-6, 1999, Saskatoon, Saskatchewan, Canada Authors: Dan G. Chapel (dan.chapel@fluor.com; 949-349-7530) Carl L. Mariz (carl.mariz@fluor.com; 949-349-7530) FluorDaniel One Fluor Drive Aliso Viejo CA, 92698 John Ernest (john.ernest@minimed.com; 818-576-4293) Advanced Quality Services Inc 11024 Balboa Blvd. PMB154, Granada Hills, CA 91344-5007 1 Recovery of CO 2 from Flue Gases: Commercial Trends Originally presented at the Canadian Society of Chemical Engineers annual meeting October 4-6, 1999, Saskatoon, Saskatchewan, Canada Authors: Dan Chapel - Fluor Daniel Inc., Senior Vice President Technology; Oil, Gas & Power John Ernest - Advanced Quality Services Inc., Validation Engineer

397

Russia Federation Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Centrally Planned Europe Centrally Planned Europe » Russian Federation Russia Federation Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends Since 1992 total fossil-fuel CO2 emissions from the Russian Federation have dropped 23% to 466 million metric tons of carbon, still the fourth largest emitting country in the world and the largest emitter of the republics comprising the former USSR. Emissions from gas consumption still represent the largest fraction (49.1%) of Russia's emissions and only recently have returned to the 1992 level. Emissions from coal consumption have dropped 25.5% since 1992 and presently account for 26.6% of Russia's emissions. Russia has the largest population of any Eastern European country with a population of 141 million people. From a per capita standpoint, Russia's

398

Metal Monolithic Amine-Grafted Zeolites for CO2 Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Metal Monolithic Amine-Grafted Metal Monolithic Amine-Grafted Zeolites for CO 2 Capture Background The mission of the U.S. Department of Energy's (DOE) Existing Plants, Emissions & Capture (EPEC) Research and Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. The EPEC R&D Program portfolio

399

Plains CO2 Reduction Partnership--Development Phase  

NLE Websites -- All DOE Office Websites (Extended Search)

Development Phase Development Phase Background As part of a comprehensive effort to assess options for sustainable energy systems, the U.S. Department of Energy has selected seven regional partnerships, through its Regional Carbon Sequestration Partnership (RCSP) initiative, to determine the best approaches for capturing and permanently storing carbon dioxide (CO 2 ), a greenhouse gas (GHG) which can contribute to global climate change. The partnerships are

400

Plains CO2 Reduction Partnership--Validation Phase  

NLE Websites -- All DOE Office Websites (Extended Search)

Validation Phase Validation Phase Background The U.S. Department of Energy (DOE) has selected seven partnerships, through its Regional Carbon Sequestration Partnership (RCSP) initiative, to determine the best approaches for capturing and permanently storing carbon dioxide (CO 2 ), a greenhouse gas (GHG) which can contribute to global climate change. The RCSPs are made up of state and local agencies, coal companies, oil and gas companies, electric utilities,

Note: This page contains sample records for the topic "large volume co2" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

CO2 Emission Benefit of Diesel (versus Gasoline) Powered Vehicles  

Science Journals Connector (OSTI)

Increased penetration of diesel powered vehicles into the market is a possible transition strategy toward a more sustainable transportation system. ... We report herein a quantitative analysis of the CO2 emission benefits of diesel vehicles versus their gasoline equivalents for 2001 MY and 2015 MY in European and North American markets. ... However, more stringent tailpipe NOx emissions standards are likely to have a greater negative impact on diesel engines, further reducing the advantages of future diesels relative to gasoline engines. ...

J. L. Sullivan; R. E. Baker; B. A. Boyer; R. H. Hammerle; T. E. Kenney; L. Muniz; T. J. Wallington

2004-05-13T23:59:59.000Z

402

Thermal Management of Structured Adsorbents in CO2 Capture Processes  

Science Journals Connector (OSTI)

In our previous study,(8) we presented a new methodology to find the optimal adsorbent structure and showed that for dilute systems, parallel channel adsorbents in the form of laminate structures exhibit substantially better performance than other structures, but for the sake of computational simplicity we confined our study to the case of isothermal operation only. ... Heat capacities of bulk and adsorbed CO2 are assumed negligible. ...

Fateme Rezaei; Mattias Grahn

2012-02-24T23:59:59.000Z

403

In situ carbonation of peridotite for CO2 storage  

Science Journals Connector (OSTI)

...Gottschalk M ( 1997 ) Internally consistent thermodynamic data for rock-forming minerals in the system SiO2-TiO2-Al2O3-Fe2O3-CaO-MgO-FeO-K2O-Na2O-H2O-CO2 . Eur J Mineral 9 : 175 – 223 . 37 Blackwell DD ( 1971 ) in The Structure and Physical...

Peter B. Kelemen; Jürg Matter

2008-01-01T23:59:59.000Z

404

Separation of CO2 from flue gas using electrochemical cells  

SciTech Connect

ABSTRACT Past research with high temperature molten carbonate electrochemical cells has shown that carbon dioxide can be separated from flue gas streams produced by pulverized coal combustion for power generation, However, the presence of trace contaminants, i.e" sulfur dioxide and nitric oxides, will impact the electrolyte within the cell. If a lower temperature cell could be devised that would utilize the benefits of commercially-available, upstream desulfurization and denitrification in the power plant, then this CO2 separation technique can approach more viability in the carbon sequestration area, Recent work has led to the assembly and successful operation of a low temperature electrochemical cell. In the proof-of-concept testing with this cell, an anion exchange membrane was sandwiched between gas-diffusion electrodes consisting of nickel-based anode electrocatalysts on carbon paper. When a potential was applied across the cell and a mixture of oxygen and carbon dioxide was flowed over the wetted electrolyte on the cathode side, a stream of CO2 to O2 was produced on the anode side, suggesting that carbonate/ bicarbonate ions are the CO2 carrier in the membrane. Since a mixture of CO 2 and 02 is produced, the possibility exists to use this stream in oxy-firing of additional fuel. From this research, a novel concept for efficiently producing a carbon dioxide rich effiuent from combustion of a fossil fuel was proposed. Carbon dioxide and oxygen are captured from the flue gas of a fossilfuel combustor by one or more electrochemical cells or cell stacks. The separated stream is then transferred to an oxy-fired combustor which uses the gas stream for ancillary combustion, ultimately resulting in an effluent rich in carbon dioxide, A portion of the resulting flow produced by the oxy-fired combustor may be continuously recycled back into the oxy-fired combustor for temperature control and an optimal carbon dioxide rich effluent.

Pennline, H.W; Granite, E.J.; Luebke, D.R; Kitchin, J.R; Landon, J.; Weiland, L.M.

2010-06-01T23:59:59.000Z

405

IMPLEMENTING A NOVEL CYCLIC CO2 FLOOD IN PALEOZOIC REEFS  

SciTech Connect

Recycled CO2 will be used in this demonstration project to produce bypassed oil from the Silurian Dover 35 pinnacle reef (Otsego County) in the Michigan Basin. Contract negotiations by our industry partner to gain access to the CO2 supply have been completed and the State of Michigan has issued an order to allow operation of the project. Injection of CO2 is scheduled to begin in February, 2004. Subsurface characterization is being completed using well log tomography animations and 3D visualizations to map facies distributions and reservoir properties in two reefs, the Belle River Mills and Chester 18 Fields. The Belle River Mills and Chester18 fields are being used as type-fields because they have excellent log and/or core data coverage. Amplitude slicing of the normalized gamma ray and core permeability and core porosity curves is showing trends that indicate significant heterogeneity and compartmentalization in these reservoirs associated with the original depositional fabric of the rocks. Digital and hard copy data continues to be compiled for the Niagaran reefs in the Michigan Basin. Technology transfer took place through technical presentations regarding visualization of the heterogeneity of the Niagaran reefs. An oral presentation was given at the AAPG Eastern Section Meeting and a booth at the same meeting was used to meet one-on-one with operators.

James R. Wood; W. Quinlan; A. Wylie

2004-01-01T23:59:59.000Z

406

Shell Future Fuels and CO2 | Open Energy Information  

Open Energy Info (EERE)

Shell Future Fuels and CO2 Shell Future Fuels and CO2 Jump to: navigation, search Name Shell Future Fuels and CO2 Place Glasgow, Scotland, United Kingdom Zip G1 9BG Sector Hydro, Hydrogen Product UK-based division of Shell's Oil Products business active in the hydrogen & CCS sectors as a developer of technology. Coordinates 55.857809°, -4.242511° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.857809,"lon":-4.242511,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

407

CO2 Capture Options for an Existing Coal Fired Power Plant: O2/CO2 Recycle Combustion vs. Amine Scrubbing  

NLE Websites -- All DOE Office Websites (Extended Search)

OPTIONS FOR AN EXISTING COAL FIRED POWER PLANT: OPTIONS FOR AN EXISTING COAL FIRED POWER PLANT: O 2 /CO 2 RECYCLE COMBUSTION vs. AMINE SCRUBBING D. J. Singh (djsingh@uwaterloo.ca; +001-519-496-2064) E. Croiset 1 (ecroiset@uwaterloo.ca;+001-519-888-4567x6472) P.L. Douglas (pdouglas@uwaterloo.ca; +001-519-888-4567x2913) Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1 M.A. Douglas (madougla@nrcan.gc.ca; +001-613 996-2761) CANMET Energy Technology Centre, Natural Resources Canada, 1 Haanel Dr., Nepean, Ontario, Canada, K1A 1M1 Abstract The existing fleet of modern pulverized coal fired power plants represents an opportunity to achieve significant greenhouse gas (GHG) emissions in the coming years providing efficient and economical CO 2 capture technologies are available for retrofit.

408

Geology and hydrogeochemistry of the Jungapeo CO2-rich thermal springs, State of Michoacán, Mexico  

Science Journals Connector (OSTI)

We present the first geothermal assessment of the Jungapeo CO2-rich mineral springs, which are located in the eastern part of Michoacán State (central Mexico) at the southern limit of the Trans-Mexican Volcanic Belt. All but one of the > 10 springs occur at the lower contact of the distal olivine-bearing basaltic andesite lavas of the Tuxpan shield, a 0.49- to 0.60-Ma-old cluster of monogenetic scoria cones and lava flows. The Tuxpan shield has a maximum radius of 6 km and was constructed on top of a folded and faulted Cretaceous basement consisting largely of marine limestones, marls, and shales. The mineral waters are characterized by moderate temperatures (28 to 32 °C), mild acidity (pH from 5.5 to 6.5), relatively high discharge rates, effervescence of CO2 gas, clarity at emergence and abundant subsequent precipitation of hydrous iron, silica oxides, and carbonates around pool margins and issuing streamlets. Chemical and isotopic (deuterium, oxygen, and tritium) analyses of water and gas samples obtained during the period 1991–1997 indicate that the springs are largely composed of meteoric water from a local source with relatively short residence times (water ages of 7 to 25 years). Spring waters are chemically characterized by moderate SiO2, Ca + Mg nearly equal to Na + K, high HCO3, moderate to low Cl, low F and SO4, high B, moderate Li, while Br and As are low. In contrast, Fe + Mn is exceptionally high. Thus, the Jungapeo waters cannot be regarded as high-temperature geothermal fluids. Instead, they resemble soda spring waters similar to other low-to-medium temperature soda waters in the world. Gas samples are extremely rich in CO2 with no detectable geothermal H2S or H2 and very low contents of CH4 and NH3, indicating the gases are not derived from a high-temperature resource. Carbon-13 analyses of CO2 show a narrow range (? 6.7‰ and ? 7.2‰) that falls within the range for MORB CO2. Thus, most CO2 seems to originate from the mantle but some CO2 could originate from thermal degradation of organic remains in underlying Cretaceous rocks. 3/4He ratios range from about 2 to 3 Rc/Ra, indicating that a small mantle/magmatic He component is present in the gases. In conclusion, the mineral waters are the surface expression of a low-temperature geothermal system of limited size that originates from the combined effects of a high regional heat flow and (possibly) the remnant heat released from subjacent basaltic andesite magma bodies that constitute the root zone of the Tuxpan shield.

Claus Siebe; Fraser Goff; María Aurora Armienta; Dale Counce; Robert Poreda; Steve Chipera

2007-01-01T23:59:59.000Z

409

HIGH-TEMPERATURE CO-ELECTROLYSIS OF H2O AND CO2 FOR SYNGAS PRODUCTION  

SciTech Connect

Worldwide, the demand for light hydrocarbon fuels like gasoline and diesel oil is increasing. To satisfy this demand, oil companies have begun to utilize oil deposits of lower hydrogen content (an example is the Athabasca Oil Sands). Additionally, the higher contents of sulfur and nitrogen of these resources requires processes such as hydrotreating to meet environmental requirements. In the mean time, with the price of oil currently over $50 / barrel, synthetically-derived hydrocarbon fuels (synfuels) have become economical. Synfuels are typically produced from syngas – hydrogen (H2) and carbon monoxide (CO) -- using the Fischer-Tropsch process, discovered by Germany before World War II. South Africa has used synfuels to power a significant number of their buses, trucks, and taxicabs. The Idaho National Laboratory (INL), in conjunction with Ceramatec Inc. (Salt Lake City, USA) has been researching for several years the use of solid-oxide fuel cell technology to electrolyze steam for large-scale nuclear-powered hydrogen production. Now, an experimental research project is underway at the INL to investigate the feasibility of producing syngas by simultaneously electrolyzing at high-temperature steam and carbon dioxide (CO2) using solid oxide fuel cell technology. The syngas can then be used for synthetic fuel production. This program is a combination of experimental and computational activities. Since the solid oxide electrolyte material is a conductor of oxygen ions, CO can be produced by electrolyzing CO2 sequestered from some greenhouse gas-emitting process. Under certain conditions, however, CO can further electrolyze to produce carbon, which can then deposit on cell surfaces and reduce cell performance. The understanding of the co-electrolysis of steam and CO2 is also complicated by the competing water-gas shift reaction. Results of experiments and calculations to date of CO2 and CO2/H2O electrolysis will be presented and discussed. These will include electrolysis performance at various temperatures, gas mixtures, and electrical settings. Product gas compositions, as measured via a gas analyser, and their relationship to conversion efficiencies will be presented. These measurements will be compared to predictions obtained from chemical equilibrium computer codes. Better understanding of the feasibility of producing syngas using high-temperature electrolysis will initiate the systematic investigation of nuclear-powered synfuel production as a bridge to the future hydrogen economy and ultimate independence from foreign energy resources.

Stoots, C.M.

2006-11-01T23:59:59.000Z

410

Current State of Literature on CO2 Clathrate Hydrates -- Transport Related Issues  

NLE Websites -- All DOE Office Websites (Extended Search)

State of Literature on State of Literature on CO 2 Clathrate Hydrates Transport Related Issues Transport Related Issues Hydrate in suspension models Model (3) Model (3) Analysis Analysis Perforated plate models Model (2) Model (2) Analysis Analysis CO2 Permeable Plate models Model (2) Model (2) Analysis Analysis Transport model and analysis Wrong or no physical basis Not proven correct Correct and/or consistent CO 2 Transport Mechanisms in the literature: CO 2 H 2 O diffuse boundary layer Concentra tion r C o C infty C h1 C h2 C i C o : Conc. of pure liq CO 2 C h1 : Conc. of CO2 at full occupancy C h2 : Conc.of CO 2 in hydrate at interface that in equil with water saturated with CO 2 . C i : Conc. of CO 2 in liq. water adjoining hydrate C infty

411

CO2 Mitigation Potential of Mineral Carbonation with Industrial Alkalinity Sources in the United States  

Science Journals Connector (OSTI)

CO2 Mitigation Potential of Mineral Carbonation with Industrial Alkalinity Sources in the United States ... We show that in the U.S., industrial alkaline byproducts have the potential to mitigate approximately 7.6 Mt CO2/yr, of which 7.0 Mt CO2/yr are CO2 captured through mineral carbonation and 0.6 Mt CO2/yr are CO2 emissions avoided through reuse as synthetic aggregate (replacing sand and gravel). ... This work was supported by the U.S. Department of Energy under Contract DE-AC36-08-GO28308 with the National Renewable Energy Laboratory for the Joint Institute for Strategic Energy Analysis. ...

Abby Kirchofer; Austin Becker; Adam Brandt; Jennifer Wilcox

2013-06-05T23:59:59.000Z

412

Adsorption Behavior of CO2 in Coal and Coal Char  

Science Journals Connector (OSTI)

Coals of diverse characteristics have been chosen to provide a better understanding on the influence of various coal properties, such as maceral, volatile matter, and ash contents. ... In addition, char samples from two of these coals (a non-coking coal A and a coking coal B) were prepared by pyrolysis at 800 and 1000 °C in a nitrogen atmosphere and were tested for CO2 adsorption capacity. ... As stated earlier, virgin coal samples considered for the adsorption measurements include coals A, C, and D, which are of low-, high-, and medium-volatile sub-bituminous rank, respectively. ...

Shanmuganathan Ramasamy; Pavan Pramod Sripada; Md Moniruzzaman Khan; Su Tian; Japan Trivedi; Rajender Gupta

2014-07-01T23:59:59.000Z

413

Enhancement of Local Air Pollution by Urban CO2 Domes  

Science Journals Connector (OSTI)

For this study, the nested global-through-urban 3-D model, GATOR-GCMOM (13-17) was used to examine the effects of locally emitted CO2 on local climate and air pollution. ... Jacobson, M. Z. GATOR-GCMM: 2. A study of day- and nighttime ozone layers aloft, ozone in national parks, and weather during the SARMAP Field Campaign J. Geophys. ... GATOR-GCMM 2. A study of daytime and nighttime ozone layers aloft, ozone in national parks, and weather during the SARMAP field campaign ...

Mark Z. Jacobson

2010-03-10T23:59:59.000Z

414

Optimization Model for Energy Planning with CO2 Emission Considerations  

Science Journals Connector (OSTI)

This paper considers the problem of reducing CO2 emissions from a power grid consisting of a variety of power-generating plants:? coal, natural gas, nuclear, hydroelectric, and alternative energy. ... Approximately 28.5% of OPG electricity is produced through the combustion of fossil fuels, 27% through hydroelectricity, and 44% through nuclear energy, and the remaining 0.5% comes from renewable or other energy sources, such as wind turbines. ... A sensitivity analysis was also performed to evaluate the impact of natural gas prices, coal prices, and retrofit costs on the optimal configuration of the OPG fleet of electricity-generating stations. ...

Haslenda Hashim; Peter Douglas; Ali Elkamel; Eric Croiset

2005-01-12T23:59:59.000Z

415

Amending constructed roadside and urban soils with large volume-based compost applications: effects on water quality  

E-Print Network (OSTI)

field plots on a constructed soil with an 8.5% slope. Three TxDOT compost application methods were tested; incorporation at 25% by volume (CMT), topdressing over vegetation (GUC), and topdressing a 5-cm compost woodchip mix over bare soil (ECC). In 2003...

Hansen, Nels Edward

2007-04-25T23:59:59.000Z

416

An experimental study iof the diffusion of C and O in calcite in mixed Co2-H2O fluids.  

SciTech Connect

The diffusivity of C and O in calcite in mixed CO2-H2O fluid was determined over the range in xCO2 from 1.0 to about 0.2 at 700 C, 100 MPa, with selected experiments conducted at pressures to 250 MPa and temperatures of 600 and 800 C. The diffusivity of C, DC, varies little with xCO2, although there is some evidence for a slight increase in DC from 5 10 18 to 5 10 17 cm2/s with decreasing xCO2. Our data and those of others are consistent with a model for DC 1/fCO2. Despite the large uncertainty, we observed that the diffusivity of O, DO, increases from 2 10 16 to 5 10 14 cm2/s with xCO2 decreasing from 1.0 to 0. There is a good correlation at 700 C between log DO and log fH2O regardless of the total pressure, matching the observations of previous workers. The data are consistent with a simple two-component model for the diffusion of O in calcite, one component for diffusion in the presence of CO2 and one in the presence of H2O: DO = DOCO2 + DOH2O aH2O. The activity of H2O is relative to the fugacity at 100 MPa, 700 C. DOCO2 is 3.45 10 16, and DOH2O is 3.8 10 14 cm2/s. The data indicate that the rate of diffusion of C and O in calcite is controlled by reactions at the surface of calcite. Adsorption of H2O and the creation of vacancies at the surface account for the dependence of the diffusivity on the fugacity of the fluid components. There is little evidence that H itself diffuses into calcite. With this model and the values of DO in pure CO2 (Labotka et al. 2000) and in pure H2O (Farver 1994), the value of DO is predicted over the temperature range 600 800 C and pH2O up to 300 MPa, the range of the data. Calculated closure temperatures for diffusive exchange of O between calcite and fluid are reduced by about 150 C in the presence of an aqueous fluid.

Labotka, Theodore C. [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL); Cole, David [Ohio State University; Fayek, Mostafa [University of Manitoba, Canada; Chacko, Thomas {nmn} [ORNL

2011-01-01T23:59:59.000Z

417

Evidence of irreversible CO2 intercalation in montmorillonite  

NLE Websites -- All DOE Office Websites (Extended Search)

Journal of Greenhouse Gas Control 14 (2013) 220-226 Journal of Greenhouse Gas Control 14 (2013) 220-226 Contents lists available at SciVerse ScienceDirect International Journal of Greenhouse Gas Control j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / i j g g c Evidence of irreversible CO 2 intercalation in montmorillonite Vyacheslav N. Romanov ∗ National Energy Technology Laboratory, P.O. Box 10940, Pittsburgh, PA 15236, United States a r t i c l e i n f o Article history: Received 6 November 2012 Received in revised form 11 January 2013 Accepted 14 January 2013 Keywords: Clay Carbon dioxide Sorption Spectroscopy XRD a b s t r a c t Mitigation of the global climate change via sequestration of anthropogenic carbon dioxide (CO 2 ) in geo- logic formations requires assessment of the reservoir storage capacity and cap rock seal integrity. The

418

IMPLEMENTING A NOVEL CYCLIC CO2 FLOOD IN PALEOZOIC REEFS  

SciTech Connect

Recycled CO2 will be used in this demonstration project to produce bypassed oil from the Silurian Charlton 6 pinnacle reef (Otsego County) in the Michigan Basin. Contract negotiations by our industry partner to gain access to this CO2 that would otherwise be vented to the atmosphere are near completion. A new method of subsurface characterization, log curve amplitude slicing, is being used to map facies distributions and reservoir properties in two reefs, the Belle River Mills and Chester 18 Fields. The Belle River Mills and Chester18 fields are being used as typefields because they have excellent log-curve and core data coverage. Amplitude slicing of the normalized gamma ray curves is showing trends that may indicate significant heterogeneity and compartmentalization in these reservoirs. Digital and hard copy data continues to be compiled for the Niagaran reefs in the Michigan Basin. Technology transfer took place through technical presentations regarding the log curve amplitude slicing technique and a booth at the Midwest PTTC meeting.

James R. Wood; W. Quinlan; A. Wylie

2003-07-01T23:59:59.000Z

419

IMPLEMENTING A NOVEL CYCLIC CO2 FLOOD IN PALEOZOIC REEFS  

SciTech Connect

Recycled CO2 will be used in this demonstration project to produce bypassed oil from the Silurian Dover 35 pinnacle reef (Otsego County) in the Michigan Basin. We began injecting CO2 in the Dover 35 field into the Salling-Hansen 4-35A well on May 6, 2004. Subsurface characterization is being completed using well log tomography animations and 3D visualizations to map facies distributions and reservoir properties in three reefs, the Belle River Mills, Chester 18, and Dover 35 Fields. The Belle River Mills and Chester 18 fields are being used as type-fields because they have excellent log and/or core data coverage. Amplitude slicing of the log porosity, normalized gamma ray, core permeability, and core porosity curves is showing trends that indicate significant heterogeneity and compartmentalization in these reservoirs associated with the original depositional fabric of the rocks. Digital and hard copy data continues to be compiled for the Niagaran reefs in the Michigan Basin. Technology transfer took place through technical presentations regarding visualization of the heterogeneity of the Niagaran reefs. Oral presentations were given at the Petroleum Technology Transfer Council workshop, Michigan Oil and Gas Association Conference, and Michigan Basin Geological Society meeting. A technical paper was submitted to the Bulletin of the American Association of Petroleum Geologists on the characterization of the Belle River Mills Field.

James R. Wood; W. Quinlan; A. Wylie

2004-07-01T23:59:59.000Z

420

Thermodynamics and Kinetics of CO2 Adsorption on Dehydrated Palladium/Cobalt-Based Cyanogels:? A Highly Selective, Fully Reversible System for CO2 Storage  

Science Journals Connector (OSTI)

Aerogel versus xerogel structures have a profound effect on the thermodynamics and kinetics of CO2 adsorption. ... The selective adsorption of CO2 by the cyanogels can be harnessed practically in at least two principal ways:? by using the cyanogels as reservoirs for trapping CO2 reversibly and by constructing filters having an embedded layer of the gels. ... The water of gelation was eliminated by smearing out the gel on filter paper and drying it overnight in an oven at 95 °C. ...

Rahul S. Deshpande; Stefanie L. Sharp-Goldman; Andrew B. Bocarsly

2002-08-24T23:59:59.000Z

Note: This page contains sample records for the topic "large volume co2" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Semi-analytical model of brine and CO2 leakage through an abandoned plugged well. Applications for determining an Area of Review and CO2 leakage rate  

E-Print Network (OSTI)

Semi-analytical model of brine and CO2 leakage through an abandoned plugged well. Applications for determining an Area of Review and CO2 leakage rate Arnaud Réveillère, Jérémy Rohmer, Frédéric Wertz / contact the leak, and of CO2,g as a first approach. Compared to the state of the art, it adds the possibility

Paris-Sud XI, Université de

422

Six-Week Time Series Of Eddy Covariance Co2 Flux At Mammoth Mountain,  

Open Energy Info (EERE)

Six-Week Time Series Of Eddy Covariance Co2 Flux At Mammoth Mountain, Six-Week Time Series Of Eddy Covariance Co2 Flux At Mammoth Mountain, California- Performance Evaluation And Role Of Meteorological Forcing Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Six-Week Time Series Of Eddy Covariance Co2 Flux At Mammoth Mountain, California- Performance Evaluation And Role Of Meteorological Forcing Details Activities (1) Areas (1) Regions (0) Abstract: CO2 and heat fluxes were measured over a six-week period (09/08/2006 to 10/24/2006) by the eddy covariance (EC) technique at the Horseshoe Lake tree kill (HLTK), Mammoth Mountain, CA, a site with complex terrain and high, spatially heterogeneous CO2 emission rates. EC CO2 fluxes ranged from 218 to 3500 g m- 2 d- 1 (mean = 1346 g m- 2 d- 1). Using footprint modeling, EC CO2 fluxes were compared to CO2 fluxes measured by

423

Catalytic roles of Co0 and Co2+ during steam reforming of ethanol...  

NLE Websites -- All DOE Office Websites (Extended Search)

roles of Co0 and Co2+ during steam reforming of ethanol on CoMgO catalysts . Catalytic roles of Co0 and Co2+ during steam reforming of ethanol on CoMgO catalysts . Abstract:...

424

Influence of Rock Types on Seismic Monitoring of CO2 Sequestration in Carbonate Reservoirs  

E-Print Network (OSTI)

) techniques such as high pressure CO2 injection may normally be required to recover oil in place in carbonate reservoirs. This study addresses how different rock types can influence the seismic monitoring of CO2 sequestration in carbonates. This research...

Mammadova, Elnara

2012-10-19T23:59:59.000Z

425

Effect of Elevated CO2 Concentration on Leaf Structure of Brassica Juncea under Water Stress  

Science Journals Connector (OSTI)

Study on the effect of elevated CO2 concentration on leaf structure of Brassica juncea L. cv. Bio-141 (95) under moisture stress revealed, that CO2 elevated to 600 ?mol mol?1 increased the length of epidermal cel...

D.C. Uprety; N. Dwivedi; R. Mohan; G. Paswan

2001-01-01T23:59:59.000Z

426

Stomatal limitation of photosynthesis as affected by water stress and CO2 concentration  

Science Journals Connector (OSTI)

A water stress effect on photosynthesis and transpiration of wheat seedlings at 50-500 µmol(CO2) mol-1 was measured in an open ... -1 MPa, and it decreased with increasing CO2 concentration.

J. Janá?ek

1998-01-01T23:59:59.000Z

427

Impact of Laparoscopic CO2-insufflation on Tumor-associated molecules in cultured colorectal cancer cells  

Science Journals Connector (OSTI)

Background: Laparoscopic CO2-insufflation is believed to stimulate proliferation and ... . The current study investigates the influence of CO2-insufflation on the expression of E-cadherin, ... cells (human/rat) w...

Z.G. Kim; C. Mehl; M. Lorenz; C.N. Gutt

2002-08-01T23:59:59.000Z

428

Phase Insensitive Frequency Modulation Sensor for Long Distance CO2 Monitoring  

Science Journals Connector (OSTI)

We report a long distance CO2 monitoring LIDAR using phase insensitive Two-Tone Frequency Modulation (TTFM) over 1.4km. We could detect 1ppm single pass CO2...

Wu, Sheng; Deev, Andrei

429

Field Measurements and Evaluation of CO2 Refrigeration Systems for Supermarkets.  

E-Print Network (OSTI)

?? In this thesis, three supermarket refrigeration systems are evaluated; two trans-critical DX CO2 systems and one R404A/CO2 cascade system. Field measurements of energy consumption,… (more)

Kullheim, Johan

2011-01-01T23:59:59.000Z

430

Analysis of required supporting systems for the Supercritical CO2 power conversion system .  

E-Print Network (OSTI)

??Recently, attention has been drawn to the viability of using S-CO(2) as a working fluid in modern reactor designs. Near the critical point, CO2 has… (more)

Freas, Rosemarv M.

2007-01-01T23:59:59.000Z

431

Metabolism of H2-CO2, methanol, and glucose by Butyribacterium methylotrophicum.  

Science Journals Connector (OSTI)

...Exponentially growing cells exhibited a doubling...117 H2 + 135 CO2 + 808 cell C was obtained. The low CO2 and hydrogen yields (car- boxyl of intermediary...a comparison of the cell yields of B. methylotrophicum...

L H Lynd; J G Zeikus

1983-03-01T23:59:59.000Z

432

Chemical Looping for Pre-combustion CO2 Capture — Performance and Cost Analysis  

Science Journals Connector (OSTI)

Abstract The objective of this paper is to compare the two technologies chemical looping combustion (CLC) for inherent CO2-capture, and Calcium looping-based (CaL) CO2-capture when applied to a coal-based IGCC power plant, in terms of system efficiency, overall plant efficiency, CO2-capture percentage and cost. It was found that a CLC-based CO2 capture system is more efficient than a CaL-based CO2 capture system. However, both the chemical looping processes lead to higher efficiencies than a conventional solvent-based pre-combustion CO2 capture. The capital cost and cost of electricity of the CLC-based CO2- capture power plant were also found to be lower than a conventional pre-combustion CO2-capture for an IGCC power plant.

Hari C. Mantripragada; Edward S. Rubin

2013-01-01T23:59:59.000Z

433

Brucite [Mg(OH2)] Carbonation in Wet Supercritical CO2: An in...  

NLE Websites -- All DOE Office Websites (Extended Search)

Brucite Mg(OH2) Carbonation in Wet Supercritical CO2: An in situ High Pressure X-Ray Diffraction Study. Brucite Mg(OH2) Carbonation in Wet Supercritical CO2: An in situ High...

434

Methanol Synthesis from CO2 Hydrogenation over a Pd4/In2O3 Model...  

NLE Websites -- All DOE Office Websites (Extended Search)

Methanol Synthesis from CO2 Hydrogenation over a Pd4In2O3 Model Catalyst: A Combined DFT and Kinetic Study. Methanol Synthesis from CO2 Hydrogenation over a Pd4In2O3 Model...

435

CO2 Reduction on Supported Ru/Al2O3 Catalysts: Cluster Size Dependence...  

NLE Websites -- All DOE Office Websites (Extended Search)

CO2 Reduction on Supported RuAl2O3 Catalysts: Cluster Size Dependence of Product Selectivity. CO2 Reduction on Supported RuAl2O3 Catalysts: Cluster Size Dependence of Product...

436

Spatio-temporal changes in CO2 emissions during the second ZERT...  

NLE Websites -- All DOE Office Websites (Extended Search)

Spatio-temporal changes in CO2 emissions during the second ZERT injection, August-September 2008. Spatio-temporal changes in CO2 emissions during the second ZERT injection,...

437

Effects of Hydration and Oxygen Vacancy on CO2 Adsorption and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydration and Oxygen Vacancy on CO2 Adsorption and Activation on ?-Ga2O3(100). Effects of Hydration and Oxygen Vacancy on CO2 Adsorption and Activation on ?-Ga2O3(100)....

438

Metal Carbonation of Forsterite in Supercritical CO2 and H2O...  

NLE Websites -- All DOE Office Websites (Extended Search)

Metal Carbonation of Forsterite in Supercritical CO2 and H2O Using Solid State 29Si, 13C NMR Spectroscop. Metal Carbonation of Forsterite in Supercritical CO2 and H2O Using Solid...

439

Active Oxygen Vacancy Site for Methanol Synthesis from CO2 Hydrogenati...  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxygen Vacancy Site for Methanol Synthesis from CO2 Hydrogenation on In2O3(110): A DFT Study. Active Oxygen Vacancy Site for Methanol Synthesis from CO2 Hydrogenation on...

440

Pore-scale simulation of liquid CO2 displacement of water using...  

NLE Websites -- All DOE Office Websites (Extended Search)

Pore-scale simulation of liquid CO2 displacement of water using a two-phase lattice Boltzmann model. Pore-scale simulation of liquid CO2 displacement of water using a two-phase...

Note: This page contains sample records for the topic "large volume co2" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

CO2 laser frequency stabilization using the radio-frequency optogalvanic Lamb dip  

Science Journals Connector (OSTI)

The Lamb dip of the CO2 saturation signal in an extracavity low-pressure CO2–N2 rf glow discharge is detected optogalvanically and used to stabilize...

Tsai, Chin-Chun; Lin, Tyson; Shieh, Cherng-Yn; Yen, Tsu-Chiang; Shy, Jow-Tsong

1991-01-01T23:59:59.000Z

442

Properties of CO2-Rich Pore Fluids and Their Effect on Porosity Evolution in EGS Rocks  

Energy.gov (U.S. Department of Energy (DOE))

Project objective: Quantify key parameters critically needed for developing and validating numerical modeling of chemical interactions between EGS reservoir rocks and supercritical CO2and CO2-rich aqueous fluids.

443

Effects of elevated CO2 , nitrogen deposition, and decreased species diversity on foliar fungal plant disease  

E-Print Network (OSTI)

. Keywords: biodiversity, ecosystem, elevated carbon dioxide, nitrogen enrichment, parasites, plant pathogensEffects of elevated CO2 , nitrogen deposition, and decreased species diversity on foliar fungal Three components of global change, elevated CO2 , nitrogen addition, and decreased plant species

Crews, Stephen

444

Supplying CO2 to photosynthetic algal cultures by diffusion through gas-permeable membranes  

Science Journals Connector (OSTI)

A method of supplying CO2 to photosynthetic algal cultures by diffusion through a gas-permeable membrane was developed. The diffusion of CO2 across a silicone membrane could be described by Fick's Laws of Diffusi...

Yuan-Kun Lee; Huey-Kwan Hing

1989-09-01T23:59:59.000Z

445

9,248,559 Metric Tons of CO2 Injected as of January 16, 2015  

Energy.gov (U.S. Department of Energy (DOE))

This carbon dioxide (CO2) has been injected in the United States as part of DOE’s Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is equivalent to the...

446

Emerging Energy-efficiency and CO2 Emission-reduction Technologies for Cement and Concrete Production  

E-Print Network (OSTI)

2 abatement using the calcium looping cycle. Energy Environ.the CO 2 captured by the calcium looping system, use of the16. Flow diagram of calcium-looping CO 2 capture and cement

Hasanbeigi, Ali

2013-01-01T23:59:59.000Z

447

Borehole Seismic Monitoring of Injected CO2 at the Frio Site  

E-Print Network (OSTI)

D. , 2001, Orbital vibrator seismic source for simultaneous5: Tomographic image of seismic velocity change due to CO 2Borehole Seismic Monitoring of Injected CO 2 at the Frio

Daley, Thomas M.; Myer, Larry R.; Hoversten, G.M.; Peterson, John E.; Korneev, Valeri A.

2006-01-01T23:59:59.000Z

448

CO 2 - Based Demand-Controlled Ventilation Control Strategies for Multi-Zone HVAC Systems  

E-Print Network (OSTI)

CO 2-based demand-controlled ventilation DCV strategy offers a great opportunity to reduce energy consumption in HVAC systems while providing the required ventilation. However, implementing CO 2-based DCV under ASHRAE 62.1.2004 through 2010...

Nassif, N.

2011-01-01T23:59:59.000Z

449

Potential Energy Savings and CO2 Emissions Reduction of China's Cement Industry  

E-Print Network (OSTI)

way of reducing total energy consumption and CO2 emissions.deducted from the total energy consumption to avoid double-However, total energy consumption and CO2 emissions will

Ke, Jing

2013-01-01T23:59:59.000Z

450

& MetalOrganic Frameworks Enhancing CO2 Separation Ability of a MetalOrganic Framework  

E-Print Network (OSTI)

that it is a promising material for sequestering CO2 from landfill gas. Introduction Metal­organic frameworks have been considered as promising materials for separating CO2 from landfill gas and industrial flue gas due

Paik Suh, Myunghyun

451

Why we need the and in CO2 utilization and storage.  

E-Print Network (OSTI)

2(1): 9–19 (2012). 3. US DOE, EOR fact sheet. [Online]. DOE,programs/reserves/npr/CO 2 _EOR_ Fact_Sheet.pdf [Decemberoil recovery ( CO 2 - EOR). While much of the current

Oldenburg, C.M.

2013-01-01T23:59:59.000Z

452

Assessing velocity and impedance changes due to CO2 saturation using interferometry on repeated seismic sources.  

E-Print Network (OSTI)

, Barcelona : Spain (2010)" #12;Introduction The role played by the industrial emission of carbon dioxide (CO2) in climate change has been well documented. Geological sequestration is a process to store CO2

Boyer, Edmond

453

Development of a compact quantum cascade laser spectrometer for field measurements of CO2 isotopes  

Science Journals Connector (OSTI)

We report the development of a field-deployable, pulsed quantum cascade laser spectrometer. The instrument is designed to measure...13C/12C isotopic ratio in the CO2 released from volcanic vents. Specific 12CO2 a...

D. Weidmann; G. Wysocki; C. Oppenheimer; F.K. Tittel

2005-02-01T23:59:59.000Z

454

9,449,421 Metric Tons of CO2 Injected as of February 12, 2015...  

Energy Savers (EERE)

This carbon dioxide (CO2) has been injected in the United States as part of DOE's Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is...

455

Oxy-coal combustion: stability of coaxial pulverized coal flames in O2/CO2 environments.  

E-Print Network (OSTI)

??Oxy-coal combustion, in which air is replaced by an O2/ CO2 mixture, is one of the few technologies that may allow CO2 capture and sequestration… (more)

Zhang, Jingwei

2010-01-01T23:59:59.000Z

456

Advanced Development Of The Coal Fired Oxyfuel Process With CO2...  

Open Energy Info (EERE)

Development Of The Coal Fired Oxyfuel Process With CO2 Separation ADECOS Jump to: navigation, search Name: Advanced Development Of The Coal-Fired Oxyfuel Process With CO2...

457

What Can China Do? China's Best Alternative Outcome for Energy Efficiency and CO2 Emissions  

E-Print Network (OSTI)

Motor Vehicle Growth, Oil Demand and CO2 Emissions through61 4.3.2 Crude Oil Demand and TradeMotor Vehicle Growth, Oil Demand and CO2 Emissions through

G. Fridley, David

2010-01-01T23:59:59.000Z

458

Carbon Dynamics in Aquatic Ecosystems in Response to Elevated Atmospheric CO2 and Altered Nutrients Availability  

E-Print Network (OSTI)

. Our results show that elevated CO2 led to enhanced photosynthetic carbon uptake and dissolved organic carbon (DOC) production. DOC occupied larger percentage in total organic carbon production in high CO2 environment. N addition stimulated biomass...

Song, Chao

2011-04-26T23:59:59.000Z

459

Lifetime of Anthropogenic Climate Change: Millennial Time Scales of Potential CO2 and Surface Temperature Perturbations  

Science Journals Connector (OSTI)

Multimillennial simulations with a fully coupled climate–carbon cycle model are examined to assess the persistence of the climatic impacts of anthropogenic CO2 emissions. It is found that the time required to absorb anthropogenic CO2 strongly ...

M. Eby; K. Zickfeld; A. Montenegro; D. Archer; K. J. Meissner; A. J. Weaver

2009-05-01T23:59:59.000Z

460

Integrated modeling of CO2 storage and leakage scenarios including transitions between super- and sub-critical conditions, and phase change between liquid and gaseous CO2  

E-Print Network (OSTI)

feedbacks between fluid flow and heat transfer can occur oninterplay between fluid flow and heat transfer gives rise toof multiphase fluid flow and heat transfer. CO 2 rising

Pruess, K.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "large volume co2" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Thermal, Oxidative and CO2 Induced Degradation of Primary Amines Used for CO2 Capture: Effect of Alkyl Linker on Stability  

Science Journals Connector (OSTI)

Work by Danon et al. using FTIR spectroscopy to observe the nature of adsorbed CO2 on grafted aminosilicas suggests that amine–silanol interactions are another route for CO2 to adsorb onto the surface in dry conditions, as opposed to the more commonly discussed pathway of two amines adsorbing CO2 to form a carbamate. ... Danon, A.; Stair, P. C.; Weitz, E.FTIR Study of CO2 Adsorption on Amine-Grafted SBA-15: Elucidation of Adsorbed Species J. Phys. ... Danon, Alon; Stair, Peter C.; Weitz, Eric ...

Stephanie A. Didas; Rongshun Zhu; Nicholas A. Brunelli; David S. Sholl; Christopher W. Jones

2014-05-19T23:59:59.000Z

462

Membrane Process to Capture CO2 from Power Plant Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Membrane Process to Capture CO Membrane Process to Capture CO 2 from Power Plant Flue Gas Background The U.S. Department of Energy's (DOE) Innovations for Existing Plants (IEP) Program is performing research to develop advanced technologies focusing on carbon dioxide (CO 2 ) emissions control for existing pulverized coal-fired plants. This new focus on post-combustion and oxy-combustion CO 2 emissions control technology, CO 2 compression, and beneficial reuse is in response to the priority for advanced

463

Assessment of CO2 capture options from various points in steam methane reforming for hydrogen production  

Science Journals Connector (OSTI)

Abstract Steam methane reforming (SMR) is currently the main hydrogen production process in industry, but it has high emissions of CO2, at almost 7 kg CO2/kg H2 on average, and is responsible for about 3% of global industrial sector CO2 emissions. Here, the results are reported of an investigation of the effect of steam-to-carbon ratio (S/C) on CO2 capture criteria from various locations in the process, i.e. synthesis gas stream (location 1), pressure swing adsorber (PSA) tail gas (location 2), and furnace flue gases (location 3). The CO2 capture criteria considered in this study are CO2 partial pressure, CO2 concentration, and CO2 mass ratio compared to the final exhaust stream, which is furnace flue gases. The CO2 capture number (Ncc) is proposed as measure of capture favourability, defined as the product of the three above capture criteria. A weighting of unity is used for each criterion. The best S/C ratio, in terms of providing better capture option, is determined. CO2 removal from synthesis gas after the shift unit is found to be the best location for CO2 capture due to its high partial pressure of CO2. However, furnace flue gases, containing almost 50% of the CO2 in produced in the process, are of great significance environmentally. Consequently, the effects of oxygen enrichment of the furnace feed are investigated, and it is found that this measure improves the CO2 capture conditions for lower S/C ratios. Consequently, for an S/C ratio of 2.5, CO2 capture from a flue gas stream is competitive with two other locations provided higher weighting factors are considered for the full presence of CO2 in the flue gases stream. Considering carbon removal from flue gases, the ratio of hydrogen production rate and Ncc increases with rising reformer temperature.

R. Soltani; M.A. Rosen; I. Dincer

2014-01-01T23:59:59.000Z

464

Use of experience curves to estimate the future cost of power plants with CO2 capture  

E-Print Network (OSTI)

trends for four types of electric power plants equipped with CO 2 capture systems: pulverized coal (PC) and natural gas

Rubin, Edward S.; Yeh, Sonia; Antes, Matt; Berkenpas, Michael; Davison, John

2007-01-01T23:59:59.000Z

465

What Can China Do? China's Best Alternative Outcome for Energy Efficiency and CO2 Emissions  

E-Print Network (OSTI)

world’s largest annual CO 2 emitter in 2007, China has set reduction targets for energy and carbon intensities

G. Fridley, David

2010-01-01T23:59:59.000Z

466

A Framework for Environmental Assessment of CO2 Capture and Storage Systems  

E-Print Network (OSTI)

as enhanced oil recovery (EOR), serving to sequester CO 2allocation methods for EOR LCA, finding that the allocation

Sathre, Roger

2013-01-01T23:59:59.000Z

467

Assessing the health risks of natural CO2 seeps in Italy  

E-Print Network (OSTI)

risk from surface CO2 seeps. Data were elicited from Googas (17), a web-based catalogue of degassing

Haszeldine, Stuart

468

Reliability evaluation for large-scale bulk transmission systems: Volume 1, Comparative evaluation, method development, and recommendations: Final report  

SciTech Connect

This volume (1 of 2) contains a comparative evaluation of existing transmission system reliability programs (SYREL, GATOR, RECS) and relevant mathematical methods for transmission reliability analysis. Several new and enhanced methods in the areas of network analysis, contingency selection, remedial action, and reliability index calculation, developed and tested during the project, are described. Recommendations for methods to be used in a production grade transmission reliability assessment program are presented. 69 figs., 41 tabs.

Lam, B.P.; Lawrence, D.J.; Reppen, N.D.; Ringlee, R.J.

1988-01-01T23:59:59.000Z

469

Quantifying the Impact of Immediate Reconstruction in Postmastectomy Radiation: A Large, Dose-Volume Histogram-Based Analysis  

SciTech Connect

Purpose: To assess the impact of immediate breast reconstruction on postmastectomy radiation (PMRT) using dose-volume histogram (DVH) data. Methods and Materials: Two hundred forty-seven women underwent PMRT at our center, 196 with implant reconstruction and 51 without reconstruction. Patients with reconstruction were treated with tan