National Library of Energy BETA

Sample records for large solar electric

  1. How Three Retail Buyers Source Large-Scale Solar Electricity

    Broader source: Energy.gov [DOE]

    Large-scale, non-utility solar power purchase agreements (PPAs) are still a rarity despite the growing popularity of PPAs across the country. In this webinar, participants will learn more about how...

  2. Barriers to commercialization of large-scale solar electricity: Lessions learned from the LUZ experience

    SciTech Connect (OSTI)

    Lotker, M.

    1991-11-01

    This report discusses the economic and policy factors leading to the initial successful introduction of Luz International Limited`s Solar Electric Generating Systems (SEGS). It then addresses the wide range of barriers to continued SEGS commercialization, including state and federal tax policy, avoided cost energy pricing, artificial size limitations under the Public Utility Regulatory Policies Act (PURPA), the loss of effectiveness of PURPA itself, the lack of incentives available to utilities as owners of solar electric plants, and the limited ways in which the environmental benefits of this technology have been recognized. The way in which each of these barriers contributed to the suspension of new LUZ projects is highlighted. In addition, mitigation approaches to each of these barriers are suggested.

  3. EWEB- Solar Electric Program (Rebate)

    Broader source: Energy.gov [DOE]

    The Eugene Water & Electric Board's (EWEB) Solar Electric Program offers financial incentives for residential, nonprofit, and government customers that generate electricity solar photovoltaic...

  4. High-Efficiency Solar Cells for Large-Scale Electricity Generation

    SciTech Connect (OSTI)

    Kurtz, S.; Olson, J.; Geisz, J.; Friedman, D.; McMahon, W.; Ptak, A.; Wanlass, M.; Kibbler, A.; Kramer, C.; Bertness, K.; Ward, S.; Duda, A.; Young, M.; Carapella, J.; Steiner, M.

    2008-09-26

    One strategy for helping the solar industry to grow faster is to use very high efficiency cells under concentrating optics. By using lenses or mirrors to concentrate the light, very small solar cells can be used, reducing the amount of semiconductor material and allowing use of higher efficiency cells, which are now >40% efficient.

  5. Solar Electric Incentive Program

    Broader source: Energy.gov [DOE]

    Energy Trust of Oregon’s Solar Electric Incentive Program, launched in May 2003, is available to customers of Pacific Power and PGE who install new photovoltaic (PV) systems on new or existing...

  6. Havasu Solar Electric | Open Energy Information

    Open Energy Info (EERE)

    Havasu Solar Electric Jump to: navigation, search Name: Havasu Solar Electric Place: Arizona Zip: 86401 Sector: Solar Product: Arizona-based electric contractors in the solar...

  7. First Solar Electric LLC formerly DT Solar | Open Energy Information

    Open Energy Info (EERE)

    Electric LLC formerly DT Solar Jump to: navigation, search Name: First Solar Electric LLC (formerly DT Solar) Place: Branchburg, New Jersey Zip: 8876 Sector: Solar Product: PV...

  8. AET Solar formerly solar division of GGAM Electrical Services...

    Open Energy Info (EERE)

    Solar formerly solar division of GGAM Electrical Services Jump to: navigation, search Name: AET Solar (formerly solar division of GGAM Electrical Services) Place: Limassol, Cyprus...

  9. Ecosystem Solar Electric Corp aka Solar MW Energy Inc | Open...

    Open Energy Info (EERE)

    Solar Electric Corp aka Solar MW Energy Inc Jump to: navigation, search Name: Ecosystem Solar Electric Corp, aka Solar MW Energy Inc Place: Ontario, California Zip: 91761 Product:...

  10. Solar Energy Sources SES Solar Inc formerly Electric Network...

    Open Energy Info (EERE)

    SES Solar Inc formerly Electric Network com Jump to: navigation, search Name: Solar Energy Sources - SES Solar Inc (formerly Electric Network.com) Place: Vancouver, British...

  11. Solar Electric Light Fund | Open Energy Information

    Open Energy Info (EERE)

    Fund Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Solar Electric Light Fund AgencyCompany Organization: Solar Electric Light Fund Sector: Energy Focus Area: Solar...

  12. Solar amp Electric Solutions | Open Energy Information

    Open Energy Info (EERE)

    Electric Solutions Jump to: navigation, search Name: Solar & Electric Solutions Place: Santa Cruz, California Zip: 95062 Sector: Solar Product: Small solar installation firm in...

  13. Roseville Electric- Solar Rebate Program

    Broader source: Energy.gov [DOE]

    Roseville Electric has implemented solar rebate programs in order to meet the three statewide goals in Senate Bill 1: to install 3,000 megawatts (MW) of distributed solar PV by the end of 2016, to...

  14. Tampa Electric- Solar Rebate Program

    Broader source: Energy.gov [DOE]

    Tampa Electric provides financial incentives to customers who install solar-energy systems on their homes and businesses. Customers who install eligible solar water heating systems may receive a ...

  15. Solar Electric Propulsion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... Sciences Applications National Solar Thermal Test Facility Nuclear Energy ...

  16. Electricity production using solar energy

    SciTech Connect (OSTI)

    Demirbas, M.F.

    2007-07-01

    In this study, a solar-powered development project is used to identify whether it is possible to utilize solar technologies in the electricity production sector. Electricity production from solar energy has been found to be a promising method in the future. Concentrated solar energy can be converted to chemical energy via high-temperature endothermic reactions. Coal and biomass can be pyrolyzed or gasified by using concentrated solar radiation for generating power. Conventional energy will not be enough to meet the continuously increasing need for energy in the future. In this case, renewable energy sources will become important. Solar energy is an increasing need for energy in the future. Solar energy is a very important energy source because of its advantages. Instead of a compressor system, which uses electricity, an absorption cooling system, using renewable energy and kinds of waste heat energy, may be used for cooling.

  17. Solar Thermal Electric | Open Energy Information

    Open Energy Info (EERE)

    Thermal Electric Jump to: navigation, search TODO: Add description List of Solar Thermal Electric Incentives Retrieved from "http:en.openei.orgwindex.php?titleSolarThermalEl...

  18. Solar Electrical Vehicles | Open Energy Information

    Open Energy Info (EERE)

    Electrical Vehicles Jump to: navigation, search Name: Solar Electrical Vehicles Place: Westlake Village, California Zip: 91361 Sector: Solar, Vehicles Product: US-based...

  19. Solar Electric Solutions LLC | Open Energy Information

    Open Energy Info (EERE)

    Electric Solutions LLC Jump to: navigation, search Name: Solar Electric Solutions, LLC Place: Woodland Hills, California Zip: 91364 Sector: Solar Product: California-based...

  20. NREL Teams with SolarCity to Maximize Solar Power on Electrical Grids -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Releases | NREL Teams with SolarCity to Maximize Solar Power on Electrical Grids Both are working together with the Hawaiian Electric Companies to analyze and enable higher penetrations of distributed solar energy systems in Hawaii November 20, 2014 The Energy Department's National Renewable Energy Laboratory (NREL) and SolarCity have entered into a cooperative research agreement to address the operational issues associated with large amounts of distributed solar energy on electrical

  1. Florida's electric industry and solar electric technologies

    SciTech Connect (OSTI)

    Camejo, N.

    1983-12-01

    The Florida Electric Industry is in a process of diversifying its generation technology and its fuel mix. This is being done in an effort to reduce oil consumption, which in 1981 accounted for 46.5% of the electric generation by fuel type. This does not compare well with the rest of the nation where oil use is lower. New coal and nuclear units are coming on line, and probably more will be built in the near future. However, eventhough conservation efforts may delay their construction, new power plants will have to be built to accomodate the growing demand for electricity. Other alternatives being considered are renewable energy resources. The purpose of this paper is to present the results of a research project in which 10 electric utilities in Florida and the Florida Electric Power Coordinating Group rated six Solar Electric options. The Solar Electric options considered are: 1) Wind, 2) P.V., 3) Solar thermal-electric, 4) OTEC, 5) Ocean current, and 6) Biomass. The questionaire involved rating the economic and technical feasibility, as well as, the potential environmental impact of these options in Florida. It also involved rating the difficulty in overcoming institutional barriers and assessing the status of each option. A copy of the questionaire is included after the references. The combined capacity of the participating utilities represent over 90% of the total generating capacity in Florida. A list of the participating utilities is also included. This research was done in partial fulfillment for the Mater's of Science Degree in Coastal Zone Management. This paper is complementary to another paper (in these condensed conference proceedings) titled COASTAL ZONE ENERGY MANAGEMENT: A multidisciplinary approach for the integration of Solar Electric Systems with Florida's power generation system, which present a summary of the Master's thesis.

  2. Small Solar Electric Systems | Department of Energy

    Energy Savers [EERE]

    Solar Electric Systems Small Solar Electric Systems A small solar electric or photovoltaic system can be a reliable and pollution-free producer of electricity for your home or office. A small solar electric or photovoltaic (PV) system can be a reliable and pollution-free producer of electricity for your home or office. Small PV systems also provide a cost-effective power supply in locations where it is expensive or impossible to send electricity through conventional power lines. Because PV

  3. Small Solar Electric Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Electric Systems Small Solar Electric Systems A small solar electric or photovoltaic system can be a reliable and pollution-free producer of electricity for your home or office. A small solar electric or photovoltaic (PV) system can be a reliable and pollution-free producer of electricity for your home or office. Small PV systems also provide a cost-effective power supply in locations where it is expensive or impossible to send electricity through conventional power lines. Because PV

  4. Millennium Electric TOU Ltd aka Millennium Solar EIG Solar |...

    Open Energy Info (EERE)

    Sector: Efficiency, Solar Product: Israeli manufacturer of PV modules, incorporating solar concentrators to increase cell efficiency. References: Millennium Electric TOU Ltd...

  5. High-Efficiency Solar Cells for Large-Scale Electricity Generation & Design Considerations for the Related Optics (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.; Olson, J.; Geisz, J.; Friedman, D.; McMahon, W.; Ptak, A.; Wanlass, M.k; Kibbler, A.; Kramer, C.; Ward, S.; Duda, A.; Young, M.; Carapella, J.

    2007-09-17

    The photovoltaic industry has been growing exponentially at an average rate of about 35%/year since 1979. Recently, multijunction concentrator cell efficiencies have surpassed 40%. Combined with concentrating optics, these can be used for electricity generation.

  6. Planning a Home Solar Electric System | Department of Energy

    Office of Environmental Management (EM)

    Planning a Home Solar Electric System Planning a Home Solar Electric System Whether a home solar electric system will work for you depends on the available sun (resource),...

  7. Hybrid Wind and Solar Electric Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buying & Making Electricity Hybrid Wind and Solar Electric Systems Hybrid Wind and Solar Electric Systems Because the peak operating times for wind and solar systems occur at...

  8. American Solar Electric Inc | Open Energy Information

    Open Energy Info (EERE)

    Electric Inc Jump to: navigation, search Name: American Solar Electric Inc Place: Scottsdale, Arizona Zip: 85251 Product: US installer of residential, commercial and industrial PV...

  9. Hybrid Wind and Solar Electric Systems | Department of Energy

    Office of Environmental Management (EM)

    Electricity & Fuel Buying & Making Electricity Hybrid Wind and Solar Electric Systems Hybrid Wind and Solar Electric Systems Because the peak operating times for wind and...

  10. Qinghai Solar Energy Electric Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Solar Energy Electric Co Ltd Jump to: navigation, search Name: Qinghai Solar Energy Electric Co Ltd Place: Xining, Qinghai Province, China Zip: 810008 Sector: Solar, Wind energy...

  11. Small Solar Electric Systems | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    A small solar electric or photovoltaic system can be a reliable and pollution-free producer of electricity for your home or office. A small solar electric or photovoltaic (PV) system can be a reliable and pollution-free producer of electricity for your home or office. Small PV systems also provide a cost-effective power supply in locations where it is expensive or impossible to send electricity through conventional power lines. Because PV technologies use both direct and scattered sunlight to

  12. Lakeland Electric- Solar Water Heating Program

    Broader source: Energy.gov [DOE]

    Lakeland Electric, a municipal utility in Florida, is the nation's first utility to offer solar-heated domestic hot water on a "pay-for-energy" basis. The utility has contracted with a solar...

  13. The DOE Solar Thermal Electric Program

    SciTech Connect (OSTI)

    Mancini, T.R.

    1994-06-01

    The Department of Energy`s Solar Thermal Electric Program is managed by the Solar thermal and biomass Power division which is part of the Office of utility Technologies. The focus of the Program is to commercialize solar electric technologies. In this regard, three major projects are currently being pursued in trough, central receiver, and dish/Stirling electric power generation. This paper describes these three projects and the activities at the National laboratories that support them.

  14. Solar-Electric Dish Stirling System Development

    SciTech Connect (OSTI)

    Mancini, T.R.

    1997-12-31

    Electrical power generated with the heat from the sun, called solar thermal power, is produced with three types of concentrating solar systems - trough or line-focus systems; power towers in which a centrally-located thermal receiver is illuminated with a large field of sun-tracking heliostats; and dish/engine systems. A special case of the third type of system, a dish/Stirling system, is the subject of this paper. A dish/Stirling system comprises a parabolic dish concentrator, a thermal receiver, and a Stirling engine/generator located at the focus of the dish. Several different dish/Stirling systems have been built and operated during the past 15 years. One system claims the world record for net conversion of solar energy to electric power of 29.4%; and two different company`s systems have accumulated thousands of hours of on-sun operation. Due to de-regulation and intense competition in global energy markets as well as the immaturity of the technology, dish/Stirling systems have not yet found their way into the marketplace. This situation is changing as solar technologies become more mature and manufacturers identify high-value niche markets for their products. In this paper, I review the history of dish/Stirling system development with an emphasis on technical and other issues that directly impact the Stirling engine. I also try to provide some insight to the opportunities and barriers confronting the application of dish/Stirling in power generation markets.

  15. Valley Electric Association- Solar Water Heating Program

    Broader source: Energy.gov [DOE]

    Valley Electric Association (VEA), a nonprofit member owned cooperative, developed the domestic solar water heating program to encourage energy efficiency at the request of the membership. VEA...

  16. PROJECT PROFILE: Solar Electric Power Association (Solar Market Pathways)

    Broader source: Energy.gov [DOE]

    The Solar Electric Power Association (SEPA) and its partners are researching the intersection of community solar business models and consumer demographics to develop standardized program designs. By producing a range of more standardized, streamlined and cost-effective business models that can be easily localized across the country, SEPA will spark the growth of community solar programs.

  17. NREL Achieves Solar-Electric Record

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Achieves Solar-Electric Record New Technology Could Spur Growth in Photovoltaic Panels For more information contact: Gary Schmitz, 303-275-4050 email: Gary Schmitz Golden, Colo., Apr. 24, 2001 - Researchers at the U.S. Department of Energy's National Renewable Energy Laboratory have surpassed a record for electricity produced by solar cells made from cadmium telluride—a development that could help meet expanding demand for solar systems. The measurement of 16.4 percent efficiency bested

  18. Solar Electric Grid Integration - Advanced Concepts (SEGIS-AC...

    Energy Savers [EERE]

    Electric Grid Integration - Advanced Concepts (SEGIS-AC) Funding Opportunity Solar Electric Grid Integration - Advanced Concepts (SEGIS-AC) Funding Opportunity Through the Solar ...

  19. Electric Cooperatives Channel Solar Resources to Rural American...

    Office of Environmental Management (EM)

    Electric Cooperatives Channel Solar Resources to Rural American Communities Electric Cooperatives Channel Solar Resources to Rural American Communities February 4, 2016 - 12:07pm ...

  20. NREL + SolarCity: Maximizing Solar Power on Electrical Grids

    SciTech Connect (OSTI)

    Hannegan, Bryan; Hanley, Ryan; Symko-Davies, Martha

    2015-06-03

    Learn how NREL is partnering with SolarCity to study how to better integrate rooftop solar onto the grid. The work includes collaboration with the Hawaiian Electric Companies (HECO) to analyze high-penetration solar scenarios using advanced modeling and inverter testing at the Energy Systems Integration Facility (ESIF) on NREL’s campus. Results to date have been so promising that HECO has more than doubled the amount of rooftop solar it allows on its grid, showing utilities across the country that distributed solar is not a liability for reliability—and can even be an asset.

  1. Chicopee Electric Light- Residential Solar Rebate Program

    Broader source: Energy.gov [DOE]

    Chicopee Electric Light offers rebates to residential customers who install solar photovoltaic (PV) systems on their homes. Customer rebates are $0.50 per watt for a maximum of $2,500 per...

  2. Northeast regional assessment study for solar electric options in the period 1980-2000

    SciTech Connect (OSTI)

    1981-04-01

    Opportunities for demonstration and large scale deployment of solar electric facilities are identified and assessed. Technical, economic, and institutional factors that can contribute to an accelerated use of solar energy for electric power generation are defined. The following topics are covered: a description of the Northeast Region and its solar resources, central station applications, a dispersed user analysis, user viewpoints and institutional factors, and market potential for dispersed solar electric systems. (MHR)

  3. Exploratory Research for New Solar Electric Technologies

    SciTech Connect (OSTI)

    McConnell, R.; Matson, R.

    2005-01-01

    We will review highlights of exploratory research for new PV technologies funded by the DOE Solar Energy Technologies Program through NREL and its Photovoltaic Exploratory Research Project. The goal for this effort is highlighted in the beginning of the Solar Program Multi-Year Technical Plan by Secretary of Energy Spencer Abraham's challenge to leapfrog the status quo by pursuing research having the potential to create breakthroughs. The ultimate goal is to create solar electric technologies for achieving electricity costs below 5 cents/kWh. Exploratory research includes work on advanced photovoltaic technologies (organic and ultra-high efficiency solar cells for solar concentrators) as well as innovative approaches to emerging and mature technologies (e.g., crystalline silicon).

  4. Emerald PUD- Solar Electric Program

    Broader source: Energy.gov [DOE]

    Emerald People's Utility District offers incentives to customers installing a qualified solar photovoltaic (PV) system. Systems must be 25 kW or smaller to qualify. Systems must be pre-approved by...

  5. A solar module fabrication process for HALE solar electric UAVs

    SciTech Connect (OSTI)

    Carey, P.G.; Aceves, R.C.; Colella, N.J.; Williams, K.A.; Sinton, R.A.; Glenn, G.S.

    1994-12-12

    We describe a fabrication process used to manufacture high power-to-weight-ratio flexible solar array modules for use on high-altitude-long-endurance (HALE) solar-electric unmanned air vehicles (UAVs). These modules have achieved power-to-weight ratios of 315 and 396 W/kg for 150{mu}m-thick monofacial and 110{mu}m-thick bifacial silicon solar cells, respectively. These calculations reflect average module efficiencies of 15.3% (150{mu}m) and 14.7% (110{mu}m) obtained from electrical tests performed by Spectrolab, Inc. under AMO global conditions at 25{degrees}C, and include weight contributions from all module components (solar cells, lamination material, bypass diodes, interconnect wires, and adhesive tape used to attach the modules to the wing). The fabrication, testing, and performance of 32 m{sup 2} of these modules will be described.

  6. electricity supplied by Hickam's solar-powered electric grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    supplied by Hickam's solar-powered electric grid - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste

  7. Homeowners Guide to Leasing a Solar Electric System (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-07-01

    This updated fact sheet provides an introduction to solar leases for homeowners who are considering installing a solar electric system on their home.

  8. Shanghai Electric Solar Energy Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Solar Energy Co Ltd Jump to: navigation, search Name: Shanghai Electric Solar Energy Co. Ltd. Place: Shanghai, Shanghai Municipality, China Zip: 201613 Product: Production of...

  9. Solar Electric Light Company SELCO | Open Energy Information

    Open Energy Info (EERE)

    photovoltaic products and services targeted especially at end consumers in developing countries who have no access to land electricity. References: Solar Electric Light...

  10. List of Solar Thermal Electric Incentives | Open Energy Information

    Open Energy Info (EERE)

    List of Solar Thermal Electric Incentives Jump to: navigation, search The following contains the list of 562 Solar Thermal Electric Incentives. CSV (rows 1-500) CSV (rows 501-562)...

  11. Planning a Home Solar Electric System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home Solar Electric System Planning a Home Solar Electric System Whether a home solar electric system will work for you depends on the available sun (resource), available space for the system size you need, the economics of the investment, and the local permits required. | Photo courtesy of Decker Homes. Whether a home solar electric system will work for you depends on the available sun (resource), available space for the system size you need, the economics of the investment, and the local

  12. EIS-0416: Ivanpah Solar Electric Generating System in San Bernardino

    Office of Environmental Management (EM)

    County, CA | Department of Energy 6: Ivanpah Solar Electric Generating System in San Bernardino County, CA EIS-0416: Ivanpah Solar Electric Generating System in San Bernardino County, CA Documents Available for Download October 22, 2010 EIS-0416: EPA Notice of Availability of the Final Environmental Impact Statement Ivanpah Solar Electric Generating System (07-AFC-5) Project, Proposal to Construct a 400-m Megawatt Concentrated Solar Power Tower, Thermal-Electric Power Plant, San Bernardino

  13. Implementation of optimum solar electricity generating system

    SciTech Connect (OSTI)

    Singh, Balbir Singh Mahinder Karim, Samsul Ariffin A.; Sivapalan, Subarna; Najib, Nurul Syafiqah Mohd; Menon, Pradeep

    2014-10-24

    Under the 10{sup th} Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels.

  14. NREL Supports Development of World's Largest Solar Electric Power Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project in 14 Years - News Releases | NREL NREL Supports Development of World's Largest Solar Electric Power Plant Project in 14 Years October 19, 2005 Golden, Colo. - Researchers with the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) have collaborated with Solargenix Energy on the solar collector technology to be used in the development of Nevada Solar One, a 64-megawatt (MW) Solar Thermal Electric Generating Plant in Boulder City, Nev. "We are excited

  15. Treatment of Solar Generation in Electric Utility Resource Planning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Planning John Sterling Solar Electric Power Association Joyce McLaren National Renewable Energy Laboratory Mike Taylor ... NV Energy (Nevada) PCM production cost model PGE Portland ...

  16. The Treatment of Solar Generation in Electric Utility Resource...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Treatment of Solar Generation in Electric Utility ... by the National Renewable Energy Laboratory ("NREL"), which ... Long-Term Planning * Production cost models take the set ...

  17. Installing and Maintaining a Home Solar Electric System | Department...

    Energy Savers [EERE]

    | Photo courtesy of Dennis Schroeder, NREL. Making sure your home solar electric or photovoltaic (PV) system is sized, sited, installed, and maintained correctly is essential for...

  18. Advanced Solar Electric Inc ASE | Open Energy Information

    Open Energy Info (EERE)

    Inc (ASE) Place: Thousand Oaks, California Zip: 91320 Product: US-based PV system installer. References: Advanced Solar Electric Inc (ASE)1 This article is a stub. You...

  19. Atsun Solar Electric Technology Co Ang Li Tiansheng | Open Energy...

    Open Energy Info (EERE)

    Co (Ang Li Tiansheng) Place: Zaozhuang, Shandong Province, China Product: Chinese PV cell and module maker. References: Atsun Solar Electric Technology Co (Ang Li...

  20. Ningbo Solar Electric Power Energy Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Energy Co Ltd Jump to: navigation, search Name: Ningbo Solar Electric Power Energy Co Ltd Place: Ningbo, Zhejiang Province, China Zip: 315012 Product: Chinese PV cell and module...

  1. Water Impacts of High Solar PV Electricity Penetration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Impacts of High Solar PV Electricity Penetration Jordan Macknick and Stuart Cohen National Renewable Energy Laboratory (NREL) Technical Report NRELTP-6A20-63011 September...

  2. EIS-0416: Ivanpah Solar Electric Generating System in San Bernardino...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System (07-AFC-5) Project, Proposal to Construct a 400-m Megawatt Concentrated Solar Power Tower, Thermal-Electric Power Plant, San Bernardino County, California July 1,...

  3. Solar Power and the Electric Grid, Energy Analysis (Fact Sheet...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This fact sheet illustrates the roles of distributed and centralized renewable energy technologies, particularly solar power, and how they will contribute to the future electricity ...

  4. Installing and Maintaining a Home Solar Electric System | Department...

    Energy Savers [EERE]

    Making sure your home solar electric or photovoltaic (PV) system is sized, sited, installed, and maintained correctly is essential for maximizing its energy performance. When...

  5. Hybrid Wind and Solar Electric Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buying & Making Electricity » Hybrid Wind and Solar Electric Systems Hybrid Wind and Solar Electric Systems Because the peak operating times for wind and solar systems occur at different times of the day and year, hybrid systems are more likely to produce power when you need it. Because the peak operating times for wind and solar systems occur at different times of the day and year, hybrid systems are more likely to produce power when you need it. According to many renewable energy experts,

  6. Solar Works! In Seattle: Introduction to Solar Electric (PV)

    Broader source: Energy.gov [DOE]

    Presentation slides from residential PV workshop. Also covers general solar resource assessment, siting and financial incentives.

  7. Large Distributed Solar and Wind Grant Program

    Broader source: Energy.gov [DOE]

    The Illinois Department of Commerce and Economic Opportunity (DCEO) is offering grants for community-scale solar and wind projects located in Illinois.

  8. Own Your Power! A Consumer Guide to Solar Electricity for the Home

    SciTech Connect (OSTI)

    NREL

    2009-01-01

    A consumer guide about solar electricity for the home. It includes information about types of solar electric systems, how to choose a system, financing, and costs.

  9. Own Your Power! A Consumer Guide to Solar Electricity for the Home (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-01-01

    A consumer guide about solar electricity for the home. Includes information about types of solar electric systems, how to choose a system, financing, and costs.

  10. Promise of Solar Energy is Boundless: A Smarter Electric Grid Delivers on that Promise

    SciTech Connect (OSTI)

    Not Available

    2008-10-01

    This brochure summarizes the benefits of a smart electric grid, the Solar Program's Solar Energy Grid Intergration Systems efforts, and the Office of Electricity's "The Smart Grid" booklet.

  11. Own Your Power! A Consumer Guide to Solar Electricity for the Home

    DOE R&D Accomplishments [OSTI]

    2009-01-00

    A consumer guide about solar electricity for the home. Includes information about types of solar electric systems, how to choose a system, financing, and costs.

  12. Own Your Power! A Consumer Guide to Solar Electricity for the Home (Brochure)

    Office of Energy Efficiency and Renewable Energy (EERE)

    A consumer guide about solar electricity for the home. Includes information about types of solar electric systems, how to choose a system, financing, and costs.

  13. Solar Power and the Electric Grid, Energy Analysis (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-03-01

    In today's electricity generation system, different resources make different contributions to the electricity grid. This fact sheet illustrates the roles of distributed and centralized renewable energy technologies, particularly solar power, and how they will contribute to the future electricity system. The advantages of a diversified mix of power generation systems are highlighted.

  14. Southeast Regional Assessment Study: an assessment of the opportunities of solar electric power generation in the Southeastern United States

    SciTech Connect (OSTI)

    1980-07-01

    The objective of this study was to identify and assess opportunities for demonstration and large scale deployment of solar electric facilities in the southeast region and to define the technical, economic, and institutional factors that can contribute to an accelerated use of solar energy for electric power generation. Graphs and tables are presented indicating the solar resource potential, siting opportunities, energy generation and use, and socioeconomic factors of the region by state. Solar electric technologies considered include both central station and dispersed solar electric generating facilities. Central stations studied include solar thermal electric, wind, photovoltaic, ocean thermal gradient, and biomass; dispersed facilities include solar thermal total energy systems, wind, and photovoltaic. The value of solar electric facilities is determined in terms of the value of conventional facilities and the use of conventional fuels which the solar facilities can replace. Suitable cost and risk sharing mechanisms to accelerate the commercialization of solar electric technologies in the Southeast are identified. The major regulatory and legal factors which could impact on the commercialization of solar facilities are reviewed. The most important factors which affect market penetration are reviewed, ways to accelerate the implementation of these technologies are identified, and market entry paths are identified. Conclusions and recommendations are presented. (WHK)

  15. PROJECT PROFILE: Solar Electric Power Association (Solar Market...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    conducting consumer market analysis, and disseminating results to solar ... Feedback from these working group members will focus on creating several comprehensive community ...

  16. Two earth sheltered passive solar residences with photovoltaic electricity

    SciTech Connect (OSTI)

    Strong, S.J.; Osten, R.J. Jr.

    1980-01-01

    The design and construction of two earth sheltered passive solar residence with photovoltaic electricity are described. The sizing and design of the P.V. system as well as the module fabrication and array integration are also discussed.

  17. Silicon Valley Power- Solar Electric Buy Down Program

    Broader source: Energy.gov [DOE]

    Silicon Valley Power (SVP) offers incentives for the installation of new grid-connected solar electric (photovoltaic, or PV) systems. Incentive levels will step down over the life of the program...

  18. Installing and Maintaining a Home Solar Electric System | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a Home Solar Electric System When choosing a contractor, ask about their work record, experience, and licenses, and get more than one bid for the installation of your PV...

  19. Overview and Challenges of Thin Film Solar Electric Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Thin Film Solar Electric Technologies H.S. Ullal Presented at the World Renewable Energy Congress X and Exhibition 2008 Glasgow, Scotland, United Kingdom July 19-25, 2008...

  20. Mass Save (Electric)- Large Commercial Retrofit Program

    Broader source: Energy.gov [DOE]

    Mass Save organizes commercial, industrial, and institutional conservation services for programs administered by Massachusetts electric companies, gas companies and municipal aggregators. These...

  1. Role of Large Balancing Areas In Integrating Solar Generation: Solar Integration Series. 3 of 3 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-05-01

    The third out of a series of three fact sheets describing the role of large balancing areas in integrating solar generation.

  2. Planning a Home Solar Electric System | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Whether a home solar electric system will work for you depends on the available sun (resource), available space for the system size you need, the economics of the investment, and the local permits required. | Photo courtesy of Decker Homes. Whether a home solar electric system will work for you depends on the available sun (resource), available space for the system size you need, the economics of the investment, and the local permits required. | Photo courtesy of Decker Homes. To help evaluate

  3. Awards to Boost Research into Cheaper Solar Electricity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Awards to Boost Research into Cheaper Solar Electricity For more information contact: George Douglas (303) 275-4096 email: george_douglas@nrel.gov Golden, Colo., August 17, 2001 - The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) today announced the 19 universities and 14 companies expected to receive a total of $40 million in funding for research and development into thin-film photovoltaic cells. Photovoltaics (solar cells) generate electricity directly from

  4. Module Embedded Microinverter Smart Grid Ready Residential Solar Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System | Department of Energy Module Embedded Microinverter Smart Grid Ready Residential Solar Electric System Module Embedded Microinverter Smart Grid Ready Residential Solar Electric System GE logo.png This project is developing and demonstrating a cost-reduction approach for an alternating-current (AC) photovoltaic (PV) module that is driven by innovations in microinverter design, module integration and packaging, and integration with a new intelligent circuit breaker. GE Global Research

  5. Installing and Maintaining a Home Solar Electric System | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Home Solar Electric System Installing and Maintaining a Home Solar Electric System When choosing a contractor, ask about their work record, experience, and licenses, and get more than one bid for the installation of your PV system. | Photo courtesy of Dennis Schroeder, NREL. When choosing a contractor, ask about their work record, experience, and licenses, and get more than one bid for the installation of your PV system. | Photo courtesy of Dennis Schroeder, NREL. Making sure your

  6. Subtask 2: Molecules, Materials, and Systems for Solar Electricity | ANSER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center | Argonne-Northwestern National Laboratory 2: Molecules, Materials, and Systems for Solar Electricity Home > Research > Subtask 2 The above figure depicts the structure of active polymer layers in organic solar cells. The above figure depicts the structure of active polymer layers in organic solar cells. ANSER Center research tests theory-driven ideas to understand at a fundamental level how photovoltaic cell performance is affected by nanoscale/mesoscale

  7. Empire District Electric- Solar PV Rebates

    Broader source: Energy.gov [DOE]

    Note: Effective May 16, 2015, Empire began offering this solar rebate to retail customers who installed eligible systems after December 31, 2009, and meet all other program requirements.

  8. COMMENTS OF THE LARGE-SCALE SOLAR ASSOCIATION TO DEPARTMENT

    Broader source: Energy.gov (indexed) [DOE]

    COMMENTS OF THE LARGE-SCALE SOLAR ASSOCIATION TO DEPARTMENT OF ENERGY'S RAPID RESPONSE TEAM FOR TRANSMISSION'S REQUEST FOR INFORMATION Submitted by electronic mail to: Lamont.Jackson@hq.doe.gov The Large-scale Solar Association appreciates this opportunity to respond to the Department of Energy's (DOE) Rapid Response Team for Transmission's (RRTT) Request for Information. 1 We applaud the DOE for creating the RRTT and continuing to advance the efforts already made under the Memorandum of

  9. Salem Electric- Solar Water Heater Rebate

    Broader source: Energy.gov [DOE]

    Salem Electric residential customers with electric water heating are eligible for a $600 rebate through Salem's Bright Way program. A program brochure with details is available on the program...

  10. Solar Electric Power Association | Open Energy Information

    Open Energy Info (EERE)

    Washington, DC Product: Nonprofit organization whose membership consists of more than 100 electric service providers, utilities, manufacturers, government agencies, research...

  11. Clay Electric Cooperative, Inc- Solar Thermal Loans

    Broader source: Energy.gov [DOE]

    Clay Electric Cooperative (CEC), a Touchstone Energy Cooperative, covers 14 counties in northern Florida, including Gainesville, Keystone Heights, Lake City, Orange Park, Palatka, and Salt Springs....

  12. Madison Gas & Electric- Clean Power Partner Solar Buyback Program

    Broader source: Energy.gov [DOE]

    Annual green energy purchases must be at least as large as the AC output of the PV system. This arrangement requires that the customer have two electricity meters: one to measure electricity...

  13. Geospatial Optimization of Siting Large-Scale Solar Projects

    SciTech Connect (OSTI)

    Macknick, J.; Quinby, T.; Caulfield, E.; Gerritsen, M.; Diffendorfer, J.; Haines, S.

    2014-03-01

    Recent policy and economic conditions have encouraged a renewed interest in developing large-scale solar projects in the U.S. Southwest. However, siting large-scale solar projects is complex. In addition to the quality of the solar resource, solar developers must take into consideration many environmental, social, and economic factors when evaluating a potential site. This report describes a proof-of-concept, Web-based Geographical Information Systems (GIS) tool that evaluates multiple user-defined criteria in an optimization algorithm to inform discussions and decisions regarding the locations of utility-scale solar projects. Existing siting recommendations for large-scale solar projects from governmental and non-governmental organizations are not consistent with each other, are often not transparent in methods, and do not take into consideration the differing priorities of stakeholders. The siting assistance GIS tool we have developed improves upon the existing siting guidelines by being user-driven, transparent, interactive, capable of incorporating multiple criteria, and flexible. This work provides the foundation for a dynamic siting assistance tool that can greatly facilitate siting decisions among multiple stakeholders.

  14. Bear Valley Electric Service- Solar Initiative Program

    Broader source: Energy.gov [DOE]

    Bear Valley Electric Service is providing an incentive for their residential customers to install photovoltaic (PV) systems. Systems must be sized to provide no more than 90% of the calculated or...

  15. NREL Funds Research into Low-Cost Solar Electricity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Funds Research into Low-Cost Solar Electricity Media contact: George Douglas (303) 275-4096 e:mail: george_douglas@nrel.gov Golden, Colo., Dec. 8, 1997 -- C Contracts worth about $60 million over three years will be awarded under the Thin Film PV (photovoltaic) Partnership program at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL). Recipients of the money will research ways to lower the cost of producing electricity from sunlight using photovoltaic semiconductors that

  16. Module Embedded Microninverter Smart Grid Ready Residential Solar Electric System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    $3/W total installed price vs. GE base residential system @ $4/W; $0.13/kWh LCOE (< average EIA 2015 retail electricity price) $0.10/W (30%) reduction of microinverter cost, and >$0.25/W reduction of installed price; Safety, MPPT and grid support functions including Volt/VAR support Module Embedded Microninverter Smart Grid Ready Residential Solar Electric System RUI ZHOU/ GE GLOBAL RESEARCH Develop and demonstrate power electronics technologies that address the following microinverter

  17. Minnesota Power- Solar-Electric (PV) Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Minnesota Power offers a rebate of $1,000 per kilowatt (kW) DC for grid-connected solar-electric (PV) systems, with a maximum award of $20,000 per customer or 60% installed costs per customer. This...

  18. Water Impacts of High Solar PV Electricity Penetration

    SciTech Connect (OSTI)

    Macknick, Jordan; Cohen, Stuart

    2015-09-01

    This analysis provides a detailed national and regional description of the water-related impacts and constraints of high solar electricity penetration scenarios in the U.S. in 2030 and 2050. A modified version of the Regional Energy Deployment System (ReEDS) model that incorporates water resource availability and costs as a constraint in each of its 134 Balancing Area (BA) regions was utilized to explore national and regional differences in water use impacts and solar deployment locations under different solar energy cost and water availability scenarios (Macknick et al. 2015). Water resource availability and cost data are from recently completed research at Sandia National Laboratories (Tidwell et al. 2013a). Scenarios analyzed include two business-as-usual solar energy cost cases, one with and one without considering available water resources, and four solar energy cost cases that meet the SunShot cost goals (i.e., $1/watt for utility-scale PV systems), with varying levels of water availability restrictions. This analysis provides insight into the role solar energy technologies have in the broader electricity sector under scenarios of water constraints.

  19. Vacuum gaps with small tunnel currents at large electric field...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    small tunnel currents at large electric field and its potential applications for energy storage, charge storage and power supplies. Friday, May 27, 2011 - 4:00pm SSRL Conference...

  20. New Hampshire Electric Co-Op - Large Business Energy Solutions...

    Broader source: Energy.gov (indexed) [DOE]

    Speed Drives: 1,050 - 4,400 Custom: lesser of 35% of the total installed cost or buy down to 1 year pay Summary New Hampshire Electric Co-Op offers incentives for its large...

  1. Concentrating Solar Power Commercial Application Study: Reducing Water Consumption of Concentrating Solar Power Electricity Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power Commercial Application Study: Reducing Water Consumption of Concentrating Solar Power Electricity Generation Report to Congress U.S. Department of Energy This report is being disseminated by the Department of Energy. As such, the document was prepared in compliance with Section 515 of the Treasury and General Government Appropriations Act for Fiscal Year 2001 (Public Law 106-554) and information quality guidelines issued by the Department of Energy. Though this report

  2. Large Scale Wind and Solar Integration in Germany

    SciTech Connect (OSTI)

    Ernst, Bernhard; Schreirer, Uwe; Berster, Frank; Pease, John; Scholz, Cristian; Erbring, Hans-Peter; Schlunke, Stephan; Makarov, Yuri V.

    2010-02-28

    This report provides key information concerning the German experience with integrating of 25 gigawatts of wind and 7 gigawatts of solar power capacity and mitigating its impacts on the electric power system. The report has been prepared based on information provided by the Amprion GmbH and 50Hertz Transmission GmbH managers and engineers to the Bonneville Power Administration (BPA) and Pacific Northwest National Laboratory representatives during their visit to Germany in October 2009. The trip and this report have been sponsored by the BPA Technology Innovation office. Learning from the German experience could help the Bonneville Power Administration engineers to compare and evaluate potential new solutions for managing higher penetrations of wind energy resources in their control area. A broader dissemination of this experience will benefit wind and solar resource integration efforts in the United States.

  3. Homeowners Guide to Financing a Grid-Connected Solar Electric System (Brochure), Solar Energy Technologies Program (SETP)

    Office of Energy Efficiency and Renewable Energy (EERE)

    This guide provides an overview of the financing options that may be available to homeowners who are considering installing a solar electric system on their house.

  4. The Role of Electricity Markets and Market Design in Integrating Solar Generation: Solar Integration Series. 2 of 3 (Brochure)

    SciTech Connect (OSTI)

    Solar Energy Technologies Program

    2011-05-03

    The second out of a series of three fact sheets describing the role of electricity markets and market design in integrating solar generation.

  5. Homeowners Guide to Leasing a Solar Electric System (Brochure), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The benefits of leases for solar electric equipment include lower upfront costs and no operation and maintenance responsibilities. t e c h n i c a l a s s i s ta n c e Homeowners Guide to Leasing a Solar Electric System This guide provides an introduction to solar leases for homeowners considering installing a solar electric system on their home. Introduction Solar electric systems, also known as photovoltaic (PV) systems, allow owners to generate a portion of their own electricity. Homeowners

  6. Conversion Tower for Dispatchable Solar Power: High-Efficiency Solar-Electric Conversion Power Tower

    SciTech Connect (OSTI)

    2012-01-11

    HEATS Project: Abengoa Solar is developing a high-efficiency solar-electric conversion tower to enable low-cost, fully dispatchable solar energy generation. Abengoas conversion tower utilizes new system architecture and a two-phase thermal energy storage media with an efficient supercritical carbon dioxide (CO2) power cycle. The company is using a high-temperature heat-transfer fluid with a phase change in between its hot and cold operating temperature. The fluid serves as a heat storage material and is cheaper and more efficient than conventional heat-storage materials, like molten salt. It also allows the use of a high heat flux solar receiver, advanced high thermal energy density storage, and more efficient power cycles.

  7. Front contact solar cell with formed electrically conducting layers on the front side and backside

    DOE Patents [OSTI]

    Cousins, Peter John

    2012-06-26

    A bipolar solar cell includes a backside junction formed by a silicon substrate and a first doped layer of a first dopant type on the backside of the solar cell. A second doped layer of a second dopant type makes an electrical connection to the substrate from the front side of the solar cell. A first metal contact of a first electrical polarity electrically connects to the first doped layer on the backside of the solar cell, and a second metal contact of a second electrical polarity electrically connects to the second doped layer on the front side of the solar cell. An external electrical circuit may be electrically connected to the first and second metal contacts to be powered by the solar cell.

  8. S/EV 91: Solar and electric vehicle symposium, car and trade show. Proceedings

    SciTech Connect (OSTI)

    Not Available

    1991-12-31

    These proceedings cover the fundamentals of electric vehicles. Papers on the design, testing and performance of the power supplies, drive trains, and bodies of solar and non-solar powered electric vehicles are presented. Results from demonstrations and races are described. Public policy on the economics and environmental impacts of using electric powered vehicles is also presented.

  9. Solar Real-Time Pricing: Is Real-Time Electricity Pricing Beneficial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Real-Time Pricing: Is Real-Time Electricity Pricing Beneficial to Solar PV in New ... Location New York, New York United States See map: Google Maps Date July 2009 Topic ...

  10. Solar Electric Grid Integration- Advanced Concepts (SEGIS-AC) Funding Opportunity

    Broader source: Energy.gov [DOE]

    Through the Solar Electric Grid Integration – Advanced Concepts (SEGIS-AC) program, DOE is funding solar projects that are targeting ways to develop power electronics and build smarter, more...

  11. The Role of Large Balancing Areas In Integrating Solar Generation: Solar Integration Series. 3 of 3 (Brochure)

    SciTech Connect (OSTI)

    Solar Energy Technologies Program

    2011-05-03

    The third out of a series of three fact sheets describing the role of large balancing areas in integrating solar generation.

  12. SEPCO - Solar Electric Power Company | Open Energy Information

    Open Energy Info (EERE)

    Place: Stuart, Florida Zip: 34994 Sector: Solar Product: Commercial Solar Lighting & Off Grid Solar Power Systems Year Founded: 1994 Phone Number: 772-220-6615 Website:...

  13. Solar Real-Time Pricing: Is Real-Time Electricity Pricing Beneficial to Solar PV in New York City?

    Broader source: Energy.gov [DOE]

    The goal of this study is to evaluate the validity of the following statement: “the coincidence of high electric energy prices and peak solar electric photovoltaic (PV) output can improve the economics of PV installations, and can also facilitate the wider use of hourly pricing.” The study is focused on Con Edison electric service territory in New York City.

  14. San Diego Solar Panels Generate Clean Electricity Along with Clean Water

    Broader source: Energy.gov [DOE]

    Thanks to San Diego's ambitious solar energy program, the Otay Water Treatment Plant may soon be able to do that with net zero electricity consumption.

  15. Homeowners Guide to Financing a Grid-Connected Solar Electric System

    SciTech Connect (OSTI)

    Solar Energy Technologies Program

    2010-10-11

    This guide provides an overview of the financing options that may be available to homeowners who are considering installing a solar electric system on their house.

  16. Homeowners Guide to Financing a Grid-Connected Solar Electric System (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-10-01

    This guide provides an overview of the financing options that may be available to homeowners who are considering installing a solar electric system on their house.

  17. Getting More Electricity out of Solar Cells | U.S. DOE Office...

    Office of Science (SC) Website

    Getting More Electricity out of Solar Cells Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events DOE ...

  18. DISTRIBUTION OF ELECTRIC CURRENTS IN SOLAR ACTIVE REGIONS

    SciTech Connect (OSTI)

    Trk, T.; Titov, V. S.; Miki?, Z.; Leake, J. E.; Archontis, V.; Linton, M. G.; Dalmasse, K.; Aulanier, G.; Kliem, B.

    2014-02-10

    There has been a long-standing debate on the question of whether or not electric currents in solar active regions are neutralized. That is, whether or not the main (or direct) coronal currents connecting the active region polarities are surrounded by shielding (or return) currents of equal total value and opposite direction. Both theory and observations are not yet fully conclusive regarding this question, and numerical simulations have, surprisingly, barely been used to address it. Here we quantify the evolution of electric currents during the formation of a bipolar active region by considering a three-dimensional magnetohydrodynamic simulation of the emergence of a sub-photospheric, current-neutralized magnetic flux rope into the solar atmosphere. We find that a strong deviation from current neutralization develops simultaneously with the onset of significant flux emergence into the corona, accompanied by the development of substantial magnetic shear along the active region's polarity inversion line. After the region has formed and flux emergence has ceased, the strong magnetic fields in the region's center are connected solely by direct currents, and the total direct current is several times larger than the total return current. These results suggest that active regions, the main sources of coronal mass ejections and flares, are born with substantial net currents, in agreement with recent observations. Furthermore, they support eruption models that employ pre-eruption magnetic fields containing such currents.

  19. Solar-Assisted Electric Vehicle Charging Station Interim Report

    SciTech Connect (OSTI)

    Lapsa, Melissa Voss; Durfee, Norman; Maxey, L Curt; Overbey, Randall M

    2011-09-01

    Oak Ridge National Laboratory (ORNL) has been awarded $6.8 million in the Department of Energy (DOE) American Recovery and Reinvestment Act (ARRA) funds as part of an overall $114.8 million ECOtality grant with matching funds from regional partners to install 125 solar-assisted Electric Vehicle (EV) charging stations across Knoxville, Nashville, Chattanooga, and Memphis. Significant progress has been made toward completing the scope with the installation of 25 solar-assisted charging stations at ORNL; six stations at Electric Power Research Institute (EPRI); and 27 stations at Nissan's Smyrna and Franklin sites, with three more stations under construction at Nissan's new lithium-ion battery plant. Additionally, the procurement process for contracting the installation of 34 stations at Knoxville, the University of Tennessee Knoxville (UTK), and Nashville sites is underway with completion of installation scheduled for early 2012. Progress is also being made on finalizing sites and beginning installations of 30 stations in Nashville, Chattanooga, and Memphis by EPRI and Tennessee Valley Authority (TVA). The solar-assisted EV charging station project has made great strides in fiscal year 2011. A total of 58 solar-assisted EV parking spaces have been commissioned in East and Middle Tennessee, and progress on installing the remaining 67 spaces is well underway. The contract for the 34 stations planned for Knoxville, UTK, and Nashville should be underway in October with completion scheduled for the end of March 2012; the remaining three Nissan stations are under construction and scheduled to be complete in November; and the EPRI/TVA stations for Chattanooga, Vanderbilt, and Memphis are underway and should be complete by the end of March 2012. As additional Nissan LEAFs are being delivered, usage of the charging stations has increased substantially. The project is on course to complete all 125 solar-assisted EV charging stations in time to collect meaningful data by the end of government fiscal year 2012. Lessons learned from the sites completed thus far are being incorporated and are proving to be invaluable in completion of the remaining sites.

  20. Solar electric thermal hydronic (SETH) product development project

    SciTech Connect (OSTI)

    Stickney, B.L.; Sindelar, A.

    2000-10-01

    Positive Energy, Inc. received a second Technology Maturation and Commercialization Project Subcontract during the 1999 round of awards. This Subcontract is for the purpose of further aiding Positive Energy, Inc. in preparing its Solar Electric Thermal Hydronic (SETH) control and distribution package for market introduction. All items of this subcontracted project have been successfully completed. This Project Report contains a summary of the progress made during the SETH Development Project (the Project) over the duration of the 1999 Subcontract. It includes a description of the effort performed and the results obtained in the pursuit of intellectual property protection and development of product documentation for the end users. This report also summarizes additional efforts taken by and for the SETH project outside of the Subcontract. It presents a chronology of activities over the duration of the Subcontract, and includes a few selected sample copies of documents offered as evidence of their success.

  1. Update to Large Power Transformers and the U.S. Electric Grid Report Now Available

    Broader source: Energy.gov [DOE]

    The Office of Electricity Delivery and Energy Reliability has released an update to its 2012 Large Power Transformers and the U.S. Electric Grid report.

  2. Large Power Transformers and the U.S. Electric Grid Report Update (April

    Energy Savers [EERE]

    2014) | Department of Energy Large Power Transformers and the U.S. Electric Grid Report Update (April 2014) Large Power Transformers and the U.S. Electric Grid Report Update (April 2014) The Office of Electricity Delivery and Energy Reliability has released an update to its 2012 Large Power Transformers and the U.S. Electric Grid report. The new report includes updated information about global electrical steel supply conditions and discusses the increased domestic production of large power

  3. EERE SunShot's SHINES Program: Enabling a Rapidly Solarizing Electricity

    Energy Savers [EERE]

    Grid Through Energy Storage | Department of Energy SunShot's SHINES Program: Enabling a Rapidly Solarizing Electricity Grid Through Energy Storage EERE SunShot's SHINES Program: Enabling a Rapidly Solarizing Electricity Grid Through Energy Storage January 19, 2016 - 11:01am Addthis 1 of 4 Austin Energy - This is a photo of the Mueller development, where Austin Energy is planning to install the SHINES energy storage project. The Mueller neighborhood has the largest concentration of solar

  4. Chapter 4: Advancing Clean Electric Power Technologies | Solar...

    Broader source: Energy.gov (indexed) [DOE]

    Solar energy offers a number of strategic benefits to the United States. Replacing fossil-fuel combustion with solar energy reduces emissions of human-induced greenhouse...

  5. EERE Success Story-Electric Cooperatives Channel Solar Resources to Rural

    Energy Savers [EERE]

    American Communities | Department of Energy Electric Cooperatives Channel Solar Resources to Rural American Communities EERE Success Story-Electric Cooperatives Channel Solar Resources to Rural American Communities February 4, 2016 - 12:07pm Addthis The CoServ Solar Station in Krugerville, Texas. Photo: KEN OLTMANN/CoServ The CoServ Solar Station in Krugerville, Texas. Photo: KEN OLTMANN/CoServ Some of the most remote areas in the United States were also some of the last places to get access

  6. Solar Circuitry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Circuitry" with the Solar Powered Energy Kit Curriculum: Solar Power- (lightelectromagnetic radiation, electricity, circuitry, efficiency, energy transformation, subatomic ...

  7. Evaluation of glare at the Ivanpah Solar Electric Generating System

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ho, C. K.; Sims, C. A.; Christian, J. M.

    2015-06-05

    The Ivanpah Solar Electric Generating System (ISEGS), located on I-15 about 40 miles (60 km) south of Las Vegas, NV, consists of three power towers 459 ft (140 m) tall and over 170,000 reflective heliostats with a rated capacity of 390 MW. In addition, reports of glare from the plant have been submitted by pilots and air traffic controllers and recorded by the Aviation Safety Reporting System and the California Energy Commission since 2013. Aerial and ground-based surveys of the glare were conducted in April, 2014, to identify the cause and to quantify the irradiance and potential ocular impacts ofmore » the glare. Results showed that the intense glare viewed from the airspace above ISEGS was caused by heliostats in standby mode that were aimed to the side of the receiver. Evaluation of the glare showed that the retinal irradiance and subtended source angle of the glare from the heliostats in standby were sufficient to cause significant ocular impact (potential for after-image) up to a distance of ~6 miles (10 km), but the values were below the threshold for permanent eye damage. Glare from the receivers had a low potential for after-image at all ground-based monitoring locations outside of the site boundaries. A Letter to Airmen has been issued by the Federal Aviation Administration to notify pilots of the potential glare hazards. Additional measures to mitigate the potential impacts of glare from ISGES are also presented and discussed.« less

  8. Evaluation of glare at the Ivanpah Solar Electric Generating System

    SciTech Connect (OSTI)

    Ho, C. K.; Sims, C. A.; Christian, J. M.

    2015-06-05

    The Ivanpah Solar Electric Generating System (ISEGS), located on I-15 about 40 miles (60 km) south of Las Vegas, NV, consists of three power towers 459 ft (140 m) tall and over 170,000 reflective heliostats with a rated capacity of 390 MW. In addition, reports of glare from the plant have been submitted by pilots and air traffic controllers and recorded by the Aviation Safety Reporting System and the California Energy Commission since 2013. Aerial and ground-based surveys of the glare were conducted in April, 2014, to identify the cause and to quantify the irradiance and potential ocular impacts of the glare. Results showed that the intense glare viewed from the airspace above ISEGS was caused by heliostats in standby mode that were aimed to the side of the receiver. Evaluation of the glare showed that the retinal irradiance and subtended source angle of the glare from the heliostats in standby were sufficient to cause significant ocular impact (potential for after-image) up to a distance of ~6 miles (10 km), but the values were below the threshold for permanent eye damage. Glare from the receivers had a low potential for after-image at all ground-based monitoring locations outside of the site boundaries. A Letter to Airmen has been issued by the Federal Aviation Administration to notify pilots of the potential glare hazards. Additional measures to mitigate the potential impacts of glare from ISGES are also presented and discussed.

  9. Wind and Solar-Electric (PV) Systems Exemption | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    taxation, but the real property (i.e., the land on which the solar energy generating system is located) is still subject to property tax. Wind and solar energy production...

  10. A nuclear wind/solar oil-shale system for variable electricity and liquid fuels production

    SciTech Connect (OSTI)

    Forsberg, C.

    2012-07-01

    The recoverable reserves of oil shale in the United States exceed the total quantity of oil produced to date worldwide. Oil shale contains no oil, rather it contains kerogen which when heated decomposes into oil, gases, and a carbon char. The energy required to heat the kerogen-containing rock to produce the oil is about a quarter of the energy value of the recovered products. If fossil fuels are burned to supply this energy, the greenhouse gas releases are large relative to producing gasoline and diesel from crude oil. The oil shale can be heated underground with steam from nuclear reactors leaving the carbon char underground - a form of carbon sequestration. Because the thermal conductivity of the oil shale is low, the heating process takes months to years. This process characteristic in a system where the reactor dominates the capital costs creates the option to operate the nuclear reactor at base load while providing variable electricity to meet peak electricity demand and heat for the shale oil at times of low electricity demand. This, in turn, may enable the large scale use of renewables such as wind and solar for electricity production because the base-load nuclear plants can provide lower-cost variable backup electricity. Nuclear shale oil may reduce the greenhouse gas releases from using gasoline and diesel in half relative to gasoline and diesel produced from conventional oil. The variable electricity replaces electricity that would have been produced by fossil plants. The carbon credits from replacing fossil fuels for variable electricity production, if assigned to shale oil production, results in a carbon footprint from burning gasoline or diesel from shale oil that may half that of conventional crude oil. The U.S. imports about 10 million barrels of oil per day at a cost of a billion dollars per day. It would require about 200 GW of high-temperature nuclear heat to recover this quantity of shale oil - about two-thirds the thermal output of existing nuclear reactors in the United States. With the added variable electricity production to enable renewables, additional nuclear capacity would be required. (authors)

  11. S/EV 92 (Solar and Electric Vehicles): Proceedings. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    Volume I of these proceedings presents current research on solar and electric powered vehicles. Both fundamental and advanced concepts concerning electric vehicles are presented. The use of photovoltaic cells in electric vehicles and in a broader sense as a means of power generation are discussed. Information on electric powered fleets and races is included. And policy and regulations, especially pertaining to air quality and air pollution abatement are presented.

  12. Clay Electric Cooperative, Inc- Energy Smart Solar Water Heater Rebate Program

    Broader source: Energy.gov [DOE]

    Clay Electric Cooperative (CEC) provides a rebate of $0.01 per BTU output to its residential members when they purchase qualified solar water heaters. This rebate is capped at 60,000 BTUs per...

  13. Energy Department Announces $15 Million to Integrate Affordable Solar Energy into Nation’s Electrical Grid

    Broader source: Energy.gov [DOE]

    Supporting the goals of the Obama Administration’s Climate Action Plan, the Energy Department today announced $15 million in available funding to help integrate distributed, on-site solar energy systems into the nation’s electrical grid.

  14. Solar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Solar EERE plays a key role in advancing America's booming solar industry, leading a large network of researchers and other partners to deliver innovative technologies that will make renewable electricity generation cost-competitive with traditional sources of energy. EERE plays a key role in advancing America's booming solar industry, leading a large network of researchers and other partners to deliver innovative technologies that will make renewable electricity generation

  15. El Paso Electric Company- Small Business and Large Commercial Programs

    Broader source: Energy.gov [DOE]

    El Paso Electric (EPE) offers several incentive programs targeting small business owners as well as larger commercial and industrial EPE customers.

  16. Large Power Transformers and the U.S. Electric Grid

    Broader source: Energy.gov (indexed) [DOE]

    ... gas, and electric power, except for hydroelectric and commercial nuclear power facilities. ... being Japan, Germany, United States, France, Korea, and China (see Figure 5). 50 ...

  17. New Ulm Public Utilities- Solar Electric Rebate Program

    Broader source: Energy.gov [DOE]

    New Ulm Public Utilities provides solar photovoltaic (PV) rebates for residential, commercial, and industrial customers. Rebates are for $1 per nameplate watt, and customers must sign a net...

  18. Denton Municipal Electric- GreenSense Solar Rebate Program

    Broader source: Energy.gov [DOE]

     At the moment, the solar rebates have been depleted and the program is suspended until funds can be secured.

  19. Chapter 4: Advancing Clean Electric Power Technologies | Solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thus, once solar technologies are installed, they have very low operating costs and require minimal inputs-this provides insurance against conventional fuel supply disruptions and ...

  20. Solar energy teaching lab with large scale working model

    SciTech Connect (OSTI)

    Pearson, J.; Cook, T.

    1980-01-01

    An active solar energy retrofit has been added to an engineering building at John Brown University. A new system dependent evaluation procedure incorporating the f-chart method was used for panel selection. The system is designed and instrumented in order to provide various laboratory experiences and data collection capability. Data collection and system control are provided by a microcomputer. 7 refs.

  1. Getting More Electricity out of Solar Cells | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Getting More Electricity out of Solar Cells Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events DOE Announcements Publications History Contact BES Home 05.27.14 Getting More Electricity out of Solar Cells Print Text Size: A A A Subscribe FeedbackShare Page New MIT model can guide design of solar cells that produce less waste heat, more useful current. This work, featured in the Office of Science's Stories of

  2. Getting More Electricity out of Solar Cells | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Getting More Electricity out of Solar Cells News News Home Featured Articles 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 Science Headlines Science Highlights Presentations & Testimony News Archives Communications and Public Affairs Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 05.27.14 Getting More Electricity out of Solar Cells New MIT model can guide design of solar cells that

  3. "Large Power Transformers and the U.S. Electric Grid" Report (June 2012)

    Broader source: Energy.gov [DOE]

    The Office of Electricity Delivery and Energy Reliability has released the "Large Power Transformers and the U.S. Electric Grid" report, an assessment of the procurement and supply environment of...

  4. Large Power Transformers and the U.S. Electric Grid Report Update...

    Broader source: Energy.gov (indexed) [DOE]

    an update to its 2012 Large Power Transformers and the U.S. Electric Grid report. The new report includes updated information about global electrical steel supply conditions and...

  5. Nuclear EMP simulation for large-scale urban environments. FDTD for electrically large problems.

    SciTech Connect (OSTI)

    Smith, William S.; Bull, Jeffrey S.; Wilcox, Trevor; Bos, Randall J.; Shao, Xuan-Min; Goorley, John T.; Costigan, Keeley R.

    2012-08-13

    In case of a terrorist nuclear attack in a metropolitan area, EMP measurement could provide: (1) a prompt confirmation of the nature of the explosion (chemical or nuclear) for emergency response; and (2) and characterization parameters of the device (reaction history, yield) for technical forensics. However, urban environment could affect the fidelity of the prompt EMP measurement (as well as all other types of prompt measurement): (1) Nuclear EMP wavefront would no longer be coherent, due to incoherent production, attenuation, and propagation of gamma and electrons; and (2) EMP propagation from source region outward would undergo complicated transmission, reflection, and diffraction processes. EMP simulation for electrically-large urban environment: (1) Coupled MCNP/FDTD (Finite-difference time domain Maxwell solver) approach; and (2) FDTD tends to be limited to problems that are not 'too' large compared to the wavelengths of interest because of numerical dispersion and anisotropy. We use a higher-order low-dispersion, isotropic FDTD algorithm for EMP propagation.

  6. Advanced Methods for Incorporating Solar Energy Technologies into Electric Sector Capacity-Expansion Models: Literature Review and Analysis

    SciTech Connect (OSTI)

    Sullivan, P.; Eurek, K.; Margolis, R.

    2014-07-01

    Because solar power is a rapidly growing component of the electricity system, robust representations of solar technologies should be included in capacity-expansion models. This is a challenge because modeling the electricity system--and, in particular, modeling solar integration within that system--is a complex endeavor. This report highlights the major challenges of incorporating solar technologies into capacity-expansion models and shows examples of how specific models address those challenges. These challenges include modeling non-dispatchable technologies, determining which solar technologies to model, choosing a spatial resolution, incorporating a solar resource assessment, and accounting for solar generation variability and uncertainty.

  7. Distributed Solar PV for Electricity System Resiliency: Policy and Regulatory Considerations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-11-01

    Distributed Solar PV systems have the potential of increasing the grid's resiliency to unforeseen events, such as extreme weather events and attacks. This paper presents the role that distributed PV can play in electric grid resiliency, introduces basic system design requirements and options, and discusses the regulatory and policy options for supporting the use of distributed PV for the purpose of increased electricity resiliency.

  8. Energy Systems Integration: NREL + SolarCity and the Hawaiian Electric Companies (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2015-02-01

    This fact sheet describes the collaboration between NREL, SolarCity, and the Hawaiian Electric Companies at the Energy Systems Integration Facility (ESIF) to address the safety, reliability, and stability challenges of interconnecting high penetrations of distributed photovoltaics with the electric power system.

  9. Electric Cooperatives Channel Solar Resources to Rural American Communities

    Broader source: Energy.gov [DOE]

    Some of the most remote areas in the United States were also some of the last places to get access to electricity, with as many as nine out of ten rural homes without electricity in the mid-1930s....

  10. Distributed Solar Photovoltaics for Electric Vehicle Charging: Regulatory and Policy Considerations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-09-01

    Increasing demand for electric vehicle (EV) charging provides an opportunity for market expansion of distributed solar technology. A major barrier to the current deployment of solar technology for EV charging is a lack of clear information for policy makers, utilities and potential adopters. This paper introduces the pros and cons of EV charging during the day versus at night, summarizes the benefits and grid implications of combining solar and EV charging technologies, and offers some regulatory and policy options available to policy makers and regulators wanting to incentivize solar EV charging.

  11. NREL: Concentrating Solar Power Projects Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    navigation to main content. NREL - National Renewable Energy Laboratory Concentrating Solar Power Projects: Solar Paces SolarPACES Snapshot SolarPACES, an international program of the International Energy Agency, furthers collaborative development, testing, and marketing of concentrating solar power plants. Activities include testing large-scale systems and developing advanced technologies, components, instrumentation, and analysis techniques. Three ongoing Tasks are Concentrating Solar Electric

  12. Treatment of Solar Generation in Electric Utility Resource Planning

    SciTech Connect (OSTI)

    Sterling, J.; McLaren, J.; Taylor, M.; Cory, K.

    2013-10-01

    Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. State and federal support policies, solar photovoltaic (PV) price declines, and the introduction of new business models for solar PV 'ownership' are leading to increasing interest in solar technologies (especially PV); however, solar introduces myriad new variables into the utility resource planning decision. Most, but not all, utility planners have less experience analyzing solar than conventional generation as part of capacity planning, portfolio evaluation, and resource procurement decisions. To begin to build this knowledge, utility staff expressed interest in one effort: utility exchanges regarding data, methods, challenges, and solutions for incorporating solar in the planning process. Through interviews and a questionnaire, this report aims to begin this exchange of information and capture utility-provided information about: 1) how various utilities approach long-range resource planning; 2) methods and tools utilities use to conduct resource planning; and, 3) how solar technologies are considered in the resource planning process.

  13. Electrical Safety Investment Safeguards Employees at Large Idaho Facility

    Broader source: Energy.gov [DOE]

    IDAHO FALLS, Idaho – The Idaho Site’s main cleanup contractor is using a $1.8 million DOE investment to safeguard employees from the threat of second- and third-degree electrical arc flash burns.

  14. Planning for PV: The Value and Cost of Solar Electricity

    SciTech Connect (OSTI)

    2008-01-01

    This is a brochure developed specifically for residential home builders. It provides information on basic financial factors and additional resources to consider when incorporating solar technologies into building plans.

  15. Update to Large Power Transformers and the U.S. Electric Grid...

    Broader source: Energy.gov (indexed) [DOE]

    Delivery and Energy Reliability has released an update to its 2012 Large Power Transformers and the U.S. Electric Grid report. The new report includes updated information...

  16. Energy Department Loan Guarantee Would Support Large-Scale Rooftop Solar

    Energy Savers [EERE]

    Power for U.S. Military Housing | Department of Energy Loan Guarantee Would Support Large-Scale Rooftop Solar Power for U.S. Military Housing Energy Department Loan Guarantee Would Support Large-Scale Rooftop Solar Power for U.S. Military Housing September 7, 2011 - 2:10pm Addthis Washington D.C. - U.S. Energy Secretary Steven Chu today announced the offer of a conditional commitment for a partial guarantee of a $344 million loan that will support the SolarStrong Project, which is expected

  17. Energy Systems Integration: NREL + SolarCity and the Hawaiian Electric Companies (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SOLARCITY AND THE HAWAIIAN ELECTRIC COMPANIES NREL is collaborating with solar energy company SolarCity at the ESIF to address the safety, reliability, and stability challenges of interconnecting high penetrations of distributed photovoltaics (PV) with the electric power system. The work includes collaboration with the Hawaiian Electric Companies to analyze high-penetration solar scenarios using advanced modeling and inverter testing at the ESIF. R&D STRATEGY The ESIF's unique megawatt-scale

  18. Oncor Electric Delivery - Solar Photovoltaic Standard Offer Program...

    Broader source: Energy.gov (indexed) [DOE]

    Summary Oncor Electric Delivery offers rebates to its customers that install photovoltaic (PV) systems on homes or other buildings.* Oncor customers of all rate classes...

  19. Missing Money--Will the Current Electricity Market Structure Support High (~50%) Wind/Solar?; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Milligan, Michael

    2015-05-15

    This presentation summarizes the missing money problem and whether the current electricity market structure will support high penetration levels of wind and solar.

  20. Treatment of Solar Generation in Electric Utility Resource Planning (Presentation)

    SciTech Connect (OSTI)

    Cory, K.; Sterling, J.; Taylor, M.; McLaren, J.

    2014-01-01

    Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. Through interviews and a questionnaire, the authors gathered information on utility supply planning and how solar is represented. Utilities were asked to provide their resource planning process details, key assumptions (e.g. whether DG is represented as supply or negative load), modeling methodology (e.g. type of risk analytics and candidate portfolio development), capacity expansion and production simulation model software, and solar project representation (project size, capacity value and integration cost adder). This presentation aims to begin the exchange of information between utilities, regulators and other stakeholders by capturing utility-provided information about: 1) how various utilities approach long-range resource planning; 2) methods and tools utilities use to conduct resource planning; and, 3) how solar technologies are considered in the resource planning process.

  1. Analysis of Large- Capacity Water Heaters in Electric Thermal Storage Programs

    SciTech Connect (OSTI)

    Cooke, Alan L.; Anderson, David M.; Winiarski, David W.; Carmichael, Robert T.; Mayhorn, Ebony T.; Fisher, Andrew R.

    2015-03-17

    This report documents a national impact analysis of large tank heat pump water heaters (HPWH) in electric thermal storage (ETS) programs and conveys the findings related to concerns raised by utilities regarding the ability of large-tank heat pump water heaters to provide electric thermal storage services.

  2. New Hampshire Electric Co-Op- Solar Photovoltaic Incentive Program

    Broader source: Energy.gov [DOE]

    New Hampshire Electric Co-op (NHEC) is offering rebates for residential and commercial, grid-tied photovoltaic (PV) systems up to one megawatt (MW) in capacity. The rebate is equal to $0.25 per DC...

  3. Wind and solar power electric generation to see strong growth over the next two years

    Gasoline and Diesel Fuel Update (EIA)

    Wind and solar power electric generation to see strong growth over the next two years The amount of electricity generated by wind in the United States is expected to increase by 15 percent this year...and grow another 8 percent in 2014. The U.S. Energy Information Administration's new monthly Short-Term Energy Outlook says the increase in wind power will be due to the new wind turbines coming online thanks to the federal production tax credit that was recently extended by Congress. Solar power

  4. LARGE-AMPLITUDE LONGITUDINAL OSCILLATIONS IN A SOLAR FILAMENT

    SciTech Connect (OSTI)

    Luna, M.

    2012-05-01

    We have developed the first self-consistent model for the observed large-amplitude oscillations along filament axes that explains the restoring force and damping mechanism. We have investigated the oscillations of multiple threads formed in long, dipped flux tubes through the thermal nonequilibrium process, and found that the oscillation properties predicted by our simulations agree with the observed behavior. We then constructed a model for the large-amplitude longitudinal oscillations that demonstrates that the restoring force is the projected gravity in the tube where the threads oscillate. Although the period is independent of the tube length and the constantly growing mass, the motions are strongly damped by the steady accretion of mass onto the threads by thermal nonequilibrium. The observations and our model suggest that a nearby impulsive event drives the existing prominence threads along their supporting tubes, away from the heating deposition site, without destroying them. The subsequent oscillations occur because the displaced threads reside in magnetic concavities with large radii of curvature. Our model yields a powerful seismological method for constraining the coronal magnetic field and radius of curvature of dips. Furthermore, these results indicate that the magnetic structure is most consistent with the sheared-arcade model for filament channels.

  5. The Value of Distributed Solar Electric Generation to San Antonio

    SciTech Connect (OSTI)

    Jones, Nic; Norris, Ben; Meyer, Lisa

    2013-02-14

    This report presents an analysis of value provided by grid-connected, distributed PV in San Antonio from a utility perspective. The study quantified six value components, summarized in Table ES- 1. These components represent the benefits that accrue to the utility, CPS Energy, in accepting solar onto the grid. This analysis does not treat the compensation of value, policy objectives, or cost-effectiveness from the retail consumer perspective.

  6. Overview and Challenges of Thin Film Solar Electric Technologies

    SciTech Connect (OSTI)

    Ullal, H. S.

    2008-12-01

    In this paper, we report on the significant progress made worldwide by thin-film solar cells, namely, amorphous silicon (a-Si), cadmium telluride (CdTe), and copper indium gallium diselenide (CIGS). Thin-film photovoltaic (PV) technology status is also discussed in detail. In addition, R&D and technology challenges in all three areas are elucidated. The worldwide estimated projection for thin-film PV technology production capacity announcements are estimated at more than 5000 MW by 2010.

  7. Electrically tuned photoluminescence in large pitch cholesteric liquid crystal

    SciTech Connect (OSTI)

    Middha, Manju Kumar, Rishi Raina, K. K.

    2014-04-24

    Cholesteric liquid crystals are known as 1-D photonic band gap materials due to their periodic helical supramolecular structure and larger birefringence. Depending upon the helical twisted pitch length, they give the characteristic contrast due to selective Bragg reflections when viewed through the polarizing optical microscope and hence affect the electro-optic properties. So the optimization of chiral dopant concentration in nematic liquid crystal leads to control the transmission of polarized light through the microscope. Hence transmission based polarizing optical microscope is used for the characterization of helical pitch length in the optical texture. The unwinding of helical pitch was observed with the application of electric field which affects the intensity of photoluminescence.

  8. Variability of Power from Large-Scale Solar Photovoltaic Scenarios in the State of Gujarat: Preprint

    SciTech Connect (OSTI)

    Parsons, B.; Hummon, M.; Cochran, J.; Stoltenberg, B.; Batra, P.; Mehta, B.; Patel, D.

    2014-04-01

    India has ambitious goals for high utilization of variable renewable power from wind and solar, and deployment has been proceeding at a rapid pace. The western state of Gujarat currently has the largest amount of solar generation of any Indian state, with over 855 Megawatts direct current (MWDC). Combined with over 3,240 MW of wind, variable generation renewables comprise nearly 18% of the electric-generating capacity in the state. A new historic 10-kilometer (km) gridded solar radiation data set capturing hourly insolation values for 2002-2011 is available for India. We apply an established method for downscaling hourly irradiance data to one-minute irradiance data at potential PV power production locations for one year, 2006. The objective of this report is to characterize the intra-hour variability of existing and planned photovoltaic solar power generation in the state of Gujarat (a total of 1.9 gigawatts direct current (GWDC)), and of five possible expansion scenarios of solar generation that reflect a range of geographic diversity (each scenario totals 500-1,000 MW of additional solar capacity). The report statistically analyzes one year's worth of power variability data, applied to both the baseline and expansion scenarios, to evaluate diurnal and seasonal power fluctuations, different timescales of variability (e.g., from one to 15 minutes), the magnitude of variability (both total megawatts and relative to installed solar capacity), and the extent to which the variability can be anticipated in advance. The paper also examines how Gujarat Energy Transmission Corporation (GETCO) and the Gujarat State Load Dispatch Centre (SLDC) could make use of the solar variability profiles in grid operations and planning.

  9. Variability of Power from Large-Scale Solar Photovoltaic Scenarios in the State of Gujarat (Presentation)

    SciTech Connect (OSTI)

    Parsons, B.; Hummon, M.; Cochran, J.; Stoltenberg, B.; Batra, P.; Mehta, B.; Patel, D.

    2014-04-01

    India has ambitious goals for high utilization of variable renewable power from wind and solar, and deployment has been proceeding at a rapid pace. The western state of Gujarat currently has the largest amount of solar generation of any Indian state, with over 855 Megawatts direct current (MWDC). Combined with over 3,240 MW of wind, variable generation renewables comprise nearly 18% of the electric-generating capacity in the state. A new historic 10-kilometer (km) gridded solar radiation data set capturing hourly insolation values for 2002-2011 is available for India. We apply an established method for downscaling hourly irradiance data to one-minute irradiance data at potential PV power production locations for one year, 2006. The objective of this report is to characterize the intra-hour variability of existing and planned photovoltaic solar power generation in the state of Gujarat (a total of 1.9 gigawatts direct current (GWDC)), and of five possible expansion scenarios of solar generation that reflect a range of geographic diversity (each scenario totals 500-1,000 MW of additional solar capacity). The report statistically analyzes one year's worth of power variability data, applied to both the baseline and expansion scenarios, to evaluate diurnal and seasonal power fluctuations, different timescales of variability (e.g., from one to 15 minutes), the magnitude of variability (both total megawatts and relative to installed solar capacity), and the extent to which the variability can be anticipated in advance. The paper also examines how Gujarat Energy Transmission Corporation (GETCO) and the Gujarat State Load Dispatch Centre (SLDC) could make use of the solar variability profiles in grid operations and planning.

  10. Clean Energy State Program Guide: Mainstreaming Solar Electricity Strategies for States to Build Local Markets

    Broader source: Energy.gov [DOE]

    A PV mapping tool visually represents a specific site and calculates PV system size and projected electricity production. This report identifies the commercially available solar mapping tools and thoroughly summarizes the source data type and resolution, the visualization software program being used, user inputs, calculation methodology and algorithms, map outputs, and development costs for each map.

  11. NREL Confirms Large Potential for Grid Integration of Wind, Solar Power (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    To fully harvest the nation's bountiful wind and solar resources, it is critical to know how much electrical power from these renewable resources could be integrated reliably into the grid. To inform the discussion about the potential of such variable sources, the National Renewable Energy Laboratory (NREL) launched two key regional studies, examining the east and west sections of the U.S. power grid. The studies show that it is technically possible for U.S. power systems to integrate 20%-35% renewable electricity if infrastructure and operational improvements can be made.

  12. Microscopic Measurements of Electrical Potential in Hydrogenated Nanocrystalline Silicon Solar Cells: Preprint

    SciTech Connect (OSTI)

    Jiang, C. S.; Moutinho, H. R.; Reedy, R. C.; Al-Jassim, M. M.; Yan, B.; Yue, G.; Sivec, L.; Yang, J.; Guha, S.; Tong, X.

    2012-04-01

    We report on a direct measurement of electrical potential and field profiles across the n-i-p junction of hydrogenated nanocrystalline silicon (nc-Si:H) solar cells, using the nanometer-resolution potential imaging technique of scanning Kelvin probe force microscopy (SKPFM). It was observed that the electric field is nonuniform across the i layer. It is much higher in the p/i region than in the middle and the n/i region, illustrating that the i layer is actually slightly n-type. A measurement on a nc-Si:H cell with a higher oxygen impurity concentration shows that the nonuniformity of the electric field is much more pronounced than in samples having a lower O impurity, indicating that O is an electron donor in nc-Si:H materials. This nonuniform distribution of electric field implies a mixture of diffusion and drift of carrier transport in the nc-Si:H solar cells. The composition and structure of these nc-Si:H cells were further investigated by using secondary-ion mass spectrometry and Raman spectroscopy, respectively. The effects of impurity and structural properties on the electrical potential distribution and solar cell performance are discussed.

  13. Penetration and air-emission-reduction benefits of solar technologies in the electric utilities

    SciTech Connect (OSTI)

    Sutherland, R.J.

    1981-01-01

    The results of a study of four solar energy technologies and the electric utility industry are reported. The purpose of the study was to estimate the penetration by federal region of four solar technologies - wind, biomass, phtovoltaics, and solar thermal - in terms of installed capacity and power generated. The penetration by these technologies occurs at the expense of coal and nuclear power. The displacement of coal plants implies a displacement of their air emissions, such as sulfur dioxide, oxides of nitrogen, and particulate matter. The main conclusion of this study is that solar thermal, photovoltaics, and biomass fail to penetrate significantly by the end of this century in any federal region. Wind energy penetrates the electric utility industry in several regions during the 1990s. Displaced coal and nuclear generation are also estimated by region, as are the corresponding reductions in air emissions. The small-scale penetration by the solar technologies necessarily limits the amount of conventional fuels displaced and the reduction in air emissions. A moderate displacement of sulfur dioxide and the oxides of nitrogen is estimated to occur by the end of this century, and significant lowering of these emissions should occur in the early part of the next century.

  14. Experimentally validated long-term energy production prediction model for solar dish/Stirling electric generating systems

    SciTech Connect (OSTI)

    Stine, W.B.

    1995-12-31

    Dish/Stirling solar electric systems are currently being tested for performance and longevity in order to bring them to the electric power generation market. Studies both in Germany and the United States indicate that a significant market exists for these systems if they perform in actual installations according to tested conditions, and if, when produced in large numbers their cost will drop to goals currently being projected. In the 1980`s, considerable experience was gained operating eight dish/Stirling systems of three different designs. One of these recorded the world`s record for converting solar energy into electricity of 29.4%. The approach to system performance prediction taken in this presentation results from lessons learned in testing these early systems, and those currently being tested. Recently the IEA through the SolarPACES working group, has embarked on a program to develop uniform guidelines for measuring and presenting performance data. These guidelines are to help potential buyers who want to evaluate a specific system relative to other dish/Stirling systems, or relative to other technologies such as photovoltaic, parabolic trough or central receiver systems. In this paper, a procedure is described that permits modeling of long-term energy production using only a few experimentally determined parameters. The benefit of using this technique is that relatively simple tests performed over a period of a few months can provide performance parameters that can be used in a computer model requiring only the input of insolation and ambient temperature data to determine long-term energy production information. A portion of this analytical procedure has been tested on the three 9-kW(e) systems in operation in Almeria, Spain. Further evaluation of these concepts is planned on a 7.5-kW(e) system currently undergoing testing at Cal Poly University in Pomona, California and later on the 25 kW(e) USJVP systems currently under development.

  15. Large Customers (DR Sellers)

    SciTech Connect (OSTI)

    Kiliccot, Sila

    2011-10-25

    State of the large customers for demand response integration of solar and wind into electric grid; openADR; CAISO; DR as a pseudo generation; commercial and industrial DR strategies; California regulations

  16. Proposed guidelines for reporting performance of a solar dish/Stirling electric generation system

    SciTech Connect (OSTI)

    Stine, W.B.; Powell, M.A.

    1992-12-31

    Experimental performance data from dish/Stirling system testing can be analyzed to generate a system performance model. An approach to developing an experimentally based performance model of a dish/Stirling system is given. Two methods for analyzing the experimental data are described. To provide information that will permit comparison of dish/Stirling systems, it is necessary to define many of the details involved in calculating system performance data such as the net system output and system solar-to-electric efficiency. This paper describes a set of guidelines for these calculations, based on past experience, especially with the Vanguard dish/Stirling system. Also presented are a set of rating conditions at which a maximum value for system efficiency can be calculated. Comparison between systems of their rated peak solar-to-electric efficiency is made possible when these rating conditions are in common use by manufacturers and testing agencies.

  17. Public attitudes regarding large-scale solar energy development in the U.S.

    SciTech Connect (OSTI)

    Carlisle, Juliet E.; Kane, Stephanie L.; Solan, David; Bowman, Madelaine; Joe, Jeffrey C.

    2015-08-01

    Using data collected from both a National sample as well as an oversample in U.S. Southwest, we examine public attitudes toward the construction of utility-scale solar facilities in the U.S. as well as development in one’s own county. Our multivariate analyses assess demographic and sociopsychological factors as well as context in terms of proximity of proposed project by considering the effect of predictors for respondents living in the Southwest versus those from a National sample.We find that the predictors, and impact of the predictors, related to support and opposition to solar development vary in terms of psychological and physical distance. Overall, for respondents living in the U.S. Southwest we find that environmentalism, belief that developers receive too many incentives, and trust in project developers to be significantly related to support and opposition to solar development, in general. When Southwest respondents consider large-scale solar development in their county, the influence of these variables changes so that property value, race, and age only yield influence. Differential effects occur for respondents of our National sample.We believe our findings to be relevant for those outside the U.S. due to the considerable growth PV solar has experienced in the last decade, especially in China, Japan, Germany, and the U.S.

  18. Public attitudes regarding large-scale solar energy development in the U.S.

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Carlisle, Juliet E.; Kane, Stephanie L.; Solan, David; Bowman, Madelaine; Joe, Jeffrey C.

    2015-08-01

    Using data collected from both a National sample as well as an oversample in U.S. Southwest, we examine public attitudes toward the construction of utility-scale solar facilities in the U.S. as well as development in one’s own county. Our multivariate analyses assess demographic and sociopsychological factors as well as context in terms of proximity of proposed project by considering the effect of predictors for respondents living in the Southwest versus those from a National sample.We find that the predictors, and impact of the predictors, related to support and opposition to solar development vary in terms of psychological and physical distance.more » Overall, for respondents living in the U.S. Southwest we find that environmentalism, belief that developers receive too many incentives, and trust in project developers to be significantly related to support and opposition to solar development, in general. When Southwest respondents consider large-scale solar development in their county, the influence of these variables changes so that property value, race, and age only yield influence. Differential effects occur for respondents of our National sample.We believe our findings to be relevant for those outside the U.S. due to the considerable growth PV solar has experienced in the last decade, especially in China, Japan, Germany, and the U.S.« less

  19. Vacuum gaps with small tunnel currents at large electric field and its

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    potential applications for energy storage, charge storage and power supplies. | Stanford Synchrotron Radiation Lightsource Vacuum gaps with small tunnel currents at large electric field and its potential applications for energy storage, charge storage and power supplies. Friday, May 27, 2011 - 4:00pm SSRL Conference Room 137-226 Alfred Hubler, Department of Physics, University of Illinois, Urbana-Champaign We study tunnel currents and electric break down in vacuum gaps experimentally and

  20. SunShot Vision Study: A Comprehensive Analysis of the Potential for U.S. Solar Electricity Generation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-06-01

    The SunShot Vision Study provides the most comprehensive assessment to date of the potential for solar technologies to meet a significant share of electricity demand in the United States during the next several decades.

  1. Distributed Solar Photovoltaics for Electric Vehicle Charging: Regulatory and Policy Considerations (Brochure), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PHOTOVOLTAICS FOR ELECTRIC VEHICLE CHARGING REGULATORY AND POLICY CONSIDERATIONS ABSTRACT Increasing demand for electric vehicle (EV) charging provides an opportunity for market expansion of distributed solar technology. A major barrier to the current deployment of solar technology for EV charging is a lack of clear information for policymakers, utilities, and potential adopters. This paper introduces the pros and cons of EV charging during the day versus at night, summarizes the benefts and

  2. PATHWAYS OF LARGE-SCALE MAGNETIC COUPLINGS BETWEEN SOLAR CORONAL EVENTS

    SciTech Connect (OSTI)

    Schrijver, Carolus J.; Title, Alan M.; DeRosa, Marc L.; Yeates, Anthony R.

    2013-08-20

    The high-cadence, comprehensive view of the solar corona by SDO/AIA shows many events that are widely separated in space while occurring close together in time. In some cases, sets of coronal events are evidently causally related, while in many other instances indirect evidence can be found. We present case studies to highlight a variety of coupling processes involved in coronal events. We find that physical linkages between events do occur, but concur with earlier studies that these couplings appear to be crucial to understanding the initiation of major eruptive or explosive phenomena relatively infrequently. We note that the post-eruption reconfiguration timescale of the large-scale corona, estimated from the extreme-ultraviolet afterglow, is on average longer than the mean time between coronal mass ejections (CMEs), so that many CMEs originate from a corona that is still adjusting from a previous event. We argue that the coronal field is intrinsically global: current systems build up over days to months, the relaxation after eruptions continues over many hours, and evolving connections easily span much of a hemisphere. This needs to be reflected in our modeling of the connections from the solar surface into the heliosphere to properly model the solar wind, its perturbations, and the generation and propagation of solar energetic particles. However, the large-scale field cannot be constructed reliably by currently available observational resources. We assess the potential of high-quality observations from beyond Earth's perspective and advanced global modeling to understand the couplings between coronal events in the context of CMEs and solar energetic particle events.

  3. Solar Background Document 6 | Department of Energy

    Energy Savers [EERE]

    6 Solar Background Document 6 Graph illustrating solar cell production in the United States and China from 2002 to 2010. PDF icon Solar Background Document 6.pdf More Documents & Publications Solar Background Document 4 "Large Power Transformers and the U.S. Electric Grid" Report (June 2012) Large Power Transformers and the U.S. Electric Grid Report Update (April 2014)

  4. Adobe Solar | Open Energy Information

    Open Energy Info (EERE)

    Adobe Solar Jump to: navigation, search Logo: Adobe Solar Name: Adobe Solar Place: Denver, Colorado Region: Rockies Area Sector: Solar Product: solar electric systems Phone Number:...

  5. Dish/Stirling systems: Overview of an emerging commercial solar thermal electric technology

    SciTech Connect (OSTI)

    Strachan, J.W.; Diver, R.B.; Estrada, C.

    1995-11-01

    Dish/Stirling is a solar thermal electric technology which couples parabolic, point-focusing solar collectors and heat engines which employ the Stirling thermodynamic cycle. Since the late 1970s, the development of Dish/Stirling systems intended for commercial use has been in progress in Germany, Japan, and the US. In the next several years it is expected that one or more commercial systems will enter the market place. This paper provides a general overview of this emerging technology, including: a description of the fundamental principles of operation of Dish/Stirling systems; a presentation of the major components of the systems (concentrator, receiver, engine/alternator, and controls); an overview of the actual systems under development around the world, with a discussion of some of the technical issues and challenges facing the Dish/Stirling developers. A brief discussion is also presented of potential applications for small Dish/Stirling systems in northern Mexico.

  6. Solar Contractor Licensing | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    < Back Eligibility InstallersContractors Savings Category Solar - Passive Solar Water Heat Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Photovoltaics...

  7. Distributed Solar PV for Electricity System Resiliency: Policy and Regulatory Considerations (Brochure), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PV FOR ELECTRICITY SYSTEM RESILIENCY POLICY AND REGULATORY CONSIDERATIONS ABSTRACT Distributed solar photovoltaic (PV) systems have the potential to supply electricity during grid outages resulting from extreme weather or other emergency situations. As such, distributed PV can signifcantly increase the resiliency of the electricity system. In order to take advantage of this capability, however, the PV systems must be designed with resiliency in mind and combined with other technologies, such as

  8. Profiling the Built-In Electrical Potential in III-V Multijunction Solar Cells (Poster)

    SciTech Connect (OSTI)

    Jiang, C.-S.; Friedman, D. J.; Moutinho, H. R.; Al-Jassim, M. M.

    2006-05-01

    We have observed three electrical potentials at the top, tunneling, and bottom junctions of GnInP{sub 2}/GaAs tandem-junction solar cells, by performing the UHV-SKPM measurement. The effect of laser illumination was avoided by using GaAs laser with photon energy of 1.4 eV for the AFM operation. We also observed higher potentials at the atomic steps than on the terraces for both p-type GaInP{sub 2} epitaxial layer and p-type GaAs substrate, and found that the potential at steps of GaAs substrate depends on the step directions.

  9. LARGE-SCALE MAGNETIC HELICITY FLUXES ESTIMATED FROM MDI MAGNETIC SYNOPTIC CHARTS OVER THE SOLAR CYCLE 23

    SciTech Connect (OSTI)

    Yang Shangbin; Zhang Hongqi

    2012-10-10

    To investigate the characteristics of large-scale and long-term evolution of magnetic helicity with solar cycles, we use the method of Local Correlation Tracking to estimate the magnetic helicity evolution over solar cycle 23 from 1996 to 2009 using 795 MDI magnetic synoptic charts. The main results are as follows: the hemispheric helicity rule still holds in general, i.e., the large-scale negative (positive) magnetic helicity dominates the northern (southern) hemisphere. However, the large-scale magnetic helicity fluxes show the same sign in both hemispheres around 2001 and 2005. The global, large-scale magnetic helicity flux over the solar disk changes from a negative value at the beginning of solar cycle 23 to a positive value at the end of the cycle, while the net accumulated magnetic helicity is negative in the period between 1996 and 2009.

  10. Materials Science and Materials Chemistry for Large Scale Electrochemical Energy Storage: From Transportation to Electrical Grid

    SciTech Connect (OSTI)

    Liu, Jun; Zhang, Jiguang; Yang, Zhenguo; Lemmon, John P.; Imhoff, Carl H.; Graff, Gordon L.; Li, Liyu; Hu, Jian Z.; Wang, Chong M.; Xiao, Jie; Xia, Guanguang; Viswanathan, Vilayanur V.; Baskaran, Suresh; Sprenkle, Vincent L.; Li, Xiaolin; Shao, Yuyan; Schwenzer, Birgit

    2013-02-15

    Large-scale electrical energy storage has become more important than ever for reducing fossil energy consumption in transportation and for the widespread deployment of intermittent renewable energy in electric grid. However, significant challenges exist for its applications. Here, the status and challenges are reviewed from the perspective of materials science and materials chemistry in electrochemical energy storage technologies, such as Li-ion batteries, sodium (sulfur and metal halide) batteries, Pb-acid battery, redox flow batteries, and supercapacitors. Perspectives and approaches are introduced for emerging battery designs and new chemistry combinations to reduce the cost of energy storage devices.

  11. Development of Performance Acceptance Test Guidelines for Large Commercial Parabolic Trough Solar Fields: Preprint

    SciTech Connect (OSTI)

    Kearney, D.; Mehos, M.

    2010-12-01

    Prior to commercial operation, large solar systems in utility-size power plants need to pass a performance acceptance test conducted by the EPC contractor or owners. In lieu of the present absence of engineering code developed for this purpose, NREL has undertaken the development of interim guidelines to provide recommendations for test procedures that can yield results of a high level of accuracy consistent with good engineering knowledge and practice. The fundamental differences between acceptance of a solar power plant and a conventional fossil-fired plant are the transient nature of the energy source and the necessity to utilize an analytical performance model in the acceptance process. These factors bring into play the need to establish methods to measure steady state performance, potential impacts of transient processes, comparison to performance model results, and the possible requirement to test, or model, multi-day performance within the scope of the acceptance test procedure. The power block and BOP are not within the boundaries of this guideline. The current guideline is restricted to the solar thermal performance of parabolic trough systems and has been critiqued by a broad range of stakeholders in CSP development and technology.

  12. Method of manufacturing large dish reflectors for a solar concentrator apparatus

    DOE Patents [OSTI]

    Angel, Roger P (Tucson, AZ); Olbert, Blain H (Tucson, AZ)

    2011-12-27

    A method of manufacturing monolithic glass reflectors for concentrating sunlight in a solar energy system is disclosed. The method of manufacturing allows large monolithic glass reflectors to be made from float glass in order to realize significant cost savings on the total system cost for a solar energy system. The method of manufacture includes steps of heating a sheet of float glass positioned over a concave mold until the sheet of glass sags and stretches to conform to the shape of the mold. The edges of the dish-shaped glass are rolled for structural stiffening around the periphery. The dish-shaped glass is then silvered to create a dish-shaped mirror that reflects solar radiation to a focus. The surface of the mold that contacts the float glass preferably has a grooved surface profile comprising a plurality of cusps and concave valleys. This grooved profile minimizes the contact area and marring of the specular glass surface, reduces parasitic heat transfer into the mold and increases mold lifetime. The disclosed method of manufacture is capable of high production rates sufficiently fast to accommodate the output of a conventional float glass production line so that monolithic glass reflectors can be produced as quickly as a float glass production can make sheets of float glass to be used in the process.

  13. Survey and analysis of selected jointly owned large-scale electric utility storage projects

    SciTech Connect (OSTI)

    Not Available

    1982-05-01

    The objective of this study was to examine and document the issues surrounding the curtailment in commercialization of large-scale electric storage projects. It was sensed that if these issues could be uncovered, then efforts might be directed toward clearing away these barriers and allowing these technologies to penetrate the market to their maximum potential. Joint-ownership of these projects was seen as a possible solution to overcoming the major barriers, particularly economic barriers, of commercializaton. Therefore, discussions with partners involved in four pumped storage projects took place to identify the difficulties and advantages of joint-ownership agreements. The four plants surveyed included Yards Creek (Public Service Electric and Gas and Jersey Central Power and Light); Seneca (Pennsylvania Electric and Cleveland Electric Illuminating Company); Ludington (Consumers Power and Detroit Edison, and Bath County (Virginia Electric Power Company and Allegheny Power System, Inc.). Also investigated were several pumped storage projects which were never completed. These included Blue Ridge (American Electric Power); Cornwall (Consolidated Edison); Davis (Allegheny Power System, Inc.) and Kttatiny Mountain (General Public Utilities). Institutional, regulatory, technical, environmental, economic, and special issues at each project were investgated, and the conclusions relative to each issue are presented. The major barriers preventing the growth of energy storage are the high cost of these systems in times of extremely high cost of capital, diminishing load growth and regulatory influences which will not allow the building of large-scale storage systems due to environmental objections or other reasons. However, the future for energy storage looks viable despite difficult economic times for the utility industry. Joint-ownership can ease some of the economic hardships for utilites which demonstrate a need for energy storage.

  14. Effect of simultaneous electrical and thermal treatment on the performance of bulk heterojunction organic solar cell blended with organic salt

    SciTech Connect (OSTI)

    Sabri, Nasehah Syamin; Yap, Chi Chin; Yahaya, Muhammad; Salleh, Muhamad Mat

    2013-11-27

    This work presents the influence of simultaneous electrical and thermal treatment on the performance of organic solar cell blended with organic salt. The organic solar cells were composed of indium tin oxide as anode, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]: (6,6)-phenyl-C61 butyric acid methyl ester: tetrabutylammonium hexafluorophosphate blend as organic active layer and aluminium as cathode. The devices underwent a simultaneous fixed-voltage electrical and thermal treatment at different temperatures of 25, 50 and 75 °C. It was found that photovoltaic performance improved with the thermal treatment temperature. Accumulation of more organic salt ions in the active layer leads to broadening of p-n doped regions and hence higher built-in electric field across thin intrinsic layer. The simultaneous electrical and thermal treatment has been shown to be able to reduce the electrical treatment voltage.

  15. A long-term strategic plan for development of solar thermal electric technology

    SciTech Connect (OSTI)

    Williams, T.A.; Burch, G.; Chavez, J.M.; Mancini, T.R.; Tyner, C.E.

    1997-06-01

    Solar thermal electric (STE) technologies--parabolic troughs, power towers, and dish/engine systems--can convert sunlight into electricity efficiently and with minimum effect on the environment. These technologies currently range from developmental to early commercial stages of maturity. This paper summarizes the results of a recent strategic planning effort conducted by the US department of Energy (DOE) to develop a long-term strategy for the development of STE technologies. The planning team led by DOE included representatives from the solar thermal industry, domestic utilities, state energy offices, and Sun{center_dot}Lab (the cooperative Sandia National laboratories/National Renewable Energy Laboratory partnership that supports the STE Program) as well as project developers. The plan was aimed at identifying specific activities necessary to achieve the DOE vision of 20 gigawatts of installed STE capability by the year 2020. The planning team developed five strategies that both build on the strengths of, and opportunities for, STE technology and address weaknesses and threats. These strategies are to: support future commercial opportunities for STE technologies; demonstrate improved performance and reliability of STE components and systems; reduce STE energy costs; develop advanced STE systems and applications; and address nontechnical barriers and champion STE power. The details of each of these strategies are discussed.

  16. The absorption chiller in large scale solar pond cooling design with condenser heat rejection in the upper convecting zone

    SciTech Connect (OSTI)

    Tsilingiris, P.T. )

    1992-07-01

    The possibility of using solar ponds as low-cost solar collectors combined with commercial absorption chillers in large scale solar cooling design is investigated. The analysis is based on the combination of a steady-state solar pond mathematical model with the operational characteristics of a commercial absorption chiller, assuming condenser heat rejection in the upper convecting zone (U.C.Z.). The numerical solution of the nonlinear equations involved leads to results which relate the chiller capacity with pond design and environmental parameters, which are also employed for the investigation of the optimum pond size for a minimum capital cost. The derived cost per cooling kW for a 350 kW chiller ranges from about 300 to 500 $/kW cooling. This is almost an order of magnitude lower than using a solar collector field of evacuated tube type.

  17. Solar Energy Technologies FY'14 Budget At-a-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SOLAR ENERGY TECHNOLOGIES FY14 BUDGET AT-A-GLANCE Solar Energy Technologies supports the SunShot goal to make solar energy technologies cost-competitive with conventional energy sources by 2020. Reducing the total installed cost for utility-scale solar electricity by approximately 75% (2010 baseline) to roughly $.06/kWh without subsidies will enable rapid, large-scale adoption of solar electricity across the United States. This investment will help re-establish American technological and market

  18. SDO/AIA OBSERVATIONS OF LARGE-AMPLITUDE LONGITUDINAL OSCILLATIONS IN A SOLAR FILAMENT

    SciTech Connect (OSTI)

    Li Ting; Zhang Jun E-mail: zjun@nao.cas.cn

    2012-11-20

    We present the first Solar Dynamics Observatory/Atmospheric Imaging Assembly observations of the large-amplitude longitudinal (LAL) oscillations in the south and north parts (SP and NP) of a solar filament on 2012 April 7. Both oscillations are triggered by flare activities close to the filament. The period varies with filamentary threads, ranging from 44 to 67 minutes. The oscillations of different threads are out of phase, and their velocity amplitudes vary from 30 to 60 km s{sup -1}, with a maximum displacement of about 25 Mm. The oscillations of the SP repeat for about four cycles without any significant damping and then a nearby C2.4 flare causes the transition from the LAL oscillations of the filament to its later eruption. The filament eruption is also associated with a coronal mass ejection and a B6.8 flare. However, the oscillations of the NP damp with time and die out at last. Our observations show that the activated part of the SP repeatedly shows a helical motion. This indicates that the magnetic structure of the filament is possibly modified during this process. We suggest that the restoring force is the coupling of the magnetic tension and gravity.

  19. Observations and implications of large-amplitude longitudinal oscillations in a solar filament

    SciTech Connect (OSTI)

    Luna, M.; Knizhnik, K.; Muglach, K.; Karpen, J.; Gilbert, H.; Kucera, T. A.; Uritsky, V.

    2014-04-10

    On 2010 August 20, an energetic disturbance triggered large-amplitude longitudinal oscillations in a nearby filament. The triggering mechanism appears to be episodic jets connecting the energetic event with the filament threads. In the present work, we analyze this periodic motion in a large fraction of the filament to characterize the underlying physics of the oscillation as well as the filament properties. The results support our previous theoretical conclusions that the restoring force of large-amplitude longitudinal oscillations is solar gravity, and the damping mechanism is the ongoing accumulation of mass onto the oscillating threads. Based on our previous work, we used the fitted parameters to determine the magnitude and radius of curvature of the dipped magnetic field along the filament, as well as the mass accretion rate onto the filament threads. These derived properties are nearly uniform along the filament, indicating a remarkable degree of cohesiveness throughout the filament channel. Moreover, the estimated mass accretion rate implies that the footpoint heating responsible for the thread formation, according to the thermal nonequilibrium model, agrees with previous coronal heating estimates. We estimate the magnitude of the energy released in the nearby event by studying the dynamic response of the filament threads, and discuss the implications of our study for filament structure and heating.

  20. Numerical power balance and free energy loss analysis for solar cells including optical, thermodynamic, and electrical aspects

    SciTech Connect (OSTI)

    Greulich, Johannes Höffler, Hannes; Würfel, Uli; Rein, Stefan

    2013-11-28

    A method for analyzing the power losses of solar cells is presented, supplying a complete balance of the incident power, the optical, thermodynamic, and electrical power losses and the electrical output power. The involved quantities have the dimension of a power density (units: W/m{sup 2}), which permits their direct comparison. In order to avoid the over-representation of losses arising from the ultraviolet part of the solar spectrum, a method for the analysis of the electrical free energy losses is extended to include optical losses. This extended analysis does not focus on the incident solar power of, e.g., 1000 W/m{sup 2} and does not explicitly include the thermalization losses and losses due to the generation of entropy. Instead, the usable power, i.e., the free energy or electro-chemical potential of the electron-hole pairs is set as reference value, thereby, overcoming the ambiguities of the power balance. Both methods, the power balance and the free energy loss analysis, are carried out exemplarily for a monocrystalline p-type silicon metal wrap through solar cell with passivated emitter and rear (MWT-PERC) based on optical and electrical measurements and numerical modeling. The methods give interesting insights in photovoltaic (PV) energy conversion, provide quantitative analyses of all loss mechanisms, and supply the basis for the systematic technological improvement of the device.

  1. Electric properties and carrier multiplication in breakdown sites in multi-crystalline silicon solar cells

    SciTech Connect (OSTI)

    Schneemann, Matthias; Carius, Reinhard; Rau, Uwe; Kirchartz, Thomas

    2015-05-28

    This paper studies the effective electrical size and carrier multiplication of breakdown sites in multi-crystalline silicon solar cells. The local series resistance limits the current of each breakdown site and is thereby linearizing the current-voltage characteristic. This fact allows the estimation of the effective electrical diameters to be as low as 100?nm. Using a laser beam induced current (LBIC) measurement with a high spatial resolution, we find carrier multiplication factors on the order of 30 (Zener-type breakdown) and 100 (avalanche breakdown) as new lower limits. Hence, we prove that also the so-called Zener-type breakdown is followed by avalanche multiplication. We explain that previous measurements of the carrier multiplication using thermography yield results higher than unity, only if the spatial defect density is high enough, and the illumination intensity is lower than what was used for the LBIC method. The individual series resistances of the breakdown sites limit the current through these breakdown sites. Therefore, the measured multiplication factors depend on the applied voltage as well as on the injected photocurrent. Both dependencies are successfully simulated using a series-resistance-limited diode model.

  2. An update on the development of heat-pipe solar receivers for Stirling/dish-electric systems

    SciTech Connect (OSTI)

    Adkins, D.R. ); Godett, T.M. )

    1991-01-01

    The Department of Energy is sponsoring the development of a 75-kW (thermal) heat-pipe solar receiver to drive a 25-kW (electric) Stirling engine/generator system. A heat pipe solar receiver transfers energy from the focus of a parabolic-dish solar concentrator to the heater tubes of a Stirling engine through the evaporation and condensation of a liquid metal. With a heat pipe receiver, it is possible to transform irregular flux profiles from solar concentrators into a more uniform thermal input at the engine's heater tubes. Recent work in the heat-pipe receiver development program is reviewed in this paper. Techniques for constructing the heat-pipe receiver's wick structure are discussed and findings from recent bench-scale tests are presented. This paper also addresses several problem areas that have been discovered in the course of this program. 9 refs., 10 figs., 1 tab.

  3. Solar and Wind Rights | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    - Passive Solar Water Heat Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Photovoltaics Wind (All) Wind (Small) Program Info Sector Name State State...

  4. Solar Easements & Rights Laws | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Nonprofit Residential Schools State Government Federal Government Savings Category Solar - Passive Solar Water Heat Solar Space Heat Solar Thermal Electric Solar Thermal Process...

  5. NREL: Concentrating Solar Power Research - TroughNet Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research TroughNet is a technical resource for evaluation of parabolic trough solar power plant technologies. Parabolic Trough Technology Parabolic trough solar technology offers the lowest cost solar electric option for large power plant applications. To learn more, read our technology overviews: A photo of a solar field featuring rows and rows of parabolic troughs at a power plant. Solar Field A photo of two, gray, thermal energy storage system tanks, which are very large, at a parabolic

  6. LARGE-SCALE CORONAL PROPAGATING FRONTS IN SOLAR ERUPTIONS AS OBSERVED BY THE ATMOSPHERIC IMAGING ASSEMBLY ON BOARD THE SOLAR DYNAMICS OBSERVATORYAN ENSEMBLE STUDY

    SciTech Connect (OSTI)

    Nitta, Nariaki V.; Schrijver, Carolus J.; Title, Alan M.; Liu, Wei

    2013-10-10

    This paper presents a study of a large sample of global disturbances in the solar corona with characteristic propagating fronts as intensity enhancement, similar to the phenomena that have often been referred to as Extreme Ultraviolet Imaging Telescope (EIT) waves or extreme-ultraviolet (EUV) waves. Now EUV images obtained by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory provide a significantly improved view of these large-scale coronal propagating fronts (LCPFs). Between 2010 April and 2013 January, a total of 171 LCPFs have been identified through visual inspection of AIA images in the 193 channel. Here we focus on the 138 LCPFs that are seen to propagate across the solar disk, first studying how they are associated with flares, coronal mass ejections (CMEs), and type II radio bursts. We measure the speed of the LCPF in various directions until it is clearly altered by active regions or coronal holes. The highest speed is extracted for each LCPF. It is often considerably higher than EIT waves. We do not find a pattern where faster LCPFs decelerate and slow LCPFs accelerate. Furthermore, the speeds are not strongly correlated with the flare intensity or CME magnitude, nor do they show an association with type II bursts. We do not find a good correlation either between the speeds of LCPFs and CMEs in a subset of 86 LCPFs observed by one or both of the Solar and Terrestrial Relations Observatory spacecraft as limb events.

  7. Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... Hydrogen Infrastructure Hydrogen Production Market Transformation Fuel Cells ...

  8. Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water ... Infrastructure Hydrogen Production Market Transformation ... Tribal Energy Program Intellectual Property Current EC ...

  9. Solar and Photovoltaic Data from the University of Oregon Solar Radiation Monitoring Laboratory (UO SRML)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The UO SRML is a regional solar radiation data center whose goal is to provide sound solar resource data for planning, design, deployment, and operation of solar electric facilities in the Pacific Northwest. The laboratory has been in operation since 1975. Solar data includes solar resource maps, cumulative summary data, daily totals, monthly averages, single element profile data, parsed TMY2 data, and select multifilter radiometer data. A data plotting program and other software tools are also provided. Shade analysis information and contour plots showing the effect of tilt and orientation on annual solar electric system perfomance make up a large part of the photovoltaics data.(Specialized Interface)

  10. Profiling the Built-in Electrical Potential in III-V Multijunction Solar Cells: Preprint

    SciTech Connect (OSTI)

    Jiang, C.-S.; Friedman, D. J.; Moutinho, H. R.; Al-Jassim, M. M.

    2006-05-01

    We report on a direct measurement of the electrical potential on cross-sections of GaInP2/GaAs multiple-junction solar cells by using an ultrahigh-vacuum scanning Kelvin probe microscope (UHV-SKPM). The UHV-SKPM allows us to measure the potential without air molecules being adsorbed on the cross-sectional surface. Moreover, it uses a GaAs laser with photon energy of 1.4 eV for the atomic force microscope (AFM) operation. This eliminated the light-absorption-induced bottom-junction flattening and top-junction enhancement, which happened in our previous potential measurement using a 1.85-eV laser for the AFM operation. Three potentials were measured at the top, tunneling, and bottom junctions. Values of the potentials are smaller than the potentials in the bulk. This indicates that the Fermi level on the UHV-cleaved (110) surface was pinned, presumably due to defects upon cleaving. We also observed higher potentials at atomic steps than on the terraces for both GaInP2 epitaxial layer and GaAs substrate. Combining scanning tunneling microscopy (STM) and SKPM measurements, we found that the potential height at steps of the GaAs substrate depends on the step direction, which is probably a direct result of unbalanced cations and anions at the steps.

  11. Profiling the Built-In Electrical Potential in III-V Multijunction Solar Cells

    SciTech Connect (OSTI)

    Jiang, C.-S.; Friedman, D. J.; Moutinho, H. R.; Al-Jassim, M. M.

    2006-01-01

    We report on a direct measurement of the electrical potential on cross-sections of GaInP{sub 2}/GaAs multiple-junction solar cells by using an ultrahigh-vacuum scanning Kelvin probe microscope (UHV-SKPM). The UHV-SKPM allows us to measure the potential without air molecules being adsorbed on the cross-sectional surface. Moreover, it uses a GaAs laser with photon energy of 1.4 eV for the atomic force microscope (AFM) operation. This eliminated the light-absorption-induced bottom-junction flattening and top-junction enhancement, which happened in our previous potential measurement using a 1.85-eV laser for the AFM operation. Three potentials were measured at the top, tunneling, and bottom junctions. Values of the potentials are smaller than the potentials in the bulk. This indicates that the Fermi level on the UHV-cleaved (110) surface was pinned, presumably due to defects upon cleaving. We also observed higher potentials at atomic steps than on the terraces for both GaInP2 epitaxial layer and GaAs substrate. Combining scanning tunneling microscopy (STM) and SKPM measurements, we found that the potential height at steps of the GaAs substrate depends on the step direction, which is probably a direct result of unbalanced cations and anions at the steps.

  12. Solar ADEPT: Efficient Solar Energy Systems

    SciTech Connect (OSTI)

    2011-01-01

    Solar ADEPT Project: The 7 projects that make up ARPA-E's Solar ADEPT program, short for 'Solar Agile Delivery of Electrical Power Technology,' aim to improve the performance of photovoltaic (PV) solar energy systems, which convert the sun's rays into electricity. Solar ADEPT projects are integrating advanced electrical components into PV systems to make the process of converting solar energy to electricity more efficient.

  13. NREL Webinar: Treatment of Solar Generation in Electric Utility Resource Planning

    Broader source: Energy.gov [DOE]

    In this free webinar, you will hear how utilities are incorporating solar generation into their resource planning processes.

  14. A Tutorial on Detection and Characterization of Special Behavior in Large Electric Power Systems

    SciTech Connect (OSTI)

    Hauer, John F.; DeSteese, John G.

    2004-08-20

    The objective of this document is to report results in the detection and characterization of special behavior in large electric power systems. Such behavior is usually dynamic in nature, but not always. This is also true for the underlying sources of special behavior. At the device level, a source of special behavior might be an automatic control system, a dynamic load, or even a manual control system that is operated according to some sharply defined policy. Other possible sources include passive system conditions, such as the state of a switched device or the amount of power carried on some critical line. Detection and characterization are based upon “signature information” that is extracted from the behavior observed. Characterization elements include the signature information itself, the nature of the behavior and its likely causes, and the associated implications for the system or for the public at large. With sufficient data and processing, this characterization may directly identify a particular condition or device at a specific location. Such conclusive results cannot always be done from just one observation, however. Information environments that are very sparse may require multiple observations, comparative model studies, and even direct testing of the system.

  15. Buying and Making Electricity | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Planning renewable systems Solar electric systems Wind electric systems Hybrid wind and solar Microhydropower systems. Follow Us followontwitter.png...

  16. Decreasing Soft Costs for Solar Photovoltaics by Improving the Interconnection Process: A Case Study of Pacific Gas and Electric

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Decreasing Soft Costs for Solar Photovoltaics by Improving the Interconnection Process: A Case Study of Pacific Gas and Electric Kristen Ardani and Robert Margolis National Renewable Energy Laboratory Technical Report NREL/TP-7A40-65066 September 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory

  17. Electric Market and Utility Operation Terminology (Fact Sheet), Solar Energy Technologies Program (SETP)

    Broader source: Energy.gov [DOE]

    This fact sheet is a list of electric market and utility operation terminology for a series of three electricity fact sheets.

  18. Large-area Silicon-Film{trademark} panels and solar cells. Phase 2 technical report, January 1996--December 1996

    SciTech Connect (OSTI)

    Rand, J.A.; Barnett, A.M.; Checchi, J.C.; Culik, J.S.; Collins, S.R.; Ford, D.H.; Hall, R.B.; Jackson, E.L.; Kendall, C.L.

    1997-03-01

    The Silicon-Film{trademark} process is on an accelerated path to large-scale manufacturing. A key element in that development is optimizing the specific geometry of both the Silicon-Film{trademark} sheet and the resulting solar cell. That decision has been influenced by cost factors, engineering concerns, and marketing issues. The geometry investigation has focused first on sheet nominally 15 cm wide. This sheet generated solar cells with areas of 240 cm{sup 2} and 675 cm{sup 2}. Most recently, a new sheet fabrication machine was constructed that produces Silicon-Film{trademark} with a width in excess of 30 cm. Test results have indicated that there is no limit to the width of sheet generated by this process. The new wide material has led to prototype solar cells with areas of 300, 400, and 1,800 cm{sup 2}. Significant advances in solar-cell processing have been developed in support of fabricating large-area devices, including uniform emitter diffusion and anti-reflection coatings.

  19. Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas ...

  20. Renewable Electricity Generation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Electricity Generation Renewable Electricity Generation Geothermal Geothermal Read more Solar Solar Read more Water Water Read more Wind Wind Read more Our nation has abundant solar, water, wind, and geothermal energy resources, and many U.S. companies are developing, manufacturing, and installing cutting-edge, high-tech renewable energy systems. The Office of Energy Efficiency and Renewable Energy (EERE) leads a large network of researchers and other partners to deliver innovative

  1. SIMULTANEOUS OBSERVATIONS OF A LARGE-SCALE WAVE EVENT IN THE SOLAR ATMOSPHERE: FROM PHOTOSPHERE TO CORONA

    SciTech Connect (OSTI)

    Shen, Yuandeng; Liu, Yu

    2012-06-20

    For the first time, we report a large-scale wave that was observed simultaneously in the photosphere, chromosphere, transition region, and low corona layers of the solar atmosphere. Using the high temporal and high spatial resolution observations taken by the Solar Magnetic Activity Research Telescope at Hida Observatory and the Atmospheric Imaging Assembly (AIA) on board Solar Dynamic Observatory, we find that the wave evolved synchronously at different heights of the solar atmosphere, and it propagated at a speed of 605 km s{sup -1} and showed a significant deceleration (-424 m s{sup -2}) in the extreme-ultraviolet (EUV) observations. During the initial stage, the wave speed in the EUV observations was 1000 km s{sup -1}, similar to those measured from the AIA 1700 A (967 km s{sup -1}) and 1600 A (893 km s{sup -1}) observations. The wave was reflected by a remote region with open fields, and a slower wave-like feature at a speed of 220 km s{sup -1} was also identified following the primary fast wave. In addition, a type-II radio burst was observed to be associated with the wave. We conclude that this wave should be a fast magnetosonic shock wave, which was first driven by the associated coronal mass ejection and then propagated freely in the corona. As the shock wave propagated, its legs swept the solar surface and thereby resulted in the wave signatures observed in the lower layers of the solar atmosphere. The slower wave-like structure following the primary wave was probably caused by the reconfiguration of the low coronal magnetic fields, as predicted in the field-line stretching model.

  2. Analysis of International Policies In The Solar Electricity Sector: Lessons for India

    SciTech Connect (OSTI)

    Deshmukh, Ranjit; Bharvirkar, Ranjit; Gambhir, Ashwin; Phadke, Amol

    2011-08-10

    Although solar costs are dropping rapidly, solar power is still more expensive than conventional and other renewable energy options. The solar sector still needs continuing government policy support. These policies are driven by objectives that go beyond the goal of achieving grid parity. The need to achieve multiple objectives and ensure sufficient political support for solar power makes it diffi cult for policy makers to design the optimal solar power policy. The dynamic and uncertain nature of the solar industry, combined with the constraints offered by broader economic, political and social conditions further complicates the task of policy making. This report presents an analysis of solar promotion policies in seven countries - Germany, Spain, the United States, Japan, China, Taiwan, and India - in terms of their outlook, objectives, policy mechanisms and outcomes. The report presents key insights, primarily in qualitative terms, and recommendations for two distinct audiences. The first audience consists of global policy makers who are exploring various mechanisms to increase the penetration of solar power in markets to mitigate climate change. The second audience consists of key Indian policy makers who are developing a long-term implementation plan under the Jawaharlal Nehru National Solar Mission and various state initiatives.

  3. Biomass Energy for Transport and Electricity: Large scale utilization under low CO2 concentration scenarios

    SciTech Connect (OSTI)

    Luckow, Patrick; Wise, Marshall A.; Dooley, James J.; Kim, Son H.

    2010-01-25

    This paper examines the potential role of large scale, dedicated commercial biomass energy systems under global climate policies designed to stabilize atmospheric concentrations of CO2 at 400ppm and 450ppm. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. The costs of processing and transporting biomass energy at much larger scales than current experience are also incorporated into the modeling. From the scenario results, 120-160 EJ/year of biomass energy is produced by midcentury and 200-250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the dominant source. A key finding of this paper is the role that carbon dioxide capture and storage (CCS) technologies coupled with commercial biomass energy can play in meeting stringent emissions targets. Despite the higher technology costs of CCS, the resulting negative emissions used in combination with biomass are a very important tool in controlling the cost of meeting a target, offsetting the venting of CO2 from sectors of the energy system that may be more expensive to mitigate, such as oil use in transportation. The paper also discusses the role of cellulosic ethanol and Fischer-Tropsch biomass derived transportation fuels and shows that both technologies are important contributors to liquid fuels production, with unique costs and emissions characteristics. Through application of the GCAM integrated assessment model, it becomes clear that, given CCS availability, bioenergy will be used both in electricity and transportation.

  4. solar

    National Nuclear Security Administration (NNSA)

    2%2A en Solar power purchase for DOE laboratories http:nnsa.energy.govmediaroompressreleasessolarpower

  5. Importance of Flexible Electricity Supply: Solar Integration Series. 1 of 3 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-05-01

    The first out of a series of three fact sheets describing the importance of flexible electricity supply.

  6. Coastal zone energy management: a multidisciplinary approach for the integration of solar electric systems with Florida's power generation system

    SciTech Connect (OSTI)

    Camejo, N.

    1983-12-01

    In order for Florida to ''accomplish effective coastal land management, it must have a comprehensive statewide approach closely relating land and water management development decisions in Florida must be made with understanding of the proposed development effects on the state's water resources''. This approach is very sensible in view of the issues raised in the introduction. Whether a power plant is sited inland or on the coast has tremendous implications for water use. Offshore siting of power plants is an alternative which should be carefully evaluated using CZEM. Of particular importance is the existence of renewable energy sources, such as OTEC, Wind and Ocean current, in the offshore areas of Florida. Many Solar Electric options could be sited in the coastal and offshore areas. The main technological problem associated with offshore power plants is the transmission of the electricity to shore. The solution to this problem may be using Hydrogen as an intermediary energy carrier. The use of Solar Electric Systems would be consistent with the policy to diversify the generation mix. If Florida is called upon to develop its offshore energy resources in the national interest, the use of CZEM would allow decision makers to make more environmentally sensitive decisions. This would allow the balancing of energy production and environmental quality.

  7. Akeena Solar Inc | Open Energy Information

    Open Energy Info (EERE)

    Solar Inc Jump to: navigation, search Name: Akeena Solar Inc Place: Los Gatos, California Zip: CA 95032 Sector: Solar Product: Residential and commercial solar electric system...

  8. Everguard Solar Energy | Open Energy Information

    Open Energy Info (EERE)

    Everguard Solar Energy Jump to: navigation, search Name: Everguard Solar Energy Place: Albuquerque, New Mexico Zip: 87107 Sector: Solar Product: New Mexico-based solar PV electric...

  9. Solar and Wind Easements, Local Options, and Severability | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Nonprofit Residential Schools State Government Federal Government Savings Category Solar - Passive Solar Water Heat Solar Space Heat Solar Thermal Electric Solar Thermal...

  10. City of Boulder - Solar Access Ordinance | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Construction Local Government Residential Savings Category Solar - Passive Solar Water Heat Solar Space Heat Solar Thermal Electric Solar Photovoltaics Program Info Sector Name...

  11. Building America Top Innovations 2012: High-Performance with Solar Electric Reduced Peak Demand

    SciTech Connect (OSTI)

    none,

    2013-01-01

    This Building America Top Innovations profile describes Building America solar home research that has demonstrated the ability to reduce peak demand by 75%. Numerous field studies have monitored power production and system effectiveness.

  12. Planning for PV: The Value and Cost of Solar Electricity (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-01-01

    This is a brochure developed specifically for residential home builders. It provides information on basic financial factors and additional resources to consider when incorporating solar technologies into building plans.

  13. Microsoft PowerPoint - Durango Solar La Plata Electric Public Meeting srs

    Office of Legacy Management (LM)

    Briefing on the U. S. Department of Energy Solar Photovoltaic (PV) Project at the Durango, Colorado, Site August 2011 Office of Legacy Management Office of Site Operations 2 2 Meeting Agenda Office of Legacy Management (LM) LM sites Durango Disposal Site background Long-term surveillance plan (LTSP) Environmental assessment for the solar PV project at the Durango Disposal Site DOE lease Path forward* * All information discussed at this meeting is available in the Expression of Interest that has

  14. Real-Space Microscopic Electrical Imaging of n+-p Junction Beneath Front-Side Ag Contact of Multicrystalline Si Solar Cells

    SciTech Connect (OSTI)

    Jiang, C. S.; Li, Z. G.; Moutinho, H. R.; Liang, L.; Ionkin, A.; Al-Jassim, M. M.

    2012-04-15

    We investigated the quality of the n+-p diffused junction beneath the front-side Ag contact of multicrystalline Si solar cells by characterizing the uniformities of electrostatic potential and doping concentration across the junction using the atomic force microscopy-based electrical imaging techniques of scanning Kelvin probe force microscopy and scanning capacitance microscopy. We found that Ag screen-printing metallization fired at the over-fire temperature significantly degrades the junction uniformity beneath the Ag contact grid, whereas metallization at the optimal- and under-fire temperatures does not cause degradation. Ag crystallites with widely distributed sizes were found at the Ag-grid/emitter-Si interface of the over-fired cell, which is associated with the junction damage beneath the Ag grid. Large crystallites protrude into Si deeper than the junction depth. However, the junction was not broken down; instead, it was reformed on the entire front of the crystallite/Si interface. We propose a mechanism of junction-quality degradation, based on emitter Si melting at the temperature around the Ag-Si eutectic point during firing, and subsequent re-crystallization with incorporation of Ag and other impurities and with formation of crystallographic defects during quenching. The effect of this junction damage on solar cell performance is discussed.

  15. Corona Solar | Open Energy Information

    Open Energy Info (EERE)

    Solar Jump to: navigation, search Name: Corona Solar Place: Tholey-Theley, Germany Zip: D 66636 Sector: Solar Product: Engaged in solar passive large-size collectors. References:...

  16. Balance of optical, structural, and electrical properties of textured liquid phase crystallized Si solar cells

    SciTech Connect (OSTI)

    Preidel, V. Amkreutz, D.; Haschke, J.; Wollgarten, M.; Rech, B.; Becker, C.

    2015-06-14

    Liquid phase crystallized Si thin-film solar cells on nanoimprint textured glass substrates exhibiting two characteristic, but distinct different surface structures are presented. The impact of the substrate texture on light absorption, the structural Si material properties, and the resulting solar cell performance is analyzed. A pronounced periodic substrate texture with a vertical feature size of about 1 μm enables excellent light scattering and light trapping. However, it also gives rise to an enhanced Si crystal defect formation deteriorating the solar cell performance. In contrast, a random pattern with a low surface roughness of 45 nm allows for the growth of Si thin films being comparable to Si layers on planar reference substrates. Amorphous Si/crystalline Si heterojunction solar cells fabricated on the low-roughness texture exhibit a maximum open circuit voltage of 616 mV and internal quantum efficiency peak values exceeding 90%, resulting in an efficiency potential of 13.2%. This demonstrates that high quality crystalline Si thin films can be realized on nanoimprint patterned glass substrates by liquid phase crystallization inspiring the implementation of tailor-made nanophotonic light harvesting concepts into future liquid phase crystallized Si thin film solar cells on glass.

  17. Final report for %22High performance computing for advanced national electric power grid modeling and integration of solar generation resources%22, LDRD Project No. 149016.

    SciTech Connect (OSTI)

    Reno, Matthew J.; Riehm, Andrew Charles; Hoekstra, Robert John; Munoz-Ramirez, Karina; Stamp, Jason Edwin; Phillips, Laurence R.; Adams, Brian M.; Russo, Thomas V.; Oldfield, Ron A.; McLendon, William Clarence, III; Nelson, Jeffrey Scott; Hansen, Clifford W.; Richardson, Bryan T.; Stein, Joshua S.; Schoenwald, David Alan; Wolfenbarger, Paul R.

    2011-02-01

    Design and operation of the electric power grid (EPG) relies heavily on computational models. High-fidelity, full-order models are used to study transient phenomena on only a small part of the network. Reduced-order dynamic and power flow models are used when analysis involving thousands of nodes are required due to the computational demands when simulating large numbers of nodes. The level of complexity of the future EPG will dramatically increase due to large-scale deployment of variable renewable generation, active load and distributed generation resources, adaptive protection and control systems, and price-responsive demand. High-fidelity modeling of this future grid will require significant advances in coupled, multi-scale tools and their use on high performance computing (HPC) platforms. This LDRD report demonstrates SNL's capability to apply HPC resources to these 3 tasks: (1) High-fidelity, large-scale modeling of power system dynamics; (2) Statistical assessment of grid security via Monte-Carlo simulations of cyber attacks; and (3) Development of models to predict variability of solar resources at locations where little or no ground-based measurements are available.

  18. Concentrating Solar Power (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    Concentrating Solar Power (CSP) offers a utility-scale, firm, dispatchable renewable energy option that can help meet the nation's goal of making solar energy cost competitive with other energy sources by the end of the decade. The DOE SunShot Initiative is a collaborative national initiative to make solar energy technologies cost-competitive with other forms of energy by reducing the cost of solar energy systems by about 75% by the end of the decade. Reducing the total installed cost for utility-scale solar electricity to roughly 6 cents per kilowatt hour without subsidies will result in rapid, large-scale adoption of solar electricity across the United States. Reaching this goal will re-establish American technological leadership, improve the nation's energy security, and strengthen U.S. economic competitiveness in the global clean energy race. SunShot will work to bring down the full cost of solar - including the costs of solar cells and installation by focusing on four main pillars: (1) Technologies for solar cells and arrays that convert sunlight to energy; (2) Electronics that optimize the performance of the installation; (3) Improvements in the efficiency of solar manufacturing processes; and (4) Installation, design, and permitting for solar energy systems.

  19. Large

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large area avalanche photodiode detector array upgrade for a ruby-laser Thomson scattering system T. M. Biewer, a) D. J. Den Hartog, and D. J. Holly Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 M. R. Stoneking Physics Department, Lawrence University, Appleton, Wisconsin 54912 ͑Presented on 8 July 2002͒ A low-cost upgrade has been implemented on the Madison Symmetric Torus ͑MST͒ ruby-laser Thomson scattering ͑TS͒ system to increase spectral coverage and

  20. Electrolytic etch for preventing electrical shorts in solar cells on polymer surfaces

    DOE Patents [OSTI]

    Weber, Michael F. (St. Paul, MN)

    1991-10-08

    A method for preventing shorts and shunts in solar cells having in order, an insulating substrate, a conductive metal layer on the substrate, an amorphous silicon layer and a transparent conductive layer. The method includes anodic etching of exposed portions of the metal layer after deposition of the amorphous silicon and prior to depositing the transparent conductive layer.

  1. Monitoring and Characterization of Miscellaneous Electrical Loads in a Large Retail Environment

    SciTech Connect (OSTI)

    Gentile-Polese, L.; Frank, S.; Sheppy, M.; Lobato, C.; Rader, E.; Smith, J.; Long, N.

    2014-02-01

    Buildings account for 40% of primary energy consumption in the United States (residential 22%; commercial 18%). Most (70% residential and 79% commercial) is used as electricity. Thus, almost 30% of U.S. primary energy is used to provide electricity to buildings. Plug loads play an increasingly critical role in reducing energy use in new buildings (because of their increased efficiency requirements), and in existing buildings (as a significant energy savings opportunity). If all installed commercial building miscellaneous electrical loads (CMELs) were replaced with energy-efficient equipment, a potential annual energy saving of 175 TWh, or 35% of the 504 TWh annual energy use devoted to MELs, could be achieved. This energy saving is equivalent to the annual energy production of 14 average-sized nuclear power plants. To meet DOE's long-term goals of reducing commercial building energy use and carbon emissions, the energy efficiency community must better understand the components and drivers of CMEL energy use, and develop effective reduction strategies. These goals can be facilitated through improved data collection and monitoring methodologies, and evaluation of CMELs energy-saving techniques.

  2. Supply Curves for Solar PV-Generated Electricity for the United States

    SciTech Connect (OSTI)

    Denholm, P.; Margolis, R.

    2008-11-01

    Energy supply curves attempt to estimate the relationship between the cost of an energy resource and the amount of energy available at or below that cost. In general, an energy supply curve is a series of step functions with each step representing a particular group or category of energy resource. The length of the step indicates how much of that resource is deployable or accessible at a given cost. Energy supply curves have been generated for a number of renewable energy sources including biomass fuels and geothermal, as well as conservation technologies. Generating a supply curve for solar photovoltaics (PV) has particular challenges due to the nature of the resource. The United States has a massive solar resource base -- many orders of magnitude greater than the total consumption of energy. In this report, we examine several possible methods for generating PV supply curves based exclusively on rooftop deployment.

  3. Utilizing Electric Vehicles to Assist Integration of Large Penetrations of Distributed Photovoltaic Generation Capacity

    SciTech Connect (OSTI)

    Tuffner, Francis K.; Chassin, Forrest S.; Kintner-Meyer, Michael CW; Gowri, Krishnan

    2012-11-30

    Executive Summary Introduction and Motivation This analysis provides the first insights into the leveraging potential of distributed photovoltaic (PV) technologies on rooftop and electric vehicle (EV) charging. Either of the two technologies by themselves - at some high penetrations may cause some voltage control challenges or overloading problems, respectively. But when combined, there at least intuitively could be synergistic effects, whereby one technology mitigates the negative impacts of the other. High penetration of EV charging may overload existing distribution system components, most prominently the secondary transformer. If PV technology is installed at residential premises or anywhere downstream of the secondary transformer, it will provide another electricity source thus, relieving the loading on the transformers. Another synergetic or mitigating effect could be envisioned when high PV penetration reverts the power flow upward in the distribution system (from the homes upstream into the distribution system). Protection schemes may then no longer work and voltage violation (exceeding the voltage upper limited of the ANSI voltage range) may occur. In this particular situation, EV charging could absorb the electricity from the PV, such that the reversal of power flow can be reduced or alleviated. Given these potential mutual synergistic behaviors of PV and EV technologies, this project attempted to quantify the benefits of combining the two technologies. Furthermore, of interest was how advanced EV control strategies may influence the outcome of the synergy between EV charging and distributed PV installations. Particularly, Californian utility companies with high penetration of the distributed PV technology, who have experienced voltage control problems, are interested how intelligent EV charging could support or affect the voltage control

  4. Structure and charging kinetics of electrical double layers at large electrode voltage

    SciTech Connect (OSTI)

    Cagle, Clint [Clemson University; Feng, Guang [Clemson University; Qiao, Rui [Clemson University; Huang, Jingsong [ORNL; Sumpter, Bobby G [ORNL; Meunier, Vincent [ORNL

    2009-01-01

    The structure and charging kinetics of electrical double layers (EDLs) at interfaces of NaCl solutions and planar electrodes are studied by molecular dynamics (MD) and Poisson Nernst Planck (PNP) simulations. Based on the MD results and prior experimental data, we show that counterion packing in planar EDLs does not reach the steric limit at electrode voltages below 1 V. In addition, we demonstrate that a PNP model, when complemented with a Stern model, can be effectively used to capture the overall charging kinetics. However, the PNP/Stern model can only give a qualitative description of the fine features of the EDL.

  5. NREL: Learning - Concentrating Solar Power Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power Basics Many power plants today use fossil fuels as a heat source to boil water. The steam from the boiling water spins a large turbine, which drives a generator to produce electricity. However, a new generation of power plants with concentrating solar power systems uses the sun as a heat source. The three main types of concentrating solar power systems are: linear concentrator, dish/engine, and power tower systems. Linear concentrator systems collect the sun's energy

  6. Perovskite solar cells with near 100% internal quantum efficiency based on large single crystalline grains and vertical bulk heterojunctions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yang, Bin; Dyck, Ondrej; Poplawsky, Jonathan; Keum, Jong; Puretzky, Alexander; Das, Sanjib; Ivanov, Ilia; Rouleau, Christopher; Duscher, Gerd; Geohegan, David; et al

    2015-07-09

    Grain boundaries (GBs) as defects in the crystal lattice detrimentally impact the power conversion efficiency (PCE) of polycrystalline solar cells, particularly in recently emerging hybrid perovskites where non-radiative recombination processes lead to significant carrier losses. Here, the beneficial effects of activated vertical GBs are demonstrated by first growing large, vertically-oriented methylammonium lead tri-iodide (CH3NH3PbI3) single-crystalline grains. We show that infiltration of p-type doped 2 -7,7 -tetrakis(N,Ndi-p-methoxyphenylamine)-9,9-spirobifluorene (Spiro-OMeTAD) into CH3NH3PbI3 films along the GBs creates space charge regions to suppress non-radiative recombination and enhance carrier collection efficiency. Solar cells with such activated GBs yielded average PCE of 16.3 ± 0.9%, whichmore » are among the best solution-processed perovskite devices. As an important alternative to growing ideal CH3NH3PbI3 single crystal films, which is difficult to achieve for such fast-crystallizing perovskites, activating GBs paves a way to design a new type of bulk heterojunction hybrid perovskite photovoltaics toward theoretical maximum PCE.« less

  7. Perovskite solar cells with near 100% internal quantum efficiency based on large single crystalline grains and vertical bulk heterojunctions

    SciTech Connect (OSTI)

    Yang, Bin; Dyck, Ondrej; Poplawsky, Jonathan; Keum, Jong; Puretzky, Alexander; Das, Sanjib; Ivanov, Ilia; Rouleau, Christopher; Duscher, Gerd; Geohegan, David; Xiao, Kai

    2015-07-09

    Grain boundaries (GBs) as defects in the crystal lattice detrimentally impact the power conversion efficiency (PCE) of polycrystalline solar cells, particularly in recently emerging hybrid perovskites where non-radiative recombination processes lead to significant carrier losses. Here, the beneficial effects of activated vertical GBs are demonstrated by first growing large, vertically-oriented methylammonium lead tri-iodide (CH3NH3PbI3) single-crystalline grains. We show that infiltration of p-type doped 2 -7,7 -tetrakis(N,Ndi-p-methoxyphenylamine)-9,9-spirobifluorene (Spiro-OMeTAD) into CH3NH3PbI3 films along the GBs creates space charge regions to suppress non-radiative recombination and enhance carrier collection efficiency. Solar cells with such activated GBs yielded average PCE of 16.3 0.9%, which are among the best solution-processed perovskite devices. As an important alternative to growing ideal CH3NH3PbI3 single crystal films, which is difficult to achieve for such fast-crystallizing perovskites, activating GBs paves a way to design a new type of bulk heterojunction hybrid perovskite photovoltaics toward theoretical maximum PCE.

  8. Solar Fair in San José Tomorrow

    Broader source: Energy.gov [DOE]

    The fair will have the first outdoor demonstration site of large scale, cutting-edge solar, wind, electric vehicle and energy efficiency technologies that is open to the public.

  9. Solar Energy Technology Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy » Solar Energy Technology Basics Solar Energy Technology Basics August 16, 2013 - 4:37pm Addthis Solar energy technologies produce electricity from the energy of the sun. Small solar energy systems can provide electricity for homes, businesses, and remote power needs. Larger solar energy systems provide more electricity for contribution to the electric power system. Learn more about: Photovoltaics Concentrating Solar Power Solar Energy Resources Or learn about the latest solar

  10. Solar Advisor Model User Guide for Version 2.0

    SciTech Connect (OSTI)

    Gilman, P.; Blair, N.; Mehos, M.; Christensen, C.; Janzou, S.; Cameron, C.

    2008-08-01

    The Solar Advisor Model (SAM) provides a consistent framework for analyzing and comparing power system costs and performance across the range of solar technologies and markets, from photovoltaic systems for residential and commercial markets to concentrating solar power and large photovoltaic systems for utility markets. This manual describes Version 2.0 of the software, which can model photovoltaic and concentrating solar power technologies for electric applications for several markets. The current version of the Solar Advisor Model does not model solar heating and lighting technologies.

  11. Ferrostaal eSolar JV | Open Energy Information

    Open Energy Info (EERE)

    Ferrostaal eSolar JV Jump to: navigation, search Name: Ferrostaal & eSolar JV Place: Germany Sector: Solar Product: Germany-based solar thermal electricity generation joint...

  12. Solar Easements | Department of Energy

    Energy Savers [EERE]

    State Government Federal Government Savings Category Solar - Passive Solar Water Heat Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Photovoltaics Solar Pool Heating Program Info Sector Name State State Kansas Program Type Solar/Wind Access Policy Summary Parties may voluntarily enter into solar easement contracts for the purpose of ensuring adequate exposure of a solar energy system. An easement must be expressed in writing and recorded with the register of deeds for

  13. Solar Rights | Department of Energy

    Energy Savers [EERE]

    Rights Solar Rights < Back Eligibility Residential Savings Category Solar - Passive Solar Water Heat Solar Space Heat Solar Thermal Electric Solar Photovoltaics Daylighting Solar Pool Heating Program Info Sector Name State State Arizona Program Type Solar/Wind Access Policy Summary Arizona law protects individual homeowners' private property rights to solar access by dissolving any local covenant, restriction or condition attached to a property deed that restricts the use of solar energy.

  14. Lighthouse Solar Diablo Valley | Open Energy Information

    Open Energy Info (EERE)

    CA. Lighthousesolar is a solar services company offering solar electric and solar thermal solutions for residential and commercial customers. Our mission is to facilitate the...

  15. Lighthouse Solar Westchester | Open Energy Information

    Open Energy Info (EERE)

    NY. Lighthousesolar is a solar services company offering solar electric and solar thermal solutions for residential and commercial customers. Our mission is to facilitate the...

  16. Lighthouse Solar Central Valley | Open Energy Information

    Open Energy Info (EERE)

    CA. Lighthousesolar is a solar services company offering solar electric and solar thermal solutions for residential and commercial customers. Our mission is to facilitate the...

  17. Two-Dimensional Measurement of n+-p Asymmetrical Junctions in Multicrystalline Silicon Solar Cells using AFM-Based Electrical Techniques with Nanometer Resolution

    SciTech Connect (OSTI)

    Jiang, C. S.; Heath, J. T.; Moutinho, H. R.; Li, J. V.; Al-Jassim, M. M.

    2011-01-01

    Lateral inhomogeneities of modern solar cells demand direct electrical imaging with nanometer resolution. We show that atomic force microscopy (AFM)-based electrical techniques provide unique junction characterizations, giving a two-dimensional determination of junction locations. Two AFM-based techniques, scanning capacitance microscopy/spectroscopy (SCM/SCS) and scanning Kelvin probe force microscopy (SKPFM), were significantly improved and applied to the junction characterizations of multicrystalline silicon (mc-Si) cells. The SCS spectra were taken pixel by pixel by precisely controlling the tip positions in the junction area. The spectra reveal distinctive features that depend closely on the position relative to the electrical junction, which allows us to indentify the electrical junction location. In addition, SKPFM directly probes the built-in potential over the junction area modified by the surface band bending, which allows us to deduce the metallurgical junction location by identifying a peak of the electric field. Our results demonstrate resolutions of 10-40 nm, depending on the techniques (SCS or SKPFM). These direct electrical measurements with nanometer resolution and intrinsic two-dimensional capability are well suited for investigating the junction distribution of solar cells with lateral inhomogeneities.

  18. Two-Dimensional Measurement of n+-p Asymmetrical Junctions in Multicrystalline Silicon Solar Cells Using AFM-Based Electrical Techniques with Nanometer Resolution: Preprint

    SciTech Connect (OSTI)

    Jiang, C. S.; Moutinho, H. R.; Li, J. V.; Al-Jassim, M. M.; Heath, J. T.

    2011-07-01

    Lateral inhomogeneities of modern solar cells demand direct electrical imaging with nanometer resolution. We show that atomic force microscopy (AFM)-based electrical techniques provide unique junction characterizations, giving a two-dimensional determination of junction locations. Two AFM-based techniques, scanning capacitance microscopy/spectroscopy (SCM/SCS) and scanning Kelvin probe force microscopy (SKPFM), were significantly improved and applied to the junction characterizations of multicrystalline silicon (mc-Si) cells. The SCS spectra were taken pixel by pixel by precisely controlling the tip positions in the junction area. The spectra reveal distinctive features that depend closely on the position relative to the electrical junction, which allows us to indentify the electrical junction location. In addition, SKPFM directly probes the built-in potential over the junction area modified by the surface band bending, which allows us to deduce the metallurgical junction location by identifying a peak of the electric field. Our results demonstrate resolutions of 10-40 nm, depending on the techniques (SCS or SKPFM). These direct electrical measurements with nanometer resolution and intrinsic two-dimensional capability are well suited for investigating the junction distribution of solar cells with lateral inhomogeneities.

  19. ELECTRIC

    Office of Legacy Management (LM)

    ELECTRIC cdrtrokArJclaeT 3 I+ &i, y$ \I &OF I*- j< t j,fci..- ir )(yiT !E-li, ( \-,v? Cl -p/4.4 RESEARCH LABORATORIES EAST PITTSBURGH, PA. 8ay 22, 1947 Mr. J. Carrel Vrilson General ?!!mager Atomic Qxzgy Commission 1901 Constitution Avenue Kashington, D. C. Dear Sir: In the course of OUT nuclenr research we are planning to study the enc:ri;y threshold anti cross section for fission. For thib program we require a s<>piAroted sample of metallic Uranium 258 of high purity. A

  20. Solar Innovator | Alta Devices

    ScienceCinema (OSTI)

    Mattos, Laila; Le, Minh

    2013-05-29

    Selected to participate in the Energy Department's SunShot Initiative, Alta Devices produces solar cells that convert sunlight into electricity at world record-breaking levels of efficiency. Through its innovative solar technology Alta is helping bring down the cost of solar. Learn more about the Energy Department's efforts to advance solar technology at energy.gov/solar .

  1. Proposed Changes to Electricity and Renewable (Photovoltaic)...

    U.S. Energy Information Administration (EIA) Indexed Site

    2017 Proposed Solar & Electricity Survey Form Changes 1 November 2015 Proposed Changes to Electricity and ... U.S. Energy Information Administration | 2017 Proposed Solar & ...

  2. Solar Easements | Department of Energy

    Energy Savers [EERE]

    Local Government Nonprofit Residential Schools State Government Federal Government Savings Category Solar - Passive Solar Water Heat Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Photovoltaics Program Info Sector Name State State North Dakota Program Type Solar/Wind Access Policy Summary North Dakota's solar easement law is similar to those established by many other U.S. states. The law allows a property owner to obtain a solar easement from another property owner for

  3. Solar Easements | Department of Energy

    Energy Savers [EERE]

    Residential Savings Category Solar - Passive Solar Water Heat Solar Space Heat Solar Thermal Electric Solar Photovoltaics Program Info Sector Name State State Alaska Program Type Solar/Wind Access Policy Summary Alaska's solar easement provisions are similar to those in many other states. They do not create an automatic right to sunlight. Rather, they allow parties to voluntarily enter into solar easement contracts for the purpose of ensuring adequate exposure of a solar energy system. Source

  4. Solar Easements | Department of Energy

    Energy Savers [EERE]

    Water Heat Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Photovoltaics Program Info Sector Name State State Georgia Program Type Solar/Wind Access Policy Summary In determining that the use of solar energy "can help reduce the nation's reliance upon imported fuels," Georgia encourages the development of solar-energy systems. Accordingly, under Georgia's Solar Easements Act of 1978, easements may be established to allow owners of solar-energy systems to

  5. YBR Solar | Open Energy Information

    Open Energy Info (EERE)

    Zip: 92037 Region: Southern CA Area Sector: Solar Product: Developing a design for a solar cell that is 50% more efficient at converting sunlight to electricity Website:...

  6. HSC Solar | Open Energy Information

    Open Energy Info (EERE)

    for homes is continuing to drop significantly making this the ideal time to consider solar panel installation. Every household using electricity will see benefit with a solar...

  7. Sunbiz Solar | Open Energy Information

    Open Energy Info (EERE)

    Address: 6207 Bayshore Blvd Place: Tampa, Florida Zip: 33611 Sector: Solar Product: Solar ThermalElectric, Energy & Water Conservation through building envelope and water...

  8. Role of Energy Storage with Renewable Electricity Generation

    SciTech Connect (OSTI)

    Denholm, P.; Ela, E.; Kirby, B.; Milligan, M.

    2010-01-01

    Renewable energy sources, such as wind and solar, have vast potential to reduce dependence on fossil fuels and greenhouse gas emissions in the electric sector. Climate change concerns, state initiatives including renewable portfolio standards, and consumer efforts are resulting in increased deployments of both technologies. Both solar photovoltaics (PV) and wind energy have variable and uncertain (sometimes referred to as intermittent) output, which are unlike the dispatchable sources used for the majority of electricity generation in the United States. The variability of these sources has led to concerns regarding the reliability of an electric grid that derives a large fraction of its energy from these sources as well as the cost of reliably integrating large amounts of variable generation into the electric grid. In this report, we explore the role of energy storage in the electricity grid, focusing on the effects of large-scale deployment of variable renewable sources (primarily wind and solar energy).

  9. The Role of Electricity Markets and Market Design in Integrating The Importance of Flexible Electricity Supply: Solar Integration Series. 1 of 3 (Brochure)

    SciTech Connect (OSTI)

    2011-05-03

    The first out of a series of three fact sheets describing the importance of flexible electricity supply.

  10. Increasing Solar Efficiency through Luminescent Solar Concentrators -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Solar Photovoltaic Solar Photovoltaic Industrial Technologies Industrial Technologies Energy Storage Energy Storage Electricity Transmission Electricity Transmission Find More Like This Return to Search Increasing Solar Efficiency through Luminescent Solar Concentrators Argonne National Laboratory Contact ANL About This Technology <span class="caption1"><span style="font-family: &quot;Calibri&quot;,&quot;sans-serif&quot;;

  11. Solar Rights Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rights Act Solar Rights Act < Back Eligibility Commercial Industrial Local Government Nonprofit Residential Schools State Government Federal Government Agricultural Savings Category Solar - Passive Solar Water Heat Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Photovoltaics Solar Pool Heating Program Info Sector Name State Website http://www.gosolarcalifornia.ca.gov/solar_basics/rights.php State California Program Type Solar/Wind Access Policy Summary The Solar

  12. Solar Energy Technologies Office FY 2015 Budget At-A-Glance | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 5 Budget At-A-Glance Solar Energy Technologies Office FY 2015 Budget At-A-Glance The Solar Energy Technologies Office supports the SunShot Initiative goal to make solar energy technologies cost competitive with conventional energy sources by 2020. Reducing the total installed cost for utility-scale solar electricity by approximately 75% (2010 baseline) to roughly $0.06 per kWh without subsidies will enable rapid, large-scale adoption of solar electricity across the United States. This

  13. Solar Energy Technologies Office FY 2016 Budget At-A-Glance | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 6 Budget At-A-Glance Solar Energy Technologies Office FY 2016 Budget At-A-Glance The Solar Energy Technologies Office supports the SunShot Initiative goal to make solar energy technologies cost competitive with conventional energy sources by 2020. Reducing the total installed cost for utility-scale solar electricity by approximately 75% (2010 baseline) to roughly $0.06 per kWh without subsidies will enable rapid, large-scale adoption of solar electricity across the United States. This

  14. Life Cycle Greenhouse Gas Emissions of Trough and Tower Concentrating Solar Power Electricity Generation: Systematic Review and Harmonization

    SciTech Connect (OSTI)

    Burkhardt, J. J.; Heath, G.; Cohen, E.

    2012-04-01

    In reviewing life cycle assessment (LCA) literature of utility-scale concentrating solar power (CSP) systems, this analysis focuses on reducing variability and clarifying the central tendency of published estimates of life cycle greenhouse gas (GHG) emissions through a meta-analytical process called harmonization. From 125 references reviewed, 10 produced 36 independent GHG emissions estimates passing screens for quality and relevance: 19 for parabolic trough (trough) technology and 17 for power tower (tower) technology. The interquartile range (IQR) of published estimates for troughs and towers were 83 and 20 grams of carbon dioxide equivalent per kilowatt-hour (g CO2-eq/kWh),1 respectively; median estimates were 26 and 38 g CO2-eq/kWh for trough and tower, respectively. Two levels of harmonization were applied. Light harmonization reduced variability in published estimates by using consistent values for key parameters pertaining to plant design and performance. The IQR and median were reduced by 87% and 17%, respectively, for troughs. For towers, the IQR and median decreased by 33% and 38%, respectively. Next, five trough LCAs reporting detailed life cycle inventories were identified. The variability and central tendency of their estimates are reduced by 91% and 81%, respectively, after light harmonization. By harmonizing these five estimates to consistent values for global warming intensities of materials and expanding system boundaries to consistently include electricity and auxiliary natural gas combustion, variability is reduced by an additional 32% while central tendency increases by 8%. These harmonized values provide useful starting points for policy makers in evaluating life cycle GHG emissions from CSP projects without the requirement to conduct a full LCA for each new project.

  15. Scattering Solar Thermal Concentrators

    Office of Environmental Management (EM)

    sunshot DOEGO-102012-3669 * September 2012 MOTIVATION All thermal concentrating solar power (CSP) systems use solar tracking, which involves moving large mirror surfaces...

  16. Solar Two

    SciTech Connect (OSTI)

    Not Available

    1998-04-01

    Solar Two is a concentrating solar power plant that can supply electric power on demand to the local utility, Southern California Edison Company. It can do so because it operates not only during sunny parts of the day, but it can store enough thermal energy from the sun to operate during cloudy periods and after dark, for up to three hours, at its rated output of 10 megawatts (MW). For the first time ever, a utility scale solar power plant can supply electricity when the utility needs it most, to satisfy the energy requirements of its customers.

  17. Solar Easements | Department of Energy

    Energy Savers [EERE]

    Residential Savings Category Solar Water Heat Solar Space Heat Solar Thermal Electric Solar Photovoltaics Program Info Sector Name State State Idaho Program Type Solar/Wind Access Policy Summary Similar to laws in other states, Idaho's solar easement provision does not create an automatic right to sunlight. Rather, the law allows parties to enter into solar easement contracts voluntarily for the purpose of ensuring adequate exposure of a solar-energy system. The easement is transferred with the

  18. Large-area Silicon-Film{trademark} panels and solar cells. Final technical report, July 1995--March 1998

    SciTech Connect (OSTI)

    Rand, J.A.; Bai, Y.; Barnett, A.M.; Culik, J.S.; Ford, D.H.; Hall, R.B.; Kendall, C.L.

    1998-09-01

    This report will detail substantial improvements in each of the task areas. A number of new products were developed, including a 130 kW array built using a new panel design. Improvements in laboratory-scale solar cell processing resulted in a confirmed efficiency of 16.6%. A new Silicon-Film{trademark} production sheet machine was built which increased throughput by 70%. Three solar cell fabrication processes were converted from low throughout batch processes to high throughput, continuous, belt processes. These new processes are capable of processing sheet over 31 cm in width. Finally, a new Silicon-Film{trademark} sheet machine was built that demonstrated a sheet width of 38 cm. This tool enabled AstroPower to demonstrate a wide range of solar cell sizes, many of which have generated considerable market interest.

  19. Electric vehicles

    SciTech Connect (OSTI)

    Not Available

    1990-03-01

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

  20. Outdoor Solar Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity & Fuel » Lighting » Outdoor Solar Lighting Outdoor Solar Lighting Outdoor solar lights use solar cells, which convert sunlight into electricity, and are easy to install and virtually maintenance free. | Photo courtesy of ©iStockphoto.com/ndejan Outdoor solar lights use solar cells, which convert sunlight into electricity, and are easy to install and virtually maintenance free. | Photo courtesy of ©iStockphoto.com/ndejan Outdoor solar lights are easy to install and virtually

  1. Homebuilder's Guide to Going Solar

    DOE R&D Accomplishments [OSTI]

    2008-12-00

    This 8-page brochure describes the steps a builder would take to install solar electricity (photovoltaics or PV), solar water heating, or how to build a home solar ready.

  2. NREL: Learning - Solar Energy Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Basics Photo of a solar electric system in Colorado with snow-covered mountain peaks in the background. Solar panels installed on a home in Colorado. Solar is the Latin word ...

  3. EA-1683: Abengoa Solar's Solana Concentrating Solar Power Facility, Gila

    Office of Environmental Management (EM)

    Bend, AZ | Department of Energy 83: Abengoa Solar's Solana Concentrating Solar Power Facility, Gila Bend, AZ EA-1683: Abengoa Solar's Solana Concentrating Solar Power Facility, Gila Bend, AZ May 3, 2010 EA-1683: Final Environmental Assessment Loan Guarantee to Abengoa Solar Inc. for the Solana Thermal Electric Power Project near Gila Bend, Arizona May 6, 2010 EA-1683: Finding of No Significant Impact Abengoa Solar Inc., the Solana Thermal Electric Power Project near Gila Bend, Arizona

  4. Electrical properties and surface morphology of electron beam evaporated p-type silicon thin films on polyethylene terephthalate for solar cells applications

    SciTech Connect (OSTI)

    Ang, P. C.; Ibrahim, K.; Pakhuruddin, M. Z.

    2015-04-24

    One way to realize low-cost thin film silicon (Si) solar cells fabrication is by depositing the films with high-deposition rate and manufacturing-compatible electron beam (e-beam) evaporation onto inexpensive foreign substrates such as glass or plastic. Most of the ongoing research is reported on e-beam evaporation of Si films on glass substrates to make polycrystalline solar cells but works combining both e-beam evaporation and plastic substrates are still scarce in the literature. This paper studies electrical properties and surface morphology of 1 m electron beam evaporated Al-doped p-type silicon thin films on textured polyethylene terephthalate (PET) substrate for application as an absorber layer in solar cells. In this work, Si thin films with different doping concentrations (including an undoped reference) are prepared by e-beam evaporation. Energy dispersion X-ray (EDX) showed that the Si films are uniformly doped by Al dopant atoms. With increased Al/Si ratio, doping concentration increased while both resistivity and carrier mobility of the films showed opposite relationships. Root mean square (RMS) surface roughness increased. Overall, the Al-doped Si film with Al/Si ratio of 2% (doping concentration = 1.5710{sup 16} atoms/cm{sup 3}) has been found to provide the optimum properties of a p-type absorber layer for fabrication of thin film Si solar cells on PET substrate.

  5. Concentrating Solar Power Services CSP Services | Open Energy...

    Open Energy Info (EERE)

    providing consulting, due diligence and component testing for Solar Thermal Electricity Generation (STEG). References: Concentrating Solar Power Services (CSP...

  6. NREL: Transmission Grid Integration - Western Wind and Solar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Generation Integration Study Oahu Wind Integration & Transmission Study Hawaii Solar Integration Study Solar Integration National Dataset Toolkit Wholesale Electricity...

  7. SolarWorks NJ | Open Energy Information

    Open Energy Info (EERE)

    Energy, Solar Product: SolarWorks NJ, LLC, a provider of turnkey solar electricity installations and renewable energy solutions. References: SolarWorks NJ1 This article is a...

  8. The Solar Way covers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tribes across the United States who use solar electricity to meet their numerous and ... the support that made publication of The Solar Way possible, and for the support given in ...

  9. High-Rate Fabrication of a-Si-Based Thin-Film Solar Cells Using Large-Area VHF PECVD Processes

    SciTech Connect (OSTI)

    Deng, Xunming; Fan, Qi Hua

    2011-12-31

    The University of Toledo (UT), working in concert with its a-Si-based PV industry partner Xunlight Corporation (Xunlight), has conducted a comprehensive study to develop a large-area (3ft x 3ft) VHF PECVD system for high rate uniform fabrication of silicon absorber layers, and the large-area VHF PECVD processes to achieve high performance a-Si/a-SiGe or a-Si/nc-Si tandem junction solar cells during the period of July 1, 2008 to Dec. 31, 2011, under DOE Award No. DE-FG36-08GO18073. The project had two primary goals: (i) to develop and improve a large area (3 ft 3 ft) VHF PECVD system for high rate fabrication of > = 8 /s a-Si and >= 20 /s nc-Si or 4 /s a-SiGe absorber layers with high uniformity in film thicknesses and in material structures. (ii) to develop and optimize the large-area VHF PECVD processes to achieve high-performance a-Si/nc-Si or a-Si/a-SiGe tandem-junction solar cells with >= 10% stable efficiency. Our work has met the goals and is summarized in Accomplishments versus goals and objectives.

  10. Energy Secretary Moniz's Remarks at the Opening Ceremony for the Ivanpah Solar Electric Generating System-- As Prepared for Delivery

    Broader source: Energy.gov [DOE]

    Tomorrow, Secretary of Energy Ernest Moniz will travel to Ivanpah Dry Lake, California, to dedicate the world’s largest concentrating solar power plant. Secretary Moniz will deliver the keynote address at the dedication event.

  11. High-Performance with Solar Electric Reduced Peak Demand: Premier Homes Rancho Cordoba, CA- Building America Top Innovation

    Broader source: Energy.gov [DOE]

    This Building America Innovations profile describes Building America solar home research that has demonstrated the ability to reduce peak demand by 75%. Numerous field studies have monitored power production and system effectiveness.

  12. SRP - Solar Water Heating Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on SRCC rating) Summary NOTE: SRP no longer provides incentives for solar electric photovoltaic systems. SRP's Solar Electric Program provides incentives to its residential...

  13. EERE SunShot's SHINES Program: Enabling a Rapidly Solarizing...

    Office of Environmental Management (EM)

    SunShot's SHINES Program: Enabling a Rapidly Solarizing Electricity Grid Through Energy Storage EERE SunShot's SHINES Program: Enabling a Rapidly Solarizing Electricity Grid ...

  14. LighthouseSolar (New Paltz) | Open Energy Information

    Open Energy Info (EERE)

    4 Cherry Hill Rd Place: New Paltz, New York Zip: 12561 Region: Northeast - NY NJ CT PA Area Sector: Solar Product: Solar Electric and Solar Thermal Website:...

  15. Aries Solar Termoelectrica SL ASTE | Open Energy Information

    Open Energy Info (EERE)

    Madrid, Spain Zip: 28046 Sector: Solar Product: Joint venture to set up Solar Thermal Electricity Generation (STEG) plants in Castilla la Mancha. References: Aries Solar...

  16. Stochastic Methods for Planning and Operating Power Systems with Large Amounts of Wind and Solar Power: Preprint

    SciTech Connect (OSTI)

    Milligan, M.; Donohoo, P.; O'Malley, M.

    2012-09-01

    Wind and solar generators differ in their generation characteristics than conventional generators. The variable output and imperfect predictability of these generators face a stochastic approach to plan and operate the power system without fundamentally changing the operation and planning problems. This paper overviews stochastic modeling challenges in operations, generation planning, and transmission planning, with references to current industry and academic work. Different stochastic problem formulations, including approximations, are also discussed.

  17. Cagayan Electric Power and Light Co Cepalco | Open Energy Information

    Open Energy Info (EERE)

    (Cepalco) Place: Philippines Sector: Solar Product: Provides electricity to Cagayan de Oro City. Has developed a 1MW solar power plant. References: Cagayan Electric Power and...

  18. Solar parabolic trough

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The solar parabolic trough section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  19. Solar power tower

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The solar power tower section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  20. Solar dish engine

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The solar power tower section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  1. Solar Contractor Licensing

    Broader source: Energy.gov [DOE]

    Utah's Division of Occupational and Professional Licensing requires installers of solar energy systems to be licensed contractors. General electrical contractors carrying an S200 license are...

  2. Solar Forecasting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Integration » Solar Forecasting Solar Forecasting On December 7, 2012, DOE announced $8 million to fund two solar projects that are helping utilities and grid operators better forecast when, where, and how much solar power will be produced at U.S. solar energy plants. Part of the SunShot Systems Integration efforts, the Solar Forecasting projects will allow power system operators to integrate more solar energy into the electricity grid, and ensure the economic and reliable delivery of

  3. Chesapeake Solar LLC a groSolar company | Open Energy Information

    Open Energy Info (EERE)

    Maryland Zip: 20794 Sector: Solar Product: Maryland-based company that installs solar electricity and solar hot water systems, which was acquired by groSolar in July 2008....

  4. Solar collector array

    SciTech Connect (OSTI)

    Hall, John Champlin; Martins, Guy Lawrence

    2015-09-06

    A method and apparatus for efficient manufacture, assembly and production of solar energy. In one aspect, the apparatus may include a number of modular solar receiver assemblies that may be separately manufactured, assembled and individually inserted into a solar collector array housing shaped to receive a plurality of solar receivers. The housing may include optical elements for focusing light onto the individual receivers, and a circuit for electrically connecting the solar receivers.

  5. Solar Affordable Housing Program

    Energy Savers [EERE]

    Solar Affordable Housing Program Why Solar for Tribes Significant economic benefits for residents in electric savings over time Environmental benefits from a clean, renewable energy source Green jobs training and potential paid employment opportunities for tribal members in the growing field of solar installation Impacts to-date 335 Installs 1.5 Megawatts Clean, renewable solar power 189 tribal members volunteers Trained in solar installations Tribal Partners Installation with members of the

  6. Effects of the scatter in sunspot group tilt angles on the large-scale magnetic field at the solar surface

    SciTech Connect (OSTI)

    Jiang, J.; Cameron, R. H.; Schssler, M.

    2014-08-10

    The tilt angles of sunspot groups represent the poloidal field source in Babcock-Leighton-type models of the solar dynamo and are crucial for the build-up and reversals of the polar fields in surface flux transport (SFT) simulations. The evolution of the polar field is a consequence of Hale's polarity rules, together with the tilt angle distribution which has a systematic component (Joy's law) and a random component (tilt-angle scatter). We determine the scatter using the observed tilt angle data and study the effects of this scatter on the evolution of the solar surface field using SFT simulations with flux input based upon the recorded sunspot groups. The tilt angle scatter is described in our simulations by a random component according to the observed distributions for different ranges of sunspot group size (total umbral area). By performing simulations with a number of different realizations of the scatter we study the effect of the tilt angle scatter on the global magnetic field, especially on the evolution of the axial dipole moment. The average axial dipole moment at the end of cycle 17 (a medium-amplitude cycle) from our simulations was 2.73 G. The tilt angle scatter leads to an uncertainty of 0.78 G (standard deviation). We also considered cycle 14 (a weak cycle) and cycle 19 (a strong cycle) and show that the standard deviation of the axial dipole moment is similar for all three cycles. The uncertainty mainly results from the big sunspot groups which emerge near the equator. In the framework of Babcock-Leighton dynamo models, the tilt angle scatter therefore constitutes a significant random factor in the cycle-to-cycle amplitude variability, which strongly limits the predictability of solar activity.

  7. Solar and Wind Easements & Rights Laws & Local Option Solar Rights Law |

    Energy Savers [EERE]

    Department of Energy and Wind Easements & Rights Laws & Local Option Solar Rights Law Solar and Wind Easements & Rights Laws & Local Option Solar Rights Law < Back Eligibility Commercial Industrial Local Government Nonprofit Residential Schools State Government Federal Government Agricultural Institutional Savings Category Solar - Passive Solar Water Heat Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Photovoltaics Wind (All) Solar Pool Heating

  8. High-energy gamma-ray emission from solar flares: Summary of Fermi large area telescope detections and analysis of two M-class flares

    SciTech Connect (OSTI)

    Ackermann, M.; Ajello, M.; Albert, A.; Allafort, A.; Bechtol, K.; Bottacini, E.; Buehler, R.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Buson, S.; Bellazzini, R.; Bregeon, J.; Bissaldi, E.; Bonamente, E.; Bouvier, A.; Brandt, T. J.; Brigida, M.; Bruel, P.; and others

    2014-05-20

    We present the detections of 18 solar flares detected in high-energy ?-rays (above 100 MeV) with the Fermi Large Area Telescope (LAT) during its first 4 yr of operation. This work suggests that particle acceleration up to very high energies in solar flares is more common than previously thought, occurring even in modest flares, and for longer durations. Interestingly, all these flares are associated with fairly fast coronal mass ejections (CMEs). We then describe the detailed temporal, spatial, and spectral characteristics of the first two long-lasting events: the 2011 March 7 flare, a moderate (M3.7) impulsive flare followed by slowly varying ?-ray emission over 13 hr, and the 2011 June 7 M2.5 flare, which was followed by ?-ray emission lasting for 2 hr. We compare the Fermi LAT data with X-ray and proton data measurements from GOES and RHESSI. We argue that the ?-rays are more likely produced through pion decay than electron bremsstrahlung, and we find that the energy spectrum of the proton distribution softens during the extended emission of the 2011 March 7 flare. This would disfavor a trapping scenario for particles accelerated during the impulsive phase of the flare and point to a continuous acceleration process at play for the duration of the flares. CME shocks are known for accelerating the solar energetic particles (SEPs) observed in situ on similar timescales, but it might be challenging to explain the production of ?-rays at the surface of the Sun while the CME is halfway to the Earth. A stochastic turbulence acceleration process occurring in the solar corona is another likely scenario. Detailed comparison of characteristics of SEPs and ?-ray-emitting particles for several flares will be helpful to distinguish between these two possibilities.

  9. Planar photovoltaic solar concentrator module

    DOE Patents [OSTI]

    Chiang, Clement J. (New Brunswick, NJ)

    1992-01-01

    A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor.

  10. Planar photovoltaic solar concentrator module

    DOE Patents [OSTI]

    Chiang, C.J.

    1992-12-01

    A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor. 5 figs.

  11. Renewable Electricity Generation

    SciTech Connect (OSTI)

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

  12. U.S. Solar Market Trends

    SciTech Connect (OSTI)

    Larry Sherwood

    2010-04-01

    Grid-connected photovoltaic installations grew by 40% in 2009 compared with installations in 2008. California and New Jersey have the largest markets. Growth occurred in the residential and utility markets, but non-residential customer-sited installations did not change compared with the installations in 2008. Two small solar thermal electric plants were connected to the grid in 2009 with a combined capacity of 7 MW. The future prospects for solar thermal electric plants look bright, although developers are not expected to complete any new large plants until at least 2011. Solar water heating and solar space heating annual installations grew by 40% in 2008 compared with 2007. Hawaii, California, Puerto Rico, and Florida dominate this market. Solar pool heating annual installation capacity fell by 1% in 2008 following a dramatic decline of 15% in solar pool heating capacity in 2007 compared with 2006. Florida and California are the largest markets for solar pool heating. The economic decline in the real estate markets in Florida and California likely led to the decrease in pool installations and thus the dramatic decline in capacity installed of solar pool systems in 2007.

  13. NREL Explores Earth-Abundant Materials for Future Solar Cells (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-10-01

    Researchers at the National Renewable Energy Laboratory (NREL) are using a theory-driven technique - sequential cation mutation - to understand the nature and limitations of promising solar cell materials that can replace today's technologies. Finding new materials that use Earth-abundant elements and are easily manufactured is important for large-scale solar electricity deployment.

  14. Role of Energy Storage with Renewable Electricity Generation (Report Summary) (Presentation)

    SciTech Connect (OSTI)

    Denholm, P.; Ela, E.; Kirby, B.; Milligan, M.

    2010-03-01

    Renewable energy sources, such as wind and solar, have vast potential to reduce dependence on fossil fuels and greenhouse gas emissions in the electric sector. Climate change concerns, state initiatives including renewable portfolio standards, and consumer efforts are resulting in increased deployments of both technologies. Both solar photovoltaics (PV) and wind energy have variable and uncertain (sometimes referred to as "intermittent") output, which are unlike the dispatchable sources used for the majority of electricity generation in the United States. The variability of these sources has led to concerns regarding the reliability of an electric grid that derives a large fraction of its energy from these sources as well as the cost of reliably integrating large amounts of variable generation into the electric grid. In this report, we explore the role of energy storage in the electricity grid, focusing on the effects of large-scale deployment of variable renewable sources (primarily wind and solar energy).

  15. Sanyo Eneos Solar Inc | Open Energy Information

    Open Energy Info (EERE)

    Solar Inc Jump to: navigation, search Name: Sanyo Eneos Solar Inc. Place: Tokyo, Tokyo, Japan Product: Thin-film joint venture between Sanyo Electric and Nippon Oil. References:...

  16. Transmission Planning Process and Opportunities for Utility-Scale Solar Engagement within the Western Electricity Coordinating Council (WECC)

    SciTech Connect (OSTI)

    Hein, J.; Hurlbut, D.; Milligan, M.; Coles, L.; Green, B.

    2011-11-01

    This report is a primer for solar developers who wish to engage directly in expediting the regulatory process and removing market barriers related to policy and planning. Market barriers unrelated to technology often limit the expansion of utility-scale solar power, even in areas with exceptional resource potential. Many of these non-technical barriers have to do with policy, regulation, and planning, and hardly ever do they resolve themselves in a timely fashion. In most cases, pre-emptive intervention by interested stakeholders is the easiest way to remove/address such barriers, but it requires knowing how to navigate the institutional waters of the relevant agencies and boards. This report is a primer for solar developers who wish to engage directly in expediting the regulatory process and removing market barriers related to policy and planning. It focuses on the Western Interconnection (WI), primarily because the quality of solar resources in the Southwest makes utility-scale concentrating solar power (CSP) and photovoltaics (PV) economically feasible, and because the relevant institutions have evolved in a way that has opened up opportunities for removing non-technical market barriers. Developers will find in this report a high-level field manual to identify the venues for mitigating and possibly eliminating systemic market obstacles and ensuring that the economic playing field is reasonably level. Project-specific issues such as siting for transmission and generation resources are beyond the scope of this report. Instead, the aim is to examine issues that pervasively affect all utility-scale PV and CSP in the region regardless of where the project may be. While the focus is on the WI, many of the institutions described here also have their counterparts in the Eastern and the Texas interconnections. Specifically, this report suggests a number of critical engagement points relating to generation and transmission planning.

  17. Electricity Monthly Update - Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rapid growth in photovoltaic capacity. Solar electricity output in June is a good indicator of the recent growth of the solar industry, because June has the highest monthly...

  18. Delaware Electric Cooperative- Green Energy Program Incentives

    Broader source: Energy.gov [DOE]

    The Delaware Electric Cooperative (DEC) provides incentives for solar photovoltaic (PV), solar thermal, wind, fuel cells, and geothermal installed by DEC member-owners. Eligibility is limited to ...

  19. Overview of advanced Stirling and gas turbine engine development programs and implications for solar thermal electrical applications

    SciTech Connect (OSTI)

    Alger, D.

    1984-03-01

    The DOE automotive advanced engine development projects managed by the NASA Lewis Research Center were described. These included one Stirling cycle engine development and two air Brayton cycle development. Other engine research activities included: (1) an air Brayton engine development sponsored by the Gas Research Institute, and (2) plans for development of a Stirling cycle engine for space use. Current and potential use of these various engines with solar parabolic dishes were discussed.

  20. Solar Market Pathways Website

    Broader source: Energy.gov [DOE]

    The Solar Market Pathways website distributes key insights from 15 SunShot Initiative projects that are advancing solar deployment across the United States. These projects take a variety of approaches to develop actionable strategic plans to expand solar electricity use for residential, community, and commercial properties.

  1. Solar Market Pathways

    Broader source: Energy.gov [DOE]

    The Solar Market Pathways website distributes key insights from 15 SunShot Initiative projects that are advancing solar deployment across the United States. These projects take a variety of approaches to develop actionable strategic plans to expand solar electricity use for residential, community, and commercial properties.

  2. LARGE PECULIAR MOTION OF THE SOLAR SYSTEM FROM THE DIPOLE ANISOTROPY IN SKY BRIGHTNESS DUE TO DISTANT RADIO SOURCES

    SciTech Connect (OSTI)

    Singal, Ashok K.

    2011-12-15

    According to the cosmological principle, the universe should appear isotropic, without any preferred directions, to an observer whom we may consider to be fixed in the comoving coordinate system of the expanding universe. Such an observer is stationary with respect to the average distribution of the matter in the universe and the sky brightness at any frequency should appear uniform in all directions to such an observer. However, a peculiar motion of such an observer, due to a combined effect of Doppler boosting and aberration, will introduce a dipole anisotropy in the observed sky brightness; in reverse an observed dipole anisotropy in the sky brightness could be used to infer the peculiar velocity of the observer with respect to the average universe. We determine the peculiar velocity of the solar system relative to the frame of distant radio sources, by studying the anisotropy in the sky brightness from discrete radio sources, i.e., an integrated emission from discrete sources per unit solid angle. Our results give a direction of the velocity vector in agreement with the cosmic microwave background radiation (CMBR) value, but the magnitude ({approx}1600 {+-} 400 km s{sup -1}) is {approx}4 times the CMBR value (369 {+-} 1 km s{sup -1}) at a statistically significant ({approx}3{sigma}) level. A genuine difference between the two dipoles would imply an anisotropic universe, with the anisotropy changing with the epoch. This would violate the cosmological principle where the isotropy of the universe is assumed for all epochs, and on which the whole modern cosmology is based upon.

  3. NREL: Solar Research Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Research A collage of solar photographs. The first photo shows a parabolic solar trough at the Eldorado Valley site. The second is of a gird-tied high-concentration solar cell MicroDish. And the third photo shows the photovoltaic panels at Oberlin College's Adam Joseph Lewis Center for Environmental studies. Learn About Solar Energy Solar technologies use the sun's energy to provide electricity, heat, light, hot water, and even cooling for homes, businesses, and industry. Learn more about

  4. Solar Blog | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Blog Solar Blog RSS November 20, 2015 Making a Difference: Community Solar and Opportunity Dr. Elizabeth Sherwood-Randall met recently with participants in the National Community Solar Partnership Workshop at the White House. Supported by DOE's SunShot Initiative, this group is seeking ways to expand solar power in communities in a variety of ways. November 13, 2015 6 Charts that Will Make You Optimistic About America's Clean Energy Future How wind, solar, LEDs and electric vehicles are

  5. Decreasing Soft Costs for Solar Photovoltaics by Improving the Interconnection Process. A Case Study of Pacific Gas and Electric

    SciTech Connect (OSTI)

    Ardani, Kristen; Margolis, Robert

    2015-09-01

    As of the end of 2014, Pacific Gas and Electric (PG&E) had connected over 130,000 DG PV systems in its service territory, more than any other utility in the U.S. In this case study, we examine how PG&E achieved a faster, more efficient interconnection approval process despite rising application volumes.

  6. Solar-Powered, Liquid-Desiccant Air Conditioner for Low-Electricity Humidity Control: Report and Summary Report

    SciTech Connect (OSTI)

    Dean, J.; Kozubal, E.; Herrmann, L.; Miller, J.; Lowenstein, A.; Barker, G.; Slayzak, S.

    2012-11-01

    The primary objective of this project was to demonstrate the capabilities of a new high-performance, liquid-desiccant dedicated outdoor air system (DOAS) to enhance cooling efficiency and comfort in humid climates while substantially reducing electric peak demand at Tyndall Air Force Base (AFB), which is 12 miles east of Panama City, Florida.

  7. Photovoltaic solar cell

    DOE Patents [OSTI]

    Nielson, Gregory N; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J

    2014-05-20

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electricity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  8. Solar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewables » Solar Solar November 13, 2015 6 Charts that Will Make You Optimistic About America's Clean Energy Future How wind, solar, LEDs and electric vehicles are leading the way in America's clean energy revolution, visualized in six simple charts. September 30, 2015 Better solar panels. 14 Exciting Things Coming Soon from the National Labs There's a lot to get excited about in the next few years. Research at the Department of Energy's National Laboratories is poised to transform science

  9. Solar Decathlon 2015 | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Decathlon 2015 Solar Decathlon 2015 Addthis 1 of 68 An electric car sits parked at Clemson University during public exhibit hours of U.S. Department of Energy Solar Decathlon...

  10. Solar Frontier K K | Open Energy Information

    Open Energy Info (EERE)

    Name: Solar Frontier K.K. Place: Tokyo, Tokyo, Japan Zip: 135-8074 Sector: Hydro, Hydrogen, Solar Product: Japanese oil company with urban gas and electricity, solar, fuel cell...

  11. Homebuilder's Guide to Going Solar (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2008-12-01

    This 8-page brochure describes the steps a builder would take to install solar electricity (photovoltaics or PV), solar water heating, or how to build a home solar ready.

  12. High temperature solar thermal technology: The North Africa Market

    SciTech Connect (OSTI)

    Not Available

    1990-12-01

    High temperature solar thermal (HTST) technology offers an attractive option for both industrialized and non-industrialized countries to generate electricity and industrial process steam. The purpose of this report is to assess the potential market for solar thermal applications in the North African countries of Algeria, Egypt, Morocco and Tunisia. North Africa was selected because of its outstanding solar resource base and the variety of applications to be found there. Diminishing oil and gas resources, coupled with expanding energy needs, opens a large potential market for the US industry. The US high temperature solar trough industry has little competition globally and could build a large market in these areas. The US is already familiar with certain solar markets in North Africa due to the supplying of substantial quantities of US-manufactured flat plate collectors to this region.

  13. Halla Electric Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Electric Co Ltd Jump to: navigation, search Name: Halla Electric Co Ltd Place: Daegu, Korea (Republic) Sector: Solar Product: A Korean utility company based in Daegu but...

  14. Lane Electric Cooperative - Residential and Commercial Weatherization...

    Broader source: Energy.gov (indexed) [DOE]

    Washer: 75 Solar Water Heater: 500 Summary Lane Electric Cooperative offers energy efficient Weatherization Grant Programs to Lane Electric residential and commercial members: a...

  15. Saudi Electricity Company | Open Energy Information

    Open Energy Info (EERE)

    Electricity Company Jump to: navigation, search Name: Saudi Electricity Company Place: Riyadh, Saudi Arabia Zip: 11416 Sector: Solar Product: Riyahd-based utility, 80% state-owned...

  16. Sanyo Electric Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Co Ltd Jump to: navigation, search Name: Sanyo Electric Co Ltd Place: Moriguchi, Osaka, Japan Zip: 570-8677 Sector: Solar, Vehicles Product: Japanese electric appliance...

  17. Mitsubishi Electric Corp | Open Energy Information

    Open Energy Info (EERE)

    Corp Jump to: navigation, search Name: Mitsubishi Electric Corp Place: Tokyo, Tokyo, Japan Zip: 100-8310 Sector: Services, Solar Product: Japan-based manufacturer of electrical...

  18. Solar cell with back side contacts

    DOE Patents [OSTI]

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J; Wanlass, Mark Woodbury; Clews, Peggy J

    2013-12-24

    A III-V solar cell is described herein that includes all back side contacts. Additionally, the positive and negative electrical contacts contact compoud semiconductor layers of the solar cell other than the absorbing layer of the solar cell. That is, the positive and negative electrical contacts contact passivating layers of the solar cell.

  19. Energy 101: Concentrating Solar Power

    Broader source: Energy.gov [DOE]

    From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power...

  20. Improved Solar Power Plant Efficiency: Low Cost Solar Irradiance Sensor -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Solar Photovoltaic Solar Photovoltaic Industrial Technologies Industrial Technologies Electricity Transmission Electricity Transmission Find More Like This Return to Search Improved Solar Power Plant Efficiency: Low Cost Solar Irradiance Sensor University of Colorado Contact CU About This Technology Publications: PDF Document Publication CU3117D (Irradiance Sensor) Marketing Summary.pdf (149 KB) Technology Marketing Summary A University of Colorado research group led

  1. NONLINEAR FORCE-FREE FIELD EXTRAPOLATION OF A CORONAL MAGNETIC FLUX ROPE SUPPORTING A LARGE-SCALE SOLAR FILAMENT FROM A PHOTOSPHERIC VECTOR MAGNETOGRAM

    SciTech Connect (OSTI)

    Jiang, Chaowei; Wu, S. T.; Hu, Qiang; Feng, Xueshang E-mail: wus@uah.edu E-mail: fengx@spaceweather.ac.cn

    2014-05-10

    Solar filaments are commonly thought to be supported in magnetic dips, in particular, in those of magnetic flux ropes (FRs). In this Letter, based on the observed photospheric vector magnetogram, we implement a nonlinear force-free field (NLFFF) extrapolation of a coronal magnetic FR that supports a large-scale intermediate filament between an active region and a weak polarity region. This result is a first, in the sense that current NLFFF extrapolations including the presence of FRs are limited to relatively small-scale filaments that are close to sunspots and along main polarity inversion lines (PILs) with strong transverse field and magnetic shear, and the existence of an FR is usually predictable. In contrast, the present filament lies along the weak-field region (photospheric field strength ? 100G), where the PIL is very fragmented due to small parasitic polarities on both sides of the PIL and the transverse field has a low signal-to-noise ratio. Thus, extrapolating a large-scale FR in such a case represents a far more difficult challenge. We demonstrate that our CESE-MHD-NLFFF code is sufficient for the challenge. The numerically reproduced magnetic dips of the extrapolated FR match observations of the filament and its barbs very well, which strongly supports the FR-dip model for filaments. The filament is stably sustained because the FR is weakly twisted and strongly confined by the overlying closed arcades.

  2. Lincoln Electric System - Renewable Generation Rate (Nebraska...

    Open Energy Info (EERE)

    Applicable Sector Commercial, Industrial Eligible Technologies Solar Thermal Electric, Photovoltaics, Landfill Gas, Wind, Biomass, Hydroelectric, Anaerobic Digestion, Small...

  3. Community and Shared Solar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Community and Shared Solar Community and Shared Solar Community and Shared Solar As the solar energy market rapidly expands, more people are exploring the possibility of going solar. While not everyone is able to install panels on their roofs, due to unsuitable roof space, living in a large condo building, or renting living space, alternative business models like community solar and shared solar are gaining popularity and increasing access to clean solar energy. Community solar business models

  4. Estimating the Cost and Energy Efficiency of a Solar Water Heater...

    Broader source: Energy.gov (indexed) [DOE]

    Solar water heaters are more efficient the gas or electric heaters. | Chart credit ENERGY STAR Solar water heaters are more efficient the gas or electric heaters. | Chart credit...

  5. Photovoltaic solar concentrator

    DOE Patents [OSTI]

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2016-03-15

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  6. Photovoltaic solar concentrator

    DOE Patents [OSTI]

    Nielson, Gregory N.; Okandan, Murat; Resnick, Paul J.; Cruz-Campa, Jose Luis

    2012-12-11

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  7. Photovoltaic solar cell

    DOE Patents [OSTI]

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2015-09-08

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  8. Impact of tax incentives on the commercialization of solar thermal electric technologies. Volume II. Federal revenue considerations

    SciTech Connect (OSTI)

    Bos, P.B.; Morris, G.P.

    1985-11-01

    The purpose of this study was to quantify the impact of the Solar Thermal Central Receiver (STCR) tax incentives and commercialization on the federal treasury revenues. The initial STCR market penetration was assumed to take place in California, because of favorable local conditions. The initial financing was assumed to be underwritten by intermediary partnerships under long-term avoided cost contracts with the local utility companies with subsequent sale of the plants to utilities at competitive prices. To estimate the impacts of these various tax incentives associated with the commercialization of the STCR technology, the tax revenues and costs for the STCR plants were compared with the tax revenues and costs for the displaced conventional power plants. This differential analysis takes into account the different operating expenses, as well as the different depreciation charges, financing costs, and tax credits associated with STCR and conventional plants. The study also evaluated the impact of both the previous (1983) and current (1984) proposed federal energy tax credits. The resulting total annual tax cash flows were subsequently cumulated to determine the aggregate tax revenues and costs throughout the 1985 to 2034 time period. The results of this analysis indicate that the initial federal tax revenues are negative. With increasing market penetration, the installed costs of the STCR plants decrease rapidly and the net present values of the tax revenue cash flows associated with plants constructed after 1995 are positive, and become significantly larger than those for the corresponding displaced conventional plants.

  9. Photovoltaic solar cell

    DOE Patents [OSTI]

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

    2013-11-26

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electicity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  10. Solar Deployment System (SolarDS) Model: Documentation and Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... on regional solar resources, capital costs, electricity prices, utility rate structures, and ... Short, W.; Packey, D.J.; Holt, T. (March 1995). A Manual for the Economic Evaluation ...

  11. NREL: Solar STAT Blog - Podcasts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assistance Project Map Category Archives: Podcasts Hot Topics: Electric Vehicles and Solar Technology This STAT Chat podcast features Alex Schroeder, a transportation technology...

  12. Overview of solar thermal technologies

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The solar-thermal overview section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  13. Nordisk Solar | Open Energy Information

    Open Energy Info (EERE)

    Denmark Product: Wholesaler and distributor of electrical equipment as well as HWS (heating, water, and sanitary) components. References: Nordisk Solar1 This article is a...

  14. Overview of Opportunities for Co-Location of Solar Energy Technologies and Vegetation

    SciTech Connect (OSTI)

    Macknick, J.; Beatty, B.; Hill, G.

    2013-12-01

    Large-scale solar facilities have the potential to contribute significantly to national electricity production. Many solar installations are large-scale or utility-scale, with a capacity over 1 MW and connected directly to the electric grid. Large-scale solar facilities offer an opportunity to achieve economies of scale in solar deployment, yet there have been concerns about the amount of land required for solar projects and the impact of solar projects on local habitat. During the site preparation phase for utility-scale solar facilities, developers often grade land and remove all vegetation to minimize installation and operational costs, prevent plants from shading panels, and minimize potential fire or wildlife risks. However, the common site preparation practice of removing vegetation can be avoided in certain circumstances, and there have been successful examples where solar facilities have been co-located with agricultural operations or have native vegetation growing beneath the panels. In this study we outline some of the impacts that large-scale solar facilities can have on the local environment, provide examples of installations where impacts have been minimized through co-location with vegetation, characterize the types of co-location, and give an overview of the potential benefits from co-location of solar energy projects and vegetation. The varieties of co-location can be replicated or modified for site-specific use at other solar energy installations around the world. We conclude with opportunities to improve upon our understanding of ways to reduce the environmental impacts of large-scale solar installations.

  15. Save Electricity and Fuel | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Save Electricity and Fuel Save Electricity and Fuel A photovoltaic (solar electric) system like the one shown can save you energy and money, while also producing electricity to power your home and vehicle. | Photo courtesy of Susan Bilo/NREL. A photovoltaic (solar electric) system like the one shown can save you energy and money, while also producing electricity to power your home and vehicle. | Photo courtesy of Susan Bilo/NREL. Electricity and fuel power our homes and vehicles and the choices

  16. Solar Goes Big: Launching the California Valley Solar Ranch | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Goes Big: Launching the California Valley Solar Ranch Solar Goes Big: Launching the California Valley Solar Ranch October 31, 2013 - 4:14pm Addthis The California Valley Solar Ranch produces clean, renewable electricity at the scale of traditional power plants. | Photo courtesy of SunPower. The California Valley Solar Ranch produces clean, renewable electricity at the scale of traditional power plants. | Photo courtesy of SunPower. Aerial shot of the California Valley Solar Ranch in

  17. Ra Solar Systems Solutions SL | Open Energy Information

    Open Energy Info (EERE)

    Ra Solar Systems & Solutions SL Place: Madrid, Spain Zip: 28033 Sector: Solar Product: Spanish project developer and finance arranger for large-scale solar farms; also acts as...

  18. Organo-sulfur molecules enable iron-based battery electrodes to meet the challenges of large-scale electrical energy storage

    SciTech Connect (OSTI)

    Yang, B; Malkhandi, S; Manohar, AK; Prakash, GKS; Narayanan, SR

    2014-07-03

    Rechargeable iron-air and nickel-iron batteries are attractive as sustainable and inexpensive solutions for large-scale electrical energy storage because of the global abundance and eco-friendliness of iron, and the robustness of iron-based batteries to extended cycling. Despite these advantages, the commercial use of iron-based batteries has been limited by their low charging efficiency. This limitation arises from the iron electrodes evolving hydrogen extensively during charging. The total suppression of hydrogen evolution has been a significant challenge. We have found that organo-sulfur compounds with various structural motifs (linear and cyclic thiols, dithiols, thioethers and aromatic thiols) when added in milli-molar concentration to the aqueous alkaline electrolyte, reduce the hydrogen evolution rate by 90%. These organo-sulfur compounds form strongly adsorbed layers on the iron electrode and block the electrochemical process of hydrogen evolution. The charge-transfer resistance and double-layer capacitance of the iron/electrolyte interface confirm that the extent of suppression of hydrogen evolution depends on the degree of surface coverage and the molecular structure of the organo-sulfur compound. An unanticipated electrochemical effect of the adsorption of organo-sulfur molecules is "de-passivation" that allows the iron electrode to be discharged at high current values. The strongly adsorbed organo-sulfur compounds were also found to resist electro-oxidation even at the positive electrode potentials at which oxygen evolution can occur. Through testing on practical rechargeable battery electrodes we have verified the substantial improvements to the efficiency during charging and the increased capability to discharge at high rates. We expect these performance advances to enable the design of efficient, inexpensive and eco-friendly iron-based batteries for large-scale electrical energy storage.

  19. Renewable Electricity Generation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

  20. Open cycle liquid desiccant dehumidifier and hybrid solar/electric absorption refrigeration system. Annual report, January 1993--December 1993. Calendar year 1993

    SciTech Connect (OSTI)

    Nimmo, B.G.; Thornbloom, M.D.

    1995-04-01

    This annual report presents work performed during calendar year 1993 by the Florida Solar Energy Center under contract to the US Department of Energy. Two distinctively different solar powered indoor climate control systems were analyzed: the open cycle liquid desiccant dehumidifier, and an improved efficiency absorption system which may be fired by flat plate solar collectors. Both tasks represent new directions relative to prior FSEC research in Solar Cooling and Dehumidification.

  1. SOLAR NANTENNA ELECTROMAGNETIC COLLECTORS

    SciTech Connect (OSTI)

    Steven D. Novack; Dale K. Kotter; Dennis Slafer; Patrick Pinhero

    2008-08-01

    This research explores a new efficient approach for producing electricity from the abundant energy of the sun. A nanoantenna electromagnetic collector (NEC) has been designed, prototyped, and tested. Proof of concept has been validated. The device targets mid-infrared wavelengths where conventional photovoltaic (PV) solar cells do not respond but is abundant in solar energy. The initial concept of designing NEC antennas was based on scaling of radio frequency antenna theory. This approach has proven unsuccessful by many due to not fully understanding and accounting for the optical behavior of materials in the THz region. Also until recent years the nanofabrication methods were not available to fabricate the optical antenna elements. We have addressed and overcome both technology barriers. Several factors were critical in successful implementation of NEC including: 1) frequency-dependent modeling of antenna elements, 2) selection of materials with proper THz properties and 3) novel manufacturing methods that enable economical large-scale manufacturing. The work represents an important step toward the ultimate realization of a low-cost device that will collect as well as convert this radiation into electricity, which will lead to a wide spectrum, high conversion efficiency, and low cost solution to complement conventional PVs.

  2. Integrated Solar Power Converters: Wafer-Level Sub-Module Integrated DC/DC Converter

    SciTech Connect (OSTI)

    2012-02-09

    Solar ADEPT Project: CU-Boulder is developing advanced power conversion components that can be integrated into individual solar panels to improve energy yields. The solar energy that is absorbed and collected by a solar panel is converted into useable energy for the grid through an electronic component called an inverter. Many large, conventional solar energy systems use one, central inverter to convert energy. CU-Boulder is integrating smaller, microinverters into individual solar panels to improve the efficiency of energy collection. The Universitys microinverters rely on electrical components that direct energy at high speeds and ensure that minimal energy is lost during the conversion processimproving the overall efficiency of the power conversion process. CU-Boulder is designing its power conversion devices for use on any type of solar panel.

  3. Solar Utility Networks: Replicable Innovations in Solar Energy (SUNRISE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Funding Opportunity | Department of Energy Utility Networks: Replicable Innovations in Solar Energy (SUNRISE) Funding Opportunity Solar Utility Networks: Replicable Innovations in Solar Energy (SUNRISE) Funding Opportunity The Solar Utility Networks: Replicable Innovations in Solar Energy (SUNRISE) program is helping utilities develop adaptable and replicable practices, long-term strategic plans, and technical solutions to sustain reliable operations with large proportions of solar power on

  4. THE ROTATION OF THE WHITE LIGHT SOLAR CORONA AT HEIGHT 4 R{sub sun} FROM 1996 TO 2010: A TOMOGRAPHICAL STUDY OF LARGE ANGLE AND SPECTROMETRIC CORONAGRAPH C2 OBSERVATIONS

    SciTech Connect (OSTI)

    Morgan, Huw

    2011-09-10

    Solar rotational tomography is applied to Large Angle and Spectrometric Coronagraph (LASCO) C2/Solar and Heliospheric Observatory (SOHO) observations covering the period 1996-2010, resulting in a set of electron density maps at a height of 4 R{sub sun} from which rotation rates can be calculated. Large variation of rotation rates is measured. Rates are dominated by the Carrington rotation rate (14.18 deg d{sup -1} sidereal), but at times over the solar cycle, rates are measured between -3 and 3 deg d{sup -1} relative to the Carrington rotation rate. Rotation rates can vary considerably between latitudes, even between neighboring latitudes. They can remain relatively stable or change smoothly over long periods of times, or can change rather abruptly. There are periods for certain latitudes (for example, the equator at solar maximum) when the movement is dominated by rapid structural reconfiguration, not a coherent rotation. These results raise new questions regarding the link between the Sun and the corona, and provide fresh challenges to interpretations of the coronal structural evolution and the development of large-scale coronal models. In particular, can interchange reconnection provide an explanation of the considerable latitudinal differences in rotation rates, and what mechanism can explain abrupt changes in rotation rates?

  5. Integrated Solar Thermochemical Reaction System for High Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Solar Thermochemical Reaction System for High Efficiency Production of Electricity Integrated Solar Thermochemical Reaction System for High Efficiency Production of ...

  6. NREL-Solar Technologies Market Report | Open Energy Information

    Open Energy Info (EERE)

    is the U.S. solar electricity market, including photovoltaic (PV) and concentrating solar power (CSP) technologies. The report is organized into five chapters. Chapter 1...

  7. Energy 101: Solar PV

    ScienceCinema (OSTI)

    None

    2013-05-29

    Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel converts the energy of the sun into renewable electricity to power homes and businesses.

  8. Energy 101: Solar PV

    SciTech Connect (OSTI)

    2011-01-01

    Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel converts the energy of the sun into renewable electricity to power homes and businesses.

  9. Solar Renewable Energy Credits

    Broader source: Energy.gov [DOE]

     In January 2005, the District of Columbia (D.C.) Council enacted a Renewable Portfolio Standard (RPS) with a solar carve-out that applies to all retail electricity sales in the District. In...

  10. Energy 101: Solar PV

    Broader source: Energy.gov [DOE]

    Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel converts the energy of the sun into renewable electricity to power...

  11. Solar collection

    SciTech Connect (OSTI)

    Cole, S.L.

    1984-08-01

    This report contains summaries and pictures of projects funded by the Appropriate Technology Small Grants Program which include the following solar technologies: solar dish; photovoltaics; passive solar building and solar hot water system; Trombe wall; hot air panel; hybrid solar heating system; solar grain dryer; solar greenhouse; solar hot water workshops; and solar workshops.

  12. Rooftop Solar PV & Firefighter Safety

    Broader source: Energy.gov [DOE]

    Solar photovoltaic (PV) installations have experienced significant growth in recent years. Due to technological innovations and cost reductions, solar energy is a viable option for an increasing number of residences and businesses across the United States. Rooftop solar is considered safe – to date there has been no documented case of death from the electric shock, chemical burn or conventional fire caused by a solar panel; however, as more buildings install rooftop solar systems, the likelihood increases that fires will occur on buildings with solar, making it critical for firefighters to receive comprehensive solar education and training. This SolarOPs fact sheet gives a brief overview of typical solar PV installations, addresses the major hazards and risks to firefighters, discusses fire safety in Germany (the country with the most installed solar PV per capita), and suggests recommendations and resources to ensure that first responders are prepared to fight fires on homes and buildings with rooftop solar PV.

  13. Improved high temperature solar absorbers for use in Concentrating Solar Power central receiver applications.

    SciTech Connect (OSTI)

    Stechel, Ellen Beth; Ambrosini, Andrea; Hall, Aaron Christopher; Lambert, Timothy L.; Staiger, Chad Lynn; Bencomo, Marlene

    2010-09-01

    Concentrating solar power (CSP) systems use solar absorbers to convert the heat from sunlight to electric power. Increased operating temperatures are necessary to lower the cost of solar-generated electricity by improving efficiencies and reducing thermal energy storage costs. Durable new materials are needed to cope with operating temperatures >600 C. The current coating technology (Pyromark High Temperature paint) has a solar absorptance in excess of 0.95 but a thermal emittance greater than 0.8, which results in large thermal losses at high temperatures. In addition, because solar receivers operate in air, these coatings have long term stability issues that add to the operating costs of CSP facilities. Ideal absorbers must have high solar absorptance (>0.95) and low thermal emittance (<0.05) in the IR region, be stable in air, and be low-cost and readily manufacturable. We propose to utilize solution-based synthesis techniques to prepare intrinsic absorbers for use in central receiver applications.

  14. Solergie Qingdao Electrical Appliance Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    enterprise. which is specialized in developing and manufacturing solar lighting and other energy solar products. References: Solergie (Qingdao)Electrical Appliance Co Ltd1 This...

  15. Reducing Your Electricity Use | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    If you are planning to install a small renewable energy system to make your own electricity, such as a solar electric system or small wind turbine, reducing your electricity...

  16. Fail-Safe Designs for Large Capacity Battery Systems - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal 113495 Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Find More Like This Return to Search Fail-Safe Designs for Large

  17. 2010 Solar Technologies Market Report

    SciTech Connect (OSTI)

    Not Available

    2011-11-01

    The U.S. Department of Energy (DOE) 2010 Solar Technologies Market Report details the market conditions and trends for photovoltaic (PV) and concentrating solar power (CSP) technologies. Produced by the National Renewable Energy Laboratory (NREL), the report provides a comprehensive overview of the solar electricity market and identifies successes and trends within the market from both global and national perspectives.

  18. NREL: Concentrating Solar Power Research - Laboratory Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    To research, develop, and test a variety of concentrating solar power technologies, NREL features the following laboratory capabilities: Concentrated Solar Radiation Facility Large ...

  19. Solar Policy Environment: Ann Arbor

    Broader source: Energy.gov [DOE]

    The goal for Ann Arbor’s Solar America Cities program is to utilize a wide range of community partners and resources to remove market barriers to the adoption of solar energy while simultaneously increasing consumer awareness and demand, and helping solar energy manufacturers and contractors to succeed. Expected outcomes include a Solar Plan for Ann Arbor, one or more large-scale photovoltaic demonstration projects, more small-scale solar hot water and photovoltaic demonstration projects, greater consumer awareness of solar options, a simpler permitting process for solar projects, and proof that solar energy works even in cloudy cities.

  20. Using Electricity",,,"Electricity Consumption",,,"Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    . Total Electricity Consumption and Expenditures, 2003" ,"All Buildings* Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of Buildings...

  1. SunShot-funded Advanced Inverter Testing Enables 2,500 Solar...

    Broader source: Energy.gov (indexed) [DOE]

    Hawaiian Electric, SolarCity, and the University of Hawaii demonstrated smart inverters in ... how NREL has teamed up with SolarCity to maximize solar power on electrical grids here. ...

  2. Solar Energy Resource Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy » Solar » Solar Energy Resource Basics Solar Energy Resource Basics August 21, 2013 - 11:40am Addthis Solar radiation, often called the solar resource, is a general term for the electromagnetic radiation emitted by the sun. Solar radiation can be captured and turned into useful forms of energy, such as heat and electricity, using a variety of technologies. However, the technical feasibility and economical operation of these technologies at a specific location depends on the

  3. Operation of Concentrating Solar Power Plants in the Western Wind and Solar Integration Phase 2 Study

    SciTech Connect (OSTI)

    Denholm, P.; Brinkman, G.; Lew, D.; Hummon, M.

    2014-05-01

    The Western Wind and Solar Integration Study (WWSIS) explores various aspects of the challenges and impacts of integrating large amounts of wind and solar energy into the electric power system of the West. The phase 2 study (WWSIS-2) is one of the first to include dispatchable concentrating solar power (CSP) with thermal energy storage (TES) in multiple scenarios of renewable penetration and mix. As a result, it provides unique insights into CSP plant operation, grid benefits, and how CSP operation and configuration may need to change under scenarios of increased renewable penetration. Examination of the WWSIS-2 results indicates that in all scenarios, CSP plants with TES provides firm system capacity, reducing the net demand and the need for conventional thermal capacity. The plants also reduced demand during periods of short-duration, high ramping requirements that often require use of lower efficiency peaking units. Changes in CSP operation are driven largely by the presence of other solar generation, particularly PV. Use of storage by the CSP plants increases in the higher solar scenarios, with operation of the plant often shifted to later in the day. CSP operation also becomes more variable, including more frequent starts. Finally, CSP output is often very low during the day in scenarios with significant PV, which helps decrease overall renewable curtailment (over-generation). However, the configuration studied is likely not optimal for High Solar Scenario implying further analysis of CSP plant configuration is needed to understand its role in enabling high renewable scenarios in the Western United States.

  4. Approaches to Future Generation Photovoltaics and Solar Fuels: Quantum Dots, Arrays, and Quantum Dot Solar Cells

    SciTech Connect (OSTI)

    Semonin, O.; Luther, J.; Beard, M.; Johnson, J.; Gao, J.; Nozik, A.

    2012-01-01

    One potential, long-term approach to more efficient and lower cost future generation solar cells for solar electricity and solar fuels is to utilize the unique properties of quantum dots (QDs) to control the relaxation pathways of excited states to enhance multiple exciton generation (MEG). We have studied MEG in close-packed PbSe QD arrays where the QDs are electronically coupled in the films and thus exhibit good transport while still maintaining quantization and MEG. We have developed simple, all-inorganic solution-processable QD solar cells that produce large short-circuit photocurrents and power conversion efficiencies above 5% via nanocrystalline p-n junctions. These solar cells show QYs for photocurrent that exceed 100% in the photon energy regions where MEG is possible; the photocurrent MEG QYs as a function of photon energy match those determined via time-resolved spectroscopy Recent analyses of the major effect of MEG combined with solar concentration on the conversion efficiency of solar cells will also be discussed.

  5. Solar Neutrinos

    DOE R&D Accomplishments [OSTI]

    Davis, R. Jr.; Harmer, D. S.

    1964-12-01

    The prospect of studying the solar energy generation process directly by observing the solar neutrino radiation has been discussed for many years. The main difficulty with this approach is that the sun emits predominantly low energy neutrinos, and detectors for observing low fluxes of low energy neutrinos have not been developed. However, experimental techniques have been developed for observing neutrinos, and one can foresee that in the near future these techniques will be improved sufficiently in sensitivity to observe solar neutrinos. At the present several experiments are being designed and hopefully will be operating in the next year or so. We will discuss an experiment based upon a neutrino capture reaction that is the inverse of the electron-capture radioactive decay of argon-37. The method depends upon exposing a large volume of a chlorine compound, removing the radioactive argon-37 and observing the characteristic decay in a small low-level counter.

  6. Amorphous semiconductor solar cell

    DOE Patents [OSTI]

    Dalal, Vikram L. (Newark, DE)

    1981-01-01

    A solar cell comprising a back electrical contact, amorphous silicon semiconductor base and junction layers and a top electrical contact includes in its manufacture the step of heat treating the physical junction between the base layer and junction layer to diffuse the dopant species at the physical junction into the base layer.

  7. Geostellar: Remote Solar Energy Assessments Personalized

    SciTech Connect (OSTI)

    2015-10-01

    Geostellar has produced an online tool that generates a unique solar profile for homeowners to learn about the financial benefits to installing rooftop solar panels on their home. The website incorporates the physical building characteristics of the home, including shading, slope, and orientation of the roof, and applies electricity costs and incentives to determine the best solar energy estimated energy production values against actual installed rooftop photovoltaic systems. The validation conducted by NREL concluded that over three-quarters of Geostellar's potential size estimates are at least as large as the actual installed systems, indicating a correct assessment of roof availability. In addition, 87% of Geostellar's 25-year production estimates are within 90% of the actual PV Watts results.

  8. Solar Easements & Rights Laws | Department of Energy

    Energy Savers [EERE]

    Industrial Local Government Nonprofit Residential Schools State Government Federal Government Agricultural Institutional Savings Category Solar - Passive Solar Water Heat Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Photovoltaics Program Info Sector Name State State Washington Program Type Solar/Wind Access Policy Summary Washington's solar easement laws are similar to those in many other states. The law does not create an automatic right to sunlight. Rather, the law

  9. Solar Means Business: Top U.S. Corporate Solar Users

    Broader source: Energy.gov [DOE]

    Solar energy makes financial sense. That's why business leaders in America's brightest, most competitive companies are increasingly choosing to install solar energy systems at their facilities. For the third year in a row, not only are more businesses choosing solar, but those that have used solar in the past are doing so again and again on rooftops across America. Walmart, Kohl's, Costco, Apple, IKEA, and more have all embraced solar energy. Collectively, the 25 companies with the most solar capacity in the U.S. now have 1,110 systems totaling 569 MW, generating enough electricity to power more than 115,000 homes. And these companies are installing even more.

  10. Roles of electricity: Electric steelmaking

    SciTech Connect (OSTI)

    Burwell, C.C.

    1986-07-01

    Electric steel production from scrap metal continues to grow both in total quantity and in market share. The economics of electric-steel production in general, and of electric minimills in particular, seem clearly established. The trend towards electric steelmaking provides significant economic and competitive advantages for producers and important overall economic, environmental, and energy advantages for the United States at large. Conversion to electric steelmaking offers up to a 4-to-1 advantage in terms of the overall energy used to produce a ton of steel, and s similar savings in energy cost for the producer. The amount of old scrap used to produce a ton of steel has doubled since 1967 because of the use of electric furnaces.

  11. Harmful Shunting Mechanisms Found in Silicon Solar Cells (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-05-01

    Scientists developed near-field optical microscopy for imaging electrical breakdown in solar cells and identified critical electrical breakdown mechanisms operating in industrial silicon and epitaxial silicon solar cells.

  12. Large-Scale Utilization of Biomass Energy and Carbon Dioxide Capture and Storage in the Transport and Electricity Sectors under Stringent CO2 Concentration Limit Scenarios

    SciTech Connect (OSTI)

    Luckow, Patrick; Wise, Marshall A.; Dooley, James J.; Kim, Son H.

    2010-08-05

    This paper examines the potential role of large scale, dedicated commercial biomass energy systems under global climate policies designed to meet atmospheric concentrations of CO2 at 400ppm and 450ppm by the end of the century. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. A key aspect of the research presented here is that the costs of processing and transporting biomass energy at much larger scales than current experience are explicitly incorporated into the modeling. From the scenario results, 120-160 EJ/year of biomass energy is produced globally by midcentury and 200-250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the majority source, along with growing utilization of waste-to-energy. The ability to draw on a diverse set of biomass based feedstocks helps to reduce the pressure for drastic large-scale changes in land use and the attendant environmental, ecological, and economic consequences those changes would unleash. In terms of the conversion of bioenergy feedstocks into value added energy, this paper demonstrates that biomass is and will continue to be used to generate electricity as well as liquid transportation fuels. A particular focus of this paper is to show how climate policies and technology assumptions - especially the availability of carbon dioxide capture and storage (CCS) technologies - affect the decisions made about where the biomass is used in the energy system. The potential for net-negative electric sector emissions through the use of CCS with biomass feedstocks provides an attractive part of the solution for meeting stringent emissions constraints; we find that at carbon prices above 150$/tCO2, over 90% of biomass in the energy system is used in combination with CCS. Despite the higher technology costs of CCS, it is a very important tool in controlling the cost of meeting a target, offsetting the venting of CO2 from sectors of the energy system that may be more expensive to mitigate, such as oil use in transportation. CCS is also used heavily with other fuels such as coal and natural gas, and by 2095 a total of 1530 GtCO2 has been stored in deep geologic reservoirs. The paper also discusses the role of cellulosic ethanol and Fischer-Tropsch biomass derived transportation fuels as two representative conversion processes and shows that both technologies may be important contributors to liquid fuels production, with unique costs and emissions characteristics.

  13. Shanghai Lilei Electrical Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Lilei Electrical Co Ltd Jump to: navigation, search Name: Shanghai Lilei Electrical Co Ltd Place: Shanghai Municipality, China Zip: 201613 Sector: Solar Product: The company...

  14. Ningbo Qixin Photo electricity Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Qixin Photo electricity Co Ltd Jump to: navigation, search Name: Ningbo Qixin Photo-electricity Co Ltd Place: Ningbo, Zhejiang Province, China Zip: 315000 Sector: Solar Product:...

  15. Bella Energy formely Sun Electric Systems | Open Energy Information

    Open Energy Info (EERE)

    Bella Energy formely Sun Electric Systems Jump to: navigation, search Name: Bella Energy (formely Sun Electric Systems) Place: Lafayette, Colorado Zip: 80026 Sector: Solar Product:...

  16. Ashland Electric Utility - Bright Way to Heat Water Loan | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Type Loan Program Summary The City of Ashland Conservation Division offers a solar water heating program to residential electric customers who currently use an electric...

  17. Jilin Qingda New Energy Electric Power | Open Energy Information

    Open Energy Info (EERE)

    Jilin Qingda New Energy Electric Power Jump to: navigation, search Name: Jilin Qingda New Energy Electric Power Place: Siping, Jilin Province, China Zip: 136001 Sector: Solar...

  18. Energy Department Announces New Concentrating Solar Power Technology...

    Office of Environmental Management (EM)

    Concentrating Solar Power Technology Investments to American Industry, Universities Energy Department Announces New ... and commercial production for clean electricity generation. ...

  19. Solar Energy Educational Material, Activities and Science Projects

    Office of Scientific and Technical Information (OSTI)

    Solar Energy Educational Materials Solar with glasses "The sun has produced energy for billions of years. Solar energy is the solar radiation that reaches the earth. Solar energy can be converted directly or indirectly into other forms of energy, such as heat and electricity. ... [It can be] used for heating water for domestic use, space heating of buildings, drying agricultural products, and generating electrical energy." - Edited excerpt from Solar Energy - Energy from the Sun DOE

  20. SunLab: Concentrating Solar Power Program Overview

    SciTech Connect (OSTI)

    1998-11-24

    DOE's Concentrating Solar Power (CSP) program is collaborating with its partners in the private sector to develop two new solar technologies -- power towers and dish/engines -- to meet the huge commercial potential for solar power. Concentrating solar power plants produce electric power by first converting the sun's energy into heat, and then to electricity in a conventional generator.

  1. Opportunities and Challenges for Solar Minigrid Development in Rural India

    SciTech Connect (OSTI)

    Thirumurthy, N.; Harrington, L.; Martin, D.; Thomas, L.; Takpa, J.; Gergan, R.

    2012-09-01

    The goal of this report is to inform investors about the potential of solar minigrid technologies to serve India's rural market. Under the US-India Energy Dialogue, the US Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) is supporting the Indian Ministry of New and Renewable Energy (MNRE)'s Jawaharlal Nehru National Solar Mission (JNNSM) in performing a business-case and policy-oriented analysis on the deployment of solar minigrids in India. The JNNSM scheme targets the development of 2GW of off-grid solar power by 2022 and provides large subsidies to meet this target. NREL worked with electricity capacity and demand data supplied by the Ladakh Renewable Energy Development Agency (LREDA) from Leh District, to develop a technical approach for solar minigrid development. Based on the NREL-developed, simulated solar insolation data for the city of Leh, a 250-kW solar photovoltaic (PV) system can produce 427,737 kWh over a 12-month period. The business case analysis, based on several different scenarios and JNNSM incentives shows the cost of power ranges from Rs. 6.3/kWh (US$0.126) to Rs. 9/kWh (US$0.18). At these rates, solar power is a cheaper alternative to diesel. An assessment of the macro-environment elements--including political, economic, environmental, social, and technological--was also performed to identify factors that may impact India?s energy development initiatives.

  2. NREL Helps Consumers Tap Into Solar Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consumers Tap Into Solar Energy For more information contact: e:mail: Public Affairs Golden, Colo., March 26, 1999 — Two new publications by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) make it easier for people to purchase solar energy systems and tap into energy from the sun. The Colorado Consumer's Guide to Buying a Solar Electric System provides basic information about the who, what and why of financing, purchasing and installing photovoltaic (solar electric)

  3. Rooftop Solar Challenge to Cut Solar's Red Tape | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rooftop Solar Challenge to Cut Solar's Red Tape Rooftop Solar Challenge to Cut Solar's Red Tape December 1, 2011 - 4:35pm Addthis Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs What does this project do? The 22 teams will implement step-by-step actions throughout the next year to standardize solar permitting processes, update planning and zoning codes, improve standards for connecting solar power to the electric grid, and increase access to financing.

  4. Redding Electric- Renewable Energy Rebate Program

    Broader source: Energy.gov [DOE]

    The Earth Advantage Rebate Program was designed to offer rebates to residential and business customers of Redding Electric Utility (REU) for solar PV, solar thermal, and geothermal heat pump...

  5. Large-area silicon-film{sup {trademark}} panels and solar cells. Phase I annual technical report, July 1, 1995--December 31, 1995

    SciTech Connect (OSTI)

    Rand, J.A.; Barnett, A.M.; Checchi, J.C.; Culik, J.S.

    1996-06-01

    AstroPower is establishing a low cost manufacturing process for Silicon-Film{trademark} solar cells and panels by taking advantage of the continuous nature of the Silicon-Film{trademark} technology. Under this effort, each step used in Silicon-Film{trademark} panel fabrication is being developed into a continuous/in-line manufacturing process. The following benefits are expected: an accelerated reduction of PV manufacturing cost for installed systems; a foundation for significantly increased production capacity; and a reduction in handling and waste streams. The process development will be based on a new 31-cm wide continuous Silicon-Film{trademark} sheet. Long-term goals include the development of a 24W, 30 cm x 60 cm Silicon-Film{trademark} solar cell and a manufacturing capability for a 384W, 4 inches x 8 inches Silicon-Film{trademark} panel for deployment in utility-scale applications.

  6. Concentrated Solar Thermoelectric Power

    SciTech Connect (OSTI)

    Chen, Gang; Ren, Zhifeng

    2015-07-09

    The goal of this project is to demonstrate in the lab that solar thermoelectric generators (STEGs) can exceed 10% solar-to-electricity efficiency, and STEGs can be integrated with phase-change materials (PCM) for thermal storage, providing operation beyond daylight hours. This project achieved significant progress in many tasks necessary to achieving the overall project goals. An accurate Themoelectric Generator (TEG) model was developed, which included realistic treatment of contact materials, contact resistances and radiative losses. In terms of fabricating physical TEGs, high performance contact materials for skutterudite TE segments were developed, along with brazing and soldering methods to assemble segmented TEGs. Accurate measurement systems for determining device performance (in addition to just TE material performance) were built for this project and used to characterize our TEGs. From the optical components side, a spectrally selective cermet surface was developed with high solar absorptance and low thermal emittance, with thermal stability at high temperature. A measurement technique was also developed to determine absorptance and total hemispherical emittance at high temperature, and was used to characterize the fabricated spectrally selective surfaces. In addition, a novel reflective cavity was designed to reduce radiative absorber losses and achieve high receiver efficiency at low concentration ratios. A prototype cavity demonstrated that large reductions in radiative losses were possible through this technique. For the overall concentrating STEG system, a number of devices were fabricated and tested in a custom built test platform to characterize their efficiency performance. Additionally, testing was performed with integration of PCM thermal storage, and the storage time of the lab scale system was evaluated. Our latest testing results showed a STEG efficiency of 9.6%, indicating promising potential for high performance concentrated STEGs.

  7. Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... Sciences Applications National Solar Thermal Test Facility Nuclear Energy ...

  8. Columbia Water & Light- Solar Energy Loans

    Broader source: Energy.gov [DOE]

    Columbia Water & Light (CWL) offers electric residential and commercial customers low-interest loans for photovoltaic (PV) systems and solar water heaters.

  9. Concentrating solar power | Open Energy Information

    Open Energy Info (EERE)

    Concentrating solar power (CSP) offers a utility-scale, firm, dispatchable renewable energy option that can help meet our nation's demand for electricity. CSP plants produce...

  10. Hawaii Solar Integration Study: Executive Summary

    Broader source: Energy.gov [DOE]

    Detailed technical examination of the effects of high penetrations of solar and wind energy on the operations of the electric grids of Maui and Oahu. 

  11. Next-Generation Thermionic Solar Energy Conversion

    Broader source: Energy.gov [DOE]

    This fact sheet describes a next-generation thermionic solar energy conversion project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by Stanford University, seeks to demonstrate the feasibility of photon-enhanced, microfabricated thermionic energy converters as a high-efficiency topping cycle for CSP electricity generation. With the potential to double the electricity output efficiency of solar-thermal power stations, this topping cycle application can significantly reduce the cost of solar-thermal electricity below that of the lowest-cost, fossil-fuel generated electricity.

  12. Solar and wind power advancing

    Gasoline and Diesel Fuel Update (EIA)

    Solar and wind power advancing U.S. electricity generation from wind and solar energy show no signs of slowing down. In its new monthly forecast, the U.S. Energy Information Administration expects wind-powered generation to grow by 19 percent this year and rise another 8 percent in 2014. Congress's extension in January of a tax credit for electricity producers that use renewables is behind the wind power boost. Solar generation in the electric power sector is expected to grow even more, rising

  13. Concentrating Solar Power Tower System Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tower System Basics Concentrating Solar Power Tower System Basics August 20, 2013 - 5:06pm Addthis In power tower concentrating solar power systems, numerous large, flat, sun-tracking mirrors, known as heliostats, focus sunlight onto a receiver at the top of a tall tower. A heat-transfer fluid heated in the receiver is used to generate steam, which, in turn, is used in a conventional turbine generator to produce electricity. Some power towers use water/steam as the heat-transfer fluid. Other

  14. Concentrating Solar Power: Best Practices Handbook for the Collection and Use of Solar Resource Data (CSP)

    SciTech Connect (OSTI)

    Stoffel, T.; Renne, D.; Myers, D.; Wilcox, S.; Sengupta, M.; George, R.; Turchi, C.

    2010-09-01

    As the world looks for low-carbon sources of energy, solar power stands out as the most abundant energy resource. Harnessing this energy is the challenge for this century. Photovoltaics and concentrating solar power (CSP) are two primary forms of electricity generation using sunlight. These use different technologies, collect different fractions of the solar resource, and have different siting and production capabilities. Although PV systems are most often deployed as distributed generation sources, CSP systems favor large, centrally located systems. Accordingly, large CSP systems require a substantial investment, sometimes exceeding $1 billion in construction costs. Before such a project is undertaken, the best possible information about the quality and reliability of the fuel source must be made available. That is, project developers need to have reliable data about the solar resource available at specific locations to predict the daily and annual performance of a proposed CSP plant. Without these data, no financial analysis is possible. This handbook presents detailed information about solar resource data and the resulting data products needed for each stage of the project.

  15. Solar cell array interconnects

    DOE Patents [OSTI]

    Carey, P.G.; Thompson, J.B.; Colella, N.J.; Williams, K.A.

    1995-11-14

    Electrical interconnects are disclosed for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb-Sn) no-clean fluxless solder cream, whereby the high breakage of thin (<6 mil thick) solar cells using conventional solder interconnect is eliminated. The interconnects of this invention employs copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb-Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value. 4 figs.

  16. Solar cell array interconnects

    DOE Patents [OSTI]

    Carey, Paul G. (Mountain View, CA); Thompson, Jesse B. (Brentwood, CA); Colella, Nicolas J. (Livermore, CA); Williams, Kenneth A. (Livermore, CA)

    1995-01-01

    Electrical interconnects for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb-Sn) no-clean fluxless solder cream, whereby the high breakage of thin (<6 mil thick) solar cells using conventional solder interconnect is eliminated. The interconnects of this invention employs copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb-Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value.

  17. Using Electricity",,,"Electricity Consumption",,,"Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Total Electricity Consumption and Expenditures for All Buildings, 2003" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of...

  18. Electricity",,,"Electricity Consumption",,,"Electricity Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    C9. Total Electricity Consumption and Expenditures, 1999" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of Buildings...

  19. Electricity",,,"Electricity Consumption",,,"Electricity Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    DIV. Total Electricity Consumption and Expenditures by Census Division, 1999" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number...

  20. Austin Energy's Residential Solar Rate | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Austin Energy's Residential Solar Rate Austin Energy's Residential Solar Rate This presentation was given by Leslie Libby of Austin Energy at the February 19, 2013, CommRE webinar which focused on how municipal utilities fund solar energy projects. PDF icon libby_austinenergy.pdf More Documents & Publications Austin, Texas: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) QER - Comment of Solar Electric Power Association Residential Solar

  1. NREL: Energy Analysis - Solar Technology Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Technology Analysis NREL conducts analysis to support research and development done by the Solar Energy Technologies Program in three major technology areas: concentrating solar power; solar electricity, also known as photovoltaics or PV; and solar heating and lighting. For example, in the area of photovoltaics, EERE's systems modeling and analysis activity rigorously assesses the performance, reliability, installed costs, and levelized energy costs (LECs) of a wide variety of flat-plate

  2. Solar Market Pathways | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Market Pathways Solar Market Pathways The Solar Market Pathways program supports 15 SunShot projects that are advancing solar deployment across the United States. These projects take a variety of approaches to develop actionable strategic plans to expand solar electricity use for residential, community, and commercial properties. Awardees use a wide range of tools, including special financing mechanisms like commercial property assessed clean energy, and the integration of solar energy

  3. Concentrating Solar Power | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power Concentrating Solar Power The SunShot Initiative supports research and development of concentrating solar power (CSP) technologies that reduce the cost of solar energy. CSP helps to achieve the SunShot Initiative cost targets with systems that can supply solar power on demand, even when there is no sunlight, through the use of thermal storage. Since SunShot's inception, the levelized cost of electricity for CSP has decreased about 36 percent, from $0.21 cents per

  4. NREL: Learning - Solar Photovoltaic Technology Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic Technology Basics Photo of a large silicon solar array on a roof with a blue sky and trees in background. A large silicon solar array installed on the roof of a...

  5. Iwasaki Electric Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Co Ltd Jump to: navigation, search Name: Iwasaki Electric Co Ltd Place: Tokyo, Tokyo, Japan Zip: 108-0014 Sector: Solar, Wind energy Product: Japanese manufacturer of lighting...

  6. Solar Renewable Energy Certificates (SRECs) Registration Program

    Broader source: Energy.gov [DOE]

    New Jersey’s Renewable Portfolio Standard (RPS) includes a carve-out for solar, requiring the each electricity Load Serving Entities (LSEs) to provide at least 4.1% of the electricity through in...

  7. Energy 101: Concentrating Solar Power

    ScienceCinema (OSTI)

    None

    2013-05-29

    From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power for about 90,000 homes. This video explains what CSP is, how it works, and how systems like parabolic troughs produce renewable power. For more information on the Office of Energy Efficiency and Renewable Energy's CSP research, see the Solar Energy Technology Program's Concentrating Solar Power Web page at http://www1.eere.energy.gov/solar/csp_program.html.

  8. Solar collector

    SciTech Connect (OSTI)

    Wilhelm, W.G.

    1982-05-04

    The field of this invention is solar collectors, and more particularly, the invention pertains to a flat plate collector that employs high performance thin films. The solar collector of this invention overcomes several problems in this field, such as excessive hardware, cost and reliability, and other prior art drawbacks outlined in the specification. In the preferred form, the apparatus features a substantially rigid planar frame. A thin film window is bonded to one planar side of the frame. An absorber of laminate construction is comprised of two thin film layers that are sealed perimetrically. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. Absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  9. Community Shared Solar: Expansions Underway in Solar America Communities

    Broader source: Energy.gov [DOE]

    Community shared solar is expanding rapidly as a model ownership structure for solar PV. By offering customers an option to purchase or lease part of a larger solar array instead of having to purchase the entire system, the model greatly expands participatory opportunities to a large new market segment of citizens and customers, with very low or no cost to local government.

  10. Large-Scale PV Module Manufacturing Using Ultra-Thin Polycrystalline Silicon Solar Cells: Final Subcontract Report, 1 April 2002--28 February 2006

    SciTech Connect (OSTI)

    Wohlgemuth, J.; Narayanan, M.

    2006-07-01

    The major objectives of this program were to continue advances of BP Solar polycrystalline silicon manufacturing technology. The Program included work in the following areas. (1) Efforts in the casting area to increase ingot size, improve ingot material quality, and improve handling of silicon feedstock as it is loaded into the casting stations. (2) Developing wire saws to slice 100-..mu..m-thick silicon wafers on 290-..mu..m-centers. (3) Developing equipment for demounting and subsequent handling of very thin silicon wafers. (4) Developing cell processes using 100-..mu..m-thick silicon wafers that produce encapsulated cells with efficiencies of at least 15.4% at an overall yield exceeding 95%. (5) Expanding existing in-line manufacturing data reporting systems to provide active process control. (6) Establishing a 50-MW (annual nominal capacity) green-field Mega-plant factory model template based on this new thin polycrystalline silicon technology. (7) Facilitating an increase in the silicon feedstock industry's production capacity for lower-cost solar-grade silicon feedstock..

  11. Long Island Solar Farm

    SciTech Connect (OSTI)

    Anders, R.

    2013-05-01

    The Long Island Solar Farm (LISF) is a remarkable success story, whereby very different interest groups found a way to capitalize on unusual circumstances to develop a mutually beneficial source of renewable energy. The uniqueness of the circumstances that were necessary to develop the Long Island Solar Farm make it very difficult to replicate. The project is, however, an unparalleled resource for solar energy research, which will greatly inform large-scale PV solar development in the East. Lastly, the LISF is a superb model for the process by which the project developed and the innovation and leadership shown by the different players.

  12. Ausra Inc Formerly Solar Heat and Power Pty Ltd SHP | Open Energy...

    Open Energy Info (EERE)

    Pty Ltd (SHP)) Place: Palo Alto, California Zip: 94303 Sector: Solar Product: US-based solar thermal electrical generation (STEG) company owned by AREVA Group. References: Ausra...

  13. San Diego County- Solar Regulations

    Broader source: Energy.gov [DOE]

    The County of San Diego has established zoning guidelines for solar electric systems of varying sizes in the unincorporated areas of San Diego County. Photovoltaic (PV) systems which have their...

  14. Columbia Water & Light- Solar Rebates

    Broader source: Energy.gov [DOE]

    Columbia Water & Light electric customers are eligible for a $400 rebate for the purchase of a new solar water heater. To apply for this rebate, a customer submits a pre-approval application to...

  15. Solar Success Stories | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy » Solar Success Stories Solar Success Stories RSS The Office of Energy Efficiency and Renewable Energy's (EERE) successes in developing more efficient and less expensive solar energy technologies translate into easy access and large-scale energy savings. Explore EERE's solar energy success stories below. January 7, 2016 Solar installers dressed up as superheroes to complete the installation on the KidsQuest Children's Museum in Washington as part of the Solarize Bellevue

  16. Integrated Solar Thermochemical Reaction System for High Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production of Electricity | Department of Energy Integrated Solar Thermochemical Reaction System for High Efficiency Production of Electricity Integrated Solar Thermochemical Reaction System for High Efficiency Production of Electricity This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona. PDF icon csp_review_meeting_042313_wegeng.pdf More Documents & Publications Highly Efficient Solar

  17. Module level solutions to solar cell polarization

    DOE Patents [OSTI]

    Xavier, Grace (Fremont, CA), Li; Bo (San Jose, CA)

    2012-05-29

    A solar cell module includes interconnected solar cells, a transparent cover over the front sides of the solar cells, and a backsheet on the backsides of the solar cells. The solar cell module includes an electrical insulator between the transparent cover and the front sides of the solar cells. An encapsulant protectively packages the solar cells. To prevent polarization, the insulator has resistance suitable to prevent charge from leaking from the front sides of the solar cells to other portions of the solar cell module by way of the transparent cover. The insulator may be attached (e.g., by coating) directly on an underside of the transparent cover or be a separate layer formed between layers of the encapsulant. The solar cells may be back junction solar cells.

  18. Buying and Making Electricity | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buying and Making Electricity Buying and Making Electricity You can make your own electricity by installing a small solar electric (photovoltaic) system at your home. | Photo courtesy of Susan Bilo/NREL. You can make your own electricity by installing a small solar electric (photovoltaic) system at your home. | Photo courtesy of Susan Bilo/NREL. You can take advantage of clean, renewable energy by buying "green power" or by making your own electricity with a small home renewable energy

  19. X6.9-CLASS FLARE-INDUCED VERTICAL KINK OSCILLATIONS IN A LARGE-SCALE PLASMA CURTAIN AS OBSERVED BY THE SOLAR DYNAMICS OBSERVATORY/ATMOSPHERIC IMAGING ASSEMBLY

    SciTech Connect (OSTI)

    Srivastava, A. K. [Aryabhatta Research Institute of Observational Sciences (ARIES), Manora Peak, Nainital 263 002 (India); Goossens, M. [Centre for Mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, Celestijnenlaan 200B, B-3001 Leuven (Belgium)

    2013-11-01

    We present rare observational evidence of vertical kink oscillations in a laminar and diffused large-scale plasma curtain as observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. The X6.9-class flare in active region 11263 on 2011 August 9 induces a global large-scale disturbance that propagates in a narrow lane above the plasma curtain and creates a low density region that appears as a dimming in the observational image data. This large-scale propagating disturbance acts as a non-periodic driver that interacts asymmetrically and obliquely with the top of the plasma curtain and triggers the observed oscillations. In the deeper layers of the curtain, we find evidence of vertical kink oscillations with two periods (795 s and 530 s). On the magnetic surface of the curtain where the density is inhomogeneous due to coronal dimming, non-decaying vertical oscillations are also observed (period ? 763-896 s). We infer that the global large-scale disturbance triggers vertical kink oscillations in the deeper layers as well as on the surface of the large-scale plasma curtain. The properties of the excited waves strongly depend on the local plasma and magnetic field conditions.

  20. Illinois Company Implementing Solar Energy

    Broader source: Energy.gov [DOE]

    J.F. Family Limited Partnership has been awarded $191,000 through the Recovery Act toward the use of solar energy at its Lakefront Parkway property in Edwardsville, Ill., which is the company headquarters for J.F. Electric Inc. The funding will be used to install a 75-kW solar photovoltaic system on the buildings roof, creating electricity on-site and creating or saving a total of 14 jobs.

  1. World's Most Efficient Solar Cell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    World's Most Efficient Solar Cell National Renewable Energy Laboratory, Spectrolab Set Record For more information contact: George Douglas, 303-275-4096 e:mail: George Douglas Golden, Colo., Nov. 1, 1999 - A solar cell that can convert sunlight to electricity at a record-setting 32 percent efficiency has been developed by the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) and Spectrolab. The high efficiency makes the cells attractive for use in solar concentrator

  2. NEW ASPECTS OF A LID-REMOVAL MECHANISM IN THE ONSET OF AN ERUPTION SEQUENCE THAT PRODUCED A LARGE SOLAR ENERGETIC PARTICLE (SEP) EVENT

    SciTech Connect (OSTI)

    Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David A.; Knox, Javon M. E-mail: ron.moore@nasa.gov

    2014-06-20

    We examine a sequence of two ejective eruptions from a single active region on 2012 January 23, using magnetograms and EUV images from the Solar Dynamics Observatory's (SDO) Helioseismic and Magnetic Imager (HMI) and Atmospheric and Imaging Assembly (AIA), and EUV images from STEREO/EUVI. This sequence produced two coronal mass ejections (CMEs) and a strong solar energetic particle event (SEP); here we focus on the magnetic onset of this important space weather episode. Cheng et al. showed that the first eruption's ({sup E}ruption1{sup )} flux rope was apparent only in ''hotter'' AIA channels, and that it removed overlying field that allowed the second eruption ({sup E}ruption2{sup )} to begin via ideal MHD instability; here we say that Eruption2 began via a ''lid removal'' mechanism. We show that during Eruption1's onset, its flux rope underwent a ''tether weakening'' (TW) reconnection with field that arched from the eruption-source active region to an adjacent active region. Standard flare loops from Eruption1 developed over Eruption2's flux rope and enclosed filament, but these overarching new loops were unable to confine that flux rope/filament. Eruption1's flare loops, from both TW reconnection and standard-flare-model internal reconnection, were much cooler than Eruption2's flare loops (GOES thermal temperatures of ?7.5MK and 9MK, compared to ?14MK). The corresponding three sequential GOES flares were, respectively, due to TW reconnection plus earlier phase Eruption1 tether-cutting reconnection, Eruption1 later-phase tether-cutting reconnection, and Eruption2 tether-cutting reconnection.

  3. Implementing Solar Technologies at Airports

    SciTech Connect (OSTI)

    Kandt, A.; Romero, R.

    2014-07-01

    Federal agencies, such as the Department of Defense and Department of Homeland Security, as well as numerous private entities are actively pursuing the installation of solar technologies to help reduce fossil fuel energy use and associated emissions, meet sustainability goals, and create more robust or reliable operations. One potential approach identified for siting solar technologies is the installation of solar energy technologies at airports and airfields, which present a significant opportunity for hosting solar technologies due to large amounts of open land. This report focuses largely on the Federal Aviation Administration's (FAA's) policies toward siting solar technologies at airports.

  4. Solar Policy Environment: Philadelphia

    Broader source: Energy.gov [DOE]

    The project will identify promising locations for photovoltaic installations and create a roadmap for commercial and residential system developers. The roadmap, published as the Solar Developers Guide to Philadelphia, will be used to promote and attract solar energy investment. Philadelphia’s long-term goal for solar energy is to fully utilize the potential of solar energy to safely, reliably, and cost-effectively displace the use of energy generated by fossil fuels. To achieve its solar energy goals, the City of Philadelphia must add large commercial scale (> 500 kW) solar installations to its ongoing efforts on the smaller scale (we note that a new 1 MW PV installation will be installed at the Philadelphia Navy Yard by the end of 2008).

  5. Solar Tour 2008

    Energy Savers [EERE]

    Suzanne L. Singer Graduate Student Intern University of California, Berkeley DOE Program Review Meeting November 19, 2008 Heat Management for Energy Conversion * Heat to electricity: thermoelectrics * Sunlight to electricity: concentrated PV Solar/Wind hybrid - Kayenta, AZ with NTUA Systems power rural areas Navajo Tribe Wind Potential - Aubrey Cliffs, AZ with NTUA Met towers test wind potential Navajo Tribe Sustainable Building Materials in Peach Springs, AZ Earthship flexcrete Recyclable

  6. Electric utility industry experience with geomagnetic disturbances

    SciTech Connect (OSTI)

    Barnes, P.R.; Rizy, D.T.; McConnell, B.W. ); Taylor, E.R. Jr. ); Tesche, F.M.

    1991-09-01

    A geomagnetic disturbance (GMD) by its nature occurs globally and almost simultaneously. Severe geomagnetic storms cause problems for electric power systems. The vulnerability of electric power systems to such events has apparently increased during the last 10 to 20 years because power system transmission lines have become more interconnected and have increased in length and because power systems are now operated closer to their limits than in the past. In this report, the experience of electric utilities during geomagnetic storms is examined and analyzed. Measured data, effects on power system components, and power system impacts are considered. It has been found that electric power systems are susceptible to geomagnetically induced earth-surface potential gradients as small as few (2 to 3) volts per kilometer, corresponding to a storm of K-6 intensity over an area of high earth resistivity. The causes and effects are reasonably well understood, but additional research is needed to develop a better understanding of solar-induced geomagnetic storms and the responses of power systems to these types of storms. A better understanding of geomagnetic storms and the power systems' responses to GMDs is needed so that mitigation measures can be implemented that will make power systems less susceptible to severe geomagnetic disturbances. A GMD caused by a large high-altitude nuclear detonation is similar in many ways to that of solar-induced geomagnetic storms except that a nuclear-caused disturbance would be much more intense with a far shorter duration. 49 refs.

  7. Electric Utility Industry Experience with Geomagnetic Disturbances

    SciTech Connect (OSTI)

    Barnes, P.R.

    1991-01-01

    A geomagnetic disturbance (GMD) by its nature occurs globally and almost simultaneously. Severe geomagnetic storms cause problems for electric power systems. The vulnerability of electric power systems to such events has apparently increased during the last 10 to 20 years because power system transmission lines have become more interconnected and have increased in length and because power systems are now operated closer to their limits than in the past. In this report, the experience of electric utilities during geomagnetic storms is examined and analyzed. Measured data, effects on power system components, and power system impacts are considered. It has been found that electric power systems are susceptible to geomagnetically induced earth-surface potential gradients as small as a few (2 to 3) volts per kilometer, corresponding to a storm of K-6 intensity over an area of high earth resistivity. The causes and effects are reasonably well understood, but additional research is needed to develop a better understanding of solar-induced geomagnetic storms and the responses of power systems to these types of storms. A better understanding of geomagnetic storms and the power systems' responses to GMDs is needed so that mitigation measures can be implemented that will make power systems less susceptible to severe geomagnetic disturbances. A GMD caused by a large high-altitude nuclear detonation is similar in many ways to that of solar-induced geomagnetic storms except that a nuclear-caused disturbance would be much more intense with a far shorter duration.

  8. Electric utility industry experience with geomagnetic disturbances

    SciTech Connect (OSTI)

    Barnes, P.R.; Rizy, D.T.; McConnell, B.W.; Taylor, E.R. Jr.; Tesche, F.M.

    1991-09-01

    A geomagnetic disturbance (GMD) by its nature occurs globally and almost simultaneously. Severe geomagnetic storms cause problems for electric power systems. The vulnerability of electric power systems to such events has apparently increased during the last 10 to 20 years because power system transmission lines have become more interconnected and have increased in length and because power systems are now operated closer to their limits than in the past. In this report, the experience of electric utilities during geomagnetic storms is examined and analyzed. Measured data, effects on power system components, and power system impacts are considered. It has been found that electric power systems are susceptible to geomagnetically induced earth-surface potential gradients as small as few (2 to 3) volts per kilometer, corresponding to a storm of K-6 intensity over an area of high earth resistivity. The causes and effects are reasonably well understood, but additional research is needed to develop a better understanding of solar-induced geomagnetic storms and the responses of power systems to these types of storms. A better understanding of geomagnetic storms and the power systems` responses to GMDs is needed so that mitigation measures can be implemented that will make power systems less susceptible to severe geomagnetic disturbances. A GMD caused by a large high-altitude nuclear detonation is similar in many ways to that of solar-induced geomagnetic storms except that a nuclear-caused disturbance would be much more intense with a far shorter duration. 49 refs.

  9. Salem Electric- Photovoltaic Rebate Program

    Broader source: Energy.gov [DOE]

    Salem Electric offers a rebate to residential customers who install solar photovoltaic (PV) systems. The rebate offered is $600 for the first three kilowatts (kWs) installed and $300/kW for any...

  10. Union Training Future Electricians in Solar Power

    Broader source: Energy.gov [DOE]

    Electricians in Indiana believe solar power is the future, and they are preparing for it. The International Brotherhood of Electrical Workers Local 725 (IBEW 725) in Terre Haute, Ind., purchased 60 solar panels and plans to train its members in solar installation.

  11. Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power/Energy Conversion Efficiency/Solar Energy/Solar Newsletter - Solar NewsletterTara Camacho-Lopez2016-02-08T15:41:23+00:00

  12. Solar Easements

    Broader source: Energy.gov [DOE]

    New Hampshire's "solar skyspace easement" provisions allow property owners to create solar easements in order to create and preserve a right to unobstructed access to solar energy. Easements remain...

  13. SolarPower Restoration Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    Solar Product: SolarPower Restoration Systems is pursuing Building Integrated Photovoltaics (BIPV) systems and large scale Photovoltaic Power (PV) Array Systems over concrete...

  14. Going Off the Grid with Solar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Off the Grid with Solar Going Off the Grid with Solar October 22, 2014 - 2:18pm Q&A What do you want to know about solar energy at home? Tell Us Addthis When installing an off-grid solar electric system be sure you have "balance-of-system" equipment to transmit electricity safely. | Photo courtesy of Warren Gretz, National Renewable Energy Laboratory. When installing an off-grid solar electric system be sure you have "balance-of-system" equipment to transmit electricity

  15. Renewable Energy Ready Home Solar Photovoltaic Specifications | Department

    Energy Savers [EERE]

    of Energy Renewable Energy Ready Home Solar Photovoltaic Specifications Renewable Energy Ready Home Solar Photovoltaic Specifications Solar Photovoltaic Specification, Checklist and Guide, from the U.S. Environmental Protection Agency. PDF icon rerh_solar_electric_guide.pdf More Documents & Publications Solar Water Heating: SPECIFICATION, CHECKLIST AND GUIDE DOE Zero Energy Ready Home PV-Ready Checklist DOE Zero Energy Ready Home Solar Hot Water-Ready Checklist

  16. Electricity Transmission and Distribution Technologies Available for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Licensing - Energy Innovation Portal Electricity Transmission Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Marketing Summaries (70) Success Stories (2) Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual

  17. Tracking heat flux sensors for concentrating solar applications

    DOE Patents [OSTI]

    Andraka, Charles E; Diver, Jr., Richard B

    2013-06-11

    Innovative tracking heat flux sensors located at or near the solar collector's focus for centering the concentrated image on a receiver assembly. With flux sensors mounted near a receiver's aperture, the flux gradient near the focus of a dish or trough collector can be used to precisely position the focused solar flux on the receiver. The heat flux sensors comprise two closely-coupled thermocouple junctions with opposing electrical polarity that are separated by a thermal resistor. This arrangement creates an electrical signal proportional to heat flux intensity, and largely independent of temperature. The sensors are thermally grounded to allow a temperature difference to develop across the thermal resistor, and are cooled by a heat sink to maintain an acceptable operating temperature.

  18. Solar Energy of the North

    SciTech Connect (OSTI)

    Davis St. Peter Director of Faclities Charles Bonin Vice President of Administration & Finance

    2012-01-12

    The concept of this project was to design a solar array that would not only provide electricity for the major classroom building of the campus but would also utilize that electricity to enhance the learning environment. It was also understood that the project would be a research and data gathering project.

  19. Region Solar Inc Solar Inc California Renewable Energy Solar...

    Open Energy Info (EERE)

    Point Drive Fort Collins Colorado Solar Solar cell passive solar architectural glass solar grid tie inverter semiconductor flat panel display data storage http www advanced...

  20. Community Shared Solar with Solarize

    Broader source: Energy.gov [DOE]

    An overview of the concept behind The Solarize Guidebook, which offers neighborhoods a plan for getting volume discounts when making group purchases of rooftop solar energy systems.

  1. Community Shared Solar: Policy and Regulatory Considerations (Brochure), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 COMMUNITY SHARED SOLAR POLICY AND REGULATORY CONSIDERATIONS ABSTRACT Shared solar, also called community solar, is an increasingly popular business model for deploying distributed solar technology. Shared solar projects allow customers that do not have suffcient solar resource, that rent their homes, or that are otherwise unable or unwilling to install solar on their residences, to buy or lease a portion of a shared solar system. The participant's share of the electricity generated is credited

  2. Identifying Wind and Solar Ramping Events: Preprint

    SciTech Connect (OSTI)

    Florita, A.; Hodge, B. M.; Orwig, K.

    2013-01-01

    Wind and solar power are playing an increasing role in the electrical grid, but their inherent power variability can augment uncertainties in power system operations. One solution to help mitigate the impacts and provide more flexibility is enhanced wind and solar power forecasting; however, its relative utility is also uncertain. Within the variability of solar and wind power, repercussions from large ramping events are of primary concern. At the same time, there is no clear definition of what constitutes a ramping event, with various criteria used in different operational areas. Here the Swinging Door Algorithm, originally used for data compression in trend logging, is applied to identify variable generation ramping events from historic operational data. The identification of ramps in a simple and automated fashion is a critical task that feeds into a larger work of 1) defining novel metrics for wind and solar power forecasting that attempt to capture the true impact of forecast errors on system operations and economics, and 2) informing various power system models in a data-driven manner for superior exploratory simulation research. Both allow inference on sensitivities and meaningful correlations, as well as the ability to quantify the value of probabilistic approaches for future use in practice.

  3. Integrated Solar Thermochemical Reaction System

    Broader source: Energy.gov [DOE]

    This fact sheet describes an integrated solar thermochemical reaction system project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by the Pacific Northwest National Laboratory, is working to develop and demonstrate a high-performance solar thermochemical reaction system in an end-to-end demonstration that produces electricity. A highly efficient solar thermochemical reaction system would allow for 24-hour operation without the need for storage technology, and reductions in total system costs while providing a relatively low-risk deployment option for CSP systems.

  4. Statistical Characterization of Solar Photovoltaic Power Variability at Small Timescales: Preprint

    SciTech Connect (OSTI)

    Shedd, S.; Hodge, B.-M.; Florita, A.; Orwig, K.

    2012-08-01

    Integrating large amounts of variable and uncertain solar photovoltaic power into the electricity grid is a growing concern for power system operators in a number of different regions. Power system operators typically accommodate variability, whether from load, wind, or solar, by carrying reserves that can quickly change their output to match the changes in the solar resource. At timescales in the seconds-to-minutes range, this is known as regulation reserve. Previous studies have shown that increasing the geographic diversity of solar resources can reduce the short term-variability of the power output. As the price of solar has decreased, the emergence of very large PV plants (greater than 10 MW) has become more common. These plants present an interesting case because they are large enough to exhibit some spatial smoothing by themselves. This work examines the variability of solar PV output among different arrays in a large ({approx}50 MW) PV plant in the western United States, including the correlation in power output changes between different arrays, as well as the aggregated plant output, at timescales ranging from one second to five minutes.

  5. BrightPhase Energy Inc formerly Solar Focus | Open Energy Information

    Open Energy Info (EERE)

    Product: Solar Focus develops thermal and electric reflecting concentrator systems for water heating and electricity generation. References: BrightPhase Energy Inc (formerly...

  6. Biomimetic Dye Molecules for Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomimetic Dye Molecules for Solar Cells Print Pressing energy problems provide opportunities for solid-state physicists and chemists to solve a major challenge: solar cell adoption. Though solar cells can use energy directly from the Sun to produce electricity that can be converted efficiently into other kinds of energy, they are currently too costly to compete with traditional (polluting) energy sources. The most cost-effective solar cells are not high-end, high-efficiency single-crystal

  7. Biomimetic Dye Molecules for Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomimetic Dye Molecules for Solar Cells Print Pressing energy problems provide opportunities for solid-state physicists and chemists to solve a major challenge: solar cell adoption. Though solar cells can use energy directly from the Sun to produce electricity that can be converted efficiently into other kinds of energy, they are currently too costly to compete with traditional (polluting) energy sources. The most cost-effective solar cells are not high-end, high-efficiency single-crystal

  8. Biomimetic Dye Molecules for Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomimetic Dye Molecules for Solar Cells Print Pressing energy problems provide opportunities for solid-state physicists and chemists to solve a major challenge: solar cell adoption. Though solar cells can use energy directly from the Sun to produce electricity that can be converted efficiently into other kinds of energy, they are currently too costly to compete with traditional (polluting) energy sources. The most cost-effective solar cells are not high-end, high-efficiency single-crystal

  9. Biomimetic Dye Molecules for Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomimetic Dye Molecules for Solar Cells Print Pressing energy problems provide opportunities for solid-state physicists and chemists to solve a major challenge: solar cell adoption. Though solar cells can use energy directly from the Sun to produce electricity that can be converted efficiently into other kinds of energy, they are currently too costly to compete with traditional (polluting) energy sources. The most cost-effective solar cells are not high-end, high-efficiency single-crystal

  10. Biomimetic Dye Molecules for Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomimetic Dye Molecules for Solar Cells Biomimetic Dye Molecules for Solar Cells Print Wednesday, 28 April 2010 00:00 Pressing energy problems provide opportunities for solid-state physicists and chemists to solve a major challenge: solar cell adoption. Though solar cells can use energy directly from the Sun to produce electricity that can be converted efficiently into other kinds of energy, they are currently too costly to compete with traditional (polluting) energy sources. The most

  11. Hybird Geothemal-Solar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybird Geothemal-Solar Hybird Geothemal-Solar Hybird Geothemal-Solar presentation at the April 2013 peer review meeting held in Denver, Colorado. PDF icon hybrid_geo_solar_peer2013.pdf More Documents & Publications track 1: Low Temp | geothermal 2015 peer review U.S. DOE Geothermal Electricity Technology Evaluation Model (GETEM) Webinar Presentation Tailored Working Fluids for Enhanced Binary Geothermal Power Plants

  12. Biomimetic Dye Molecules for Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomimetic Dye Molecules for Solar Cells Print Pressing energy problems provide opportunities for solid-state physicists and chemists to solve a major challenge: solar cell adoption. Though solar cells can use energy directly from the Sun to produce electricity that can be converted efficiently into other kinds of energy, they are currently too costly to compete with traditional (polluting) energy sources. The most cost-effective solar cells are not high-end, high-efficiency single-crystal

  13. Biomimetic Dye Molecules for Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomimetic Dye Molecules for Solar Cells Print Pressing energy problems provide opportunities for solid-state physicists and chemists to solve a major challenge: solar cell adoption. Though solar cells can use energy directly from the Sun to produce electricity that can be converted efficiently into other kinds of energy, they are currently too costly to compete with traditional (polluting) energy sources. The most cost-effective solar cells are not high-end, high-efficiency single-crystal

  14. Biomimetic Dye Molecules for Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomimetic Dye Molecules for Solar Cells Print Pressing energy problems provide opportunities for solid-state physicists and chemists to solve a major challenge: solar cell adoption. Though solar cells can use energy directly from the Sun to produce electricity that can be converted efficiently into other kinds of energy, they are currently too costly to compete with traditional (polluting) energy sources. The most cost-effective solar cells are not high-end, high-efficiency single-crystal

  15. Biomimetic Dye Molecules for Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomimetic Dye Molecules for Solar Cells Print Pressing energy problems provide opportunities for solid-state physicists and chemists to solve a major challenge: solar cell adoption. Though solar cells can use energy directly from the Sun to produce electricity that can be converted efficiently into other kinds of energy, they are currently too costly to compete with traditional (polluting) energy sources. The most cost-effective solar cells are not high-end, high-efficiency single-crystal

  16. Modeling and Analysis of Solar Radiation Potentials on Building Rooftops

    SciTech Connect (OSTI)

    Omitaomu, Olufemi A; Kodysh, Jeffrey B; Bhaduri, Budhendra L

    2012-01-01

    The active application of photovoltaic for electricity generation could effectively transform neighborhoods and commercial districts into small, localized power plants. This application, however, relies heavily on an accurate estimation of the amount of solar radiation that is available on individual building rooftops. While many solar energy maps exist at higher spatial resolution for concentrated solar energy applications, the data from these maps are not suitable for roof-mounted photovoltaic for several reasons, including lack of data at the appropriate spatial resolution and lack of integration of building-specific characteristics into the models used to generate the maps. To address this problem, we have developed a modeling framework for estimating solar radiation potentials on individual building rooftops that is suitable for utility-scale applications as well as building-specific applications. The framework uses light detection and ranging (LIDAR) data at approximately 1-meter horizontal resolution and 0.3-meter vertical resolution as input for modeling a large number of buildings quickly. One of the strengths of this framework is the ability to parallelize its implementation. Furthermore, the framework accounts for building specific characteristics, such as roof slope, roof aspect, and shadowing effects, that are critical to roof-mounted photovoltaic systems. The resulting data has helped us to identify the so-called solar panel sweet spots on individual building rooftops and obtain accurate statistics of the variation in solar radiation as a function of time of year and geographical location.

  17. Funding Opportunity Announcement: Solar Market Pathways

    Broader source: Energy.gov [DOE]

    The Solar Market Pathways funding opportunity announcement (FOA) seeks to support regional, state, tribal, and locally-driven efforts to develop multi-year solar deployment plans that will help provide business certainty and establish a clear path for the next five to ten years of solar deployment. Specifically, this FOA is intended to enable replicable multi-year strategies that spur significant solar deployment, drive down solar soft costs, support local economic development efforts, and address the potential challenges arising from increased solar penetration on the electrical grid.

  18. So You Want to Go Solar? 3 Things to Consider When Installing...

    Broader source: Energy.gov (indexed) [DOE]

    Schroeder, National Renewable Energy Laboratory Installing solar panels requires the proper ... and local weather conditions that may affect electricity production. ...

  19. SunShot Funding Spurs Standardized Testing for "Smart" Solar Inverters

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Funding Spurs Standardized Testing for "Smart" Solar Inverters SunShot Funding Spurs Standardized Testing for "Smart" Solar Inverters August 12, 2015 - 1:02pm Addthis Caption: Inverters allow for the electricity produced by solar panels to be converted into electricity. Licensed photo courtesy of Lauren Wellicome. Caption: Inverters allow for the electricity produced by solar panels to be converted into electricity. Licensed photo courtesy of Lauren

  20. Estimating the Cost and Energy Efficiency of a Solar Water Heater |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy the Cost and Energy Efficiency of a Solar Water Heater Estimating the Cost and Energy Efficiency of a Solar Water Heater Solar water heaters are more efficient the gas or electric heaters. | Chart credit ENERGY STAR Solar water heaters are more efficient the gas or electric heaters. | Chart credit ENERGY STAR Solar water heating systems usually cost more to purchase and install than conventional water heating systems. However, a solar water heater can usually save you

  1. Concentrating Solar Power Basics | Department of Energy

    Office of Environmental Management (EM)

    Solar » Concentrating Solar Power Basics Concentrating Solar Power Basics August 20, 2013 - 4:38pm Addthis Text Version This solar concentrator has a fixed-focus faceted dish with a concentration of about 250 suns. This system can be used for large fields connected to the utility grid, hydrogen generation, or water pumping. Credit: Science Applications International Corporation / PIX 13464 Concentrating solar power (CSP) technologies use mirrors to reflect and concentrate sunlight onto

  2. | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Arizona, April 19-20, 2012. The conference featured student talks and poster presentations on the broad range of activities in solar fuels, solar electric, and energy policy.

  3. Ultra-Fast Quantum Efficiency Solar Cell Test - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    more efficient in converting solar energy into electricity. ... QE binning will not do away with binning based on current-vo... All of the LEDs in the array illuminate a solar cell with ...

  4. South River EMC- Solar Water Heating Rebate Program

    Broader source: Energy.gov [DOE]

    South River Electric Membership Corporation (EMC) is providing rebates to encourage their customers to install solar water heating systems. To be eligible for the rebate solar collectors must have...

  5. City Solar AG | Open Energy Information

    Open Energy Info (EERE)

    services for large-scale PV power plants, also has a division called City Solar Invest to develop its own plants. References: City Solar AG1 This article is a stub. You...

  6. NREL: Energy Systems Integration - Abengoa Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Abengoa Solar Photo of a person standing in front of a large 3D visualization screen. Abengoa Solar is leveraging the 3D visualization capabilities of the ESIF Insight Center to...

  7. Solar collector

    DOE Patents [OSTI]

    Wilhelm, William G. (Cutchogue, NY)

    1982-01-01

    The field of this invention is solar collectors, and more particularly, the invention pertains to a flat plate collector that employs high performance thin films. The solar collector of this invention overcomes several problems in this field, such as excessive hardware, cost and reliability, and other prior art drawbacks outlined in the specification. In the preferred form, the apparatus features a substantially rigid planar frame (14). A thin film window (42) is bonded to one planar side of the frame. An absorber (24) of laminate construction is comprised of two thin film layers (24a, 24b) that are sealed perimetrically. The layers (24a, 24b) define a fluid-tight planar envelope (24c) of large surface area to volume through which a heat transfer fluid flows. Absorber (24) is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  8. Front contact solar cell with formed emitter

    DOE Patents [OSTI]

    Cousins, Peter John

    2014-11-04

    A bipolar solar cell includes a backside junction formed by an N-type silicon substrate and a P-type polysilicon emitter formed on the backside of the solar cell. An antireflection layer may be formed on a textured front surface of the silicon substrate. A negative polarity metal contact on the front side of the solar cell makes an electrical connection to the substrate, while a positive polarity metal contact on the backside of the solar cell makes an electrical connection to the polysilicon emitter. An external electrical circuit may be connected to the negative and positive metal contacts to be powered by the solar cell. The positive polarity metal contact may form an infrared reflecting layer with an underlying dielectric layer for increased solar radiation collection.

  9. Front contact solar cell with formed emitter

    DOE Patents [OSTI]

    Cousins, Peter John (Menlo Park, CA)

    2012-07-17

    A bipolar solar cell includes a backside junction formed by an N-type silicon substrate and a P-type polysilicon emitter formed on the backside of the solar cell. An antireflection layer may be formed on a textured front surface of the silicon substrate. A negative polarity metal contact on the front side of the solar cell makes an electrical connection to the substrate, while a positive polarity metal contact on the backside of the solar cell makes an electrical connection to the polysilicon emitter. An external electrical circuit may be connected to the negative and positive metal contacts to be powered by the solar cell. The positive polarity metal contact may form an infrared reflecting layer with an underlying dielectric layer for increased solar radiation collection.

  10. Starwood Solar I Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Starwood Solar I Solar Power Plant Jump to: navigation, search Name Starwood Solar I Solar Power Plant Facility Starwood Solar I Sector Solar Facility Type Concentrating Solar...

  11. Nevada Solar One Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Solar One Solar Power Plant Jump to: navigation, search Name Nevada Solar One Solar Power Plant Facility Nevada Solar One Sector Solar Facility Type Concentrating Solar Power...

  12. Mojave Solar Park Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Solar Park Solar Power Plant Jump to: navigation, search Name Mojave Solar Park Solar Power Plant Facility Mojave Solar Park Sector Solar Facility Type Concentrating Solar Power...

  13. Energy Department Loan Guarantee Would Support Large-Scale Rooftop...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Loan Guarantee Would Support Large-Scale Rooftop Solar Power for U.S. Military Housing Energy Department Loan Guarantee Would Support Large-Scale Rooftop Solar Power for U.S....

  14. Project Profile: Improved Large Aperture Collector Manufacturing |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Improved Large Aperture Collector Manufacturing Project Profile: Improved Large Aperture Collector Manufacturing Abengoa logo Abengoa Solar, under the Solar Manufacturing Technology (SolarMat) program, will be investigating the use of an automotive-style high-rate fabrication and automated assembly techniques to achieve a substantial reduction in the deployment cost of their new SpaceTube advanced large aperture parabolic trough collector. Approach Abengoa is developing

  15. Solar energy grid integration systems : final report of the Florida Solar Energy Center Team.

    SciTech Connect (OSTI)

    Ropp, Michael; Gonzalez, Sigifredo; Schaffer, Alan; Katz, Stanley; Perkinson, Jim; Bower, Ward Isaac; Prestero, Mark; Casey, Leo; Moaveni, Houtan; Click, David; Davis, Kristopher; Reedy, Robert; Kuszmaul, Scott S.; Sena-Henderson, Lisa; David, Carolyn; Akhil, Abbas Ali

    2012-03-01

    Initiated in 2008, the Solar Energy Grid Integration Systems (SEGIS) program is a partnership involving the U.S. DOE, Sandia National Laboratories, private sector companies, electric utilities, and universities. Projects supported under the program have focused on the complete-system development of solar technologies, with the dual goal of expanding utility-scale penetration and addressing new challenges of connecting large-scale solar installations in higher penetrations to the electric grid. The Florida Solar Energy Center (FSEC), its partners, and Sandia National Laboratories have successfully collaborated to complete the work under the third and final stage of the SEGIS initiative. The SEGIS program was a three-year, three-stage project that include conceptual design and market analysis in Stage 1, prototype development and testing in Stage 2, and moving toward commercialization in Stage 3. Under this program, the FSEC SEGIS team developed a comprehensive vision that has guided technology development that sets one methodology for merging photovoltaic (PV) and smart-grid technologies. The FSEC team's objective in the SEGIS project is to remove barriers to large-scale general integration of PV and to enhance the value proposition of photovoltaic energy by enabling PV to act as much as possible as if it were at the very least equivalent to a conventional utility power plant. It was immediately apparent that the advanced power electronics of these advanced inverters will go far beyond conventional power plants, making high penetrations of PV not just acceptable, but desirable. This report summarizes a three-year effort to develop, validate and commercialize Grid-Smart Inverters for wider photovoltaic utilization, particularly in the utility sector.

  16. Brighter Future: A Study on Solar in U.S. Schools

    Office of Energy Efficiency and Renewable Energy (EERE)

    In a first-of-its-kind report tracking the use of solar energy at K-12 schools in the United States, The Solar Foundation has developed the most comprehensive understanding to date of how schools are using and financing solar energy and the potential for still more schools to benefit from the technology. According to the report, there are currently 3,752 K-12 schools with solar installations, meaning nearly 2.7 million students attend schools with solar energy systems. These PV systems have a combined capacity of 490 megawatts (MW), and generate roughly 642,000 megawatt-hours (MWh) of electricity each year, equivalent to $77.8 million worth of utility bills and enough clean, renewable energy to offset 50 million gallons of gasoline. Solar potential on schools remains largely untapped. Of the 125,000 K-12 schools in the country, up to 72,000 schools (60%) can "go solar" cost-effectively. Approximately 450 individual schools districts have the potential to save more than $1 million over 30 years by installing a solar PV system.

  17. Turning Windows into Solar Panels | Department of Energy

    Energy Savers [EERE]

    Windows into Solar Panels Turning Windows into Solar Panels March 7, 2016 - 3:23pm Addthis UV light shines through a sample of transparent material containing quantum dots, tiny nanoparticles that can be used to harness solar energy for electricity. | Photo courtesy of LANL. UV light shines through a sample of transparent material containing quantum dots, tiny nanoparticles that can be used to harness solar energy for electricity. | Photo courtesy of LANL. Victor Klimov Los Alamos National

  18. Solar collector

    DOE Patents [OSTI]

    Wilhelm, W.G.

    The invention pertains to a flat plate collector that employs high performance thin films. The solar collector of this invention overcomes several problems in this field, such as excessive hardware, cost and reliability, and other prior art drawbacks outlined in the specification. In the preferred form, the apparatus features a substantially rigid planar frame. A thin film window is bonded to one planar side of the frame. An absorber of laminate construction is comprised of two thin film layers that are sealed perimetrically. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. Absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  19. Local Solar: What Do Leading Solar Communities Have in Common? It May Not be the Characteristics You Expect

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Planning December 2015 Local SO What do leading solar communities have in common? It may not be what you expect. By Megan Day, aicp American Planning Association 29 OLAR The recently completed six-acre one- megawatt cooperative solar farm next to Walton Energy Membership Corporation headquarters in Walton County, Georgia, consists of 4,280 solar panels and is expected to produce approximately two million kilowatt-hours of solar electricity per year. COURTESY WALTON ELECTRIC MEMBERSHIP

  20. Using Solar Power to Supplement Workplace Charging | Department of Energy

    Energy Savers [EERE]

    Using Solar Power to Supplement Workplace Charging Using Solar Power to Supplement Workplace Charging Installing plug-in electric vehicle (PEV) charging stations at the workplace demonstrates a commitment towards a greener campus. With workplace charging, most employees plug in their PEVs during the day, when the sun is shining. Using solar power to supplement electricity from the grid can help employers further reduce their carbon footprint by off-setting the mid-day electricity consumption of