National Library of Energy BETA

Sample records for large scale variable

  1. Variability of Load and Net Load in Case of Large Scale Distributed Wind Power

    SciTech Connect (OSTI)

    Holttinen, H.; Kiviluoma, J.; Estanqueiro, A.; Gomez-Lazaro, E.; Rawn, B.; Dobschinski, J.; Meibom, P.; Lannoye, E.; Aigner, T.; Wan, Y. H.; Milligan, M.

    2011-01-01

    Large scale wind power production and its variability is one of the major inputs to wind integration studies. This paper analyses measured data from large scale wind power production. Comparisons of variability are made across several variables: time scale (10-60 minute ramp rates), number of wind farms, and simulated vs. modeled data. Ramp rates for Wind power production, Load (total system load) and Net load (load minus wind power production) demonstrate how wind power increases the net load variability. Wind power will also change the timing of daily ramps.

  2. Running Large Scale Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Running Large Scale Jobs Running Large Scale Jobs Users face various challenges with running and scaling large scale jobs on peta-scale production systems. For example, certain applications may not have enough memory per core, the default environment variables may need to be adjusted, or I/O dominates run time. This page lists some available programming and run time tuning options and tips users can try on their large scale applications on Hopper for better performance. Try different compilers

  3. EPRI-DOE Joint Report on Fossil Fleet Transition with Fuel Changes and Large Scale Variable Renewable Integration Now Available

    Broader source: Energy.gov [DOE]

    A new report “Fossil Fleet Transition with Fuel Changes and Large Scale Variable Renewable Integration” from the Electric Power Research Institute (EPRI) and jointly funded by the Offices of...

  4. Variability of Power from Large-Scale Solar Photovoltaic Scenarios in the State of Gujarat: Preprint

    SciTech Connect (OSTI)

    Parsons, B.; Hummon, M.; Cochran, J.; Stoltenberg, B.; Batra, P.; Mehta, B.; Patel, D.

    2014-04-01

    India has ambitious goals for high utilization of variable renewable power from wind and solar, and deployment has been proceeding at a rapid pace. The western state of Gujarat currently has the largest amount of solar generation of any Indian state, with over 855 Megawatts direct current (MWDC). Combined with over 3,240 MW of wind, variable generation renewables comprise nearly 18% of the electric-generating capacity in the state. A new historic 10-kilometer (km) gridded solar radiation data set capturing hourly insolation values for 2002-2011 is available for India. We apply an established method for downscaling hourly irradiance data to one-minute irradiance data at potential PV power production locations for one year, 2006. The objective of this report is to characterize the intra-hour variability of existing and planned photovoltaic solar power generation in the state of Gujarat (a total of 1.9 gigawatts direct current (GWDC)), and of five possible expansion scenarios of solar generation that reflect a range of geographic diversity (each scenario totals 500-1,000 MW of additional solar capacity). The report statistically analyzes one year's worth of power variability data, applied to both the baseline and expansion scenarios, to evaluate diurnal and seasonal power fluctuations, different timescales of variability (e.g., from one to 15 minutes), the magnitude of variability (both total megawatts and relative to installed solar capacity), and the extent to which the variability can be anticipated in advance. The paper also examines how Gujarat Energy Transmission Corporation (GETCO) and the Gujarat State Load Dispatch Centre (SLDC) could make use of the solar variability profiles in grid operations and planning.

  5. Variability of Power from Large-Scale Solar Photovoltaic Scenarios in the State of Gujarat (Presentation)

    SciTech Connect (OSTI)

    Parsons, B.; Hummon, M.; Cochran, J.; Stoltenberg, B.; Batra, P.; Mehta, B.; Patel, D.

    2014-04-01

    India has ambitious goals for high utilization of variable renewable power from wind and solar, and deployment has been proceeding at a rapid pace. The western state of Gujarat currently has the largest amount of solar generation of any Indian state, with over 855 Megawatts direct current (MWDC). Combined with over 3,240 MW of wind, variable generation renewables comprise nearly 18% of the electric-generating capacity in the state. A new historic 10-kilometer (km) gridded solar radiation data set capturing hourly insolation values for 2002-2011 is available for India. We apply an established method for downscaling hourly irradiance data to one-minute irradiance data at potential PV power production locations for one year, 2006. The objective of this report is to characterize the intra-hour variability of existing and planned photovoltaic solar power generation in the state of Gujarat (a total of 1.9 gigawatts direct current (GWDC)), and of five possible expansion scenarios of solar generation that reflect a range of geographic diversity (each scenario totals 500-1,000 MW of additional solar capacity). The report statistically analyzes one year's worth of power variability data, applied to both the baseline and expansion scenarios, to evaluate diurnal and seasonal power fluctuations, different timescales of variability (e.g., from one to 15 minutes), the magnitude of variability (both total megawatts and relative to installed solar capacity), and the extent to which the variability can be anticipated in advance. The paper also examines how Gujarat Energy Transmission Corporation (GETCO) and the Gujarat State Load Dispatch Centre (SLDC) could make use of the solar variability profiles in grid operations and planning.

  6. Large-scale Environmental Variables and Transition to Deep Convection in Cloud Resolving Model Simulations: A Vector Representation

    SciTech Connect (OSTI)

    Hagos, Samson M.; Leung, Lai-Yung R.

    2012-11-01

    Cloud resolving model simulations and vector analysis are used to develop a quantitative method of assessing regional variations in the relationships between various large-scale environmental variables and the transition to deep convection. Results of the CRM simulations from three tropical regions are used to cluster environmental conditions under which transition to deep convection does and does not take place. Projections of the large-scale environmental variables on the difference between these two clusters are used to quantify the roles of these variables in the transition to deep convection. While the transition to deep convection is most sensitive to moisture and vertical velocity perturbations, the details of the profiles of the anomalies vary from region to region. In comparison, the transition to deep convection is found to be much less sensitive to temperature anomalies over all three regions. The vector formulation presented in this study represents a simple general framework for quantifying various aspects of how the transition to deep convection is sensitive to environmental conditions.

  7. Fossil fleet transition with fuel changes and large scale variable renewable integration

    SciTech Connect (OSTI)

    James, Revis; Hesler, Stephen; Bistline, John

    2015-03-31

    Variability in demand as seen by grid-connected dispatchable generators can increase due to factors such as greater production from variable generation assets (for example, wind and solar), increased reliance on demand response or customer-driven automation, and aggregation of loads. This variability results a need for these generators to operate in a range of different modes, collectively referred to as “flexible operations.” This study is designed to inform power companies, researchers, and policymakers of the scope and trends in increasing levels of flexible operations as well as reliability challenges and impacts for dispatchable assets. Background Because there is rarely a direct monetization of the value of operational flexibility, the decision to provide such flexibility is typically dependent on unit- and region-specific decisions made by asset owners. It is very likely that much greater and more widespread flexible operations capabilities will be needed due to increased variability in demand seen by grid-connected generators, uncertainty regarding investment in new units to provide adequate operational flexibility, and the retirement of older, uncontrolled sub-critical pulverized coal units. Objective To enhance understanding of the technical challenges and operational impacts associated with dispatchable assets needed to increase operational flexibility and support variable demand. Approach The study approach consists of three elements: a literature review of relevant prior studies, analysis of detailed scenarios for evolution of the future fleet over the next 35 years, and engineering assessment of the degree and scope of technical challenges associated with transformation to the future fleet. The study approach integrated two key elements rarely brought together in a single analysis—1) long-term capacity planning, which enables modeling of unit retirements and new asset investments, and 2) unit commitment analysis, which permits examination of

  8. LARGE-SCALE PERIODIC VARIABILITY OF THE WIND OF THE WOLF-RAYET STAR WR 1 (HD 4004)

    SciTech Connect (OSTI)

    Chene, A.-N.

    2010-06-20

    We present the results of an intensive photometric and spectroscopic monitoring campaign of the WN4 Wolf-Rayet (WR) star WR 1 = HD 4004. Our broadband V photometry covering a timespan of 91 days shows variability with a period of P = 16.9{sup +0.6}{sub -0.3} days. The same period is also found in our spectral data. The light curve is non-sinusoidal with hints of a gradual change in its shape as a function of time. The photometric variations nevertheless remain coherent over several cycles and we estimate that the coherence timescale of the light curve is of the order of 60 days. The spectroscopy shows large-scale line-profile variability which can be interpreted as excess emission peaks moving from one side of the profile to the other on a timescale of several days. Although we cannot unequivocally exclude the unlikely possibility that WR 1 is a binary, we propose that the nature of the variability we have found strongly suggests that it is due to the presence in the wind of the WR star of large-scale structures, most likely corotating interaction regions (CIRs), which are predicted to arise in inherently unstable radiatively driven winds when they are perturbed at their base. We also suggest that variability observed in WR 6, WR 134, and WR 137 is of the same nature. Finally, assuming that the period of CIRs is related to the rotational period, we estimate the rotation rate of the four stars for which sufficient monitoring has been carried out, i.e., v{sub rot} = 6.5, 40, 70, and 275 km s{sup -1} for WR 1, WR 6, WR 134, and WR 137, respectively.

  9. Running Large Scale Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    peta-scale production systems. For example, certain applications may not have enough memory per core, the default environment variables may need to be adjusted, or IO dominates...

  10. Large-scale spatial variability of riverbed temperature gradients in Snake River fall Chinook salmon spawning areas

    SciTech Connect (OSTI)

    Hanrahan, Timothy P.

    2007-02-01

    In the Snake River basin of the Pacific northwestern United States, hydroelectric dam operations are often based on the predicted emergence timing of salmon fry from the riverbed. The spatial variability and complexity of surface water and riverbed temperature gradients results in emergence timing predictions that are likely to have large errors. The objectives of this study were to quantify the thermal heterogeneity between the river and riverbed in fall Chinook salmon spawning areas and to determine the effects of thermal heterogeneity on fall Chinook salmon emergence timing. This study quantified river and riverbed temperatures at 15 fall Chinook salmon spawning sites distributed in two reaches throughout 160 km of the Snake River in Hells Canyon, Idaho, USA, during three different water years. Temperatures were measured during the fall Chinook salmon incubation period with self-contained data loggers placed in the river and at three different depths below the riverbed surface. At all sites temperature increased with depth into the riverbed, including significant differences (p<0.05) in mean water temperature of up to 3.8°C between the river and the riverbed among all the sites. During each of the three water years studied, river and riverbed temperatures varied significantly among all the study sites, among the study sites within each reach, and between sites located in the two reaches. Considerable variability in riverbed temperatures among the sites resulted in fall Chinook salmon emergence timing estimates that varied by as much as 55 days, depending on the source of temperature data used for the estimate. Monitoring of riverbed temperature gradients at a range of spatial scales throughout the Snake River would provide better information for managing hydroelectric dam operations, and would aid in the design and interpretation of future empirical research into the ecological significance of physical riverine processes.

  11. Running Large Scale Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    try on their large scale applications on Hopper for better performance. Try different compilers and compiler options The available compilers on Hopper are PGI, Cray, Intel, GNU,...

  12. Large scale tracking algorithms.

    SciTech Connect (OSTI)

    Hansen, Ross L.; Love, Joshua Alan; Melgaard, David Kennett; Karelitz, David B.; Pitts, Todd Alan; Zollweg, Joshua David; Anderson, Dylan Z.; Nandy, Prabal; Whitlow, Gary L.; Bender, Daniel A.; Byrne, Raymond Harry

    2015-01-01

    Low signal-to-noise data processing algorithms for improved detection, tracking, discrimination and situational threat assessment are a key research challenge. As sensor technologies progress, the number of pixels will increase signi cantly. This will result in increased resolution, which could improve object discrimination, but unfortunately, will also result in a significant increase in the number of potential targets to track. Many tracking techniques, like multi-hypothesis trackers, suffer from a combinatorial explosion as the number of potential targets increase. As the resolution increases, the phenomenology applied towards detection algorithms also changes. For low resolution sensors, "blob" tracking is the norm. For higher resolution data, additional information may be employed in the detection and classfication steps. The most challenging scenarios are those where the targets cannot be fully resolved, yet must be tracked and distinguished for neighboring closely spaced objects. Tracking vehicles in an urban environment is an example of such a challenging scenario. This report evaluates several potential tracking algorithms for large-scale tracking in an urban environment.

  13. Accounting for Unresolved Spatial Variability in Large Scale Models: Development and Evaluation of a Statistical Cloud Parameterization with Prognostic Higher Order Moments

    SciTech Connect (OSTI)

    Robert Pincus

    2011-05-17

    This project focused on the variability of clouds that is present across a wide range of scales ranging from the synoptic to the millimeter. In particular, there is substantial variability in cloud properties at scales smaller than the grid spacing of models used to make climate projections (GCMs) and weather forecasts. These models represent clouds and other small-scale processes with parameterizations that describe how those processes respond to and feed back on the largescale state of the atmosphere.

  14. Large-Scale PCA for Climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large-Scale PCA for Climate Large-Scale PCA for Climate The most widely used tool for extracting important patterns from the measurements of atmospheric and oceanic variables is the Empirical Orthogonal Function (EOF) technique. EOFs are popular because of their simplicity and their ability to reduce the dimensionality of large nonlinear, high-dimensional systems into fewer dimensions while preserving the most important patterns of variations in the measurements. Because EOFs are a particular

  15. Large-Scale PV Integration Study

    SciTech Connect (OSTI)

    Lu, Shuai; Etingov, Pavel V.; Diao, Ruisheng; Ma, Jian; Samaan, Nader A.; Makarov, Yuri V.; Guo, Xinxin; Hafen, Ryan P.; Jin, Chunlian; Kirkham, Harold; Shlatz, Eugene; Frantzis, Lisa; McClive, Timothy; Karlson, Gregory; Acharya, Dhruv; Ellis, Abraham; Stein, Joshua; Hansen, Clifford; Chadliev, Vladimir; Smart, Michael; Salgo, Richard; Sorensen, Rahn; Allen, Barbara; Idelchik, Boris

    2011-07-29

    This research effort evaluates the impact of large-scale photovoltaic (PV) and distributed generation (DG) output on NV Energy’s electric grid system in southern Nevada. It analyzes the ability of NV Energy’s generation to accommodate increasing amounts of utility-scale PV and DG, and the resulting cost of integrating variable renewable resources. The study was jointly funded by the United States Department of Energy and NV Energy, and conducted by a project team comprised of industry experts and research scientists from Navigant Consulting Inc., Sandia National Laboratories, Pacific Northwest National Laboratory and NV Energy.

  16. Large-Scale Information Systems

    SciTech Connect (OSTI)

    D. M. Nicol; H. R. Ammerlahn; M. E. Goldsby; M. M. Johnson; D. E. Rhodes; A. S. Yoshimura

    2000-12-01

    Large enterprises are ever more dependent on their Large-Scale Information Systems (LSLS), computer systems that are distinguished architecturally by distributed components--data sources, networks, computing engines, simulations, human-in-the-loop control and remote access stations. These systems provide such capabilities as workflow, data fusion and distributed database access. The Nuclear Weapons Complex (NWC) contains many examples of LSIS components, a fact that motivates this research. However, most LSIS in use grew up from collections of separate subsystems that were not designed to be components of an integrated system. For this reason, they are often difficult to analyze and control. The problem is made more difficult by the size of a typical system, its diversity of information sources, and the institutional complexities associated with its geographic distribution across the enterprise. Moreover, there is no integrated approach for analyzing or managing such systems. Indeed, integrated development of LSIS is an active area of academic research. This work developed such an approach by simulating the various components of the LSIS and allowing the simulated components to interact with real LSIS subsystems. This research demonstrated two benefits. First, applying it to a particular LSIS provided a thorough understanding of the interfaces between the system's components. Second, it demonstrated how more rapid and detailed answers could be obtained to questions significant to the enterprise by interacting with the relevant LSIS subsystems through simulated components designed with those questions in mind. In a final, added phase of the project, investigations were made on extending this research to wireless communication networks in support of telemetry applications.

  17. Large-Scale Renewable Energy Guide Webinar

    Broader source: Energy.gov [DOE]

    Webinar introduces the “Large Scale Renewable Energy Guide." The webinar will provide an overview of this important FEMP guide, which describes FEMP's approach to large-scale renewable energy projects and provides guidance to Federal agencies and the private sector on how to develop a common process for large-scale renewable projects.

  18. Large-Scale Liquid Hydrogen Handling Equipment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8, 2007 Jerry Gillette Large-Scale Liquid Hydrogen Handling Equipment Hydrogen Delivery Analysis Meeting Argonne National Laboratory Some Delivery Pathways Will Necessitate the Use of Large- Scale Liquid Hydrogen Handling Equipment „ Potential Scenarios include: - Production plant shutdowns - Summer-peak storage „ Equipment Needs include: - Storage tanks - Liquid Pumps - Vaporizers - Ancillaries 2 1 Concern is that Scaling up from Small Units Could Significantly Underestimate Costs of Larger

  19. Large-Scale Computational Fluid Dynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large-Scale Computational Fluid Dynamics - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management

  20. Large-Scale Renewable Energy Guide | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Large-Scale Renewable Energy Guide Large-Scale Renewable Energy Guide Presentation covers the Large-scale RE Guide: Developing Renewable Energy Projects Larger than 10 MWs at...

  1. Large Scale Computing and Storage Requirements for Advanced Scientific...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research: Target 2014 ASCRFrontcover.png Large Scale Computing and Storage Requirements for ...

  2. Determination of Large-Scale Cloud Ice Water Concentration by...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Determination of Large-Scale Cloud Ice Water Concentration by Combining ... Title: Determination of Large-Scale Cloud Ice Water Concentration by Combining Surface ...

  3. Large-Scale Renewable Energy Guide: Developing Renewable Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Large-Scale Renewable Energy Guide: Developing Renewable Energy Projects Larger Than 10 MWs at Federal Facilities Large-Scale Renewable Energy Guide: Developing Renewable Energy ...

  4. Large Scale Production Computing and Storage Requirements for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Scale Production Computing and Storage Requirements for Fusion Energy Sciences: Target 2017 The NERSC Program Requirements Review "Large Scale Production Computing and ...

  5. Large-Scale Residential Energy Efficiency Programs Based on CFLs...

    Open Energy Info (EERE)

    Large-Scale Residential Energy Efficiency Programs Based on CFLs Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Large-Scale Residential Energy Efficiency Programs Based...

  6. The Effective Field Theory of Cosmological Large Scale Structures...

    Office of Scientific and Technical Information (OSTI)

    The Effective Field Theory of Cosmological Large Scale Structures Citation Details In-Document Search Title: The Effective Field Theory of Cosmological Large Scale Structures...

  7. Large-Scale Manufacturing of Nanoparticle-Based Lubrication Additives...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Large-Scale Manufacturing of Nanoparticle-Based Lubrication Additives Large-Scale Manufacturing of Nanoparticle-Based Lubrication Additives PDF icon nanoparticulate-basedlubricati...

  8. Creating Large Scale Database Servers (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Creating Large Scale Database Servers Citation Details In-Document Search Title: Creating Large Scale Database Servers The BaBar experiment at the Stanford Linear Accelerator ...

  9. Rapid Software Prototyping Into Large Scale Control Systems ...

    Office of Scientific and Technical Information (OSTI)

    Rapid Software Prototyping Into Large Scale Control Systems Citation Details In-Document Search Title: Rapid Software Prototyping Into Large Scale Control Systems Authors: Fishler, ...

  10. DLFM library tools for large scale dynamic applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    applications DLFM library tools for large scale dynamic applications Large scale Python and other dynamic applications may spend huge time at startup. The DLFM library,...

  11. ACCOLADES: A Scalable Workflow Framework for Large-Scale Simulation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ACCOLADES: A Scalable Workflow Framework for Large-Scale Simulation and Analyses of Automotive Engines Title ACCOLADES: A Scalable Workflow Framework for Large-Scale Simulation and...

  12. Large-scale quasi-geostrophic magnetohydrodynamics

    SciTech Connect (OSTI)

    Balk, Alexander M.

    2014-12-01

    We consider the ideal magnetohydrodynamics (MHD) of a shallow fluid layer on a rapidly rotating planet or star. The presence of a background toroidal magnetic field is assumed, and the 'shallow water' beta-plane approximation is used. We derive a single equation for the slow large length scale dynamics. The range of validity of this equation fits the MHD of the lighter fluid at the top of Earth's outer core. The form of this equation is similar to the quasi-geostrophic (Q-G) equation (for usual ocean or atmosphere), but the parameters are essentially different. Our equation also implies the inverse cascade; but contrary to the usual Q-G situation, the energy cascades to smaller length scales, while the enstrophy cascades to the larger scales. We find the Kolmogorov-type spectrum for the inverse cascade. The spectrum indicates the energy accumulation in larger scales. In addition to the energy and enstrophy, the obtained equation possesses an extra (adiabatic-type) invariant. Its presence implies energy accumulation in the 30° sector around zonal direction. With some special energy input, the extra invariant can lead to the accumulation of energy in zonal magnetic field; this happens if the input of the extra invariant is small, while the energy input is considerable.

  13. (Sparsity in large scale scientific computation)

    SciTech Connect (OSTI)

    Ng, E.G.

    1990-08-20

    The traveler attended a conference organized by the 1990 IBM Europe Institute at Oberlech, Austria. The theme of the conference was on sparsity in large scale scientific computation. The conference featured many presentations and other activities of direct interest to ORNL research programs on sparse matrix computations and parallel computing, which are funded by the Applied Mathematical Sciences Subprogram of the DOE Office of Energy Research. The traveler presented a talk on his work at ORNL on the development of efficient algorithms for solving sparse nonsymmetric systems of linear equations. The traveler held numerous technical discussions on issues having direct relevance to the research programs on sparse matrix computations and parallel computing at ORNL.

  14. Batteries for Large Scale Energy Storage

    SciTech Connect (OSTI)

    Soloveichik, Grigorii L.

    2011-07-15

    In recent years, with the deployment of renewable energy sources, advances in electrified transportation, and development in smart grids, the markets for large-scale stationary energy storage have grown rapidly. Electrochemical energy storage methods are strong candidate solutions due to their high energy density, flexibility, and scalability. This review provides an overview of mature and emerging technologies for secondary and redox flow batteries. New developments in the chemistry of secondary and flow batteries as well as regenerative fuel cells are also considered. Advantages and disadvantages of current and prospective electrochemical energy storage options are discussed. The most promising technologies in the short term are high-temperature sodium batteries with β”-alumina electrolyte, lithium-ion batteries, and flow batteries. Regenerative fuel cells and lithium metal batteries with high energy density require further research to become practical.

  15. Supporting large-scale computational science

    SciTech Connect (OSTI)

    Musick, R., LLNL

    1998-02-19

    Business needs have driven the development of commercial database systems since their inception. As a result, there has been a strong focus on supporting many users, minimizing the potential corruption or loss of data, and maximizing performance metrics like transactions per second, or TPC-C and TPC-D results. It turns out that these optimizations have little to do with the needs of the scientific community, and in particular have little impact on improving the management and use of large-scale high-dimensional data. At the same time, there is an unanswered need in the scientific community for many of the benefits offered by a robust DBMS. For example, tying an ad-hoc query language such as SQL together with a visualization toolkit would be a powerful enhancement to current capabilities. Unfortunately, there has been little emphasis or discussion in the VLDB community on this mismatch over the last decade. The goal of the paper is to identify the specific issues that need to be resolved before large-scale scientific applications can make use of DBMS products. This topic is addressed in the context of an evaluation of commercial DBMS technology applied to the exploration of data generated by the Department of Energy`s Accelerated Strategic Computing Initiative (ASCI). The paper describes the data being generated for ASCI as well as current capabilities for interacting with and exploring this data. The attraction of applying standard DBMS technology to this domain is discussed, as well as the technical and business issues that currently make this an infeasible solution.

  16. Avanced Large-scale Integrated Computational Environment

    Energy Science and Technology Software Center (OSTI)

    1998-10-27

    The ALICE Memory Snooper is a software applications programming interface (API) and library for use in implementing computational steering systems. It allows distributed memory parallel programs to publish variables in the computation that may be accessed over the Internet. In this way, users can examine and even change the variables in their running application remotely. The API and library ensure the consistency of the variables across the distributed memory system.

  17. Stimulated forward Raman scattering in large scale-length laser...

    Office of Scientific and Technical Information (OSTI)

    Stimulated forward Raman scattering in large scale-length laser-produced plasmas Citation Details In-Document Search Title: Stimulated forward Raman scattering in large ...

  18. Stimulated forward Raman scattering in large scale-length laser...

    Office of Scientific and Technical Information (OSTI)

    in large scale-length laser-produced plasmas Citation Details In-Document Search Title: Stimulated forward Raman scattering in large scale-length laser-produced plasmas You ...

  19. Locations of Smart Grid Demonstration and Large-Scale Energy...

    Office of Environmental Management (EM)

    Locations of Smart Grid Demonstration and Large-Scale Energy Storage Projects Locations of Smart Grid Demonstration and Large-Scale Energy Storage Projects Map of the United States ...

  20. Large-Scale First-Principles Molecular Dynamics Simulations on...

    Office of Scientific and Technical Information (OSTI)

    for large-scale parallel platforms such as BlueGeneL. Strong scaling tests for a Materials Science application show an 86% scaling efficiency between 1024 and 32,768 CPUs. ...

  1. SimFS: A Large Scale Parallel File System Simulator

    Energy Science and Technology Software Center (OSTI)

    2011-08-30

    The software provides both framework and tools to simulate a large-scale parallel file system such as Lustre.

  2. DLFM library tools for large scale dynamic applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DLFM library tools for large scale dynamic applications DLFM library tools for large scale dynamic applications Large scale Python and other dynamic applications may spend huge time at startup. The DLFM library, developed by Mike Davis at Cray, Inc., is a set of functions that can be incorporated into a dynamically-linked application to provide improved performance during the loading of dynamic libraries when running the application at large scale on Edison. To access this library, do module

  3. Sensitivity technologies for large scale simulation.

    SciTech Connect (OSTI)

    Collis, Samuel Scott; Bartlett, Roscoe Ainsworth; Smith, Thomas Michael; Heinkenschloss, Matthias; Wilcox, Lucas C.; Hill, Judith C.; Ghattas, Omar; Berggren, Martin Olof; Akcelik, Volkan; Ober, Curtis Curry; van Bloemen Waanders, Bart Gustaaf; Keiter, Eric Richard

    2005-01-01

    Sensitivity analysis is critically important to numerous analysis algorithms, including large scale optimization, uncertainty quantification,reduced order modeling, and error estimation. Our research focused on developing tools, algorithms and standard interfaces to facilitate the implementation of sensitivity type analysis into existing code and equally important, the work was focused on ways to increase the visibility of sensitivity analysis. We attempt to accomplish the first objective through the development of hybrid automatic differentiation tools, standard linear algebra interfaces for numerical algorithms, time domain decomposition algorithms and two level Newton methods. We attempt to accomplish the second goal by presenting the results of several case studies in which direct sensitivities and adjoint methods have been effectively applied, in addition to an investigation of h-p adaptivity using adjoint based a posteriori error estimation. A mathematical overview is provided of direct sensitivities and adjoint methods for both steady state and transient simulations. Two case studies are presented to demonstrate the utility of these methods. A direct sensitivity method is implemented to solve a source inversion problem for steady state internal flows subject to convection diffusion. Real time performance is achieved using novel decomposition into offline and online calculations. Adjoint methods are used to reconstruct initial conditions of a contamination event in an external flow. We demonstrate an adjoint based transient solution. In addition, we investigated time domain decomposition algorithms in an attempt to improve the efficiency of transient simulations. Because derivative calculations are at the root of sensitivity calculations, we have developed hybrid automatic differentiation methods and implemented this approach for shape optimization for gas dynamics using the Euler equations. The hybrid automatic differentiation method was applied to a first

  4. Large-Scale Federal Renewable Energy Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Large-Scale Federal Renewable Energy Projects Large-Scale Federal Renewable Energy Projects Renewable energy projects larger than 10 megawatts (MW), also known as utility-scale projects, are complex and typically require private-sector financing. The Federal Energy Management Program (FEMP) developed a guide to help federal agencies, and the developers and financiers that work with them, to successfully install these projects at federal facilities. FEMP's Large-Scale Renewable Energy Guide,

  5. Large-Scale Wind Training Program

    SciTech Connect (OSTI)

    Porter, Richard L.

    2013-07-01

    Project objective is to develop a credit-bearing wind technician program and a non-credit safety training program, train faculty, and purchase/install large wind training equipment.

  6. Energy Department Applauds Nation's First Large-Scale Industrial Carbon

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Capture and Storage Facility | Department of Energy Nation's First Large-Scale Industrial Carbon Capture and Storage Facility Energy Department Applauds Nation's First Large-Scale Industrial Carbon Capture and Storage Facility August 24, 2011 - 6:23pm Addthis Washington, D.C. - The U.S. Department of Energy issued the following statement in support of today's groundbreaking for construction of the nation's first large-scale industrial carbon capture and storage (ICCS) facility in Decatur,

  7. Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction August 24, 2011 - 1:00pm Addthis Washington, DC - Construction activities have begun at an Illinois ethanol plant that will demonstrate carbon capture and storage. The project, sponsored by the U.S. Department of Energy's Office of Fossil Energy, is the first large-scale integrated carbon capture and storage (CCS) demonstration

  8. Large Scale Computing and Storage Requirements for Advanced Scientific

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computing Research: Target 2014 Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research: Target 2014 ASCRFrontcover.png Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research An ASCR / NERSC Review January 5-6, 2011 Final Report Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research, Report of the Joint ASCR / NERSC Workshop conducted January 5-6, 2011 Goals This workshop is being

  9. Large Scale Computing and Storage Requirements for Basic Energy Sciences:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Target 2014 Large Scale Computing and Storage Requirements for Basic Energy Sciences: Target 2014 BESFrontcover.png Final Report Large Scale Computing and Storage Requirements for Basic Energy Sciences, Report of the Joint BES/ ASCR / NERSC Workshop conducted February 9-10, 2010 Workshop Agenda The agenda for this workshop is presented here: including presentation times and speaker information. Read More » Workshop Presentations Large Scale Computing and Storage Requirements for Basic

  10. Large Scale Computing and Storage Requirements for High Energy Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Scale Computing and Storage Requirements for High Energy Physics HEPFrontcover.png Large Scale Computing and Storage Requirements for High Energy Physics An HEP / ASCR / NERSC Workshop November 12-13, 2009 Report Large Scale Computing and Storage Requirements for High Energy Physics, Report of the Joint HEP / ASCR / NERSC Workshop conducted Nov. 12-13, 2009 https://www.nersc.gov/assets/HPC-Requirements-for-Science/HEPFrontcover.png Goals This workshop was organized by the Department of

  11. Overcoming the Barrier to Achieving Large-Scale Production -...

    Broader source: Energy.gov (indexed) [DOE]

    Semprius Confidential 1 Overcoming the Barriers to Achieving Large-Scale Production - A ... August 31, 2011 Semprius Confidential 2 Semprius Overview Background Company: * Leading ...

  12. Optimizing Cluster Heads for Energy Efficiency in Large-Scale...

    Office of Scientific and Technical Information (OSTI)

    clustering is generally considered as an efficient and scalable way to facilitate the management and operation of such large-scale networks and minimize the total energy...

  13. A Model for Turbulent Combustion Simulation of Large Scale Hydrogen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Model for Turbulent Combustion Simulation of Large Scale Hydrogen Explosions Event Sponsor: Argonne Leadership Computing Facility Seminar Start Date: Oct 6 2015 - 10:00am...

  14. Strategies to Finance Large-Scale Deployment of Renewable Energy...

    Open Energy Info (EERE)

    to Finance Large-Scale Deployment of Renewable Energy Projects: An Economic Development and Infrastructure Approach Jump to: navigation, search Tool Summary LAUNCH TOOL Name:...

  15. Understanding large scale HPC systems through scalable monitoring...

    Office of Scientific and Technical Information (OSTI)

    HPC systems through scalable monitoring and analysis. Citation Details In-Document Search Title: Understanding large scale HPC systems through scalable monitoring and analysis. ...

  16. FEMP Helps Federal Facilities Develop Large-Scale Renewable Energy...

    Broader source: Energy.gov (indexed) [DOE]

    jobs, and advancing national goals for energy security. The guide describes the fundamentals of deploying financially attractive, large-scale renewable energy projects and...

  17. Optimizing Cluster Heads for Energy Efficiency in Large-Scale...

    Office of Scientific and Technical Information (OSTI)

    Optimizing Cluster Heads for Energy Efficiency in Large-Scale Heterogeneous Wireless Sensor Networks Gu, Yi; Wu, Qishi; Rao, Nageswara S. V. Hindawi Publishing Corporation None...

  18. Energy Department Applauds Nation's First Large-Scale Industrial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... News Media Contact: 202-586-4940 Addthis Related Articles Large-Scale Industrial Carbon ... designed National Sequestration Education Center, located at Richland Community ...

  19. Large-Scale Hydropower Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy » Hydropower » Large-Scale Hydropower Basics Large-Scale Hydropower Basics August 14, 2013 - 3:11pm Addthis Large-scale hydropower plants are generally developed to produce electricity for government or electric utility projects. These plants are more than 30 megawatts (MW) in size, and there is more than 80,000 MW of installed generation capacity in the United States today. Most large-scale hydropower projects use a dam and a reservoir to retain water from a river. When the

  20. Harvey Wasserman! Large Scale Computing and Storage Requirements...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Scale Computing and Storage Requirements for High Energy Physics Research: Target 2017 ...www.nersc.govsciencerequirementsHEP * Mid---morning a

  1. Large Scale Production Computing and Storage Requirements for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Scale Production Computing and Storage Requirements for High Energy Physics: Target 2017 ... Energy's Office of High Energy Physics (HEP), Office of Advanced Scientific ...

  2. Goethite Bench-scale and Large-scale Preparation Tests

    SciTech Connect (OSTI)

    Josephson, Gary B.; Westsik, Joseph H.

    2011-10-23

    The Hanford Waste Treatment and Immobilization Plant (WTP) is the keystone for cleanup of high-level radioactive waste from our nation's nuclear defense program. The WTP will process high-level waste from the Hanford tanks and produce immobilized high-level waste glass for disposal at a national repository, low activity waste (LAW) glass, and liquid effluent from the vitrification off-gas scrubbers. The liquid effluent will be stabilized into a secondary waste form (e.g. grout-like material) and disposed on the Hanford site in the Integrated Disposal Facility (IDF) along with the low-activity waste glass. The major long-term environmental impact at Hanford results from technetium that volatilizes from the WTP melters and finally resides in the secondary waste. Laboratory studies have indicated that pertechnetate ({sup 99}TcO{sub 4}{sup -}) can be reduced and captured into a solid solution of {alpha}-FeOOH, goethite (Um 2010). Goethite is a stable mineral and can significantly retard the release of technetium to the environment from the IDF. The laboratory studies were conducted using reaction times of many days, which is typical of environmental subsurface reactions that were the genesis of this new process. This study was the first step in considering adaptation of the slow laboratory steps to a larger-scale and faster process that could be conducted either within the WTP or within the effluent treatment facility (ETF). Two levels of scale-up tests were conducted (25x and 400x). The largest scale-up produced slurries of Fe-rich precipitates that contained rhenium as a nonradioactive surrogate for {sup 99}Tc. The slurries were used in melter tests at Vitreous State Laboratory (VSL) to determine whether captured rhenium was less volatile in the vitrification process than rhenium in an unmodified feed. A critical step in the technetium immobilization process is to chemically reduce Tc(VII) in the pertechnetate (TcO{sub 4}{sup -}) to Tc(Iv)by reaction with the ferrous

  3. Superconducting materials for large scale applications

    SciTech Connect (OSTI)

    Scanlan, Ronald M.; Malozemoff, Alexis P.; Larbalestier, David C.

    2004-05-06

    Significant improvements in the properties ofsuperconducting materials have occurred recently. These improvements arebeing incorporated into the latest generation of wires, cables, and tapesthat are being used in a broad range of prototype devices. These devicesinclude new, high field accelerator and NMR magnets, magnets for fusionpower experiments, motors, generators, and power transmission lines.These prototype magnets are joining a wide array of existing applicationsthat utilize the unique capabilities of superconducting magnets:accelerators such as the Large Hadron Collider, fusion experiments suchas ITER, 930 MHz NMR, and 4 Tesla MRI. In addition, promising newmaterials such as MgB2 have been discovered and are being studied inorder to assess their potential for new applications. In this paper, wewill review the key developments that are leading to these newapplications for superconducting materials. In some cases, the key factoris improved understanding or development of materials with significantlyimproved properties. An example of the former is the development of Nb3Snfor use in high field magnets for accelerators. In other cases, thedevelopment is being driven by the application. The aggressive effort todevelop HTS tapes is being driven primarily by the need for materialsthat can operate at temperatures of 50 K and higher. The implications ofthese two drivers for further developments will be discussed. Finally, wewill discuss the areas where further improvements are needed in order fornew applications to be realized.

  4. Self-consistency tests of large-scale dynamics parameterizations...

    Office of Scientific and Technical Information (OSTI)

    In self-consistency tests based on radiative-convective equilibrium (RCE; i.e., no large-scale convergence), we find that simulations either weakly coupled or strongly coupled to ...

  5. ARM - Evaluation Product - Vertical Air Motion during Large-Scale...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsVertical Air Motion during Large-Scale Stratiform Rain ARM Data Discovery Browse ... Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Vertical Air ...

  6. Towards a Large-Scale Recording System: Demonstration of Polymer...

    Office of Scientific and Technical Information (OSTI)

    of Polymer-Based Penetrating Array for Chronic Neural Recording Citation Details In-Document Search Title: Towards a Large-Scale Recording System: Demonstration of Polymer-Based ...

  7. How Three Retail Buyers Source Large-Scale Solar Electricity

    Broader source: Energy.gov [DOE]

    Large-scale, non-utility solar power purchase agreements (PPAs) are still a rarity despite the growing popularity of PPAs across the country. In this webinar, participants will learn more about how...

  8. Cosmological Simulations for Large-Scale Sky Surveys | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The focus of cosmology today is on its two mysterious pillars, dark matter and dark energy. Large-scale sky surveys are the current drivers of precision cosmology and have been ...

  9. Cosmological Simulations for Large-Scale Sky Surveys | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The focus of cosmology today revolves around two mysterious pillars, dark matter and dark energy. Large-scale sky surveys are the current drivers of precision cosmology and have ...

  10. COLLOQUIUM: Liquid Metal Batteries for Large-scale Energy Storage...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 22, 2016, 4:15pm to 5:30pm Colloquia MBG Auditorium, PPPL (284 cap.) COLLOQUIUM: Liquid Metal Batteries for Large-scale Energy Storage Dr. Hojong Kim Pennsylvania State ...

  11. The Cielo Petascale Capability Supercomputer: Providing Large-Scale

    Office of Scientific and Technical Information (OSTI)

    Computing for Stockpile Stewardship (Conference) | SciTech Connect Conference: The Cielo Petascale Capability Supercomputer: Providing Large-Scale Computing for Stockpile Stewardship Citation Details In-Document Search Title: The Cielo Petascale Capability Supercomputer: Providing Large-Scale Computing for Stockpile Stewardship Authors: Vigil, Benny Manuel [1] ; Doerfler, Douglas W. [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2013-03-11 OSTI Identifier:

  12. Revised Environmental Assessment Large-Scale, Open-Air Explosive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Assessment Large-Scale, Open-Air Explosive Detonation, DIVINE STRAKE, at the Nevada Test Site May 2006 Prepared by Department of Energy National Nuclear Security Administration Nevada Site Office Environmental Assessment May 2006 Large-Scale, Open-Air Explosive Detonation, DIVINE STRAKE, at the Nevada Test Site TABLE OF CONTENTS 1.0 PURPOSE AND NEED FOR ACTION.....................................................1-1 1.1 Introduction and

  13. Breakthrough Large-Scale Industrial Project Begins Carbon Capture and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utilization | Department of Energy Breakthrough Large-Scale Industrial Project Begins Carbon Capture and Utilization Breakthrough Large-Scale Industrial Project Begins Carbon Capture and Utilization January 25, 2013 - 12:00pm Addthis Washington, DC - A breakthrough carbon capture, utilization, and storage (CCUS) project in Texas has begun capturing carbon dioxide (CO2) and piping it to an oilfield for use in enhanced oil recovery (EOR). Read the project factsheet The project at Air Products

  14. Cosmological Simulations for Large-Scale Sky Surveys | Argonne Leadership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computing Facility Cosmological Simulations for Large-Scale Sky Surveys PI Name: Salman Habib PI Email: habib@anl.gov Institution: Argonne National Laboratory Allocation Program: INCITE Allocation Hours at ALCF: 100 Million Year: 2014 Research Domain: Physics The next generation of large-scale sky surveys aims to establish a new regime of cosmic discovery through fundamental measurements of the universe's geometry and the growth of structure. The aim of this project is to accurately

  15. COLLOQUIUM: Large Scale Superconducting Magnets for Variety of Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Princeton Plasma Physics Lab October 15, 2014, 4:00pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: Large Scale Superconducting Magnets for Variety of Applications Professor Joseph Minervini Massachusetts Institute of Technology Presentation: PDF icon Superconducting_Magnet_Technology_for_Fusion_and_Large_Scale_Applications.pdf Over the past several decades the U. S. magnetic confinement fusion program, working in collaboration with international partners, has developed superconductor and

  16. Large Scale Computing and Storage Requirements for Biological and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Research: Target 2014 Large Scale Computing and Storage Requirements for Biological and Environmental Research: Target 2014 BERFrontcover.png A BER / ASCR / NERSC Workshop May 7-8, 2009 Final Report Large Scale Computing and Storage Requirements for Biological and Environmental Research, Report of the Joint BER / NERSC Workshop Conducted May 7-8, 2009 Rockville, MD Goals This workshop was jointly organized by the Department of Energy's Office of Biological & Environmental

  17. Large Scale Computing and Storage Requirements for Nuclear Physics: Target

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014 Large Scale Computing and Storage Requirements for Nuclear Physics: Target 2014 NPFrontcover.png May 26-27, 2011 Hyatt Regency Bethesda One Bethesda Metro Center (7400 Wisconsin Ave) Bethesda, Maryland, USA 20814 Final Report Large Scale Computing and Storage Requirements for Nuclear Physics Research, Report of the Joint NP / NERSC Workshop Conducted May 26-27, 2011 Bethesda, MD Sponsored by the U.S. Department of Energy Office of Science, Office of Advanced Scientific Computing

  18. Large Scale Production Computing and Storage Requirements for Fusion Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences: Target 2017 Large Scale Production Computing and Storage Requirements for Fusion Energy Sciences: Target 2017 The NERSC Program Requirements Review "Large Scale Production Computing and Storage Requirements for Fusion Energy Sciences" is organized by the Department of Energy's Office of Fusion Energy Sciences (FES), Office of Advanced Scientific Computing Research (ASCR), and the National Energy Research Scientific Computing Center (NERSC). The review's goal is to

  19. Large Scale Production Computing and Storage Requirements for High Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics: Target 2017 Large Scale Production Computing and Storage Requirements for High Energy Physics: Target 2017 HEPlogo.jpg The NERSC Program Requirements Review "Large Scale Computing and Storage Requirements for High Energy Physics" is organized by the Department of Energy's Office of High Energy Physics (HEP), Office of Advanced Scientific Computing Research (ASCR), and the National Energy Research Scientific Computing Center (NERSC). The review's goal is to characterize

  20. Lessons from Large-Scale Renewable Energy Integration Studies: Preprint

    SciTech Connect (OSTI)

    Bird, L.; Milligan, M.

    2012-06-01

    In general, large-scale integration studies in Europe and the United States find that high penetrations of renewable generation are technically feasible with operational changes and increased access to transmission. This paper describes other key findings such as the need for fast markets, large balancing areas, system flexibility, and the use of advanced forecasting.

  1. EINSTEIN'S SIGNATURE IN COSMOLOGICAL LARGE-SCALE STRUCTURE

    SciTech Connect (OSTI)

    Bruni, Marco; Hidalgo, Juan Carlos; Wands, David

    2014-10-10

    We show how the nonlinearity of general relativity generates a characteristic nonGaussian signal in cosmological large-scale structure that we calculate at all perturbative orders in a large-scale limit. Newtonian gravity and general relativity provide complementary theoretical frameworks for modeling large-scale structure in ?CDM cosmology; a relativistic approach is essential to determine initial conditions, which can then be used in Newtonian simulations studying the nonlinear evolution of the matter density. Most inflationary models in the very early universe predict an almost Gaussian distribution for the primordial metric perturbation, ?. However, we argue that it is the Ricci curvature of comoving-orthogonal spatial hypersurfaces, R, that drives structure formation at large scales. We show how the nonlinear relation between the spatial curvature, R, and the metric perturbation, ?, translates into a specific nonGaussian contribution to the initial comoving matter density that we calculate for the simple case of an initially Gaussian ?. Our analysis shows the nonlinear signature of Einstein's gravity in large-scale structure.

  2. The Phoenix series large scale LNG pool fire experiments.

    SciTech Connect (OSTI)

    Simpson, Richard B.; Jensen, Richard Pearson; Demosthenous, Byron; Luketa, Anay Josephine; Ricks, Allen Joseph; Hightower, Marion Michael; Blanchat, Thomas K.; Helmick, Paul H.; Tieszen, Sheldon Robert; Deola, Regina Anne; Mercier, Jeffrey Alan; Suo-Anttila, Jill Marie; Miller, Timothy J.

    2010-12-01

    The increasing demand for natural gas could increase the number and frequency of Liquefied Natural Gas (LNG) tanker deliveries to ports across the United States. Because of the increasing number of shipments and the number of possible new facilities, concerns about the potential safety of the public and property from an accidental, and even more importantly intentional spills, have increased. While improvements have been made over the past decade in assessing hazards from LNG spills, the existing experimental data is much smaller in size and scale than many postulated large accidental and intentional spills. Since the physics and hazards from a fire change with fire size, there are concerns about the adequacy of current hazard prediction techniques for large LNG spills and fires. To address these concerns, Congress funded the Department of Energy (DOE) in 2008 to conduct a series of laboratory and large-scale LNG pool fire experiments at Sandia National Laboratories (Sandia) in Albuquerque, New Mexico. This report presents the test data and results of both sets of fire experiments. A series of five reduced-scale (gas burner) tests (yielding 27 sets of data) were conducted in 2007 and 2008 at Sandia's Thermal Test Complex (TTC) to assess flame height to fire diameter ratios as a function of nondimensional heat release rates for extrapolation to large-scale LNG fires. The large-scale LNG pool fire experiments were conducted in a 120 m diameter pond specially designed and constructed in Sandia's Area III large-scale test complex. Two fire tests of LNG spills of 21 and 81 m in diameter were conducted in 2009 to improve the understanding of flame height, smoke production, and burn rate and therefore the physics and hazards of large LNG spills and fires.

  3. Large-Scale Industrial CCS Projects Selected for Continued Testing |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy CCS Projects Selected for Continued Testing Large-Scale Industrial CCS Projects Selected for Continued Testing June 10, 2010 - 1:00pm Addthis Washington, DC - Three Recovery Act funded projects have been selected by the U.S. Department of Energy (DOE) to continue testing large-scale carbon capture and storage (CCS) from industrial sources. The projects - located in Texas, Illinois, and Louisiana - were initially selected for funding in October 2009 as part of a $1.4

  4. DOE Completes Large-Scale Carbon Sequestration Project Awards | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Large-Scale Carbon Sequestration Project Awards DOE Completes Large-Scale Carbon Sequestration Project Awards November 17, 2008 - 4:58pm Addthis Regional Partner to Demonstrate Safe and Permanent Storage of 2 Million Tons of CO2 at Wyoming Site WASHINGTON, DC - Completing a series of awards through its Regional Carbon Sequestration Partnership Program, the U.S. Department of Energy (DOE) today awarded $66.9 million to the Big Sky Regional Carbon Sequestration Partnership for the

  5. Large-Scale Algal Cultivation, Harvesting and Downstream Processing Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    ATP3 (Algae Testbed Public-Private Partnership) is hosting the Large-Scale Algal Cultivation, Harvesting and Downstream Processing Workshop on November 2–6, 2015, at the Arizona Center for Algae Technology and Innovation in Mesa, Arizona. Topics will include practical applications of growing and managing microalgal cultures at production scale (such as methods for handling cultures, screening strains for desirable characteristics, identifying and mitigating contaminants, scaling up cultures for outdoor growth, harvesting and processing technologies, and the analysis of lipids, proteins, and carbohydrates). Related training will include hands-on laboratory and field opportunities.

  6. Large-scale anisotropy in stably stratified rotating flows

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Marino, R.; Mininni, P. D.; Rosenberg, D. L.; Pouquet, A.

    2014-08-28

    We present results from direct numerical simulations of the Boussinesq equations in the presence of rotation and/or stratification, both in the vertical direction. The runs are forced isotropically and randomly at small scales and have spatial resolutions of up tomore » $1024^3$ grid points and Reynolds numbers of $$\\approx 1000$$. We first show that solutions with negative energy flux and inverse cascades develop in rotating turbulence, whether or not stratification is present. However, the purely stratified case is characterized instead by an early-time, highly anisotropic transfer to large scales with almost zero net isotropic energy flux. This is consistent with previous studies that observed the development of vertically sheared horizontal winds, although only at substantially later times. However, and unlike previous works, when sufficient scale separation is allowed between the forcing scale and the domain size, the total energy displays a perpendicular (horizontal) spectrum with power law behavior compatible with $$\\sim k_\\perp^{-5/3}$$, including in the absence of rotation. In this latter purely stratified case, such a spectrum is the result of a direct cascade of the energy contained in the large-scale horizontal wind, as is evidenced by a strong positive flux of energy in the parallel direction at all scales including the largest resolved scales.« less

  7. UNIVERSITY OF CALIFORNIA The Future of Large Scale Visual Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CALIFORNIA The Future of Large Scale Visual Data Analysis Joint Facilities User Forum on Data Intensive Computing Oakland, CA E. Wes Bethel Lawrence Berkeley National Laboratory 16 June 2014 16 June 2014 The World that Was: Computational Architectures * Machine architectures - Single CPU, single core - Vector, then single-core MPPs - "Large" SMP platforms - Relatively well balanced: memory, FLOPS,I/O 16 June 2014 The World that Was: Software Architecture * Data Analysis and

  8. Large Scale Computing and Storage Requirements for Fusion Energy Sciences:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Target 2014 High Energy Physics (HEP) Nuclear Physics (NP) Overview Published Reports Case Study FAQs NERSC HPC Achievement Awards Share Your Research User Submitted Research Citations NERSC Citations Home » Science at NERSC » HPC Requirements Reviews » Requirements Reviews: Target 2014 » Fusion Energy Sciences (FES) Large Scale Computing and Storage Requirements for Fusion Energy Sciences: Target 2014 FESFrontcover.png An FES / ASCR / NERSC Workshop August 3-4, 2010 Final Report Large

  9. The effective field theory of cosmological large scale structures

    SciTech Connect (OSTI)

    Carrasco, John Joseph M.; Hertzberg, Mark P.; Senatore, Leonardo

    2012-09-20

    Large scale structure surveys will likely become the next leading cosmological probe. In our universe, matter perturbations are large on short distances and small at long scales, i.e. strongly coupled in the UV and weakly coupled in the IR. To make precise analytical predictions on large scales, we develop an effective field theory formulated in terms of an IR effective fluid characterized by several parameters, such as speed of sound and viscosity. These parameters, determined by the UV physics described by the Boltzmann equation, are measured from N-body simulations. We find that the speed of sound of the effective fluid is c2s ? 106c2 and that the viscosity contributions are of the same order. The fluid describes all the relevant physics at long scales k and permits a manifestly convergent perturbative expansion in the size of the matter perturbations ?(k) for all the observables. As an example, we calculate the correction to the power spectrum at order ?(k)4. As a result, the predictions of the effective field theory are found to be in much better agreement with observation than standard cosmological perturbation theory, already reaching percent precision at this order up to a relatively short scale k ? 0.24h Mpc1.

  10. LARGE-SCALE MOTIONS IN THE PERSEUS GALAXY CLUSTER

    SciTech Connect (OSTI)

    Simionescu, A.; Werner, N.; Urban, O.; Allen, S. W.; Fabian, A. C.; Sanders, J. S.; Mantz, A.; Nulsen, P. E. J.; Takei, Y.

    2012-10-01

    By combining large-scale mosaics of ROSAT PSPC, XMM-Newton, and Suzaku X-ray observations, we present evidence for large-scale motions in the intracluster medium of the nearby, X-ray bright Perseus Cluster. These motions are suggested by several alternating and interleaved X-ray bright, low-temperature, low-entropy arcs located along the east-west axis, at radii ranging from {approx}10 kpc to over a Mpc. Thermodynamic features qualitatively similar to these have previously been observed in the centers of cool-core clusters, and were successfully modeled as a consequence of the gas sloshing/swirling motions induced by minor mergers. Our observations indicate that such sloshing/swirling can extend out to larger radii than previously thought, on scales approaching the virial radius.

  11. Performance Health Monitoring of Large-Scale Systems

    SciTech Connect (OSTI)

    Rajamony, Ram

    2014-11-20

    This report details the progress made on the ASCR funded project Performance Health Monitoring for Large Scale Systems. A large-­‐scale application may not achieve its full performance potential due to degraded performance of even a single subsystem. Detecting performance faults, isolating them, and taking remedial action is critical for the scale of systems on the horizon. PHM aims to develop techniques and tools that can be used to identify and mitigate such performance problems. We accomplish this through two main aspects. The PHM framework encompasses diagnostics, system monitoring, fault isolation, and performance evaluation capabilities that indicates when a performance fault has been detected, either due to an anomaly present in the system itself or due to contention for shared resources between concurrently executing jobs. Software components called the PHM Control system then build upon the capabilities provided by the PHM framework to mitigate degradation caused by performance problems.

  12. Evaluating the effect of internal aperture variability on transport in kilometer scale discrete fracture networks

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Makedonska, Nataliia; Hyman, Jeffrey D.; Karra, Satish; Painter, Scott L.; Gable, Carl W.; Viswanathan, Hari S.

    2016-06-17

    The apertures of natural fractures in fractured rock are highly heterogeneous. However, in-fracture aperture variability is often neglected in flow and transport modeling and individual fractures are assumed to have uniform aperture distribution. The relative importance of in-fracture variability in flow and transport modeling within kilometer18 scale field–scale fracture networks has been under a matter of debate for a long time because the flow in each single fracture is controlled not only by in-fracture variability but also by boundary conditions. Computational limitations have previously prohibited researchers from investigating the relative importance of in-fracture variability in flow and transport modeling withinmore » large-scale fracture networks. We address this question by incorporating internal heterogeneity of individual fractures into 23 flow simulations within kilometer scale three-dimensional fracture networks, where fracture intensity, P32 (ratio between total fracture area and domain volume) is between 0.027 and 0.031 [1/m]. A recently developed discrete fracture network (DFN) simulation capability, dfnWorks, is used to generate DFNs that include in-fracture aperture variability represented by a stationary log-normal stochastic field with various correlation lengths and variances. The Lagrangian transport parameters, non-reacting travel time and cumulative retention, are calculated along particles streamlines. It is observed that due to local flow channeling early particle travel times are more sensitive to in-fracture variability than the tails of travel time distributions, where no significant effect of the in-fracture transmissivity variations and spatial correlation length is observed.« less

  13. Geospatial Optimization of Siting Large-Scale Solar Projects

    SciTech Connect (OSTI)

    Macknick, J.; Quinby, T.; Caulfield, E.; Gerritsen, M.; Diffendorfer, J.; Haines, S.

    2014-03-01

    Recent policy and economic conditions have encouraged a renewed interest in developing large-scale solar projects in the U.S. Southwest. However, siting large-scale solar projects is complex. In addition to the quality of the solar resource, solar developers must take into consideration many environmental, social, and economic factors when evaluating a potential site. This report describes a proof-of-concept, Web-based Geographical Information Systems (GIS) tool that evaluates multiple user-defined criteria in an optimization algorithm to inform discussions and decisions regarding the locations of utility-scale solar projects. Existing siting recommendations for large-scale solar projects from governmental and non-governmental organizations are not consistent with each other, are often not transparent in methods, and do not take into consideration the differing priorities of stakeholders. The siting assistance GIS tool we have developed improves upon the existing siting guidelines by being user-driven, transparent, interactive, capable of incorporating multiple criteria, and flexible. This work provides the foundation for a dynamic siting assistance tool that can greatly facilitate siting decisions among multiple stakeholders.

  14. Large-Scale Optimization for Bayesian Inference in Complex Systems

    SciTech Connect (OSTI)

    Willcox, Karen; Marzouk, Youssef

    2013-11-12

    The SAGUARO (Scalable Algorithms for Groundwater Uncertainty Analysis and Robust Optimization) Project focused on the development of scalable numerical algorithms for large-scale Bayesian inversion in complex systems that capitalize on advances in large-scale simulation-based optimization and inversion methods. The project was a collaborative effort among MIT, the University of Texas at Austin, Georgia Institute of Technology, and Sandia National Laboratories. The research was directed in three complementary areas: efficient approximations of the Hessian operator, reductions in complexity of forward simulations via stochastic spectral approximations and model reduction, and employing large-scale optimization concepts to accelerate sampling. The MIT--Sandia component of the SAGUARO Project addressed the intractability of conventional sampling methods for large-scale statistical inverse problems by devising reduced-order models that are faithful to the full-order model over a wide range of parameter values; sampling then employs the reduced model rather than the full model, resulting in very large computational savings. Results indicate little effect on the computed posterior distribution. On the other hand, in the Texas--Georgia Tech component of the project, we retain the full-order model, but exploit inverse problem structure (adjoint-based gradients and partial Hessian information of the parameter-to-observation map) to implicitly extract lower dimensional information on the posterior distribution; this greatly speeds up sampling methods, so that fewer sampling points are needed. We can think of these two approaches as ``reduce then sample'' and ``sample then reduce.'' In fact, these two approaches are complementary, and can be used in conjunction with each other. Moreover, they both exploit deterministic inverse problem structure, in the form of adjoint-based gradient and Hessian information of the underlying parameter-to-observation map, to achieve their

  15. Variability of interconnected wind plants: correlation length and its dependence on variability time scale

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    St. Martin, Clara M.; Lundquist, Julie K.; Handschy, Mark A.

    2015-04-02

    The variability in wind-generated electricity complicates the integration of this electricity into the electrical grid. This challenge steepens as the percentage of renewably-generated electricity on the grid grows, but variability can be reduced by exploiting geographic diversity: correlations between wind farms decrease as the separation between wind farms increases. However, how far is far enough to reduce variability? Grid management requires balancing production on various timescales, and so consideration of correlations reflective of those timescales can guide the appropriate spatial scales of geographic diversity grid integration. To answer 'how far is far enough,' we investigate the universal behavior of geographic diversity by exploring wind-speed correlations using three extensive datasets spanning continents, durations and time resolution. First, one year of five-minute wind power generation data from 29 wind farms span 1270 km across Southeastern Australia (Australian Energy Market Operator). Second, 45 years of hourly 10 m wind-speeds from 117 stations span 5000 km across Canada (National Climate Data Archive of Environment Canada). Finally, four years of five-minute wind-speeds from 14 meteorological towers span 350 km of the Northwestern US (Bonneville Power Administration). After removing diurnal cycles and seasonal trends from all datasets, we investigate dependence of correlation length on time scale by digitally high-pass filtering the data on 0.25–2000 h timescales and calculating correlations between sites for each high-pass filter cut-off. Correlations fall to zero with increasing station separation distance, but the characteristic correlation length varies with the high-pass filter applied: the higher the cut-off frequency, the smaller the station separation required to achieve de-correlation. Remarkable similarities between these three datasets reveal behavior that, if universal, could be particularly useful for grid management. For high

  16. Variability of interconnected wind plants: correlation length and its dependence on variability time scale

    SciTech Connect (OSTI)

    St. Martin, Clara M.; Lundquist, Julie K.; Handschy, Mark A.

    2015-04-02

    The variability in wind-generated electricity complicates the integration of this electricity into the electrical grid. This challenge steepens as the percentage of renewably-generated electricity on the grid grows, but variability can be reduced by exploiting geographic diversity: correlations between wind farms decrease as the separation between wind farms increases. However, how far is far enough to reduce variability? Grid management requires balancing production on various timescales, and so consideration of correlations reflective of those timescales can guide the appropriate spatial scales of geographic diversity grid integration. To answer 'how far is far enough,' we investigate the universal behavior of geographic diversity by exploring wind-speed correlations using three extensive datasets spanning continents, durations and time resolution. First, one year of five-minute wind power generation data from 29 wind farms span 1270 km across Southeastern Australia (Australian Energy Market Operator). Second, 45 years of hourly 10 m wind-speeds from 117 stations span 5000 km across Canada (National Climate Data Archive of Environment Canada). Finally, four years of five-minute wind-speeds from 14 meteorological towers span 350 km of the Northwestern US (Bonneville Power Administration). After removing diurnal cycles and seasonal trends from all datasets, we investigate dependence of correlation length on time scale by digitally high-pass filtering the data on 0.25–2000 h timescales and calculating correlations between sites for each high-pass filter cut-off. Correlations fall to zero with increasing station separation distance, but the characteristic correlation length varies with the high-pass filter applied: the higher the cut-off frequency, the smaller the station separation required to achieve de-correlation. Remarkable similarities between these three datasets reveal behavior that, if universal, could be particularly useful for grid management. For high

  17. GAIA: A WINDOW TO LARGE-SCALE MOTIONS

    SciTech Connect (OSTI)

    Nusser, Adi; Branchini, Enzo; Davis, Marc E-mail: branchin@fis.uniroma3.it

    2012-08-10

    Using redshifts as a proxy for galaxy distances, estimates of the two-dimensional (2D) transverse peculiar velocities of distant galaxies could be obtained from future measurements of proper motions. We provide the mathematical framework for analyzing 2D transverse motions and show that they offer several advantages over traditional probes of large-scale motions. They are completely independent of any intrinsic relations between galaxy properties; hence, they are essentially free of selection biases. They are free from homogeneous and inhomogeneous Malmquist biases that typically plague distance indicator catalogs. They provide additional information to traditional probes that yield line-of-sight peculiar velocities only. Further, because of their 2D nature, fundamental questions regarding vorticity of large-scale flows can be addressed. Gaia, for example, is expected to provide proper motions of at least bright galaxies with high central surface brightness, making proper motions a likely contender for traditional probes based on current and future distance indicator measurements.

  18. Electron drift in a large scale solid xenon

    SciTech Connect (OSTI)

    Yoo, J.; Jaskierny, W. F.

    2015-08-21

    A study of charge drift in a large scale optically transparent solid xenon is reported. A pulsed high power xenon light source is used to liberate electrons from a photocathode. The drift speeds of the electrons are measured using a 8.7 cm long electrode in both the liquid and solid phase of xenon. In the liquid phase (163 K), the drift speed is 0.193 ± 0.003 cm/μs while the drift speed in the solid phase (157 K) is 0.397 ± 0.006 cm/μs at 900 V/cm over 8.0 cm of uniform electric fields. Furthermore, it is demonstrated that a factor two faster electron drift speed in solid phase xenon compared to that in liquid in a large scale solid xenon.

  19. Electron drift in a large scale solid xenon

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yoo, J.; Jaskierny, W. F.

    2015-08-21

    A study of charge drift in a large scale optically transparent solid xenon is reported. A pulsed high power xenon light source is used to liberate electrons from a photocathode. The drift speeds of the electrons are measured using a 8.7 cm long electrode in both the liquid and solid phase of xenon. In the liquid phase (163 K), the drift speed is 0.193 ± 0.003 cm/μs while the drift speed in the solid phase (157 K) is 0.397 ± 0.006 cm/μs at 900 V/cm over 8.0 cm of uniform electric fields. Furthermore, it is demonstrated that a factor twomore » faster electron drift speed in solid phase xenon compared to that in liquid in a large scale solid xenon.« less

  20. The workshop on iterative methods for large scale nonlinear problems

    SciTech Connect (OSTI)

    Walker, H.F.; Pernice, M.

    1995-12-01

    The aim of the workshop was to bring together researchers working on large scale applications with numerical specialists of various kinds. Applications that were addressed included reactive flows (combustion and other chemically reacting flows, tokamak modeling), porous media flows, cardiac modeling, chemical vapor deposition, image restoration, macromolecular modeling, and population dynamics. Numerical areas included Newton iterative (truncated Newton) methods, Krylov subspace methods, domain decomposition and other preconditioning methods, large scale optimization and optimal control, and parallel implementations and software. This report offers a brief summary of workshop activities and information about the participants. Interested readers are encouraged to look into an online proceedings available at http://www.usi.utah.edu/logan.proceedings. In this, the material offered here is augmented with hypertext abstracts that include links to locations such as speakers` home pages, PostScript copies of talks and papers, cross-references to related talks, and other information about topics addresses at the workshop.

  1. Robust, Multifunctional Joint for Large Scale Power Production Stacks -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Robust, Multifunctional Joint for Large Scale Power Production Stacks Lawrence Berkeley National Laboratory Contact LBL About This Technology DIAGRAM OF BERKELEY LAB'S MULTIFUNCTIONAL JOINT DIAGRAM OF BERKELEY LAB'S MULTIFUNCTIONAL JOINT Technology Marketing SummaryBerkeley Lab scientists have developed a multifunctional joint for metal supported, tubular SOFCs that divides various joint functions so that materials and methods optimizing each function can be chosen

  2. Relic vector field and CMB large scale anomalies

    SciTech Connect (OSTI)

    Chen, Xingang; Wang, Yi E-mail: yw366@cam.ac.uk

    2014-10-01

    We study the most general effects of relic vector fields on the inflationary background and density perturbations. Such effects are observable if the number of inflationary e-folds is close to the minimum requirement to solve the horizon problem. We show that this can potentially explain two CMB large scale anomalies: the quadrupole-octopole alignment and the quadrupole power suppression. We discuss its effect on the parity anomaly. We also provide analytical template for more detailed data comparison.

  3. Large-scale ab initio configuration interaction calculations for light

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nuclei | Argonne Leadership Computing Facility Large-scale ab initio configuration interaction calculations for light nuclei Authors: Pieter Maris, H Metin Aktulga, Mark A Caprio, Ümit V Çatalyürek, Esmond G Ng, Dossay Oryspayev, Hugh Potter, Erik Saule, Masha Sosonkina, James P Vary, Chao Yang Zheng Zhou In ab-initio Configuration Interaction calculations, the nuclear wavefunction is expanded in Slater determinants of single-nucleon wavefunctions and the many-body Schrodinger equation

  4. Electrochemical cells for medium- and large-scale energy storage

    SciTech Connect (OSTI)

    Wang, Wei; Wei, Xiaoliang; Choi, Daiwon; Lu, Xiaochuan; Yang, G.; Sun, C.

    2014-12-12

    This is one of the chapters in the book titled “Advances in batteries for large- and medium-scale energy storage: Applications in power systems and electric vehicles” that will be published by the Woodhead Publishing Limited. The chapter discusses the basic electrochemical fundamentals of electrochemical energy storage devices with a focus on the rechargeable batteries. Several practical secondary battery systems are also discussed as examples

  5. Large Scale Production Computing and Storage Requirements for Advanced

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Computing Research: Target 2017 Large Scale Production Computing and Storage Requirements for Advanced Scientific Computing Research: Target 2017 ASCRLogo.png This is an invitation-only review organized by the Department of Energy's Office of Advanced Scientific Computing Research (ASCR) and NERSC. The general goal is to determine production high-performance computing, storage, and services that will be needed for ASCR to achieve its science goals through 2017. A specific focus

  6. Large Scale Production Computing and Storage Requirements for Basic Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences: Target 2017 Large Scale Production Computing and Storage Requirements for Basic Energy Sciences: Target 2017 BES-Montage.png This is an invitation-only review organized by the Department of Energy's Office of Basic Energy Sciences (BES), Office of Advanced Scientific Computing Research (ASCR), and the National Energy Research Scientific Computing Center (NERSC). The goal is to determine production high-performance computing, storage, and services that will be needed for BES to

  7. Large Scale Production Computing and Storage Requirements for Biological

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Environmental Research: Target 2017 Large Scale Production Computing and Storage Requirements for Biological and Environmental Research: Target 2017 BERmontage.gif September 11-12, 2012 Hilton Rockville Hotel and Executive Meeting Center 1750 Rockville Pike Rockville, MD, 20852-1699 TEL: 1-301-468-1100 Sponsored by: U.S. Department of Energy Office of Science Office of Advanced Scientific Computing Research (ASCR) Office of Biological and Environmental Research (BER) National Energy

  8. Large Scale Production Computing and Storage Requirements for Nuclear

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics: Target 2017 Large Scale Production Computing and Storage Requirements for Nuclear Physics: Target 2017 NPicon.png This invitation-only review is organized by the Department of Energy's Offices of Nuclear Physics (NP) and Advanced Scientific Computing Research (ASCR) and by NERSC. The goal is to determine production high-performance computing, storage, and services that will be needed for NP to achieve its science goals through 2017. The review brings together DOE Program Managers,

  9. Computational Fluid Dynamics & Large-Scale Uncertainty Quantification for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Energy Fluid Dynamics & Large-Scale Uncertainty Quantification for Wind Energy - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery

  10. Robust large-scale parallel nonlinear solvers for simulations.

    SciTech Connect (OSTI)

    Bader, Brett William; Pawlowski, Roger Patrick; Kolda, Tamara Gibson

    2005-11-01

    This report documents research to develop robust and efficient solution techniques for solving large-scale systems of nonlinear equations. The most widely used method for solving systems of nonlinear equations is Newton's method. While much research has been devoted to augmenting Newton-based solvers (usually with globalization techniques), little has been devoted to exploring the application of different models. Our research has been directed at evaluating techniques using different models than Newton's method: a lower order model, Broyden's method, and a higher order model, the tensor method. We have developed large-scale versions of each of these models and have demonstrated their use in important applications at Sandia. Broyden's method replaces the Jacobian with an approximation, allowing codes that cannot evaluate a Jacobian or have an inaccurate Jacobian to converge to a solution. Limited-memory methods, which have been successful in optimization, allow us to extend this approach to large-scale problems. We compare the robustness and efficiency of Newton's method, modified Newton's method, Jacobian-free Newton-Krylov method, and our limited-memory Broyden method. Comparisons are carried out for large-scale applications of fluid flow simulations and electronic circuit simulations. Results show that, in cases where the Jacobian was inaccurate or could not be computed, Broyden's method converged in some cases where Newton's method failed to converge. We identify conditions where Broyden's method can be more efficient than Newton's method. We also present modifications to a large-scale tensor method, originally proposed by Bouaricha, for greater efficiency, better robustness, and wider applicability. Tensor methods are an alternative to Newton-based methods and are based on computing a step based on a local quadratic model rather than a linear model. The advantage of Bouaricha's method is that it can use any existing linear solver, which makes it simple to write

  11. Nuclear-pumped lasers for large-scale applications

    SciTech Connect (OSTI)

    Anderson, R.E.; Leonard, E.M.; Shea, R.F.; Berggren, R.R.

    1989-05-01

    Efficient initiation of large-volume chemical lasers may be achieved by neutron induced reactions which produce charged particles in the final state. When a burst mode nuclear reactor is used as the neutron source, both a sufficiently intense neutron flux and a sufficiently short initiation pulse may be possible. Proof-of-principle experiments are planned to demonstrate lasing in a direct nuclear-pumped large-volume system; to study the effects of various neutron absorbing materials on laser performance; to study the effects of long initiation pulse lengths; to demonstrate the performance of large-scale optics and the beam quality that may be obtained; and to assess the performance of alternative designs of burst systems that increase the neutron output and burst repetition rate. 21 refs., 8 figs., 5 tabs.

  12. Nuclear-pumped lasers for large-scale applications

    SciTech Connect (OSTI)

    Anderson, R.E.; Leonard, E.M.; Shea, R.E.; Berggren, R.R.

    1988-01-01

    Efficient initiation of large-volume chemical lasers may be achieved by neutron induced reactions which produce charged particles in the final state. When a burst mode nuclear reactor is used as the neutron source, both a sufficiently intense neutron flux and a sufficient short initiation pulse may be possible. Proof-of-principle experiments are planned to demonstrate lasing in a direct nuclear-pumped large-volume system: to study the effects of various neutron absorbing materials on laser performance; to study the effects of long initiation pulse lengths; to determine the performance of large-scale optics and the beam quality that may bo obtained; and to assess the performance of alternative designs of burst systems that increase the neutron output and burst repetition rate. 21 refs., 7 figs., 5 tabs.

  13. Reducing Data Center Loads for a Large-scale, Low Energy Office...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Center Loads for a Large- scale, Low-energy Office Building: NREL's Research Support ... National Renewable Energy Laboratory Reducing Data Center Loads for a Large-Scale, ...

  14. HyLights -- Tools to Prepare the Large-Scale European Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HYLIGHTS - TOOLS TO PREPARE THE LARGE-SCALE EUROPEAN DEMONSTRATION PROJECTS ON HYDROGEN ... Assist the European Commission and European industry to plan the large-scale demonstration ...

  15. Just enough inflation: power spectrum modifications at large scales

    SciTech Connect (OSTI)

    Cicoli, Michele [Dipartimento di Fisica ed Astronomia, Universit di Bologna, via Irnerio 46, 40126 Bologna (Italy); Downes, Sean [Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan (China); Dutta, Bhaskar [Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843-4242 (United States); Pedro, Francisco G.; Westphal, Alexander, E-mail: mcicoli@ictp.it, E-mail: ssdownes@phys.ntu.edu.tw, E-mail: dutta@physics.tamu.edu, E-mail: francisco.pedro@desy.de, E-mail: alexander.westphal@desy.de [Deutsches Elektronen-Synchrotron DESY, Theory Group, D-22603 Hamburg (Germany)

    2014-12-01

    We show that models of 'just enough' inflation, where the slow-roll evolution lasted only 50- 60 e-foldings, feature modifications of the CMB power spectrum at large angular scales. We perform a systematic analytic analysis in the limit of a sudden transition between any possible non-slow-roll background evolution and the final stage of slow-roll inflation. We find a high degree of universality since most common backgrounds like fast-roll evolution, matter or radiation-dominance give rise to a power loss at large angular scales and a peak together with an oscillatory behaviour at scales around the value of the Hubble parameter at the beginning of slow-roll inflation. Depending on the value of the equation of state parameter, different pre-inflationary epochs lead instead to an enhancement of power at low ?, and so seem disfavoured by recent observational hints for a lack of CMB power at ??<40. We also comment on the importance of initial conditions and the possibility to have multiple pre-inflationary stages.

  16. Large-scale BAO signatures of the smallest galaxies

    SciTech Connect (OSTI)

    Dalal, Neal; Pen, Ue-Li; Seljak, Uros E-mail: pen@cita.utoronto.ca

    2010-11-01

    Recent work has shown that at high redshift, the relative velocity between dark matter and baryonic gas is typically supersonic. This relative velocity suppresses the formation of the earliest baryonic structures like minihalos, and the suppression is modulated on large scales. This effect imprints a characteristic shape in the clustering power spectrum of the earliest structures, with significant power on ∼ 100 Mpc scales featuring highly pronounced baryon acoustic oscillations. The amplitude of these oscillations is orders of magnitude larger at z ∼ 20 than previously expected. This characteristic signature can allow us to distinguish the effects of minihalos on intergalactic gas at times preceding and during reionization. We illustrate this effect with the example of 21 cm emission and absorption from redshifts during and before reionization. This effect can potentially allow us to probe physics on kpc scales using observations on 100 Mpc scales. We present sensitivity forecasts for FAST and Arecibo. Depending on parameters, this enhanced structure may be detectable by Arecibo at z ∼ 15−20, and with appropriate instrumentation FAST could measure the BAO power spectrum with high precision. In principle, this effect could also pose a serious challenge for efforts to constrain dark energy using observations of the BAO feature at low redshift.

  17. Detecting differential protein expression in large-scale population proteomics

    SciTech Connect (OSTI)

    Ryu, Soyoung; Qian, Weijun; Camp, David G.; Smith, Richard D.; Tompkins, Ronald G.; Davis, Ronald W.; Xiao, Wenzhong

    2014-06-17

    Mass spectrometry-based high-throughput quantitative proteomics shows great potential in clinical biomarker studies, identifying and quantifying thousands of proteins in biological samples. However, methods are needed to appropriately handle issues/challenges unique to mass spectrometry data in order to detect as many biomarker proteins as possible. One issue is that different mass spectrometry experiments generate quite different total numbers of quantified peptides, which can result in more missing peptide abundances in an experiment with a smaller total number of quantified peptides. Another issue is that the quantification of peptides is sometimes absent, especially for less abundant peptides and such missing values contain the information about the peptide abundance. Here, we propose a Significance Analysis for Large-scale Proteomics Studies (SALPS) that handles missing peptide intensity values caused by the two mechanisms mentioned above. Our model has a robust performance in both simulated data and proteomics data from a large clinical study. Because varying patients’ sample qualities and deviating instrument performances are not avoidable for clinical studies performed over the course of several years, we believe that our approach will be useful to analyze large-scale clinical proteomics data.

  18. High Fidelity Simulations of Large-Scale Wireless Networks

    SciTech Connect (OSTI)

    Onunkwo, Uzoma; Benz, Zachary

    2015-11-01

    The worldwide proliferation of wireless connected devices continues to accelerate. There are 10s of billions of wireless links across the planet with an additional explosion of new wireless usage anticipated as the Internet of Things develops. Wireless technologies do not only provide convenience for mobile applications, but are also extremely cost-effective to deploy. Thus, this trend towards wireless connectivity will only continue and Sandia must develop the necessary simulation technology to proactively analyze the associated emerging vulnerabilities. Wireless networks are marked by mobility and proximity-based connectivity. The de facto standard for exploratory studies of wireless networks is discrete event simulations (DES). However, the simulation of large-scale wireless networks is extremely difficult due to prohibitively large turnaround time. A path forward is to expedite simulations with parallel discrete event simulation (PDES) techniques. The mobility and distance-based connectivity associated with wireless simulations, however, typically doom PDES and fail to scale (e.g., OPNET and ns-3 simulators). We propose a PDES-based tool aimed at reducing the communication overhead between processors. The proposed solution will use light-weight processes to dynamically distribute computation workload while mitigating communication overhead associated with synchronizations. This work is vital to the analytics and validation capabilities of simulation and emulation at Sandia. We have years of experience in Sandia’s simulation and emulation projects (e.g., MINIMEGA and FIREWHEEL). Sandia’s current highly-regarded capabilities in large-scale emulations have focused on wired networks, where two assumptions prevent scalable wireless studies: (a) the connections between objects are mostly static and (b) the nodes have fixed locations.

  19. Large scale obscuration and related climate effects open literature bibliography

    SciTech Connect (OSTI)

    Russell, N.A.; Geitgey, J.; Behl, Y.K.; Zak, B.D.

    1994-05-01

    Large scale obscuration and related climate effects of nuclear detonations first became a matter of concern in connection with the so-called ``Nuclear Winter Controversy`` in the early 1980`s. Since then, the world has changed. Nevertheless, concern remains about the atmospheric effects of nuclear detonations, but the source of concern has shifted. Now it focuses less on global, and more on regional effects and their resulting impacts on the performance of electro-optical and other defense-related systems. This bibliography reflects the modified interest.

  20. Large-Scale Spray Releases: Additional Aerosol Test Results

    SciTech Connect (OSTI)

    Daniel, Richard C.; Gauglitz, Phillip A.; Burns, Carolyn A.; Fountain, Matthew S.; Shimskey, Rick W.; Billing, Justin M.; Bontha, Jagannadha R.; Kurath, Dean E.; Jenks, Jeromy WJ; MacFarlan, Paul J.; Mahoney, Lenna A.

    2013-08-01

    One of the events postulated in the hazard analysis for the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak event involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids that behave as a Newtonian fluid. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and in processing facilities across the DOE complex. To expand the data set upon which the WTP accident and safety analyses were based, an aerosol spray leak testing program was conducted by Pacific Northwest National Laboratory (PNNL). PNNL’s test program addressed two key technical areas to improve the WTP methodology (Larson and Allen 2010). The first technical area was to quantify the role of slurry particles in small breaches where slurry particles may plug the hole and prevent high-pressure sprays. The results from an effort to address this first technical area can be found in Mahoney et al. (2012a). The second technical area was to determine aerosol droplet size distribution and total droplet volume from prototypic breaches and fluids, including sprays from larger breaches and sprays of slurries for which literature data are mostly absent. To address the second technical area, the testing program collected aerosol generation data at two scales, commonly referred to as small-scale and large-scale testing. The small-scale testing and resultant data are described in Mahoney et al. (2012b), and the large-scale testing and resultant data are presented in Schonewill et al. (2012). In tests at both scales, simulants were used

  1. Large-Scale All-Dielectric Metamaterial Perfect Reflectors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Moitra, Parikshit; Slovick, Brian A.; li, Wei; Kravchencko, Ivan I.; Briggs, Dayrl P.; Krishnamurthy, S.; Valentine, Jason

    2015-05-08

    All-dielectric metamaterials offer a potential low-loss alternative to plasmonic metamaterials at optical frequencies. In this paper, we take advantage of the low absorption loss as well as the simple unit cell geometry to demonstrate large-scale (centimeter-sized) all-dielectric metamaterial perfect reflectors made from silicon cylinder resonators. These perfect reflectors, operating in the telecommunications band, were fabricated using self-assembly based nanosphere lithography. In spite of the disorder originating from the self-assembly process, the average reflectance of the metamaterial perfect reflectors is 99.7% at 1530 nm, surpassing the reflectance of metallic mirrors. Moreover, the spectral separation of the electric and magnetic resonances canmore » be chosen to achieve the required reflection bandwidth while maintaining a high tolerance to disorder. Finally, the scalability of this design could lead to new avenues of manipulating light for low-loss and large-area photonic applications.« less

  2. Planning under uncertainty solving large-scale stochastic linear programs

    SciTech Connect (OSTI)

    Infanger, G. . Dept. of Operations Research Technische Univ., Vienna . Inst. fuer Energiewirtschaft)

    1992-12-01

    For many practical problems, solutions obtained from deterministic models are unsatisfactory because they fail to hedge against certain contingencies that may occur in the future. Stochastic models address this shortcoming, but up to recently seemed to be intractable due to their size. Recent advances both in solution algorithms and in computer technology now allow us to solve important and general classes of practical stochastic problems. We show how large-scale stochastic linear programs can be efficiently solved by combining classical decomposition and Monte Carlo (importance) sampling techniques. We discuss the methodology for solving two-stage stochastic linear programs with recourse, present numerical results of large problems with numerous stochastic parameters, show how to efficiently implement the methodology on a parallel multi-computer and derive the theory for solving a general class of multi-stage problems with dependency of the stochastic parameters within a stage and between different stages.

  3. Parallel Index and Query for Large Scale Data Analysis

    SciTech Connect (OSTI)

    Chou, Jerry; Wu, Kesheng; Ruebel, Oliver; Howison, Mark; Qiang, Ji; Prabhat,; Austin, Brian; Bethel, E. Wes; Ryne, Rob D.; Shoshani, Arie

    2011-07-18

    Modern scientific datasets present numerous data management and analysis challenges. State-of-the-art index and query technologies are critical for facilitating interactive exploration of large datasets, but numerous challenges remain in terms of designing a system for process- ing general scientific datasets. The system needs to be able to run on distributed multi-core platforms, efficiently utilize underlying I/O infrastructure, and scale to massive datasets. We present FastQuery, a novel software framework that address these challenges. FastQuery utilizes a state-of-the-art index and query technology (FastBit) and is designed to process mas- sive datasets on modern supercomputing platforms. We apply FastQuery to processing of a massive 50TB dataset generated by a large scale accelerator modeling code. We demonstrate the scalability of the tool to 11,520 cores. Motivated by the scientific need to search for inter- esting particles in this dataset, we use our framework to reduce search time from hours to tens of seconds.

  4. Presentation on the Large-Scale Renewable Energy Guide | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Presentation on the Large-Scale Renewable Energy Guide Presentation on the Large-Scale Renewable Energy Guide Presentation covers the Large-Scale RE Guide: Developing Renewable Energy Projects Larger than 10 MWs at Federal Facilities for the FUPWG Spring meeting, held on May 22, 2013, in San Francisco, California. Download FEMP's Large-Scale Renewable Energy Guide - Presented by Brad Gustafson (1.75 MB) More Documents & Publications Large-Scale Federal Renewable Energy Projects

  5. Large scale, urban decontamination; developments, historical examples and lessons learned

    SciTech Connect (OSTI)

    Demmer, R.L.

    2007-07-01

    Recent terrorist threats and actions have lead to a renewed interest in the technical field of large scale, urban environment decontamination. One of the driving forces for this interest is the prospect for the cleanup and removal of radioactive dispersal device (RDD or 'dirty bomb') residues. In response, the United States Government has spent many millions of dollars investigating RDD contamination and novel decontamination methodologies. The efficiency of RDD cleanup response will be improved with these new developments and a better understanding of the 'old reliable' methodologies. While an RDD is primarily an economic and psychological weapon, the need to cleanup and return valuable or culturally significant resources to the public is nonetheless valid. Several private companies, universities and National Laboratories are currently developing novel RDD cleanup technologies. Because of its longstanding association with radioactive facilities, the U. S. Department of Energy National Laboratories are at the forefront in developing and testing new RDD decontamination methods. However, such cleanup technologies are likely to be fairly task specific; while many different contamination mechanisms, substrate and environmental conditions will make actual application more complicated. Some major efforts have also been made to model potential contamination, to evaluate both old and new decontamination techniques and to assess their readiness for use. There are a number of significant lessons that can be gained from a look at previous large scale cleanup projects. Too often we are quick to apply a costly 'package and dispose' method when sound technological cleaning approaches are available. Understanding historical perspectives, advanced planning and constant technology improvement are essential to successful decontamination. (authors)

  6. Large-Angular-Scale Anisotropy in the Cosmic Background Radiation

    DOE R&D Accomplishments [OSTI]

    Gorenstein, M. V.; Smoot, G. F.

    1980-05-01

    We report the results of an extended series of airborne measurements of large-angular-scale anisotropy in the 3 K cosmic background radiation. Observations were carried out with a dual-antenna microwave radiometer operating at 33 GHz (.089 cm wavelength) flown on board a U-2 aircraft to 20 km altitude. In eleven flights, between December 1976 and May 1978, the radiometer measured differential intensity between pairs of directions distributed over most of the northern hemisphere with an rms sensitivity of 47 mK Hz{sup 1�}. The measurements how clear evidence of anisotropy that is readily interpreted as due to the solar motion relative to the sources of the radiation. The anisotropy is well fit by a first order spherical harmonic of amplitude 360{+ or -}50km sec{sup -1} toward the direction 11.2{+ or -}0.5 hours of right ascension and 19 {+ or -}8 degrees declination. A simultaneous fit to a combined hypotheses of dipole and quadrupole angular distributions places a 1 mK limit on the amplitude of most components of quadrupole anisotropy with 90% confidence. Additional analysis places a 0.5 mK limit on uncorrelated fluctuations (sky-roughness) in the 3 K background on an angular scale of the antenna beam width, about 7 degrees.

  7. Parallel Tensor Compression for Large-Scale Scientific Data.

    SciTech Connect (OSTI)

    Kolda, Tamara G.; Ballard, Grey; Austin, Woody Nathan

    2015-10-01

    As parallel computing trends towards the exascale, scientific data produced by high-fidelity simulations are growing increasingly massive. For instance, a simulation on a three-dimensional spatial grid with 512 points per dimension that tracks 64 variables per grid point for 128 time steps yields 8 TB of data. By viewing the data as a dense five way tensor, we can compute a Tucker decomposition to find inherent low-dimensional multilinear structure, achieving compression ratios of up to 10000 on real-world data sets with negligible loss in accuracy. So that we can operate on such massive data, we present the first-ever distributed memory parallel implementation for the Tucker decomposition, whose key computations correspond to parallel linear algebra operations, albeit with nonstandard data layouts. Our approach specifies a data distribution for tensors that avoids any tensor data redistribution, either locally or in parallel. We provide accompanying analysis of the computation and communication costs of the algorithms. To demonstrate the compression and accuracy of the method, we apply our approach to real-world data sets from combustion science simulations. We also provide detailed performance results, including parallel performance in both weak and strong scaling experiments.

  8. Cosmological implications of the CMB large-scale structure

    SciTech Connect (OSTI)

    Melia, Fulvio

    2015-01-01

    The Wilkinson Microwave Anisotropy Probe (WMAP) and Planck may have uncovered several anomalies in the full cosmic microwave background (CMB) sky that could indicate possible new physics driving the growth of density fluctuations in the early universe. These include an unusually low power at the largest scales and an apparent alignment of the quadrupole and octopole moments. In a ?CDM model where the CMB is described by a Gaussian Random Field, the quadrupole and octopole moments should be statistically independent. The emergence of these low probability features may simply be due to posterior selections from many such possible effects, whose occurrence would therefore not be as unlikely as one might naively infer. If this is not the case, however, and if these features are not due to effects such as foreground contamination, their combined statistical significance would be equal to the product of their individual significances. In the absence of such extraneous factors, and ignoring the biasing due to posterior selection, the missing large-angle correlations would have a probability as low as ?0.1% and the low-l multipole alignment would be unlikely at the ?4.9% level; under the least favorable conditions, their simultaneous observation in the context of the standard model could then be likely at only the ?0.005% level. In this paper, we explore the possibility that these features are indeed anomalous, and show that the corresponding probability of CMB multipole alignment in the R{sub h}=ct universe would then be ?710%, depending on the number of large-scale SachsWolfe induced fluctuations. Since the low power at the largest spatial scales is reproduced in this cosmology without the need to invoke cosmic variance, the overall likelihood of observing both of these features in the CMB is ?7%, much more likely than in ?CDM, if the anomalies are real. The key physical ingredient responsible for this difference is the existence in the former of a maximum fluctuation

  9. Ferroelectric opening switches for large-scale pulsed power drivers.

    SciTech Connect (OSTI)

    Brennecka, Geoffrey L.; Rudys, Joseph Matthew; Reed, Kim Warren; Pena, Gary Edward; Tuttle, Bruce Andrew; Glover, Steven Frank

    2009-11-01

    Fast electrical energy storage or Voltage-Driven Technology (VDT) has dominated fast, high-voltage pulsed power systems for the past six decades. Fast magnetic energy storage or Current-Driven Technology (CDT) is characterized by 10,000 X higher energy density than VDT and has a great number of other substantial advantages, but it has all but been neglected for all of these decades. The uniform explanation for neglect of CDT technology is invariably that the industry has never been able to make an effective opening switch, which is essential for the use of CDT. Most approaches to opening switches have involved plasma of one sort or another. On a large scale, gaseous plasmas have been used as a conductor to bridge the switch electrodes that provides an opening function when the current wave front propagates through to the output end of the plasma and fully magnetizes the plasma - this is called a Plasma Opening Switch (POS). Opening can be triggered in a POS using a magnetic field to push the plasma out of the A-K gap - this is called a Magnetically Controlled Plasma Opening Switch (MCPOS). On a small scale, depletion of electron plasmas in semiconductor devices is used to affect opening switch behavior, but these devices are relatively low voltage and low current compared to the hundreds of kilo-volts and tens of kilo-amperes of interest to pulsed power. This work is an investigation into an entirely new approach to opening switch technology that utilizes new materials in new ways. The new materials are Ferroelectrics and using them as an opening switch is a stark contrast to their traditional applications in optics and transducer applications. Emphasis is on use of high performance ferroelectrics with the objective of developing an opening switch that would be suitable for large scale pulsed power applications. Over the course of exploring this new ground, we have discovered new behaviors and properties of these materials that were here to fore unknown. Some of

  10. Large Scale Obscuration and Related Climate Effects Workshop: Proceedings

    SciTech Connect (OSTI)

    Zak, B.D.; Russell, N.A.; Church, H.W.; Einfeld, W.; Yoon, D.; Behl, Y.K.

    1994-05-01

    A Workshop on Large Scale Obsurcation and Related Climate Effects was held 29--31 January, 1992, in Albuquerque, New Mexico. The objectives of the workshop were: to determine through the use of expert judgement the current state of understanding of regional and global obscuration and related climate effects associated with nuclear weapons detonations; to estimate how large the uncertainties are in the parameters associated with these phenomena (given specific scenarios); to evaluate the impact of these uncertainties on obscuration predictions; and to develop an approach for the prioritization of further work on newly-available data sets to reduce the uncertainties. The workshop consisted of formal presentations by the 35 participants, and subsequent topical working sessions on: the source term; aerosol optical properties; atmospheric processes; and electro-optical systems performance and climatic impacts. Summaries of the conclusions reached in the working sessions are presented in the body of the report. Copies of the transparencies shown as part of each formal presentation are contained in the appendices (microfiche).

  11. Large scale electromechanical transistor with application in mass sensing

    SciTech Connect (OSTI)

    Jin, Leisheng; Li, Lijie

    2014-12-07

    Nanomechanical transistor (NMT) has evolved from the single electron transistor, a device that operates by shuttling electrons with a self-excited central conductor. The unfavoured aspects of the NMT are the complexity of the fabrication process and its signal processing unit, which could potentially be overcome by designing much larger devices. This paper reports a new design of large scale electromechanical transistor (LSEMT), still taking advantage of the principle of shuttling electrons. However, because of the large size, nonlinear electrostatic forces induced by the transistor itself are not sufficient to drive the mechanical member into vibrationan external force has to be used. In this paper, a LSEMT device is modelled, and its new application in mass sensing is postulated using two coupled mechanical cantilevers, with one of them being embedded in the transistor. The sensor is capable of detecting added mass using the eigenstate shifts method by reading the change of electrical current from the transistor, which has much higher sensitivity than conventional eigenfrequency shift approach used in classical cantilever based mass sensors. Numerical simulations are conducted to investigate the performance of the mass sensor.

  12. Design advanced for large-scale, economic, floating LNG plant

    SciTech Connect (OSTI)

    Naklie, M.M.

    1997-06-30

    A floating LNG plant design has been developed which is technically feasible, economical, safe, and reliable. This technology will allow monetization of small marginal fields and improve the economics of large fields. Mobil`s world-scale plant design has a capacity of 6 million tons/year of LNG and up to 55,000 b/d condensate produced from 1 bcfd of feed gas. The plant would be located on a large, secure, concrete barge with a central moonpool. LNG storage is provided for 250,000 cu m and condensate storage for 650,000 bbl. And both products are off-loaded from the barge. Model tests have verified the stability of the barge structure: barge motions are low enough to permit the plant to continue operation in a 100-year storm in the Pacific Rim. Moreover, the barge is spread-moored, eliminating the need for a turret and swivel. Because the design is generic, the plant can process a wide variety of feed gases and operate in different environments, should the plant be relocated. This capability potentially gives the plant investment a much longer project life because its use is not limited to the life of only one producing area.

  13. Ground movements associated with large-scale underground coal gasification

    SciTech Connect (OSTI)

    Siriwardane, H.J.; Layne, A.W.

    1989-09-01

    The primary objective of this work was to predict the surface and underground movement associated with large-scale multiwell burn sites in the Illinois Basin and Appalachian Basin by using the subsidence/thermomechanical model UCG/HEAT. This code is based on the finite element method. In particular, it can be used to compute (1) the temperature field around an underground cavity when the temperature variation of the cavity boundary is known, and (2) displacements and stresses associated with body forces (gravitational forces) and a temperature field. It is hypothesized that large Underground Coal Gasification (UCG) cavities generated during the line-drive process will be similar to those generated by longwall mining. If that is the case, then as a UCG process continues, the roof of the cavity becomes unstable and collapses. In the UCG/HEAT computer code, roof collapse is modeled using a simplified failure criterion (Lee 1985). It is anticipated that roof collapse would occur behind the burn front; therefore, forward combustion can be continued. As the gasification front propagates, the length of the cavity would become much larger than its width. Because of this large length-to-width ratio in the cavity, ground response behavior could be analyzed by considering a plane-strain idealization. In a plane-strain idealization of the UCG cavity, a cross-section perpendicular to the axis of propagation could be considered, and a thermomechanical analysis performed using a modified version of the two-dimensional finite element code UCG/HEAT. 15 refs., 9 figs., 3 tabs.

  14. Large-Scale Data Challenges in Future Power Grids

    SciTech Connect (OSTI)

    Yin, Jian; Sharma, Poorva; Gorton, Ian; Akyol, Bora A.

    2013-03-25

    This paper describes technical challenges in supporting large-scale real-time data analysis for future power grid systems and discusses various design options to address these challenges. Even though the existing U.S. power grid has served the nation remarkably well over the last 120 years, big changes are in the horizon. The widespread deployment of renewable generation, smart grid controls, energy storage, plug-in hybrids, and new conducting materials will require fundamental changes in the operational concepts and principal components. The whole system becomes highly dynamic and needs constant adjustments based on real time data. Even though millions of sensors such as phase measurement units (PMUs) and smart meters are being widely deployed, a data layer that can support this amount of data in real time is needed. Unlike the data fabric in cloud services, the data layer for smart grids must address some unique challenges. This layer must be scalable to support millions of sensors and a large number of diverse applications and still provide real time guarantees. Moreover, the system needs to be highly reliable and highly secure because the power grid is a critical piece of infrastructure. No existing systems can satisfy all the requirements at the same time. We examine various design options. In particular, we explore the special characteristics of power grid data to meet both scalability and quality of service requirements. Our initial prototype can improve performance by orders of magnitude over existing general-purpose systems. The prototype was demonstrated with several use cases from PNNL’s FPGI and was shown to be able to integrate huge amount of data from a large number of sensors and a diverse set of applications.

  15. PROPERTIES IMPORTANT TO MIXING FOR WTP LARGE SCALE INTEGRATED TESTING

    SciTech Connect (OSTI)

    Koopman, D.; Martino, C.; Poirier, M.

    2012-04-26

    Large Scale Integrated Testing (LSIT) is being planned by Bechtel National, Inc. to address uncertainties in the full scale mixing performance of the Hanford Waste Treatment and Immobilization Plant (WTP). Testing will use simulated waste rather than actual Hanford waste. Therefore, the use of suitable simulants is critical to achieving the goals of the test program. External review boards have raised questions regarding the overall representativeness of simulants used in previous mixing tests. Accordingly, WTP requested the Savannah River National Laboratory (SRNL) to assist with development of simulants for use in LSIT. Among the first tasks assigned to SRNL was to develop a list of waste properties that matter to pulse-jet mixer (PJM) mixing of WTP tanks. This report satisfies Commitment 5.2.3.1 of the Department of Energy Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 2010-2: physical properties important to mixing and scaling. In support of waste simulant development, the following two objectives are the focus of this report: (1) Assess physical and chemical properties important to the testing and development of mixing scaling relationships; (2) Identify the governing properties and associated ranges for LSIT to achieve the Newtonian and non-Newtonian test objectives. This includes the properties to support testing of sampling and heel management systems. The test objectives for LSIT relate to transfer and pump out of solid particles, prototypic integrated operations, sparger operation, PJM controllability, vessel level/density measurement accuracy, sampling, heel management, PJM restart, design and safety margin, Computational Fluid Dynamics (CFD) Verification and Validation (V and V) and comparison, performance testing and scaling, and high temperature operation. The slurry properties that are most important to Performance Testing and Scaling depend on the test objective and rheological classification of the slurry (i

  16. Development of fine-resolution analyses and expanded large-scale...

    Office of Scientific and Technical Information (OSTI)

    II: Scale-awareness and application to single-column model experiments Title: Development of fine-resolution analyses and expanded large-scale forcing properties. Part II: ...

  17. Large-Scale Spray Releases: Initial Aerosol Test Results

    SciTech Connect (OSTI)

    Schonewill, Philip P.; Gauglitz, Phillip A.; Bontha, Jagannadha R.; Daniel, Richard C.; Kurath, Dean E.; Adkins, Harold E.; Billing, Justin M.; Burns, Carolyn A.; Davis, James M.; Enderlin, Carl W.; Fischer, Christopher M.; Jenks, Jeromy WJ; Lukins, Craig D.; MacFarlan, Paul J.; Shutthanandan, Janani I.; Smith, Dennese M.

    2012-12-01

    One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and across processing facilities in the DOE complex. Two key technical areas were identified where testing results were needed to improve the technical basis by reducing the uncertainty due to extrapolating existing literature results. The first technical need was to quantify the role of slurry particles in small breaches where the slurry particles may plug and result in substantially reduced, or even negligible, respirable fraction formed by high-pressure sprays. The second technical need was to determine the aerosol droplet size distribution and volume from prototypic breaches and fluids, specifically including sprays from larger breaches with slurries where data from the literature are scarce. To address these technical areas, small- and large-scale test stands were constructed and operated with simulants to determine aerosol release fractions and generation rates from a range of breach sizes and geometries. The properties of the simulants represented the range of properties expected in the WTP process streams and included water, sodium salt solutions, slurries containing boehmite or gibbsite, and a hazardous chemical simulant. The effect of anti-foam agents was assessed with most of the simulants. Orifices included round holes and

  18. Large-scale seismic waveform quality metric calculation using Hadoop

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Magana-Zook, Steven; Gaylord, Jessie M.; Knapp, Douglas R.; Dodge, Douglas A.; Ruppert, Stanley D.

    2016-05-27

    Here in this work we investigated the suitability of Hadoop MapReduce and Apache Spark for large-scale computation of seismic waveform quality metrics by comparing their performance with that of a traditional distributed implementation. The Incorporated Research Institutions for Seismology (IRIS) Data Management Center (DMC) provided 43 terabytes of broadband waveform data of which 5.1 TB of data were processed with the traditional architecture, and the full 43 TB were processed using MapReduce and Spark. Maximum performance of ~0.56 terabytes per hour was achieved using all 5 nodes of the traditional implementation. We noted that I/O dominated processing, and that I/Omore » performance was deteriorating with the addition of the 5th node. Data collected from this experiment provided the baseline against which the Hadoop results were compared. Next, we processed the full 43 TB dataset using both MapReduce and Apache Spark on our 18-node Hadoop cluster. We conducted these experiments multiple times with various subsets of the data so that we could build models to predict performance as a function of dataset size. We found that both MapReduce and Spark significantly outperformed the traditional reference implementation. At a dataset size of 5.1 terabytes, both Spark and MapReduce were about 15 times faster than the reference implementation. Furthermore, our performance models predict that for a dataset of 350 terabytes, Spark running on a 100-node cluster would be about 265 times faster than the reference implementation. We do not expect that the reference implementation deployed on a 100-node cluster would perform significantly better than on the 5-node cluster because the I/O performance cannot be made to scale. Finally, we note that although Big Data technologies clearly provide a way to process seismic waveform datasets in a high-performance and scalable manner, the technology is still rapidly changing, requires a high degree of investment in personnel, and will

  19. Scalable parallel distance field construction for large-scale applications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yu, Hongfeng; Xie, Jinrong; Ma, Kwan -Liu; Kolla, Hemanth; Chen, Jacqueline H.

    2015-10-01

    Computing distance fields is fundamental to many scientific and engineering applications. Distance fields can be used to direct analysis and reduce data. In this paper, we present a highly scalable method for computing 3D distance fields on massively parallel distributed-memory machines. Anew distributed spatial data structure, named parallel distance tree, is introduced to manage the level sets of data and facilitate surface tracking overtime, resulting in significantly reduced computation and communication costs for calculating the distance to the surface of interest from any spatial locations. Our method supports several data types and distance metrics from real-world applications. We demonstrate itsmore » efficiency and scalability on state-of-the-art supercomputers using both large-scale volume datasets and surface models. We also demonstrate in-situ distance field computation on dynamic turbulent flame surfaces for a petascale combustion simulation. In conclusion, our work greatly extends the usability of distance fields for demanding applications.« less

  20. Auxiliary basis expansions for large-scale electronic structure calculations

    SciTech Connect (OSTI)

    Jung, Yousung; Sodt, Alexander; Gill, Peter W.M.; Head-Gordon, Martin

    2005-04-04

    One way to reduce the computational cost of electronic structure calculations is to employ auxiliary basis expansions to approximate 4 center integrals in terms of 2 and 3-center integrals, usually using the variationally optimum Coulomb metric to determine the expansion coefficients. However the long-range decay behavior of the auxiliary basis expansion coefficients has not been characterized. We find that this decay can be surprisingly slow. Numerical experiments on linear alkanes and a toy model both show that the decay can be as slow as 1/r in the distance between the auxiliary function and the fitted charge distribution. The Coulomb metric fitting equations also involve divergent matrix elements for extended systems treated with periodic boundary conditions. An attenuated Coulomb metric that is short-range can eliminate these oddities without substantially degrading calculated relative energies. The sparsity of the fit coefficients is assessed on simple hydrocarbon molecules, and shows quite early onset of linear growth in the number of significant coefficients with system size using the attenuated Coulomb metric. This means it is possible to design linear scaling auxiliary basis methods without additional approximations to treat large systems.

  1. LARGE SCALE METHOD FOR THE PRODUCTION AND PURIFICATION OF CURIUM

    DOE Patents [OSTI]

    Higgins, G.H.; Crane, W.W.T.

    1959-05-19

    A large-scale process for production and purification of Cm/sup 242/ is described. Aluminum slugs containing Am are irradiated and declad in a NaOH-- NaHO/sub 3/ solution at 85 to 100 deg C. The resulting slurry filtered and washed with NaOH, NH/sub 4/OH, and H/sub 2/O. Recovery of Cm from filtrate and washings is effected by an Fe(OH)/sub 3/ precipitation. The precipitates are then combined and dissolved ln HCl and refractory oxides centrifuged out. These oxides are then fused with Na/sub 2/CO/sub 3/ and dissolved in HCl. The solution is evaporated and LiCl solution added. The Cm, rare earths, and anionic impurities are adsorbed on a strong-base anfon exchange resin. Impurities are eluted with LiCl--HCl solution, rare earths and Cm are eluted by HCl. Other ion exchange steps further purify the Cm. The Cm is then precipitated as fluoride and used in this form or further purified and processed. (T.R.H.)

  2. ANALYSIS OF TURBULENT MIXING JETS IN LARGE SCALE TANK

    SciTech Connect (OSTI)

    Lee, S; Richard Dimenna, R; Robert Leishear, R; David Stefanko, D

    2007-03-28

    Flow evolution models were developed to evaluate the performance of the new advanced design mixer pump for sludge mixing and removal operations with high-velocity liquid jets in one of the large-scale Savannah River Site waste tanks, Tank 18. This paper describes the computational model, the flow measurements used to provide validation data in the region far from the jet nozzle, the extension of the computational results to real tank conditions through the use of existing sludge suspension data, and finally, the sludge removal results from actual Tank 18 operations. A computational fluid dynamics approach was used to simulate the sludge removal operations. The models employed a three-dimensional representation of the tank with a two-equation turbulence model. Both the computational approach and the models were validated with onsite test data reported here and literature data. The model was then extended to actual conditions in Tank 18 through a velocity criterion to predict the ability of the new pump design to suspend settled sludge. A qualitative comparison with sludge removal operations in Tank 18 showed a reasonably good comparison with final results subject to significant uncertainties in actual sludge properties.

  3. Large-Scale Algal Cultivation, Harvesting and Downstream Processing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    screening strains for desirable characteristics, identifying and mitigating contaminants, scaling up cultures for outdoor growth, harvesting and processing technologies,...

  4. Parallel I/O Software Infrastructure for Large-Scale Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Parallel IO Software Infrastructure for Large-Scale Systems Parallel IO Software Infrastructure for Large-Scale Systems Choudhary.png An illustration of how MPI---IO file domain...

  5. The IR-resummed Effective Field Theory of Large Scale Structures...

    Office of Scientific and Technical Information (OSTI)

    IR-resummed Effective Field Theory of Large Scale Structures Citation Details In-Document Search Title: The IR-resummed Effective Field Theory of Large Scale Structures We present a ...

  6. I/O Performance of a Large-Scale, Interpreter-Driven Laser-Plasma...

    Office of Scientific and Technical Information (OSTI)

    Conference: IO Performance of a Large-Scale, Interpreter-Driven Laser-Plasma Interaction Code Citation Details In-Document Search Title: IO Performance of a Large-Scale, ...

  7. Comparison of the effects in the rock mass of large-scale chemical...

    Office of Scientific and Technical Information (OSTI)

    Comparison of the effects in the rock mass of large-scale chemical and nuclear explosions. ... Title: Comparison of the effects in the rock mass of large-scale chemical and nuclear ...

  8. Energy Department Awards $66.7 Million for Large-Scale Carbon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    66.7 Million for Large-Scale Carbon Sequestration Project Energy Department Awards 66.7 Million for Large-Scale Carbon Sequestration Project December 18, 2007 - 4:58pm Addthis ...

  9. Large-Scale Deep Learning on the YFCC100M Dataset (Conference...

    Office of Scientific and Technical Information (OSTI)

    Conference: Large-Scale Deep Learning on the YFCC100M Dataset Citation Details In-Document Search Title: Large-Scale Deep Learning on the YFCC100M Dataset Authors: Ni, K ; Boakye, ...

  10. Bench-Scale Evaporation of a Large Hanford Envelope C Sample (Tank 241-AN-102)

    SciTech Connect (OSTI)

    Crowder, M.L.

    2001-07-13

    This report contains the results of the Bench Scale evaporation of a large sample of pretreated Envelope C (AN102).

  11. EERE Success Story-FEMP Helps Federal Facilities Develop Large-Scale

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy Projects | Department of Energy FEMP Helps Federal Facilities Develop Large-Scale Renewable Energy Projects EERE Success Story-FEMP Helps Federal Facilities Develop Large-Scale Renewable Energy Projects August 21, 2013 - 12:00am Addthis EERE's Federal Energy Management Program issued a new resource that provides best practices and helpful guidance for federal agencies developing large-scale renewable energy projects. The resource, Large-Scale Renewable Energy Guide:

  12. Large-scale structure evolution in axisymmetric, compressible free-shear layers

    SciTech Connect (OSTI)

    Aeschliman, D.P.; Baty, R.S.

    1997-05-01

    This paper is a description of work-in-progress. It describes Sandia`s program to study the basic fluid mechanics of large-scale mixing in unbounded, compressible, turbulent flows, specifically, the turbulent mixing of an axisymmetric compressible helium jet in a parallel, coflowing compressible air freestream. Both jet and freestream velocities are variable over a broad range, providing a wide range mixing layer Reynolds number. Although the convective Mach number, M{sub c}, range is currently limited by the present nozzle design to values of 0.6 and below, straightforward nozzle design changes would permit a wide range of convective Mach number, to well in excess of 1.0. The use of helium allows simulation of a hot jet due to the large density difference, and also aids in obtaining optical flow visualization via schlieren due to the large density gradient in the mixing layer. The work comprises a blend of analysis, experiment, and direct numerical simulation (DNS). There the authors discuss only the analytical and experimental efforts to observe and describe the evolution of the large-scale structures. The DNS work, used to compute local two-point velocity correlation data, will be discussed elsewhere.

  13. Large-Scale Sequencing: The Future of Genomic Sciences Colloquium

    SciTech Connect (OSTI)

    Margaret Riley; Merry Buckley

    2009-01-01

    Genetic sequencing and the various molecular techniques it has enabled have revolutionized the field of microbiology. Examining and comparing the genetic sequences borne by microbes - including bacteria, archaea, viruses, and microbial eukaryotes - provides researchers insights into the processes microbes carry out, their pathogenic traits, and new ways to use microorganisms in medicine and manufacturing. Until recently, sequencing entire microbial genomes has been laborious and expensive, and the decision to sequence the genome of an organism was made on a case-by-case basis by individual researchers and funding agencies. Now, thanks to new technologies, the cost and effort of sequencing is within reach for even the smallest facilities, and the ability to sequence the genomes of a significant fraction of microbial life may be possible. The availability of numerous microbial genomes will enable unprecedented insights into microbial evolution, function, and physiology. However, the current ad hoc approach to gathering sequence data has resulted in an unbalanced and highly biased sampling of microbial diversity. A well-coordinated, large-scale effort to target the breadth and depth of microbial diversity would result in the greatest impact. The American Academy of Microbiology convened a colloquium to discuss the scientific benefits of engaging in a large-scale, taxonomically-based sequencing project. A group of individuals with expertise in microbiology, genomics, informatics, ecology, and evolution deliberated on the issues inherent in such an effort and generated a set of specific recommendations for how best to proceed. The vast majority of microbes are presently uncultured and, thus, pose significant challenges to such a taxonomically-based approach to sampling genome diversity. However, we have yet to even scratch the surface of the genomic diversity among cultured microbes. A coordinated sequencing effort of cultured organisms is an appropriate place to begin

  14. Large Scale Computing and Storage Requirements for Nuclear Physics Research

    SciTech Connect (OSTI)

    Gerber, Richard A.; Wasserman, Harvey J.

    2012-03-02

    IThe National Energy Research Scientific Computing Center (NERSC) is the primary computing center for the DOE Office of Science, serving approximately 4,000 users and hosting some 550 projects that involve nearly 700 codes for a wide variety of scientific disciplines. In addition to large-scale computing resources NERSC provides critical staff support and expertise to help scientists make the most efficient use of these resources to advance the scientific mission of the Office of Science. In May 2011, NERSC, DOE’s Office of Advanced Scientific Computing Research (ASCR) and DOE’s Office of Nuclear Physics (NP) held a workshop to characterize HPC requirements for NP research over the next three to five years. The effort is part of NERSC’s continuing involvement in anticipating future user needs and deploying necessary resources to meet these demands. The workshop revealed several key requirements, in addition to achieving its goal of characterizing NP computing. The key requirements include: 1. Larger allocations of computational resources at NERSC; 2. Visualization and analytics support; and 3. Support at NERSC for the unique needs of experimental nuclear physicists. This report expands upon these key points and adds others. The results are based upon representative samples, called “case studies,” of the needs of science teams within NP. The case studies were prepared by NP workshop participants and contain a summary of science goals, methods of solution, current and future computing requirements, and special software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, “multi-core” environment that is expected to dominate HPC architectures over the next few years. The report also includes a section with NERSC responses to the workshop findings. NERSC has many initiatives already underway that address key workshop findings and all of the action items are aligned with NERSC strategic plans.

  15. Large-Scale Modeling of Epileptic Seizures: Scaling Properties of Two Parallel Neuronal Network Simulation Algorithms

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pesce, Lorenzo L.; Lee, Hyong C.; Hereld, Mark; Visser, Sid; Stevens, Rick L.; Wildeman, Albert; van Drongelen, Wim

    2013-01-01

    Our limited understanding of the relationship between the behavior of individual neurons and large neuronal networks is an important limitation in current epilepsy research and may be one of the main causes of our inadequate ability to treat it. Addressing this problem directly via experiments is impossibly complex; thus, we have been developing and studying medium-large-scale simulations of detailed neuronal networks to guide us. Flexibility in the connection schemas and a complete description of the cortical tissue seem necessary for this purpose. In this paper we examine some of the basic issues encountered in these multiscale simulations. We have determinedmore » the detailed behavior of two such simulators on parallel computer systems. The observed memory and computation-time scaling behavior for a distributed memory implementation were very good over the range studied, both in terms of network sizes (2,000 to 400,000 neurons) and processor pool sizes (1 to 256 processors). Our simulations required between a few megabytes and about 150 gigabytes of RAM and lasted between a few minutes and about a week, well within the capability of most multinode clusters. Therefore, simulations of epileptic seizures on networks with millions of cells should be feasible on current supercomputers.« less

  16. Development of explosive event scale model testing capability at Sandia`s large scale centrifuge facility

    SciTech Connect (OSTI)

    Blanchat, T.K.; Davie, N.T.; Calderone, J.J.

    1998-02-01

    Geotechnical structures such as underground bunkers, tunnels, and building foundations are subjected to stress fields produced by the gravity load on the structure and/or any overlying strata. These stress fields may be reproduced on a scaled model of the structure by proportionally increasing the gravity field through the use of a centrifuge. This technology can then be used to assess the vulnerability of various geotechnical structures to explosive loading. Applications of this technology include assessing the effectiveness of earth penetrating weapons, evaluating the vulnerability of various structures, counter-terrorism, and model validation. This document describes the development of expertise in scale model explosive testing on geotechnical structures using Sandia`s large scale centrifuge facility. This study focused on buried structures such as hardened storage bunkers or tunnels. Data from this study was used to evaluate the predictive capabilities of existing hydrocodes and structural dynamics codes developed at Sandia National Laboratories (such as Pronto/SPH, Pronto/CTH, and ALEGRA). 7 refs., 50 figs., 8 tabs.

  17. The Dark Energy of Turbulent Damping: Large Scale Dissipation...

    Office of Scientific and Technical Information (OSTI)

    Resource Relation: Conference: Plasma Energization: Exchanges between Fluid and Kinetic Scales ; 2015-05-04 - 2015-05-06 ; Los Alamos, New Mexico, United States Research Org: Los ...

  18. Large-Scale Manufacturing of Nanoparticulate-Based Lubrication Additives

    SciTech Connect (OSTI)

    2009-06-01

    This factsheet describes a research project whose goal is to design, develop, manufacture, and scale up boron-based nanoparticulate lubrication additives.

  19. Large Scale Computing and Storage Requirements for High Energy Physics

    SciTech Connect (OSTI)

    Gerber, Richard A.; Wasserman, Harvey

    2010-11-24

    The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility for the Department of Energy's Office of Science, providing high-performance computing (HPC) resources to more than 3,000 researchers working on about 400 projects. NERSC provides large-scale computing resources and, crucially, the support and expertise needed for scientists to make effective use of them. In November 2009, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR), and DOE's Office of High Energy Physics (HEP) held a workshop to characterize the HPC resources needed at NERSC to support HEP research through the next three to five years. The effort is part of NERSC's legacy of anticipating users needs and deploying resources to meet those demands. The workshop revealed several key points, in addition to achieving its goal of collecting and characterizing computing requirements. The chief findings: (1) Science teams need access to a significant increase in computational resources to meet their research goals; (2) Research teams need to be able to read, write, transfer, store online, archive, analyze, and share huge volumes of data; (3) Science teams need guidance and support to implement their codes on future architectures; and (4) Projects need predictable, rapid turnaround of their computational jobs to meet mission-critical time constraints. This report expands upon these key points and includes others. It also presents a number of case studies as representative of the research conducted within HEP. Workshop participants were asked to codify their requirements in this case study format, summarizing their science goals, methods of solution, current and three-to-five year computing requirements, and software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, multi-core environment that is expected to dominate HPC architectures over the next few years. The report includes

  20. Large Scale Computing Requirements for Basic Energy Sciences...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Acoustic Waves ). ( ) , , , ( 1 2 2 2 2 2 2 2 2 2 t s t z y x p z y x t v ... Starting Models - Test Different Noise Assumptions * Scale Problem Up to Ever ...

  1. The Linearly Scaling 3D Fragment Method for Large Scale Electronic Structure Calculations

    SciTech Connect (OSTI)

    Zhao, Zhengji; Meza, Juan; Lee, Byounghak; Shan, Hongzhang; Strohmaier, Erich; Bailey, David; Wang, Lin-Wang

    2009-06-26

    The Linearly Scaling three-dimensional fragment (LS3DF) method is an O(N) ab initio electronic structure method for large-scale nano material simulations. It is a divide-and-conquer approach with a novel patching scheme that effectively cancels out the artificial boundary effects, which exist in all divide-and-conquer schemes. This method has made ab initio simulations of thousand-atom nanosystems feasible in a couple of hours, while retaining essentially the same accuracy as the direct calculation methods. The LS3DF method won the 2008 ACM Gordon Bell Prize for algorithm innovation. Our code has reached 442 Tflop/s running on 147,456 processors on the Cray XT5 (Jaguar) at OLCF, and has been run on 163,840 processors on the Blue Gene/P (Intrepid) at ALCF, and has been applied to a system containing 36,000 atoms. In this paper, we will present the recent parallel performance results of this code, and will apply the method to asymmetric CdSe/CdS core/shell nanorods, which have potential applications in electronic devices and solar cells.

  2. The linearly scaling 3D fragment method for large scale electronic structure calculations

    SciTech Connect (OSTI)

    Zhao, Zhengji; Meza, Juan; Lee, Byounghak; Shan, Hongzhang; Strohmaier, Erich; Bailey, David; Wang, Lin-Wang

    2009-07-28

    The Linearly Scaling three-dimensional fragment (LS3DF) method is an O(N) ab initio electronic structure method for large-scale nano material simulations. It is a divide-and-conquer approach with a novel patching scheme that effectively cancels out the artificial boundary effects, which exist in all divide-and-conquer schemes. This method has made ab initio simulations of thousand-atom nanosystems feasible in a couple of hours, while retaining essentially the same accuracy as the direct calculation methods. The LS3DF method won the 2008 ACM Gordon Bell Prize for algorithm innovation. Our code has reached 442 Tflop/s running on 147,456 processors on the Cray XT5 (Jaguar) at OLCF, and has been run on 163,840 processors on the Blue Gene/P (Intrepid) at ALCF, and has been applied to a system containing 36,000 atoms. In this paper, we will present the recent parallel performance results of this code, and will apply the method to asymmetric CdSe/CdS core/shell nanorods, which have potential applications in electronic devices and solar cells.

  3. Large scale condensed matter and fluid dynamics simulations | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Leadership Computing Facility , (a)Snapshots of the vorticity field of a UPO located in weakly turbulent flow with Re=371 and period equal to 26864 LB time steps. The quantity shown is the magnitude of vorticity above a given cut-off level. Red corresponds to large negative vorticity (clockwise rotation), and blue to large positive vorticity (counter-clockwise rotation). (b)Initial stucture of the large LDH-nucleic acid models, (a) System, at the start of the simulation. For clarity, water

  4. Risk of large-scale fires in boreal forests of Finland under changing climate

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lehtonen, I.; Venäläinen, A.; Kamarainen, M.; Peltola, H.; Gregow, H.

    2016-01-21

    Here, the target of this work was to assess the impact of projected climate change on forest-fire activity in Finland with special emphasis on large-scale fires. In addition, we were particularly interested to examine the inter-model variability of the projected change of fire danger. For this purpose, we utilized fire statistics covering the period 1996-2014 and consisting of almost 20,000 forest fires, as well as daily meteorological data from five global climate models under representative concentration pathway RCP4.5 and RCP8.5 scenarios. The model data were statistically downscaled onto a high-resolution grid using the quantile-mapping method before performing the analysis. Inmore » examining the relationship between weather and fire danger, we applied the Canadian fire weather index (FWI) system. Our results suggest that the number of large forest fires may double or even triple during the present century. This would increase the risk that some of the fires could develop into real conflagrations which have become almost extinct in Finland due to active and efficient fire suppression. However, the results reveal substantial inter-model variability in the rate of the projected increase of forest-fire danger, emphasizing the large uncertainty related to the climate change signal in fire activity. We moreover showed that the majority of large fires in Finland occur within a relatively short period in May and June due to human activities and that FWI correlates poorer with the fire activity during this time of year than later in summer when lightning is a more important cause of fires.« less

  5. Large Scale Ice Water Path and 3-D Ice Water Content

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Liu, Guosheng

    2008-01-15

    Cloud ice water concentration is one of the most important, yet poorly observed, cloud properties. Developing physical parameterizations used in general circulation models through single-column modeling is one of the key foci of the ARM program. In addition to the vertical profiles of temperature, water vapor and condensed water at the model grids, large-scale horizontal advective tendencies of these variables are also required as forcing terms in the single-column models. Observed horizontal advection of condensed water has not been available because the radar/lidar/radiometer observations at the ARM site are single-point measurement, therefore, do not provide horizontal distribution of condensed water. The intention of this product is to provide large-scale distribution of cloud ice water by merging available surface and satellite measurements. The satellite cloud ice water algorithm uses ARM ground-based measurements as baseline, produces datasets for 3-D cloud ice water distributions in a 10 deg x 10 deg area near ARM site. The approach of the study is to expand a (surface) point measurement to an (satellite) areal measurement. That is, this study takes the advantage of the high quality cloud measurements at the point of ARM site. We use the cloud characteristics derived from the point measurement to guide/constrain satellite retrieval, then use the satellite algorithm to derive the cloud ice water distributions within an area, i.e., 10 deg x 10 deg centered at ARM site.

  6. Large Scale Ice Water Path and 3-D Ice Water Content

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Liu, Guosheng

    Cloud ice water concentration is one of the most important, yet poorly observed, cloud properties. Developing physical parameterizations used in general circulation models through single-column modeling is one of the key foci of the ARM program. In addition to the vertical profiles of temperature, water vapor and condensed water at the model grids, large-scale horizontal advective tendencies of these variables are also required as forcing terms in the single-column models. Observed horizontal advection of condensed water has not been available because the radar/lidar/radiometer observations at the ARM site are single-point measurement, therefore, do not provide horizontal distribution of condensed water. The intention of this product is to provide large-scale distribution of cloud ice water by merging available surface and satellite measurements. The satellite cloud ice water algorithm uses ARM ground-based measurements as baseline, produces datasets for 3-D cloud ice water distributions in a 10 deg x 10 deg area near ARM site. The approach of the study is to expand a (surface) point measurement to an (satellite) areal measurement. That is, this study takes the advantage of the high quality cloud measurements at the point of ARM site. We use the cloud characteristics derived from the point measurement to guide/constrain satellite retrieval, then use the satellite algorithm to derive the cloud ice water distributions within an area, i.e., 10 deg x 10 deg centered at ARM site.

  7. Development of fine-resolution analyses and expanded large-scale...

    Office of Scientific and Technical Information (OSTI)

    II: Scale-awareness and application to single-column model experiments Citation Details In-Document Search Title: Development of fine-resolution analyses and expanded large-scale ...

  8. Multilevel method for modeling large-scale networks.

    SciTech Connect (OSTI)

    Safro, I. M.

    2012-02-24

    Understanding the behavior of real complex networks is of great theoretical and practical significance. It includes developing accurate artificial models whose topological properties are similar to the real networks, generating the artificial networks at different scales under special conditions, investigating a network dynamics, reconstructing missing data, predicting network response, detecting anomalies and other tasks. Network generation, reconstruction, and prediction of its future topology are central issues of this field. In this project, we address the questions related to the understanding of the network modeling, investigating its structure and properties, and generating artificial networks. Most of the modern network generation methods are based either on various random graph models (reinforced by a set of properties such as power law distribution of node degrees, graph diameter, and number of triangles) or on the principle of replicating an existing model with elements of randomization such as R-MAT generator and Kronecker product modeling. Hierarchical models operate at different levels of network hierarchy but with the same finest elements of the network. However, in many cases the methods that include randomization and replication elements on the finest relationships between network nodes and modeling that addresses the problem of preserving a set of simplified properties do not fit accurately enough the real networks. Among the unsatisfactory features are numerically inadequate results, non-stability of algorithms on real (artificial) data, that have been tested on artificial (real) data, and incorrect behavior at different scales. One reason is that randomization and replication of existing structures can create conflicts between fine and coarse scales of the real network geometry. Moreover, the randomization and satisfying of some attribute at the same time can abolish those topological attributes that have been undefined or hidden from

  9. Locations of Smart Grid Demonstration and Large-Scale Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects | Department of Energy Locations of Smart Grid Demonstration and Large-Scale Energy Storage Projects Locations of Smart Grid Demonstration and Large-Scale Energy Storage Projects Map of the United States showing the location of all projects created with funding from the Smart Grid Demonstration and Energy Storage Project, funded through the American Recovery and Reinvestment Act. Locations of Smart Grid Demonstration and Large-Scale Energy Storage Projects (90.94 KB) More Documents

  10. Application of DYNA3D in large scale crashworthiness calculations

    SciTech Connect (OSTI)

    Benson, D.J.; Hallquist, J.O.; Igarashi, M.; Shimomaki, K.; Mizuno, M.

    1986-01-01

    This paper presents an example of an automobile crashworthiness calculation. Based on our experiences with the example calculation, we make recommendations to those interested in performing crashworthiness calculations. The example presented in this paper was supplied by Suzuki Motor Co., Ltd., and provided a significant shakedown for the new large deformation shell capability of the DYNA3D code. 15 refs., 3 figs.

  11. Large-scale Offshore Wind Power in the United States. Assessment of Opportunities and Barriers

    SciTech Connect (OSTI)

    Musial, Walter; Ram, Bonnie

    2010-09-01

    This report describes the benefits of and barriers to large-scale deployment of offshore wind energy systems in U.S. waters.

  12. Asynchronous Two-Level Checkpointing Scheme for Large-Scale Adjoints...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    researchLANSeventslistn Adjoints are an important computational tool for large-scale sensitivity evaluation, uncertainty quantification, and derivative-based...

  13. DOE's Office of Science Seeks Proposals for Expanded Large-Scale...

    Office of Environmental Management (EM)

    Seeks Proposals for Expanded Large-Scale Scientific Computing DOE's Office of Science ... Successful proposers will be given the use of substantial computer time and data storage ...

  14. Large-scale delamination of multi-layers transition metal carbides...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Large-scale ... Herein we report on a general approach to delaminate ... Type: Accepted Manuscript Journal Name: Dalton Transactions ...

  15. A Large-Scale, High-Resolution Hydrological Model Parameter Data...

    Office of Scientific and Technical Information (OSTI)

    Large-Scale, High-Resolution Hydrological Model Parameter Data Set for Climate Change Impact Assessment for the Conterminous US Citation Details In-Document Search Title: A ...

  16. HyLights -- Tools to Prepare the Large-Scale European Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects on Hydrogen for Transport HyLights -- Tools to Prepare the Large-Scale European Demonstration Projects on Hydrogen for Transport Presented at Refueling ...

  17. Development of fine-resolution analyses and expanded large-scale...

    Office of Scientific and Technical Information (OSTI)

    I: Methodology and evaluation Citation Details In-Document Search Title: Development of fine-resolution analyses and expanded large-scale forcing properties. Part I: Methodology ...

  18. Large Scale Comparative Visualisation of Regulatory Networks with TRNDiff

    SciTech Connect (OSTI)

    Chua, Xin-Yi; Buckingham, Lawrence; Hogan, James M.; Novichkov, Pavel

    2015-06-01

    The advent of Next Generation Sequencing (NGS) technologies has seen explosive growth in genomic datasets, and dense coverage of related organisms, supporting study of subtle, strain-specific variations as a determinant of function. Such data collections present fresh and complex challenges for bioinformatics, those of comparing models of complex relationships across hundreds and even thousands of sequences. Transcriptional Regulatory Network (TRN) structures document the influence of regulatory proteins called Transcription Factors (TFs) on associated Target Genes (TGs). TRNs are routinely inferred from model systems or iterative search, and analysis at these scales requires simultaneous displays of multiple networks well beyond those of existing network visualisation tools [1]. In this paper we describe TRNDiff, an open source system supporting the comparative analysis and visualization of TRNs (and similarly structured data) from many genomes, allowing rapid identification of functional variations within species. The approach is demonstrated through a small scale multiple TRN analysis of the Fur iron-uptake system of Yersinia, suggesting a number of candidate virulence factors; and through a larger study exploiting integration with the RegPrecise database (http://regprecise.lbl.gov; [2]) - a collection of hundreds of manually curated and predicted transcription factor regulons drawn from across the entire spectrum of prokaryotic organisms.

  19. Large Scale Comparative Visualisation of Regulatory Networks with TRNDiff

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chua, Xin-Yi; Buckingham, Lawrence; Hogan, James M.; Novichkov, Pavel

    2015-06-01

    The advent of Next Generation Sequencing (NGS) technologies has seen explosive growth in genomic datasets, and dense coverage of related organisms, supporting study of subtle, strain-specific variations as a determinant of function. Such data collections present fresh and complex challenges for bioinformatics, those of comparing models of complex relationships across hundreds and even thousands of sequences. Transcriptional Regulatory Network (TRN) structures document the influence of regulatory proteins called Transcription Factors (TFs) on associated Target Genes (TGs). TRNs are routinely inferred from model systems or iterative search, and analysis at these scales requires simultaneous displays of multiple networks well beyond thosemore » of existing network visualisation tools [1]. In this paper we describe TRNDiff, an open source system supporting the comparative analysis and visualization of TRNs (and similarly structured data) from many genomes, allowing rapid identification of functional variations within species. The approach is demonstrated through a small scale multiple TRN analysis of the Fur iron-uptake system of Yersinia, suggesting a number of candidate virulence factors; and through a larger study exploiting integration with the RegPrecise database (http://regprecise.lbl.gov; [2]) - a collection of hundreds of manually curated and predicted transcription factor regulons drawn from across the entire spectrum of prokaryotic organisms.« less

  20. Feeding a large-scale physics application to Python

    SciTech Connect (OSTI)

    Beazley, D.M.; Lomdahl, P.S.

    1997-10-01

    The authors describe their experiences using Python with the SPaSM molecular dynamics code at Los Alamos National Laboratory. Originally developed as a large monolithic application for massive parallel processing systems, they have used Python to transform their application into a flexible, highly modular, and extremely powerful system for performing simulation, data analysis, and visualization. In addition, they describe how Python has solved a number of important problems related to the development, debugging, deployment, and maintenance of scientific software.

  1. Large-scale soil bioremediation using white-rot fungi

    SciTech Connect (OSTI)

    Holroyd, M.L.; Caunt, P.

    1995-12-31

    Some organic pollutant compounds are considered resistant to conventional bioremediation because of their structure or behavior in soil. This phenomenon, together with the increasing need to reach lower target levels in shorter time periods, has shown the need for improved or alternative biological processes. It has been known for some time that the white-rot fungi, particularly the species Phanerochaete chrysosporium, have potentially useful abilities to rapidly degrade pollutant molecules. The use of white-rot fungi at the field scale presents a number of challenges, and this paper outlines the use of a process incorporating Phanerochaete to successfully bioremediate over 6,000 m{sup 3} of chlorophenol-contaminated soil at a site in Finland. Moreover, the method developed is very cost-effective and proved capable of reaching the very low target levels within the contracted time span.

  2. Feasibility of Large-Scale Ocean CO2 Sequestration

    SciTech Connect (OSTI)

    Peter Brewer

    2008-08-31

    Scientific knowledge of natural clathrate hydrates has grown enormously over the past decade, with spectacular new findings of large exposures of complex hydrates on the sea floor, the development of new tools for examining the solid phase in situ, significant progress in modeling natural hydrate systems, and the discovery of exotic hydrates associated with sea floor venting of liquid CO{sub 2}. Major unresolved questions remain about the role of hydrates in response to climate change today, and correlations between the hydrate reservoir of Earth and the stable isotopic evidence of massive hydrate dissociation in the geologic past. The examination of hydrates as a possible energy resource is proceeding apace for the subpermafrost accumulations in the Arctic, but serious questions remain about the viability of marine hydrates as an economic resource. New and energetic explorations by nations such as India and China are quickly uncovering large hydrate findings on their continental shelves. In this report we detail research carried out in the period October 1, 2007 through September 30, 2008. The primary body of work is contained in a formal publication attached as Appendix 1 to this report. In brief we have surveyed the recent literature with respect to the natural occurrence of clathrate hydrates (with a special emphasis on methane hydrates), the tools used to investigate them and their potential as a new source of natural gas for energy production.

  3. NV Energy Large-Scale Photovoltaic Integration Study: Intra-Hour Dispatch and AGC Simulation

    SciTech Connect (OSTI)

    Lu, Shuai; Etingov, Pavel V.; Meng, Da; Guo, Xinxin; Jin, Chunlian; Samaan, Nader A.

    2013-01-02

    The uncertainty and variability with photovoltaic (PV) generation make it very challenging to balance power system generation and load, especially under high penetration cases. Higher reserve requirements and more cycling of conventional generators are generally anticipated for large-scale PV integration. However, whether the existing generation fleet is flexible enough to handle the variations and how well the system can maintain its control performance are difficult to predict. The goal of this project is to develop a software program that can perform intra-hour dispatch and automatic generation control (AGC) simulation, by which the balancing operations of a system can be simulated to answer the questions posed above. The simulator, named Electric System Intra-Hour Operation Simulator (ESIOS), uses the NV Energy southern system as a study case, and models the system’s generator configurations, AGC functions, and operator actions to balance system generation and load. Actual dispatch of AGC generators and control performance under various PV penetration levels can be predicted by running ESIOS. With data about the load, generation, and generator characteristics, ESIOS can perform similar simulations and assess variable generation integration impacts for other systems as well. This report describes the design of the simulator and presents the study results showing the PV impacts on NV Energy real-time operations.

  4. Single-field consistency relations of large scale structure

    SciTech Connect (OSTI)

    Creminelli, Paolo; Norea, Jorge; Simonovi?, Marko; Vernizzi, Filippo E-mail: jorge.norena@icc.ub.edu E-mail: filippo.vernizzi@cea.fr

    2013-12-01

    We derive consistency relations for the late universe (CDM and ?CDM): relations between an n-point function of the density contrast ? and an (n+1)-point function in the limit in which one of the (n+1) momenta becomes much smaller than the others. These are based on the observation that a long mode, in single-field models of inflation, reduces to a diffeomorphism since its freezing during inflation all the way until the late universe, even when the long mode is inside the horizon (but out of the sound horizon). These results are derived in Newtonian gauge, at first and second order in the small momentum q of the long mode and they are valid non-perturbatively in the short-scale ?. In the non-relativistic limit our results match with [1]. These relations are a consequence of diffeomorphism invariance; they are not satisfied in the presence of extra degrees of freedom during inflation or violation of the Equivalence Principle (extra forces) in the late universe.

  5. Public attitudes regarding large-scale solar energy development in the U.S.

    SciTech Connect (OSTI)

    Carlisle, Juliet E.; Kane, Stephanie L.; Solan, David; Bowman, Madelaine; Joe, Jeffrey C.

    2015-08-01

    Using data collected from both a National sample as well as an oversample in U.S. Southwest, we examine public attitudes toward the construction of utility-scale solar facilities in the U.S. as well as development in ones own county. Our multivariate analyses assess demographic and sociopsychological factors as well as context in terms of proximity of proposed project by considering the effect of predictors for respondents living in the Southwest versus those from a National sample.We find that the predictors, and impact of the predictors, related to support and opposition to solar development vary in terms of psychological and physical distance. Overall, for respondents living in the U.S. Southwest we find that environmentalism, belief that developers receive too many incentives, and trust in project developers to be significantly related to support and opposition to solar development, in general. When Southwest respondents consider large-scale solar development in their county, the influence of these variables changes so that property value, race, and age only yield influence. Differential effects occur for respondents of our National sample.We believe our findings to be relevant for those outside the U.S. due to the considerable growth PV solar has experienced in the last decade, especially in China, Japan, Germany, and the U.S.

  6. Public attitudes regarding large-scale solar energy development in the U.S.

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Carlisle, Juliet E.; Kane, Stephanie L.; Solan, David; Bowman, Madelaine; Joe, Jeffrey C.

    2015-08-01

    Using data collected from both a National sample as well as an oversample in U.S. Southwest, we examine public attitudes toward the construction of utility-scale solar facilities in the U.S. as well as development in one’s own county. Our multivariate analyses assess demographic and sociopsychological factors as well as context in terms of proximity of proposed project by considering the effect of predictors for respondents living in the Southwest versus those from a National sample.We find that the predictors, and impact of the predictors, related to support and opposition to solar development vary in terms of psychological and physical distance.more » Overall, for respondents living in the U.S. Southwest we find that environmentalism, belief that developers receive too many incentives, and trust in project developers to be significantly related to support and opposition to solar development, in general. When Southwest respondents consider large-scale solar development in their county, the influence of these variables changes so that property value, race, and age only yield influence. Differential effects occur for respondents of our National sample.We believe our findings to be relevant for those outside the U.S. due to the considerable growth PV solar has experienced in the last decade, especially in China, Japan, Germany, and the U.S.« less

  7. Public attitudes regarding large-scale solar energy development in the U.S.

    SciTech Connect (OSTI)

    Carlisle, Juliet E.; Kane, Stephanie L.; Solan, David; Bowman, Madelaine; Joe, Jeffrey C.

    2015-08-01

    Using data collected from both a National sample as well as an oversample in U.S. Southwest, we examine public attitudes toward the construction of utility-scale solar facilities in the U.S. as well as development in one’s own county. Our multivariate analyses assess demographic and sociopsychological factors as well as context in terms of proximity of proposed project by considering the effect of predictors for respondents living in the Southwest versus those from a National sample.We find that the predictors, and impact of the predictors, related to support and opposition to solar development vary in terms of psychological and physical distance. Overall, for respondents living in the U.S. Southwest we find that environmentalism, belief that developers receive too many incentives, and trust in project developers to be significantly related to support and opposition to solar development, in general. When Southwest respondents consider large-scale solar development in their county, the influence of these variables changes so that property value, race, and age only yield influence. Differential effects occur for respondents of our National sample.We believe our findings to be relevant for those outside the U.S. due to the considerable growth PV solar has experienced in the last decade, especially in China, Japan, Germany, and the U.S.

  8. Testing coupled dark energy with large scale structure observation

    SciTech Connect (OSTI)

    Yang, Weiqiang; Xu, Lixin, E-mail: d11102004@mail.dlut.edu.cn, E-mail: lxxu@dlut.edu.cn [Institute of Theoretical Physics, School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian, 116024 (China)

    2014-08-01

    The coupling between the dark components provides a new approach to mitigate the coincidence problem of cosmological standard model. In this paper, dark energy is treated as a fluid with a constant equation of state, whose coupling with dark matter is Q-bar =3H?{sub x}?-bar {sub x}. In the frame of dark energy, we derive the evolution equations for the density and velocity perturbations. According to the Markov Chain Monte Carlo method, we constrain the model by currently available cosmic observations which include cosmic microwave background radiation, baryon acoustic oscillation, type Ia supernovae, and f?{sub 8}(z) data points from redshift-space distortion. The results show the interaction rate in ? regions: ?{sub x}=0.00328{sub -0.00328-0.00328-0.00328}{sup +0.000736+0.00549+0.00816}, which means that the recently cosmic observations favor a small interaction rate which is up to the order of 10{sup -2}, meanwhile, the measurement of redshift-space distortion could rule out the large interaction rate in the ? region.

  9. Studies of regional-scale climate variability and change. Hidden Markov models and coupled ocean-atmosphere modes

    SciTech Connect (OSTI)

    Ghil, M.; Kravtsov, S.; Robertson, A. W.; Smyth, P.

    2008-10-14

    This project was a continuation of previous work under DOE CCPP funding, in which we had developed a twin approach of probabilistic network (PN) models (sometimes called dynamic Bayesian networks) and intermediate-complexity coupled ocean-atmosphere models (ICMs) to identify the predictable modes of climate variability and to investigate their impacts on the regional scale. We had developed a family of PNs (similar to Hidden Markov Models) to simulate historical records of daily rainfall, and used them to downscale GCM seasonal predictions. Using an idealized atmospheric model, we had established a novel mechanism through which ocean-induced sea-surface temperature (SST) anomalies might influence large-scale atmospheric circulation patterns on interannual and longer time scales; we had found similar patterns in a hybrid coupled ocean-atmosphere-sea-ice model. The goal of the this continuation project was to build on these ICM results and PN model development to address prediction of rainfall and temperature statistics at the local scale, associated with global climate variability and change, and to investigate the impact of the latter on coupled ocean-atmosphere modes. Our main results from the grant consist of extensive further development of the hidden Markov models for rainfall simulation and downscaling together with the development of associated software; new intermediate coupled models; a new methodology of inverse modeling for linking ICMs with observations and GCM results; and, observational studies of decadal and multi-decadal natural climate results, informed by ICM results.

  10. Large scale validation of the M5L lung CAD on heterogeneous CT datasets

    SciTech Connect (OSTI)

    Lopez Torres, E. E-mail: cerello@to.infn.it; Fiorina, E.; Pennazio, F.; Peroni, C.; Saletta, M.; Cerello, P. E-mail: cerello@to.infn.it; Camarlinghi, N.; Fantacci, M. E.

    2015-04-15

    Purpose: M5L, a fully automated computer-aided detection (CAD) system for the detection and segmentation of lung nodules in thoracic computed tomography (CT), is presented and validated on several image datasets. Methods: M5L is the combination of two independent subsystems, based on the Channeler Ant Model as a segmentation tool [lung channeler ant model (lungCAM)] and on the voxel-based neural approach. The lungCAM was upgraded with a scan equalization module and a new procedure to recover the nodules connected to other lung structures; its classification module, which makes use of a feed-forward neural network, is based of a small number of features (13), so as to minimize the risk of lacking generalization, which could be possible given the large difference between the size of the training and testing datasets, which contain 94 and 1019 CTs, respectively. The lungCAM (standalone) and M5L (combined) performance was extensively tested on 1043 CT scans from three independent datasets, including a detailed analysis of the full Lung Image Database Consortium/Image Database Resource Initiative database, which is not yet found in literature. Results: The lungCAM and M5L performance is consistent across the databases, with a sensitivity of about 70% and 80%, respectively, at eight false positive findings per scan, despite the variable annotation criteria and acquisition and reconstruction conditions. A reduced sensitivity is found for subtle nodules and ground glass opacities (GGO) structures. A comparison with other CAD systems is also presented. Conclusions: The M5L performance on a large and heterogeneous dataset is stable and satisfactory, although the development of a dedicated module for GGOs detection could further improve it, as well as an iterative optimization of the training procedure. The main aim of the present study was accomplished: M5L results do not deteriorate when increasing the dataset size, making it a candidate for supporting radiologists on large

  11. Method for large-scale fabrication of atomic-scale structures on material surfaces using surface vacancies

    DOE Patents [OSTI]

    Lim, Chong Wee; Ohmori, Kenji; Petrov, Ivan Georgiev; Greene, Joseph E.

    2004-07-13

    A method for forming atomic-scale structures on a surface of a substrate on a large-scale includes creating a predetermined amount of surface vacancies on the surface of the substrate by removing an amount of atoms on the surface of the material corresponding to the predetermined amount of the surface vacancies. Once the surface vacancies have been created, atoms of a desired structure material are deposited on the surface of the substrate to enable the surface vacancies and the atoms of the structure material to interact. The interaction causes the atoms of the structure material to form the atomic-scale structures.

  12. Nuclear EMP simulation for large-scale urban environments. FDTD for electrically large problems.

    SciTech Connect (OSTI)

    Smith, William S.; Bull, Jeffrey S.; Wilcox, Trevor; Bos, Randall J.; Shao, Xuan-Min; Goorley, John T.; Costigan, Keeley R.

    2012-08-13

    In case of a terrorist nuclear attack in a metropolitan area, EMP measurement could provide: (1) a prompt confirmation of the nature of the explosion (chemical or nuclear) for emergency response; and (2) and characterization parameters of the device (reaction history, yield) for technical forensics. However, urban environment could affect the fidelity of the prompt EMP measurement (as well as all other types of prompt measurement): (1) Nuclear EMP wavefront would no longer be coherent, due to incoherent production, attenuation, and propagation of gamma and electrons; and (2) EMP propagation from source region outward would undergo complicated transmission, reflection, and diffraction processes. EMP simulation for electrically-large urban environment: (1) Coupled MCNP/FDTD (Finite-difference time domain Maxwell solver) approach; and (2) FDTD tends to be limited to problems that are not 'too' large compared to the wavelengths of interest because of numerical dispersion and anisotropy. We use a higher-order low-dispersion, isotropic FDTD algorithm for EMP propagation.

  13. A Semi-Analytical Solution for Large-Scale Injection-Induced...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: A Semi-Analytical Solution for Large-Scale Injection-Induced PressurePerturbation and Leakage in a Laterally Bounded Aquifer-AquitardSystem Citation Details ...

  14. DOE's Office of Science Seeks Proposals for Expanded Large-Scale Scientific Computing

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. -- Secretary of Energy Samuel W. Bodman announced today that DOE’s Office of Science is seeking proposals to support innovative, large-scale computational science projects to...

  15. FEMP Helps Federal Facilities Develop Large-Scale Renewable Energy Projects

    Broader source: Energy.gov [DOE]

    FEMP developed a guide to help federal agencies, as well as the developers and financiers that work with them, to successfully install large-scale renewable energy projects at federal facilities.

  16. Development of fine-resolution analyses and expanded large-scale forcing properties. Part I: Methodology and evaluation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Zhijin; Vogelmann, Andrew M.; Feng, Sha; Liu, Yangang; Lin, Wuyin; Zhang, Minghua; Toto, Tami; Endo, Satoshi

    2015-01-20

    We produce fine-resolution, three-dimensional fields of meteorological and other variables for the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Southern Great Plains site. The Community Gridpoint Statistical Interpolation system is implemented in a multiscale data assimilation (MS-DA) framework that is used within the Weather Research and Forecasting model at a cloud-resolving resolution of 2 km. The MS-DA algorithm uses existing reanalysis products and constrains fine-scale atmospheric properties by assimilating high-resolution observations. A set of experiments show that the data assimilation analysis realistically reproduces the intensity, structure, and time evolution of clouds and precipitation associated with a mesoscale convective system.more » Evaluations also show that the large-scale forcing derived from the fine-resolution analysis has an overall accuracy comparable to the existing ARM operational product. For enhanced applications, the fine-resolution fields are used to characterize the contribution of subgrid variability to the large-scale forcing and to derive hydrometeor forcing, which are presented in companion papers.« less

  17. HyLights -- Tools to Prepare the Large-Scale European Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects on Hydrogen for Transport | Department of Energy HyLights -- Tools to Prepare the Large-Scale European Demonstration Projects on Hydrogen for Transport HyLights -- Tools to Prepare the Large-Scale European Demonstration Projects on Hydrogen for Transport Presented at Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California buenger.pdf (1.96 MB) More Documents & Publications Santa Clara Valley

  18. Reducing Data Center Loads for a Large-Scale, Net Zero Office Building |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Reducing Data Center Loads for a Large-Scale, Net Zero Office Building Reducing Data Center Loads for a Large-Scale, Net Zero Office Building Document describes the design, implementation strategies, and continuous performance monitoring of the National Renewable Energy Laboratory's Research Support Facility data center. Download the case study. (3.03 MB) More Documents & Publications Top ECMs for Labs and Data Centers Best Practices Guide for Energy-Efficient Data

  19. Transport Induced by Large Scale Convective Structures in a Dipole-Confined Plasma

    SciTech Connect (OSTI)

    Grierson, B. A.; Mauel, M. E.; Worstell, M. W.; Klassen, M.

    2010-11-12

    Convective structures characterized by ExB motion are observed in a dipole-confined plasma. Particle transport rates are calculated from density dynamics obtained from multipoint measurements and the reconstructed electrostatic potential. The calculated transport rates determined from the large-scale dynamics and local probe measurements agree in magnitude, show intermittency, and indicate that the particle transport is dominated by large-scale convective structures.

  20. A First Step towards Large-Scale Plants to Plastics Engineering |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy A First Step towards Large-Scale Plants to Plastics Engineering A First Step towards Large-Scale Plants to Plastics Engineering November 9, 2010 - 1:56pm Addthis Brookhaven National Laboratory researches making plastics from plants. Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What does this mean for me? By optimizing the accumulation of particular fatty acids, a Brookhaven team of scientists are developing a method suitable for

  1. Large Scale GSHP as Alternative Energy for American Farmers | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Large Scale GSHP as Alternative Energy for American Farmers Large Scale GSHP as Alternative Energy for American Farmers Project objectives: 100% replacement of on-site fossil fuel in the poultry farm; Reduce heating cost by 70% through bar efficiency improvement, GSHP and solar applications; Reduce 4% of mortality through cooling effect of GSHP in summer. gshp_xu_gshp_farmers.pdf (276.4 KB) More Documents & Publications Analysis of Energy, Environmental and Life Cycle Cost

  2. 'Sidecars' Pave the Way for Concurrent Analytics of Large-Scale

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simulations 'Sidecars' Pave the Way for Concurrent Analytics of Large-Scale Simulations 'Sidecars' Pave the Way for Concurrent Analytics of Large-Scale Simulations Halo Finder Enhancement Puts Supercomputer Users in the Driver's Seat November 2, 2015 Contact: Kathy Kincade, +1 510 495 2124, kkincade@lbl.gov Nyxfilamentsandreeberhalos In this Reeber halo finder simulation, the blueish haze is a volume rendering of the density field that Nyx calculates every time step. The light blue and

  3. First U.S. Large-Scale CO2 Storage Project Advances

    Broader source: Energy.gov [DOE]

    Drilling nears completion for the first large-scale carbon dioxide injection well in the United States for CO2 sequestration. This project will be used to demonstrate that CO2 emitted from industrial sources - such as coal-fired power plants - can be stored in deep geologic formations to mitigate large quantities of greenhouse gas emissions.

  4. Simultaneous effect of modified gravity and primordial non-Gaussianity in large scale structure observations

    SciTech Connect (OSTI)

    Mirzatuny, Nareg; Khosravi, Shahram; Baghram, Shant; Moshafi, Hossein E-mail: khosravi@mail.ipm.ir E-mail: hosseinmoshafi@iasbs.ac.ir

    2014-01-01

    In this work we study the simultaneous effect of primordial non-Gaussianity and the modification of the gravity in f(R) framework on large scale structure observations. We show that non-Gaussianity and modified gravity introduce a scale dependent bias and growth rate functions. The deviation from ΛCDM in the case of primordial non-Gaussian models is in large scales, while the growth rate deviates from ΛCDM in small scales for modified gravity theories. We show that the redshift space distortion can be used to distinguish positive and negative f{sub NL} in standard background, while in f(R) theories they are not easily distinguishable. The galaxy power spectrum is generally enhanced in presence of non-Gaussianity and modified gravity. We also obtain the scale dependence of this enhancement. Finally we define galaxy growth rate and galaxy growth rate bias as new observational parameters to constrain cosmology.

  5. Measuring and tuning energy efficiency on large scale high performance computing platforms.

    SciTech Connect (OSTI)

    Laros, James H., III

    2011-08-01

    Recognition of the importance of power in the field of High Performance Computing, whether it be as an obstacle, expense or design consideration, has never been greater and more pervasive. While research has been conducted on many related aspects, there is a stark absence of work focused on large scale High Performance Computing. Part of the reason is the lack of measurement capability currently available on small or large platforms. Typically, research is conducted using coarse methods of measurement such as inserting a power meter between the power source and the platform, or fine grained measurements using custom instrumented boards (with obvious limitations in scale). To collect the measurements necessary to analyze real scientific computing applications at large scale, an in-situ measurement capability must exist on a large scale capability class platform. In response to this challenge, we exploit the unique power measurement capabilities of the Cray XT architecture to gain an understanding of power use and the effects of tuning. We apply these capabilities at the operating system level by deterministically halting cores when idle. At the application level, we gain an understanding of the power requirements of a range of important DOE/NNSA production scientific computing applications running at large scale (thousands of nodes), while simultaneously collecting current and voltage measurements on the hosting nodes. We examine the effects of both CPU and network bandwidth tuning and demonstrate energy savings opportunities of up to 39% with little or no impact on run-time performance. Capturing scale effects in our experimental results was key. Our results provide strong evidence that next generation large-scale platforms should not only approach CPU frequency scaling differently, but could also benefit from the capability to tune other platform components, such as the network, to achieve energy efficient performance.

  6. Topology-Aware Mappings for Large-Scale Eigenvalue Problems | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Leadership Computing Facility Topology-Aware Mappings for Large-Scale Eigenvalue Problems Authors: Aktulga, H.M., Yang, C., Ng.,E.G., Maris, P., Vary, J.P. Obtaining highly accurate predictions for properties of light atomic nuclei using the Configuration Interaction (CI) approach requires computing the lowest eigenvalues and associated eigenvectors of a large many-body nuclear Hamiltonian matrix, H ˆ . Since H ˆ is a large sparse matrix, a parallel iterative eigensolver designed for

  7. Large-Scale Renewable Energy Guide: Developing Renewable Energy Projects Larger Than 10 MWs at Federal Facilities

    Broader source: Energy.gov [DOE]

    The Large-Scale Renewable Energy Guide: Developing Renewable Energy Projects Larger Than 10 MWs at Federal Facilities provides best practices and other helpful guidance for federal agencies developing large-scale renewable energy projects.

  8. What Will the Neighbors Think? Building Large-Scale Science Projects Around the World

    ScienceCinema (OSTI)

    Jones, Craig; Mrotzek, Christian; Toge, Nobu; Sarno, Doug

    2010-01-08

    Public participation is an essential ingredient for turning the International Linear Collider into a reality. Wherever the proposed particle accelerator is sited in the world, its neighbors -- in any country -- will have something to say about hosting a 35-kilometer-long collider in their backyards. When it comes to building large-scale physics projects, almost every laboratory has a story to tell. Three case studies from Japan, Germany and the US will be presented to examine how community relations are handled in different parts of the world. How do particle physics laboratories interact with their local communities? How do neighbors react to building large-scale projects in each region? How can the lessons learned from past experiences help in building the next big project? These and other questions will be discussed to engage the audience in an active dialogue about how a large-scale project like the ILC can be a good neighbor.

  9. Copy of Using Emulation and Simulation to Understand the Large-Scale Behavior of the Internet.

    SciTech Connect (OSTI)

    Adalsteinsson, Helgi; Armstrong, Robert C.; Chiang, Ken; Gentile, Ann C.; Lloyd, Levi; Minnich, Ronald G.; Vanderveen, Keith; Van Randwyk, Jamie A; Rudish, Don W.

    2008-10-01

    We report on the work done in the late-start LDRDUsing Emulation and Simulation toUnderstand the Large-Scale Behavior of the Internet. We describe the creation of a researchplatform that emulates many thousands of machines to be used for the study of large-scale inter-net behavior. We describe a proof-of-concept simple attack we performed in this environment.We describe the successful capture of a Storm bot and, from the study of the bot and furtherliterature search, establish large-scale aspects we seek to understand via emulation of Storm onour research platform in possible follow-on work. Finally, we discuss possible future work.3

  10. Report of the Workshop on Petascale Systems Integration for LargeScale Facilities

    SciTech Connect (OSTI)

    Kramer, William T.C.; Walter, Howard; New, Gary; Engle, Tom; Pennington, Rob; Comes, Brad; Bland, Buddy; Tomlison, Bob; Kasdorf, Jim; Skinner, David; Regimbal, Kevin

    2007-10-01

    There are significant issues regarding Large Scale System integration that are not being addressed in other forums such as current research portfolios or vendor user groups. Unfortunately, the issues in the area of large-scale system integration often fall into a netherworld; not research, not facilities, not procurement, not operations, not user services. Taken together, these issues along with the impact of sub-optimal integration technology means the time required to deploy, integrate and stabilize large scale system may consume up to 20 percent of the useful life of such systems. Improving the state of the art for large scale systems integration has potential to increase the scientific productivity of these systems. Sites have significant expertise, but there are no easy ways to leverage this expertise among them . Many issues inhibit the sharing of information, including available time and effort, as well as issues with sharing proprietary information. Vendors also benefit in the long run from the solutions to issues detected during site testing and integration. There is a great deal of enthusiasm for making large scale system integration a full-fledged partner along with the other major thrusts supported by funding agencies in the definition, design, and use of a petascale systems. Integration technology and issues should have a full 'seat at the table' as petascale and exascale initiatives and programs are planned. The workshop attendees identified a wide range of issues and suggested paths forward. Pursuing these with funding opportunities and innovation offers the opportunity to dramatically improve the state of large scale system integration.

  11. Energy Department Loan Guarantee Would Support Large-Scale Rooftop Solar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power for U.S. Military Housing | Department of Energy Loan Guarantee Would Support Large-Scale Rooftop Solar Power for U.S. Military Housing Energy Department Loan Guarantee Would Support Large-Scale Rooftop Solar Power for U.S. Military Housing September 7, 2011 - 2:10pm Addthis Washington D.C. - U.S. Energy Secretary Steven Chu today announced the offer of a conditional commitment for a partial guarantee of a $344 million loan that will support the SolarStrong Project, which is expected

  12. Large scale magnetic fields and coherent structures in nonuniform unmagnetized plasma

    SciTech Connect (OSTI)

    Jucker, Martin; Andrushchenko, Zhanna N.; Pavlenko, Vladimir P.

    2006-07-15

    The properties of streamers and zonal magnetic structures in magnetic electron drift mode turbulence are investigated. The stability of such large scale structures is investigated in the kinetic and the hydrodynamic regime, for which an instability criterion similar to the Lighthill criterion for modulational instability is found. Furthermore, these large scale flows can undergo further nonlinear evolution after initial linear growth, which can lead to the formation of long-lived coherent structures consisting of self-bound wave packets between the surfaces of two different flow velocities with an expected modification of the anomalous electron transport properties.

  13. ARM - PI Product - Large Scale Ice Water Path and 3-D Ice Water Content

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsLarge Scale Ice Water Path and 3-D Ice Water Content ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Large Scale Ice Water Path and 3-D Ice Water Content Cloud ice water concentration is one of the most important, yet poorly observed, cloud properties. Developing physical parameterizations used in general circulation models through single-column modeling is one of the key foci of the ARM

  14. DOE Awards $126.6 Million for Two More Large-Scale Carbon Sequestration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects | Department of Energy 6.6 Million for Two More Large-Scale Carbon Sequestration Projects DOE Awards $126.6 Million for Two More Large-Scale Carbon Sequestration Projects May 6, 2008 - 11:30am Addthis Projects in California and Ohio Join Four Others in Effort to Drastically Reduce Greenhouse Gas Emissions WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced awards of more than $126.6 million to the West Coast Regional Carbon Sequestration Partnership (WESTCARB) and

  15. Large-scale delamination of multi-layers transition metal carbides and carbonitrides “MXenes”

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Naguib, Michael; Unocic, Raymond R.; Armstrong, Beth L.; Nanda, Jagjit

    2015-04-17

    Herein we report on a general approach to delaminate multi-layered MXenes using an organic base to induce swelling that in turn weakens the bonds between the MX layers. Simple agitation or mild sonication of the swollen MXene in water resulted in the large-scale delamination of the MXene layers. The delamination method is demonstrated for vanadium carbide, and titanium carbonitrides MXenes.

  16. Large-Scale Delamination of Multi-Layers Transition Metal Carbides and Carbonitrides MXenes

    SciTech Connect (OSTI)

    Abdelmalak, Michael Naguib; Unocic, Raymond R; Armstrong, Beth L; Nanda, Jagjit

    2015-01-01

    Herein we report on a general approach to delaminate multi-layered MXenes using an organic base to induce swelling that in turn weakens the bonds between the MX layers. Simple agitation or mild sonication of the swollen MXene in water resulted in the large-scale delamination of the MXene layers. The delamination method is demonstrated for vanadium carbide, and titanium carbonitrides MXenes.

  17. Self-consistency tests of large-scale dynamics parameterizations for single-column modeling

    SciTech Connect (OSTI)

    Edman, Jacob P.; Romps, David M.

    2015-03-18

    Large-scale dynamics parameterizations are tested numerically in cloud-resolving simulations, including a new version of the weak-pressure-gradient approximation (WPG) introduced by Edman and Romps (2014), the weak-temperature-gradient approximation (WTG), and a prior implementation of WPG. We perform a series of self-consistency tests with each large-scale dynamics parameterization, in which we compare the result of a cloud-resolving simulation coupled to WTG or WPG with an otherwise identical simulation with prescribed large-scale convergence. In self-consistency tests based on radiative-convective equilibrium (RCE; i.e., no large-scale convergence), we find that simulations either weakly coupled or strongly coupled to either WPG or WTG are self-consistent, but WPG-coupled simulations exhibit a nonmonotonic behavior as the strength of the coupling to WPG is varied. We also perform self-consistency tests based on observed forcings from two observational campaigns: the Tropical Warm Pool International Cloud Experiment (TWP-ICE) and the ARM Southern Great Plains (SGP) Summer 1995 IOP. In these tests, we show that the new version of WPG improves upon prior versions of WPG by eliminating a potentially troublesome gravity-wave resonance.

  18. Self-consistency tests of large-scale dynamics parameterizations for single-column modeling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Edman, Jacob P.; Romps, David M.

    2015-03-18

    Large-scale dynamics parameterizations are tested numerically in cloud-resolving simulations, including a new version of the weak-pressure-gradient approximation (WPG) introduced by Edman and Romps (2014), the weak-temperature-gradient approximation (WTG), and a prior implementation of WPG. We perform a series of self-consistency tests with each large-scale dynamics parameterization, in which we compare the result of a cloud-resolving simulation coupled to WTG or WPG with an otherwise identical simulation with prescribed large-scale convergence. In self-consistency tests based on radiative-convective equilibrium (RCE; i.e., no large-scale convergence), we find that simulations either weakly coupled or strongly coupled to either WPG or WTG are self-consistent, butmore » WPG-coupled simulations exhibit a nonmonotonic behavior as the strength of the coupling to WPG is varied. We also perform self-consistency tests based on observed forcings from two observational campaigns: the Tropical Warm Pool International Cloud Experiment (TWP-ICE) and the ARM Southern Great Plains (SGP) Summer 1995 IOP. In these tests, we show that the new version of WPG improves upon prior versions of WPG by eliminating a potentially troublesome gravity-wave resonance.« less

  19. Optimization of large-scale heterogeneous system-of-systems models.

    SciTech Connect (OSTI)

    Parekh, Ojas; Watson, Jean-Paul; Phillips, Cynthia Ann; Siirola, John; Swiler, Laura Painton; Hough, Patricia Diane; Lee, Herbert K. H.; Hart, William Eugene; Gray, Genetha Anne; Woodruff, David L.

    2012-01-01

    Decision makers increasingly rely on large-scale computational models to simulate and analyze complex man-made systems. For example, computational models of national infrastructures are being used to inform government policy, assess economic and national security risks, evaluate infrastructure interdependencies, and plan for the growth and evolution of infrastructure capabilities. A major challenge for decision makers is the analysis of national-scale models that are composed of interacting systems: effective integration of system models is difficult, there are many parameters to analyze in these systems, and fundamental modeling uncertainties complicate analysis. This project is developing optimization methods to effectively represent and analyze large-scale heterogeneous system of systems (HSoS) models, which have emerged as a promising approach for describing such complex man-made systems. These optimization methods enable decision makers to predict future system behavior, manage system risk, assess tradeoffs between system criteria, and identify critical modeling uncertainties.

  20. Development of large scale production of Nd-doped phosphate glasses for megajoule-scale laser systems

    SciTech Connect (OSTI)

    Ficini, G.; Campbell, J.H.

    1996-05-01

    Nd-doped phosphate glasses are the preferred gain medium for high-peak-power lasers used for Inertial Confinement Fusion research because they have excellent energy storage and extraction characteristics. In addition, these glasses can be manufactured defect-free in large sizes and at relatively low cost. To meet the requirements of the future mega-joule size lasers, advanced laser glass manufacturing methods are being developed that would enable laser glass to be continuously produced at the rate of several thousand large (790 x 440 x 44 mm{sup 3}) plates of glass per year. This represents more than a 10 to 100-fold improvement in the scale of the present manufacturing technology.

  1. Integrating large-scale functional genomics data to dissect metabolic networks for hydrogen production

    SciTech Connect (OSTI)

    Harwood, Caroline S

    2012-12-17

    The goal of this project is to identify gene networks that are critical for efficient biohydrogen production by leveraging variation in gene content and gene expression in independently isolated Rhodopseudomonas palustris strains. Coexpression methods were applied to large data sets that we have collected to define probabilistic causal gene networks. To our knowledge this a first systems level approach that takes advantage of strain-to strain variability to computationally define networks critical for a particular bacterial phenotypic trait.

  2. Towards physics responsible for large-scale Lyman-α forest bias parameters

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Agnieszka M. Cieplak; Slosar, Anze

    2016-03-08

    Using a series of carefully constructed numerical experiments based on hydrodynamic cosmological SPH simulations, we attempt to build an intuition for the relevant physics behind the large scale density (bδ) and velocity gradient (bη) biases of the Lyman-α forest. Starting with the fluctuating Gunn-Peterson approximation applied to the smoothed total density field in real-space, and progressing through redshift-space with no thermal broadening, redshift-space with thermal broadening and hydrodynamically simulated baryon fields, we investigate how approximations found in the literature fare. We find that Seljak's 2012 analytical formulae for these bias parameters work surprisingly well in the limit of no thermalmore » broadening and linear redshift-space distortions. We also show that his bη formula is exact in the limit of no thermal broadening. Since introduction of thermal broadening significantly affects its value, we speculate that a combination of large-scale measurements of bη and the small scale flux PDF might be a sensitive probe of the thermal state of the IGM. Lastly, we find that large-scale biases derived from the smoothed total matter field are within 10–20% to those based on hydrodynamical quantities, in line with other measurements in the literature.« less

  3. Large-Scale Transport Model Uncertainty and Sensitivity Analysis: Distributed Sources in Complex Hydrogeologic Systems

    SciTech Connect (OSTI)

    Sig Drellack, Lance Prothro

    2007-12-01

    The Underground Test Area (UGTA) Project of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office is in the process of assessing and developing regulatory decision options based on modeling predictions of contaminant transport from underground testing of nuclear weapons at the Nevada Test Site (NTS). The UGTA Project is attempting to develop an effective modeling strategy that addresses and quantifies multiple components of uncertainty including natural variability, parameter uncertainty, conceptual/model uncertainty, and decision uncertainty in translating model results into regulatory requirements. The modeling task presents multiple unique challenges to the hydrological sciences as a result of the complex fractured and faulted hydrostratigraphy, the distributed locations of sources, the suite of reactive and non-reactive radionuclides, and uncertainty in conceptual models. Characterization of the hydrogeologic system is difficult and expensive because of deep groundwater in the arid desert setting and the large spatial setting of the NTS. Therefore, conceptual model uncertainty is partially addressed through the development of multiple alternative conceptual models of the hydrostratigraphic framework and multiple alternative models of recharge and discharge. Uncertainty in boundary conditions is assessed through development of alternative groundwater fluxes through multiple simulations using the regional groundwater flow model. Calibration of alternative models to heads and measured or inferred fluxes has not proven to provide clear measures of model quality. Therefore, model screening by comparison to independently-derived natural geochemical mixing targets through cluster analysis has also been invoked to evaluate differences between alternative conceptual models. Advancing multiple alternative flow models, sensitivity of transport predictions to parameter uncertainty is assessed through Monte Carlo simulations. The

  4. Approaching the exa-scale: a real-world evaluation of rendering extremely large data sets

    SciTech Connect (OSTI)

    Patchett, John M; Ahrens, James P; Lo, Li - Ta; Browniee, Carson S; Mitchell, Christopher J; Hansen, Chuck

    2010-10-15

    Extremely large scale analysis is becoming increasingly important as supercomputers and their simulations move from petascale to exascale. The lack of dedicated hardware acceleration for rendering on today's supercomputing platforms motivates our detailed evaluation of the possibility of interactive rendering on the supercomputer. In order to facilitate our understanding of rendering on the supercomputing platform, we focus on scalability of rendering algorithms and architecture envisioned for exascale datasets. To understand tradeoffs for dealing with extremely large datasets, we compare three different rendering algorithms for large polygonal data: software based ray tracing, software based rasterization and hardware accelerated rasterization. We present a case study of strong and weak scaling of rendering extremely large data on both GPU and CPU based parallel supercomputers using Para View, a parallel visualization tool. Wc use three different data sets: two synthetic and one from a scientific application. At an extreme scale, algorithmic rendering choices make a difference and should be considered while approaching exascale computing, visualization, and analysis. We find software based ray-tracing offers a viable approach for scalable rendering of the projected future massive data sizes.

  5. On scale and magnitude of pressure build-up induced by large-scale geologic storage of CO2

    SciTech Connect (OSTI)

    Zhou, Q.; Birkholzer, J. T.

    2011-05-01

    The scale and magnitude of pressure perturbation and brine migration induced by geologic carbon sequestration is discussed assuming a full-scale deployment scenario in which enough CO{sub 2} is captured and stored to make relevant contributions to global climate change mitigation. In this scenario, the volumetric rates and cumulative volumes of CO{sub 2} injection would be comparable to or higher than those related to existing deep-subsurface injection and extraction activities, such as oil production. Large-scale pressure build-up in response to the injection may limit the dynamic storage capacity of suitable formations, because over-pressurization may fracture the caprock, may drive CO{sub 2}/brine leakage through localized pathways, and may cause induced seismicity. On the other hand, laterally extensive sedimentary basins may be less affected by such limitations because (i) local pressure effects are moderated by pressure propagation and brine displacement into regions far away from the CO{sub 2} storage domain; and (ii) diffuse and/or localized brine migration into overlying and underlying formations allows for pressure bleed-off in the vertical direction. A quick analytical estimate of the extent of pressure build-up induced by industrial-scale CO{sub 2} storage projects is presented. Also discussed are pressure perturbation and attenuation effects simulated for two representative sedimentary basins in the USA: the laterally extensive Illinois Basin and the partially compartmentalized southern San Joaquin Basin in California. These studies show that the limiting effect of pressure build-up on dynamic storage capacity is not as significant as suggested by Ehlig-Economides and Economides, who considered closed systems without any attenuation effects.

  6. Final Report: Large-Scale Optimization for Bayesian Inference in Complex Systems

    SciTech Connect (OSTI)

    Ghattas, Omar

    2013-10-15

    The SAGUARO (Scalable Algorithms for Groundwater Uncertainty Analysis and Robust Optimiza- tion) Project focuses on the development of scalable numerical algorithms for large-scale Bayesian inversion in complex systems that capitalize on advances in large-scale simulation-based optimiza- tion and inversion methods. Our research is directed in three complementary areas: efficient approximations of the Hessian operator, reductions in complexity of forward simulations via stochastic spectral approximations and model reduction, and employing large-scale optimization concepts to accelerate sampling. Our efforts are integrated in the context of a challenging testbed problem that considers subsurface reacting flow and transport. The MIT component of the SAGUARO Project addresses the intractability of conventional sampling methods for large-scale statistical inverse problems by devising reduced-order models that are faithful to the full-order model over a wide range of parameter values; sampling then employs the reduced model rather than the full model, resulting in very large computational savings. Results indicate little effect on the computed posterior distribution. On the other hand, in the Texas-Georgia Tech component of the project, we retain the full-order model, but exploit inverse problem structure (adjoint-based gradients and partial Hessian information of the parameter-to- observation map) to implicitly extract lower dimensional information on the posterior distribution; this greatly speeds up sampling methods, so that fewer sampling points are needed. We can think of these two approaches as "reduce then sample" and "sample then reduce." In fact, these two approaches are complementary, and can be used in conjunction with each other. Moreover, they both exploit deterministic inverse problem structure, in the form of adjoint-based gradient and Hessian information of the underlying parameter-to-observation map, to achieve their speedups.

  7. Factors Affecting the Rate of Penetration of Large-Scale Electricity Technologies: The Case of Carbon Sequestration

    SciTech Connect (OSTI)

    James R. McFarland; Howard J. Herzog

    2007-05-14

    This project falls under the Technology Innovation and Diffusion topic of the Integrated Assessment of Climate Change Research Program. The objective was to better understand the critical variables that affect the rate of penetration of large-scale electricity technologies in order to improve their representation in integrated assessment models. We conducted this research in six integrated tasks. In our first two tasks, we identified potential factors that affect penetration rates through discussions with modeling groups and through case studies of historical precedent. In the next three tasks, we investigated in detail three potential sets of critical factors: industrial conditions, resource conditions, and regulatory/environmental considerations. Research to assess the significance and relative importance of these factors involved the development of a microeconomic, system dynamics model of the US electric power sector. Finally, we implemented the penetration rate models in an integrated assessment model. While the focus of this effort is on carbon capture and sequestration technologies, much of the work will be applicable to other large-scale energy conversion technologies.

  8. Development of Residential Prototype Building Models and Analysis System for Large-Scale Energy Efficiency Studies Using EnergyPlus

    SciTech Connect (OSTI)

    Mendon, Vrushali V.; Taylor, Zachary T.

    2014-09-10

    ABSTRACT: Recent advances in residential building energy efficiency and codes have resulted in increased interest in detailed residential building energy models using the latest energy simulation software. One of the challenges of developing residential building models to characterize new residential building stock is to allow for flexibility to address variability in house features like geometry, configuration, HVAC systems etc. Researchers solved this problem in a novel way by creating a simulation structure capable of creating fully-functional EnergyPlus batch runs using a completely scalable residential EnergyPlus template system. This system was used to create a set of thirty-two residential prototype building models covering single- and multifamily buildings, four common foundation types and four common heating system types found in the United States (US). A weighting scheme with detailed state-wise and national weighting factors was designed to supplement the residential prototype models. The complete set is designed to represent a majority of new residential construction stock. The entire structure consists of a system of utility programs developed around the core EnergyPlus simulation engine to automate the creation and management of large-scale simulation studies with minimal human effort. The simulation structure and the residential prototype building models have been used for numerous large-scale studies, one of which is briefly discussed in this paper.

  9. A PRACTICAL ONTOLOGY FOR THE LARGE-SCALE MODELING OF SCHOLARLY ARTIFACTS AND THEIR USAGE

    SciTech Connect (OSTI)

    RODRIGUEZ, MARKO A.; BOLLEN, JOHAN; VAN DE SOMPEL, HERBERT

    2007-01-30

    The large-scale analysis of scholarly artifact usage is constrained primarily by current practices in usage data archiving, privacy issues concerned with the dissemination of usage data, and the lack of a practical ontology for modeling the usage domain. As a remedy to the third constraint, this article presents a scholarly ontology that was engineered to represent those classes for which large-scale bibliographic and usage data exists, supports usage research, and whose instantiation is scalable to the order of 50 million articles along with their associated artifacts (e.g. authors and journals) and an accompanying 1 billion usage events. The real world instantiation of the presented abstract ontology is a semantic network model of the scholarly community which lends the scholarly process to statistical analysis and computational support. They present the ontology, discuss its instantiation, and provide some example inference rules for calculating various scholarly artifact metrics.

  10. Structure Discovery in Large Semantic Graphs Using Extant Ontological Scaling and Descriptive Statistics

    SciTech Connect (OSTI)

    al-Saffar, Sinan; Joslyn, Cliff A.; Chappell, Alan R.

    2011-07-18

    As semantic datasets grow to be very large and divergent, there is a need to identify and exploit their inherent semantic structure for discovery and optimization. Towards that end, we present here a novel methodology to identify the semantic structures inherent in an arbitrary semantic graph dataset. We first present the concept of an extant ontology as a statistical description of the semantic relations present amongst the typed entities modeled in the graph. This serves as a model of the underlying semantic structure to aid in discovery and visualization. We then describe a method of ontological scaling in which the ontology is employed as a hierarchical scaling filter to infer different resolution levels at which the graph structures are to be viewed or analyzed. We illustrate these methods on three large and publicly available semantic datasets containing more than one billion edges each. Keywords-Semantic Web; Visualization; Ontology; Multi-resolution Data Mining;

  11. Molecular Dynamics Simulations from SNL's Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Plimpton, Steve; Thompson, Aidan; Crozier, Paul

    LAMMPS (http://lammps.sandia.gov/index.html) stands for Large-scale Atomic/Molecular Massively Parallel Simulator and is a code that can be used to model atoms or, as the LAMMPS website says, as a parallel particle simulator at the atomic, meso, or continuum scale. This Sandia-based website provides a long list of animations from large simulations. These were created using different visualization packages to read LAMMPS output, and each one provides the name of the PI and a brief description of the work done or visualization package used. See also the static images produced from simulations at http://lammps.sandia.gov/pictures.html The foundation paper for LAMMPS is: S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J Comp Phys, 117, 1-19 (1995), but the website also lists other papers describing contributions to LAMMPS over the years.

  12. Solving Large Scale Nonlinear Eigenvalue Problem in Next-Generation Accelerator Design

    SciTech Connect (OSTI)

    Liao, Ben-Shan; Bai, Zhaojun; Lee, Lie-Quan; Ko, Kwok; /SLAC

    2006-09-28

    A number of numerical methods, including inverse iteration, method of successive linear problem and nonlinear Arnoldi algorithm, are studied in this paper to solve a large scale nonlinear eigenvalue problem arising from finite element analysis of resonant frequencies and external Q{sub e} values of a waveguide loaded cavity in the next-generation accelerator design. They present a nonlinear Rayleigh-Ritz iterative projection algorithm, NRRIT in short and demonstrate that it is the most promising approach for a model scale cavity design. The NRRIT algorithm is an extension of the nonlinear Arnoldi algorithm due to Voss. Computational challenges of solving such a nonlinear eigenvalue problem for a full scale cavity design are outlined.

  13. Panel 1, Towards Sustainable Energy Systems: The Role of Large-Scale Hydrogen Storage in Germany

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hanno Butsch | Head of International Cooperation NOW GmbH National Organization Hydrogen and Fuel Cell Technology Towards sustainable energy systems - The role of large scale hydrogen storage in Germany May 14th, 2014 | Sacramento Political background for the transition to renewable energies 2 * Climate protection: Global responsibility for the next generation. * Energy security: More independency from fossil fuels. * Securing the economy: Creating new markets and jobs through innovations. Three

  14. DOE/NNSA Participates in Large-Scale CTBT On-Site Inspection Exercise in

    National Nuclear Security Administration (NNSA)

    Jordan | National Nuclear Security Administration | (NNSA) Participates in Large-Scale CTBT On-Site Inspection Exercise in Jordan Friday, November 28, 2014 - 9:05am Experts from U.S. Department of Energy National Laboratories, including Sandia National Laboratories, Los Alamos National Laboratory, Lawrence Livermore National Laboratory, and Pacific Northwest National Laboratory, are participating in the Comprehensive Nuclear-Test-Ban Treaty (CTBT) Integrated Field Exercise 2014 (IFE14), a

  15. Metal Catalyzed sp2 Bonded Carbon - Large-scale Graphene Synthesis and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beyond | MIT-Harvard Center for Excitonics Metal Catalyzed sp2 Bonded Carbon - Large-scale Graphene Synthesis and Beyond December 1, 2009 at 3pm/36-428 Peter Sutter Center for Functional Nanomaterials sutter abstract: Carbon honeycomb lattices have shown a number of remarkable properties. When wrapped up into fullerenes, for instance, superconductivity with high transition temperatures can be induced by alkali intercalation. Rolling carbon sheets up into 1-dimensional nanotubes generates the

  16. Large-Scale Production of Marine Microalgae for Fuel and Feeds

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy Technologies Office (BETO) 2015 Project Peer Review Large-Scale Production of Marine Microalgae for Fuel and Feeds March 24, 2015 Algae Platform Review Mark Huntley Cornell Marine Algal Biofuels Consortium This presentation does not contain any proprietary, confidential, or otherwise restricted information Goal Statement  BETO MYPP Goals (3) Demonstrate 1. Performance against clear cost goals and technical targets (Q4 2013) 2. Productivity of 1,500 gal/acre/yr algal oil (Q4 2014)

  17. PARTICLE ACCELERATION BY COLLISIONLESS SHOCKS CONTAINING LARGE-SCALE MAGNETIC-FIELD VARIATIONS

    SciTech Connect (OSTI)

    Guo, F.; Jokipii, J. R.; Kota, J. E-mail: jokipii@lpl.arizona.ed

    2010-12-10

    Diffusive shock acceleration at collisionless shocks is thought to be the source of many of the energetic particles observed in space. Large-scale spatial variations of the magnetic field have been shown to be important in understanding observations. The effects are complex, so here we consider a simple, illustrative model. Here we solve numerically the Parker transport equation for a shock in the presence of large-scale sinusoidal magnetic-field variations. We demonstrate that the familiar planar-shock results can be significantly altered as a consequence of large-scale, meandering magnetic lines of force. Because the perpendicular diffusion coefficient {kappa}{sub perpendicular} is generally much smaller than the parallel diffusion coefficient {kappa}{sub ||}, the energetic charged particles are trapped and preferentially accelerated along the shock front in the regions where the connection points of magnetic field lines intersecting the shock surface converge, and thus create the 'hot spots' of the accelerated particles. For the regions where the connection points separate from each other, the acceleration to high energies will be suppressed. Further, the particles diffuse away from the 'hot spot' regions and modify the spectra of downstream particle distribution. These features are qualitatively similar to the recent Voyager observations in the Heliosheath. These results are potentially important for particle acceleration at shocks propagating in turbulent magnetized plasmas as well as those which contain large-scale nonplanar structures. Examples include anomalous cosmic rays accelerated by the solar wind termination shock, energetic particles observed in propagating heliospheric shocks, galactic cosmic rays accelerated by supernova blast waves, etc.

  18. Large-Scale Simulation of Brain Tissue: Blue Brain Project, EPFL | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Leadership Computing Facility Digital reconstruction of pyramidal cells Digital reconstruction of pyramidal cells. Blue Brain Project, Ecole Polytechnique Federale de Lausanne Large-Scale Simulation of Brain Tissue: Blue Brain Project, EPFL PI Name: Fabien Delalondre PI Email: fabien.delalondre@epfl.ch Institution: Ecole Federale Polytechnique de Lausanne Allocation Program: ESP Year: 2015 Research Domain: Biological Sciences Tier 1 Science Project Science This ESP project will be used to

  19. Large-scale structure in brane-induced gravity. I. Perturbation theory

    SciTech Connect (OSTI)

    Scoccimarro, Roman

    2009-11-15

    We study the growth of subhorizon perturbations in brane-induced gravity using perturbation theory. We solve for the linear evolution of perturbations taking advantage of the symmetry under gauge transformations along the extra-dimension to decouple the bulk equations in the quasistatic approximation, which we argue may be a better approximation at large scales than thought before. We then study the nonlinearities in the bulk and brane equations, concentrating on the workings of the Vainshtein mechanism by which the theory becomes general relativity (GR) at small scales. We show that at the level of the power spectrum, to a good approximation, the effect of nonlinearities in the modified gravity sector may be absorbed into a renormalization of the gravitational constant. Since the relation between the lensing potential and density perturbations is entirely unaffected by the extra physics in these theories, the modified gravity can be described in this approximation by a single function, an effective gravitational constant for nonrelativistic motion that depends on space and time. We develop a resummation scheme to calculate it, and provide predictions for the nonlinear power spectrum. At the level of the large-scale bispectrum, the leading order corrections are obtained by standard perturbation theory techniques, and show that the suppression of the brane-bending mode leads to characteristic signatures in the non-Gaussianity generated by gravity, generic to models that become GR at small scales through second-derivative interactions. We compare the predictions in this work to numerical simulations in a companion paper.

  20. A method of orbital analysis for large-scale first-principles simulations

    SciTech Connect (OSTI)

    Ohwaki, Tsukuru; Otani, Minoru; Ozaki, Taisuke

    2014-06-28

    An efficient method of calculating the natural bond orbitals (NBOs) based on a truncation of the entire density matrix of a whole system is presented for large-scale density functional theory calculations. The method recovers an orbital picture for O(N) electronic structure methods which directly evaluate the density matrix without using Kohn-Sham orbitals, thus enabling quantitative analysis of chemical reactions in large-scale systems in the language of localized Lewis-type chemical bonds. With the density matrix calculated by either an exact diagonalization or O(N) method, the computational cost is O(1) for the calculation of NBOs associated with a local region where a chemical reaction takes place. As an illustration of the method, we demonstrate how an electronic structure in a local region of interest can be analyzed by NBOs in a large-scale first-principles molecular dynamics simulation for a liquid electrolyte bulk model (propylene carbonate + LiBF{sub 4})

  1. High Fidelity Simulations of Large-Scale Wireless Networks (Plus-Up)

    SciTech Connect (OSTI)

    Onunkwo, Uzoma

    2015-11-01

    Sandia has built a strong reputation in scalable network simulation and emulation for cyber security studies to protect our nation’s critical information infrastructures. Georgia Tech has preeminent reputation in academia for excellence in scalable discrete event simulations, with strong emphasis on simulating cyber networks. Many of the experts in this field, such as Dr. Richard Fujimoto, Dr. George Riley, and Dr. Chris Carothers, have strong affiliations with Georgia Tech. The collaborative relationship that we intend to immediately pursue is in high fidelity simulations of practical large-scale wireless networks using ns-3 simulator via Dr. George Riley. This project will have mutual benefits in bolstering both institutions’ expertise and reputation in the field of scalable simulation for cyber-security studies. This project promises to address high fidelity simulations of large-scale wireless networks. This proposed collaboration is directly in line with Georgia Tech’s goals for developing and expanding the Communications Systems Center, the Georgia Tech Broadband Institute, and Georgia Tech Information Security Center along with its yearly Emerging Cyber Threats Report. At Sandia, this work benefits the defense systems and assessment area with promise for large-scale assessment of cyber security needs and vulnerabilities of our nation’s critical cyber infrastructures exposed to wireless communications.

  2. Fingerprints of anomalous primordial Universe on the abundance of large scale structures

    SciTech Connect (OSTI)

    Baghram, Shant; Abolhasani, Ali Akbar; Firouzjahi, Hassan; Namjoo, Mohammad Hossein E-mail: abolhasani@ipm.ir E-mail: MohammadHossein.Namjoo@utdallas.edu

    2014-12-01

    We study the predictions of anomalous inflationary models on the abundance of structures in large scale structure observations. The anomalous features encoded in primordial curvature perturbation power spectrum are (a): localized feature in momentum space, (b): hemispherical asymmetry and (c): statistical anisotropies. We present a model-independent expression relating the number density of structures to the changes in the matter density variance. Models with localized feature can alleviate the tension between observations and numerical simulations of cold dark matter structures on galactic scales as a possible solution to the missing satellite problem. In models with hemispherical asymmetry we show that the abundance of structures becomes asymmetric depending on the direction of observation to sky. In addition, we study the effects of scale-dependent dipole amplitude on the abundance of structures. Using the quasars data and adopting the power-law scaling k{sup n{sub A}-1} for the amplitude of dipole we find the upper bound n{sub A}<0.6 for the spectral index of the dipole asymmetry. In all cases there is a critical mass scale M{sub c} in which for MM{sub c}) the enhancement in variance induced from anomalous feature decreases (increases) the abundance of dark matter structures in Universe.

  3. A Metascalable Computing Framework for Large Spatiotemporal-Scale Atomistic Simulations

    SciTech Connect (OSTI)

    Nomura, K; Seymour, R; Wang, W; Kalia, R; Nakano, A; Vashishta, P; Shimojo, F; Yang, L H

    2009-02-17

    A metascalable (or 'design once, scale on new architectures') parallel computing framework has been developed for large spatiotemporal-scale atomistic simulations of materials based on spatiotemporal data locality principles, which is expected to scale on emerging multipetaflops architectures. The framework consists of: (1) an embedded divide-and-conquer (EDC) algorithmic framework based on spatial locality to design linear-scaling algorithms for high complexity problems; (2) a space-time-ensemble parallel (STEP) approach based on temporal locality to predict long-time dynamics, while introducing multiple parallelization axes; and (3) a tunable hierarchical cellular decomposition (HCD) parallelization framework to map these O(N) algorithms onto a multicore cluster based on hybrid implementation combining message passing and critical section-free multithreading. The EDC-STEP-HCD framework exposes maximal concurrency and data locality, thereby achieving: (1) inter-node parallel efficiency well over 0.95 for 218 billion-atom molecular-dynamics and 1.68 trillion electronic-degrees-of-freedom quantum-mechanical simulations on 212,992 IBM BlueGene/L processors (superscalability); (2) high intra-node, multithreading parallel efficiency (nanoscalability); and (3) nearly perfect time/ensemble parallel efficiency (eon-scalability). The spatiotemporal scale covered by MD simulation on a sustained petaflops computer per day (i.e. petaflops {center_dot} day of computing) is estimated as NT = 2.14 (e.g. N = 2.14 million atoms for T = 1 microseconds).

  4. Technical and economical aspects of large-scale CO{sub 2} storage in deep oceans

    SciTech Connect (OSTI)

    Sarv, H.; John, J.

    2000-07-01

    The authors examined the technical and economical feasibility of two options for large-scale transportation and ocean sequestration of captured CO{sub 2} at depths of 3000 meters or greater. In one case, CO{sub 2} was pumped from a land-based collection center through six parallel-laid subsea pipelines. Another case considered oceanic tanker transport of liquid carbon dioxide to an offshore floating platform or a barge for vertical injection through a large-diameter pipe to the ocean floor. Based on the preliminary technical and economic analyses, tanker transportation and offshore injection through a large-diameter, 3,000-meter vertical pipeline from a floating structure appears to be the best method for delivering liquid CO{sub 2} to deep ocean floor depressions for distances greater than 400 km. Other benefits of offshore injection are high payload capability and ease of relocation. For shorter distances (less than 400 km), CO{sub 2} delivery by subsea pipelines is more cost-effective. Estimated costs for 500-km transport and storage at a depth of 3000 meters by subsea pipelines or tankers were under 2 dollars per ton of stored CO{sub 2}. Their analyses also indicates that large-scale sequestration of captured CO{sub 2} in oceans is technologically feasible and has many commonalities with other strategies for deepsea natural gas and oil exploration installations.

  5. Primordial non-Gaussianity in the bispectra of large-scale structure

    SciTech Connect (OSTI)

    Tasinato, Gianmassimo; Tellarini, Matteo; Ross, Ashley J.; Wands, David E-mail: matteo.tellarini@port.ac.uk E-mail: david.wands@port.ac.uk

    2014-03-01

    The statistics of large-scale structure in the Universe can be used to probe non-Gaussianity of the primordial density field, complementary to existing constraints from the cosmic microwave background. In particular, the scale dependence of halo bias, which affects the halo distribution at large scales, represents a promising tool for analyzing primordial non-Gaussianity of local form. Future observations, for example, may be able to constrain the trispectrum parameter g{sub NL} that is difficult to study and constrain using the CMB alone. We investigate how galaxy and matter bispectra can distinguish between the two non-Gaussian parameters f{sub NL} and g{sub NL}, whose effects give nearly degenerate contributions to the power spectra. We use a generalization of the univariate bias approach, making the hypothesis that the number density of halos forming at a given position is a function of the local matter density contrast and of its local higher-order statistics. Using this approach, we calculate the halo-matter bispectra and analyze their properties. We determine a connection between the sign of the halo bispectrum on large scales and the parameter g{sub NL}. We also construct a combination of halo and matter bispectra that is sensitive to f{sub NL}, with little contamination from g{sub NL}. We study both the case of single and multiple sources to the primordial gravitational potential, discussing how to extend the concept of stochastic halo bias to the case of bispectra. We use a specific halo mass-function to calculate numerically the bispectra in appropriate squeezed limits, confirming our theoretical findings.

  6. Development of fine-resolution analyses and expanded large-scale forcing properties. Part II: Scale-awareness and application to single-column model experiments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Feng, Sha; Vogelmann, Andrew M.; Li, Zhijin; Liu, Yangang; Lin, Wuyin; Zhang, Minghua; Toto, Tami; Endo, Satoshi

    2015-01-20

    Fine-resolution three-dimensional fields have been produced using the Community Gridpoint Statistical Interpolation (GSI) data assimilation system for the U.S. Department of Energy’s Atmospheric Radiation Measurement Program (ARM) Southern Great Plains region. The GSI system is implemented in a multi-scale data assimilation framework using the Weather Research and Forecasting model at a cloud-resolving resolution of 2 km. From the fine-resolution three-dimensional fields, large-scale forcing is derived explicitly at grid-scale resolution; a subgrid-scale dynamic component is derived separately, representing subgrid-scale horizontal dynamic processes. Analyses show that the subgrid-scale dynamic component is often a major component over the large-scale forcing for grid scalesmore » larger than 200 km. The single-column model (SCM) of the Community Atmospheric Model version 5 (CAM5) is used to examine the impact of the grid-scale and subgrid-scale dynamic components on simulated precipitation and cloud fields associated with a mesoscale convective system. It is found that grid-scale size impacts simulated precipitation, resulting in an overestimation for grid scales of about 200 km but an underestimation for smaller grids. The subgrid-scale dynamic component has an appreciable impact on the simulations, suggesting that grid-scale and subgrid-scale dynamic components should be considered in the interpretation of SCM simulations.« less

  7. LARGE-SCALE HYDROGEN PRODUCTION FROM NUCLEAR ENERGY USING HIGH TEMPERATURE ELECTROLYSIS

    SciTech Connect (OSTI)

    James E. O'Brien

    2010-08-01

    Hydrogen can be produced from water splitting with relatively high efficiency using high-temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high-temperature process heat. When coupled to an advanced high temperature nuclear reactor, the overall thermal-to-hydrogen efficiency for high-temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. Demand for hydrogen is increasing rapidly for refining of increasingly low-grade petroleum resources, such as the Athabasca oil sands and for ammonia-based fertilizer production. Large quantities of hydrogen are also required for carbon-efficient conversion of biomass to liquid fuels. With supplemental nuclear hydrogen, almost all of the carbon in the biomass can be converted to liquid fuels in a nearly carbon-neutral fashion. Ultimately, hydrogen may be employed as a direct transportation fuel in a hydrogen economy. The large quantity of hydrogen that would be required for this concept should be produced without consuming fossil fuels or emitting greenhouse gases. An overview of the high-temperature electrolysis technology will be presented, including basic theory, modeling, and experimental activities. Modeling activities include both computational fluid dynamics and large-scale systems analysis. We have also demonstrated high-temperature electrolysis in our laboratory at the 15 kW scale, achieving a hydrogen production rate in excess of 5500 L/hr.

  8. Physical control oriented model of large scale refrigerators to synthesize advanced control schemes. Design, validation, and first control results

    SciTech Connect (OSTI)

    Bonne, François; Bonnay, Patrick

    2014-01-29

    In this paper, a physical method to obtain control-oriented dynamical models of large scale cryogenic refrigerators is proposed, in order to synthesize model-based advanced control schemes. These schemes aim to replace classical user experience designed approaches usually based on many independent PI controllers. This is particularly useful in the case where cryoplants are submitted to large pulsed thermal loads, expected to take place in the cryogenic cooling systems of future fusion reactors such as the International Thermonuclear Experimental Reactor (ITER) or the Japan Torus-60 Super Advanced Fusion Experiment (JT-60SA). Advanced control schemes lead to a better perturbation immunity and rejection, to offer a safer utilization of cryoplants. The paper gives details on how basic components used in the field of large scale helium refrigeration (especially those present on the 400W @1.8K helium test facility at CEA-Grenoble) are modeled and assembled to obtain the complete dynamic description of controllable subsystems of the refrigerator (controllable subsystems are namely the Joule-Thompson Cycle, the Brayton Cycle, the Liquid Nitrogen Precooling Unit and the Warm Compression Station). The complete 400W @1.8K (in the 400W @4.4K configuration) helium test facility model is then validated against experimental data and the optimal control of both the Joule-Thompson valve and the turbine valve is proposed, to stabilize the plant under highly variable thermals loads. This work is partially supported through the European Fusion Development Agreement (EFDA) Goal Oriented Training Program, task agreement WP10-GOT-GIRO.

  9. On the possible origin of the large scale cosmic magnetic field

    SciTech Connect (OSTI)

    Coroniti, F. V.

    2014-01-10

    The possibility that the large scale cosmic magnetic field is directly generated at microgauss, equipartition levels during the reionization epoch by collisionless shocks that are forced to satisfy a downstream shear flow boundary condition is investigated through the development of two modelsthe accretion of an ionized plasma onto a weakly ionized cool galactic disk and onto a cool filament of the cosmic web. The dynamical structure and the physical parameters of the models are synthesized from recent cosmological simulations of the early reionization era after the formation of the first stars. The collisionless shock stands upstream of the disk and filament, and its dissipation is determined by ion inertial length Weibel turbulence. The downstream shear boundary condition is determined by the rotational neutral gas flow in the disk and the inward accretion flow along the filament. The shocked plasma is accelerated to the downstream shear flow velocity by the Weibel turbulence, and the relative shearing motion between the electrons and ions produces a strong, ion inertial scale current sheet that generates an equipartition strength, large scale downstream magnetic field, ?10{sup 6} G for the disk and ?6 10{sup 8} G for the filament. By assumption, hydrodynamic turbulence transports the shear-shock generated magnetic flux throughout the disk and filament volume.

  10. Large scale synthesis of nanostructured zirconia-based compounds from freeze-dried precursors

    SciTech Connect (OSTI)

    Gomez, A.; Villanueva, R.; Vie, D.; Murcia-Mascaros, S.; Martinez, E.; Beltran, A.; Sapina, F.; Vicent, M.; Sanchez, E.

    2013-01-15

    Nanocrystalline zirconia powders have been obtained at the multigram scale by thermal decomposition of precursors resulting from the freeze-drying of aqueous acetic solutions. This technique has equally made possible to synthesize a variety of nanostructured yttria or scandia doped zirconia compositions. SEM images, as well as the analysis of the XRD patterns, show the nanoparticulated character of those solids obtained at low temperature, with typical particle size in the 10-15 nm range when prepared at 673 K. The presence of the monoclinic, the tetragonal or both phases depends on the temperature of the thermal treatment, the doping concentration and the nature of the dopant. In addition, Rietveld refinement of the XRD profiles of selected samples allows detecting the coexistence of the tetragonal and the cubic phases for high doping concentration and high thermal treatment temperatures. Raman experiments suggest the presence of both phases also at relatively low treatment temperatures. - Graphical abstract: Zr{sub 1-x}A{sub x}O{sub 2-x/2} (A=Y, Sc; 0{<=}x{<=}0.12) solid solutions have been prepared as nanostructured powders by thermal decomposition of precursors obtained by freeze-drying, and this synthetic procedure has been scaled up to the 100 g scale. Highlights: Black-Right-Pointing-Pointer Zr{sub 1-x}A{sub x}O{sub 2-x/2} (A=Y, Sc; 0{<=}x{<=}0.12) solid solutions have been prepared as nanostructured powders. Black-Right-Pointing-Pointer The synthetic method involves the thermal decomposition of precursors obtained by freeze-drying. Black-Right-Pointing-Pointer The temperature of the thermal treatment controls particle sizes. Black-Right-Pointing-Pointer The preparation procedure has been scaled up to the 100 g scale. Black-Right-Pointing-Pointer This method is appropriate for the large-scale industrial preparation of multimetallic systems.