Sample records for large scale testing

  1. Goethite Bench-scale and Large-scale Preparation Tests

    SciTech Connect (OSTI)

    Josephson, Gary B.; Westsik, Joseph H.

    2011-10-23T23:59:59.000Z

    The Hanford Waste Treatment and Immobilization Plant (WTP) is the keystone for cleanup of high-level radioactive waste from our nation's nuclear defense program. The WTP will process high-level waste from the Hanford tanks and produce immobilized high-level waste glass for disposal at a national repository, low activity waste (LAW) glass, and liquid effluent from the vitrification off-gas scrubbers. The liquid effluent will be stabilized into a secondary waste form (e.g. grout-like material) and disposed on the Hanford site in the Integrated Disposal Facility (IDF) along with the low-activity waste glass. The major long-term environmental impact at Hanford results from technetium that volatilizes from the WTP melters and finally resides in the secondary waste. Laboratory studies have indicated that pertechnetate ({sup 99}TcO{sub 4}{sup -}) can be reduced and captured into a solid solution of {alpha}-FeOOH, goethite (Um 2010). Goethite is a stable mineral and can significantly retard the release of technetium to the environment from the IDF. The laboratory studies were conducted using reaction times of many days, which is typical of environmental subsurface reactions that were the genesis of this new process. This study was the first step in considering adaptation of the slow laboratory steps to a larger-scale and faster process that could be conducted either within the WTP or within the effluent treatment facility (ETF). Two levels of scale-up tests were conducted (25x and 400x). The largest scale-up produced slurries of Fe-rich precipitates that contained rhenium as a nonradioactive surrogate for {sup 99}Tc. The slurries were used in melter tests at Vitreous State Laboratory (VSL) to determine whether captured rhenium was less volatile in the vitrification process than rhenium in an unmodified feed. A critical step in the technetium immobilization process is to chemically reduce Tc(VII) in the pertechnetate (TcO{sub 4}{sup -}) to Tc(Iv)by reaction with the ferrous ion, Fe{sup 2+}-Fe{sup 2+} is oxidized to Fe{sup 3+} - in the presence of goethite seed particles. Rhenium does not mimic that process; it is not a strong enough reducing agent to duplicate the TcO{sub 4}{sup -}/Fe{sup 2+} redox reactions. Laboratory tests conducted in parallel with these scaled tests identified modifications to the liquid chemistry necessary to reduce ReO{sub 4}{sup -} and capture rhenium in the solids at levels similar to those achieved by Um (2010) for inclusion of Tc into goethite. By implementing these changes, Re was incorporated into Fe-rich solids for testing at VSL. The changes also changed the phase of iron that was in the slurry product: rather than forming goethite ({alpha}-FeOOH), the process produced magnetite (Fe{sub 3}O{sub 4}). Magnetite was considered by Pacific Northwest National Laboratory (PNNL) and VSL to probably be a better product to improve Re retention in the melter because it decomposes at a higher temperature than goethite (1538 C vs. 136 C). The feasibility tests at VSL were conducted using Re-rich magnetite. The tests did not indicate an improved retention of Re in the glass during vitrification, but they did indicate an improved melting rate (+60%), which could have significant impact on HLW processing. It is still to be shown whether the Re is a solid solution in the magnetite as {sup 99}Tc was determined to be in goethite.

  2. LARGE SCALE PERMEABILITY TEST OF THE GRANITE IN THE STRIPA MINE AND THERMAL CONDUCTIVITY TEST

    E-Print Network [OSTI]

    Lundstrom, L.

    2011-01-01T23:59:59.000Z

    No.2 LARGE SCALE PERMEABILITY TEST OF THE GRANITE' IN THEMINE AND, THERMAL CONDUCTIVITY TEST Lars Lundstrom and HakanSUMMARY REPORT Background TEST SITE Layout of test places

  3. Large-Scale Spray Releases: Additional Aerosol Test Results

    SciTech Connect (OSTI)

    Daniel, Richard C.; Gauglitz, Phillip A.; Burns, Carolyn A.; Fountain, Matthew S.; Shimskey, Rick W.; Billing, Justin M.; Bontha, Jagannadha R.; Kurath, Dean E.; Jenks, Jeromy WJ; MacFarlan, Paul J.; Mahoney, Lenna A.

    2013-08-01T23:59:59.000Z

    One of the events postulated in the hazard analysis for the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak event involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids that behave as a Newtonian fluid. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and in processing facilities across the DOE complex. To expand the data set upon which the WTP accident and safety analyses were based, an aerosol spray leak testing program was conducted by Pacific Northwest National Laboratory (PNNL). PNNL’s test program addressed two key technical areas to improve the WTP methodology (Larson and Allen 2010). The first technical area was to quantify the role of slurry particles in small breaches where slurry particles may plug the hole and prevent high-pressure sprays. The results from an effort to address this first technical area can be found in Mahoney et al. (2012a). The second technical area was to determine aerosol droplet size distribution and total droplet volume from prototypic breaches and fluids, including sprays from larger breaches and sprays of slurries for which literature data are mostly absent. To address the second technical area, the testing program collected aerosol generation data at two scales, commonly referred to as small-scale and large-scale testing. The small-scale testing and resultant data are described in Mahoney et al. (2012b), and the large-scale testing and resultant data are presented in Schonewill et al. (2012). In tests at both scales, simulants were used to mimic the relevant physical properties projected for actual WTP process streams.

  4. PROPERTIES IMPORTANT TO MIXING FOR WTP LARGE SCALE INTEGRATED TESTING

    SciTech Connect (OSTI)

    Koopman, D.; Martino, C.; Poirier, M.

    2012-04-26T23:59:59.000Z

    Large Scale Integrated Testing (LSIT) is being planned by Bechtel National, Inc. to address uncertainties in the full scale mixing performance of the Hanford Waste Treatment and Immobilization Plant (WTP). Testing will use simulated waste rather than actual Hanford waste. Therefore, the use of suitable simulants is critical to achieving the goals of the test program. External review boards have raised questions regarding the overall representativeness of simulants used in previous mixing tests. Accordingly, WTP requested the Savannah River National Laboratory (SRNL) to assist with development of simulants for use in LSIT. Among the first tasks assigned to SRNL was to develop a list of waste properties that matter to pulse-jet mixer (PJM) mixing of WTP tanks. This report satisfies Commitment 5.2.3.1 of the Department of Energy Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 2010-2: physical properties important to mixing and scaling. In support of waste simulant development, the following two objectives are the focus of this report: (1) Assess physical and chemical properties important to the testing and development of mixing scaling relationships; (2) Identify the governing properties and associated ranges for LSIT to achieve the Newtonian and non-Newtonian test objectives. This includes the properties to support testing of sampling and heel management systems. The test objectives for LSIT relate to transfer and pump out of solid particles, prototypic integrated operations, sparger operation, PJM controllability, vessel level/density measurement accuracy, sampling, heel management, PJM restart, design and safety margin, Computational Fluid Dynamics (CFD) Verification and Validation (V and V) and comparison, performance testing and scaling, and high temperature operation. The slurry properties that are most important to Performance Testing and Scaling depend on the test objective and rheological classification of the slurry (i.e., Newtonian or non-Newtonian). The most important properties for testing with Newtonian slurries are the Archimedes number distribution and the particle concentration. For some test objectives, the shear strength is important. In the testing to collect data for CFD V and V and CFD comparison, the liquid density and liquid viscosity are important. In the high temperature testing, the liquid density and liquid viscosity are important. The Archimedes number distribution combines effects of particle size distribution, solid-liquid density difference, and kinematic viscosity. The most important properties for testing with non-Newtonian slurries are the slurry yield stress, the slurry consistency, and the shear strength. The solid-liquid density difference and the particle size are also important. It is also important to match multiple properties within the same simulant to achieve behavior representative of the waste. Other properties such as particle shape, concentration, surface charge, and size distribution breadth, as well as slurry cohesiveness and adhesiveness, liquid pH and ionic strength also influence the simulant properties either directly or through other physical properties such as yield stress.

  5. Large-Scale Spray Releases: Initial Aerosol Test Results

    SciTech Connect (OSTI)

    Schonewill, Philip P.; Gauglitz, Phillip A.; Bontha, Jagannadha R.; Daniel, Richard C.; Kurath, Dean E.; Adkins, Harold E.; Billing, Justin M.; Burns, Carolyn A.; Davis, James M.; Enderlin, Carl W.; Fischer, Christopher M.; Jenks, Jeromy WJ; Lukins, Craig D.; MacFarlan, Paul J.; Shutthanandan, Janani I.; Smith, Dennese M.

    2012-12-01T23:59:59.000Z

    One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and across processing facilities in the DOE complex. Two key technical areas were identified where testing results were needed to improve the technical basis by reducing the uncertainty due to extrapolating existing literature results. The first technical need was to quantify the role of slurry particles in small breaches where the slurry particles may plug and result in substantially reduced, or even negligible, respirable fraction formed by high-pressure sprays. The second technical need was to determine the aerosol droplet size distribution and volume from prototypic breaches and fluids, specifically including sprays from larger breaches with slurries where data from the literature are scarce. To address these technical areas, small- and large-scale test stands were constructed and operated with simulants to determine aerosol release fractions and generation rates from a range of breach sizes and geometries. The properties of the simulants represented the range of properties expected in the WTP process streams and included water, sodium salt solutions, slurries containing boehmite or gibbsite, and a hazardous chemical simulant. The effect of anti-foam agents was assessed with most of the simulants. Orifices included round holes and rectangular slots. The round holes ranged in size from 0.2 to 4.46 mm. The slots ranged from (width × length) 0.3 × 5 to 2.74 × 76.2 mm. Most slots were oriented longitudinally along the pipe, but some were oriented circumferentially. In addition, a limited number of multi-hole test pieces were tested in an attempt to assess the impact of a more complex breach. Much of the testing was conducted at pressures of 200 and 380 psi, but some tests were conducted at 100 psi. Testing the largest postulated breaches was deemed impractical because of the large size of some of the WTP equipment. The purpose of this report is to present the experimental results and analyses for the aerosol measurements obtained in the large-scale test stand. The report includes a description of the simulants used and their properties, equipment and operations, data analysis methodology, and test results. The results of tests investigating the role of slurry particles in plugging of small breaches are reported in Mahoney et al. 2012a. The results of the aerosol measurements in the small-scale test stand are reported in Mahoney et al. (2012b).

  6. Infrastructure for large-scale tests in marine autonomy

    E-Print Network [OSTI]

    Hummel, Robert A. (Robert Andrew)

    2012-01-01T23:59:59.000Z

    This thesis focuses on the development of infrastructure for research with large-scale autonomous marine vehicle fleets and the design of sampling trajectories for compressive sensing (CS). The newly developed infrastructure ...

  7. Testing Inflation with Large Scale Structure: Connecting Hopes with Reality

    E-Print Network [OSTI]

    Marcelo Alvarez; Tobias Baldauf; J. Richard Bond; Neal Dalal; Roland de Putter; Olivier Doré; Daniel Green; Chris Hirata; Zhiqi Huang; Dragan Huterer; Donghui Jeong; Matthew C. Johnson; Elisabeth Krause; Marilena Loverde; Joel Meyers; P. Daniel Meerburg; Leonardo Senatore; Sarah Shandera; Eva Silverstein; Anže Slosar; Kendrick Smith; Matias Zaldarriaga; Valentin Assassi; Jonathan Braden; Amir Hajian; Takeshi Kobayashi; George Stein; Alexander van Engelen

    2014-12-15T23:59:59.000Z

    The statistics of primordial curvature fluctuations are our window into the period of inflation, where these fluctuations were generated. To date, the cosmic microwave background has been the dominant source of information about these perturbations. Large scale structure is however from where drastic improvements should originate. In this paper, we explain the theoretical motivations for pursuing such measurements and the challenges that lie ahead. In particular, we discuss and identify theoretical targets regarding the measurement of primordial non-Gaussianity. We argue that when quantified in terms of the local (equilateral) template amplitude $f_{\\rm NL}^{\\rm loc}$ ($f_{\\rm NL}^{\\rm eq}$), natural target levels of sensitivity are $\\Delta f_{\\rm NL}^{\\rm loc, eq.} \\simeq 1$. We highlight that such levels are within reach of future surveys by measuring 2-, 3- and 4-point statistics of the galaxy spatial distribution. This paper summarizes a workshop held at CITA (University of Toronto) on October 23-24, 2014.

  8. Program for large-scale underground-coal-gasification tests

    SciTech Connect (OSTI)

    Hammesfahr, F.W.; Winter, P.L.

    1982-11-01T23:59:59.000Z

    The continuing development of underground coal gasification technology requires extended multi-module field programs in which the output gas is linked to surface usage. This effort was to appraise whether existing surface facilities in the utility, petroleum refinery, or natural gas industries could be used to reduce the cost of such an extended multi-module test and whether regional demand in areas having underground coal gasification coal resources could support the manufacture of transportation fuels from underground coal gasification gases. To limit the effort to a reasonable level but yet to permit a fair test of the concept, effort was focused on five states, Illinois, New Mexico, Texas, Washington, and Wyoming, which have good underground coal gasification reserves. Studies of plant distribution located 25 potential sites within 3 miles of the underground coal gasification amenable reserves in the five states. Distribution was 44% to utilities, 44% to refineries, and 12% to gas processing facilities. The concept that existing surface facilities, currently or potentially gas-capable, might contribute to the development of underground coal gasification technology by providing a low cost industrial application for the gas produced in a multi-module test appears valid. To further test the concept, three industries were reviewed in depth. These were the electric utility, natural gas, and petroleum industries. When looking at a fuel substitution of the type proposed, each industry had its special perspective. These are discussed in detail in the report.

  9. Large scale test rig for flow visualization and leakage measurement of labyrinth seals

    E-Print Network [OSTI]

    Broussard, Daniel Harold

    1991-01-01T23:59:59.000Z

    LARGE SCALE TEST RIG FOR FLOW VISUALIZATION AND LEAKAGE MEASUREMENT OF LABYRINTH SEALS A Thesis by DANIEL HAROLD BROUSSARD Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of requirements for degree... of MASTER OF SCIENCE December 1991 Major Subject: Mechanical Engineering LARGE SCALE TEST RIG FOR FLOW VISUALIZATION AND LEAKAGE MEASUREMENT OF LABYRINTH SEALS A Thesis by DANIEL HAROLD BROUSSARD Approved as to style and content by: David L. Rhode...

  10. Results from large scale ultimate strength tests of K-braced jacket frame structures

    SciTech Connect (OSTI)

    Bolt, H.M.

    1995-12-01T23:59:59.000Z

    Phase 2 of the JIP Frames Project included four large scale collapse tests of K-braced frames in which both gap and overlap K joints were the critical components. The results are presented in this paper. The local failure modes differed from typical isolated component tests, yet were representative of structural damage observed following Hurricane Andrew. The frame test results therefore provide important insight to the ultimate response of offshore jacket structures.

  11. LARGE SCALE DIRECT SHEAR TESTING WITH TIRE BALES By: Christopher J. LaRocque1

    E-Print Network [OSTI]

    Zornberg, Jorge G.

    2 , Advisor Abstract: There are growing environmental interests in the utilization of recycled tireLARGE SCALE DIRECT SHEAR TESTING WITH TIRE BALES By: Christopher J. LaRocque1 and Jorge G. Zornberg bales for civil engineering applications. Due to their lightweight and free-draining properties, tire

  12. Testing of Large-Scale ICV Glasses with Hanford LAW Simulant

    SciTech Connect (OSTI)

    Hrma, Pavel R.; Kim, Dong-Sang; Vienna, John D.; Matyas, Josef; Smith, Donald E.; Schweiger, Michael J.; Yeager, John D.

    2005-03-01T23:59:59.000Z

    Preliminary glass compositions for immobilizing Hanford low-activity waste (LAW) by the in-container vitrification (ICV) process were initially fabricated at crucible- and engineering-scale, including simulants and actual (radioactive) LAW. Glasses were characterized for vapor hydration test (VHT) and product consistency test (PCT) responses and crystallinity (both quenched and slow-cooled samples). Selected glasses were tested for toxicity characteristic leach procedure (TCLP) responses, viscosity, and electrical conductivity. This testing showed that glasses with LAW loading of 20 mass% can be made readily and meet all product constraints by a far margin. Glasses with over 22 mass% Na2O can be made to meet all other product quality and process constraints. Large-scale testing was performed at the AMEC, Geomelt Division facility in Richland. Three tests were conducted using simulated LAW with increasing loadings of 12, 17, and 20 mass% Na2O. Glass samples were taken from the test products in a manner to represent the full expected range of product performance. These samples were characterized for composition, density, crystalline and non-crystalline phase assemblage, and durability using the VHT, PCT, and TCLP tests. The results, presented in this report, show that the AMEC ICV product with meets all waste form requirements with a large margin. These results provide strong evidence that the Hanford LAW can be successfully vitrified by the ICV technology and can meet all the constraints related to product quality. The economic feasibility of the ICV technology can be further enhanced by subsequent optimization.

  13. LARGE SCALE PERMEABILITY TEST OF THE GRANITE IN THE STRIPA MINE AND THERMAL CONDUCTIVITY TEST

    E-Print Network [OSTI]

    Lundstrom, L.

    2011-01-01T23:59:59.000Z

    PERMEABILITY TEST OF THE GRANITE' IN THE STRIPA MINE AND,PERMEABILITY TEST OF THE GRANITE IN THE STRIPA MINE ANDPERMEABILITY TEST OF THE GRANITE IN THE STRIPA MINE AND

  14. Testing the statistical isotropy of large scale structure with multipole vectors

    E-Print Network [OSTI]

    Caroline Zunckel; Dragan Huterer; Glenn D. Starkman

    2011-09-08T23:59:59.000Z

    A fundamental assumption in cosmology is that of statistical isotropy - that the universe, on average, looks the same in every direction in the sky. Statistical isotropy has recently been tested stringently using Cosmic Microwave Background (CMB) data, leading to intriguing results on large angular scales. Here we apply some of the same techniques used in the CMB to the distribution of galaxies on the sky. Using the multipole vector approach, where each multipole in the harmonic decomposition of galaxy density field is described by unit vectors and an amplitude, we lay out the basic formalism of how to reconstruct the multipole vectors and their statistics out of galaxy survey catalogs. We apply the algorithm to synthetic galaxy maps, and study the sensitivity of the multipole vector reconstruction accuracy to the density, depth, sky coverage, and pixelization of galaxy catalog maps.

  15. Testing theoretical game theory results on a large scale : prisoner's dilemma on Facebook

    E-Print Network [OSTI]

    Long, Sunny (Sunny X.)

    2013-01-01T23:59:59.000Z

    In my research, I designed and implemented an online game accessable to a large diverse audience via the Facebook social network to test out game theoretic results and study social interactions. In this game, we designed ...

  16. Large-Scale Pumping Test Recommendations for the 200-ZP-1 Operable Unit

    SciTech Connect (OSTI)

    Spane, Frank A.

    2010-09-08T23:59:59.000Z

    CH2M Hill Plateau Remediation Company (CHPRC) is currently assessing aquifer characterization needs to optimize pump-and-treat remedial strategies (e.g., extraction well pumping rates, pumping schedule/design) in the 200-ZP-1 operable unit (OU), and in particular for the immediate area of the 241 TX-TY Tank Farm. Specifically, CHPRC is focusing on hydrologic characterization opportunities that may be available for newly constructed and planned ZP-1 extraction wells. These new extraction wells will be used to further refine the 3-dimensional subsurface contaminant distribution within this area and will be used in concert with other existing pump-and-treat wells to remediate the existing carbon tetrachloride contaminant plume. Currently, 14 extraction wells are actively used in the Interim Record of Decision ZP-1 pump-and-treat system for the purpose of remediating the existing carbon tetrachloride contamination in groundwater within this general area. As many as 20 new extraction wells and 17 injection wells may be installed to support final pump-and-treat operations within the OU area. It should be noted that although the report specifically refers to the 200-ZP-1 OU, the large-scale test recommendations are also applicable to the adjacent 200-UP-1 OU area. This is because of the similar hydrogeologic conditions exhibited within these two adjoining OU locations.

  17. 1. Large Scale Climate Simulator (Building 3144) The LSCS tests roof and/or attic assemblies weighing up to

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Envelope 1. Large Scale Climate Simulator (Building 3144) The LSCS tests roof and/or attic assemblies weighing up to 9000 kg (10 tons) and as high as 1.83 m (6 ft.) under any inhabited climatic and outdoors but also captures a wide range of secondary metrics. 2. Rotatable Guarded Hot Box (Building 3144

  18. K Basin Sludge Conditioning Testing Nitric Acid Dissolution Testing of K East Area Sludge Composite, Small- and Large-Scale Testing

    SciTech Connect (OSTI)

    Carlson, C.D.; Delegard, C.H.; Burgeson, I.E.; Schmidt, A.J.; Silvers, K.L.

    1999-04-02T23:59:59.000Z

    This report describes work performed by Pacific Northwest National Laboratory (PNNL) for Numatec Hanford Corporation (NHC) to support the development of the K Basin Sludge Treatment System. For this work, testing was performed to examine the dissolution behavior of a K East Basin floor and Weasel Pit sludge composite, referred to as K East area sludge composite, in nitric acid at the following concentrations: 2 M, 4 M, 6 M and 7.8 M. With the exception of one high solids loading test the nitric acid was added at 4X the stoichiometric requirement (assuming 100% of the sludge was uranium metal). The dissolution tests were conducted at boiling temperatures for 24 hours. Most of the tests were conducted with {approximately}2.5 g of sludge (dry basis). The high solids loading test was conducted with {approximately}7 g of sludge. A large-scale dissolution test was conducted with 26.5 g of sludge and 620 mL of 6 M nitric acid. The objectives of this test were to (1) generate a sufficient quantity of acid-insoluble residual solids for use in leaching studies, and (2) examine the dissolution behavior of the sludge composite at a larger scale.

  19. Large scale disease prediction

    E-Print Network [OSTI]

    Schmid, Patrick R. (Patrick Raphael)

    2008-01-01T23:59:59.000Z

    The objective of this thesis is to present the foundation of an automated large-scale disease prediction system. Unlike previous work that has typically focused on a small self-contained dataset, we explore the possibility ...

  20. LARGE SCALE REFRIGERATION PLANT FOR GROUND TESTING THE JAMES WEBB TELESCOPE AT NASA JOHNSON SPACE CENTER

    SciTech Connect (OSTI)

    P. Arnold, Lutz Decker, D. Howe, J. Urbin, Jonathan Homan, Carl Reis, J. Creel, V. Ganni, P. Knudsen, A. Sidi-Yekhlef

    2010-04-01T23:59:59.000Z

    The James Webb Telescope is the successor to the Hubble Telescope and will be placed in an orbit of 1.5 million km from earth. Before launch in 2014, the telescope will be tested in NASA Johnson Space Center's (JSC) space simulation chamber, Chamber A. The tests will be conducted at deep space conditions. Chamber A's helium cryo-panels are currently cooled down to 20 K by two Linde 3.5 kW helium refrigerators. The new 12.5 kW, 20-K helium coldbox described in this paper is part of the upgrade to the chamber systems for this large test program. The Linde coldbox will provide refrigeration in several operating modes where the temperature of the chamber is being controlled with a high accuracy due to the demanding NASA test requirements. The implementation of two parallel expansion turbine strings and the Ganni cycle—Floating Pressure process results in a highly efficient and flexible process that minimizes the electrical input power. This paper will describe the collaboration and execution of the coldbox project.

  1. Results of Large-Scale Testing on Effects of Anti-Foam Agent on Gas Retention and Release

    SciTech Connect (OSTI)

    Stewart, Charles W.; Guzman-Leong, Consuelo E.; Arm, Stuart T.; Butcher, Mark G.; Golovich, Elizabeth C.; Jagoda, Lynette K.; Park, Walter R.; Slaugh, Ryan W.; Su, Yin-Fong; Wend, Christopher F.; Mahoney, Lenna A.; Alzheimer, James M.; Bailey, Jeffrey A.; Cooley, Scott K.; Hurley, David E.; Johnson, Christian D.; Reid, Larry D.; Smith, Harry D.; Wells, Beric E.; Yokuda, Satoru T.

    2008-01-03T23:59:59.000Z

    The U.S. Department of Energy (DOE) Office of River Protection’s Waste Treatment Plant (WTP) will process and treat radioactive waste that is stored in tanks at the Hanford Site. The waste treatment process in the pretreatment facility will mix both Newtonian and non-Newtonian slurries in large process tanks. Process vessels mixing non-Newtonian slurries will use pulse jet mixers (PJMs), air sparging, and recirculation pumps. An anti-foam agent (AFA) will be added to the process streams to prevent surface foaming, but may also increase gas holdup and retention within the slurry. The work described in this report addresses gas retention and release in simulants with AFA through testing and analytical studies. Gas holdup and release tests were conducted in a 1/4-scale replica of the lag storage vessel operated in the Pacific Northwest National Laboratory (PNNL) Applied Process Engineering Laboratory using a kaolin/bentonite clay and AZ-101 HLW chemical simulant with non-Newtonian rheological properties representative of actual waste slurries. Additional tests were performed in a small-scale mixing vessel in the PNNL Physical Sciences Building using liquids and slurries representing major components of typical WTP waste streams. Analytical studies were directed at discovering how the effect of AFA might depend on gas composition and predicting the effect of AFA on gas retention and release in the full-scale plant, including the effects of mass transfer to the sparge air. The work at PNNL was part of a larger program that included tests conducted at Savannah River National Laboratory (SRNL) that is being reported separately. SRNL conducted gas holdup tests in a small-scale mixing vessel using the AZ-101 high-level waste (HLW) chemical simulant to investigate the effects of different AFAs, their components, and of adding noble metals. Full-scale, single-sparger mass transfer tests were also conducted at SRNL in water and AZ-101 HLW simulant to provide data for PNNL’s WTP gas retention and release modeling.

  2. Testing the profitability of Anaerobic Digestion in a large-scale UK dairy farm 

    E-Print Network [OSTI]

    Coz Leniz, Luis Fernando

    2011-11-24T23:59:59.000Z

    , a set price determined by the Ministry of Energy and Climate Change and paid by the energy supplying companies for every unit of electricity generated through renewable sources. This paper tests the economics, return on investment, and overall value...

  3. Develop and test an internally cooled, cabled superconductor (ICCS) for large scale MHD magnets

    SciTech Connect (OSTI)

    Marston, P.G.; Hale, J.R.; Dawson, A.M.

    1990-04-30T23:59:59.000Z

    The work conducted under DOE/PETC Contract DE-AC22-84PC70512 has included four principal tasks, (1) development of a Design Requirements Definition for a retrofit MHD magnet system, (2) analysis of an internally cooled, cabled superconductor (ICCS) to use in that design, (3) design of an experiment to test a subscale version of that conductor, which is a NbTi, copper stabilized superconductor, and (4) proof-of-concept testing of the conductor. The program was carried forth through the third task with very successful development and test of a conventional ICCS conductor with 27 multifilamentary copper-superconductor composite strands and a new concept conductor in which, in each triplet, two strands were pure copper and the third strand was a multifilamentary composite. In reviewing the magnet design and the premises for the conductor design it became obvious that, since the principal source of perturbation in MHD magnets derives from slippage between coils, or between turns in a coil, thereby producing frictional heat which must flow through the conductor sheath and the helium to the superconductor strands, an extra barrier might be highly effective in enhancing magnet stability and protection. This concept was developed and a sample conductor manufactured and tested in comparison with an identical conductor lacking such an additional barrier. Results of these conductor tests confirm the potential value of such a barrier. As the work of tasks 1 through 3 has been reported in detail in quarterly and semiannual reports, as well as in special reports prepared throughout the course of this project, this report reviews early work briefly and then discusses this last phase in great detail. 8 refs., 36 figs.

  4. Construction and testing of a large scale prototype of a silicon tungsten electromagnetic calorimeter for a future lepton collider

    E-Print Network [OSTI]

    Rouëné,J

    2013-01-01T23:59:59.000Z

    The CALICE collaboration is preparing large scale prototypes of highly granular calorimeters for detectors to be operated at a future linear electron positron collider. After several beam campaigns at DESY, CERN and FNAL, the CALICE collaboration has demonstrated the principle of highly granular electromagnetic calorimeters with a first prototype called physics prototype. The next prototype, called technological prototype, addresses the engineering challenges which come along with the realisation of highly granular calorimeters. This prototype will comprise 30 layers where each layer is composed of four 9_9 cm2 silicon wafers. The front end electronics is integrated into the detector layers. The size of each pixel is 5_5 mm2. This prototype enter sits construction phase. We present results of the first layers of the technological prototype obtained during beam test campaigns in spring and summer 2012. According to these results the signal over noise ratio of the detector exceeds the R&D goal of10:1.

  5. Large scale tracking algorithms.

    SciTech Connect (OSTI)

    Hansen, Ross L.; Love, Joshua Alan; Melgaard, David Kennett; Karelitz, David B.; Pitts, Todd Alan; Zollweg, Joshua David; Anderson, Dylan Z.; Nandy, Prabal; Whitlow, Gary L.; Bender, Daniel A.; Byrne, Raymond Harry

    2015-01-01T23:59:59.000Z

    Low signal-to-noise data processing algorithms for improved detection, tracking, discrimination and situational threat assessment are a key research challenge. As sensor technologies progress, the number of pixels will increase signi cantly. This will result in increased resolution, which could improve object discrimination, but unfortunately, will also result in a significant increase in the number of potential targets to track. Many tracking techniques, like multi-hypothesis trackers, suffer from a combinatorial explosion as the number of potential targets increase. As the resolution increases, the phenomenology applied towards detection algorithms also changes. For low resolution sensors, "blob" tracking is the norm. For higher resolution data, additional information may be employed in the detection and classfication steps. The most challenging scenarios are those where the targets cannot be fully resolved, yet must be tracked and distinguished for neighboring closely spaced objects. Tracking vehicles in an urban environment is an example of such a challenging scenario. This report evaluates several potential tracking algorithms for large-scale tracking in an urban environment.

  6. RELAP5/MOD3 simulation of the loss of residual heat removal during midloop operation experiment conducted at the ROSA-IV/ Large Scale Test Facility 

    E-Print Network [OSTI]

    Banerjee, Sibashis Sanatkumar

    1994-01-01T23:59:59.000Z

    the RELAP5/MOD3 thermal hydraulic code. The experiment was conducted at the Rig of Safety Assessment (ROSA)-IV/ Large Scale Test Facility (LSTF). The experiment involved a 5% cold leg break along with the loss of the RHR system-The transient was simulated...

  7. Large-Scale Testing of Steel-Reinforced Concrete (SRC) Coupling Beams Embedded into Reinforced Concrete Structural Walls

    E-Print Network [OSTI]

    Motter, Christopher John

    2014-01-01T23:59:59.000Z

    Concrete Cylinder Testing the latter stages of testing, concrete spalling was observedObtained from Concrete Cylinder Testing f' c,test (ksi) ? 0,

  8. Proceedings of the Joint IAEA/CSNI Specialists` Meeting on Fracture Mechanics Verification by Large-Scale Testing held at Pollard Auditorium, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Pugh, C.E.; Bass, B.R.; Keeney, J.A. [comps.] [Oak Ridge National Lab., TN (United States)

    1993-10-01T23:59:59.000Z

    This report contains 40 papers that were presented at the Joint IAEA/CSNI Specialists` Meeting Fracture Mechanics Verification by Large-Scale Testing held at the Pollard Auditorium, Oak Ridge, Tennessee, during the week of October 26--29, 1992. The papers are printed in the order of their presentation in each session and describe recent large-scale fracture (brittle and/or ductile) experiments, analyses of these experiments, and comparisons between predictions and experimental results. The goal of the meeting was to allow international experts to examine the fracture behavior of various materials and structures under conditions relevant to nuclear reactor components and operating environments. The emphasis was on the ability of various fracture models and analysis methods to predict the wide range of experimental data now available. The individual papers have been cataloged separately.

  9. The Hierarchical Rater Model for Rated Test Items and its Application to Large-Scale Educational Assessment Data

    E-Print Network [OSTI]

    -ended (or "constructed response") test items have become a standard part of the educational assessment

  10. The Hierarchical Rater Model for Rated Test Items and its Application to LargeScale Educational Assessment Data 1

    E-Print Network [OSTI]

    ­ended (or ``constructed response'') test items have become a standard part of the educational assessment

  11. Visualization of Large-Scale Distributed Data

    E-Print Network [OSTI]

    Johnson, Andrew

    that are now considered the "lenses" for examining large-scale data. THE LARGE-SCALE DATA VISUALIZATIONVisualization of Large-Scale Distributed Data Jason Leigh1 , Andrew Johnson1 , Luc Renambot1 representation of data and the interactive manipulation and querying of the visualization. Large-scale data

  12. Hydraulic characterization of aquifers by thermal response testing: Validation by large-scale tank and field experiments

    E-Print Network [OSTI]

    Cirpka, Olaf Arie

    et al., 1992]. Thermal monitoring downgradient or in the vicinity of an artificial heat source has (TRTs) are a common field method in shallow geothermics to estimate thermal properties of the ground. During the test, a constantly heated fluid is circulated in closed tubes within a vertical borehole heat

  13. Large-Scale Renewable Energy Guide Webinar

    Broader source: Energy.gov [DOE]

    Webinar introduces the “Large Scale Renewable Energy Guide." The webinar will provide an overview of this important FEMP guide, which describes FEMP's approach to large-scale renewable energy projects and provides guidance to Federal agencies and the private sector on how to develop a common process for large-scale renewable projects.

  14. Conundrum of the Large Scale Streaming

    E-Print Network [OSTI]

    T. M. Malm

    1999-09-12T23:59:59.000Z

    The etiology of the large scale peculiar velocity (large scale streaming motion) of clusters would increasingly seem more tenuous, within the context of the gravitational instability hypothesis. Are there any alternative testable models possibly accounting for such large scale streaming of clusters?

  15. Performance of powder-filled evacuated panel insulation in a manufactured home roof cavity: Tests in the Large Scale Climate Simulator

    SciTech Connect (OSTI)

    Petrie, T.W.; Kosny, J.; Childs, P.W.

    1996-03-01T23:59:59.000Z

    A full-scale section of half the top of a single-wide manufactured home has been studied in the Large Scale Climate Simulator (LSCS) at the Oak Ridge National Laboratory. A small roof cavity with little room for insulation at the eaves is often the case with single-wide units and limits practical ways to improve thermal performance. The purpose of the current tests was to obtain steady-state performance data for the roof cavity of the manufactured home test section when the roof cavity was insulated with fiberglass batts, blown-in rock wool insulation or combinations of these insulations and powder-filled evacuated panel (PEP) insulation. Four insulation configurations were tested: (A) a configuration with two layers of nominal R{sub US}-7 h {center_dot} ft{sup 2} {center_dot} F/BTU (R{sub SI}-1.2 m{sup 2} {center_dot} K/W) fiberglass batts; (B) a layer of PEPs and one layer of the fiberglass batts; (C) four layers of the fiberglass batts; and (D) an average 4.1 in. (10.4 cm) thick layer of blown-in rock wool at an average density of 2.4 lb/ft{sup 3} (38 kg/m{sup 3}). Effects of additional sheathing were determined for Configurations B and C. With Configuration D over the ceiling, two layers of expanded polystyrene (EPS) boards, each about the same thickness as the PEPs, were installed over the trusses instead of the roof. Aluminum foils facing the attic and over the top layer of EPS were added. The top layer of EPS was then replaced by PEPs.

  16. IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 12, DECEMBER 2004 1263 SOC Test Planning Using Virtual Test

    E-Print Network [OSTI]

    Chakrabarty, Krishnendu

    (Cost of investing in a new ATE, also known as Capital Expenditure): Complex cores often re- quire test cost requires that once a new, expensive ATE has been purchased, its resources must be utilized-speed ATE channels to drive slower scan chains leads to an underutilization of resources, thereby resulting

  17. Large Scale Energy Storage: From Nanomaterials to Large Systems

    E-Print Network [OSTI]

    Fisher, Frank

    Large Scale Energy Storage: From Nanomaterials to Large Systems Wednesday October 26, 2011, Babbio energy storage devices. Specifically, this talk discusses 1) the challenges for grid scale of emergent technologies with ultralow costs on new energy storage materials and mechanisms. Dr. Jun Liu

  18. Large-scale pool fires 

    E-Print Network [OSTI]

    Steinhaus, Thomas; Welch, Stephen; Carvel, Ricky O; Torero, Jose L

    2007-03-29T23:59:59.000Z

    A review of research into the burning behaviour of large pool fires and fuel spill fires is presented. The features which distinguish such fires from smaller pool fires are mainly associated with the fire dynamics at low ...

  19. DLFM library tools for large scale dynamic applications.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DLFM library tools for large scale dynamic applications DLFM library tools for large scale dynamic applications Large scale Python and other dynamic applications may spend huge...

  20. Microfluidic Large-Scale Integration: The Evolution

    E-Print Network [OSTI]

    Quake, Stephen R.

    Microfluidic Large-Scale Integration: The Evolution of Design Rules for Biological Automation, polydimethylsiloxane Abstract Microfluidic large-scale integration (mLSI) refers to the develop- ment of microfluidic, are discussed. Several microfluidic components used as building blocks to create effective, complex, and highly

  1. Large-Scale Manifold Learning Ameet Talwalkar

    E-Print Network [OSTI]

    California at Irvine, University of

    Large-Scale Manifold Learning Ameet Talwalkar Courant Institute New York, NY ameet on spectral decom- position, we first analyze two approximate spectral decom- position techniques for large-dimensional embeddings for two large face datasets: CMU-PIE (35 thousand faces) and a web dataset (18 million faces). Our

  2. Program Management for Large Scale Engineering Programs

    E-Print Network [OSTI]

    Oehmen, Josef

    The goal of this whitepaper is to summarize the LAI research that applies to program management. The context of most of the research discussed in this whitepaper are large-scale engineering programs, particularly in the ...

  3. Network Coding for Large Scale Content Distribution

    E-Print Network [OSTI]

    Keinan, Alon

    Network Coding for Large Scale Content Distribution IEEE Infocom 2005 Christos Gkantsidis College propose a new scheme for content distribution of large files that is based on network coding. With network coding, each node of the distribution network is able to generate and transmit encoded blocks

  4. Transition from Large-Scale to Small-Scale Dynamo

    SciTech Connect (OSTI)

    Ponty, Y. [Universite de Nice Sophia-Antipolis, CNRS, Observatoire de la Cote d'Azur, B.P. 4229, Nice cedex 04 (France); Plunian, F. [Institut des Sciences de la Terre, CNRS, Universite Joseph Fourier, B.P. 53, 38041 Grenoble cedex 09 (France)

    2011-04-15T23:59:59.000Z

    The dynamo equations are solved numerically with a helical forcing corresponding to the Roberts flow. In the fully turbulent regime the flow behaves as a Roberts flow on long time scales, plus turbulent fluctuations at short time scales. The dynamo onset is controlled by the long time scales of the flow, in agreement with the former Karlsruhe experimental results. The is governed by a generalized {alpha} effect, which includes both the usual {alpha} effect and turbulent diffusion, plus all higher order effects. Beyond the onset we find that this generalized {alpha} effect scales as O(Rm{sup -1}), suggesting the takeover of small-scale dynamo action. This is confirmed by simulations in which dynamo occurs even if the large-scale field is artificially suppressed.

  5. The Phoenix series large scale LNG pool fire experiments.

    SciTech Connect (OSTI)

    Simpson, Richard B.; Jensen, Richard Pearson; Demosthenous, Byron; Luketa, Anay Josephine; Ricks, Allen Joseph; Hightower, Marion Michael; Blanchat, Thomas K.; Helmick, Paul H.; Tieszen, Sheldon Robert; Deola, Regina Anne; Mercier, Jeffrey Alan; Suo-Anttila, Jill Marie; Miller, Timothy J.

    2010-12-01T23:59:59.000Z

    The increasing demand for natural gas could increase the number and frequency of Liquefied Natural Gas (LNG) tanker deliveries to ports across the United States. Because of the increasing number of shipments and the number of possible new facilities, concerns about the potential safety of the public and property from an accidental, and even more importantly intentional spills, have increased. While improvements have been made over the past decade in assessing hazards from LNG spills, the existing experimental data is much smaller in size and scale than many postulated large accidental and intentional spills. Since the physics and hazards from a fire change with fire size, there are concerns about the adequacy of current hazard prediction techniques for large LNG spills and fires. To address these concerns, Congress funded the Department of Energy (DOE) in 2008 to conduct a series of laboratory and large-scale LNG pool fire experiments at Sandia National Laboratories (Sandia) in Albuquerque, New Mexico. This report presents the test data and results of both sets of fire experiments. A series of five reduced-scale (gas burner) tests (yielding 27 sets of data) were conducted in 2007 and 2008 at Sandia's Thermal Test Complex (TTC) to assess flame height to fire diameter ratios as a function of nondimensional heat release rates for extrapolation to large-scale LNG fires. The large-scale LNG pool fire experiments were conducted in a 120 m diameter pond specially designed and constructed in Sandia's Area III large-scale test complex. Two fire tests of LNG spills of 21 and 81 m in diameter were conducted in 2009 to improve the understanding of flame height, smoke production, and burn rate and therefore the physics and hazards of large LNG spills and fires.

  6. Large-scale simulations of reionization

    SciTech Connect (OSTI)

    Kohler, Katharina; /JILA, Boulder /Fermilab; Gnedin, Nickolay Y.; /Fermilab; Hamilton, Andrew J.S.; /JILA, Boulder

    2005-11-01T23:59:59.000Z

    We use cosmological simulations to explore the large-scale effects of reionization. Since reionization is a process that involves a large dynamic range--from galaxies to rare bright quasars--we need to be able to cover a significant volume of the universe in our simulation without losing the important small scale effects from galaxies. Here we have taken an approach that uses clumping factors derived from small scale simulations to approximate the radiative transfer on the sub-cell scales. Using this technique, we can cover a simulation size up to 1280h{sup -1} Mpc with 10h{sup -1} Mpc cells. This allows us to construct synthetic spectra of quasars similar to observed spectra of SDSS quasars at high redshifts and compare them to the observational data. These spectra can then be analyzed for HII region sizes, the presence of the Gunn-Peterson trough, and the Lyman-{alpha} forest.

  7. Large Scale Periodicity in Redshift Distribution

    E-Print Network [OSTI]

    K. Bajan; M. Biernacka; P. Flin; W. Godlowski; V. Pervushin; A. Zorin

    2004-08-30T23:59:59.000Z

    We review the previous studies of galaxies and quasar redshifts discretisation. We present also the investigations of the large scale periodicity, detected by pencil--beam observations, which revealed 128 (1/h) Mpc period, afterwards confirmed with supercluster studies. We present the theoretical possibility of obtaining such a periodicity using a toy-model. We solved the Kepler problem, i.e. the equation of motion of a particle with null energy moving in the uniform, expanding Universe, decribed by FLRW metrics. It is possible to obtain theoretically the separation between large scale structures similar to the observed one.

  8. A study of RELAP5/MOD2 and RELAP5/MOD3 predictions of a small break LOCA simulation conducted at the ROSA-IV Large Scale Test Facility 

    E-Print Network [OSTI]

    Sloan, Sandra Mernell

    1990-01-01T23:59:59.000Z

    RELAP5/MOD2 was performed in conjunction with International Standard Problem 26 (ISP-26), an open exercise organized by the Organisation for Economic Cooperation and Development. The facility selected for modeling was the Large Scale Test Facility... performed utilizing RELAP5/MOD3 was not submitted for International Standard Problem 26, but is the final product of a series of calculations using the developmental versions of RELAP5/MOD3. The results presented were generated using the final version...

  9. Computational Diagnostics based on Large Scale Gene

    E-Print Network [OSTI]

    Spang, Rainer

    Computational Diagnostics based on Large Scale Gene Expression Profiles using MCMC Rainer Spang = Data Loadings Singular values Expression levels of super genes, orthogonal matrix #12;)( genessuperall- #12;Given the Few Profiles With Known Diagnosis: · The uncertainty on the right model is high

  10. Toward Improved Support for Loosely Coupled Large Scale Simulation Workflows

    SciTech Connect (OSTI)

    Boehm, Swen [ORNL] [ORNL; Elwasif, Wael R [ORNL] [ORNL; Naughton, III, Thomas J [ORNL; Vallee, Geoffroy R [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    High-performance computing (HPC) workloads are increasingly leveraging loosely coupled large scale simula- tions. Unfortunately, most large-scale HPC platforms, including Cray/ALPS environments, are designed for the execution of long-running jobs based on coarse-grained launch capabilities (e.g., one MPI rank per core on all allocated compute nodes). This assumption limits capability-class workload campaigns that require large numbers of discrete or loosely coupled simulations, and where time-to-solution is an untenable pacing issue. This paper describes the challenges related to the support of fine-grained launch capabilities that are necessary for the execution of loosely coupled large scale simulations on Cray/ALPS platforms. More precisely, we present the details of an enhanced runtime system to support this use case, and report on initial results from early testing on systems at Oak Ridge National Laboratory.

  11. Materials Science and Materials Chemistry for Large Scale Electrochemi...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science and Materials Chemistry for Large Scale Electrochemical Energy Storage: From Transportation to Electrical Grid Materials Science and Materials Chemistry for Large Scale...

  12. Sandia Energy - Computational Fluid Dynamics & Large-Scale Uncertainty...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Large-Scale Uncertainty Quantification for Wind Energy Home Highlights - HPC Computational Fluid Dynamics & Large-Scale Uncertainty Quantification for Wind Energy Previous Next...

  13. Overcoming the Barrier to Achieving Large-Scale Production -...

    Office of Environmental Management (EM)

    Overcoming the Barrier to Achieving Large-Scale Production - A Case Study Overcoming the Barrier to Achieving Large-Scale Production - A Case Study This presentation summarizes the...

  14. Overcoming the Barrier to Achieving Large-Scale Production -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Semprius Confidential 1 Overcoming the Barriers to Achieving Large-Scale Production - A Case Study From concept to large-scale production, one manufacturer tells the story and...

  15. Large-Scale PV Integration Study

    SciTech Connect (OSTI)

    Lu, Shuai; Etingov, Pavel V.; Diao, Ruisheng; Ma, Jian; Samaan, Nader A.; Makarov, Yuri V.; Guo, Xinxin; Hafen, Ryan P.; Jin, Chunlian; Kirkham, Harold; Shlatz, Eugene; Frantzis, Lisa; McClive, Timothy; Karlson, Gregory; Acharya, Dhruv; Ellis, Abraham; Stein, Joshua; Hansen, Clifford; Chadliev, Vladimir; Smart, Michael; Salgo, Richard; Sorensen, Rahn; Allen, Barbara; Idelchik, Boris

    2011-07-29T23:59:59.000Z

    This research effort evaluates the impact of large-scale photovoltaic (PV) and distributed generation (DG) output on NV Energy’s electric grid system in southern Nevada. It analyzes the ability of NV Energy’s generation to accommodate increasing amounts of utility-scale PV and DG, and the resulting cost of integrating variable renewable resources. The study was jointly funded by the United States Department of Energy and NV Energy, and conducted by a project team comprised of industry experts and research scientists from Navigant Consulting Inc., Sandia National Laboratories, Pacific Northwest National Laboratory and NV Energy.

  16. Challenges in large scale distributed computing: bioinformatics.

    SciTech Connect (OSTI)

    Disz, T.; Kubal, M.; Olson, R.; Overbeek, R.; Stevens, R.; Mathematics and Computer Science; Univ. of Chicago; The Fellowship for the Interpretation of Genomes (FIG)

    2005-01-01T23:59:59.000Z

    The amount of genomic data available for study is increasing at a rate similar to that of Moore's law. This deluge of data is challenging bioinformaticians to develop newer, faster and better algorithms for analysis and examination of this data. The growing availability of large scale computing grids coupled with high-performance networking is challenging computer scientists to develop better, faster methods of exploiting parallelism in these biological computations and deploying them across computing grids. In this paper, we describe two computations that are required to be run frequently and which require large amounts of computing resource to complete in a reasonable time. The data for these computations are very large and the sequential computational time can exceed thousands of hours. We show the importance and relevance of these computations, the nature of the data and parallelism and we show how we are meeting the challenge of efficiently distributing and managing these computations in the SEED project.

  17. Sensitivity analysis for joint inversion of ground-penetrating radar and thermal-hydrological data from a large-scale underground heater test

    E-Print Network [OSTI]

    Kowalsky, M.B.; Birkholzer, J.; Peterson, J.; Finsterle, S.; Mukhopadhya y, S.; Tsang, Y.T.

    2008-01-01T23:59:59.000Z

    first step toward comprehensive inversion of the heater testfirst step toward a full inversion of the heater test data,

  18. 1 National Roadmap Committee for Large-Scale Research Facilities the netherlands' roadmap for large-scale research facilities

    E-Print Network [OSTI]

    Horn, David

    #12;1 National Roadmap Committee for Large-Scale Research Facilities the netherlands' roadmap for large-scale research facilities #12;2 National Roadmap Committee for Large-Scale Research Facilities1 by Roselinde Supheert) #12;3 National Roadmap Committee for Large-Scale Research Facilities The Netherlands

  19. Autonomie Large Scale Deployment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments fromof Energy Automation Worldof EnergyTAGS,Large Scale

  20. Large-scale Intelligent Transporation Systems simulation

    SciTech Connect (OSTI)

    Ewing, T.; Canfield, T.; Hannebutte, U.; Levine, D.; Tentner, A.

    1995-06-01T23:59:59.000Z

    A prototype computer system has been developed which defines a high-level architecture for a large-scale, comprehensive, scalable simulation of an Intelligent Transportation System (ITS) capable of running on massively parallel computers and distributed (networked) computer systems. The prototype includes the modelling of instrumented ``smart`` vehicles with in-vehicle navigation units capable of optimal route planning and Traffic Management Centers (TMC). The TMC has probe vehicle tracking capabilities (display position and attributes of instrumented vehicles), and can provide 2-way interaction with traffic to provide advisories and link times. Both the in-vehicle navigation module and the TMC feature detailed graphical user interfaces to support human-factors studies. The prototype has been developed on a distributed system of networked UNIX computers but is designed to run on ANL`s IBM SP-X parallel computer system for large scale problems. A novel feature of our design is that vehicles will be represented by autonomus computer processes, each with a behavior model which performs independent route selection and reacts to external traffic events much like real vehicles. With this approach, one will be able to take advantage of emerging massively parallel processor (MPP) systems.

  1. Quantum noise in large-scale coherent nonlinear photonic circuits

    E-Print Network [OSTI]

    Charles Santori; Jason S. Pelc; Raymond G. Beausoleil; Nikolas Tezak; Ryan Hamerly; Hideo Mabuchi

    2014-05-27T23:59:59.000Z

    A semiclassical simulation approach is presented for studying quantum noise in large-scale photonic circuits incorporating an ideal Kerr nonlinearity. A circuit solver is used to generate matrices defining a set of stochastic differential equations, in which the resonator field variables represent random samplings of the Wigner quasi-probability distributions. Although the semiclassical approach involves making a large-photon-number approximation, tests on one- and two-resonator circuits indicate satisfactory agreement between the semiclassical and full-quantum simulation results in the parameter regime of interest. The semiclassical model is used to simulate random errors in a large-scale circuit that contains 88 resonators and hundreds of components in total, and functions as a 4-bit ripple counter. The error rate as a function of on-state photon number is examined, and it is observed that the quantum fluctuation amplitudes do not increase as signals propagate through the circuit, an important property for scalability.

  2. Large Scale GSHP as Alternative Energy for American Farmers Geothermal...

    Open Energy Info (EERE)

    Scale GSHP as Alternative Energy for American Farmers Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Large Scale GSHP as Alternative...

  3. Theoretical Tools for Large Scale Structure

    E-Print Network [OSTI]

    J. R. Bond; L. Kofman; D. Pogosyan; J. Wadsley

    1998-10-06T23:59:59.000Z

    We review the main theoretical aspects of the structure formation paradigm which impinge upon wide angle surveys: the early universe generation of gravitational metric fluctuations from quantum noise in scalar inflaton fields; the well understood and computed linear regime of CMB anisotropy and large scale structure (LSS) generation; the weakly nonlinear regime, where higher order perturbation theory works well, and where the cosmic web picture operates, describing an interconnected LSS of clusters bridged by filaments, with membranes as the intrafilament webbing. Current CMB+LSS data favour the simplest inflation-based $\\Lambda$CDM models, with a primordial spectral index within about 5% of scale invariant and $\\Omega_\\Lambda \\approx 2/3$, similar to that inferred from SNIa observations, and with open CDM models strongly disfavoured. The attack on the nonlinear regime with a variety of N-body and gas codes is described, as are the excursion set and peak-patch semianalytic approaches to object collapse. The ingredients are mixed together in an illustrative gasdynamical simulation of dense supercluster formation.

  4. Large-Scale Renewable Energy Projects (Larger than 10 MWs) |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Large-Scale Renewable Energy Projects (Larger than 10 MWs) Large-Scale Renewable Energy Projects (Larger than 10 MWs) Renewable energy projects larger than 10 megawatts (MW) are...

  5. BLM and Forest Service Consider Large-Scale Geothermal Leasing...

    Energy Savers [EERE]

    and Forest Service Consider Large-Scale Geothermal Leasing BLM and Forest Service Consider Large-Scale Geothermal Leasing June 18, 2008 - 4:29pm Addthis In an effort to encourage...

  6. FEMP Helps Federal Facilities Develop Large-Scale Renewable Energy...

    Office of Environmental Management (EM)

    FEMP Helps Federal Facilities Develop Large-Scale Renewable Energy Projects FEMP Helps Federal Facilities Develop Large-Scale Renewable Energy Projects August 21, 2013 - 12:00am...

  7. Massachusetts Large Blade Test Facility Final Report

    SciTech Connect (OSTI)

    Rahul Yarala; Rob Priore

    2011-09-02T23:59:59.000Z

    Project Objective: The Massachusetts Clean Energy Center (CEC) will design, construct, and ultimately have responsibility for the operation of the Large Wind Turbine Blade Test Facility, which is an advanced blade testing facility capable of testing wind turbine blades up to at least 90 meters in length on three test stands. Background: Wind turbine blade testing is required to meet international design standards, and is a critical factor in maintaining high levels of reliability and mitigating the technical and financial risk of deploying massproduced wind turbine models. Testing is also needed to identify specific blade design issues that may contribute to reduced wind turbine reliability and performance. Testing is also required to optimize aerodynamics, structural performance, encourage new technologies and materials development making wind even more competitive. The objective of this project is to accelerate the design and construction of a large wind blade testing facility capable of testing blades with minimum queue times at a reasonable cost. This testing facility will encourage and provide the opportunity for the U.S wind industry to conduct more rigorous testing of blades to improve wind turbine reliability.

  8. Robust Morphological Measures for Large-Scale Structure

    E-Print Network [OSTI]

    T. Buchert

    1994-12-17T23:59:59.000Z

    A complete family of statistical descriptors for the morphology of large--scale structure based on Minkowski--Functionals is presented. These robust and significant measures can be used to characterize the local and global morphology of spatial patterns formed by a coverage of point sets which represent galaxy samples. Basic properties of these measures are highlighted and their relation to the `genus statistics' is discussed. Test models like a Poissonian point process and samples generated from a Voronoi--model are put into perspective.

  9. A first large-scale flood inundation forecasting model

    SciTech Connect (OSTI)

    Schumann, Guy J-P; Neal, Jeffrey C.; Voisin, Nathalie; Andreadis, Konstantinos M.; Pappenberger, Florian; Phanthuwongpakdee, Kay; Hall, Amanda C.; Bates, Paul D.

    2013-11-04T23:59:59.000Z

    At present continental to global scale flood forecasting focusses on predicting at a point discharge, with little attention to the detail and accuracy of local scale inundation predictions. Yet, inundation is actually the variable of interest and all flood impacts are inherently local in nature. This paper proposes a first large scale flood inundation ensemble forecasting model that uses best available data and modeling approaches in data scarce areas and at continental scales. The model was built for the Lower Zambezi River in southeast Africa to demonstrate current flood inundation forecasting capabilities in large data-scarce regions. The inundation model domain has a surface area of approximately 170k km2. ECMWF meteorological data were used to force the VIC (Variable Infiltration Capacity) macro-scale hydrological model which simulated and routed daily flows to the input boundary locations of the 2-D hydrodynamic model. Efficient hydrodynamic modeling over large areas still requires model grid resolutions that are typically larger than the width of many river channels that play a key a role in flood wave propagation. We therefore employed a novel sub-grid channel scheme to describe the river network in detail whilst at the same time representing the floodplain at an appropriate and efficient scale. The modeling system was first calibrated using water levels on the main channel from the ICESat (Ice, Cloud, and land Elevation Satellite) laser altimeter and then applied to predict the February 2007 Mozambique floods. Model evaluation showed that simulated flood edge cells were within a distance of about 1 km (one model resolution) compared to an observed flood edge of the event. Our study highlights that physically plausible parameter values and satisfactory performance can be achieved at spatial scales ranging from tens to several hundreds of thousands of km2 and at model grid resolutions up to several km2. However, initial model test runs in forecast mode revealed that it is crucial to account for basin-wide hydrological response time when assessing lead time performances notwithstanding structural limitations in the hydrological model and possibly large inaccuracies in precipitation data.

  10. Extragalactic jets on subpc and large scales

    E-Print Network [OSTI]

    F. Tavecchio

    2007-08-20T23:59:59.000Z

    Jets can be probed in their innermost regions (d~0.1 pc) through the study of the relativistically-boosted emission of blazars. On the other extreme of spatial scales, the study of structure and dynamics of extragalactic relativistic jets received renewed impulse after the discovery, made by Chandra, of bright X-ray emission from regions at distances larger than hundreds of kpc from the central engine. At both scales it is thus possible to infer some of the basic parameters of the flow (speed, density, magnetic field intensity, power). After a brief review of the available observational evidence, I discuss how the comparison between the physical quantities independently derived at the two scales can be used to shed light on the global dynamics of the jet, from the innermost regions to the hundreds of kpc scale.

  11. DECOMPOSITION OF LARGE-SCALE STOCHASTIC OPTIMAL ...

    E-Print Network [OSTI]

    2009-03-06T23:59:59.000Z

    consider dynamical systems that can be divided into small-scale independent .... realizations of the noise process are identical up to time t, then the same ..... without our approximation, the algorithm would build primal iterates that converge ...

  12. Large scale prediction models and algorithms

    E-Print Network [OSTI]

    Monsch, Matthieu (Matthieu Frederic)

    2013-01-01T23:59:59.000Z

    Over 90% of the data available across the world has been produced over the last two years, and the trend is increasing. It has therefore become paramount to develop algorithms which are able to scale to very high dimensions. ...

  13. Hydranet: network support for scaling of large scale servic es

    E-Print Network [OSTI]

    Chawla, Hamesh

    1998-01-01T23:59:59.000Z

    With the explosive growth of demand for services on the Internet, the networking infrastructure (routers 7 protocols, servers) is under considerable stress. Mechanisms are needed for current and future IP services to scale in a client transparent...

  14. Skewness and Kurtosis in Large-Scale Cosmic Fields

    E-Print Network [OSTI]

    F. Bernardeau

    1993-12-13T23:59:59.000Z

    In this paper, I present the calculation of the third and fourth moments of both the distribution function of the large--scale density and the large--scale divergence of the velocity field, $\\theta$. These calculations are made by the mean of perturbative calculations assuming Gaussian initial conditions and are expected to be valid in the linear or quasi linear regime. The moments are derived for a top--hat window function and for any cosmological parameters $\\Omega$ and $\\Lambda$. It turns out that the dependence with $\\Lambda$ is always very weak whereas the moments of the distribution function of the divergence are strongly dependent on $\\Omega$. A method to measure $\\Omega$ using the skewness of this field has already been presented by Bernardeau et al. (1993). I show here that the simultaneous measurement of the skewness and the kurtosis allows to test the validity of the gravitational instability scenario hypothesis. Indeed there is a combination of the first three moments of $\\theta$ that is almost independent of the cosmological parameters $\\Omega$ and $\\Lambda$, $${(-3^2) \\over ^2}\\approx 1.5,$$ (the value quoted is valid when the index of the power spectrum at the filtering scale is close to -1) so that any cosmic velocity field created by gravitational instabilities should verify such a property.

  15. Strategies to Finance Large-Scale Deployment of Renewable Energy...

    Open Energy Info (EERE)

    Strategies to Finance Large-Scale Deployment of Renewable Energy Projects: An Economic Development and Infrastructure Approach Jump to: navigation, search Tool Summary LAUNCH TOOL...

  16. Efficient random coordinate descent algorithms for large-scale ...

    E-Print Network [OSTI]

    2013-05-04T23:59:59.000Z

    (will be inserted by the editor). Efficient random coordinate descent algorithms for large-scale structured nonconvex optimization. Andrei Patrascu · Ion Necoara.

  17. Optimization Online - Large-Scale Linear Programming Techniques ...

    E-Print Network [OSTI]

    Michael Wagner

    2002-02-12T23:59:59.000Z

    Feb 12, 2002 ... Large-Scale Linear Programming Techniques for the Design of Protein Folding Potentials. Michael Wagner (mwagner ***at*** odu.edu)

  18. ORNL, CINCINNATI partner to develop commercial large-scale additive...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory 865-574-7308 ORNL, CINCINNATI partner to develop commercial large-scale additive manufacturing system (From left) David Danielson, the Energy Department's...

  19. A Distribution Oblivious Scalable Approach for Large-Scale Scientific...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distribution Oblivious Scalable Approach for Large-Scale Scientific Data Processing June 12, 2013 Problem Statement: Runtimes of scientific data processing (SDP) methods vary...

  20. Advancing Cellulosic Ethanol for Large Scale Sustainable Transportation

    E-Print Network [OSTI]

    Wyman, C

    2007-01-01T23:59:59.000Z

    Advancing Cellulosic Ethanol for Large Scale SustainableHydrogen Batteries Nuclear By Lee Lynd, Dartmouth Ethanol •Ethanol, ethyl alcohol, fermentation ethanol, or just “

  1. ORNL demonstrates first large-scale graphene fabrication | ornl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ron Walli Communications 865.576.0226 ORNL demonstrates first large-scale graphene composite fabrication ORNL's ultrastrong graphene features layers of graphene and polymers and is...

  2. Optimization Online - A fictitious play approach to large-scale ...

    E-Print Network [OSTI]

    Theodore Lambert

    2004-08-01T23:59:59.000Z

    Aug 1, 2004 ... A fictitious play approach to large-scale optimization. Theodore Lambert (tlambert ***at*** tmcc.edu) Marina A. Epelman (mepelman ***at*** ...

  3. Effects of Volcanism, Crustal Thickness, and Large Scale Faulting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Volcanism, Crustal Thickness, and Large Scale Faulting on the Development and Evolution of Geothermal Systems: Collaborative Project in Chile Effects of Volcanism, Crustal...

  4. Solving large scale polynomial convex problems on \\ell_1/nuclear ...

    E-Print Network [OSTI]

    Aharon Ben-Tal

    2012-10-24T23:59:59.000Z

    Oct 24, 2012 ... Solving large scale polynomial convex problems on \\ell_1/nuclear norm balls by randomized first-order algorithms. Aharon Ben-Tal (abental ...

  5. Large-Scale Wind Training Program

    SciTech Connect (OSTI)

    Porter, Richard L. [Hudson Valley Community College

    2013-07-01T23:59:59.000Z

    Project objective is to develop a credit-bearing wind technician program and a non-credit safety training program, train faculty, and purchase/install large wind training equipment.

  6. Climate impacts of a large-scale biofuels expansion*

    E-Print Network [OSTI]

    Climate impacts of a large-scale biofuels expansion* Willow Hallgren, C. Adam Schlosser, Erwan impacts of a large-scale biofuels expansion Willow Hallgren,1 C. Adam Schlosser,1 Erwan Monier,1 David March 2013. [1] A global biofuels program will potentially lead to intense pressures on land supply

  7. Measuring Similarity in Large-scale Folksonomies Giovanni Quattrone1

    E-Print Network [OSTI]

    Ferrara, Emilio

    Measuring Similarity in Large-scale Folksonomies Giovanni Quattrone1 , Emilio Ferrara2 , Pasquale by power law distributions of tags, over which commonly used similarity metrics, in- cluding the Jaccard to capture similarity in large-scale folksonomies, that is based on a mutual reinforcement principle: that is

  8. Attack Containment Framework for Large-Scale Critical Infrastructures

    E-Print Network [OSTI]

    Nahrstedt, Klara

    Attack Containment Framework for Large-Scale Critical Infrastructures Hoang Nguyen Department-- We present an attack containment framework against value-changing attacks in large-scale critical structure, called attack container, which captures the trust behavior of a group of nodes and assists

  9. POWER SYSTEMS STABILITY WITH LARGE-SCALE WIND POWER PENETRATION

    E-Print Network [OSTI]

    Bak-Jensen, Birgitte

    of offshore wind farms, wind power fluctuations may introduce several challenges to reliable power system behaviour due to natural wind fluctuations. The rapid power fluctuations from the large scale wind farms Generation Control (AGC) system which includes large- scale wind farms for long-term stability simulation

  10. Large-Scale Eucalyptus Energy Farms and Power Cogeneration1

    E-Print Network [OSTI]

    Standiford, Richard B.

    Large-Scale Eucalyptus Energy Farms and Power Cogeneration1 Robert C. Noronla2 The initiation of a large-scale cogeneration project, especially one that combines construction of the power generation supplemental fuel source must be sought if the cogeneration facility will consume more fuel than

  11. Scalable Cache Memory Design for Large-Scale SMT Architectures

    E-Print Network [OSTI]

    Mudawa, Muhamed F.

    Scalable Cache Memory Design for Large-Scale SMT Architectures Muhamed F. Mudawar Computer Science in existing SMT and superscalar processors is optimized for latency, but not for bandwidth. The size of the L1 is not suitable for future large-scale SMT processors, which will demand high bandwidth instruction and data

  12. Modeling emergent large-scale structures of barchan dune fields

    E-Print Network [OSTI]

    Claudin, Philippe

    that cannot be readily explained by examining the dynamics at the scale of single dunes, or by appealingModeling emergent large-scale structures of barchan dune fields S. Worman , A.B. Murray , R for a range of field-scale phenomena including isolated patches of dunes and heterogeneous arrangements

  13. Large Scale Weather Control Using Nuclear Reactors

    E-Print Network [OSTI]

    Singh-Modgil, M

    2002-01-01T23:59:59.000Z

    It is pointed out that controlled release of thermal energy from fission type nuclear reactors can be used to alter weather patterns over significantly large geographical regions. (1) Nuclear heat creates a low pressure region, which can be used to draw moist air from oceans, onto deserts. (2) Creation of low pressure zones over oceans using Nuclear heat can lead to Controlled Cyclone Creation (CCC).(3) Nuclear heat can also be used to melt glaciers and control water flow in rivers.

  14. Large Scale Weather Control Using Nuclear Reactors

    E-Print Network [OSTI]

    Moninder Singh Modgil

    2002-10-02T23:59:59.000Z

    It is pointed out that controlled release of thermal energy from fission type nuclear reactors can be used to alter weather patterns over significantly large geographical regions. (1) Nuclear heat creates a low pressure region, which can be used to draw moist air from oceans, onto deserts. (2) Creation of low pressure zones over oceans using Nuclear heat can lead to Controlled Cyclone Creation (CCC).(3) Nuclear heat can also be used to melt glaciers and control water flow in rivers.

  15. Large-scale magnetic fields in the inflationary universe

    E-Print Network [OSTI]

    Kazuharu Bamba; Misao Sasaki

    2006-11-22T23:59:59.000Z

    The generation of large-scale magnetic fields is studied in inflationary cosmology. We consider the violation of the conformal invariance of the Maxwell field by dilatonic as well as non-minimal gravitational couplings. We derive a general formula for the spectrum of large-scale magnetic fields for a general form of the coupling term and the formula for the spectral index. The result tells us clearly the (necessary) condition for the generation of magnetic fields with sufficiently large amplitude.

  16. Large-scale optimal power flow

    SciTech Connect (OSTI)

    Papalexopoulos, A.D.; Imparato, C.F.; Wu, F.F.

    1989-05-01T23:59:59.000Z

    Extensive numerical testing of a second-order OPF solution method was conducted using a 1500 bus network under various loading conditions. The results show that (i) properly implemented second-order OPF solution methods are robust with respect to different starting points, (ii) the decoupled OPF solution is expected to be close to the full OPF solution, and (iii) the effects of discretization of load tap changing (LTC) transformer taps are very small and usually negligible.

  17. LargeScale FPGAbased Convolutional Networks Clement Farabet 1

    E-Print Network [OSTI]

    LeCun, Yann

    Large­Scale FPGA­based Convolutional Networks Clâ??ement Farabet 1 , Yann LeCun 1 , Koray Kavukcuoglu, Yale University, New Haven, USA Chapter in Machine Learning on Very Large Data Sets, edited by Ron Bekkerman, Mikhail Bilenko, and John Langford, Cambridge University Press, 2011. May 2, 2011 1 #12; Large

  18. Probing the imprint of interacting dark energy on very large scales

    E-Print Network [OSTI]

    Duniya, Didam; Maartens, Roy

    2015-01-01T23:59:59.000Z

    The observed galaxy power spectrum acquires relativistic corrections from lightcone effects, and these corrections grow on very large scales. Future galaxy surveys in optical, infrared and radio bands will probe increasingly large wavelength modes and reach higher redshifts. In order to exploit the new data on large scales, an accurate analysis requires inclusion of the relativistic effects. This is especially the case for primordial non-Gaussianity and for extending tests of dark energy models to horizon scales. Here we investigate the latter, focusing on models where the dark energy interacts non-gravitationally with dark matter. Interaction in the dark sector can also lead to large-scale deviations in the power spectrum. If the relativistic effects are ignored, the imprint of interacting dark energy will be incorrectly identified and thus lead to a bias in constraints on interacting dark energy on very large scales.

  19. Inflationary tensor fossils in large-scale structure

    E-Print Network [OSTI]

    Emanuela Dimastrogiovanni; Matteo Fasiello; Donghui Jeong; Marc Kamionkowski

    2014-07-30T23:59:59.000Z

    Inflation models make specific predictions for a tensor-scalar-scalar three-point correlation, or bispectrum, between one gravitational-wave (tensor) mode and two density-perturbation (scalar) modes. This tensor-scalar-scalar correlation leads to a local power quadrupole, an apparent departure from statistical isotropy in our Universe, as well as characteristic four-point correlations in the current mass distribution in the Universe. So far, the predictions for these observables have been worked out only for single-clock models in which certain consistency conditions between the tensor-scalar-scalar correlation and tensor and scalar power spectra are satisfied. Here we review the requirements on inflation models for these consistency conditions to be satisfied. We then consider several examples of inflation models, such as non-attractor and solid inflation models, in which these conditions are put to the test. In solid inflation the simplest consistency conditions are already violated whilst in the non-attractor model we find that, contrary to the standard scenario, the tensor-scalar-scalar correlator probes directly relevant model-dependent information. We work out the predictions for observables in these models. For non-attractor inflation we find an apparent local quadrupolar departure from statistical isotropy in large-scale structure but that this power quadrupole decreases very rapidly at smaller scales. The consistency of the CMB quadrupole with statistical isotropy then constrains the distance scale that corresponds to the transition from the non-attractor to attractor phase of inflation to be larger than the currently observable horizon. Solid inflation predicts clustering fossils signatures in the current galaxy distribution that may be large enough to be detectable with forthcoming, and possibly even current, galaxy surveys.

  20. Large-scale star formation in the Magellanic Clouds

    E-Print Network [OSTI]

    Jochen M. Braun

    2001-08-03T23:59:59.000Z

    In this contribution I will present the current status of our project of stellar population analyses and spatial information of both Magellanic Clouds (MCs). The Magellanic Clouds - especially the LMC with its large size and small depth (<300pc) - are suitable laboratories and testing ground for theoretical models of star formation. With distance moduli of 18.5 and 18.9mag for the LMC and SMC, respectively, and small galactic extinction, their stellar content can be studied in detail from the most massive stars of the youngest populations (<25Myr) connected to H-alpha emission down to the low mass end of about 1/10 of a solar mass. Based on broad-band photometry (U,B,V) I present results for the supergiant shell (SGS) SMC1, some regions at the LMC east side incl. LMC2 showing different overlapping young populations and the region around N171 with its large and varying colour excess, and LMC4. This best studied SGS shows a coeval population aged about 12Myr with little age spread and no correlation to distance from LMC4's centre. I will show that the available data are not compatible with many of the proposed scenarios like SSPSF or a central trigger (like a cluster or GRB), while a large-scale trigger like the bow-shock of the rotating LMC can do the job.

  1. SIMULATING LARGE-SCALE STRUCTURE FORMATION FOR BSI POWER SPECTRA

    E-Print Network [OSTI]

    V. Mueller

    1995-05-30T23:59:59.000Z

    A double inflationary model provides perturbation spectra with enhanced power at large scales (Broken Scale Invariant perturbations -- BSI), leading to a promising scenario for the formation of cosmic structures. We describe a series of high-resolution PM simulations with a model for the thermodynamic evolution of baryons in which we are capable of identifying 'galaxy' halos with a reasonable mass spectrum and following the genesis of large and super-large scale structures. The power spectra and correlation functions of 'galaxies' are compared with reconstructed power spectra of the CfA catalogue and the correlation functions of the Las Campanas Deep Redshift Survey.

  2. Stabilization of Large Scale Structure by Adhesive Gravitational Clustering

    E-Print Network [OSTI]

    Thomas Buchert

    1999-08-13T23:59:59.000Z

    The interplay between gravitational and dispersive forces in a multi-streamed medium leads to an effect which is exposed in the present note as the genuine driving force of stabilization of large-scale structure. The conception of `adhesive gravitational clustering' is advanced to interlock the fairly well-understood epoch of formation of large-scale structure and the onset of virialization into objects that are dynamically in equilibrium with their large-scale structure environment. The classical `adhesion model' is opposed to a class of more general models traced from the physical origin of adhesion in kinetic theory.

  3. Superconducting materials for large scale applications

    SciTech Connect (OSTI)

    Scanlan, Ronald M.; Malozemoff, Alexis P.; Larbalestier, David C.

    2004-05-06T23:59:59.000Z

    Significant improvements in the properties ofsuperconducting materials have occurred recently. These improvements arebeing incorporated into the latest generation of wires, cables, and tapesthat are being used in a broad range of prototype devices. These devicesinclude new, high field accelerator and NMR magnets, magnets for fusionpower experiments, motors, generators, and power transmission lines.These prototype magnets are joining a wide array of existing applicationsthat utilize the unique capabilities of superconducting magnets:accelerators such as the Large Hadron Collider, fusion experiments suchas ITER, 930 MHz NMR, and 4 Tesla MRI. In addition, promising newmaterials such as MgB2 have been discovered and are being studied inorder to assess their potential for new applications. In this paper, wewill review the key developments that are leading to these newapplications for superconducting materials. In some cases, the key factoris improved understanding or development of materials with significantlyimproved properties. An example of the former is the development of Nb3Snfor use in high field magnets for accelerators. In other cases, thedevelopment is being driven by the application. The aggressive effort todevelop HTS tapes is being driven primarily by the need for materialsthat can operate at temperatures of 50 K and higher. The implications ofthese two drivers for further developments will be discussed. Finally, wewill discuss the areas where further improvements are needed in order fornew applications to be realized.

  4. Data mining techniques for large-scale gene expression analysis

    E-Print Network [OSTI]

    Palmer, Nathan Patrick

    2011-01-01T23:59:59.000Z

    Modern computational biology is awash in large-scale data mining problems. Several high-throughput technologies have been developed that enable us, with relative ease and little expense, to evaluate the coordinated expression ...

  5. Exploration of large scale manufacturing of polydimethylsiloxane (PDMS) microfluidic devices

    E-Print Network [OSTI]

    Hum, Philip W. (Philip Wing-Jung)

    2006-01-01T23:59:59.000Z

    Discussion of the current manufacturing process of polydimethylsiloxane (PDMS) parts and the emergence of PDMS use in biomedical microfluidic devices addresses the need to develop large scale manufacturing processes for ...

  6. How Three Retail Buyers Source Large-Scale Solar Electricity

    Office of Energy Efficiency and Renewable Energy (EERE)

    Large-scale, non-utility solar power purchase agreements (PPAs) are still a rarity despite the growing popularity of PPAs across the country. In this webinar, participants will learn more about how...

  7. Parallel Stochastic Gradient Algorithms for Large-Scale Matrix ...

    E-Print Network [OSTI]

    2013-03-21T23:59:59.000Z

    parallel implementation that admits a speed-up nearly proportional to the ... On large-scale matrix completion tasks, Jellyfish is orders of magnitude more ...... get a consistent build of NNLS with mex optimizations at the time of this submission.

  8. Interference management techniques in large-scale wireless networks 

    E-Print Network [OSTI]

    Luo, Yi

    2015-06-29T23:59:59.000Z

    In this thesis, advanced interference management techniques are designed and evaluated for large-scale wireless networks with realistic assumptions, such as signal propagation loss, random node distribution and ...

  9. Large-scale simulator for global data infrastructure optimization

    E-Print Network [OSTI]

    Herrero-López, Sergio

    2012-01-01T23:59:59.000Z

    Companies depend on information systems to control their operations. During the last decade, Information Technology (IT) infrastructures have grown in scale and complexity. Any large company runs many enterprise applications ...

  10. Channel Meander Migration in Large-Scale Physical Model Study 

    E-Print Network [OSTI]

    Yeh, Po Hung

    2010-10-12T23:59:59.000Z

    A set of large-scale laboratory experiments were conducted to study channel meander migration. Factors affecting the migration of banklines, including the ratio of curvature to channel width, bend angle, and the Froude ...

  11. Chemical engineers design, control and optimize large-scale chemical,

    E-Print Network [OSTI]

    Rohs, Remo

    , Biochemical, Environmental, Petroleum Engineering and Nantoechnology. CHEMICAL&MATERIALSSCIENCE CHE OVERVIEW of Science 131 units · Chemical Engineering (Petroleum) Bachelor of Science 136 units · Chemical Engineering38 Chemical engineers design, control and optimize large-scale chemical, physicochemical

  12. Platforms and real options in large-scale engineering systems

    E-Print Network [OSTI]

    Kalligeros, Konstantinos C., 1976-

    2006-01-01T23:59:59.000Z

    This thesis introduces a framework and two methodologies that enable engineering management teams to assess the value of real options in programs of large-scale, partially standardized systems implemented a few times over ...

  13. Streamflow forecasting for large-scale hydrologic systems

    E-Print Network [OSTI]

    Awwad, Haitham Munir

    1991-01-01T23:59:59.000Z

    STREAMFLOW FORECASTING FOR LARGE-SCALE HYDROLOGIC SYSTEMS A Thesis by HAITHAM MUNIR AWWAD Submitted to the Office of Graduate Studies of Texas AkM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May... 1991 Major Subject: Civil Engineering STREAMFLOW FORECASTING FOR LARGE-SCALE HYDROLOGIC SYSTEMS A Thesis by HAITHAM MUNIR AWWAD Approved as to style and content by: uan B. Valdes (Chair of Committee) alph A. Wurbs (Member) Marshall J. Mc...

  14. Design advanced for large-scale, economic, floating LNG plant

    SciTech Connect (OSTI)

    Naklie, M.M. [Mobil Technology Co., Dallas, TX (United States)

    1997-06-30T23:59:59.000Z

    A floating LNG plant design has been developed which is technically feasible, economical, safe, and reliable. This technology will allow monetization of small marginal fields and improve the economics of large fields. Mobil`s world-scale plant design has a capacity of 6 million tons/year of LNG and up to 55,000 b/d condensate produced from 1 bcfd of feed gas. The plant would be located on a large, secure, concrete barge with a central moonpool. LNG storage is provided for 250,000 cu m and condensate storage for 650,000 bbl. And both products are off-loaded from the barge. Model tests have verified the stability of the barge structure: barge motions are low enough to permit the plant to continue operation in a 100-year storm in the Pacific Rim. Moreover, the barge is spread-moored, eliminating the need for a turret and swivel. Because the design is generic, the plant can process a wide variety of feed gases and operate in different environments, should the plant be relocated. This capability potentially gives the plant investment a much longer project life because its use is not limited to the life of only one producing area.

  15. Yucca Mountain drift scale test progress report

    SciTech Connect (OSTI)

    Apps, J.; Birkholzer, J.T.; Peterson,J.E.; Sonnenthal, E.; Spycher, N.; Tsang, Y.W.; Williams, K.H.

    1999-01-01T23:59:59.000Z

    The Drift Scale Test (DST) is part of the Exploratory Studies Facility (ESF) Thermal Test being conducted underground at the potential high-level nuclear waste repository at Yucca Mountain, Nevada. The purpose of the ESF Thermal Test is to acquire a more in-depth understanding of the coupled thermal, mechanical, hydrological, and chemical processes likely to be encountered in the rock mass surrounding the potential geological repository at Yucca Mountain. These processes are monitored by a multitude of sensors to measure the temperature, humidity, gas pressure, and mechanical displacement, of the rock formation in response to the heat generated by the heaters. In addition to collecting passive monitoring data, active hydrological and geophysical testing is also being carried out periodically in the DST. These active tests are intended to monitor changes in the moisture redistribution in the rock mass, to collect water and gas samples for chemical and isotopic analysis, and to detect microfiacturing due to heating. On December 3, 1998, the heaters in the DST were activated. The planned heating phase of the DST is 4 years, and the cooling phase following the power shutoff will be of similar duration. The present report summarizes interpretation and analysis of thermal, hydrological, chemical, and geophysical data for the first 6 months; it is the first of many progress reports to be prepared during the DST.

  16. Large Scale Spatial Augmented Reality for Design and Prototyping

    E-Print Network [OSTI]

    Thomas, Bruce

    Chapter 10 Large Scale Spatial Augmented Reality for Design and Prototyping Michael R. Marner, Ross Augmented Reality allows the appearance of physical objects to be transformed using projected light commercial and personal use. This chapter explores how large Spatial Augmented Reality systems can be applied

  17. Lessons from Large-Scale Renewable Energy Integration Studies: Preprint

    SciTech Connect (OSTI)

    Bird, L.; Milligan, M.

    2012-06-01T23:59:59.000Z

    In general, large-scale integration studies in Europe and the United States find that high penetrations of renewable generation are technically feasible with operational changes and increased access to transmission. This paper describes other key findings such as the need for fast markets, large balancing areas, system flexibility, and the use of advanced forecasting.

  18. Small-Scale Spray Releases: Additional Aerosol Test Results

    SciTech Connect (OSTI)

    Schonewill, Philip P.; Gauglitz, Phillip A.; Kimura, Marcia L.; Brown, G. N.; Mahoney, Lenna A.; Tran, Diana N.; Burns, Carolyn A.; Kurath, Dean E.

    2013-08-01T23:59:59.000Z

    One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and across processing facilities in the DOE complex. To expand the data set upon which the WTP accident and safety analyses were based, an aerosol spray leak testing program was conducted by Pacific Northwest National Laboratory (PNNL). PNNL’s test program addressed two key technical areas to improve the WTP methodology (Larson and Allen 2010). The first technical area was to quantify the role of slurry particles in small breaches where slurry particles may plug the hole and prevent high-pressure sprays. The results from an effort to address this first technical area can be found in Mahoney et al. (2012a). The second technical area was to determine aerosol droplet size distribution and total droplet volume from prototypic breaches and fluids, including sprays from larger breaches and sprays of slurries for which literature data are largely absent. To address the second technical area, the testing program collected aerosol generation data at two scales, commonly referred to as small-scale and large-scale. The small-scale testing and resultant data are described in Mahoney et al. (2012b) and the large-scale testing and resultant data are presented in Schonewill et al. (2012). In tests at both scales, simulants were used to mimic the relevant physical properties projected for actual WTP process streams.

  19. Preliminary Scaling Estimate for Select Small Scale Mixing Demonstration Tests

    SciTech Connect (OSTI)

    Wells, Beric E.; Fort, James A.; Gauglitz, Phillip A.; Rector, David R.; Schonewill, Philip P.

    2013-09-12T23:59:59.000Z

    The Hanford Site double-shell tank (DST) system provides the staging location for waste that will be transferred to the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Specific WTP acceptance criteria for waste feed delivery describe the physical and chemical characteristics of the waste that must be met before the waste is transferred from the DSTs to the WTP. One of the more challenging requirements relates to the sampling and characterization of the undissolved solids (UDS) in a waste feed DST because the waste contains solid particles that settle and their concentration and relative proportion can change during the transfer of the waste in individual batches. A key uncertainty in the waste feed delivery system is the potential variation in UDS transferred in individual batches in comparison to an initial sample used for evaluating the acceptance criteria. To address this uncertainty, a number of small-scale mixing tests have been conducted as part of Washington River Protection Solutions’ Small Scale Mixing Demonstration (SSMD) project to determine the performance of the DST mixing and sampling systems.

  20. Large scale properties in turbulent spherically symmetric accretion

    E-Print Network [OSTI]

    Arnab K. Ray; J. K. Bhattacharjee

    2005-10-05T23:59:59.000Z

    The role of turbulence in a spherically symmetric accreting system has been studied on very large spatial scales of the system. This is also a highly subsonic flow region and here the accreting fluid has been treated as nearly incompressible. It has been shown here that the coupling of the mean flow and the turbulent fluctuations, gives rise to a scaling relation for an effective "turbulent viscosity". This in turn leads to a dynamic scaling for sound propagation in the accretion process. As a consequence of this scaling, the sonic horizon of the transonic inflow solution is shifted inwards, in comparison with the inviscid flow.

  1. Prototype Vector Machine for Large Scale Semi-Supervised Learning

    SciTech Connect (OSTI)

    Zhang, Kai; Kwok, James T.; Parvin, Bahram

    2009-04-29T23:59:59.000Z

    Practicaldataminingrarelyfalls exactlyinto the supervisedlearning scenario. Rather, the growing amount of unlabeled data poses a big challenge to large-scale semi-supervised learning (SSL). We note that the computationalintensivenessofgraph-based SSLarises largely from the manifold or graph regularization, which in turn lead to large models that are dificult to handle. To alleviate this, we proposed the prototype vector machine (PVM), a highlyscalable,graph-based algorithm for large-scale SSL. Our key innovation is the use of"prototypes vectors" for effcient approximation on both the graph-based regularizer and model representation. The choice of prototypes are grounded upon two important criteria: they not only perform effective low-rank approximation of the kernel matrix, but also span a model suffering the minimum information loss compared with the complete model. We demonstrate encouraging performance and appealing scaling properties of the PVM on a number of machine learning benchmark data sets.

  2. Small-Scale Spray Releases: Orifice Plugging Test Results

    SciTech Connect (OSTI)

    Mahoney, Lenna A.; Gauglitz, Phillip A.; Blanchard, Jeremy; Kimura, Marcia L.; Kurath, Dean E.

    2012-09-01T23:59:59.000Z

    One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities, is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations published in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials present in the WTP and across processing facilities in the DOE complex. Two key technical areas were identified where testing results were needed to improve the technical basis by reducing the uncertainty introduced by extrapolating existing literature results. The first technical need was to quantify the role of slurry particles in small breaches in which the slurry particles may plug and result in substantially reduced, or even negligible, respirable fraction formed by high pressure sprays. The second technical need was to determine the aerosol droplet size distribution and volume from prototypic breaches and fluids, specifically including sprays from larger breaches with slurries where data from the literature are largely absent. To address these technical areas, small- and large-scale test stands were constructed and operated with simulants to determine the aerosol release fractions and aerosol generation rates from a range of breach sizes and geometries. The properties of the simulants represented the range of properties expected in the WTP process streams and included water, sodium salt solutions, slurries containing boehmite or gibbsite, and a hazardous chemical simulant. The effect of anti-foam agents (AFA) was assessed with most of the simulants. Orifices included round holes and rectangular slots. Much of the testing was conducted at pressures of 200 and 380 psi, but some tests were conducted at 100 psi. Testing the largest postulated breaches was deemed impractical because of the large size of some of the WTP equipment. The purpose of the study described in this report is to provide experimental data for the first key technical area, potential plugging of small breaches, by performing small-scale tests with a range of orifice sizes and orientations representative of the WTP conditions. The simulants used were chosen to represent the range of process stream properties in the WTP. Testing conducted after the plugging tests in the small- and large-scale test stands addresses the second key technical area, aerosol generation. The results of the small-scale aerosol generation tests are included in Mahoney et al. 2012. The area of spray generation from large breaches is covered by large-scale testing in Schonewill et al. 2012.

  3. Large-scale simulations of complex physical systems

    SciTech Connect (OSTI)

    Belic, A. [Scientific Computing Laboratory, Institute of Physics, Pregrevica 118, 11080 Belgrade (Serbia and Montenegro)

    2007-04-23T23:59:59.000Z

    Scientific computing has become a tool as vital as experimentation and theory for dealing with scientific challenges of the twenty-first century. Large scale simulations and modelling serve as heuristic tools in a broad problem-solving process. High-performance computing facilities make possible the first step in this process - a view of new and previously inaccessible domains in science and the building up of intuition regarding the new phenomenology. The final goal of this process is to translate this newly found intuition into better algorithms and new analytical results.In this presentation we give an outline of the research themes pursued at the Scientific Computing Laboratory of the Institute of Physics in Belgrade regarding large-scale simulations of complex classical and quantum physical systems, and present recent results obtained in the large-scale simulations of granular materials and path integrals.

  4. No Large Scale Curvature Perturbations during Waterfall of Hybrid Inflation

    E-Print Network [OSTI]

    Ali Akbar Abolhasani; Hassan Firouzjahi

    2011-01-18T23:59:59.000Z

    In this paper the possibility of generating large scale curvature perturbations induced from the entropic perturbations during the waterfall phase transition of standard hybrid inflation model is studied. We show that whether or not appreciable amounts of large scale curvature perturbations are produced during the waterfall phase transition depend crucially on the competition between the classical and the quantum mechanical back-reactions to terminate inflation. If one considers only the classical evolution of the system we show that the highly blue-tilted entropy perturbations induce highly blue-tilted large scale curvature perturbations during the waterfall phase transition which dominate over the original adiabatic curvature perturbations. However, we show that the quantum back-reactions of the waterfall field inhomogeneities produced during the phase transition dominate completely over the classical back-reactions. The cumulative quantum back-reactions of very small scales tachyonic modes terminate inflation very efficiently and shut off the curvature perturbations evolution during the waterfall phase transition. This indicates that the standard hybrid inflation model is safe under large scale curvature perturbations during the waterfall phase transition.

  5. Scaling self-organizing maps to model large cortical networks

    E-Print Network [OSTI]

    2004-01-01T23:59:59.000Z

    Self-organizing computational models with specific intracortical connections can explain many functional features of visual cortex, such as topographic orientation and ocular dominance maps. However, due to their computational requirements, it is difficult to use such detailed models to study large-scale phenomena like object segmentation and binding, object recognition, tilt illusions, optic flow, and fovea periphery interaction. This paper introduces two techniques that make large simulations practical. First, a set of general linear scaling equations for the RF-LISSOM self-organizing model is derived and shown to result in quantitatively equivalent maps over a wide range of simulation sizes. This capability makes it possible to debug small simulations and then scale them up to larger simulations only when needed. The scaling equations also facilitate the comparison of biological maps and parameters between individuals and species with different brain region sizes. Second, the equations are combined into a new growing map method called GLISSOM, which dramatically reduces the memory and computational requirements of large self-organizing networks. With GLISSOM it should be possible to simulate all of human V1 at the single-column level using existing supercomputers, making detailed computational study of large-scale phenomena possible.

  6. Large-scale tidal fields on primordial density perturbations ?

    E-Print Network [OSTI]

    Alejandro Gonzalez

    1997-02-17T23:59:59.000Z

    We calculate the strength of the tidal field produced by the large-scale density field acting on primordial density perturbations in power law models. By analysing changes in the orientation of the deformation tensor, resulted from smoothing the density field on different mass scales, we show that the large-scale tidal field can strongly affect the morphology and orientation of density peaks. The measure of the strength of the tidal field is performed as a function of the distance to the peak and of the spectral index. We detected evidence that two populations of perturbations seems to coexist; one, with a misalignment between the main axes of their inertia and deformation tensors. This would lead to the angular momentum acquisition and morphological changes. For the second population, the perturbations are found nearly aligned in the direction of the tidal field, which would imprint them low angular momentum and which would allow an alignment of structures as those reported between clusters of galaxies in filaments, and between galaxies in clusters. Evidence is presented that the correlation between the orientation of perturbations and the large-scale density field could be a common property of Gaussian density fields with spectral indexes $n < 0$. We argue that alignment of structures can be used to probe the flatness of the spectrum on large scales but it cannot determine the exact value of the spectral index.

  7. ANALYSIS OF TURBULENT MIXING JETS IN LARGE SCALE TANK

    SciTech Connect (OSTI)

    Lee, S; Richard Dimenna, R; Robert Leishear, R; David Stefanko, D

    2007-03-28T23:59:59.000Z

    Flow evolution models were developed to evaluate the performance of the new advanced design mixer pump for sludge mixing and removal operations with high-velocity liquid jets in one of the large-scale Savannah River Site waste tanks, Tank 18. This paper describes the computational model, the flow measurements used to provide validation data in the region far from the jet nozzle, the extension of the computational results to real tank conditions through the use of existing sludge suspension data, and finally, the sludge removal results from actual Tank 18 operations. A computational fluid dynamics approach was used to simulate the sludge removal operations. The models employed a three-dimensional representation of the tank with a two-equation turbulence model. Both the computational approach and the models were validated with onsite test data reported here and literature data. The model was then extended to actual conditions in Tank 18 through a velocity criterion to predict the ability of the new pump design to suspend settled sludge. A qualitative comparison with sludge removal operations in Tank 18 showed a reasonably good comparison with final results subject to significant uncertainties in actual sludge properties.

  8. Large-Scale Algal Cultivation, Harvesting and Downstream Processing Workshop

    Broader source: Energy.gov [DOE]

    ATP3 (Algae Testbed Public-Private Partnership) is hosting the Large-Scale Algal Cultivation, Harvesting and Downstream Processing Workshop on November 2–6, 2015, at the Arizona Center for Algae Technology and Innovation in Mesa, Arizona. Topics will include practical applications of growing and managing microalgal cultures at production scale (such as methods for handling cultures, screening strains for desirable characteristics, identifying and mitigating contaminants, scaling up cultures for outdoor growth, harvesting and processing technologies, and the analysis of lipids, proteins, and carbohydrates). Related training will include hands-on laboratory and field opportunities.

  9. Research-scale melter test report

    SciTech Connect (OSTI)

    Cooper, M.F.; Elliott, M.L.; Eyler, L.L.; Freeman, C.J.; Higginson, J.J.; Mahoney, L.A.; Powell, M.R.

    1994-05-01T23:59:59.000Z

    The Melter Performance Assessment (MPA) activity in the Pacific Northwest Laboratory`s (PNL) Hanford Waste Vitrification Plant (HWVP) Technology Development (PHTD) effort is intended to determine the impact of noble metals on the operational life of the reference HWVP melter. As a part of this activity, a parametric melter test was completed using a Research-Scale Melter (RSM). The RSM is a small, approximately 1/100-scale melter, 6-in.-diameter, that allows rapid changing of process conditions and subsequent re-establishment of a steady-state condition. The test matrix contained nine different segments that varied the melter operating parameters (glass and plenum temperatures) and feed properties (oxide concentration, redox potential, and noble metal concentrations) so that the effects of these parameters on noble metal agglomeration on the melter floor could be evaluated. The RSM operated for 48 days and consumed 1,300 L of feed, equating to 153 tank turnovers. The run produced 531 kg of glass. During the latter portion of the run, the resistance between the electrodes decreased. Upon destructive examination of the melter, a layer of noble metals was found on the bottom. This was surprising because the glass residence time in the RSM is only 10% of the HWVP plant melter. The noble metals layer impacted the melter significantly. Approximately 1/3 of one paddle electrode was melted or corroded off. The cause is assumed to be localized heating from short circuiting of the electrode to the noble metal layer. The metal layer also removed approximately 1/2 in. of the refractory on the bottom of the melter. The mechanism for this damage is not presently known.

  10. Large-scale anisotropy in stably stratified rotating flows

    SciTech Connect (OSTI)

    Marino, Dr. Raffaele [National Center for Atmospheric Research (NCAR); Mininni, Dr. Pablo D. [Universidad de Buenos Aires, Argentina; Rosenberg, Duane L [ORNL; Pouquet, Dr. Annick [National Center for Atmospheric Research (NCAR)

    2014-01-01T23:59:59.000Z

    We present results from direct numerical simulations of the Boussinesq equations in the presence of rotation and/or stratification, both in the vertical direction. The runs are forced isotropically and randomly at small scales and have spatial resolutions of up to $1024^3$ grid points and Reynolds numbers of $\\approx 1000$. We first show that solutions with negative energy flux and inverse cascades develop in rotating turbulence, whether or not stratification is present. However, the purely stratified case is characterized instead by an early-time, highly anisotropic transfer to large scales with almost zero net isotropic energy flux. This is consistent with previous studies that observed the development of vertically sheared horizontal winds, although only at substantially later times. However, and unlike previous works, when sufficient scale separation is allowed between the forcing scale and the domain size, the total energy displays a perpendicular (horizontal) spectrum with power law behavior compatible with $\\sim k_\\perp^{-5/3}$, including in the absence of rotation. In this latter purely stratified case, such a spectrum is the result of a direct cascade of the energy contained in the large-scale horizontal wind, as is evidenced by a strong positive flux of energy in the parallel direction at all scales including the largest resolved scales.

  11. Development of an integrated in-situ remediation technology. Topical report for task No. 12 and 13 entitled: Large scale field test of the Lasagna{trademark} process, September 26, 1994--May 25, 1996

    SciTech Connect (OSTI)

    Athmer, C.J.; Ho, Sa V.; Hughes, B.M. [and others

    1997-04-01T23:59:59.000Z

    Contamination in low permeability soils poses a significant technical challenge to in-situ remediation efforts. Poor accessibility to the contaminants and difficulty in delivery of treatment reagents have rendered existing in-situ treatments such as bioremediation, vapor extraction, pump and treat rather ineffective when applied to low permeability soils present at many contaminated sites. This technology is an integrated in-situ treatment in which established geotechnical methods are used to instant degradation zones directly in the contaminated soil and electroosmosis is utilized to move the contaminants back and forth through those zones until the treatment is completed. This topical report summarizes the results of the field experiment conducted at the Paducah Gaseous Diffusion Plant in Paducah, KY. The test site covered 15 feet wide by 10 feet across and 15 feet deep with steel panels as electrodes and wickdrains containing granular activated carbon as treatment zone& The electrodes and treatment zones were installed utilizing innovative adaptation of existing emplacement technologies. The unit was operated for four months, flushing TCE by electroosmosis from the soil into the treatment zones where it was trapped by the activated carbon. The scale up from laboratory units to this field scale was very successful with respect to electrical parameters as weft as electroosmotic flow. Soil samples taken throughout the site before and after the test showed over 98% TCE removal, with most samples showing greater than 99% removal.

  12. Suppression of large-scale perturbations by stiff solid

    E-Print Network [OSTI]

    Vladimír Balek; Matej Škovran

    2015-01-28T23:59:59.000Z

    Evolution of large-scale scalar perturbations in the presence of stiff solid (solid with pressure to energy density ratio > 1/3) is studied. If the solid dominated the dynamics of the universe long enough, the perturbations could end up suppressed by as much as several orders of magnitude. To avoid too steep large-angle power spectrum of CMB, radiation must have prevailed over the solid long enough before recombination.

  13. Suppression of large-scale perturbations by stiff solid

    E-Print Network [OSTI]

    Balek, Vladimír

    2015-01-01T23:59:59.000Z

    Evolution of large-scale scalar perturbations in the presence of stiff solid (solid with pressure to energy density ratio > 1/3) is studied. If the solid dominated the dynamics of the universe long enough, the perturbations could end up suppressed by as much as several orders of magnitude. To avoid too steep large-angle power spectrum of CMB, radiation must have prevailed over the solid long enough before recombination.

  14. Large Scale Simulation of Tor: Modelling a Global Passive Adversary

    E-Print Network [OSTI]

    Blott, Stephen

    . Implementing global passive adversary attacks on currently deployed low latency anonymous networks designs have been developed which attempt to apply mixes to low latency traffic. The most widelyLarge Scale Simulation of Tor: Modelling a Global Passive Adversary Gavin O' Gorman and Stephen

  15. Materialized community ground models for large-scale earthquake simulation

    E-Print Network [OSTI]

    Shewchuk, Jonathan

    Materialized community ground models for large-scale earthquake simulation Steven W. Schlosser to ground motion sim- ulations, in which ground model datasets are fully materi- alized into octress stored as a service techniques in which scientific computation and storage services become more tightly intertwined. 1

  16. ORNL 2013-G00021/tcc Large Scale Graphene Production

    E-Print Network [OSTI]

    ORNL 2013-G00021/tcc 02.2013 Large Scale Graphene Production UT-B ID 201102606 Technology Summary Graphene is an emerging one-atom-thick carbon material which has the potential for a wide range research, graphene has quickly attained the status of a wonder nanomaterial and continued to draw

  17. Seamlessly Integrating Software & Hardware Modelling for Large-Scale Systems

    E-Print Network [OSTI]

    Zhao, Yuxiao

    Engineering, with the math- ematical modelling approach, Modelica, to address the software/hardware integration problem. The environment and hardware components are modelled in Modelica and integrated software-hardware codesign, large-scale sys- tems, Behavior Engineering, Modelica. 1. Introduction

  18. Determining Identifiable Parameterizations for Large-scale Physical Models in

    E-Print Network [OSTI]

    Van den Hof, Paul

    /Novem (Dutch Government). ISAPP (Integrated Systems Approach to Petroleum Production) is a joint project as applied in the field of petroleum reservoir engineering. Starting from a large-scale, physics-based model models in petroleum reservoir engineering. Petroleum reservoir engineering is concerned with maximizing

  19. Large-Scale Linear Programming Techniques for the Design of ...

    E-Print Network [OSTI]

    2002-02-05T23:59:59.000Z

    Feb 5, 2002 ... Page 1 ... We present large-scale optimization techniques to model the energy function that underlies the folding process of ..... which we will refer to from now on, we get a system. AT y ? b, ... Although we don't want to rule out that a so- ..... What we believe is interesting in this context is that the results from.

  20. Spatial Energy Balancing in Large-scale Wireless Multihop Networks

    E-Print Network [OSTI]

    de Veciana, Gustavo

    Spatial Energy Balancing in Large-scale Wireless Multihop Networks Seung Jun Baek and Gustavo de is on optimizing trade-offs between the energy cost of spreading traffic and the improved spatial balance of energy. We propose a parameterized family of energy balancing strategies for grids and approximate

  1. Materials Availability Expands the Opportunity for Large-Scale

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Materials Availability Expands the Opportunity for Large-Scale Photovoltaics Deployment C Y R U S W of Chemistry, University of California, Berkeley, California 94720, Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, Department of Materials Science and Engineering

  2. On solving large scale polynomial convex problems by randomized ...

    E-Print Network [OSTI]

    2013-03-24T23:59:59.000Z

    Mar 24, 2013 ... We show that for large-scale problems with favourable geometry, this ...... justable “aggressive” stepsize policy [8]; up to this policy, this is nothing but SMP with Pz .... building this representation is O(1)km2 a.o. We build this ...

  3. Computational study of large-scale p-Median problems

    E-Print Network [OSTI]

    techniques to the simplex method for the solution of large-scale instances. ... instances up to 5535 nodes and 666639 arcs, arising from an industrial ..... For each node v ? TF ? AF we build a “layered” graph rooted in v, where layer.

  4. Load Distribution in Large Scale Network Monitoring Infrastructures

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    Load Distribution in Large Scale Network Monitoring Infrastructures Josep Sanju`as-Cuxart, Pere to build a scalable, distributed passive network mon- itoring system that can run several arbitrary the principal research challenges behind building a distributed network monitoring system to support

  5. Chemical engineers design, control and optimize large-scale chemical,

    E-Print Network [OSTI]

    Rohs, Remo

    Emphasis in Nanotechnology · ChemicalEngineering Emphasis in Petroleum Engineering · ChemicalEngineering38 Chemical engineers design, control and optimize large-scale chemical, physicochemical and electronics fields. Chemical Engineers are employed in areas as diverse as the chemical, materials, energy

  6. Chemical engineers design, control and optimize large-scale chemical,

    E-Print Network [OSTI]

    Rohs, Remo

    · ChemicalEngineering (Nanotechnology) Bachelor of Science 131 units · ChemicalEngineering(Petroleum38 Chemical engineers design, control and optimize large-scale chemical, physicochemical and electronics fields. Chemical Engineers are employed in areas as diverse as the chemical, pharmaceutical

  7. Chemical engineers design, control and optimize large-scale chemical,

    E-Print Network [OSTI]

    Rohs, Remo

    in Nanotechnology · ChemicalEngineering Emphasis in Petroleum Engineering · ChemicalEngineering Emphasis in Polymers38 Chemical engineers design, control and optimize large-scale chemical, physicochemical and electronics fields. Chemical Engineers are employed in areas as diverse as the chemical, pharmaceutical

  8. IFIP/IEEE International Conference on Very Large Scale Integration

    E-Print Network [OSTI]

    Pierre, Laurence

    -Signal IC Design · 3-D Integration · Physical Design · SoC Design for Variability, Reliability, Fault22nd IFIP/IEEE International Conference on Very Large Scale Integration VLSI-SoC 2014 October 6-8, 2014 Playa del Carmen, Mexico Iberostar Tucán and Quetzal Hotel General Chairs: Arturo Sarmiento Reyes

  9. Achieving centimetre-scale supercollimation in a large-area

    E-Print Network [OSTI]

    Soljaèiæ, Marin

    demonstrations, and is an important enabling step towards the creation of high-density and low-cost optical unexpected but inherent robustness with respect to short-scale disorder such as fabrication roughness-cladding. A scanning electron micrograph of the large-area PhC possessing about 109 lattice points, fabricated through

  10. Developing A Grid Portal For Large-scale Reservoir Studies

    E-Print Network [OSTI]

    Allen, Gabrielle

    Developing A Grid Portal For Large-scale Reservoir Studies 1 Center for Computation & Technology 2 uncertainty. · Advantages of grid technology · Proposed Solution of the UCoMS Team · What is a Portal? · UCo of reservoir uncertainty... Petroleum drilling consist of many uncertainties. Main objective is to optimize

  11. Alignments of Galaxy Group Shapes with Large Scale Structure

    E-Print Network [OSTI]

    Paz, Dante J; Merchán, Manuel; Padilla, Nelson

    2011-01-01T23:59:59.000Z

    In this paper we analyse the alignment of galaxy groups with the surrounding large scale structure traced by spectroscopic galaxies from the Sloan Digital Sky Survey Data Release 7. We characterise these alignments by means of an extension of the classical two-point cross-correlation function, developed by Paz et al. 2008 (arXiv:0804.4477, MNRAS 389 1127). We find a strong alignment signal between the projected major axis of group shapes and the surrounding galaxy distribution up to scales of 30 Mpc/h. This observed anisotropy signal becomes larger as the galaxy group mass increases, in excellent agreement with the corresponding predicted alignment obtained from mock catalogues and LCDM cosmological simulations. These measurements provide new direct evidence of the adequacy of the gravitational instability picture to describe the large-scale structure formation of our Universe.

  12. Performance Health Monitoring of Large-Scale Systems

    SciTech Connect (OSTI)

    Rajamony, Ram

    2014-11-20T23:59:59.000Z

    This report details the progress made on the ASCR funded project Performance Health Monitoring for Large Scale Systems. A large-­?scale application may not achieve its full performance potential due to degraded performance of even a single subsystem. Detecting performance faults, isolating them, and taking remedial action is critical for the scale of systems on the horizon. PHM aims to develop techniques and tools that can be used to identify and mitigate such performance problems. We accomplish this through two main aspects. The PHM framework encompasses diagnostics, system monitoring, fault isolation, and performance evaluation capabilities that indicates when a performance fault has been detected, either due to an anomaly present in the system itself or due to contention for shared resources between concurrently executing jobs. Software components called the PHM Control system then build upon the capabilities provided by the PHM framework to mitigate degradation caused by performance problems.

  13. A steady-state L-mode tokamak fusion reactor : large scale and minimum scale

    E-Print Network [OSTI]

    Reed, Mark W. (Mark Wilbert)

    2010-01-01T23:59:59.000Z

    We perform extensive analysis on the physics of L-mode tokamak fusion reactors to identify (1) a favorable parameter space for a large scale steady-state reactor and (2) an operating point for a minimum scale steady-state ...

  14. Small-Scale Spray Releases: Initial Aerosol Test Results

    SciTech Connect (OSTI)

    Mahoney, Lenna A.; Gauglitz, Phillip A.; Kimura, Marcia L.; Brown, Garrett N.; Kurath, Dean E.; Buchmiller, William C.; Smith, Dennese M.; Blanchard, Jeremy; Song, Chen; Daniel, Richard C.; Wells, Beric E.; Tran, Diana N.; Burns, Carolyn A.

    2012-11-01T23:59:59.000Z

    One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and across processing facilities in the DOE complex. Two key technical areas were identified where testing results were needed to improve the technical basis by reducing the uncertainty due to extrapolating existing literature results. The first technical need was to quantify the role of slurry particles in small breaches where the slurry particles may plug and result in substantially reduced, or even negligible, respirable fraction formed by high-pressure sprays. The second technical need was to determine the aerosol droplet size distribution and volume from prototypic breaches and fluids, specifically including sprays from larger breaches with slurries where data from the literature are scarce. To address these technical areas, small- and large-scale test stands were constructed and operated with simulants to determine aerosol release fractions and generation rates from a range of breach sizes and geometries. The properties of the simulants represented the range of properties expected in the WTP process streams and included water, sodium salt solutions, slurries containing boehmite or gibbsite, and a hazardous chemical simulant. The effect of anti-foam agents was assessed with most of the simulants. Orifices included round holes and rectangular slots. The round holes ranged in size from 0.2 to 4.46 mm. The slots ranged from (width × length) 0.3 × 5 to 2.74 × 76.2 mm. Most slots were oriented longitudinally along the pipe, but some were oriented circumferentially. In addition, a limited number of multi-hole test pieces were tested in an attempt to assess the impact of a more complex breach. Much of the testing was conducted at pressures of 200 and 380 psi, but some tests were conducted at 100 psi. Testing the largest postulated breaches was deemed impractical because of the large size of some of the WTP equipment. This report presents the experimental results and analyses for the aerosol measurements obtained in the small-scale test stand. It includes a description of the simulants used and their properties, equipment and operations, data analysis methodologies, and test results. The results of tests investigating the role of slurry particles in plugging small breaches are reported in Mahoney et al. (2012). The results of the aerosol measurements in the large-scale test stand are reported in Schonewill et al. (2012) along with an analysis of the combined results from both test scales.

  15. Parallel I/O Software Infrastructure for Large-Scale Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Parallel IO Software Infrastructure for Large-Scale Systems Parallel IO Software Infrastructure for Large-Scale Systems | Tags: Math & Computer Science Choudhary.png An...

  16. Fast Solver for Large Scale Eddy Current Non-Destructive Evaluation Problems

    E-Print Network [OSTI]

    Fast Solver for Large Scale Eddy Current Non-Destructive Evaluation Problems Naiguang Lei Advisor: Lalita Udpa Thursday, July 31st, 2014 9:00-11:00am, EB2219 Abstract Eddy current testing plays a very, an alternating magnetic field source generates induced currents, called eddy currents, in an electrically

  17. Geospatial Optimization of Siting Large-Scale Solar Projects

    SciTech Connect (OSTI)

    Macknick, J.; Quinby, T.; Caulfield, E.; Gerritsen, M.; Diffendorfer, J.; Haines, S.

    2014-03-01T23:59:59.000Z

    Recent policy and economic conditions have encouraged a renewed interest in developing large-scale solar projects in the U.S. Southwest. However, siting large-scale solar projects is complex. In addition to the quality of the solar resource, solar developers must take into consideration many environmental, social, and economic factors when evaluating a potential site. This report describes a proof-of-concept, Web-based Geographical Information Systems (GIS) tool that evaluates multiple user-defined criteria in an optimization algorithm to inform discussions and decisions regarding the locations of utility-scale solar projects. Existing siting recommendations for large-scale solar projects from governmental and non-governmental organizations are not consistent with each other, are often not transparent in methods, and do not take into consideration the differing priorities of stakeholders. The siting assistance GIS tool we have developed improves upon the existing siting guidelines by being user-driven, transparent, interactive, capable of incorporating multiple criteria, and flexible. This work provides the foundation for a dynamic siting assistance tool that can greatly facilitate siting decisions among multiple stakeholders.

  18. Primordial quantum nonequilibrium and large-scale cosmic anomalies

    E-Print Network [OSTI]

    Samuel Colin; Antony Valentini

    2014-07-31T23:59:59.000Z

    We study incomplete relaxation to quantum equilibrium at long wavelengths, during a pre-inflationary phase, as a possible explanation for the reported large-scale anomalies in the cosmic microwave background (CMB). Our scenario makes use of the de Broglie-Bohm pilot-wave formulation of quantum theory, in which the Born probability rule has a dynamical origin. The large-scale power deficit could arise from incomplete relaxation for the amplitudes of the primordial perturbations. We show, by numerical simulations for a spectator scalar field, that if the pre-inflationary era is radiation dominated then the deficit in the emerging power spectrum will have a characteristic shape (an inverse-tangent dependence on wavenumber k, with oscillations). It is found that our scenario is able to produce a power deficit in the observed region and of the observed (approximate) magnitude for an appropriate choice of cosmological parameters. We also discuss the large-scale anisotropy, which could arise from incomplete relaxation for the phases of the primordial perturbations. We present numerical simulations for phase relaxation, and we show how to define characteristic scales for amplitude and phase nonequilibrium. The extent to which the data might support our scenario is left as a question for future work. Our results suggest that we have a potentially viable model that might explain two apparently independent cosmic anomalies by means of a single mechanism.

  19. Large-Scale Optimization for Bayesian Inference in Complex Systems

    SciTech Connect (OSTI)

    Willcox, Karen [MIT] [MIT; Marzouk, Youssef [MIT] [MIT

    2013-11-12T23:59:59.000Z

    The SAGUARO (Scalable Algorithms for Groundwater Uncertainty Analysis and Robust Optimization) Project focused on the development of scalable numerical algorithms for large-scale Bayesian inversion in complex systems that capitalize on advances in large-scale simulation-based optimization and inversion methods. The project was a collaborative effort among MIT, the University of Texas at Austin, Georgia Institute of Technology, and Sandia National Laboratories. The research was directed in three complementary areas: efficient approximations of the Hessian operator, reductions in complexity of forward simulations via stochastic spectral approximations and model reduction, and employing large-scale optimization concepts to accelerate sampling. The MIT--Sandia component of the SAGUARO Project addressed the intractability of conventional sampling methods for large-scale statistical inverse problems by devising reduced-order models that are faithful to the full-order model over a wide range of parameter values; sampling then employs the reduced model rather than the full model, resulting in very large computational savings. Results indicate little effect on the computed posterior distribution. On the other hand, in the Texas--Georgia Tech component of the project, we retain the full-order model, but exploit inverse problem structure (adjoint-based gradients and partial Hessian information of the parameter-to-observation map) to implicitly extract lower dimensional information on the posterior distribution; this greatly speeds up sampling methods, so that fewer sampling points are needed. We can think of these two approaches as ``reduce then sample'' and ``sample then reduce.'' In fact, these two approaches are complementary, and can be used in conjunction with each other. Moreover, they both exploit deterministic inverse problem structure, in the form of adjoint-based gradient and Hessian information of the underlying parameter-to-observation map, to achieve their speedups.

  20. Small-Scale Spray Releases: Initial Aerosol Test Results

    SciTech Connect (OSTI)

    Mahoney, Lenna A.; Gauglitz, Phillip A.; Kimura, Marcia L.; Brown, Garrett N.; Kurath, Dean E.; Buchmiller, William C.; Smith, Dennese M.; Blanchard, Jeremy; Song, Chen; Daniel, Richard C.; Wells, Beric E.; Tran, Diana N.; Burns, Carolyn A.

    2013-05-29T23:59:59.000Z

    One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and across processing facilities in the DOE complex. Two key technical areas were identified where testing results were needed to improve the technical basis by reducing the uncertainty due to extrapolating existing literature results. The first technical need was to quantify the role of slurry particles in small breaches where the slurry particles may plug and result in substantially reduced, or even negligible, respirable fraction formed by high-pressure sprays. The second technical need was to determine the aerosol droplet size distribution and volume from prototypic breaches and fluids, specifically including sprays from larger breaches with slurries where data from the literature are scarce. To address these technical areas, small- and large-scale test stands were constructed and operated with simulants to determine aerosol release fractions and net generation rates from a range of breach sizes and geometries. The properties of the simulants represented the range of properties expected in the WTP process streams and included water, sodium salt solutions, slurries containing boehmite or gibbsite, and a hazardous chemical simulant. The effect of antifoam agents was assessed with most of the simulants. Orifices included round holes and rectangular slots. For the combination of both test stands, the round holes ranged in size from 0.2 to 4.46 mm. The slots ranged from (width × length) 0.3 × 5 to 2.74 × 76.2 mm. Most slots were oriented longitudinally along the pipe, but some were oriented circumferentially. In addition, a limited number of multi-hole test pieces were tested in an attempt to assess the impact of a more complex breach. Much of the testing was conducted at pressures of 200 and 380 psi, but some tests were conducted at 100 psi. Testing the largest postulated breaches was deemed impractical because of the much larger flow rates and equipment that would be required. This report presents the experimental results and analyses for the aerosol measurements obtained in the small-scale test stand. It includes a description of the simulants used and their properties, equipment and operations, data analysis methodologies, and test results. The results of tests investigating the role of slurry particles in plugging small breaches are reported in Mahoney et al. (2012). The results of the aerosol measurements in the large-scale test stand are reported in Schonewill et al. (2012) along with an analysis of the combined results from both test scales.

  1. Stability Analysis of Large-Scale Incompressible Flow Calculations on Massively Parallel Computers 1 Stability Analysis of Large-

    E-Print Network [OSTI]

    Stability Analysis of Large-Scale Incompressible Flow Calculations on Massively Parallel Computers 1 Stability Analysis of Large- Scale Incompressible Flow Calculations on Massively Parallel disturbances aligned with the associated eigenvectors will grow. The Cayley transformation, cou- pled

  2. Generation of large-scale winds in horizontally anisotropic convection

    E-Print Network [OSTI]

    von Hardenberg, J; Provenzale, A; Spiegel, E A

    2015-01-01T23:59:59.000Z

    We simulate three-dimensional, horizontally periodic Rayleigh-B\\'enard convection between free-slip horizontal plates, rotating about a horizontal axis. When both the temperature difference between the plates and the rotation rate are sufficiently large, a strong horizontal wind is generated that is perpendicular to both the rotation vector and the gravity vector. The wind is turbulent, large-scale, and vertically sheared. Horizontal anisotropy, engendered here by rotation, appears necessary for such wind generation. Most of the kinetic energy of the flow resides in the wind, and the vertical turbulent heat flux is much lower on average than when there is no wind.

  3. Diffuse Gamma-Ray Emission from Large Scale Structures

    E-Print Network [OSTI]

    Dobardzic, Aleksandra

    2012-01-01T23:59:59.000Z

    For more than a decade now the complete origin of the diffuse gamma-ray emission background (EGRB) has been unknown. Major components like unresolved star-forming galaxies (making 10GeV. Moreover, we show that, even though the gamma-ray emission arising from structure formation shocks at galaxy clusters is below previous estimates, these large scale shocks can still give an important, and even dominant at high energies, contribution to the EGRB. Future detections of cluster gamma-ray emission would make our upper limit of the extragalactic gamma-ray emission from structure-formation process, a firm prediction, and give us deeper insight in evolution of these large scale shock.

  4. Stochastic Ordering of Interferences in Large-scale Wireless Networks

    E-Print Network [OSTI]

    Lee, Junghoon

    2012-01-01T23:59:59.000Z

    Stochastic orders are binary relations defined on probability distributions which capture intuitive notions like being larger or being more variable. This paper introduces stochastic ordering of interference distributions in large-scale networks modeled as point process. Interference is the main performance-limiting factor in most wireless networks, thus it is important to understand its statistics. Since closed-form results for the distribution of interference for such networks are only available in limited cases, interference of networks are compared using stochastic orders, even when closed form expressions for interferences are not tractable. We show that the interference from a large-scale network depends on the fading distributions with respect to the stochastic Laplace transform order. The condition for path-loss models is also established to have stochastic ordering between interferences. The stochastic ordering of interferences between different networks are also shown. Monte-Carlo simulations are us...

  5. A Full Scale Wireless Ad Hoc Network Test Bed

    E-Print Network [OSTI]

    Brown, Timothy X.

    that are bench top, indoor, fixed outdoor, and mobile outdoor. Bench top test beds employ MAC filtering, RF and propagation of the outdoor environment. Full scale outdoor test beds are often restricted to fixed sites [1 features: 1. Test bed results are reproducible. 2. The test bed provides a common platform for testing

  6. Scaling ansatz, four zero Yukawa textures and large $?_{13}$

    E-Print Network [OSTI]

    Biswajit Adhikary; Mainak Chakraborty; Ambar Ghosal

    2012-07-09T23:59:59.000Z

    We investigate 'Scaling ansatz' in the neutrino sector within the framework of type I seesaw mechanism with diagonal charged lepton and right handed Majorana neutrino mass matrices ($M_R$). We also assume four zero texture of Dirac neutrino mass matrices ($m_D$) which severely constrain the phenomenological outcomes of such scheme. Scaling ansatz and the present neutrino data allow only Six such matrices out of 126 four zero Yukawa matrices. In this scheme, in order to generate large $\\theta_{13}$ we break scaling ansatz in $m_D$ through a perturbation parameter and we also show our breaking scheme is radiatively stable. We further investigate CP violation and baryogenesis via leptogenesis in those surviving textures.

  7. Electrochemical cells for medium- and large-scale energy storage

    SciTech Connect (OSTI)

    Wang, Wei; Wei, Xiaoliang; Choi, Daiwon; Lu, Xiaochuan; Yang, G.; Sun, C.

    2014-12-12T23:59:59.000Z

    This is one of the chapters in the book titled “Advances in batteries for large- and medium-scale energy storage: Applications in power systems and electric vehicles” that will be published by the Woodhead Publishing Limited. The chapter discusses the basic electrochemical fundamentals of electrochemical energy storage devices with a focus on the rechargeable batteries. Several practical secondary battery systems are also discussed as examples

  8. Just enough inflation: power spectrum modifications at large scales

    E-Print Network [OSTI]

    Michele Cicoli; Sean Downes; Bhaskar Dutta; Francisco G. Pedro; Alexander Westphal

    2014-07-03T23:59:59.000Z

    We show that models of `just enough' inflation, where the slow-roll evolution lasted only $50-60$ e-foldings, feature modifications of the CMB power spectrum at large angular scales. We perform a systematic and model-independent analysis of any possible non-slow-roll background evolution prior to the final stage of slow-roll inflation. We find a high degree of universality since most common backgrounds like fast-roll evolution, matter or radiation-dominance give rise to a power loss at large angular scales and a peak together with an oscillatory behaviour at scales around the value of the Hubble parameter at the beginning of slow-roll inflation. Depending on the value of the equation of state parameter, different pre-inflationary epochs lead instead to an enhancement of power at low-$\\ell$, and so seem disfavoured by recent observational hints for a lack of CMB power at $\\ell\\lesssim 40$. We also comment on the importance of initial conditions and the possibility to have multiple pre-inflationary stages.

  9. A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems

    SciTech Connect (OSTI)

    Branch, M.A.; Coleman, T.F.; Li, Y.

    1999-09-01T23:59:59.000Z

    A subspace adaptation of the Coleman-Li trust region and interior method is proposed for solving large-scale bound-constrained minimization problems. This method can be implemented with either sparse Cholesky factorization or conjugate gradient computation. Under reasonable conditions the convergence properties of this subspace trust region method are as strong as those of its full-space version. Computational performance on various large test problems is reported; advantages of the approach are demonstrated. The experience indicates that the proposed method represents an efficient way to solve large bound-constrained minimization problems.

  10. Fractal Approach to Large-Scale Galaxy Distribution

    E-Print Network [OSTI]

    Yurij Baryshev; Pekka Teerikorpi

    2005-05-10T23:59:59.000Z

    We present a review of the history and the present state of the fractal approach to the large-scale distribution of galaxies. Angular correlation function was used as a general instrument for the structure analysis. It was realized later that a normalization condition for the reduced correlation function estimator results in distorted values for both R_{hom} and fractal dimension D. Moreover, according to a theorem on projections of fractals, galaxy angular catalogues can not be used for detecting a structure with the fractal dimension D>2. For this 3-d maps are required, and indeed modern extensive redshift-based 3-d maps have revealed the ``hidden'' fractal dimension of about 2, and have confirmed superclustering at scales even up to 500 Mpc (e.g. the Sloan Great Wall). On scales, where the fractal analysis is possible in completely embedded spheres, a power--law density field has been found. The fractal dimension D =2.2 +- 0.2 was directly obtained from 3-d maps and R_{hom} has expanded from 10 Mpc to scales approaching 100 Mpc. In concordance with the 3-d map results, modern all sky galaxy counts in the interval 10^m - 15^m give a 0.44m-law which corresponds to D=2.2 within a radius of 100h^{-1}_{100} Mpc. We emphasize that the fractal mass--radius law of galaxy clustering has become a key phenomenon in observational cosmology.

  11. An Evaluation of the Network Simulators in Large-Scale Distributed Simulations

    SciTech Connect (OSTI)

    Ciraci, Selim; Akyol, Bora A.

    2011-11-13T23:59:59.000Z

    This is a survey paper about the state-of-the-art in large-scale network simulation. Networks for the smart grids are characterized by millions of sensor nodes exchanging information about the status of the grid. This information exchange must be realized reliably and efficiently due to the mission critical nature of the power grid. Hence, the applications and the network protocols developed for the smart grid need go through rigorous testing and analysis before deployment. Developers usually do not have access to such a large-scale network that can be used as a controlled test-bed; therefore, network simulation becomes an essential tool for testing. Network simulation is a well studied problem in the literature and there are various widely used network simulators. These simulators can be adopted for testing applications and protocols of the smart grid. Due to the scale of these networks, parallel/distributed simulations need to be conducted. Even though most network simulators support distributed simulations, generating a large-scale network model to simulate can still be a cumbersome task. In this survey, we describe a selection of commonly used network simulators and evaluate them with respect to the following features that can aid users in distributed simulations of large-scale networks: transparency of setting up distributed simulation, automated topology generation, information hiding, lightweight routing protocols, network error simulation, evaluation of the network model during simulation and trace analysis tools. As a complementary result, we identify two issues with network simulators that can be addressed with runtime steering methods.

  12. Atypical Behavior Identification in Large Scale Network Traffic

    SciTech Connect (OSTI)

    Best, Daniel M.; Hafen, Ryan P.; Olsen, Bryan K.; Pike, William A.

    2011-10-23T23:59:59.000Z

    Cyber analysts are faced with the daunting challenge of identifying exploits and threats within potentially billions of daily records of network traffic. Enterprise-wide cyber traffic involves hundreds of millions of distinct IP addresses and results in data sets ranging from terabytes to petabytes of raw data. Creating behavioral models and identifying trends based on those models requires data intensive architectures and techniques that can scale as data volume increases. Analysts need scalable visualization methods that foster interactive exploration of data and enable identification of behavioral anomalies. Developers must carefully consider application design, storage, processing, and display to provide usability and interactivity with large-scale data. We present an application that highlights atypical behavior in enterprise network flow records. This is accomplished by utilizing data intensive architectures to store the data, aggregation techniques to optimize data access, statistical techniques to characterize behavior, and a visual analytic environment to render the behavioral trends, highlight atypical activity, and allow for exploration.

  13. Summary Report on FY12 Small-Scale Test Activities High Temperature Electrolysis Program

    SciTech Connect (OSTI)

    James O'Brien

    2012-09-01T23:59:59.000Z

    This report provides a description of the apparatus and the single cell testing results performed at Idaho National Laboratory during January–August 2012. It is an addendum to the Small-Scale Test Report issued in January 2012. The primary program objectives during this time period were associated with design, assembly, and operation of two large experiments: a pressurized test, and a 4 kW test. Consequently, the activities described in this report represent a much smaller effort.

  14. Solar cycle variations of large scale flows in the Sun

    E-Print Network [OSTI]

    Sarbani Basu; H. M. Antia

    2000-01-17T23:59:59.000Z

    Using data from the Michelson Doppler Imager (MDI) instrument on board the Solar and Heliospheric Observatory (SOHO), we study the large-scale velocity fields in the outer part of the solar convection zone using the ring diagram technique. We use observations from four different times to study possible temporal variations in flow velocity. We find definite changes in both the zonal and meridional components of the flows. The amplitude of the zonal flow appears to increase with solar activity and the flow pattern also shifts towards lower latitude with time.

  15. Statistical analysis of large-scale structure in the Universe

    E-Print Network [OSTI]

    Martin Kerscher

    1999-12-15T23:59:59.000Z

    Methods for the statistical characterization of the large-scale structure in the Universe will be the main topic of the present text. The focus is on geometrical methods, mainly Minkowski functionals and the J-function. Their relations to standard methods used in cosmology and spatial statistics and their application to cosmological datasets will be discussed. This work is not only meant as a short review for comologist, but also attempts to illustrate these morphological methods and to make them accessible to scientists from other fields. Consequently, a short introduction to the standard picture of cosmology is given.

  16. Large-Scale Anisotropy of EGRET Gamma Ray Sources

    E-Print Network [OSTI]

    Luis Anchordoqui; Thomas McCauley; Thomas Paul; Olaf Reimer; Diego F. Torres

    2005-06-24T23:59:59.000Z

    In the course of its operation, the EGRET experiment detected high-energy gamma ray sources at energies above 100 MeV over the whole sky. In this communication, we search for large-scale anisotropy patterns among the catalogued EGRET sources using an expansion in spherical harmonics, accounting for EGRET's highly non-uniform exposure. We find significant excess in the quadrupole and octopole moments. This is consistent with the hypothesis that, in addition to the galactic plane, a second mid-latitude (5^{\\circ} < |b| < 30^{\\circ}) population, perhaps associated with the Gould belt, contributes to the gamma ray flux above 100 MeV.

  17. Large scale obscuration and related climate effects open literature bibliography

    SciTech Connect (OSTI)

    Russell, N.A.; Geitgey, J.; Behl, Y.K.; Zak, B.D.

    1994-05-01T23:59:59.000Z

    Large scale obscuration and related climate effects of nuclear detonations first became a matter of concern in connection with the so-called ``Nuclear Winter Controversy`` in the early 1980`s. Since then, the world has changed. Nevertheless, concern remains about the atmospheric effects of nuclear detonations, but the source of concern has shifted. Now it focuses less on global, and more on regional effects and their resulting impacts on the performance of electro-optical and other defense-related systems. This bibliography reflects the modified interest.

  18. Large-Scale Liquid Hydrogen Handling Equipment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLEDControl ConceptCombustionLarge-Scale

  19. Planning under uncertainty solving large-scale stochastic linear programs

    SciTech Connect (OSTI)

    Infanger, G. (Stanford Univ., CA (United States). Dept. of Operations Research Technische Univ., Vienna (Austria). Inst. fuer Energiewirtschaft)

    1992-12-01T23:59:59.000Z

    For many practical problems, solutions obtained from deterministic models are unsatisfactory because they fail to hedge against certain contingencies that may occur in the future. Stochastic models address this shortcoming, but up to recently seemed to be intractable due to their size. Recent advances both in solution algorithms and in computer technology now allow us to solve important and general classes of practical stochastic problems. We show how large-scale stochastic linear programs can be efficiently solved by combining classical decomposition and Monte Carlo (importance) sampling techniques. We discuss the methodology for solving two-stage stochastic linear programs with recourse, present numerical results of large problems with numerous stochastic parameters, show how to efficiently implement the methodology on a parallel multi-computer and derive the theory for solving a general class of multi-stage problems with dependency of the stochastic parameters within a stage and between different stages.

  20. Fractal large-scale structure from a stochastic scaling law model

    E-Print Network [OSTI]

    S. Capozziello; S. Funkhouser

    2009-03-27T23:59:59.000Z

    A stochastic model relating the parameters of astrophysical structures to the parameters of their granular components is applied to the formation of hierarchical, large-scale structures from galaxies assumed as point-like objects. If the density profile of galaxies on a given scale is described by a power law then the stochastic model leads naturally to a mass function that is proportional to the square of the distance from an occupied point, which corresponds to a two-point correlation function that is inversely proportional to the distance. This result is consistent with observations indicating that galaxies are, on the largest scales, characterized by a fractal distribution with a dimension of order 2 and well-fit with transition to homogeneity at cosmological scales.

  1. Parallel Index and Query for Large Scale Data Analysis

    SciTech Connect (OSTI)

    Chou, Jerry; Wu, Kesheng; Ruebel, Oliver; Howison, Mark; Qiang, Ji; Prabhat,; Austin, Brian; Bethel, E. Wes; Ryne, Rob D.; Shoshani, Arie

    2011-07-18T23:59:59.000Z

    Modern scientific datasets present numerous data management and analysis challenges. State-of-the-art index and query technologies are critical for facilitating interactive exploration of large datasets, but numerous challenges remain in terms of designing a system for process- ing general scientific datasets. The system needs to be able to run on distributed multi-core platforms, efficiently utilize underlying I/O infrastructure, and scale to massive datasets. We present FastQuery, a novel software framework that address these challenges. FastQuery utilizes a state-of-the-art index and query technology (FastBit) and is designed to process mas- sive datasets on modern supercomputing platforms. We apply FastQuery to processing of a massive 50TB dataset generated by a large scale accelerator modeling code. We demonstrate the scalability of the tool to 11,520 cores. Motivated by the scientific need to search for inter- esting particles in this dataset, we use our framework to reduce search time from hours to tens of seconds.

  2. Optimal operation of large-scale power systems

    SciTech Connect (OSTI)

    Lee, K.Y.; Ortiz, J.L.; Mohtadi, M.A.; Park, Y.M.

    1988-05-01T23:59:59.000Z

    This paper presents a method for an optimal operation of large-scale power systems similar to the one utilized by the Houston Lighting and Power Company. The main objective is to minimize the system fuel costs, and maintain an acceptable system performance in terms of limits on generator real and reactive power outputs, transformer tap settings, and bus voltage levels. Minimizing the fuel costs of such large-scale systems enhances the performance of optimal real power generator allocation and of optimal power flow that results in an economic dispatch. The gradient projection method (GPM) is utilized in solving the optimization problems. It is an iterative numerical procedure for finding an extremum of a function of several variables that are required to satisfy various constraining relations without using penalty functions or Lagrange multipliers among other advantages. Mathematical models are developed to represent the sensitivity relationships between dependent and control variables for both real- and reactive-power optimization procedures; and thus eliminate the use of B-coefficients. Data provided by the Houston lighting and Power Company are used to demonstrate the effectiveness of the proposed procedures.

  3. Test Administration Instructions for the Fullerton Advanced Balance (FAB) Scale

    E-Print Network [OSTI]

    de Lijser, Peter

    Test Administration Instructions for the Fullerton Advanced Balance (FAB) Scale 1. Stand with feet: Stopwatch with lanyard (for placing around neck). Safety Procedures: Position person being tested n a corner at eye level so participant and time can be monitored simultaneously. Testing procedures: Demonstrate

  4. Multilevel method for modeling large-scale networks.

    SciTech Connect (OSTI)

    Safro, I. M. (Mathematics and Computer Science)

    2012-02-24T23:59:59.000Z

    Understanding the behavior of real complex networks is of great theoretical and practical significance. It includes developing accurate artificial models whose topological properties are similar to the real networks, generating the artificial networks at different scales under special conditions, investigating a network dynamics, reconstructing missing data, predicting network response, detecting anomalies and other tasks. Network generation, reconstruction, and prediction of its future topology are central issues of this field. In this project, we address the questions related to the understanding of the network modeling, investigating its structure and properties, and generating artificial networks. Most of the modern network generation methods are based either on various random graph models (reinforced by a set of properties such as power law distribution of node degrees, graph diameter, and number of triangles) or on the principle of replicating an existing model with elements of randomization such as R-MAT generator and Kronecker product modeling. Hierarchical models operate at different levels of network hierarchy but with the same finest elements of the network. However, in many cases the methods that include randomization and replication elements on the finest relationships between network nodes and modeling that addresses the problem of preserving a set of simplified properties do not fit accurately enough the real networks. Among the unsatisfactory features are numerically inadequate results, non-stability of algorithms on real (artificial) data, that have been tested on artificial (real) data, and incorrect behavior at different scales. One reason is that randomization and replication of existing structures can create conflicts between fine and coarse scales of the real network geometry. Moreover, the randomization and satisfying of some attribute at the same time can abolish those topological attributes that have been undefined or hidden from researchers. We propose to develop multilevel methods to model complex networks. The key point of the proposed strategy is that it will help to preserve part of the unknown structural attributes by guaranteeing the similar behavior of the real and artificial model on different scales.

  5. The XMM/Megacam-VST/VIRMOS Large Scale Structure Survey

    E-Print Network [OSTI]

    M. Pierre

    2000-11-08T23:59:59.000Z

    The objective of the XMM-LSS Survey is to map the large scale structure of the universe, as highlighted by clusters and groups of galaxies, out to a redshift of about 1, over a single 8x8 sq.deg. area. For the first time, this will reveal the topology of the distribution of the deep potential wells and provide statistical measurements at truly cosmological distances. In addition, clusters identified via their X-ray properties will form the basis for the first uniformly-selected, multi-wavelength survey of the evolution of clusters and individual cluster galaxies as a function of redshift. The survey will also address the very important question of the QSO distribution within the cosmic web.

  6. Recovery Act - Large Scale SWNT Purification and Solubilization

    SciTech Connect (OSTI)

    Michael Gemano; Dr. Linda B. McGown

    2010-10-07T23:59:59.000Z

    The goal of this Phase I project was to establish a quantitative foundation for development of binary G-gels for large-scale, commercial processing of SWNTs and to develop scientific insight into the underlying mechanisms of solubilization, selectivity and alignment. In order to accomplish this, we performed systematic studies to determine the effects of G-gel composition and experimental conditions that will enable us to achieve our goals that include (1) preparation of ultra-high purity SWNTs from low-quality, commercial SWNT starting materials, (2) separation of MWNTs from SWNTs, (3) bulk, non-destructive solubilization of individual SWNTs in aqueous solution at high concentrations (10-100 mg/mL) without sonication or centrifugation, (4) tunable enrichment of subpopulations of the SWNTs based on metallic vs. semiconductor properties, diameter, or chirality and (5) alignment of individual SWNTs.

  7. Training a Large Scale Classifier with the Quantum Adiabatic Algorithm

    E-Print Network [OSTI]

    Hartmut Neven; Vasil S. Denchev; Geordie Rose; William G. Macready

    2009-12-04T23:59:59.000Z

    In a previous publication we proposed discrete global optimization as a method to train a strong binary classifier constructed as a thresholded sum over weak classifiers. Our motivation was to cast the training of a classifier into a format amenable to solution by the quantum adiabatic algorithm. Applying adiabatic quantum computing (AQC) promises to yield solutions that are superior to those which can be achieved with classical heuristic solvers. Interestingly we found that by using heuristic solvers to obtain approximate solutions we could already gain an advantage over the standard method AdaBoost. In this communication we generalize the baseline method to large scale classifier training. By large scale we mean that either the cardinality of the dictionary of candidate weak classifiers or the number of weak learners used in the strong classifier exceed the number of variables that can be handled effectively in a single global optimization. For such situations we propose an iterative and piecewise approach in which a subset of weak classifiers is selected in each iteration via global optimization. The strong classifier is then constructed by concatenating the subsets of weak classifiers. We show in numerical studies that the generalized method again successfully competes with AdaBoost. We also provide theoretical arguments as to why the proposed optimization method, which does not only minimize the empirical loss but also adds L0-norm regularization, is superior to versions of boosting that only minimize the empirical loss. By conducting a Quantum Monte Carlo simulation we gather evidence that the quantum adiabatic algorithm is able to handle a generic training problem efficiently.

  8. High Metallicity, Photoionised Gas in Intergalactic Large-Scale Filaments

    E-Print Network [OSTI]

    Bastien Aracil; Todd M. Tripp; David V. Bowen; Jason X. Proschaska; Hsiao-Wen Chen; Brenda L. Frye

    2006-08-21T23:59:59.000Z

    We present high-resolution UV spectra of absorption-line systems toward the low-z QSO HS0624+6907 (z=0.3700). Coupled with spectroscopic galaxy redshifts, we find that many of these absorbers are integalactic gas clouds distributed within large-scale structures. The gas is cool (T0.9). STIS data reveal a cluster of 13 HI Lyman alpha lines within a 1000 km/s interval at z=0.0635. We find 10 galaxies at this redshift with impact parameters ranging from 135 h^-1 kpc to 1.37 h^-1 Mpc. We attribute the HI Lya absorptions to intragroup medium gas, possibly from a large-scale filament viewed along its long axis. Remarkably, the metallicity is near-solar, [M/H] = -0.05 +/- 0.4 (2 sigma uncertainty), yet the nearest galaxy which might pollute the IGM is at least 135 h_70^-1 kpc away. Tidal stripping from nearby galaxies appears to be the most likely origin of this highly enriched, cool gas. More than six Abell galaxy clusters are found within 4 degree of the sight line suggesting that the QSO line of sight passes near a node in the cosmic web. At z~0.077, we find absorption systems as well as galaxies at the redshift of the nearby clusters Abell 564 and Abell 559. We conclude that the sight line pierces a filament of gas and galaxies feeding into these clusters. The absorber at z_abs = 0.07573 associated with Abell 564/559 also has a high metallicity with [C/H] > -0.6, but again the closest galaxy is relatively far from the sight line (293 h^-1 kpc).

  9. Large-scale fabrication and assembly of carbon nanotubes via nanopelleting

    E-Print Network [OSTI]

    El Aguizy, Tarek A., 1977-

    2004-01-01T23:59:59.000Z

    Widespread use of carbon nanotubes is predicated on the development of robust large-scale manufacturing techniques. There remain, however, few feasible methods for the large-scale handling of aligned and geometrically ...

  10. Ferroelectric opening switches for large-scale pulsed power drivers.

    SciTech Connect (OSTI)

    Brennecka, Geoffrey L.; Rudys, Joseph Matthew; Reed, Kim Warren; Pena, Gary Edward; Tuttle, Bruce Andrew; Glover, Steven Frank

    2009-11-01T23:59:59.000Z

    Fast electrical energy storage or Voltage-Driven Technology (VDT) has dominated fast, high-voltage pulsed power systems for the past six decades. Fast magnetic energy storage or Current-Driven Technology (CDT) is characterized by 10,000 X higher energy density than VDT and has a great number of other substantial advantages, but it has all but been neglected for all of these decades. The uniform explanation for neglect of CDT technology is invariably that the industry has never been able to make an effective opening switch, which is essential for the use of CDT. Most approaches to opening switches have involved plasma of one sort or another. On a large scale, gaseous plasmas have been used as a conductor to bridge the switch electrodes that provides an opening function when the current wave front propagates through to the output end of the plasma and fully magnetizes the plasma - this is called a Plasma Opening Switch (POS). Opening can be triggered in a POS using a magnetic field to push the plasma out of the A-K gap - this is called a Magnetically Controlled Plasma Opening Switch (MCPOS). On a small scale, depletion of electron plasmas in semiconductor devices is used to affect opening switch behavior, but these devices are relatively low voltage and low current compared to the hundreds of kilo-volts and tens of kilo-amperes of interest to pulsed power. This work is an investigation into an entirely new approach to opening switch technology that utilizes new materials in new ways. The new materials are Ferroelectrics and using them as an opening switch is a stark contrast to their traditional applications in optics and transducer applications. Emphasis is on use of high performance ferroelectrics with the objective of developing an opening switch that would be suitable for large scale pulsed power applications. Over the course of exploring this new ground, we have discovered new behaviors and properties of these materials that were here to fore unknown. Some of these unexpected discoveries have lead to new research directions to address challenges.

  11. Large Scale Obscuration and Related Climate Effects Workshop: Proceedings

    SciTech Connect (OSTI)

    Zak, B.D.; Russell, N.A.; Church, H.W.; Einfeld, W.; Yoon, D.; Behl, Y.K. [eds.

    1994-05-01T23:59:59.000Z

    A Workshop on Large Scale Obsurcation and Related Climate Effects was held 29--31 January, 1992, in Albuquerque, New Mexico. The objectives of the workshop were: to determine through the use of expert judgement the current state of understanding of regional and global obscuration and related climate effects associated with nuclear weapons detonations; to estimate how large the uncertainties are in the parameters associated with these phenomena (given specific scenarios); to evaluate the impact of these uncertainties on obscuration predictions; and to develop an approach for the prioritization of further work on newly-available data sets to reduce the uncertainties. The workshop consisted of formal presentations by the 35 participants, and subsequent topical working sessions on: the source term; aerosol optical properties; atmospheric processes; and electro-optical systems performance and climatic impacts. Summaries of the conclusions reached in the working sessions are presented in the body of the report. Copies of the transparencies shown as part of each formal presentation are contained in the appendices (microfiche).

  12. Large-Scale Data Challenges in Future Power Grids

    SciTech Connect (OSTI)

    Yin, Jian; Sharma, Poorva; Gorton, Ian; Akyol, Bora A.

    2013-03-25T23:59:59.000Z

    This paper describes technical challenges in supporting large-scale real-time data analysis for future power grid systems and discusses various design options to address these challenges. Even though the existing U.S. power grid has served the nation remarkably well over the last 120 years, big changes are in the horizon. The widespread deployment of renewable generation, smart grid controls, energy storage, plug-in hybrids, and new conducting materials will require fundamental changes in the operational concepts and principal components. The whole system becomes highly dynamic and needs constant adjustments based on real time data. Even though millions of sensors such as phase measurement units (PMUs) and smart meters are being widely deployed, a data layer that can support this amount of data in real time is needed. Unlike the data fabric in cloud services, the data layer for smart grids must address some unique challenges. This layer must be scalable to support millions of sensors and a large number of diverse applications and still provide real time guarantees. Moreover, the system needs to be highly reliable and highly secure because the power grid is a critical piece of infrastructure. No existing systems can satisfy all the requirements at the same time. We examine various design options. In particular, we explore the special characteristics of power grid data to meet both scalability and quality of service requirements. Our initial prototype can improve performance by orders of magnitude over existing general-purpose systems. The prototype was demonstrated with several use cases from PNNL’s FPGI and was shown to be able to integrate huge amount of data from a large number of sensors and a diverse set of applications.

  13. Scaling Relationships Based on Scaled Tank Mixing and Transfer Test Results

    SciTech Connect (OSTI)

    Piepel, Gregory F.; Holmes, Aimee E.; Heredia-Langner, Alejandro

    2013-09-18T23:59:59.000Z

    This report documents the statistical analyses performed (by Pacific Northwest National Laboratory for Washington River Protection Solutions) on data from 26 tests conducted using two scaled tanks (43 and 120 inches) in the Small Scale Mixing Demonstration platform. The 26 tests varied several test parameters, including mixer-jet nozzle velocity, base simulant, supernatant viscosity, and capture velocity. For each test, samples were taken pre-transfer and during five batch transfers. The samples were analyzed for the concentrations (lbs/gal slurry) of four primary components in the base simulants (gibbsite, stainless steel, sand, and ZrO2). The statistical analyses including modeling the component concentrations as functions of test parameters using stepwise regression with two different model forms. The resulting models were used in an equivalent performance approach to calculate values of scaling exponents (for a simple geometric scaling relationship) as functions of the parameters in the component concentration models. The resulting models and scaling exponents are displayed in tables and graphically. The sensitivities of component concentrations and scaling exponents to the test parameters are presented graphically. These results will serve as inputs to subsequent work by other researchers to develop scaling relationships that are applicable to full-scale tanks.

  14. Scaling Relationships Based on Scaled Tank Mixing and Transfer Test Results

    SciTech Connect (OSTI)

    Piepel, Gregory F.; Holmes, Aimee E.; Heredia-Langner, Alejandro; Lee, Kearn P.; Kelly, Steven E.

    2014-01-01T23:59:59.000Z

    This report documents the statistical analyses performed (by Pacific Northwest National Laboratory for Washington River Protection Solutions) on data from 26 tests conducted using two scaled tanks (43 and 120 inches) in the Small Scale Mixing Demonstration platform. The 26 tests varied several test parameters, including mixer-jet nozzle velocity, base simulant, supernatant viscosity, and capture velocity. For each test, samples were taken pre-transfer and during five batch transfers. The samples were analyzed for the concentrations (lbs/gal slurry) of four primary components in the base simulants (gibbsite, stainless steel, sand, and ZrO2). The statistical analyses including modeling the component concentrations as functions of test parameters using stepwise regression with two different model forms. The resulting models were used in an equivalent performance approach to calculate values of scaling exponents (for a simple geometric scaling relationship) as functions of the parameters in the component concentration models. The resulting models and scaling exponents are displayed in tables and graphically. The sensitivities of component concentrations and scaling exponents to the test parameters are presented graphically. These results will serve as inputs to subsequent work by other researchers to develop scaling relationships that are applicable to full-scale tanks.

  15. The Anatomy of a Large-Scale Hypertextual Web Search Sergey Brin and Lawrence Page

    E-Print Network [OSTI]

    Matwin, Stan

    . This paper addresses this question of how to build a practical large-scale system which can exploit of googol, or 10100 and fits well with our goal of building very large- scale search engines. 1.1 Web Search Engines -- Scaling Up: 1994 - 2000 Search engine technology has had to scale dramatically to keep up

  16. Influence of Western North Pacific Tropical Cyclones on Their Large-Scale Environment

    E-Print Network [OSTI]

    Sobel, Adam

    water vapor, and sea surface tem- perature (SST)] on an index of TC activity [accumulated cyclone energyInfluence of Western North Pacific Tropical Cyclones on Their Large-Scale Environment ADAM H. SOBEL) tropical cyclones (TCs) on their large-scale environment by lag regressing various large-scale climate

  17. Large Scale Approximate Inference and Experimental Design for Sparse Linear Models

    E-Print Network [OSTI]

    Seeger, Matthias

    Large Scale Approximate Inference and Experimental Design for Sparse Linear Models Matthias W.kyb.tuebingen.mpg.de/bs/people/seeger/ 27 June 2008 Matthias W. Seeger (MPI BioCyb) Large Scale Bayesian Experimental Design 27/6/08 1 / 27 Algorithms 4 Magnetic Resonance Imaging Sequences Matthias W. Seeger (MPI BioCyb) Large Scale Bayesian

  18. LiveBench-2: Large-Scale Automated Evaluation of Protein Structure Prediction Servers

    E-Print Network [OSTI]

    Fischer, Daniel

    LiveBench-2: Large-Scale Automated Evaluation of Protein Structure Prediction Servers Janusz M from other evaluation experiments because it is a large-scale and a fully automated procedure. Since, to keep in pace with the development, we present the results of the second large-scale evaluation of pro

  19. An improved voltage control on large-scale power system

    SciTech Connect (OSTI)

    Vu, H.; Pruvot, P.; Launay, C.; Harmand, Y. [Electricite de France, Clamart (France). Study and Research Div.] [Electricite de France, Clamart (France). Study and Research Div.

    1996-08-01T23:59:59.000Z

    To achieve a better voltage-var control in the electric power transmission system, different facilities are used. Generators are equipped with automatic voltage regulators to cope with sudden and random changes voltage caused by natural load fluctuations or failures. Other devices like capacitors, inductors, transformers with on load tap changers are installed on the network. Faced with the evolution of the network and operating conditions, electricity utilities are more and more interested in overall and coherent control systems, automatic or not. These systems are expected to coordinate the actions of local facilities for a better voltage control (more stable and faster reaction) inside different areas of the network in case of greater voltage and var variations. They affords besides a better use of existing reactive resources. Also, installation of new devices can be avoided allowing economy of investment. With this frame of mind, EDF has designed a system called Co-ordinated Secondary Voltage Control (CSVC). It`s an automatic closed loop system with a dynamic of a few minutes. It takes into account the network conditions (topology, loads), the voltage limits and the generator operating constraints. This paper presents recent improvements which allow the CSVC to control the voltage profile and different kinds of reactive means on a large-scale power system. Furthermore, this paper presents solution to spread out investment costs over several years, considering a deployment gradually extended.

  20. Classical Control of Large-Scale Quantum Computers

    E-Print Network [OSTI]

    Simon J. Devitt

    2014-05-20T23:59:59.000Z

    The accelerated development of quantum technology has reached a pivotal point. Early in 2014, several results were published demonstrating that several experimental technologies are now accurate enough to satisfy the requirements of fault-tolerant, error corrected quantum computation. While there are many technological and experimental issues that still need to be solved, the ability of experimental systems to now have error rates low enough to satisfy the fault-tolerant threshold for several error correction models is a tremendous milestone. Consequently, it is now a good time for the computer science and classical engineering community to examine the {\\em classical} problems associated with compiling quantum algorithms and implementing them on future quantum hardware. In this paper, we will review the basic operational rules of a topological quantum computing architecture and outline one of the most important classical problems that need to be solved; the decoding of error correction data for a large-scale quantum computer. We will endeavour to present these problems independently from the underlying physics as much of this work can be effectively solved by non-experts in quantum information or quantum mechanics.

  1. Giant radio galaxies - II. Tracers of large-scale structure

    E-Print Network [OSTI]

    Malarecki, J M; Saripalli, L; Staveley-Smith, L; Subrahmanyan, R

    2015-01-01T23:59:59.000Z

    We have carried out optical spectroscopy with the Anglo-Australian Telescope for 24,726 objects surrounding a sample of 19 Giant Radio Galaxies (GRGs) selected to have redshifts in the range 0.05 to 0.15 and projected linear sizes from 0.8 to 3.2 Mpc. Such radio galaxies are ideal candidates to study the Warm-Hot Intergalactic Medium (WHIM) because their radio lobes extend beyond the ISM and halos of their host galaxies, and into the tenuous IGM. We were able to measure redshifts for 9,076 galaxies. Radio imaging of each GRG, including high-sensitivity, wideband radio observations from the Australia Telescope Compact Array for 12 GRGs and host optical spectra (presented in a previous paper, Malarecki et al. 2013), is used in conjunction with the surrounding galaxy redshifts to trace large-scale structure. We find that the mean galaxy number overdensity in volumes of ~700 Mpc$^3$ near the GRG host galaxies is ~70 indicating an overdense but non-virialized environment. A Fourier component analysis is used to qu...

  2. Comparison of the KAMELEON fire model to large-scale open pool fire data

    SciTech Connect (OSTI)

    Nicolette, V.F.; Gritzo, L.A. [Sandia National Labs., Albuquerque, NM (United States); Holen, J.; Magnussen, B.F. [SINEF/Norweigian Inst. of Tech., Trondheim (Norway). Div. of Applied Thermodynamics

    1994-06-01T23:59:59.000Z

    A comparison of the KAMELEON Fire model to large-scale open pool fire experimental data is presented. The model was used to calculate large-scale JP-4 pool fires with and without wind, and with and without large objects in the fire. The effect of wind and large objects on the fire environment is clearly seen. For the pool fire calculations without any object in the fire, excellent agreement is seen in the location of the oxygen-starved region near the pool center. Calculated flame temperatures are about 200--300 K higher than measured. This results in higher heat fluxes back to the fuel pool and higher fuel evaporation rates (by a factor of 2). Fuel concentrations at lower elevations and peak soot concentrations are in good agreement with data. For pool fire calculations with objects, similar trends in the fire environment are observed. Excellent agreement is seen in the distribution of the heat flux around a cylindrical calorimeter in a rectangular pool with wind effects. The magnitude of the calculated heat flux to the object is high by a factor of 2 relative to the test data, due to the higher temperatures calculated. For the case of a large flat plate adjacent to a circular pool, excellent qualitative agreement is seen in the predicted and measured flame shapes as a function of wind.

  3. Advanced I/O for large-scale scientific applications.

    SciTech Connect (OSTI)

    Klasky, Scott (Oak Ridge National Laboratory, Oak Ridge, TN); Schwan, Karsten (Georgia Institute of Technology, Atlanta, GA); Oldfield, Ron A.; Lofstead, Gerald F., II (Georgia Institute of Technology, Atlanta, GA)

    2010-01-01T23:59:59.000Z

    As scientific simulations scale to use petascale machines and beyond, the data volumes generated pose a dual problem. First, with increasing machine sizes, the careful tuning of IO routines becomes more and more important to keep the time spent in IO acceptable. It is not uncommon, for instance, to have 20% of an application's runtime spent performing IO in a 'tuned' system. Careful management of the IO routines can move that to 5% or even less in some cases. Second, the data volumes are so large, on the order of 10s to 100s of TB, that trying to discover the scientifically valid contributions requires assistance at runtime to both organize and annotate the data. Waiting for offline processing is not feasible due both to the impact on the IO system and the time required. To reduce this load and improve the ability of scientists to use the large amounts of data being produced, new techniques for data management are required. First, there is a need for techniques for efficient movement of data from the compute space to storage. These techniques should understand the underlying system infrastructure and adapt to changing system conditions. Technologies include aggregation networks, data staging nodes for a closer parity to the IO subsystem, and autonomic IO routines that can detect system bottlenecks and choose different approaches, such as splitting the output into multiple targets, staggering output processes. Such methods must be end-to-end, meaning that even with properly managed asynchronous techniques, it is still essential to properly manage the later synchronous interaction with the storage system to maintain acceptable performance. Second, for the data being generated, annotations and other metadata must be incorporated to help the scientist understand output data for the simulation run as a whole, to select data and data features without concern for what files or other storage technologies were employed. All of these features should be attained while maintaining a simple deployment for the science code and eliminating the need for allocation of additional computational resources.

  4. Large Scale Computing and Storage Requirements for Nuclear Physics Research

    SciTech Connect (OSTI)

    Gerber, Richard A.; Wasserman, Harvey J.

    2012-03-02T23:59:59.000Z

    IThe National Energy Research Scientific Computing Center (NERSC) is the primary computing center for the DOE Office of Science, serving approximately 4,000 users and hosting some 550 projects that involve nearly 700 codes for a wide variety of scientific disciplines. In addition to large-scale computing resources NERSC provides critical staff support and expertise to help scientists make the most efficient use of these resources to advance the scientific mission of the Office of Science. In May 2011, NERSC, DOE’s Office of Advanced Scientific Computing Research (ASCR) and DOE’s Office of Nuclear Physics (NP) held a workshop to characterize HPC requirements for NP research over the next three to five years. The effort is part of NERSC’s continuing involvement in anticipating future user needs and deploying necessary resources to meet these demands. The workshop revealed several key requirements, in addition to achieving its goal of characterizing NP computing. The key requirements include: 1. Larger allocations of computational resources at NERSC; 2. Visualization and analytics support; and 3. Support at NERSC for the unique needs of experimental nuclear physicists. This report expands upon these key points and adds others. The results are based upon representative samples, called “case studies,” of the needs of science teams within NP. The case studies were prepared by NP workshop participants and contain a summary of science goals, methods of solution, current and future computing requirements, and special software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, “multi-core” environment that is expected to dominate HPC architectures over the next few years. The report also includes a section with NERSC responses to the workshop findings. NERSC has many initiatives already underway that address key workshop findings and all of the action items are aligned with NERSC strategic plans.

  5. Aquifer sensitivity assessment modeling at a large scale

    SciTech Connect (OSTI)

    Berg, R.C.; Abert, C.C. (Illinois State Geological Survey, Champaign, IL (United States))

    1994-03-01T23:59:59.000Z

    A 480 square-mile region within Will County, northeastern Illinois was used as a test region for an evaluation of the sensitivity of aquifers to contamination. An aquifer sensitivity model was developed using a Geographic Information System (GIS) with ARC/INFO software to overlay and combine several data layers. Many of the input data layers were developed using 2-dimensional surface modeling (Interactive Surface Modeling (ISM)) and 3-dimensional volume modeling (Geologic Modeling Program (GMP)) computer software. Most of the input data layers (drift thickness, thickness of sand and gravel, depth to first aquifer) were derived from interpolation of descriptive logs for water wells and engineering borings from their study area. A total of 2,984 logs were used to produce these maps. The components used for the authors' model are (1) depth to sand and gravel or bedrock, (2) thickness of the uppermost sand and gravel aquifer, (3) drift thickness, and (4) absence or presence of uppermost bedrock aquifer. The model is an improvement over many aquifer sensitivity models because it combines specific information on depth to the uppermost sand and gravel aquifer with information on the thickness of the uppermost sand and gravel aquifer. The manipulation of the source maps according to rules-based assumptions results in a colored aquifer sensitivity map for the Will County study area. This colored map differentiates 42 aquifer sensitivity map areas by using line patterns within colors. The county-scale model results in an aquifer sensitivity map that can be a useful tool for making land-use planning decisions regarding aquifer protection and management of groundwater resources.

  6. Large-Scale Field Study of Landfill Covers at Sandia National Laboratories

    SciTech Connect (OSTI)

    Dwyer, S.F.

    1998-09-01T23:59:59.000Z

    A large-scale field demonstration comparing final landfill cover designs has been constructed and is currently being monitored at Sandia National Laboratories in Albuquerque, New Mexico. Two conventional designs (a RCRA Subtitle `D' Soil Cover and a RCRA Subtitle `C' Compacted Clay Cover) were constructed side-by-side with four alternative cover test plots designed for dry environments. The demonstration is intended to evaluate the various cover designs based on their respective water balance performance, ease and reliability of construction, and cost. This paper presents an overview of the ongoing demonstration.

  7. An Energy-Efficient Framework for Large-Scale Parallel Storage Systems

    E-Print Network [OSTI]

    Qin, Xiao

    An Energy-Efficient Framework for Large-Scale Parallel Storage Systems Ziliang Zong, Matt Briggs-scale and energy-efficient parallel storage systems. To validate the efficiency of the proposed framework, a buffer that this new framework can significantly improves the energy efficiency of large-scale parallel storage systems

  8. Architecture for a large-scale ion-trap quantum computer

    E-Print Network [OSTI]

    individually experimentally demonstrated. The quantum CCD To build up a large-scale quantum computer, we have demonstrated in this system, there exist theoretical and technical obstacles to scaling up the approachArchitecture for a large-scale ion-trap quantum computer D. Kielpinski*, C. Monroe & D. J. Wineland

  9. A localised subgrid scale model for fluid dynamical simulations in astrophysics I: Theory and numerical tests

    E-Print Network [OSTI]

    Schmidt, W; Niemeyer, J C

    2006-01-01T23:59:59.000Z

    We present a one-equation subgrid scale model that evolves the turbulence energy corresponding to unresolved velocity fluctuations in large eddy simulations. The model is derived in the context of the Germano consistent decomposition of the hydrodynamical equations. The eddy-viscosity closure for the rate of energy transfer from resolved toward subgrid scales is localised by means of a dynamical procedure for the computation of the closure parameter. Therefore, the subgrid scale model applies to arbitrary flow geometry and evolution. For the treatment of microscopic viscous dissipation a semi-statistical approach is used, and the gradient-diffusion hypothesis is adopted for turbulent transport. A priori tests of the localised eddy-viscosity closure and the gradient-diffusion closure are made by analysing data from direct numerical simulations. As an a posteriori testing case, the large eddy simulation of thermonuclear combustion in forced isotropic turbulence is discussed. We intend the formulation of the sub...

  10. Hamming embedding and weak geometric consistency for large scale image search

    E-Print Network [OSTI]

    Verbeek, Jakob

    Hamming embedding and weak geometric consistency for large scale image search Herve Jegou, Matthijs improves recent methods for large scale image search. State-of-the-art methods build on the bag large datasets. Exper- iments performed on a dataset of one million of images show a signifi- cant

  11. Large-Scale FPGA-based Convolutional Networks Clement Farabet1

    E-Print Network [OSTI]

    LeCun, Yann

    Large-Scale FPGA-based Convolutional Networks Cl´ement Farabet1 , Yann LeCun1 , Koray Kavukcuoglu1, New Haven, USA Chapter in Machine Learning on Very Large Data Sets, edited by Ron Bekkerman, Mikhail Bilenko, and John Langford, Cambridge University Press, 2011. May 2, 2011 1 #12;Large-Scale FPGA

  12. A Protocol for the Atomic Capture of Multiple Molecules on Large Scale Platforms

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A Protocol for the Atomic Capture of Multiple Molecules on Large Scale Platforms Marin Bertier services. Envi- sioned over largely distributed and highly dynamic platforms, expressing this coordination coordination of services. However, the execution of such programs over large scale platforms raises several

  13. Large Scale Computing and Storage Requirements for High Energy Physics

    SciTech Connect (OSTI)

    Gerber, Richard A.; Wasserman, Harvey

    2010-11-24T23:59:59.000Z

    The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility for the Department of Energy's Office of Science, providing high-performance computing (HPC) resources to more than 3,000 researchers working on about 400 projects. NERSC provides large-scale computing resources and, crucially, the support and expertise needed for scientists to make effective use of them. In November 2009, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR), and DOE's Office of High Energy Physics (HEP) held a workshop to characterize the HPC resources needed at NERSC to support HEP research through the next three to five years. The effort is part of NERSC's legacy of anticipating users needs and deploying resources to meet those demands. The workshop revealed several key points, in addition to achieving its goal of collecting and characterizing computing requirements. The chief findings: (1) Science teams need access to a significant increase in computational resources to meet their research goals; (2) Research teams need to be able to read, write, transfer, store online, archive, analyze, and share huge volumes of data; (3) Science teams need guidance and support to implement their codes on future architectures; and (4) Projects need predictable, rapid turnaround of their computational jobs to meet mission-critical time constraints. This report expands upon these key points and includes others. It also presents a number of case studies as representative of the research conducted within HEP. Workshop participants were asked to codify their requirements in this case study format, summarizing their science goals, methods of solution, current and three-to-five year computing requirements, and software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, multi-core environment that is expected to dominate HPC architectures over the next few years. The report includes a section that describes efforts already underway or planned at NERSC that address requirements collected at the workshop. NERSC has many initiatives in progress that address key workshop findings and are aligned with NERSC's strategic plans.

  14. Penn State University Pilot-scale Tests of Fixed Bed

    E-Print Network [OSTI]

    Penn State University Pilot-scale Tests of Fixed Bed Reactors for Perchlorate Degradation: Plastic for inoculation #12;Penn State University PSU-O4 Process Patent: Perchlorate degradation in a fixed bed bioreactor in a packed bed reactor · Reactor performance compared with other studies · Stability of the bacterium used

  15. Structural Testing at the Micro and Nano Scales: Breaking

    E-Print Network [OSTI]

    Ballarini, Roberto

    Structural Testing at the Micro and Nano Scales: Breaking Invisible Specimens With Zero Force). "Nano measurements with micro devices: mechanical properties of hydrated collagen fibrils," J. of the R tangential slots · Fuel swirls in the spin chamber and exits through the orifice in a hollow conical spray

  16. Issues in strategic management of large-scale software product line development

    E-Print Network [OSTI]

    Nivoit, Jean-Baptiste (Jean-Baptiste Henri)

    2013-01-01T23:59:59.000Z

    This thesis reflects on the issues and challenges large software product engineering managers face. Software is hard to engineer on a small scale, but at a larger scale, engineering and management tasks are even more ...

  17. Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Pilot-Scale Test Results

    SciTech Connect (OSTI)

    Gary M. Blythe

    2006-03-01T23:59:59.000Z

    This Topical Report summarizes progress on Cooperative Agreement DE-FC26-04NT42309, ''Field Testing of a Wet FGD Additive.'' The objective of the project is to demonstrate the use of a flue gas desulfurization (FGD) additive, Degussa Corporation's TMT-15, to prevent the reemissions of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project intends to demonstrate that the additive can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine TMT salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal. The project will conduct pilot and full-scale tests of the TMT-15 additive in wet FGD absorbers. The tests are intended to determine required additive dosage requirements to prevent Hg{sup 0} reemissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Power River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, TXU Generation Company LP, Southern Company, and Degussa Corporation. TXU Generation has provided the Texas lignite/PRB co-fired test site for pilot FGD tests, Monticello Steam Electric Station Unit 3. Southern Company is providing the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, as well as the pilot and full-scale jet bubbling reactor (JBR) FGD systems to be tested. A third utility, to be named later, will provide the high-sulfur Eastern bituminous coal full-scale FGD test site. Degussa Corporation is providing the TMT-15 additive and technical support to the test program. The project is being conducted in six tasks. Of the six project tasks, Task 1 involves project planning and Task 6 involves management and reporting. The other four tasks involve field testing on FGD systems, either at pilot or full scale. The four tasks include: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High Sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. This topical report presents the results from the Task 2 and Task 4 pilot-scale additive tests. The Task 3 and Task 5 full-scale additive tests will be conducted later in calendar year 2006.

  18. Large scale testing in the INERIS fire gallery

    E-Print Network [OSTI]

    Boyer, Edmond

    and the stack allows controlled Ventilation of the fire zone at flowrates comparable to those observed in industrial premises Of course, both the horizontal and upward vertical sections walla comprises refractory

  19. Large-Scale Industrial CCS Projects Selected for Continued Testing |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLEDControl ConceptCombustion Research2014)

  20. Microsoft Word - Vit Plant Large Scale Testing_20110901.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA / USACE625 FINALOptimizationForArticle from theSept. 1,

  1. A Topological Framework for the Interactive Exploration of Large Scale Turbulent Combustion

    E-Print Network [OSTI]

    Bremer, Peer-Timo

    2010-01-01T23:59:59.000Z

    comparison of terascale combustion simulation data. Mathe-premixed hydrogen ?ames. Combustion and Flame, [7] J. L.of Large Scale Turbulent Combustion Peer-Timo Bremer 1 ,

  2. Performance Engineering: Understanding and Improving the Performance of Large-Scale Codes

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    An API for Runtime Code Patching,” Journal of Highof the Conference on Code Generation and Optimization,Performance of Large-Scale Codes David H. Bailey 1 , Robert

  3. A Large-Scale Sentiment Analysis for Yahoo! Answers Onur Kucuktunc

    E-Print Network [OSTI]

    Ferhatosmanoglu, Hakan

    and Behavioral Sciences]: Psychology, Sociology General Terms Design, Experimentation, Human Factors, MeasurementA Large-Scale Sentiment Analysis for Yahoo! Answers Onur Kucuktunc The Ohio State University

  4. a min-max regret robust optimization approach for large scale full ...

    E-Print Network [OSTI]

    admin

    2007-07-20T23:59:59.000Z

    the full-factorial scenario design of data uncertainty. The proposed algorithm is shown to be efficient for solving large-scale min-max regret robust optimization ...

  5. Distortive Effects of Initial-Based Name Disambiguation on Measurements of Large-Scale Coauthorship Networks

    E-Print Network [OSTI]

    Kim, Jinseok

    2015-01-01T23:59:59.000Z

    Scholars have often relied on name initials to resolve name ambiguities in large-scale coauthorship network research. This approach bears the risk of incorrectly merging or splitting author identities. The use of initial-based disambiguation has been justified by the assumption that such errors would not affect research findings too much. This paper tests this assumption by analyzing coauthorship networks from five academic fields - biology, computer science, nanoscience, neuroscience, and physics - and an interdisciplinary journal, PNAS. Name instances in datasets of this study were disambiguated based on heuristics gained from previous algorithmic disambiguation solutions. We use disambiguated data as a proxy of ground-truth to test the performance of three types of initial-based disambiguation. Our results show that initial-based disambiguation can misrepresent statistical properties of coauthorship networks: it deflates the number of unique authors, number of component, average shortest paths, clustering ...

  6. Atmospheric perturbations of large-scale nuclear war

    SciTech Connect (OSTI)

    Malone, R.C.

    1985-01-01T23:59:59.000Z

    Computer simulation of the injection into the atmosphere of a large quantity of smoke following a nuclear war are described. The focus is on what might happen to the smoke after it enters the atmosphere and what changes, or perturbations, could be induced in the atmospheric structure and circulation by the pressure of a large quantity of smoke. 4 refs., 7 figs. (ACR)

  7. Engineering Scaling Requirements for Solid Breeder Blanket Testing

    SciTech Connect (OSTI)

    Ying, A.; Sharafat, S.; Youssef, M.; An, J.; Hunt, R.; Rainsberry, P.; Abdou, M. [University of California, Los Angeles (United States)

    2005-05-15T23:59:59.000Z

    An engineering scaling process is applied to the solid breeder ITER TBM designs in accordance with the testing objectives of validating the design tools and the database, and evaluating blanket performance under prototypical operating conditions. The goal of scaling is to ensure that changes in structural response and performance caused by changes in size and operating conditions do not reduce the usefulness of the tests. Initially, constitutive equations are applied to lay out the basic operating and design parameters that dominate blanket phenomena. The suitability of these similarity criteria for the TBM design is then confirmed by comparing finite element predictions of prototype and scale model responses. The TBM design also takes into account the need to check the codes and data for future design use. Specifically, predictability of tritium production and nuclear heating rates in a complex geometry, tritium release and permeation characteristics under fusion environments belong to this category. We conclude that this engineering scaling design process has maximized the value of ITER testing.

  8. On scale and magnitude of pressure build-up induced by large-scale geologic storage of CO2

    E-Print Network [OSTI]

    Zhou, Q.

    2012-01-01T23:59:59.000Z

    activities, such as oil production. Large-scale pressureannual volume of world oil production and the pore volumem 3 . In 2006, the world oil production was 4.3 km 3 (73.46

  9. Large-Scale Evacuation Network Model for Transporting Evacuees with Multiple Priorities

    E-Print Network [OSTI]

    Na, Hyeong Suk

    2014-05-01T23:59:59.000Z

    There are increasing numbers of natural disasters occurring worldwide, particularly in populated areas. Such events affect a large number of people causing injuries and fatalities. With ever increasing damage being caused by large-scale natural...

  10. Large Scale Computing and Storage Requirements for Nuclear Physics Research

    E-Print Network [OSTI]

    Gerber, Richard A.

    2012-01-01T23:59:59.000Z

    in the process of thermonuclear incineration of theircore-collapse and thermonuclear events to test predictionsprocesses. In contrast to thermonuclear supernova modeling,

  11. Safety aspects of ground testing for large nuclear rockets

    SciTech Connect (OSTI)

    Goldman, M.I.

    1988-02-01T23:59:59.000Z

    Present nuclear rocket reactors under test in Nevada are operated at nominal power levels of 1000 Mw. It does not seem unreasonable in the future to anticipate reactors with power levels in the range up to 5,000 Mw for space applications. It has been shown that the normal testing of large nuclear rocket engines at NRDS could impose some restrictions on the fuel performance which would not otherwise be required by space flight operation. The only apparent alternative would require a capability for decontaminating effluent gases prior to release to the atmosphere. In addition to the source restrictions, tests will almost certainly be controlled by wind and atmospheric stability conditions, and the requirements for monitoring and control of off-site exposures will be much more stringent than those presently in force. An analysis of maximum accidents indicates that projections of present credible occurrences cannot be tolerated in larger engine tests. The apparent alternatives to a significant (order of magnitude or better) reduction in credible accident consequences, are the establishment of an underground test facility, a facility in an area equivalent to the Pacific weapons proving ground, or in space.

  12. Testing the scaling of thermal transport models: predicted and measured temperatures in the Tokamak Fusion Test

    E-Print Network [OSTI]

    in the Tokamak Fusion Test Reactor dimensionless scaling experiments D. R. Mikkelsen, S. D. Scott Princeton the Tokamak Fusion Test Reactor [D. J. Grove and D. M. Meade, Nucl. Fusion 25, 1167 (1985)] nondimensional to International Tokamak Experimental Reactor [2] (ITER) class tokamaks. This paper compares the predictions

  13. A framework for delay emulation of large-scale internetworks

    E-Print Network [OSTI]

    Venkata, Shravan Rangaraju

    2001-01-01T23:59:59.000Z

    . The framework models and dynamically adapts the test traffic according to the network delay characteristics observed on the Internet in real-time. The proposed framework consists of three main modules: Virtual Host Configuration Module, Delay Estimator...

  14. Reconfiguration-Assisted Charging in Large-Scale Lithium-ion Battery Systems

    E-Print Network [OSTI]

    Reconfiguration-Assisted Charging in Large-Scale Lithium-ion Battery Systems Liang He1 , Linghe, TX, USA ABSTRACT Large-scale Lithium-ion batteries are widely adopted in many systems and heterogeneous discharging con- ditions, cells in the battery system may have differ- ent statuses

  15. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage

    E-Print Network [OSTI]

    Wang, Wei Hua

    Room-temperature stationary sodium-ion batteries for large-scale electric energy storage Huilin Pan attention particularly in large- scale electric energy storage applications for renewable energy and smart storage system in the near future. Broader context With the rapid development of renewable energy sources

  16. A Topological Framework for the Interactive Exploration of Large Scale Turbulent Combustion

    E-Print Network [OSTI]

    Knowles, David William

    A Topological Framework for the Interactive Exploration of Large Scale Turbulent Combustion Peer a new topological framework for the analysis of large scale, time-varying, turbulent combustion consumption thresh- olds for an entire time-dependent combustion simulation. By computing augmented merge

  17. Wireless Ventilation Control for Large-Scale Systems: the Mining Industrial Case

    E-Print Network [OSTI]

    Boyer, Edmond

    Wireless Ventilation Control for Large-Scale Systems: the Mining Industrial Case E. Witrant1,, A. D, for large scale systems with high environmental impact: the mining ventilation control systems. Ventilation). We propose a new model for underground ventilation. The main components of the system dynamics

  18. Parallelisation of the revised simplex method for general large scale LP problems

    E-Print Network [OSTI]

    Hall, Julian

    Parallelisation of the revised simplex method for general large scale LP problems Julian Hall School of Mathematics University of Edinburgh August 9­10 2005 Parallelisation of the revised simplex method for general large scale LP problems #12;Overview · The (standard and revised) simplex method

  19. Towards Automatic Incorporation of Search engines into a Large-Scale Metasearch Engine

    E-Print Network [OSTI]

    Meng, Weiyi

    Towards Automatic Incorporation of Search engines into a Large-Scale Metasearch Engine Zonghuan Wu. of Computer Science Univ. of Illinois at Chicago yu@cs.uic.edu Abstract A metasearch engine supports unified access to multiple component search engines. To build a very large-scale metasearch engine that can

  20. Random Features for Large-Scale Kernel Machines Intel Research Seattle

    E-Print Network [OSTI]

    Kim, Tae-Kyun

    Random Features for Large-Scale Kernel Machines Ali Rahimi Intel Research Seattle Seattle, WA 98105 products of the transformed data are approximately equal to those in the feature space of a user specified on their ability to approximate various radial basis kernels, and show that in large-scale classification

  1. Hash-SVM: Scalable Kernel Machines for Large-Scale Visual Classification , Shih-Fu Chang

    E-Print Network [OSTI]

    Chang, Shih-Fu

    Hash-SVM: Scalable Kernel Machines for Large-Scale Visual Classification Yadong Mu , Gang Hua , Wei the efficiency of non-linear kernel SVM in very large scale visual classification prob- lems. Our key idea be transformed into solving a linear SVM over the hash bits. The proposed Hash-SVM enjoys dramatic storage cost

  2. Automatic Construction of Large-Scale Regular Expression Matching Engines on FPGA

    E-Print Network [OSTI]

    Prasanna, Viktor K.

    Automatic Construction of Large-Scale Regular Expression Matching Engines on FPGA Yi-Hua E. Yang@usc.edu, prasanna@usc.edu Abstract--We present algorithms for implementing large-scale regular expression matching (REM) on FPGA. Based on the proposed algorithms, we develop tools that first transform regular

  3. Evaluation of Segmentation Techniques for Inventory Management in Large Scale Multi-Item Inventory Systems1

    E-Print Network [OSTI]

    Rossetti, Manuel D.

    1 Evaluation of Segmentation Techniques for Inventory Management in Large Scale Multi-Item Inventory Systems1 Manuel D. Rossetti2 , Ph. D., P. E. Department of Industrial Engineering University of their inventory policies in a large-scale multi-item inventory system. Conventional inventory segmentation

  4. Electronic Properties of Large-scale Graphene Films Chemical Vapor Synthesized on Nickel and on Copper

    E-Print Network [OSTI]

    Chen, Yong P.

    transport properties of graphene films grown on Ni and Cu. Sample Preparation The synthesis of graphene film1 Electronic Properties of Large-scale Graphene Films Chemical Vapor Synthesized on Nickel of large scale graphene films grown by chemical vapor synthesis on Ni and Cu, and then transferred to SiO2

  5. QA-Pagelet: Data Preparation Techniques for Large Scale Data Analysis of the Deep Web

    E-Print Network [OSTI]

    Liu, Ling

    1 QA-Pagelet: Data Preparation Techniques for Large Scale Data Analysis of the Deep Web James data preparation technique for large scale data analysis of the Deep Web. To support QA the Deep Web. Two unique features of the Thor framework are (1) the novel page clustering for grouping

  6. QA-Pagelet: Data Preparation Techniques for Large-Scale Data Analysis of the Deep Web

    E-Print Network [OSTI]

    Caverlee, James

    QA-Pagelet: Data Preparation Techniques for Large-Scale Data Analysis of the Deep Web James the QA-Pagelet as a fundamental data preparation technique for large-scale data analysis of the Deep Web-Pagelets from the Deep Web. Two unique features of the Thor framework are 1) the novel page clustering

  7. LARGE-SCALE MOVEMENT PATTERNS OF MALE LOGGERHEAD SEA TURTLES (CARETTA CARETTA)

    E-Print Network [OSTI]

    LARGE-SCALE MOVEMENT PATTERNS OF MALE LOGGERHEAD SEA TURTLES (CARETTA CARETTA) IN SHARK BAY Management Title of Thesis: Large-Scale Movement Patterns of Male Loggerhead Sea Turtles (Caretta caretta) in Shark Bay, Australia Report No. 524 Examining Committee: Chair: Christine Gruman Master of Resource

  8. LETTER doi:10.1038/nature11727 Large-scale nanophotonic phased array

    E-Print Network [OSTI]

    Reif, Rafael

    and astronomy1 . The ability to generate arbi- trary radiation patterns with large-scale phased arrays has long been pursued. Although it is extremely expensive and cumbersome to deploy large-scale radiofrequency of the nanoantennas pre- cisely balanced in power and aligned in phase to generate a designed, sophisticated radiation

  9. GridMate: A Portable Simulation Environment for Large-Scale Adaptive Scientific Applications

    E-Print Network [OSTI]

    Li, Xiaolin "Andy"

    GridMate: A Portable Simulation Environment for Large-Scale Adaptive Scientific Applications: parashar@caip.rutgers.edu Abstract--In this paper, we present a portable sim- ulation environment GridMate for large-scale adaptive scientific applications in multi-site Grid environments. GridMate is a discrete

  10. PENMAN Upper Model Building a LargeScale Knowledge Base for Machine Translation

    E-Print Network [OSTI]

    Knight, Kevin

    f g et al. Abstract PENMAN Upper Model Building a Large­Scale Knowledge Base for Machine­ gineer to build up an index to a KB in a second language, such as Spanish or Japanese. USC is a three­site collabora­ tive effort to build a large­scale knowledge­based ma­ chine translation system

  11. Harvesting Clean Energy How California Can Deploy Large-Scale Renewable

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Harvesting Clean Energy How California Can Deploy Large-Scale Renewable Energy Projects Harvesting Clean Energy: How California Can Deploy Large-Scale Renewable Energy Projects on Appropriate acres of impaired lands in the Westlands Water District in the Central Valley may soon have

  12. Large-Scale Integration of Deferrable Demand and Renewable Energy Sources

    E-Print Network [OSTI]

    Oren, Shmuel S.

    1 Large-Scale Integration of Deferrable Demand and Renewable Energy Sources Anthony Papavasiliou. In order to accurately assess the impacts of renewable energy integration and demand response integration model for assessing the impacts of the large-scale integration of renewable energy sources

  13. Automated Data Verification in a Large-scale Citizen Science Project: a Case Study

    E-Print Network [OSTI]

    Wong, Weng-Keen

    Automated Data Verification in a Large-scale Citizen Science Project: a Case Study Jun Yu1 , Steve,jag73}@cornell.edu Abstract-- Although citizen science projects can engage a very large number with eBird, which is a broad-scale citizen science project to collect bird observations, has shown

  14. Optimal Selection of AC Cables for Large Scale Offshore Wind Farms

    E-Print Network [OSTI]

    Hu, Weihao

    Optimal Selection of AC Cables for Large Scale Offshore Wind Farms Peng Hou, Weihao Hu, Zhe Chen@et.aau.dk, whu@iet.aau.dk, zch@iet.aau.dk Abstract--The investment of large scale offshore wind farms is high the operational requirements of the offshore wind farms and the connected power systems. In this paper, a new cost

  15. Impacts of Large-Scale Wind Generators Penetration on the Voltage Stability of Power Systems

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    development of wind energy tech- nology and the current world-wide status of grid-connected as well as standImpacts of Large-Scale Wind Generators Penetration on the Voltage Stability of Power Systems M. J systems and their dynamic behaviours to identify critical issues that limit the large-scale integration

  16. GCP: Gossip-based Code Propagation for Large-scale Mobile Wireless Sensor Network

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    GCP: Gossip-based Code Propagation for Large-scale Mobile Wireless Sensor Network Name: Yann Busnel-Marie Kermarrec Extended abstract Wireless sensor networks (WSN) are in a plentiful expansion. They are expected transmission. Keywords Wireless sensor network, mobile computing, large scale, diusion, software update

  17. Autonomous and Energy-Aware Management of Large-Scale Cloud Infrastructures

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Autonomous and Energy-Aware Management of Large-Scale Cloud Infrastructures Eugen Feller Advisor.e. self-organization and healing); (3) energy-awareness. However, existing open-source cloud management, and energy-aware resource management frameworks for large-scale cloud infrastructures. Particularly, a novel

  18. Large Scale Wind Turbine Siting Map Report NJ Department of Environmental Protection

    E-Print Network [OSTI]

    Holberton, Rebecca L.

    Large Scale Wind Turbine Siting Map Report NJ Department of Environmental Protection September 8 Jersey Department of Environmental Protection's (NJDEP) "Large Scale Wind Turbine Siting Map Management rules to address the development and permitting of wind turbines in the coastal zone

  19. Parallel domain decomposition for simulation of large-scale power grids

    E-Print Network [OSTI]

    Mohanram, Kartik

    of large-scale linear circuits such as power grids. DD techniques that use non-overlapping and overlap that with the proposed parallel DD framework, existing linear circuit simulators can be extended to handle large- scale can be solved independently in parallel using standard techniques for linear system analysis

  20. Evaluating the Potential for Large-Scale Biodiesel Deployments in a Global Context

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    Evaluating the Potential for Large-Scale Biodiesel Deployments in a Global Context by Matthew Johnston. All rights reserved. #12;#12;Evaluating the Potential for Large-Scale Biodiesel Deployments on the subject of biodiesel, but I can only hope she takes comfort knowing now much I appreciate everything she

  1. On the Evolution of Thermonuclear Flames on Large Scales

    E-Print Network [OSTI]

    Ju Zhang; O. E. Bronson Messer; Alexei M. Khokhlov; Tomasz Plewa

    2006-10-05T23:59:59.000Z

    The thermonuclear explosion of a massive white dwarf in a Type Ia supernova explosion is characterized by vastly disparate spatial and temporal scales. The extreme dynamic range inherent to the problem prevents the use of direct numerical simulation and forces modelers to resort to subgrid models to describe physical processes taking place on unresolved scales. We consider the evolution of a model thermonuclear flame in a constant gravitational field on a periodic domain. The gravitational acceleration is aligned with the overall direction of the flame propagation, making the flame surface subject to the Rayleigh-Taylor instability. The flame evolution is followed through an extended initial transient phase well into the steady-state regime. The properties of the evolution of flame surface are examined. We confirm the form of the governing equation of the evolution suggested by Khokhlov (1995). The mechanism of vorticity production and the interaction between vortices and the flame surface are discussed. The results of our investigation provide the bases for revising and extending previous subgrid-scale model.

  2. Large-Scale Urban Modeling by Combining Ground Level Panoramic and Aerial Imagery

    E-Print Network [OSTI]

    Shahabi, Cyrus

    building or part of a build- ing. Due to error propagation, they are difficult to scale up to model aerial image, we can identify the footprints(up to a common scale) of the buildings, in- cluding of multiple tall buildings. Existing methods for large-scale modeling mostly de- pend on remote sensing

  3. Improved Bounds for Large Scale Capacitated Arc Routing Problem

    E-Print Network [OSTI]

    2011-09-29T23:59:59.000Z

    ply a modified Iterated Local Search procedure to Capacitated Vehicle .... enter and leave the set S, in such a way that at least 2k(S) ? |?R(S)| times an ...... algorithm clearly outperformed, in terms of solution quality, those that dealt with large.

  4. Including Variability in Large-Scale Cluster Power Models

    E-Print Network [OSTI]

    Rivoire, Suzanne

    , mobile (laptop), desktop, and server processor spac- es, reflecting energy-efficient server.rivoire@sonoma.edu University of CA, Santa Cruz3 eka@soe.ucsc.edu Abstract--Studying the energy efficiency of large five-node clusters using embedded, laptop, desktop, and server processors. The variation is manifested

  5. Autonomous Science during Large-Scale Robotic David R. Thompson

    E-Print Network [OSTI]

    of geologic phenomena with a visible near-infrared spectrometer. We develop an approach to "sci- ence). Scientists can use these over-the-horizon modes to quickly characterize large areas and visit multiple geologic units between communications opportunities (Wettergreen et al., 2005; Cabrol et al., 2007

  6. Reducing cosmological small scale structure via a large dark matter-neutrino interaction: constraints and consequences

    E-Print Network [OSTI]

    Bridget Bertoni; Seyda Ipek; David McKeen; Ann E. Nelson

    2014-12-09T23:59:59.000Z

    Cold dark matter explains a wide range of data on cosmological scales. However, there has been a steady accumulation of evidence for discrepancies between simulations and observations at scales smaller than galaxy clusters. Solutions to these small scale structure problems may indicate that simulations need to improve how they include feedback from baryonic matter, or may imply that dark matter properties differ from the standard cold, noninteracting scenario. One promising way to affect structure formation on small scales is a relatively strong coupling of dark matter to neutrinos. We construct an experimentally viable, simple, renormalizable, model with new interactions between neutrinos and dark matter. We show that addressing the small scale structure problems requires dark matter with a mass that is tens of MeV, and a present-day density determined by an initial particle-antiparticle asymmetry in the dark sector. Generating a sufficiently large dark matter-neutrino coupling requires a new heavy neutrino with a mass around 100 MeV. The heavy neutrino is mostly sterile but has a substantial $\\tau$ neutrino component, while the three nearly massless neutrinos are partly sterile. We provide the first discussion of how such dark matter-neutrino interactions affect neutrino (especially $\\tau$ neutrino) phenomenology. This model can be tested by future astrophysical, particle physics, and neutrino oscillation data. A feature in the neutrino energy spectrum and flavor content from a future nearby supernova would provide strong evidence of neutrino-dark matter interactions. Promising signatures include anomalous matter effects in neutrino oscillations due to nonstandard interactions and a component of the $\\tau$ neutrino with mass around 100 MeV.

  7. Recent Accomplishments in the Irradiation Testing of Engineering-Scale Monolithic Fuel Specimens

    SciTech Connect (OSTI)

    N.E. Woolstenhulme; D.M. Wachs; M.K. Meyer; H.W. Glunz; R.B. Nielson

    2012-10-01T23:59:59.000Z

    The US fuel development team is focused on qualification and demonstration of the uranium-molybdenum monolithic fuel including irradiation testing of engineering-scale specimens. The team has recently accomplished the successful irradiation of the first monolithic multi-plate fuel element assembly within the AFIP-7 campaign. The AFIP-6 MKII campaign, while somewhat truncated by hardware challenges, exhibited successful irradiation of a large-scale monolithic specimen under extreme irradiation conditions. The channel gap and ultrasonic data are presented for AFIP-7 and AFIP-6 MKII, respectively. Finally, design concepts are summarized for future irradiations such as the base fuel demonstration and design demonstration experiment campaigns.

  8. Ice Dome Construction for Large Scale Habitats on Atmosphereless Bodies

    E-Print Network [OSTI]

    Farr, Stefan Harsan

    2013-01-01T23:59:59.000Z

    One of the greatest difficulties that space exploration faces is the lack of technology necessary to establish large volumes of habitable spaces on site. Both transporting the pre-built enclosures or transporting the equipment necessary for building them on site from conventional materials face the same enormous problem: the need to transport huge quantities of material into space, which is technically close to impossible. The current paper, explores the possibility and one approach of building these large spaces from an alternative material, water ice, a material that is a prerequisite for any settlement. The feasibility of dome shaped, pressurized, water ice buildings is analyzed from a structural integrity point of view and the possibility of building them with a technique using water sublimation and deposition onto a thin plastic film, a process which requires extremely little construction equipment with respect to the resulting habitable space.

  9. Scaling Laws for Reduced-Scale Tests of Pulse Jet Mixing Systems in Non-Newtonian Slurries: Gas Retention and Release Behavior

    SciTech Connect (OSTI)

    Stewart, Charles W.; Meyer, Perry A.; Kurath, Dean E.; Barnes, Steven M.

    2006-03-02T23:59:59.000Z

    The Waste Treatment Plant (WTP) under construction at the Hanford Site will use pulse jet mixer (PJM) technology for mixing and gas retention control applications in tanks expected to contain waste slurries exhibiting a non-Newtonian rheology. This paper presents the results of theoretical and experimental studies performed to establish the methodology to perform reduced-scale gas retention and release tests with PJM systems in non-Newtonian fluids with gas generation. The technical basis for scaled testing with unsteady jet mixing systems in gas-generating non-Newtonian fluids is presented in the form of a bubble migration model that accounts for the gas generation rate, the average bubble rise velocity, and the geometry of the vessel. Scaling laws developed from the model were validated with gas holdup and release tests conducted at three scales: large scale, 1/4 scale, and 1/9 scale. Experiments were conducted with two non-Newtonian simulants with in-situ gas generation by decomposition of hydrogen peroxide. The data were compared non-dimensionally, and the important scale laws were examined. From these results, scaling laws are developed which allow the design of mixing systems at a reduced scale.

  10. A test of first order scaling in Nf=2 QCD

    E-Print Network [OSTI]

    G. Cossu; M. D'Elia; A. Di Giacomo; C. Pica

    2007-09-30T23:59:59.000Z

    We complete our analysis of Nf=2 QCD based on the lattice staggered fermion formulation. Using a series of Monte Carlo simulations at fixed (amq*Ls^yh) one is able to test the universality class with given critical exponent yh. This strategy has been used to test the O(4) universality class and it has been presented at the previous Lattice conferences. No agreement was found with simulations in the mass range amq=[0.01335,0.15] using lattices with Ls=16 up to 32 and Lt=4. With the same strategy, we now investigate the possibility of a first order transition using a new set of Monte Carlo data corresponding to yh=3 in the same mass and volume range as the one used for O(4). A substantial agreement is observed both in the specific heat scaling and in the scaling of the chiral condensate, while the chiral susceptibilities still presents visible deviation from scaling in the mass range explored.

  11. Large-Scale Molecular Dynamics Simulations for Highly Parallel Infrastructures

    E-Print Network [OSTI]

    Pazúriková, Jana

    2014-01-01T23:59:59.000Z

    Computational chemistry allows researchers to experiment in sillico: by running a computer simulations of a biological or chemical processes of interest. Molecular dynamics with molecular mechanics model of interactions simulates N-body problem of atoms$-$it computes movements of atoms according to Newtonian physics and empirical descriptions of atomic electrostatic interactions. These simulations require high performance computing resources, as evaluations within each step are computationally demanding and billions of steps are needed to reach interesting timescales. Current methods decompose the spatial domain of the problem and calculate on parallel/distributed infrastructures. Even the methods with the highest strong scaling hit the limit at half a million cores: they are not able to cut the time to result if provided with more processors. At the dawn of exascale computing with massively parallel computational resources, we want to increase the level of parallelism by incorporating parallel-in-time comput...

  12. Cryogenic Control Architecture for Large-Scale Quantum Computing

    E-Print Network [OSTI]

    J. M. Hornibrook; J. I. Colless; I. D. Conway Lamb; S. J. Pauka; H. Lu; A. C. Gossard; J. D. Watson; G. C. Gardner; S. Fallahi; M. J. Manfra; D. J. Reilly

    2014-09-08T23:59:59.000Z

    Solid-state qubits have recently advanced to the level that enables them, in-principle, to be scaled-up into fault-tolerant quantum computers. As these physical qubits continue to advance, meeting the challenge of realising a quantum machine will also require the engineering of new classical hardware and control architectures with complexity far beyond the systems used in today's few-qubit experiments. Here, we report a micro-architecture for controlling and reading out qubits during the execution of a quantum algorithm such as an error correcting code. We demonstrate the basic principles of this architecture in a configuration that distributes components of the control system across different temperature stages of a dilution refrigerator, as determined by the available cooling power. The combined setup includes a cryogenic field-programmable gate array (FPGA) controlling a switching matrix at 20 millikelvin which, in turn, manipulates a semiconductor qubit.

  13. Large Scale Computing and Storage Requirements for Nuclear Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLSLaboratoryRowland toShadeEnvironmental Large

  14. Edit paper Methods for Large Scale Hydraulic Fracture Monitoring

    E-Print Network [OSTI]

    Ely, Gregory

    2013-01-01T23:59:59.000Z

    In this paper we propose computationally efficient and robust methods for estimating the moment tensor and location of micro-seismic event(s) for large search volumes. Our contribution is two-fold. First, we propose a novel joint-complexity measure, namely the sum of nuclear norms which while imposing sparsity on the number of fractures (locations) over a large spatial volume, also captures the rank-1 nature of the induced wavefield pattern. This wavefield pattern is modeled as the outer-product of the source signature with the amplitude pattern across the receivers from a seismic source. A rank-1 factorization of the estimated wavefield pattern at each location can therefore be used to estimate the seismic moment tensor using the knowledge of the array geometry. In contrast to existing work this approach allows us to drop any other assumption on the source signature. Second, we exploit the recently proposed first-order incremental projection algorithms for a fast and efficient implementation of the resulting...

  15. Feasibility of Large-Scale Ocean CO2 Sequestration

    SciTech Connect (OSTI)

    Peter Brewer

    2008-08-31T23:59:59.000Z

    Scientific knowledge of natural clathrate hydrates has grown enormously over the past decade, with spectacular new findings of large exposures of complex hydrates on the sea floor, the development of new tools for examining the solid phase in situ, significant progress in modeling natural hydrate systems, and the discovery of exotic hydrates associated with sea floor venting of liquid CO{sub 2}. Major unresolved questions remain about the role of hydrates in response to climate change today, and correlations between the hydrate reservoir of Earth and the stable isotopic evidence of massive hydrate dissociation in the geologic past. The examination of hydrates as a possible energy resource is proceeding apace for the subpermafrost accumulations in the Arctic, but serious questions remain about the viability of marine hydrates as an economic resource. New and energetic explorations by nations such as India and China are quickly uncovering large hydrate findings on their continental shelves. In this report we detail research carried out in the period October 1, 2007 through September 30, 2008. The primary body of work is contained in a formal publication attached as Appendix 1 to this report. In brief we have surveyed the recent literature with respect to the natural occurrence of clathrate hydrates (with a special emphasis on methane hydrates), the tools used to investigate them and their potential as a new source of natural gas for energy production.

  16. A review of large-scale LNG spills : experiment and modeling.

    SciTech Connect (OSTI)

    Luketa-Hanlin, Anay Josephine

    2005-04-01T23:59:59.000Z

    The prediction of the possible hazards associated with the storage and transportation of liquefied natural gas (LNG) by ship has motivated a substantial number of experimental and analytical studies. This paper reviews the experimental and analytical work performed to date on large-scale spills of LNG. Specifically, experiments on the dispersion of LNG, as well as experiments of LNG fires from spills on water and land are reviewed. Explosion, pool boiling, and rapid phase transition (RPT) explosion studies are described and discussed, as well as models used to predict dispersion and thermal hazard distances. Although there have been significant advances in understanding the behavior of LNG spills, technical knowledge gaps to improve hazard prediction are identified. Some of these gaps can be addressed with current modeling and testing capabilities. A discussion of the state of knowledge and recommendations to further improve the understanding of the behavior of LNG spills on water is provided.

  17. Optimized multi-site local orbitals in the large-scale DFT program CONQUEST

    E-Print Network [OSTI]

    Nakata, Ayako; Miyazaki, Tsuyoshi

    2015-01-01T23:59:59.000Z

    We introduce numerical optimization of multi-site support functions in the linear-scaling DFT code CONQUEST. Multi-site support functions, which are linear combinations of pseudo-atomic orbitals on a target atom and those neighbours within a cutoff, have been recently proposed to reduce the number of support functions to the minimal basis while keeping the accuracy of a large basis [J. Chem. Theory Comput., 2014, 10, 4813]. The coefficients were determined by using the local filter diagonalization (LFD) method [Phys. Rev. B, 2009, 80, 205104]. We analyse the effect of numerical optimization of the coefficients produced by the LFD method. Tests on crystalline silicon, a benzene molecule and hydrated DNA systems show that the optimization improves the accuracy of the multi-site support functions with small cutoffs. It is also confirmed that the optimization guarantees the variational energy minimizations with multi-site support functions.

  18. NESC-VII: Fracture Mechanics Analyses of WPS Experiments on Large-scale Cruciform Specimen

    SciTech Connect (OSTI)

    Yin, Shengjun [ORNL; Williams, Paul T [ORNL; Bass, Bennett Richard [ORNL

    2011-01-01T23:59:59.000Z

    This paper describes numerical analyses performed to simulate warm pre-stress (WPS) experiments conducted with large-scale cruciform specimens within the Network for Evaluation of Structural Components (NESC-VII) project. NESC-VII is a European cooperative action in support of WPS application in reactor pressure vessel (RPV) integrity assessment. The project aims in evaluation of the influence of WPS when assessing the structural integrity of RPVs. Advanced fracture mechanics models will be developed and performed to validate experiments concerning the effect of different WPS scenarios on RPV components. The Oak Ridge National Laboratory (ORNL), USA contributes to the Work Package-2 (Analyses of WPS experiments) within the NESCVII network. A series of WPS type experiments on large-scale cruciform specimens have been conducted at CEA Saclay, France, within the framework of NESC VII project. This paper first describes NESC-VII feasibility test analyses conducted at ORNL. Very good agreement was achieved between AREVA NP SAS and ORNL. Further analyses were conducted to evaluate the NESC-VII WPS tests conducted under Load-Cool-Transient- Fracture (LCTF) and Load-Cool-Fracture (LCF) conditions. This objective of this work is to provide a definitive quantification of WPS effects when assessing the structural integrity of reactor pressure vessels. This information will be utilized to further validate, refine, and improve the WPS models that are being used in probabilistic fracture mechanics computer codes now in use by the NRC staff in their effort to develop risk-informed updates to Title 10 of the U.S. Code of Federal Regulations (CFR), Part 50, Appendix G.

  19. Capacitor placement and real time control in large-scale unbalanced distribution systems: Numerical studies

    SciTech Connect (OSTI)

    Wang, J.C.; Chiang, H.D.; Miu, K.N. [Cornell Univ., Ithaca, NY (United States). School of Electrical Engineering; Darling, G. [NYSEG Corp., Binghamton, NY (United States). Distribution System Dept.

    1997-04-01T23:59:59.000Z

    A novel solution algorithm for capacitor placement and real-time control in real large-scale unbalanced distribution systems is evaluated and implemented to determine the number, locations, sizes, types and control schemes of capacitors to be placed on large-scale unbalanced distribution systems. A detailed numerical study regarding the solution algorithm in large scale unbalanced distribution systems is undertaken. Promising numerical results on both 292 bus and 394 bus real unbalanced distribution systems containing unbalanced loads and phasing and various types of transformers are presented. The computational performance for the capacitor control problem under load variations is encouraging.

  20. The role of large-scale, extratropical dynamics in climate change

    SciTech Connect (OSTI)

    Shepherd, T.G. [ed.

    1994-02-01T23:59:59.000Z

    The climate modeling community has focused recently on improving our understanding of certain processes, such as cloud feedbacks and ocean circulation, that are deemed critical to climate-change prediction. Although attention to such processes is warranted, emphasis on these areas has diminished a general appreciation of the role played by the large-scale dynamics of the extratropical atmosphere. Lack of interest in extratropical dynamics may reflect the assumption that these dynamical processes are a non-problem as far as climate modeling is concerned, since general circulation models (GCMs) calculate motions on this scale from first principles. Nevertheless, serious shortcomings in our ability to understand and simulate large-scale dynamics exist. Partly due to a paucity of standard GCM diagnostic calculations of large-scale motions and their transports of heat, momentum, potential vorticity, and moisture, a comprehensive understanding of the role of large-scale dynamics in GCM climate simulations has not been developed. Uncertainties remain in our understanding and simulation of large-scale extratropical dynamics and their interaction with other climatic processes, such as cloud feedbacks, large-scale ocean circulation, moist convection, air-sea interaction and land-surface processes. To address some of these issues, the 17th Stanstead Seminar was convened at Bishop`s University in Lennoxville, Quebec. The purpose of the Seminar was to promote discussion of the role of large-scale extratropical dynamics in global climate change. Abstracts of the talks are included in this volume. On the basis of these talks, several key issues emerged concerning large-scale extratropical dynamics and their climatic role. Individual records are indexed separately for the database.

  1. Uncertainty quantification for large-scale ocean circulation predictions.

    SciTech Connect (OSTI)

    Safta, Cosmin; Debusschere, Bert J.; Najm, Habib N.; Sargsyan, Khachik

    2010-09-01T23:59:59.000Z

    Uncertainty quantificatio in climate models is challenged by the sparsity of the available climate data due to the high computational cost of the model runs. Another feature that prevents classical uncertainty analyses from being easily applicable is the bifurcative behavior in the climate data with respect to certain parameters. A typical example is the Meridional Overturning Circulation in the Atlantic Ocean. The maximum overturning stream function exhibits discontinuity across a curve in the space of two uncertain parameters, namely climate sensitivity and CO{sub 2} forcing. We develop a methodology that performs uncertainty quantificatio in the presence of limited data that have discontinuous character. Our approach is two-fold. First we detect the discontinuity location with a Bayesian inference, thus obtaining a probabilistic representation of the discontinuity curve location in presence of arbitrarily distributed input parameter values. Furthermore, we developed a spectral approach that relies on Polynomial Chaos (PC) expansions on each sides of the discontinuity curve leading to an averaged-PC representation of the forward model that allows efficient uncertainty quantification and propagation. The methodology is tested on synthetic examples of discontinuous data with adjustable sharpness and structure.

  2. A localised subgrid scale model for fluid dynamical simulations in astrophysics I: Theory and numerical tests

    E-Print Network [OSTI]

    W. Schmidt; J. C. Niemeyer; W. Hillebrandt

    2006-01-23T23:59:59.000Z

    We present a one-equation subgrid scale model that evolves the turbulence energy corresponding to unresolved velocity fluctuations in large eddy simulations. The model is derived in the context of the Germano consistent decomposition of the hydrodynamical equations. The eddy-viscosity closure for the rate of energy transfer from resolved toward subgrid scales is localised by means of a dynamical procedure for the computation of the closure parameter. Therefore, the subgrid scale model applies to arbitrary flow geometry and evolution. For the treatment of microscopic viscous dissipation a semi-statistical approach is used, and the gradient-diffusion hypothesis is adopted for turbulent transport. A priori tests of the localised eddy-viscosity closure and the gradient-diffusion closure are made by analysing data from direct numerical simulations. As an a posteriori testing case, the large eddy simulation of thermonuclear combustion in forced isotropic turbulence is discussed. We intend the formulation of the subgrid scale model in this paper as a basis for more advanced applications in numerical simulations of complex astrophysical phenomena involving turbulence.

  3. Underground tank vitrification: Engineering-scale test results

    SciTech Connect (OSTI)

    Campbell, B.E.; Timmerman, C.L.; Bonner, W.F.

    1990-06-01T23:59:59.000Z

    Contamination associated with underground tanks at US Department of Energy sites and other sites may be effectively remediated by application of in situ vitrification (ISV) technology. In situ vitrification converts contaminated soil and buried wastes such as underground tanks into a glass and crystalline block, similar to obsidian with crystalline phases. A radioactive engineering-scale test performed at Pacific Northwest Laboratory in September 1989 demonstrated the feasibility of using ISV for this application. A 30-cm-diameter (12-in.-diameter) buried steel and concrete tank containing simulated tank sludge was vitrified, producing a solid block. The tank sludge used in the test simulated materials in tanks at Oak Ridge National Laboratory. Hazardous components of the tank sludge were immobilized or removed and captured in the off-gas treatment system. The steel tank was converted to ingots near the bottom of the block and the concrete walls were dissolved into the resulting glass and crystalline block. Although one of the four moving electrodes froze'' in place about halfway into the test, operations were able to continue. The test was successfully completed and all the tank sludge was vitrified. 7 refs., 12 figs., 5 tabs.

  4. LARGE-SCALE UNSTEADINESS IN A TWO-DIMENSIONAL DIFFUSER: NUMERICAL STUDY TOWARD ACTIVE SEPARATION CONTROL

    E-Print Network [OSTI]

    Colonius, Tim

    of Technology, Pasadena, California 91125 ABSTRACT We develop a reduced order model for large-scale unsteadiness mass injection can pinch off vortices with a smaller size; accordingly, their convective velocity

  5. The Association of Large-Scale Climate Variability and Teleconnections on Wind Energy Resource

    E-Print Network [OSTI]

    The Association of Large-Scale Climate Variability and Teleconnections on Wind Energy Resource over on Wind Energy Resource over Europe and its Intermittency Pascal Kriesche* and Adam Schlosser* Abstract

  6. Programmable window : a large-scale transparent electronic display using SPD film

    E-Print Network [OSTI]

    Ramos, Martin (Ramos Rizo-Patron)

    2004-01-01T23:59:59.000Z

    This research demonstrates that Suspended Particle Device (SPD) film is a viable option for the development of large-scale transparent display systems. The thesis analyzes the SPD film from an architectural display application ...

  7. A multiperiod optimization model to schedule large-scale petroleum development projects

    E-Print Network [OSTI]

    Husni, Mohammed Hamza

    2009-05-15T23:59:59.000Z

    This dissertation solves an optimization problem in the area of scheduling large-scale petroleum development projects under several resources constraints. The dissertation focuses on the application of a metaheuristic search Genetic Algorithm (GA...

  8. Large scale oceanic circulation and fluxes of freshwater, heat, nutrients and oxygen

    E-Print Network [OSTI]

    Ganachaud, Alexandre Similien, 1970-

    2000-01-01T23:59:59.000Z

    A new, global inversion is used to estimate the large scale oceanic circulation based on the World Ocean Circulation Experiment and Java Australia Dynamic Experiment hydrographic data. A linear inverse "box" model is used ...

  9. A randomized Mirror-Prox method for solving structured large-scale ...

    E-Print Network [OSTI]

    2011-12-06T23:59:59.000Z

    Dec 6, 2011 ... value optimization, large-scale problems, matrix exponentiation .... conclusions are demonstrated by numerical evidence: for solving problems (up to ...... To build such a procedure, we can specify T = T(?) in such a way.

  10. Fault prophet : a fault injection tool for large scale computer systems

    E-Print Network [OSTI]

    Tchwella, Tal

    2014-01-01T23:59:59.000Z

    In this thesis, I designed and implemented a fault injection tool, to study the impact of soft errors for large scale systems. Fault injection is used as a mechanism to simulate soft errors, measure the output variability ...

  11. Census: Location-Aware Membership Management for Large-Scale Distributed Systems

    E-Print Network [OSTI]

    Cowling, James Alexander

    We present Census, a platform for building large-scale distributed applications. Census provides a membership service and a multicast mechanism. The membership service provides every node with a consistent view of the ...

  12. Model-constrained optimization methods for reduction of parameterized large-scale systems

    E-Print Network [OSTI]

    Bui-Thanh, Tan

    2007-01-01T23:59:59.000Z

    Most model reduction techniques employ a projection framework that utilizes a reduced-space basis. The basis is usually formed as the span of a set of solutions of the large-scale system, which are computed for selected ...

  13. Model-Constrained Optimization Methods for Reduction of Parameterized Large-Scale Systems

    E-Print Network [OSTI]

    Tan, Bui-Thanh

    Most model reduction techniques employ a projection framework that utilizes a reduced-space basis. The basis is usually formed as the span of a set of solutions of the large-scale system, which are computed for selected ...

  14. Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation

    E-Print Network [OSTI]

    Collins, James J.

    Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America, 2 Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America, 3 Boston

  15. A statistical learning framework for data mining of large-scale systems : algorithms, implementation, and applications

    E-Print Network [OSTI]

    Tsou, Ching-Huei, 1973-

    2007-01-01T23:59:59.000Z

    A machine learning framework is presented that supports data mining and statistical modeling of systems that are monitored by large-scale sensor networks. The proposed algorithm is novel in that it takes both observations ...

  16. Metal Catalyzed sp2 Bonded Carbon - Large-scale Graphene Synthesis...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metal Catalyzed sp2 Bonded Carbon - Large-scale Graphene Synthesis and Beyond December 1, 2009 at 3pm36-428 Peter Sutter Center for Functional Nanomaterials sutter abstract:...

  17. Chemical engineers design, control and optimize large-scale chemical, physicochemical and

    E-Print Network [OSTI]

    Rohs, Remo

    , Biochemical, Environmental, Petroleum Engineering and Nantoechnology. CHEMICAL&MATERIALSSCIENCE CHE OVERVIEW of Science 131 units · Chemical Engineering (Petroleum) Bachelor of Science 136 units · Chemical Engineering38 Chemical engineers design, control and optimize large-scale chemical, physicochemical

  18. Bridging the Gap Between Commissioning Measures and Large Scale Retrofits in Existing Buildings

    E-Print Network [OSTI]

    Bynum, J.; Jones, A.; Claridge, D.E.

    2011-01-01T23:59:59.000Z

    Most often commissioning of existing buildings seeks to reduce a building's energy consumption by implementation of operational changes via the existing equipment. In contrast, large scale capital retrofits seek to make major changes...

  19. Bridging the Gap Between Commissioning Measures and Large Scale Retrofits in Existing Buildings

    E-Print Network [OSTI]

    Bynum, J.; Jones, A.; Claridge, D. E.

    Most often commissioning of existing buildings seeks to reduce a building’s energy consumption by implementation of operational changes via the existing equipment. In contrast, large scale capital retrofits seek to make major changes to the systems...

  20. Membraneless hydrogen bromine laminar flow battery for large-scale energy storage

    E-Print Network [OSTI]

    Braff, William Allan

    2014-01-01T23:59:59.000Z

    Electrochemical energy storage systems have been considered for a range of potential large-scale energy storage applications. These applications vary widely, both in the order of magnitude of energy storage that is required ...

  1. Potential Climatic Impacts and Reliability of Very Large-Scale Wind Farms

    E-Print Network [OSTI]

    Wang, Chien

    Meeting future world energy needs while addressing climate change requires large-scale deployment of low or zero greenhouse gas (GHG) emission technologies such as wind energy. The widespread availability of wind power has ...

  2. Field Scale Test and Verification of CHP System at the Ritz Carlton...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Field Scale Test and Verification of CHP System at the Ritz Carlton, San Francisco, August 2007 Field Scale Test and Verification of CHP System at the Ritz Carlton, San Francisco,...

  3. Large-Scale Analysis of Individual and Task Differences in Search Result Page Examination Strategies

    E-Print Network [OSTI]

    Dumais, Susan

    Large-Scale Analysis of Individual and Task Differences in Search Result Page Examination users examine results which are similar to those observed in small-scale studies. Our findings have differences on search result page examination strategies is important in develop- ing improved search engines

  4. Environmental impacts of large-scale grid-connected ground-mounted PV installations

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Environmental impacts of large-scale grid-connected ground-mounted PV installations Antoine Beylota-scale ground-mounted PV installations by considering a life-cycle approach. The methodology is based. Mobile PV installations with dual-axis trackers show the largest impact potential on ecosystem quality

  5. Personal Workspace for Large-Scale Data-Driven Computational Experiment

    E-Print Network [OSTI]

    Plale, Beth

    's personal workspace is a virtual repository of a user's data products. Its conceptual space is organizedPersonal Workspace for Large-Scale Data-Driven Computational Experiment Yiming Sun, Scott Jensen@cs.indiana.edu plale@cs.indiana.edu Abstract 1 -- As the scale and complexity of data-driven computational science

  6. Communications via Systems-on-Chips Clustering in Large-Scaled Sensor Networks

    E-Print Network [OSTI]

    Fan, Jeffrey

    node, the large-scaled senor network is proposed to be transformed into a maze diagram by a user of data, including temperature, humidity, pressure, noise levels, vehicular movement, etc to the functionalities of a highly scaled VLSI silicon chip with multi-cored environments. In other words, each SoC has

  7. Domain Controlled Architecture A New Approach for Large Scale Software Integrated Automotive Systems

    E-Print Network [OSTI]

    Kühnhauser, Winfried

    Domain Controlled Architecture A New Approach for Large Scale Software Integrated Automotive Scale Software Integration, LSSI, Automotive Real Time, Multi-core, Many-core, Embedded Automo- tive mobility domain. The automotive in- dustry is confronted with a rising system complexity and several

  8. Full-Scale Cask Testing and Public Acceptance of Spent Nuclear Fuel Shipments - 12254

    SciTech Connect (OSTI)

    Dilger, Fred [Black Mountain Research, Henderson, NV 81012 (United States); Halstead, Robert J. [State of Nevada Agency for Nuclear Projects Carson City, NV 80906 (United States); Ballard, James D. [Department of Sociology, California State University, Northridge Northridge, CA 91330 (United States)

    2012-07-01T23:59:59.000Z

    Full-scale physical testing of spent fuel shipping casks has been proposed by the National Academy of Sciences (NAS) 2006 report on spent nuclear fuel transportation, and by the Presidential Blue Ribbon Commission (BRC) on America's Nuclear Future 2011 draft report. The U.S. Nuclear Regulatory Commission (NRC) in 2005 proposed full-scale testing of a rail cask, and considered 'regulatory limits' testing of both rail and truck casks (SRM SECY-05-0051). The recent U.S. Department of Energy (DOE) cancellation of the Yucca Mountain project, NRC evaluation of extended spent fuel storage (possibly beyond 60-120 years) before transportation, nuclear industry adoption of very large dual-purpose canisters for spent fuel storage and transport, and the deliberations of the BRC, will fundamentally change assumptions about the future spent fuel transportation system, and reopen the debate over shipping cask performance in severe accidents and acts of sabotage. This paper examines possible approaches to full-scale testing for enhancing public confidence in risk analyses, perception of risk, and acceptance of spent fuel shipments. The paper reviews the literature on public perception of spent nuclear fuel and nuclear waste transportation risks. We review and summarize opinion surveys sponsored by the State of Nevada over the past two decades, which show consistent patterns of concern among Nevada residents about health and safety impacts, and socioeconomic impacts such as reduced property values along likely transportation routes. We also review and summarize the large body of public opinion survey research on transportation concerns at regional and national levels. The paper reviews three past cask testing programs, the way in which these cask testing program results were portrayed in films and videos, and examines public and official responses to these three programs: the 1970's impact and fire testing of spent fuel truck casks at Sandia National Laboratories, the 1980's regulatory and demonstration testing of MAGNOX fuel flasks in the United Kingdom (the CEGB 'Operation Smash Hit' tests), and the 1980's regulatory drop and fire tests conducted on the TRUPACT II containers used for transuranic waste shipments to the Waste Isolation Pilot Plant in New Mexico. The primary focus of the paper is a detailed evaluation of the cask testing programs proposed by the NRC in its decision implementing staff recommendations based on the Package Performance Study, and by the State of Nevada recommendations based on previous work by Audin, Resnikoff, Dilger, Halstead, and Greiner. The NRC approach is based on demonstration impact testing (locomotive strike) of a large rail cask, either the TAD cask proposed by DOE for spent fuel shipments to Yucca Mountain, or a similar currently licensed dual-purpose cask. The NRC program might also be expanded to include fire testing of a legal-weight truck cask. The Nevada approach calls for a minimum of two tests: regulatory testing (impact, fire, puncture, immersion) of a rail cask, and extra-regulatory fire testing of a legal-weight truck cask, based on the cask performance modeling work by Greiner. The paper concludes with a discussion of key procedural elements - test costs and funding sources, development of testing protocols, selection of testing facilities, and test peer review - and various methods of communicating the test results to a broad range of stakeholder audiences. (authors)

  9. Large-scale simulation of methane dissociation along the West Spitzbergen Margin

    SciTech Connect (OSTI)

    Reagan, M.T.; Moridis, G.J.

    2009-07-15T23:59:59.000Z

    Vast quantities of methane are trapped in oceanic hydrate deposits, and there is concern that a rise in the ocean temperature will induce dissociation of these hydrate accumulations, potentially releasing large amounts of methane into the atmosphere. The recent discovery of active methane gas venting along the landward limit of the gas hydrate stability zone (GHSZ) on the shallow continental slope west of Spitsbergen could be an indication of this process, if the source of the methane can be confidently attributed to dissociating hydrates. In the first large-scale simulation study of its kind, we simulate shallow hydrate dissociation in conditions representative of the West Spitsbergen margin to test the hypothesis that the observed gas release originated from hydrates. The simulation results are consistent with this hypothesis, and are in remarkable agreement with the recently published observations. They show that shallow, low-saturation hydrate deposits, when subjected to temperature increases at the seafloor, can release significant quantities of methane, and that the releases will be localized near the landward limit of the top of the GHSZ. These results indicate the possibility that hydrate dissociation and methane release may be both a consequence and a cause of climate change.

  10. I/O-Conscious Data Preparation for Large-Scale Web Search Engines

    E-Print Network [OSTI]

    Chiueh, Tzi-cker

    a general technique for efficiently car- rying out large sets of simple transformation or queryingI/O-Conscious Data Preparation for Large-Scale Web Search Engines Maxim Lifantsev Tzi-cker Chiueh of the transformation and querying operations that work with the data. This data and processing partitioning is natu

  11. Facility Location under Demand Uncertainty: Response to a Large-scale Bioterror Attack

    E-Print Network [OSTI]

    Dessouky, Maged

    Facility Location under Demand Uncertainty: Response to a Large-scale Bioterror Attack Abstract In the event of a catastrophic bio-terror attack, major urban centers need to effi- ciently distribute large of a hypothetical anthrax attack in Los Angeles County. Keywords: Capacitated facility location, distance

  12. A Systematic Approach to the Design of a Large Scale Detritiation System for Controlled Thermonuclear Fusion Experiments

    E-Print Network [OSTI]

    A Systematic Approach to the Design of a Large Scale Detritiation System for Controlled Thermonuclear Fusion Experiments

  13. Measuring and tuning energy efficiency on large scale high performance computing platforms.

    SciTech Connect (OSTI)

    Laros, James H., III

    2011-08-01T23:59:59.000Z

    Recognition of the importance of power in the field of High Performance Computing, whether it be as an obstacle, expense or design consideration, has never been greater and more pervasive. While research has been conducted on many related aspects, there is a stark absence of work focused on large scale High Performance Computing. Part of the reason is the lack of measurement capability currently available on small or large platforms. Typically, research is conducted using coarse methods of measurement such as inserting a power meter between the power source and the platform, or fine grained measurements using custom instrumented boards (with obvious limitations in scale). To collect the measurements necessary to analyze real scientific computing applications at large scale, an in-situ measurement capability must exist on a large scale capability class platform. In response to this challenge, we exploit the unique power measurement capabilities of the Cray XT architecture to gain an understanding of power use and the effects of tuning. We apply these capabilities at the operating system level by deterministically halting cores when idle. At the application level, we gain an understanding of the power requirements of a range of important DOE/NNSA production scientific computing applications running at large scale (thousands of nodes), while simultaneously collecting current and voltage measurements on the hosting nodes. We examine the effects of both CPU and network bandwidth tuning and demonstrate energy savings opportunities of up to 39% with little or no impact on run-time performance. Capturing scale effects in our experimental results was key. Our results provide strong evidence that next generation large-scale platforms should not only approach CPU frequency scaling differently, but could also benefit from the capability to tune other platform components, such as the network, to achieve energy efficient performance.

  14. A Minimal Model for Large-scale Epitaxial Growth Kinetics of Graphene

    E-Print Network [OSTI]

    Jiang, Huijun

    2015-01-01T23:59:59.000Z

    Epitaxial growth via chemical vapor deposition is considered to be the most promising way towards synthesizing large area graphene with high quality. However, it remains a big theoretical challenge to reveal growth kinetics with atomically energetic and large-scale spatial information included. Here, we propose a minimal kinetic Monte Carlo model to address such an issue on an active catalyst surface with graphene/substrate lattice mismatch, which facilitates us to perform large scale simulations of the growth kinetics over two dimensional surface with growth fronts of complex shapes. A geometry-determined large-scale growth mechanism is revealed, where the rate-dominating event is found to be $C_{1}$-attachment for concave growth front segments and $C_{5}$-attachment for others. This growth mechanism leads to an interesting time-resolved growth behavior which is well consistent with that observed in a recent scanning tunneling microscopy experiment.

  15. A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage

    E-Print Network [OSTI]

    Cui, Yi

    A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage Yuan Yang,a Guangyuan Zhengb and Yi Cui*ac Large-scale energy storage represents a key challenge for renewable energy develop a new lithium/ polysulfide (Li/PS) semi-liquid battery for large-scale energy storage

  16. Factory overload testing of a large power transformer

    SciTech Connect (OSTI)

    Douglas, D.H.; Lawrence, C.O.; Templeton, J.B.

    1985-09-01T23:59:59.000Z

    A factory overload test of up to 150% of the nameplate rating was run on a 224 MVA autotransformer. The results of this test were of great value and were used in identifying transformer overload limitations, in evaluating loading guide oil and winding equations, exponents and time constants, and in helping to perfect a factory overload test procedure.

  17. A full-scale thermal test and analytical evaluation of the beneficial uses shipping system cask

    SciTech Connect (OSTI)

    Moya, J.L.; Akau, R.L.

    1988-09-01T23:59:59.000Z

    A thermal test of the Beneficial Uses Shipping System (BUSS) cask containing irradiation source capsules was conducted to verify a two-dimensional axisymmetric thermal model developed for the Safety Analysis Report. The BUSS cask is a Type B package developed to transport irradiation source capsules of cesium chloride or strontium fluoride to commercially licensed food and pharmaceutical irradiating facilities. The uniqueness of this test is that it was performed on an internally instrumented, full-scale cask with actual radioactive capsules. This resulted in more realistic system temperatures than those obtained if heaters were used to simulate the large gamma source. In addition, the thermal test provides benchmark data for other thermal codes. 12 refs.; 24 figs.; 2 tabs.

  18. Collaborative Visualization for Large-Scale Accelerator Electromagnetic Modeling (Final Report)

    SciTech Connect (OSTI)

    William J. Schroeder

    2011-11-13T23:59:59.000Z

    This report contains the comprehensive summary of the work performed on the SBIR Phase II, Collaborative Visualization for Large-Scale Accelerator Electromagnetic Modeling at Kitware Inc. in collaboration with Stanford Linear Accelerator Center (SLAC). The goal of the work was to develop collaborative visualization tools for large-scale data as illustrated in the figure below. The solutions we proposed address the typical problems faced by geographicallyand organizationally-separated research and engineering teams, who produce large data (either through simulation or experimental measurement) and wish to work together to analyze and understand their data. Because the data is large, we expect that it cannot be easily transported to each team member's work site, and that the visualization server must reside near the data. Further, we also expect that each work site has heterogeneous resources: some with large computing clients, tiled (or large) displays and high bandwidth; others sites as simple as a team member on a laptop computer. Our solution is based on the open-source, widely used ParaView large-data visualization application. We extended this tool to support multiple collaborative clients who may locally visualize data, and then periodically rejoin and synchronize with the group to discuss their findings. Options for managing session control, adding annotation, and defining the visualization pipeline, among others, were incorporated. We also developed and deployed a Web visualization framework based on ParaView that enables the Web browser to act as a participating client in a collaborative session. The ParaView Web Visualization framework leverages various Web technologies including WebGL, JavaScript, Java and Flash to enable interactive 3D visualization over the web using ParaView as the visualization server. We steered the development of this technology by teaming with the SLAC National Accelerator Laboratory. SLAC has a computationally-intensive problem important to the nations scientific progress as described shortly. Further, SLAC researchers routinely generate massive amounts of data, and frequently collaborate with other researchers located around the world. Thus SLAC is an ideal teammate through which to develop, test and deploy this technology. The nature of the datasets generated by simulations performed at SLAC presented unique visualization challenges especially when dealing with higher-order elements that were addressed during this Phase II. During this Phase II, we have developed a strong platform for collaborative visualization based on ParaView. We have developed and deployed a ParaView Web Visualization framework that can be used for effective collaboration over the Web. Collaborating and visualizing over the Web presents the community with unique opportunities for sharing and accessing visualization and HPC resources that hitherto with either inaccessible or difficult to use. The technology we developed in here will alleviate both these issues as it becomes widely deployed and adopted.

  19. Large-Scale Urban Decontamination; Developments, Historical Examples and Lessons Learned

    SciTech Connect (OSTI)

    Rick Demmer

    2007-02-01T23:59:59.000Z

    Recent terrorist threats and actual events have lead to a renewed interest in the technical field of large scale, urban environment decontamination. One of the driving forces for this interest is the real potential for the cleanup and removal of radioactive dispersal device (RDD or “dirty bomb”) residues. In response the U. S. Government has spent many millions of dollars investigating RDD contamination and novel decontamination methodologies. Interest in chemical and biological (CB) cleanup has also peaked with the threat of terrorist action like the anthrax attack at the Hart Senate Office Building and with catastrophic natural events such as Hurricane Katrina. The efficiency of cleanup response will be improved with these new developments and a better understanding of the “old reliable” methodologies. Perhaps the most interesting area of investigation for large area decontamination is that of the RDD. While primarily an economic and psychological weapon, the need to cleanup and return valuable or culturally significant resources to the public is nonetheless valid. Several private companies, universities and National Laboratories are currently developing novel RDD cleanup technologies. Because of its longstanding association with radioactive facilities, the U. S. Department of Energy National Laboratories are at the forefront in developing and testing new RDD decontamination methods. However, such cleanup technologies are likely to be fairly task specific; while many different contamination mechanisms, substrate and environmental conditions will make actual application more complicated. Some major efforts have also been made to model potential contamination, to evaluate both old and new decontamination techniques and to assess their readiness for use. Non-radioactive, CB threats each have unique decontamination challenges and recent events have provided some examples. The U. S. Environmental Protection Agency (EPA), as lead agency for these emergency cleanup responses, has a sound approach for decontamination decision-making that has been applied several times. The anthrax contamination at the U. S. Hart Senate Office Building and numerous U. S. Post Office facilities are examples of employing novel technical responses. Decontamination of the Hart Office building required development of a new approach for high level decontamination of biological contamination as well as techniques for evaluating the technology effectiveness. The World Trade Center destruction also demonstrated the need for, and successful implementation of, appropriate cleanup methodologies. There are a number of significant lessons that can be gained from a look at previous large scale cleanup projects. Too often we are quick to apply a costly “package and dispose” method when sound technological cleaning approaches are available. Understanding historical perspectives, advanced planning and constant technology improvement are essential to successful decontamination.

  20. DOE's New Large Blade Test Facility in Massachusetts Completes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (WTTC), in Boston, Massachusetts, has come up to full speed testing the long wind turbine blades produced for today's larger wind turbines. Constructed with a combination of...

  1. What Will the Neighbors Think? Building Large-Scale Science Projects Around the World

    ScienceCinema (OSTI)

    Craig Jones, Christian Mrotzek, Nobu Toge and Doug Sarno

    2010-01-08T23:59:59.000Z

    Public participation is an essential ingredient for turning the International Linear Collider into a reality. Wherever the proposed particle accelerator is sited in the world, its neighbors -- in any country -- will have something to say about hosting a 35-kilometer-long collider in their backyards. When it comes to building large-scale physics projects, almost every laboratory has a story to tell. Three case studies from Japan, Germany and the US will be presented to examine how community relations are handled in different parts of the world. How do particle physics laboratories interact with their local communities? How do neighbors react to building large-scale projects in each region? How can the lessons learned from past experiences help in building the next big project? These and other questions will be discussed to engage the audience in an active dialogue about how a large-scale project like the ILC can be a good neighbor.

  2. Copy of Using Emulation and Simulation to Understand the Large-Scale Behavior of the Internet.

    SciTech Connect (OSTI)

    Adalsteinsson, Helgi; Armstrong, Robert C.; Chiang, Ken; Gentile, Ann C. [Sandia National Laboratories, Albuquerque, NM; Lloyd, Levi; Minnich, Ronald G.; Vanderveen, Keith; Van Randwyk, Jamie A; Rudish, Don W.

    2008-10-01T23:59:59.000Z

    We report on the work done in the late-start LDRDUsing Emulation and Simulation toUnderstand the Large-Scale Behavior of the Internet. We describe the creation of a researchplatform that emulates many thousands of machines to be used for the study of large-scale inter-net behavior. We describe a proof-of-concept simple attack we performed in this environment.We describe the successful capture of a Storm bot and, from the study of the bot and furtherliterature search, establish large-scale aspects we seek to understand via emulation of Storm onour research platform in possible follow-on work. Finally, we discuss possible future work.3

  3. A Scaleless Snake: Tests of the Role of Reptilian Scales in Water Loss and Heat Transfer

    E-Print Network [OSTI]

    Bennett, Albert F.

    A Scaleless Snake: Tests of the Role of Reptilian Scales in Water Loss and Heat Transfer Reprinted: Tests of the Role of Reptilian Scales in Water Loss and Heat Transfer A unique specimen of gopher snake of pulmocutaneous water loss and heat transfer, no difference was observed between the scale- less animal

  4. Diffuse Pionic Gamma-Ray Emission from Large Scale Structures in the FERMI Era

    E-Print Network [OSTI]

    Aleksandra Dobardzic; Tijana Prodanovic

    2014-04-08T23:59:59.000Z

    For more than a decade now the complete origin of the diffuse gamma-ray emission background (EGRB) has been unknown. Major components like unresolved star-forming galaxies (making SFCR gamma-ray emission are weak (above the observed EGRB) in some case, in others, some of our models can provide a good fit to the observed EGRB. More importantly, we show that these large-scale shocks could still give an important contribution to the EGRB, especially at high energies. Future detections of cluster gamma-ray emission would help place tighter constraints on our models and give us a better insight into large-scale shocks forming around them.

  5. Theory of large-scale turbulent transport of chemically active pollutants

    SciTech Connect (OSTI)

    Chefranov, S.G.

    1986-01-01T23:59:59.000Z

    This paper shows that ordered Turing structures may be produced in the large-scale turbulent mixing of chemically active pollutants as a result of statistical instability of the spatially homogeneous state. Threshold values are obtained for the variance of a random non-Gaussian velocity field, beyond which this statistical instability is realized even in two-component systems with quadratically nonlinear kinetics. The possibility for the formation of large-scale spatially non-homogeneous concentration distributions of chemically active pollutants by this mechanism is examined.

  6. Turbulence Modelling and Stirring Mechanisms in the Cosmological Large-scale Structure

    E-Print Network [OSTI]

    Iapichino, L; Niemeyer, J C; Merklein, J

    2011-01-01T23:59:59.000Z

    FEARLESS (Fluid mEchanics with Adaptively Refined Large Eddy SimulationS) is a numerical scheme for modelling subgrid-scale turbulence in cosmological adaptive mesh refinement simulations. In this contribution, the main features of this tool will be outlined. We discuss the application of this method to cosmological simulations of the large-scale structure. The simulations show that the production of turbulence has a different redshift dependence in the intra-cluster medium and the warm-hot intergalactic medium, caused by the distinct stirring mechanisms (mergers and shock interactions) acting in them. Some properties of the non-thermal pressure support in the two baryon phases are also described.

  7. Thermal Performance Evaluation of Attic Radiant Barrier Systems Using the Large Scale Climate Simulator (LSCS)

    SciTech Connect (OSTI)

    Shrestha, Som S [ORNL] [ORNL; Miller, William A [ORNL] [ORNL; Desjarlais, Andre Omer [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    Application of radiant barriers and low-emittance surface coatings in residential building attics can significantly reduce conditioning loads from heat flow through attic floors. The roofing industry has been developing and using various radiant barrier systems and low-emittance surface coatings to increase energy efficiency in buildings; however, minimal data are available that quantifies the effectiveness of these technologies. This study evaluates performance of various attic radiant barrier systems under simulated summer daytime conditions and nighttime or low solar gain daytime winter conditions using the large scale climate simulator (LSCS). The four attic configurations that were evaluated are 1) no radiant barrier (control), 2) perforated low-e foil laminated oriented strand board (OSB) deck, 3) low-e foil stapled on rafters, and 4) liquid applied low-emittance coating on roof deck and rafters. All test attics used nominal RUS 13 h-ft2- F/Btu (RSI 2.29 m2-K/W) fiberglass batt insulation on attic floor. Results indicate that the three systems with radiant barriers had heat flows through the attic floor during summer daytime condition that were 33%, 50%, and 19% lower than the control, respectively.

  8. Large-scale experiments on aerosol behavior in light water reactor containments

    SciTech Connect (OSTI)

    Schock, W.; Bunz, H.; Adams, R.E.; Tobias, M.L.; Rahn, F.J.

    1988-05-01T23:59:59.000Z

    Recently, three large-scale experimental programs were carried out dealing with the behavior of aerosols during core-melt accidents in light water reactors (LWRs). In the Nuclear Safety Pilot Plant (NSPP) program, the principal behaviors of different insoluble aerosols and of mixed aerosols were measured in dry air atmospheres and in condensing steam-air atmospheres contained in a 38-m/sup 3/ steel vessel. The Demonstration of Nuclear Aerosol Behavior (DEMONA) program used a 640-m/sup 3/ concrete containment model to simulate typical accident sequence conditions, and measured the behavior of different insoluble aerosols and mixed aerosols in condensing and transient atmospheric conditions. Part of the LWR Aerosol Containment Experiments (LACE) program was also devoted to aerosol behavior in containment; and 852-m/sup 3/ steel vessel was used, and the aerosols were composed of mixtures of insoluble and soluble species. The results of these experiments provide a suitable data base for validation of aerosol behavior codes. Fundamental insight into details of aerosol behavior in condensing environments has been gained through the results of the NSPP tests. Code comparisons have been and are being performed in the DEMONA and LACE experiments.

  9. Large coil task and results of testing US coils

    SciTech Connect (OSTI)

    Haubenreich, P.N.

    1986-01-01T23:59:59.000Z

    The United States, EURATOM, Japan, and Switzerland have collaborated since 1978 in development of superconducting toroidal field coils for fusion reactor applications. The United States provided a test facility nd three coils; the other participants, one coil each. All coils have the same interface dimensions and performance requirements (stable at 8 T), but internal design was decided by each team. Two US coil teams chose bath-cooled NbTi, 10-kA conductors. One developed a Nb/sub 3/Sn conductor, cooled by internal flow, rated at 18 kA. All US coils have diagnostic instrumentation and imbedded heaters that enable stability tests and simulated nuclear heating experiments. In single-coil tests, each coil operated at full current in self-field (6.4 T). In six-coil tests that began in July 1986, one US coil and the Japanese coil hve been successfully operated at full current at 8 T. The other coils have operated as background coils while awaiting their turn as test coil. Coil tests have been informative and results gratifying. The facility has capably supported coil testing and its operation has provided information that will be useful in designing future fusion systems. Coil capabilities beyond nominal design points will be determined.

  10. Scaling Laws for Reduced-Scale Tests of Pulse Jet Mixing Systems in Non-Newtonian Slurries: Mixing Cavern Behavior

    SciTech Connect (OSTI)

    Meyer, Perry A.; Kurath, Dean E.; Bamberger, Judith A.; Barnes, Steven M.; Etchells, Arthur W.

    2006-03-02T23:59:59.000Z

    The Waste Treatment Plant (WTP) under construction at the Hanford Site will use pulse jet mixer (PJM) technology for mixing and gas retention control applications in tanks expected to contain waste slurries exhibiting a non-Newtonian rheology. This paper presents the results of theoretical and experimental studies undertaken to establish a methodology to perform reduced-scale mixing tests with PJM systems in non-Newtonian fluids. A theoretical model for mixing cavern formation from steady and pulsed jets is developed and compared with data from a single unsteady jet in a yield stress simulant. Dimensional analysis is used to identify the important dimensionless parameters affecting mixing performance in more complex systems. Scaling laws are proposed based on the modeling and dimensional analysis. Experimental validation of the scaling laws governing unsteady jet mixing in non-Newtonian fluids are also presented. Tests were conducted at three scales using two non-Newtonian simulants. The data were compared non-dimensionally, and the important scale laws were confirmed. The key dimensionless parameters were found to be the Strouhal number (which describes unsteady pulse jet mixer operation), the yield Reynolds number (which governs cavern formation due to non-Newtonian fluid behavior), and the viscous Reynolds number (which determines the flow regime and the degree of turbulence). The experimentally validated scaling laws provide the basis for reduced scale testing of prototypic WTP mixing systems. It is argued that mixing systems developed from reduced scale testing will produce conservative designs at full scale.

  11. FAST Code Verification of Scaling Laws for DeepCwind Floating Wind System Tests: Preprint

    SciTech Connect (OSTI)

    Jain, A.; Robertson, A. N.; Jonkman, J. M.; Goupee, A. J.; Kimball, R. W.; Swift, A. H. P.

    2012-04-01T23:59:59.000Z

    This paper investigates scaling laws that were adopted for the DeepCwind project for testing three different floating wind systems at 1/50 scale in a wave tank under combined wind and wave loading.

  12. Insulation condition monitoring and testing for large electrical machines

    SciTech Connect (OSTI)

    Zhou, Y.; Dix, G.I.; Quaife, P.W. [Industrial Research Ltd., Christchurch (New Zealand)

    1996-12-31T23:59:59.000Z

    An efficient method to assess the insulation condition of rotating machines is on-line partial discharge monitoring. Difficulties in on-line monitoring result from various noise sources associated with the machine and from the power system. The paper introduces and discusses the theories, different testing techniques and monitoring methods currently used by Industrial Research Limited and other laboratories. The design and testing of high frequency current transformers for partial discharge on-line monitoring are introduced. Laboratory and field tests on electrical machines are presented. A database has been developed for efficient insulation monitoring and maintenance. The database allows intra and inter comparisons of partial discharge, tan delta, capacitance between phases in a machine and with other machines easily. The functions of the database enhance the efficiency and provide more information for effective insulation condition assessment.

  13. Cosmological parameters from observational data on the large scale structure of the Universe

    E-Print Network [OSTI]

    B. Novosyadlyj; R. Durrer; S. Apunevych

    2000-09-29T23:59:59.000Z

    The observational data on the large scale structure (LSS) of the Universe are used to determine cosmological parameters within the class of adiabatic inflationary models. We show that a mixed dark matter model with cosmological constant ($\\Lambda$MDM model) and parameters $\\Omega_m=0.37^{+0.25}_{-0.15}$, $\\Omega_{\\Lambda}=0.69^{+0.15}_{-0.20}$, $\\Omega_{\

  14. Large-Scale Fabrication, 3D Tomography, and Lithium-Ion Battery Application of Porous Silicon

    E-Print Network [OSTI]

    Zhou, Chongwu

    Large-Scale Fabrication, 3D Tomography, and Lithium-Ion Battery Application of Porous Silicon, United States *S Supporting Information ABSTRACT: Recently, silicon-based lithium-ion battery anodes have for the next-generation lithium-ion batteries with enhanced capacity and energy density. KEYWORDS: Cost

  15. INORGANIC NANOPARTICLES AS PHASE-CHANGE MATERIALS FOR LARGE-SCALE THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Pennycook, Steve

    INORGANIC NANOPARTICLES AS PHASE-CHANGE MATERIALS FOR LARGE- SCALE THERMAL ENERGY STORAGE Miroslaw storage performance. The expected immediate outcome of this effort is the demonstration of high-energy generation at high efficiency could revolutionize the development of solar energy. Nanoparticle-based phase

  16. Comparison of large-scale field-aligned currents under sunlit and dark ionospheric conditions

    E-Print Network [OSTI]

    Higuchi, Tomoyuki

    geomagnetic activity as measured by the IMF BZ component. Result 1 can be partially explained in termsComparison of large-scale field-aligned currents under sunlit and dark ionospheric conditions S-aligned currents (FACs) under sunlit and dark ionospheric conditions. A total of $74,000 auroral oval crossings

  17. SEQUENCING TECHNOLOGIES Microdroplet-based PCR enrichment for large-scale

    E-Print Network [OSTI]

    Rosenberg, Noah

    . Genet. 22 Oct 2009 (doi:10.1016/j.ajhg.2009.09.017) In case­control association studies, imputation.1126/science.1181498) Genome sequencing for large-scale population-based studies requires technologies generated in this study is expected to be a useful resource for examining the molecular characteristics

  18. A Climatology of Tropical Anvil and Its Relationship to the Large-Scale Circulation 

    E-Print Network [OSTI]

    Li, Wei

    2011-02-22T23:59:59.000Z

    of anvil formation, and to provide a more realistic assessment of the radiative impact of tropical anvil on the large-scale circulation. Based on 10 years (1998-2007) of observations, anvil observed by the Tropical Rainfall Measuring Mission (TRMM...

  19. Effects of large-scale distribution of wind energy in and around Europe

    E-Print Network [OSTI]

    Effects of large-scale distribution of wind energy in and around Europe Gregor Giebel Niels Gylling energy in Europe? · Distribution of wind energy all over Europe leads to smoothing of the wind power energy can easily supply up to ~20% of the European demand. At this stage, · Less than 13% of the wind

  20. A parallel revised simplex solver for large scale block angular LP problems

    E-Print Network [OSTI]

    Hall, Julian

    A parallel revised simplex solver for large scale block angular LP problems Julian Hall and Edmund Smith School of Mathematics University of Edinburgh 29th July 2010 A parallel revised simplex solver · Revised simplex method for BALP problems Basis matrix and its inversion Solution of linear systems

  1. @scale: Insights from a Large, Long-Lived Appliance Stephen Dawson-Haggerty

    E-Print Network [OSTI]

    Culler, David E.

    Design, Measurement, Performance Keywords Energy, Audit, Building, Power, Wireless, Sensor Network 1@scale: Insights from a Large, Long-Lived Appliance Energy WSN Stephen Dawson-Haggerty , Steven Lanzisera , Jay Taneja , Richard Brown , and David Culler Computer Science Division Environmental Energy

  2. Energy Evaluation of PMCMTP for Large-Scale Wireless Sensor Networks

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    slots inside each Personal Area Network (PAN)), · Energy balancing and saving to prolong networkEnergy Evaluation of PMCMTP for Large-Scale Wireless Sensor Networks Jamila Ben Slimane, Ye-Qiong Song, Anis Koub^aa§¶ and Mounir Frikha Sup'Com-MEDIATRON, City of Communication Technologies, 2083

  3. Large Scale Volume Rendering in Immersive Environments with Direct Manipulation Widgets

    E-Print Network [OSTI]

    Kniss, Joe Michael

    Large Scale Volume Rendering in Immersive Environments with Direct Manipulation Widgets Master's Thesis Proposal Joe Michael Kniss May 15, 2001 1 Introduction 1.1 Thesis Statement Parallel rendering exploration. 1.2 Motivation Direct volume rendering has proven to be an important visualization tool

  4. CHANGES OF SYSTEM OPERATION COSTS DUE TO LARGE-SCALE WIND INTEGRATION

    E-Print Network [OSTI]

    Model Institute of Energy Economics and the Rational Use of EnergyIER Changes of System Operation CostsCHANGES OF SYSTEM OPERATION COSTS DUE TO LARGE-SCALE WIND INTEGRATION Derk Jan SWIDER1 , Rüdiger-Essen, Germany 3 Risoe International Laboratory, Denmark Business and Policy Track: Integrating wind

  5. Large-scale flow of geofluids at the Dead Sea Rift H. Gvirtzmana,*, E. Stanislavskyb

    E-Print Network [OSTI]

    Gvirtzman, Haim

    that has caused large-scale migration of brine and hydrocarbons at the Dead Sea Rift. Numerical simulations flow directions. The first is a density-driven migration of brine through deep aquifers from the rift reserved. Keywords: Groundwater; Brine; Hydrocarbons; Rift; Dead Sea; Modeling 1. The Dead Sea Rift

  6. Page Digest for Large-Scale Web Services Daniel Rocco, David Buttler, Ling Liu

    E-Print Network [OSTI]

    Rocco, Daniel

    Page Digest for Large-Scale Web Services Daniel Rocco, David Buttler, Ling Liu Georgia Institute this storage and processing efficiently. In this paper, we introduce Page Digest, a mechanism for efficient storage and processing of Web documents. The Page Digest design encourages a clean separation

  7. Large-scale hierarchical optimization for online advertising and wind farm planning

    E-Print Network [OSTI]

    Eskenazi, Maxine

    Large-scale hierarchical optimization for online advertising and wind farm planning Konstantin (particularly, spon- sored search) and wind farm turbine-layout planning. Whereas very different in specifics annealing and integer linear programming as our principled approach. Wind farm layout optimization

  8. Mining Induced Seismicity -Monitoring of a Large Scale Salt Cavern Collapse

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Mining Induced Seismicity - Monitoring of a Large Scale Salt Cavern Collapse E. Klein* (Ineris), I ground failure phenomenon induced by old underground mining works, a field experiment was undertaken in collaboration with the SOLVAY mining company: a solution mine was instrumented in 2004 previously to its

  9. Large-scale Probabilistic Forecasting in Energy Systems using Sparse Gaussian Conditional Random Fields

    E-Print Network [OSTI]

    Kolter, J. Zico

    -Gaussian case using the copula transform. On a wind power forecasting task, we show that this probabilisticLarge-scale Probabilistic Forecasting in Energy Systems using Sparse Gaussian Conditional Random high-dimensional conditional Gaussian distributions to forecasting wind power and extend it to the non

  10. Simulating the Power Consumption of Large-Scale Sensor Network Applications

    E-Print Network [OSTI]

    Simulating the Power Consumption of Large-Scale Sensor Network Applications Victor Shnayder, Mark of the most important as- pects of sensor application design: that of power consump- tion. While simple approximations of overall power usage can be derived from estimates of node duty cycle and com- munication rates

  11. Microfluidic very large scale integration (mVLSI) with integrated micromechanical valves{

    E-Print Network [OSTI]

    Quake, Stephen R.

    Microfluidic very large scale integration (mVLSI) with integrated micromechanical valves{ Ismail40258k Microfluidic chips with a high density of control elements are required to improve device and accessible high-density microfluidic chips, we have fabricated a monolithic PDMS valve architecture

  12. Parameter identification in large-scale models for oil and gas production

    E-Print Network [OSTI]

    Van den Hof, Paul

    Parameter identification in large-scale models for oil and gas production Jorn F.M. Van Doren: Models used for model-based (long-term) operations as monitoring, control and optimization of oil and gas information to the identification problem. These options are illustrated with examples taken from oil and gas

  13. Large-scale simulations of fluctuating biological membranes Andrea Pasqua,1,a

    E-Print Network [OSTI]

    Oster, George

    in their computational demands, these approaches are still limited in the scope of fluctuations and response they can's response to a prodding nanorod. © 2010 American Institute of Physics. doi:10.1063/1.3382349 I. INTRODUCTION feasibly capture. Extending computer simulations to examine large scale behaviors such as aggregation

  14. PNNL-SA-XXXXX Ultra Large-Scale Power System Control and

    E-Print Network [OSTI]

    Low, Steven H.

    PNNL-SA-XXXXX Ultra Large-Scale Power System Control and Coordination Architecture A Strategic Institute of Technology Rick Geiger Utilities and Smart Grid Cisco Systems #12;#12;PNNL-SA-XXXXX #12;PNNL Richland, Washington 99352 #12;PNNL-SA-XXXXX #12;#12;PNNL-SA-XXXXX 1.0 Introduction Electric power grids

  15. A TWO-STAGE APPROACH TO SOLVING LARGE-SCALE OPTIMAL POWER FLOWS

    E-Print Network [OSTI]

    Gross, George

    A TWO-STAGE APPROACH TO SOLVING LARGE-SCALE OPTIMAL POWER FLOWS *F e l i x F. Wu George Gross James problem is formulated as an unconstrained minimization problem using penalty functions and i s solved ] and Sasson and Merrill [ 3 ] . The s i z e and t h e extensive amount of computation involved i n solving t h

  16. A Large-scale Benchmark Study of Existing Algorithms for Taxonomy-Independent

    E-Print Network [OSTI]

    Slatton, Clint

    A Large-scale Benchmark Study of Existing Algorithms for Taxonomy-Independent Microbial Community sequencing technology have created new op- portunities to probe the hidden world of microbes. Taxonomy: pyrosequencing, 16S rRNA, taxonomy independent analysis, massive data, clustering, microbial diversity estimation

  17. A Scalable Model for Energy Load Balancing in Large-scale Sensor Networks

    E-Print Network [OSTI]

    de Veciana, Gustavo

    A Scalable Model for Energy Load Balancing in Large-scale Sensor Networks Seung Jun Baek we consider how one might achieve more balanced energy burdens across the network by spreading sinks change their locations to balance the energy burdens incurred accross the network nodes [1

  18. Funding for Large-Scale Sustainable Energy Projects Combining Expert Opinions to Support Decisions

    E-Print Network [OSTI]

    Mountziaris, T. J.

    Funding for Large-Scale Sustainable Energy Projects Combining Expert Opinions to Support Decisions for a sustainable energy future? Three teams, UMass, Harvard, and FEEM (Fondazione Eni Enrico Mattei), share a goal technologies to fund for optimal success for a sustainable energy future. Progress and Results · Created models

  19. Polymeric Electro-optic Modulators: From Chromophore Design to Integration with Semiconductor Very Large Scale Integration

    E-Print Network [OSTI]

    Polymeric Electro-optic Modulators: From Chromophore Design to Integration with Semiconductor Very Large Scale Integration Electronics and Silica Fiber Optics L. Dalton, A. Harper, A. Ren, F. Wang, G California, Los Angeles, California 90089-1661 Chromophores with optimized second-order optical nonlinearity

  20. Fluid computation of the performanceenergy trade-off in large scale Markov models

    E-Print Network [OSTI]

    Imperial College, London

    Fluid computation of the performance­energy trade-off in large scale Markov models Anton Stefanek energy consumption while maintaining multiple service level agreements. 2. VIRTUALISED EXECUTION MODEL optimisation. We show how the fluid analysis naturally leads to a constrained global optimisation prob- lem

  1. Studying the energy efficiency of large-scale computer systems requires models of the relationship

    E-Print Network [OSTI]

    Rivoire, Suzanne

    Abstract Studying the energy efficiency of large-scale computer systems requires models-node clusters using embedded, laptop, desktop, and server processors. These results demonstrate the need usage and power consumption. Therefore, a substantial body of literature models system-level power

  2. Wavelet Analysis for a New Multiresolution Model for Large-Scale Textured Terrains

    E-Print Network [OSTI]

    Illes Balears, Universitat de les

    Wavelet Analysis for a New Multiresolution Model for Large-Scale Textured Terrains María José transmission of both geometry and textures of a terrain model. Wavelet Multiresolution Analysis is applied. An innovative texture synthesis process based on Wavelet classification is used in the reconstruction

  3. Self-Organizing Fault-Tolerant Topology Control in Large-Scale Three-Dimensional

    E-Print Network [OSTI]

    Wang, Yu

    be deployed in three-dimensional (3D) space, such as under water wireless sensor networks in ocean or mobile to investigate self-organizing fault-tolerant topology control protocols for large- scale 3D wireless networks networks. Our simulation confirms our theoretical proofs for all proposed 3D topologies. Categories

  4. Chimera: Large-Scale Classification using Machine Learning, Rules, and Crowdsourcing

    E-Print Network [OSTI]

    Doan, AnHai

    Chimera: Large-Scale Classification using Machine Learning, Rules, and Crowdsourcing Chong Sun1 has been published on how this is done in practice. In this paper we describe Chimera, our solution solutions cease to work. We describe how Chimera employs a combination of learning, rules (created by in

  5. Large Scale Distribution of Stochastic Control Algorithms for Gas Storage Constantinos Makassikis, Stephane Vialle

    E-Print Network [OSTI]

    Vialle, Stéphane

    Large Scale Distribution of Stochastic Control Algorithms for Gas Storage Valuation Constantinos algorithm which is applied to gas storage valuation, and presents its experimental performances on two PC achieved in the field of gas storage valuation (see [2, 3] for example). As a result, many different price

  6. IEEE TRANSACTIONS ON POWER SYSTEMS 1 Large-Scale Integration of Deferrable

    E-Print Network [OSTI]

    Oren, Shmuel S.

    . Index Terms--Load management, power generation scheduling, wind power generation. I. INTRODUCTION on power system operations it is necessary to represent the balancing oper- ations of the remaining gridIEEE TRANSACTIONS ON POWER SYSTEMS 1 Large-Scale Integration of Deferrable Demand and Renewable

  7. Critical Perspectives on Large-Scale Distributed Applications and Production Grids

    E-Print Network [OSTI]

    Weissman, Jon

    not progressed in phase. Progress in the next phase and generation of distributed applications will require that can seamlessly utilize distributed infrastructures in an extensible and scalable fashion. We believeCritical Perspectives on Large-Scale Distributed Applications and Production Grids Shantenu Jha1

  8. Challenges and Opportunities in Large-Scale Deployment of Automated Energy Consumption

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    to the locational marginal price (LMP) at that bus. We show that a key challenge in large- scale deployment of ECS, locational marginal price. I. INTRODUCTION Real-time and time-of-use electricity pricing models can- edge among users on how to respond to time-varying prices and the lack of effective home automation

  9. Large-Scale Patent Classification with Min-Max Modular Support Vector Machines

    E-Print Network [OSTI]

    Lu, Bao-Liang

    Large-Scale Patent Classification with Min-Max Modular Support Vector Machines Xiao-Lei Chu, Chao Ma, Jing Li, Bao-Liang Lu Senior Member, IEEE, Masao Utiyama, and Hitoshi Isahara Abstract-- Patent-world patent classification typically exceeds one million, and this number increases every year. An effective

  10. Comparative Analysis of Balanced Winnow and SVM in Large Scale Patent Categorization

    E-Print Network [OSTI]

    Steels, Luc

    Comparative Analysis of Balanced Winnow and SVM in Large Scale Patent Categorization Katrien Beuls techniques, a collection of 1.2 million patent applications is used to build a classifier that is able). Contrary to SVM, Balanced Winnow is frequently applied in today's patent categorization systems. Results

  11. ON THE ROLE OF THE LARGE-SCALE MAGNETIC RECONNECTION IN THE CORONAL HEATING

    E-Print Network [OSTI]

    Pevtsov, Alexei A.

    emerging active region. We demonstrate that the effects of remote heating can be seen at significantON THE ROLE OF THE LARGE-SCALE MAGNETIC RECONNECTION IN THE CORONAL HEATING Alexei A. Pevtsov(1 changes in the magnetic connectivity, may play a role in coronal heating. To demonstrate the validity

  12. Time series modeling and large scale global solar radiation forecasting from geostationary satellites data

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Time series modeling and large scale global solar radiation forecasting from geostationary global solar radiation. In this paper, we use geostationary satellites data to generate 2-D time series of solar radiation for the next hour. The results presented in this paper relate to a particular territory

  13. Crude closure dynamics through large scale statistical theories Marcus J. Grote and Andrew J. Majda

    E-Print Network [OSTI]

    Majda, Andrew J.

    Crude closure dynamics through large scale statistical theories Marcus J. Grote and Andrew J. Majda 10012-1185 Received 22 January 1997; accepted 9 July 1997 Crude closure algorithms based on equilibrium on equilibrium energy-enstrophy statistical theory, or two parameters, the energy and circulation, for crude

  14. Parallel Implementation of a Large-Scale 3-D Air Pollution Model

    E-Print Network [OSTI]

    Ostromsky, Tzvetan

    Parallel Implementation of a Large-Scale 3-D Air Pollution Model Tzvetan Ostromsky1 and Zahari-4000 Roskilde, Denmark, zz@dmu.dk; http://www.dmu.dk/AtmosphericEnvironment Abstract. Air pollution and analyzed. Keywords: air pollution model, system of PDE's, parallel algorithm, shared memory computer

  15. Introduction to a Large-Scale General Purpose Ground Truth Database: Methodology,

    E-Print Network [OSTI]

    Zhu, Song Chun

    is to build up a publicly accessible annotated image database with over 1,000,000 of images and more than 200, to make the database general enough to be used for different evaluation tasks, we need to build up in a universal way. To the best of our knowledge, there has not been much previous work on building a large scale

  16. Distributed Sampling-Based Roadmap of Trees for Large-Scale Motion Planning

    E-Print Network [OSTI]

    Kavraki, Lydia E.

    Distributed Sampling-Based Roadmap of Trees for Large-Scale Motion Planning Erion Plaku and Lydia E of the Sampling-based Roadmap of Trees (SRT) algorithm using a decentralized master-client scheme. The distributed that similar speedups can be obtained with several hundred processors. Index Terms-- motion planning, roadmap

  17. Mining for Statistical Models of Availability in Large-Scale Distributed Systems

    E-Print Network [OSTI]

    Kondo, Derrick

    Mining for Statistical Models of Availability in Large-Scale Distributed Systems: An Empirical and Telecommunication Systems (MASCOTS 2009) B. Javadi (INRIA) Statistical Models of Availability MASCOTS 2009 1 / 34) Statistical Models of Availability MASCOTS 2009 2 / 34 #12;Introduction and Motivation P2P, Grid, Cloud

  18. Simulation-based optimization of communication protocols for large-scale wireless sensor networks1

    E-Print Network [OSTI]

    Maróti, Miklós

    1 Simulation-based optimization of communication protocols for large-scale wireless sensor networks--The design of reliable, dynamic, fault-tolerant services in wireless sensor networks is a big challenge everyday life more comfortable, e.g. Intelligent Spaces [3]. These sensor networks often use distributed

  19. Very Large Scale Open Wireless Sensor Network Testbed Clement Burin des Rosiers2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    SensLAB Very Large Scale Open Wireless Sensor Network Testbed Cl´ement Burin des Rosiers2 wireless sensor network protocols and applications. SensLAB's main and most important goal is to offer examples to illustrate the use of the SensLAB testbed. Key words: Wireless Sensor Network, Testbed, Radio

  20. SensLAB: a Very Large Scale Open Wireless Sensor Network Testbed

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    SensLAB: a Very Large Scale Open Wireless Sensor Network Testbed C. Burin des Rosiers2 , G. Chelius- tations of scalable wireless sensor network protocols and applications. SensLAB's main and most important demonstration examples to illustrate the use of the SensLAB testbed. Keywords: Wireless Sensor Network, Testbed

  1. Identification of Market Power in Large-Scale Electric Energy Markets Bernard C. Lesieutre

    E-Print Network [OSTI]

    Identification of Market Power in Large-Scale Electric Energy Markets Bernard C. Lesieutre Hyung and competitive operation of centrally- dispatched electricity markets. Traditional measures for market power demand and reserve requirements, a centrally-dispatched electricity market provides a transparent

  2. Rationale Support for Maintenance of Large Scale Systems Janet E. Burge and David C. Brown

    E-Print Network [OSTI]

    Brown, David C.

    of developing the software in the first place [19]. One reason for this is that the software lifecycle is a long and expensive phases of the software life-cycle. Maintenance is especially difficult for large-scale systems maintenance, we are developing the SEURAT (Software Engineering Using RATionale) system to support

  3. U.S. Energy Infrastructure Investment: Large-Scale Integrated Smart Grid

    E-Print Network [OSTI]

    research on challenges facing the electric power industry and educating the next generation of powerU.S. Energy Infrastructure Investment: Large-Scale Integrated Smart Grid Solutions with High Penetration of Renewable Resources, Dispersed Generation, and Customer Participation White Paper Power Systems

  4. Analysis and Management of Heterogeneous User Mobility in Large-scale Downlink Systems

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Analysis and Management of Heterogeneous User Mobility in Large-scale Downlink Systems Axel M¨uller§, Emil Bj¨ornson§, Romain Couillet, and M´erouane Debbah§ Intel Mobile Communications, Sophia Antipolis, France ACCESS Linnaeus Centre, Signal Processing Lab, KTH Royal Institute of Technology, Sweden

  5. Development and Deployment of a Large-Scale Flower Recognition Mobile App

    E-Print Network [OSTI]

    engine and re- lies on computer vision recognition technology. The mobile phone app is available freeDevelopment and Deployment of a Large-Scale Flower Recognition Mobile App Anelia Angelova NEC Labs- eration of user generated content, especially from mobile de- vices, there is a need to develop

  6. Performance of Hybrid Methods for Large-Scale Unconstrained Optimization as Applied

    E-Print Network [OSTI]

    Navon, Michael

    Performance of Hybrid Methods for Large-Scale Unconstrained Optimization as Applied to Models. It is shown that for the optimal parameters the hybrid approach is typically two times more efficient in terms­1231, 2003 Key words: energy minimization; proteins; loops; hybrid method; truncated Newton; dielectric

  7. A LARGE SCALE CONTINUUM-DISCRETE NUMERICAL MODELLING: APPLICATION TO OVERBURDEN DAMAGE OF A SALT CAVERN

    E-Print Network [OSTI]

    Boyer, Edmond

    A LARGE SCALE CONTINUUM-DISCRETE NUMERICAL MODELLING: APPLICATION TO OVERBURDEN DAMAGE OF A SALT damage on top of an underground solution mining, an in-situ experiment is undertaken above a salt cavity in the Lorraine region (NE of France). The overburden overlying the salt cavity is characterized by a competent

  8. CrowdSC: Building Smart Cities with Large Scale Citizen Participation

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    CrowdSC: Building Smart Cities with Large Scale Citizen Participation Karim Benouaret1 , Raman/Inria/Universit´e de Lorraine, Villers-l`es-Nancy, France Abstract ­ An elegant way to make cities smarter would CrowdSC, an effective crowdsourcing frame- work designed for smarter cities. We show that it is possible

  9. Passive Network Performance Estimation for Large-Scale, Data-Intensive Computing

    E-Print Network [OSTI]

    Weissman, Jon

    --Distributed computing applications are increasingly utilizing distributed data sources. However, the unpredictable cost- intensive scientific workflows [3], [4]. For such data- intensive tasks, data access cost is a significant to consider data access cost in launching data-intensive computing applications. Large-scale computing

  10. THE PREV AIR SYSTEM, AN OPERATIONAL SYSTEM FOR LARGE SCALE AIR QUALITY FORECASTS OVER EUROPE; APPLICATIONS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    THE PREV AIR SYSTEM, AN OPERATIONAL SYSTEM FOR LARGE SCALE AIR QUALITY FORECASTS OVER EUROPE Author ABSTRACT Since Summer 2003, the PREV'AIR system has been delivering through the Internet1 daily air quality forecasts over Europe. This is the visible part of a wider collaborative project

  11. A Programming Model for Context-Aware Applications in Large-Scale Pervasive Systems

    E-Print Network [OSTI]

    Dustdar, Schahram

    .g. pervasive health-care, city traffic monitoring, environmental monitoring, smart grids). These large- scale, and smart grids. These systems differ significantly from conventional context-aware systems, which focus. Examples of such trends are pervasive health-care, city traffic scheduling, environmental monitoring

  12. Impacts of Shortwave Penetration Depth on Large-Scale Ocean Circulation and Heat Transport

    E-Print Network [OSTI]

    Gnanadesikan, Anand

    Impacts of Shortwave Penetration Depth on Large-Scale Ocean Circulation and Heat Transport COLM independent parameter- izations that use ocean color to estimate the penetration depth of shortwave radiation. This study offers a way to evaluate the changes in irradiance penetration depths in coupled ocean

  13. Onix: A Distributed Control Platform for Large-scale Production Networks Teemu Koponen

    E-Print Network [OSTI]

    Onix: A Distributed Control Platform for Large-scale Production Networks Teemu Koponen , Martin on top of which a network control plane can be implemented as a distributed system. Control planes written within Onix operate on a global view of the network, and use basic state distribution primitives

  14. A SPECULATIVE FRAMEWORK FOR THE APPLICATION OF ARTIFICIAL INTELLIGENCE TO LARGE SCALE INTERCONNECTED POWER SYSTEMS

    E-Print Network [OSTI]

    Hartley, Roger

    INTERCONNECTED POWER SYSTEMS By Nadipuram R. Prasad Satish J. Ranade Electrical Engineering Department New Mexico) technologies to the operation and control of large scale interconnected electric power systems. A fundamental issue discussed in this paper is the control structure of power systems. An evaluation of the control

  15. Large-scale molecular dynamics simulation of magnetic properties of amorphous iron under pressure

    E-Print Network [OSTI]

    ) Enhanced refrigerant capacity and magnetic entropy flattening using a two-amorphous FeZrB(Cu) compositeLarge-scale molecular dynamics simulation of magnetic properties of amorphous iron under pressure Appl. Phys. Lett. 99, 232501 (2011) Nonlinear motion of magnetic vortex under alternating

  16. Energy, water and large-scale patterns of reptile and amphibian species richness in Europe

    E-Print Network [OSTI]

    Rodríguez, Miguel Ángel

    Energy, water and large-scale patterns of reptile and amphibian species richness in Europe Miguel Á and amphibian species richness in Europe and 11 environmental variables related to five hypotheses, an estimate of plant biomass generated through satellite remote sensing, both described similar proportions

  17. Large-scale hybrid poplar production economics: 1995 Alexandria, Minnesota establishment cost and management

    SciTech Connect (OSTI)

    Downing, M. [Oak Ridge National Lab., TN (United States); Langseth, D. [WesMinn Resource Conservation and Development District, Alexandria, MN (United States); Stoffel, R. [Minnesota Dept. of Natural Resources, Alexandria, MN (United States); Kroll, T. [Minnesota Dept. of Natural Resources, St. Paul, MN (United States). Forestry Div.

    1996-12-31T23:59:59.000Z

    The purpose of this project was to track and monitor costs of planting, maintaining, and monitoring large scale commercial plantings of hybrid poplar in Minnesota. These costs assists potential growers and purchasers of this resource to determine the ways in which supply and demand may be secured through developing markets.

  18. Modeling the large-scale water balance impact of different irrigation systems

    E-Print Network [OSTI]

    Evans, Jason

    Modeling the large-scale water balance impact of different irrigation systems J. P. Evans1 and B. F precipitation causes the Turkish government to invest in modernizing its own irrigation systems balance impact of different irrigation systems, Water Resour. Res., 44, W08448, doi:10.1029/2007WR006671

  19. Large-Scale Errors and Mesoscale Predictability in Pacific Northwest Snowstorms DALE R. DURRAN

    E-Print Network [OSTI]

    Large-Scale Errors and Mesoscale Predictability in Pacific Northwest Snowstorms DALE R. DURRAN The development of mesoscale numerical weather prediction (NWP) models over the last two decades has made- search communities. Nevertheless, the predictability of the mesoscale features captured in such forecasts

  20. Large-Scale Oceanographic Constraints on the Distribution of Melting and Freezing under Ice Shelves

    E-Print Network [OSTI]

    Gnanadesikan, Anand

    Large-Scale Oceanographic Constraints on the Distribution of Melting and Freezing under Ice Shelves received 10 October 2007, in final form 11 March 2008) ABSTRACT Previous studies suggest that ice shelves. Introduction Fifty percent of the Antarctic coastline is fringed by ice shelves (floating extensions

  1. Optimization and Large Scale Learning Optimization lies at the heart of almost every machine

    E-Print Network [OSTI]

    Optimization and Large Scale Learning Optimization lies at the heart of almost every machine these facets requires optimization techniques tailored to not only respect them but to ag- gressively exploit by looking at the recent book [1] (MIT Press, 2011), or at the follow- ing workshops: (i) "Optimization

  2. Categorised Ethical Guidelines for Large Scale Mobile HCI Donald McMillan

    E-Print Network [OSTI]

    Chalmers, Matthew

    University of Glasgow, UK matthew.chalmers@glasgow.ac.uk ABSTRACT The recent rise in large scale trials of community con- sensus can leave researchers unsure as to how to run a study which meets their ethical in Greenfield's Everyware book [18]. High-level guidelines such as `do no harm' and `default to harmlessness

  3. Design Considerations for a Large-Scale Wireless Sensor Network for Substation Monitoring

    E-Print Network [OSTI]

    Nasipuri, Asis

    effective monitoring applications for the substation using low-cost wireless sensor nodes that can sustainDesign Considerations for a Large-Scale Wireless Sensor Network for Substation Monitoring Asis University City Blvd. Charlotte, NC 28223 Luke Van der Zel and Bienvenido Rodriguez Substations Group EPRI

  4. Cloud Computing for Large-Scale Complex IT Systems The Proposers

    E-Print Network [OSTI]

    St Andrews, University of

    1 Cloud Computing for Large-Scale Complex IT Systems The Proposers This proposal aims to extend the consortium further as there are no obvious UK partners that would bring additional cloud computing expertise LSCITS consortium members Bristol and St Andrews, both of whom have LSCITS PhD students working in cloud

  5. Structure and dynamics of glass formers: Predictability at large length scales Ludovic Berthier*

    E-Print Network [OSTI]

    Berthier, Ludovic

    Structure and dynamics of glass formers: Predictability at large length scales Ludovic Berthier formers has been related to their static structure using the concept of dynamic propensity. We reexamine dynamical relaxation 2­11 , but their structure, as measured by two-point correlation functions, appears

  6. The impact of large scale biomass production on ozone air pollution in Joost B. Beltman a

    E-Print Network [OSTI]

    Utrecht, Universiteit

    The impact of large scale biomass production on ozone air pollution in Europe Joost B. Beltman by up to 25% and 40%. Air pollution mitigation strategies should consider land use management. a r t i Poplar a b s t r a c t Tropospheric ozone contributes to the removal of air pollutants from

  7. Impact of Wind Shear and Tower Shadow Effects on Power System with Large Scale Wind Power

    E-Print Network [OSTI]

    Hu, Weihao

    Impact of Wind Shear and Tower Shadow Effects on Power System with Large Scale Wind Power to wind speed variations, the wind shear and the tower shadow effects. The fluctuating power may be ableSILENT/PowerFactory. In this paper, the impacts of wind shear and tower shadow effects on the small signal stability of power systems

  8. Advanced modeling of large-scale oxy-fuel combustion processes

    E-Print Network [OSTI]

    Yin, Chungen

    Advanced modeling of large-scale oxy-fuel combustion processes Chungen Yin Department of Energy Technology, Aalborg University, DK-9220 Aalborg, Denmark, chy@et.aau.dk Introduction Oxy-fuel combustion simulations of various oxy- fuel combustion processes and experimental validation. Result · A new weighted

  9. Does the Budget Surplus Justify Large-Scale Tax Cuts?: Updates and Extensions

    E-Print Network [OSTI]

    Sadoulet, Elisabeth

    Does the Budget Surplus Justify Large-Scale Tax Cuts?: Updates and Extensions Alan J. Auerbach agreed should not be used for tax cuts. All of the remaining "on-budget" surplus was due to implausible of the on-budget surplus was due to accumulations in government trust funds for medicare and pensions, which

  10. China's changing landscape during the 1990s: Large-scale land transformations estimated with satellite data

    E-Print Network [OSTI]

    China's changing landscape during the 1990s: Large-scale land transformations estimated January 2005. [1] Land-cover changes in China are being powered by demand for food for its growing increased by 2.99 million hectares and urban areas increased by 0.82 million hectares. In northern China

  11. Smart Home in a Box: A Large Scale Smart Home Deployment

    E-Print Network [OSTI]

    Cook, Diane J.

    Smart Home in a Box: A Large Scale Smart Home Deployment Aaron S. CRANDALL a and Diane J. COOK a,1 systems. This work summa- rizes some of the existing works and introduces the Smart Home in a Box (SHiB) Project. The upcoming SHiB Project targets building 100 smart homes in several kinds of living spaces

  12. Invited Applications Paper Detecting Large-Scale System Problems by Mining Console Logs

    E-Print Network [OSTI]

    Xu, Wei

    . Researchers and operators have been using all kinds of mon- itoring data, from the simplest numerical metrics Problems by Mining Console Logs part operator, and charged with fixing the problem-- are usuallyInvited Applications Paper Detecting Large-Scale System Problems by Mining Console Logs Wei Xu xuw

  13. Platform-of-Platforms: A Modular, Integrated Resource Framework for Large-Scale Services

    E-Print Network [OSTI]

    Weissman, Jon

    Platform-of-Platforms: A Modular, Integrated Resource Framework for Large-Scale Services Rahul there has been a great deal of research ac- tivity in the development of diverse network service platforms-tier resource platform may be a natural fit for such multi-tier network services. Figure 1: Hierarchical

  14. Optimization of large-scale heterogeneous system-of-systems models.

    SciTech Connect (OSTI)

    Parekh, Ojas; Watson, Jean-Paul; Phillips, Cynthia Ann; Siirola, John; Swiler, Laura Painton; Hough, Patricia Diane (Sandia National Laboratories, Livermore, CA); Lee, Herbert K. H. (University of California, Santa Cruz, Santa Cruz, CA); Hart, William Eugene; Gray, Genetha Anne (Sandia National Laboratories, Livermore, CA); Woodruff, David L. (University of California, Davis, Davis, CA)

    2012-01-01T23:59:59.000Z

    Decision makers increasingly rely on large-scale computational models to simulate and analyze complex man-made systems. For example, computational models of national infrastructures are being used to inform government policy, assess economic and national security risks, evaluate infrastructure interdependencies, and plan for the growth and evolution of infrastructure capabilities. A major challenge for decision makers is the analysis of national-scale models that are composed of interacting systems: effective integration of system models is difficult, there are many parameters to analyze in these systems, and fundamental modeling uncertainties complicate analysis. This project is developing optimization methods to effectively represent and analyze large-scale heterogeneous system of systems (HSoS) models, which have emerged as a promising approach for describing such complex man-made systems. These optimization methods enable decision makers to predict future system behavior, manage system risk, assess tradeoffs between system criteria, and identify critical modeling uncertainties.

  15. Large Optic Drying Station: Summary of Dryer Certification Tests

    SciTech Connect (OSTI)

    Barbee, T W; Ayers, S L; Ayers, M J

    2009-08-28T23:59:59.000Z

    The purpose of this document is to outline the methodology used to baseline and maintain the cleanliness status of the newly built and installed Large Optic Cleaning Station (LOCS). The station has currently been in use for eleven months; and after many cleaning studies and implementation of resulting improvements appears to be cleaning optics to a level that is acceptable for the fabrication of Nano-Laminates.

  16. Inflation that runs naturally: Gravitational waves and suppression of power at large and small scales

    E-Print Network [OSTI]

    Quinn E. Minor; Manoj Kaplinghat

    2015-03-08T23:59:59.000Z

    We point out three correlated predictions of the axion monodromy inflation model: large amplitude of gravitational waves, suppression of power on horizon scales and on scales relevant for the formation of dwarf galaxies. While these predictions are likely generic to models with oscillations in the inflaton potential, the axion monodromy model naturally accommodates the required running spectral index through Planck-scale corrections to the inflaton potential. Applying this model to a combined data set of Planck, ACT, SPT, and WMAP low-$\\ell$ polarization cosmic microwave background (CMB) data, we find a best-fit tensor-to-scalar ratio $r_{0.05} = 0.07^{+0.05}_{-0.04}$ due to gravitational waves, which may have been observed by the BICEP2 experiment. Despite the contribution of gravitational waves, the total power on large scales (CMB power spectrum at low multipoles) is lower than the standard $\\Lambda$CDM cosmology with a power-law spectrum of initial perturbations and no gravitational waves, thus mitigating some of the tension on large scales. There is also a reduction in the matter power spectrum of 20-30\\% at scales corresponding to $k = 10~{\\rm Mpc}^{-1}$, which are relevant for dwarf galaxy formation. This will alleviate some of the unsolved small-scale structure problems in the standard $\\Lambda$CDM cosmology. The inferred matter power spectrum is also found to be consistent with recent Lyman-$\\alpha$ forest data, which is in tension with the Planck-favored $\\Lambda$CDM model with power-law primordial power spectrum.

  17. Scale-up and Testing of Advanced Materials from the BATT Program...

    Broader source: Energy.gov (indexed) [DOE]

    Scale-up and Testing of Advanced Materials from the BATT Program Vince Battaglia LBNL May 09, 2011 This presentation does not contain any proprietary, confidential, or otherwise...

  18. Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Task 3 Full-scale Test Results

    SciTech Connect (OSTI)

    Gary Blythe

    2007-05-01T23:59:59.000Z

    This Topical Report summarizes progress on Cooperative Agreement DE-FC26-04NT42309, 'Field Testing of a Wet FGD Additive'. The objective of the project is to demonstrate the use of a flue gas desulfurization (FGD) additive, Degussa Corporation's TMT-15, to prevent the reemission of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project intends to demonstrate whether the additive can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine TMT salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal. The project is conducting pilot- and full-scale tests of the TMT-15 additive in wet FGD absorbers. The tests are intended to determine required additive dosages to prevent Hg{sup 0} reemissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Power River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, TXU Generation Company LP, Southern Company, and Degussa Corporation. TXU Generation has provided the Texas lignite/PRB cofired test site for pilot FGD tests, Monticello Steam Electric Station Unit 3. Southern Company is providing the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, as well as the pilot- and full-scale jet bubbling reactor (JBR) FGD systems to be tested. IPL, an AES company, provided the high-sulfur Eastern bituminous coal full-scale FGD test site and cost sharing. Degussa Corporation is providing the TMT-15 additive and technical support to the test program as cost sharing. The project is being conducted in six tasks. Of the six project tasks, Task 1 involves project planning and Task 6 involves management and reporting. The other four tasks involve field testing on FGD systems, either at pilot or full scale. The four tasks include: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High-sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Plant Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. The pilot-scale tests were completed in 2005 and have been previously reported. This topical report presents the results from the Task 3 full-scale additive tests, conducted at IPL's Petersburg Station Unit 2. The Task 5 full-scale additive tests will be conducted later in calendar year 2007.

  19. NSF SCALE-UP GRANT ANNUAL REPORT 1998 The goal of the Student Centered Activities for Large Enrollment University Physics (SCALE-

    E-Print Network [OSTI]

    Saul, Jeffery M.

    NSF SCALE-UP GRANT ANNUAL REPORT 1998 Summary The goal of the Student Centered Activities for Large Enrollment University Physics (SCALE- UP) is to create and study an introductory calculus-based physics student group. The SCALE-UP curriculum is different from other integrated research-based introductory

  20. Large-scale tidal fields on primordial density perturbations ? .II Alignment of Cosmic Structures

    E-Print Network [OSTI]

    Alejandro Gonzalez

    1997-03-13T23:59:59.000Z

    We show that the primordial density field imposes certain degree of coherence in the orientation of density perturbations. We quantify the scale of coherence and show that is significant on scales of at least $30-40h^{-1}$Mpc, being more important in density fields with flat spectrum. Evidence is also presented that the reason for this coherence is that the long density waves are the dominant part of the superposition of waves which build the large-scale density peaks. As a consequence of this, small-scale peaks tend to follow the configuration of their host large-scale perturbations. Different types of alignments are investigated. It is shown that alignment of the major axes of neighbouring peaks is more prominent around the highest peaks than around the lower ones. Alignments between the major axes of peaks and the radius-vector joining their centre with the centre of a high peak were not observed. Evidence is presented that peaks develop tails extending to neighbouring peaks, as predicted by Bond (1987a, 1987b) and Bahcall (1987).

  1. Approaching the exa-scale: a real-world evaluation of rendering extremely large data sets

    SciTech Connect (OSTI)

    Patchett, John M [Los Alamos National Laboratory; Ahrens, James P [Los Alamos National Laboratory; Lo, Li - Ta [Los Alamos National Laboratory; Browniee, Carson S [Los Alamos National Laboratory; Mitchell, Christopher J [Los Alamos National Laboratory; Hansen, Chuck [UNIV OF UTAH

    2010-10-15T23:59:59.000Z

    Extremely large scale analysis is becoming increasingly important as supercomputers and their simulations move from petascale to exascale. The lack of dedicated hardware acceleration for rendering on today's supercomputing platforms motivates our detailed evaluation of the possibility of interactive rendering on the supercomputer. In order to facilitate our understanding of rendering on the supercomputing platform, we focus on scalability of rendering algorithms and architecture envisioned for exascale datasets. To understand tradeoffs for dealing with extremely large datasets, we compare three different rendering algorithms for large polygonal data: software based ray tracing, software based rasterization and hardware accelerated rasterization. We present a case study of strong and weak scaling of rendering extremely large data on both GPU and CPU based parallel supercomputers using Para View, a parallel visualization tool. Wc use three different data sets: two synthetic and one from a scientific application. At an extreme scale, algorithmic rendering choices make a difference and should be considered while approaching exascale computing, visualization, and analysis. We find software based ray-tracing offers a viable approach for scalable rendering of the projected future massive data sizes.

  2. Generation of large-scale magnetic fields from inflation in teleparallelism

    SciTech Connect (OSTI)

    Bamba, Kazuharu [Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602 (Japan); Geng, Chao-Qiang; Luo, Ling-Wei, E-mail: bamba@kmi.nagoya-u.ac.jp, E-mail: geng@phys.nthu.edu.tw, E-mail: d9622508@oz.nthu.edu.tw [Department of Physics, National Tsing Hua University, Hsinchu, 300, Taiwan (China)

    2012-10-01T23:59:59.000Z

    We explore the generation of large-scale magnetic fields from inflation in teleparallelism, in which the gravitational theory is described by the torsion scalar instead of the scalar curvature in general relativity. In particular, we examine the case that the conformal invariance of the electromagnetic field during inflation is broken by a non-minimal gravitational coupling between the torsion scalar and the electromagnetic field. It is shown that for a power-law type coupling, the magnetic field on 1 Mpc scale with its strength of ? 10{sup ?9} G at the present time can be generated.

  3. Large-Scale Parallel Finite Element Analysis of the Stress Singular Problems

    SciTech Connect (OSTI)

    Noriyuki Kushida; Hiroshi Okuda; Genki Yagawa [University of Tokyo (Japan)

    2002-07-01T23:59:59.000Z

    In this paper, the convergence behavior of large-scale parallel finite element method for the stress singular problems was investigated. The convergence behavior of iterative solvers depends on the efficiency of the pre-conditioners. However, efficiency of pre-conditioners may be influenced by the domain decomposition that is necessary for parallel FEM. In this study the following results were obtained: Conjugate gradient method without preconditioning and the diagonal scaling preconditioned conjugate gradient method were not influenced by the domain decomposition as expected. symmetric successive over relaxation method preconditioned conjugate gradient method converged 6% faster as maximum if the stress singular area was contained in one sub-domain. (authors)

  4. Final Report: Large-Scale Optimization for Bayesian Inference in Complex Systems

    SciTech Connect (OSTI)

    Ghattas, Omar [The University of Texas at Austin] [The University of Texas at Austin

    2013-10-15T23:59:59.000Z

    The SAGUARO (Scalable Algorithms for Groundwater Uncertainty Analysis and Robust Optimiza- tion) Project focuses on the development of scalable numerical algorithms for large-scale Bayesian inversion in complex systems that capitalize on advances in large-scale simulation-based optimiza- tion and inversion methods. Our research is directed in three complementary areas: efficient approximations of the Hessian operator, reductions in complexity of forward simulations via stochastic spectral approximations and model reduction, and employing large-scale optimization concepts to accelerate sampling. Our efforts are integrated in the context of a challenging testbed problem that considers subsurface reacting flow and transport. The MIT component of the SAGUARO Project addresses the intractability of conventional sampling methods for large-scale statistical inverse problems by devising reduced-order models that are faithful to the full-order model over a wide range of parameter values; sampling then employs the reduced model rather than the full model, resulting in very large computational savings. Results indicate little effect on the computed posterior distribution. On the other hand, in the Texas-Georgia Tech component of the project, we retain the full-order model, but exploit inverse problem structure (adjoint-based gradients and partial Hessian information of the parameter-to- observation map) to implicitly extract lower dimensional information on the posterior distribution; this greatly speeds up sampling methods, so that fewer sampling points are needed. We can think of these two approaches as "reduce then sample" and "sample then reduce." In fact, these two approaches are complementary, and can be used in conjunction with each other. Moreover, they both exploit deterministic inverse problem structure, in the form of adjoint-based gradient and Hessian information of the underlying parameter-to-observation map, to achieve their speedups.

  5. Development of fine-resolution analyses and expanded large-scale forcing properties. Part II: Scale-awareness and application to single-column model experiments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Feng, Sha [Univ. of California at Los Angeles, Los Angeles, CA (United States); California Inst. of Technology, Pasadena, CA (United States); Vogelmann, Andrew M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Li, Zhijin [California Inst. of Technology (CalTech), Pasadena, CA (United States); Univ. of California at Los Angeles, Los Angeles, CA (United States); Liu, Yangang [Brookhaven National Lab. (BNL), Upton, NY (United States); Lin, Wuyin [Brookhaven National Lab. (BNL), Upton, NY (United States); Zhang, Minghua [Stony Brook Univ., NY (United States); Toto, Tami [Brookhaven National Lab. (BNL), Upton, NY (United States); Endo, Satoshi [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-01-27T23:59:59.000Z

    Fine-resolution three-dimensional fields have been produced using the Community Gridpoint Statistical Interpolation (GSI) data assimilation system for the U.S. Department of Energy’s Atmospheric Radiation Measurement Program (ARM) Southern Great Plains region. The GSI system is implemented in a multi-scale data assimilation framework using the Weather Research and Forecasting model at a cloud-resolving resolution of 2 km. From the fine-resolution three-dimensional fields, large-scale forcing is derived explicitly at grid-scale resolution; a subgrid-scale dynamic component is derived separately, representing subgrid-scale horizontal dynamic processes. Analyses show that the subgrid-scale dynamic component is often a major component over the large-scale forcing for grid scales larger than 200 km. The single-column model (SCM) of the Community Atmospheric Model version 5 (CAM5) is used to examine the impact of the grid-scale and subgrid-scale dynamic components on simulated precipitation and cloud fields associated with a mesoscale convective system. It is found that grid-scale size impacts simulated precipitation, resulting in an overestimation for grid scales of about 200 km but an underestimation for smaller grids. The subgrid-scale dynamic component has an appreciable impact on the simulations, suggesting that grid-scale and subgrid-scale dynamic components should be considered in the interpretation of SCM simulations.

  6. Ikarus: Large-Scale Participatory Sensing at High Altitudes Michael von Kaenel, Philipp Sommer, and Roger Wattenhofer

    E-Print Network [OSTI]

    Ikarus: Large-Scale Participatory Sensing at High Altitudes Michael von Kaenel, Philipp Sommer, and Roger Wattenhofer Computer Engineering and Networks Laboratory ETH Zurich, Switzerland {vkaenemi,sommer

  7. Findings from the 2004 Fully Automated Demand Response Tests in Large

    E-Print Network [OSTI]

    LBNL-58178 Findings from the 2004 Fully Automated Demand Response Tests in Large Facilities M;Findings from the 2004 Fully Automated Demand Response Tests in Large Facilities September 7, 2005 Mary Ann Manager Dave Michel Contract 500-03-026 Sponsored by the California Energy Commission PIER Demand Response

  8. A torsion test for the study of the large deformation recovery of shape memory polymers

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 A torsion test for the study of the large deformation recovery of shape memory polymers Julie & Development Center, 30500 Mound Rd, Warren, MI 48090-9055, USA. Keywords: Shape memory polymer, Strain was designed and built for testing the shape fixity and shape recovery of shape memory polymers at large

  9. On scale and magnitude of pressure build-up induced by large-scale geologic storage of CO2

    SciTech Connect (OSTI)

    Zhou, Q.; Birkholzer, J. T.

    2011-05-01T23:59:59.000Z

    The scale and magnitude of pressure perturbation and brine migration induced by geologic carbon sequestration is discussed assuming a full-scale deployment scenario in which enough CO{sub 2} is captured and stored to make relevant contributions to global climate change mitigation. In this scenario, the volumetric rates and cumulative volumes of CO{sub 2} injection would be comparable to or higher than those related to existing deep-subsurface injection and extraction activities, such as oil production. Large-scale pressure build-up in response to the injection may limit the dynamic storage capacity of suitable formations, because over-pressurization may fracture the caprock, may drive CO{sub 2}/brine leakage through localized pathways, and may cause induced seismicity. On the other hand, laterally extensive sedimentary basins may be less affected by such limitations because (i) local pressure effects are moderated by pressure propagation and brine displacement into regions far away from the CO{sub 2} storage domain; and (ii) diffuse and/or localized brine migration into overlying and underlying formations allows for pressure bleed-off in the vertical direction. A quick analytical estimate of the extent of pressure build-up induced by industrial-scale CO{sub 2} storage projects is presented. Also discussed are pressure perturbation and attenuation effects simulated for two representative sedimentary basins in the USA: the laterally extensive Illinois Basin and the partially compartmentalized southern San Joaquin Basin in California. These studies show that the limiting effect of pressure build-up on dynamic storage capacity is not as significant as suggested by Ehlig-Economides and Economides, who considered closed systems without any attenuation effects.

  10. Sub-metering to Electricity Use in Large-scale Commercial Buildings

    E-Print Network [OSTI]

    Yuan, W.

    2006-01-01T23:59:59.000Z

    ~240Hotel251218113~129Office Building181118103~119government office building4582775~89 #0;?#0;? Great Difference between each type Sub-metering and statistics to electricity use in commercial buildings 5 Situation of Energy consumption in Large...Sub-metering to Electricity Use in Large-scale Commercial Buildings Wang YuanTsinghua University2006.11 Sub-metering and statistics to electricity use in commercial buildings 2 Index #0;?#0;? Situation of Energy consumption in commercial buildings...

  11. Influences of clouds and rain on the large-scale transport and deposition of sulfur

    SciTech Connect (OSTI)

    Luecken, D.J.; Berkowitz, C.M.; Easter, R.C.

    1991-07-01T23:59:59.000Z

    This paper describes the application of a three-dimensional, global-scale Eulerian model with an explicit description of cloud and chemical processes. Simulation results describing the transport of sulfur from North America and Europe across the north Atlantic Ocean during a climatological July are presented. Wet deposition was found to contribute slightly more to total sulfur deposition than dry deposition, a feature explained by the large amounts of precipitation during this month. The wet deposition patterns did not always correspond to the emissions patterns. The precipitation rate and spatial distribution had a large effect on the calculated concentrations of soluble sulfur species. 10 refs., 7 figs., 1 tab.

  12. SMALL-SCALE IMPACT SENSITIVITY TESTING ON EDC37

    SciTech Connect (OSTI)

    HSU, P C; HUST, G; MAIENSCHEIN, J L

    2008-04-28T23:59:59.000Z

    EDC37 was tested at LLNL to determine its impact sensitivity in the LLNL's drop hammer system. The results showed that impact sensitivities of the samples were between 86 cm and 156 cm, depending on test methods. EDC37 is a plastic bonded explosive consisting of 90% HMX, 1% nitrocellulose and binder. We recently conducted impact sensitivity testing in our drop hammer system and the results are presented in this report.

  13. Pilot-scale treatability test plan for the 100-HR-3 operable unit

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    This document presents the treatability test plan for pilot-scale pump-and-treat testing at the 100-HR-3 Operable Unit. The test will be conducted in fulfillment of interim Milestone M-15-06E to begin pilot-scale pump-and-treat operations by August 1994. The scope of the test was determined based on the results of lab/bench-scale tests (WHC 1993a) conducted in fulfillment of Milestone M-15-06B. These milestones were established per agreement between the U.S. Department of Energy (DOE), the Washington State Department of Ecology and the U.S. Environmental Protection Agency (EPA), and documented on Hanford Federal of Ecology Facility Agreement and Consent Order Change Control Form M-15-93-02. This test plan discusses a pilot-scale pump-and-treat test for the chromium plume associated with the D Reactor portion of the 100-HR-3 Operable Unit. Data will be collected during the pilot test to assess the effectiveness, operating parameters, and resource needs of the ion exchange (IX) pump-and-treat system. The test will provide information to assess the ability to remove contaminants by extracting groundwater from wells and treating extracted groundwater using IX. Bench-scale tests were conducted previously in which chromium VI was identified as the primary contaminant of concern in the 100-D reactor plume. The DOWEX 21K{trademark} resin was recommended for pilot-scale testing of an IX pump-and-treat system. The bench-scale test demonstrated that the system could remove chromium VI from groundwater to concentrations less than 50 ppb. The test also identified process parameters to monitor during pilot-scale testing. Water will be re-injected into the plume using wells outside the zone of influence and upgradient of the extraction well.

  14. Design of an Integrated Laboratory Scale Test for Hydrogen Production via High Temperature Electrolysis

    SciTech Connect (OSTI)

    G.K. Housley; K.G. Condie; J.E. O'Brien; C. M. Stoots

    2007-06-01T23:59:59.000Z

    The Idaho National Laboratory (INL) is researching the feasibility of high-temperature steam electrolysis for high-efficiency carbon-free hydrogen production using nuclear energy. Typical temperatures for high-temperature electrolysis (HTE) are between 800º-900ºC, consistent with anticipated coolant outlet temperatures of advanced high-temperature nuclear reactors. An Integrated Laboratory Scale (ILS) test is underway to study issues such as thermal management, multiple-stack electrical configuration, pre-heating of process gases, and heat recuperation that will be crucial in any large-scale implementation of HTE. The current ILS design includes three electrolysis modules in a single hot zone. Of special design significance is preheating of the inlet streams by superheaters to 830°C before entering the hot zone. The ILS system is assembled on a 10’ x 16’ skid that includes electronics, power supplies, air compressor, pumps, superheaters, , hot zone, condensers, and dew-point sensor vessels. The ILS support system consists of three independent, parallel supplies of electrical power, sweep gas streams, and feedstock gas mixtures of hydrogen and steam to the electrolysis modules. Each electrolysis module has its own support and instrumentation system, allowing for independent testing under different operating conditions. The hot zone is an insulated enclosure utilizing electrical heating panels to maintain operating conditions. The target hydrogen production rate for the ILS is 5000 Nl/hr.

  15. A PRACTICAL ONTOLOGY FOR THE LARGE-SCALE MODELING OF SCHOLARLY ARTIFACTS AND THEIR USAGE

    SciTech Connect (OSTI)

    RODRIGUEZ, MARKO A. [Los Alamos National Laboratory; BOLLEN, JOHAN [Los Alamos National Laboratory; VAN DE SOMPEL, HERBERT [Los Alamos National Laboratory

    2007-01-30T23:59:59.000Z

    The large-scale analysis of scholarly artifact usage is constrained primarily by current practices in usage data archiving, privacy issues concerned with the dissemination of usage data, and the lack of a practical ontology for modeling the usage domain. As a remedy to the third constraint, this article presents a scholarly ontology that was engineered to represent those classes for which large-scale bibliographic and usage data exists, supports usage research, and whose instantiation is scalable to the order of 50 million articles along with their associated artifacts (e.g. authors and journals) and an accompanying 1 billion usage events. The real world instantiation of the presented abstract ontology is a semantic network model of the scholarly community which lends the scholarly process to statistical analysis and computational support. They present the ontology, discuss its instantiation, and provide some example inference rules for calculating various scholarly artifact metrics.

  16. Molecular Dynamics Simulations from SNL's Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Plimpton, Steve; Thompson, Aidan; Crozier, Paul

    LAMMPS (http://lammps.sandia.gov/index.html) stands for Large-scale Atomic/Molecular Massively Parallel Simulator and is a code that can be used to model atoms or, as the LAMMPS website says, as a parallel particle simulator at the atomic, meso, or continuum scale. This Sandia-based website provides a long list of animations from large simulations. These were created using different visualization packages to read LAMMPS output, and each one provides the name of the PI and a brief description of the work done or visualization package used. See also the static images produced from simulations at http://lammps.sandia.gov/pictures.html The foundation paper for LAMMPS is: S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J Comp Phys, 117, 1-19 (1995), but the website also lists other papers describing contributions to LAMMPS over the years.

  17. Formation of large-scale structures by turbulence in rotating planets

    E-Print Network [OSTI]

    Constantinou, Navid C

    2015-01-01T23:59:59.000Z

    This thesis presents a newly developed theory for the formation and maintenance of eddy-driven jets in planetary turbulence. The novelty is that jet formation and maintenance is studied as a dynamics of the statistics of the flow rather than a dynamics of individual realizations. This is pursued using Stochastic Structural Stability Theory (S3T) which studies the closed dynamics of the first two cumulants of the full statistical state dynamics of the flow after neglecting or parameterizing third and higher-order cumulants. With this statistical closure large-scale structure formation is studied in barotropic turbulence on a $\\beta$-plane. It is demonstrated that at analytically predicted critical parameter values the homogeneous turbulent state undergoes a bifurcation becoming inhomogeneous with the emergence of large-scale zonal and/or non-zonal flows. The mechanisms by which the turbulent Reynolds stresses organize to reinforce infinitesimal mean flow inhomogeneities, thus leading to this statistical state ...

  18. Large-scale Ocean-based or Geothermal Power Plants by Thermoelectric Effects

    E-Print Network [OSTI]

    Liu, Liping

    2012-01-01T23:59:59.000Z

    Heat resources of small temperature difference are easily accessible, free and unlimited on earth. Thermoelectric effects provide the technology for converting these heat resources directly into electricity. We present designs of electricity generators based on thermoelectric effects and using heat resources of small temperature difference, e.g., ocean water at different depths and geothermal sources, and conclude that large-scale power plants based on thermoelectric effects are feasible and economically competitive. The key observation is that the power factor of thermoelectric materials, unlike the figure of merit, can be improved by orders of magnitude upon laminating good conductors and good thermoelectric materials. The predicted large-scale power plants based on thermoelectric effects, if validated, will have a global economic and social impact for its scalability, and the renewability, free and unlimited supply of heat resources of small temperature difference on earth.

  19. Development of fine-resolution analyses and expanded large-scale forcing properties. Part II: Scale-awareness and application to single-column model experiments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Feng, Sha; Vogelmann, Andrew M.; Li, Zhijin; Liu, Yangang; Lin, Wuyin; Zhang, Minghua; Toto, Tami; Endo, Satoshi

    2015-01-27T23:59:59.000Z

    Fine-resolution three-dimensional fields have been produced using the Community Gridpoint Statistical Interpolation (GSI) data assimilation system for the U.S. Department of Energy’s Atmospheric Radiation Measurement Program (ARM) Southern Great Plains region. The GSI system is implemented in a multi-scale data assimilation framework using the Weather Research and Forecasting model at a cloud-resolving resolution of 2 km. From the fine-resolution three-dimensional fields, large-scale forcing is derived explicitly at grid-scale resolution; a subgrid-scale dynamic component is derived separately, representing subgrid-scale horizontal dynamic processes. Analyses show that the subgrid-scale dynamic component is often a major component over the large-scale forcing for grid scalesmore »larger than 200 km. The single-column model (SCM) of the Community Atmospheric Model version 5 (CAM5) is used to examine the impact of the grid-scale and subgrid-scale dynamic components on simulated precipitation and cloud fields associated with a mesoscale convective system. It is found that grid-scale size impacts simulated precipitation, resulting in an overestimation for grid scales of about 200 km but an underestimation for smaller grids. The subgrid-scale dynamic component has an appreciable impact on the simulations, suggesting that grid-scale and subgrid-scale dynamic components should be considered in the interpretation of SCM simulations.« less

  20. Fractal Holography: a geometric re-interpretation of cosmological large scale structure

    E-Print Network [OSTI]

    J. R. Mureika

    2007-05-17T23:59:59.000Z

    The fractal dimension of large-scale galaxy clustering has been demonstrated to be roughly $D_F \\sim 2$ from a wide range of redshift surveys. If correct, this statistic is of interest for two main reasons: fractal scaling is an implicit representation of information content, and also the value itself is a geometric signature of area. It is proposed that the fractal distribution of galaxies may thus be interpreted as a signature of holography (``fractal holography''), providing more support for current theories of holographic cosmologies. Implications for entropy bounds are addressed. In particular, because of spatial scale invariance in the matter distribution, it is shown that violations of the spherical entropy bound can be removed. This holographic condition instead becomes a rigid constraint on the nature of the matter density and distribution in the Universe. Inclusion of a dark matter distribution is also discussed, based on theoretical considerations of possible universal CDM density profiles.

  1. Large-scale weakly nonlinear perturbations of convective magnetic dynamos in a rotating layer

    E-Print Network [OSTI]

    Chertovskih, Roman

    2015-01-01T23:59:59.000Z

    We present a new mechanism for generation of large-scale magnetic field by thermal convection which does not involve the alpha-effect. We consider weakly nonlinear perturbations of space-periodic steady convective magnetic dynamos in a rotating layer that were identified in our previous work. The perturbations have a spatial scale in the horizontal direction that is much larger than the period of the perturbed convective magnetohydrodynamic state. Following the formalism of the multiscale stability theory, we have derived the system of amplitude equations governing the evolution of the leading terms in expansion of the perturbations in power series in the scale ratio. This asymptotic analysis is more involved than in the cases considered earlier, because the kernel of the operator of linearisation has zero-mean neutral modes whose origin lies in the spatial invariance of the perturbed regime, the operator reduced on the generalised kernel has two Jordan normal form blocks of size two, and simplifying symmetri...

  2. An experimental investigation of sediment drag forces on offshore pipelines in large scale drag tank

    E-Print Network [OSTI]

    Yin, Stanley Fuming

    1984-01-01T23:59:59.000Z

    for the degree of MASTER OF SCIENCE August 1984 Major Subject: Civil Engineering AN EXPERIMENTAL INVESTIGATION OF SEDIMENT DRAG FORCES ON OFFSHORE PIPELINES IN A LARGE SCALE DRAG TANK A Thesis by STANLEY FUMING YIN Approved as to style and content by... An ever increasing demand for petroleum products and energy has led to accelerated exploration and development of oil and gas deposits. Pipelines serve as an effective, efficient and reliable means of trans- porting the oil and gas from offshore...

  3. Energy Spectra of Quantum Turbulence: Large-scale Simulation and Modeling

    E-Print Network [OSTI]

    Machida, Masahiko; Kano, Takuma; L'vov, Victor S; Rudenko, Oleksii; Tsubota, Makoto

    2010-01-01T23:59:59.000Z

    In 2048^3 simulation of quantum turbulence within the Gross-Pitaevskii equation we demonstrate that the large scale motions have a classical Kolmogorov-1941 energy spectrum E(k) ~ k^{-5/3}, followed by an energy accumulation with E(k) ~ const at 1/k about the mean intervortex distance. This behavior was predicted by the L'vov-Nazarenko-Rudenko bottleneck model [Phys.Rev.B 76, 024520 (2007)], further developed in the Letter.

  4. Scaled Testing to Evaluate Pulse Jet Mixer Performance in Waste Treatment Plant Mixing Vessels

    SciTech Connect (OSTI)

    Fort, James A.; Meyer, Perry A.; Bamberger, Judith A.; Enderlin, Carl W.; Scott, Paul A.; Minette, Michael J.; Gauglitz, Phillip A.

    2010-03-07T23:59:59.000Z

    The Waste Treatment and Immobilization Plant (WTP) at Hanford is being designed and built to pre-treat and vitrify the waste in Hanford’s 177 underground waste storage tanks. Numerous process vessels will hold waste at various stages in the WTP. These vessels have pulse jet mixer (PJM) systems. A test program was developed to evaluate the adequacy of mixing system designs in the solids-containing vessels in the WTP. The program focused mainly on non-cohesive solids behavior. Specifically, the program addressed the effectiveness of the mixing systems to suspend settled solids off the vessel bottom, and distribute the solids vertically. Experiments were conducted at three scales using various particulate simulants. A range of solids loadings and operational parameters were evaluated, including jet velocity, pulse volume, and duty cycle. In place of actual PJMs, the tests used direct injection from tubes with suction at the top of the tank fluid. This gave better control over the discharge duration and duty cycle and simplified the facility requirements. The mixing system configurations represented in testing varied from 4 to 12 PJMs with various jet nozzle sizes. In this way the results collected could be applied to the broad range of WTP vessels with varying geometrical configurations and planned operating conditions. Data for “just-suspended velocity”, solids cloud height, and solids concentration vertical profile were collected, analyzed, and correlated. The correlations were successfully benchmarked against previous large-scale test results, then applied to the WTP vessels using reasonable assumptions of anticipated waste properties to evaluate adequacy of the existing mixing system designs.

  5. Evidence of Early Enrichment of the Galactic Disk by Large-Scale Winds

    E-Print Network [OSTI]

    Tsujimoto, T; Freeman, K C

    2010-01-01T23:59:59.000Z

    Large-scale homogeneous surveys of Galactic stars may indicate that the elemental abundance gradient evolves with cosmic time, a phenomenon that was not foreseen in existing models of Galactic chemical evolution (GCE). If the phenomenon is confirmed in future studies, we show that this effect, at least in part, is due to large-scale winds that once enriched the disk. These set up the steep abundance gradient in the inner disk (R <14 kpc). At the close of the wind phase, chemical enrichment through accretion of metal-poor material from the halo onto the disk gradually reduced the metallicity of the inner region, whereas a slow increase in the metallicity proceeded beyond the solar circle. Our "wind+infall" model accounts for flattening of the abundance gradient in the inner disk, in good agreement with observations. Accordingly, we propose that enrichment by large-scale winds is a crucial factor for chemical evolution in the disk. We anticipate that rapid flattening of the abundance gradient is the hallmark...

  6. Beam Test of a Large Area nonn Silicon Strip Detector with Fast Binary Readout Electronics

    E-Print Network [OSTI]

    Beam Test of a Large Area n­on­n Silicon Strip Detector with Fast Binary Readout Electronics Y test was carried out for the non­irradiated and the irradiated detector modules. Efficiency, noise occupancy and performance in the edge regions were analyzed using the beam test data. High efficiency

  7. Testing the ae \\Lambda scaling of thermal transport models: predicted and measured temperatures in the Tokamak Fusion Test

    E-Print Network [OSTI]

    in the Tokamak Fusion Test Reactor dimensionless scaling experiments D. R. Mikkelsen, S. D. Scott Princeton the Tokamak Fusion Test Reactor [D. J. Grove and D. M. Meade, Nucl. Fusion 25, 1167 (1985)] nondimensional to extrapo­ late [1] from current experiments to International Tokamak Experimental Reactor [2] (ITER) class

  8. A Metascalable Computing Framework for Large Spatiotemporal-Scale Atomistic Simulations

    SciTech Connect (OSTI)

    Nomura, K; Seymour, R; Wang, W; Kalia, R; Nakano, A; Vashishta, P; Shimojo, F; Yang, L H

    2009-02-17T23:59:59.000Z

    A metascalable (or 'design once, scale on new architectures') parallel computing framework has been developed for large spatiotemporal-scale atomistic simulations of materials based on spatiotemporal data locality principles, which is expected to scale on emerging multipetaflops architectures. The framework consists of: (1) an embedded divide-and-conquer (EDC) algorithmic framework based on spatial locality to design linear-scaling algorithms for high complexity problems; (2) a space-time-ensemble parallel (STEP) approach based on temporal locality to predict long-time dynamics, while introducing multiple parallelization axes; and (3) a tunable hierarchical cellular decomposition (HCD) parallelization framework to map these O(N) algorithms onto a multicore cluster based on hybrid implementation combining message passing and critical section-free multithreading. The EDC-STEP-HCD framework exposes maximal concurrency and data locality, thereby achieving: (1) inter-node parallel efficiency well over 0.95 for 218 billion-atom molecular-dynamics and 1.68 trillion electronic-degrees-of-freedom quantum-mechanical simulations on 212,992 IBM BlueGene/L processors (superscalability); (2) high intra-node, multithreading parallel efficiency (nanoscalability); and (3) nearly perfect time/ensemble parallel efficiency (eon-scalability). The spatiotemporal scale covered by MD simulation on a sustained petaflops computer per day (i.e. petaflops {center_dot} day of computing) is estimated as NT = 2.14 (e.g. N = 2.14 million atoms for T = 1 microseconds).

  9. Karhunen-Loeve (PCA) based detection of multiple oscillations in multiple measurement signals from large-scale process plants

    E-Print Network [OSTI]

    Wickerhauser, M. Victor

    large-scale process plants P. F. Odgaard and M. V. Wickerhauser Abstract-- In the perspective of optimizing the control and operation of large scale process plants, it is important to detect and to locate oscillations in the plants. This paper presents a scheme for detecting and localizing multiple oscillations

  10. Production cost and air emissions impacts of coal cycling in power systems with large-scale wind penetration

    E-Print Network [OSTI]

    Jaramillo, Paulina

    on dispatchable generating capacity, such as coal and natural gas power plants, which can be cycled in responseProduction cost and air emissions impacts of coal cycling in power systems with large-scale wind emissions impacts of coal cycling in power systems with large-scale wind penetration David Luke Oates

  11. 752 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 24, NO. 2, MAY 2009 Large-Scale Distribution Planning--Part

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    methodology for low-voltage distribution network planning. Combined optimization of transformers, "Large-scale distribution planning--Part I: Simultaneous network and transformer optimization" [1752 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 24, NO. 2, MAY 2009 Large-Scale Distribution Planning

  12. Cyclone-anticyclone asymmetry of large-scale wakes in the laboratory G. Perret, A. Stegner, and M. Farge

    E-Print Network [OSTI]

    Stegner Alexandre

    extreme cases, coherent cyclones do not emerge at all, and only an anticyclonic vortex street appears.6. Hence, we found that a large-scale wake could differ strongly from the classical Karman street when elongated. In the Earth's ocean, large-scale eddies such as submesoscale coherent vortex,5 meddies

  13. Physical control oriented model of large scale refrigerators to synthesize advanced control schemes. Design, validation, and first control results

    SciTech Connect (OSTI)

    Bonne, François; Bonnay, Patrick [INAC, SBT, UMR-E 9004 CEA/UJF-Grenoble, 17 rue des Martyrs, 38054 Grenoble (France); Alamir, Mazen [Gipsa-Lab, Control Systems Department, CNRS-University of Grenoble, 11, rue des Mathématiques, BP 46, 38402 Saint Martin d'Hères (France)

    2014-01-29T23:59:59.000Z

    In this paper, a physical method to obtain control-oriented dynamical models of large scale cryogenic refrigerators is proposed, in order to synthesize model-based advanced control schemes. These schemes aim to replace classical user experience designed approaches usually based on many independent PI controllers. This is particularly useful in the case where cryoplants are submitted to large pulsed thermal loads, expected to take place in the cryogenic cooling systems of future fusion reactors such as the International Thermonuclear Experimental Reactor (ITER) or the Japan Torus-60 Super Advanced Fusion Experiment (JT-60SA). Advanced control schemes lead to a better perturbation immunity and rejection, to offer a safer utilization of cryoplants. The paper gives details on how basic components used in the field of large scale helium refrigeration (especially those present on the 400W @1.8K helium test facility at CEA-Grenoble) are modeled and assembled to obtain the complete dynamic description of controllable subsystems of the refrigerator (controllable subsystems are namely the Joule-Thompson Cycle, the Brayton Cycle, the Liquid Nitrogen Precooling Unit and the Warm Compression Station). The complete 400W @1.8K (in the 400W @4.4K configuration) helium test facility model is then validated against experimental data and the optimal control of both the Joule-Thompson valve and the turbine valve is proposed, to stabilize the plant under highly variable thermals loads. This work is partially supported through the European Fusion Development Agreement (EFDA) Goal Oriented Training Program, task agreement WP10-GOT-GIRO.

  14. Intermediate-scale tests of sodium interactions with calcite and dolomite aggregate concretes. [LMFBR

    SciTech Connect (OSTI)

    Randich, E.; Acton, R.U.

    1983-09-01T23:59:59.000Z

    Two intermediate-scale tests were performed to compare the behavior of calcite and dolomite aggregate concretes when attacked by molten sodium. The tests were performed as part of an interlaboratory comparison between Sandia National Laboratories and Hanford Engineering Development Laboratories. Results of the tests at Sandia National Laboratories are reported here. The results show that both concretes exhibit similar exothermic reactions with molten sodium. The large difference in reaction vigor suggested by thermodynamic considerations of CO/sub 2/ release from calcite and dolomite was not realized. Penetration rates of 1.4 to 1.7 mm/min were observed for short periods of time with reaction zone temperatures in excess of 800/sup 0/C during the energetic attack. The penetration was not uniform over the entire sodium-concrete contact area. Rapid attack may be localized due to inhomogeneities in the concrete. The chemical reaction zone is less then one cm thick for the calcite concrete but is about seven cm thick for the dolomite concrete.

  15. LARGE-SCALE HYDROGEN PRODUCTION FROM NUCLEAR ENERGY USING HIGH TEMPERATURE ELECTROLYSIS

    SciTech Connect (OSTI)

    James E. O'Brien

    2010-08-01T23:59:59.000Z

    Hydrogen can be produced from water splitting with relatively high efficiency using high-temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high-temperature process heat. When coupled to an advanced high temperature nuclear reactor, the overall thermal-to-hydrogen efficiency for high-temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. Demand for hydrogen is increasing rapidly for refining of increasingly low-grade petroleum resources, such as the Athabasca oil sands and for ammonia-based fertilizer production. Large quantities of hydrogen are also required for carbon-efficient conversion of biomass to liquid fuels. With supplemental nuclear hydrogen, almost all of the carbon in the biomass can be converted to liquid fuels in a nearly carbon-neutral fashion. Ultimately, hydrogen may be employed as a direct transportation fuel in a “hydrogen economy.” The large quantity of hydrogen that would be required for this concept should be produced without consuming fossil fuels or emitting greenhouse gases. An overview of the high-temperature electrolysis technology will be presented, including basic theory, modeling, and experimental activities. Modeling activities include both computational fluid dynamics and large-scale systems analysis. We have also demonstrated high-temperature electrolysis in our laboratory at the 15 kW scale, achieving a hydrogen production rate in excess of 5500 L/hr.

  16. APPLICATIONS OF CFD METHOD TO GAS MIXING ANALYSIS IN A LARGE-SCALED TANK

    SciTech Connect (OSTI)

    Lee, S; Richard Dimenna, R

    2007-03-19T23:59:59.000Z

    The computational fluid dynamics (CFD) modeling technique was applied to the estimation of maximum benzene concentration for the vapor space inside a large-scaled and high-level radioactive waste tank at Savannah River site (SRS). The objective of the work was to perform the calculations for the benzene mixing behavior in the vapor space of Tank 48 and its impact on the local concentration of benzene. The calculations were used to evaluate the degree to which purge air mixes with benzene evolving from the liquid surface and its ability to prevent an unacceptable concentration of benzene from forming. The analysis was focused on changing the tank operating conditions to establish internal recirculation and changing the benzene evolution rate from the liquid surface. The model used a three-dimensional momentum coupled with multi-species transport. The calculations included potential operating conditions for air inlet and exhaust flows, recirculation flow rate, and benzene evolution rate with prototypic tank geometry. The flow conditions are assumed to be fully turbulent since Reynolds numbers for typical operating conditions are in the range of 20,000 to 70,000 based on the inlet conditions of the air purge system. A standard two-equation turbulence model was used. The modeling results for the typical gas mixing problems available in the literature were compared and verified through comparisons with the test results. The benchmarking results showed that the predictions are in good agreement with the analytical solutions and literature data. Additional sensitivity calculations included a reduced benzene evolution rate, reduced air inlet and exhaust flow, and forced internal recirculation. The modeling results showed that the vapor space was fairly well mixed and that benzene concentrations were relatively low when forced recirculation and 72 cfm ventilation air through the tank boundary were imposed. For the same 72 cfm air inlet flow but without forced recirculation, the heavier benzene gas was stratified. The results demonstrated that benzene concentrations were relatively low for typical operating configurations and conditions. Detailed results and the cases considered in the calculations will be discussed here.

  17. Large-scale functional models of visual cortex for remote sensing

    SciTech Connect (OSTI)

    Brumby, Steven P [Los Alamos National Laboratory; Kenyon, Garrett [Los Alamos National Laboratory; Rasmussen, Craig E [Los Alamos National Laboratory; Swaminarayan, Sriram [Los Alamos National Laboratory; Bettencourt, Luis [Los Alamos National Laboratory; Landecker, Will [PORTLAND STATE UNIV.

    2009-01-01T23:59:59.000Z

    Neuroscience has revealed many properties of neurons and of the functional organization of visual cortex that are believed to be essential to human vision, but are missing in standard artificial neural networks. Equally important may be the sheer scale of visual cortex requiring {approx}1 petaflop of computation. In a year, the retina delivers {approx}1 petapixel to the brain, leading to massively large opportunities for learning at many levels of the cortical system. We describe work at Los Alamos National Laboratory (LANL) to develop large-scale functional models of visual cortex on LANL's Roadrunner petaflop supercomputer. An initial run of a simple region VI code achieved 1.144 petaflops during trials at the IBM facility in Poughkeepsie, NY (June 2008). Here, we present criteria for assessing when a set of learned local representations is 'complete' along with general criteria for assessing computer vision models based on their projected scaling behavior. Finally, we extend one class of biologically-inspired learning models to problems of remote sensing imagery.

  18. Optimal capacitor placement, replacement and control in large-scale unbalanced distribution systems: System solution algorithm and numerical studies

    SciTech Connect (OSTI)

    Chiang, H.D.; Wang, J.C.; Tong, J. [Cornell Univ., Ithaca, NY (United States). School of Electrical Engineering; Darling, G. [NYSEG Corp., Binghamton, NY (United States). Distribution System Dept.

    1994-12-31T23:59:59.000Z

    This paper develops an effective and, yet, practical solution methodology for optimal capacitor placement, replacement and control in large-scale unbalanced, general radial or loop distribution systems. The solution methodology can optimally determine (1) the locations to install (or replace, or remove) capacitors, (2) the types and sizes of capacitors to be installed (or replaced) and, during each load level, (3) the control schemes for each capacitor in the nodes of a general three-phase unbalanced distribution system such that a desired objective function is minimized while the load constraints, network constraints and operational constraints at different load levels are satisfied. The solution methodology is based on a combination of the simulated annealing technique and the greedy search technique in order to achieve computational speed and high-quality of solutions. Both the numerical and implementational aspects of the solution methodology are detailed. Analysis of the computational complexity of the solution algorithm indicated that the algorithm is also effective for large-scale distribution systems in terms of occupational efforts. Test results on a realistic, unbalanced distribution network, a 291-bus with 77 laterals, 305 distribution lines and 6 transformers, with varying loading conditions, are presented with promising results. The robustness of the solution methodology under varying loading conditions is also investigated.

  19. Optimal capacitor placement, replacement and control in large-scale unbalanced distribution systems: System solution algorithms and numerical studies

    SciTech Connect (OSTI)

    Chiang, H.D.; Wang, J.C.; Tong, J. [Cornell Univ., Ithaca, NY (United States). School of Electrical Engineering; Darling, G. [NYSEG Corp., Binghamton, NY (United States). Distribution System Dept.

    1995-02-01T23:59:59.000Z

    This paper develops an effective and, yet, practical solution methodology for optimal capacitor placement, replacement and control in large-scale unbalanced, general radial or loop distribution systems. The solution methodology can optimally determine (i) the locations to install (or replace, or remove) capacitors, (ii) the types and sizes of capacitors to be installed (or replaced) and, during each load level, (iii) the control schemes for each capacitor in the nodes of a general three-phase unbalanced distribution system such that a desired objective function is minimized while the load constraints, network constraints and operational constraints at different load levels are satisfied. The solution methodology is based on a combination of the simulated annealing technique and the greedy search technique in order to achieve computational speed and high-quality of solutions. Both the numerical and implementational aspects of the solution methodology are detailed. Analysis of the computational complexity of the solution algorithm indicates that the algorithm is also effective for large-scale distribution systems in terms of computational efforts. Test results on a realistic, unbalanced distribution network, a 291-bus with 77 laterals, 305 distribution lines and 6 transformers, with varying loading conditions, are presented with promising results. The robustness of the solution methodology under varying loading conditions is also investigated.

  20. Property:Full-Scale Test | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:PrecourtOid Jump to:Docket Number Jump to: navigation,Full-Scale

  1. Temperature effect on the small-to-large crossover length-scale of hydrophobic hydration

    E-Print Network [OSTI]

    Yuri S. Djikaev; Eli Ruckenstein

    2013-07-29T23:59:59.000Z

    The thermodynamics of hydration changes gradually from entropic for small solutes to enthalpic for large ones. The small-to-large crossover lengthscale of hydrophobic hydration depends on the thermodynamic conditions of the solvent such as temperature, pressure, presence of additives, etc... We attempt to shed some light on the temperature dependence of the crossover lengthscale by using a probabilistic approach to water hydrogen bonding that allows one to obtain an analytic expression for the number of bonds per water molecule as a function of both its distance to a solute and solute radius. Incorporating that approach into the density functional theory, one can examine the solute size effects on its hydration over the entire small-to-large lengthscale range at different temperatures. Knowing the dependence of the hydration free energy on temperature and solute size, one can obtain its enthalpic and entropic contributions as functions of temperature and solute size. These function can provide interesting insight into the temperature dependence of the crossover lengthscale of hydrophobic hydration. The model was applied to the hydration of spherical particles of various radii in water in the temperature range from T=293.15 K to T=333.15 K. The model predictions for the temperature dependence of the hydration free energy of small hydrophobes are consistent with the experimental and simulational data. Three alternative definitions for the small-to-large crossover length-scale of hydrophobic hydration are proposed, and their temperature dependence is obtained. Depending on the definition and temperature, the small-to-large crossover in the hydration mechanism is predicted to occur for hydrophobes of radii from one to several nanometers. Independent of its definition, the crossover length-scale is predicted to decrease with increasing temperature.

  2. Removal of Waterborne Particles by Electrofiltration: Pilot-Scale Testing

    E-Print Network [OSTI]

    Li, Ying

    , Missouri. 2 Center for Disease Control and Prevention, National Institute for Occupational Safety velocity that increases their deposition on the surface of collectors (e.g., sand filter). Although placed stainless steel mesh electrodes embedded in a sand filter was tested at a local drinking water

  3. Preface: The Dalmarnock Fire Tests 

    E-Print Network [OSTI]

    Torero, Jose L; Carvel, Ricky O

    2007-11-14T23:59:59.000Z

    Given the current state of the art, the vibrancy of the profession and existing data from numerous large scale tests, why are new large scale experiments like the Dalmarnock Tests important or, indeed, even necessary?

  4. Scalable, efficient ion-photon coupling with phase Fresnel lenses for large-scale quantum computing

    E-Print Network [OSTI]

    E. W. Streed; B. G. Norton; J. J. Chapman; D. Kielpinski

    2008-05-16T23:59:59.000Z

    Efficient ion-photon coupling is an important component for large-scale ion-trap quantum computing. We propose that arrays of phase Fresnel lenses (PFLs) are a favorable optical coupling technology to match with multi-zone ion traps. Both are scalable technologies based on conventional micro-fabrication techniques. The large numerical apertures (NAs) possible with PFLs can reduce the readout time for ion qubits. PFLs also provide good coherent ion-photon coupling by matching a large fraction of an ion's emission pattern to a single optical propagation mode (TEM00). To this end we have optically characterized a large numerical aperture phase Fresnel lens (NA=0.64) designed for use at 369.5 nm, the principal fluorescence detection transition for Yb+ ions. A diffraction-limited spot w0=350+/-15 nm (1/e^2 waist) with mode quality M^2= 1.08+/-0.05 was measured with this PFL. From this we estimate the minimum expected free space coherent ion-photon coupling to be 0.64%, which is twice the best previous experimental measurement using a conventional multi-element lens. We also evaluate two techniques for improving the entanglement fidelity between the ion state and photon polarization with large numerical aperture lenses.

  5. On the dangers of using the growth equation on large scales in the Newtonian gauge

    E-Print Network [OSTI]

    James B. Dent; Sourish Dutta

    2009-02-20T23:59:59.000Z

    We examine the accuracy of the growth equation $\\ddot{\\delta} + 2H\\dot{\\delta} - 4\\pi G\\rho\\delta = 0$, which is ubiquitous in the cosmological literature, in the context of the Newtonian gauge. By comparing the growth predicted by this equation to a numerical solution of the linearized Einstein equations in the $\\Lambda$CDM scenario, we show that while this equation is a reliable approximation on small scales ($k\\gtrsim $h Mpc$^{-1}$), it can be disastrously inaccurate ($\\sim 10^4% $) on larger scales in this gauge. We propose a modified version of the growth equation for the Newtonian gauge, which while preserving the simplicity of the original equation, provides considerably more accurate results. We examine the implications of the failure of the growth equation on a few recent studies, aimed at discriminating general relativity from modified gravity, which use this equation as a starting point. We show that while the results of these studies are valid on small scales, they are not reliable on large scales or high redshifts, if one works in the Newtonian gauge. Finally, we discuss the growth equation in the synchronous gauge and show that the corrections to the Poisson equation are exactly equivalent to the difference between the overdensities in the synchronous and Newtonian gauges.

  6. Optimizing unit test execution in large software programs using dependency analysis

    E-Print Network [OSTI]

    Kim, Taesoo

    Tao is a system that optimizes the execution of unit tests in large software programs and reduces the programmer wait time from minutes to seconds. Tao is based on two key ideas: First, Tao focuses on efficiency, unlike ...

  7. Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Task 5 Full-Scale Test Results

    SciTech Connect (OSTI)

    Gary Blythe; MariJon Owens

    2007-12-01T23:59:59.000Z

    This Topical Report summarizes progress on Cooperative Agreement DE-FC26-04NT42309, 'Field Testing of a Wet FGD Additive'. The objective of the project is to demonstrate the use of two flue gas desulfurization (FGD) additives, Evonik Degussa Corporation's TMT-15 and Nalco Company's Nalco 8034, to prevent the re-emission of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project intends to demonstrate whether the additive can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal. The project is conducting pilot- and full-scale tests of the additives in wet FGD absorbers. The tests are intended to determine required additive dosages to prevent Hg{sup 0} re-emissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Powder River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, Luminant Power (was TXU Generation Company LP), Southern Company, IPL (an AES company), Evonik Degussa Corporation and the Nalco Company. Luminant Power has provided the Texas lignite/PRB co-fired test site for pilot FGD tests and cost sharing. Southern Company has provided the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, as well as the pilot- and full-scale jet bubbling reactor (JBR) FGD systems tested. IPL provided the high-sulfur Eastern bituminous coal full-scale FGD test site and cost sharing. Evonik Degussa Corporation is providing the TMT-15 additive, and the Nalco Company is providing the Nalco 8034 additive. Both companies are also supplying technical support to the test program as in-kind cost sharing. The project is being conducted in six tasks. Of the six project tasks, Task 1 involves project planning and Task 6 involves management and reporting. The other four tasks involve field testing on FGD systems, either at pilot or full scale. The four tasks include: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High-sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Plant Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. The pilot-scale tests and the full-scale test using high-sulfur coal were completed in 2005 and 2006 and have been previously reported. This topical report presents the results from the Task 5 full-scale additive tests, conducted at Southern Company's Plant Yates Unit 1. Both additives were tested there.

  8. Large-Scale Structure in the ROSAT North Ecliptic Pole Survey

    E-Print Network [OSTI]

    Christopher R. Mullis

    1999-12-14T23:59:59.000Z

    We have used the ROSAT All-Sky Survey around the North Ecliptic Pole to construct a complete sample of galaxy clusters. The deep and contiguous nature of the survey affords us the opportunity to examine large-scale structure in the Universe on scales of hundreds of megaparsecs. We have identified over 99% of the 446 X-ray sources in the survey area. The cluster sample consists of 65 objects with redshifts approaching unity. Surprisingly, some 20% of the clusters exists in a wall-like structure at z=0.088 spanning the entire 9 deg x 9 deg survey region. This is a very significant extension of both the membership and the spatial extent to a known supercluster in this location.

  9. Conceptual Framework and Levels of Abstraction for a Complex Large-Scale System

    SciTech Connect (OSTI)

    Simpson, Mary J.

    2005-03-23T23:59:59.000Z

    A conceptual framework and levels of abstraction are created to apply across all potential threats. Bioterrorism is used as a complex example to describe the general framework. Bioterrorism is unlimited with respect to the use of a specific agent, mode of dissemination, and potential target. Because the threat is open-ended, there is a strong need for a common, systemic understanding of attack scenarios related to bioterrorism. In recognition of this large-scale complex problem, systems are being created to define, design and use the proper level of abstraction and conceptual framework in bioterrorism. The wide variety of biological agents and delivery mechanisms provide an opportunity for dynamic scale changes by the linking or interlinking of existing threat components. Concurrent impacts must be separated and evaluated in terms of a given environment and/or ‘abstraction framework.’

  10. Introduction Large scale structure of the Earth Small scale structure Dynamics and evolution Conclusions and outlook Structure, dynamics and evolution of the core-mantle

    E-Print Network [OSTI]

    Introduction Large scale structure of the Earth Small scale structure Dynamics and evolution Conclusions and outlook Structure, dynamics and evolution of the core-mantle boundary region Stéphane Labrosse École normale supérieure de Lyon Institut universitaire de France 14 mai 2012 1 / 63 Structure, dynamics

  11. Large-Scale Structure Formation in the Quasi-linear Regime

    E-Print Network [OSTI]

    F. Bernardeau

    1996-07-02T23:59:59.000Z

    The understanding of the large-scale structure formation requires the resolution of coupled nonlinear equations describing the cosmic density and velocity fields. This is a complicated problem that, for the last decade, has been essentially addressed with N-body simulations. There is however a regime, the so-called quasi-linear regime, for which the relative density fluctuations are on average below unity. It is then possible to apply Perturbation Theory techniques where the perturbation expansions are made with respect to the initial fluctuations. I review here the major results that have been obtained in this regime.

  12. Reduction of Ion Heating During Magnetic Reconnection by Large-Scale Effective Potentials

    E-Print Network [OSTI]

    Haggerty, C C; Drake, J F; Phan, T D; McHugh, C T

    2015-01-01T23:59:59.000Z

    Ion heating due to magnetic reconnection is an important process with applications to diverse plasmas, but previous simulations and observations have measured heating less than half oftheoretical predictions. Using kinetic particle-in-cell simulations, we show that this heating reduction is due to the presence of large scale parallel electric fields creating an effective field aligned potential which reduces the velocities of counterstreaming ions created by Fermi reflection. This potential arises to contain hot exhaust electrons, and an analytic form suitable for observations is derived.

  13. Materials Science and Materials Chemistry for Large Scale Electrochemical Energy Storage: From Transportation to Electrical Grid

    SciTech Connect (OSTI)

    Liu, Jun; Zhang, Jiguang; Yang, Zhenguo; Lemmon, John P.; Imhoff, Carl H.; Graff, Gordon L.; Li, Liyu; Hu, Jian Z.; Wang, Chong M.; Xiao, Jie; Xia, Guanguang; Viswanathan, Vilayanur V.; Baskaran, Suresh; Sprenkle, Vincent L.; Li, Xiaolin; Shao, Yuyan; Schwenzer, Birgit

    2013-02-15T23:59:59.000Z

    Large-scale electrical energy storage has become more important than ever for reducing fossil energy consumption in transportation and for the widespread deployment of intermittent renewable energy in electric grid. However, significant challenges exist for its applications. Here, the status and challenges are reviewed from the perspective of materials science and materials chemistry in electrochemical energy storage technologies, such as Li-ion batteries, sodium (sulfur and metal halide) batteries, Pb-acid battery, redox flow batteries, and supercapacitors. Perspectives and approaches are introduced for emerging battery designs and new chemistry combinations to reduce the cost of energy storage devices.

  14. THE APM CLUSTER SURVEY: CLUSTER DETECTION AND LARGE-SCALE STRUCTURE

    E-Print Network [OSTI]

    G. B. Dalton

    1995-05-17T23:59:59.000Z

    The APM Cluster Survey was based on a modification of Abell's original classification scheme for galaxy clusters. Here we discuss the results of an investigation of the stability of the statistical properties of the cluster catalogue to changes in the selection parameters. For a poor choice of selection parameters we find clear indications of line-of-sight clusters, but there is a wide range of input parameters for which the statistical properties of the catalogue are stable. We conclude that clusters selected in this way are indeed useful as tracers of large-scale structure.

  15. A model for red blood cells in simulations of large-scale blood flows

    E-Print Network [OSTI]

    Simone Melchionna

    2011-07-25T23:59:59.000Z

    Red blood cells (RBCs) are an essential component of blood. A method to include the particulate nature of blood is introduced here with the goal of studying circulation in large-scale realistic vessels. The method uses a combination of the Lattice Boltzmann method (LBM) to account for the plasma motion, and a modified Molecular Dynamics scheme for the cellular motion. Numerical results illustrate the quality of the model in reproducing known rheological properties of blood as much as revealing the effect of RBC structuring on the wall shear stress, with consequences on the development of cardiovascular diseases.

  16. 2144 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 22, NO. 4, NOVEMBER 2007 Fast SCUC for Large-Scale Power Systems

    E-Print Network [OSTI]

    Fu, Yong

    2144 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 22, NO. 4, NOVEMBER 2007 Fast SCUC for Large introduces an efficient fast SCUC (F-SCUC) for large-scale power systems. Main components used-changing and phase-shifting transformers, and so on [1]. Such SCUC problem is a nonconvex, nonlinear, large

  17. Fabrication of a SWATH vessel scale model for seakeeping tests using rapid prototyping methods

    E-Print Network [OSTI]

    DiMino, John Robert

    2013-01-01T23:59:59.000Z

    This paper describes the techniques used to fabricate a one meter long, 1/6 scale model of a Small Waterplane Area, Twin Hull (SWATH) Unmanned Surface Vehicle (USV) that will be used primarily for dynamic seakeeping testing ...

  18. Scale-up and Testing of Advanced Materials from the BATT Program...

    Broader source: Energy.gov (indexed) [DOE]

    AMR Berkeley Lab 129 Scale-up and Testing of Advanced Materials from the BATT Program Vincent Battaglia, Ph.D. Lawrence Berkeley National Laboratory May 16, 2012 es029 This...

  19. Scale-up and Testing of Advanced Materials from the BATT Program...

    Broader source: Energy.gov (indexed) [DOE]

    Scale-up and Testing of Advanced Materials from the BATT Program Vincent Battaglia, Ph.D. Lawrence Berkeley National Laboratory May 15, 2013 ES029) This presentation does not...

  20. Novel Carbon Capture Solvent Begins Pilot-Scale Testing for Emissions...

    Broader source: Energy.gov (indexed) [DOE]

    Pilot-scale testing of an advanced technology for economically capturing carbon dioxide (CO2) from flue gas has begun at the National Carbon Capture Center (NCCC) in Wilsonville,...

  1. Laboratory and field-scale test methodology for reliable characterization of solidified/stabilized hazardous wastes

    SciTech Connect (OSTI)

    Gray, K.E.; Holder, J. [Univ. of Texas, Austin, TX (United States). Center for Earth Sciences and Engineering; Mollah, M.Y.A.; Hess, T.R.; Vempati, R.K.; Cocke, D.L. [Lamar Univ., Beaumont, TX (United States)

    1995-12-31T23:59:59.000Z

    A methodology for flow through leach testing is proposed and discussed and preliminary testing using strontium doped cement based S/S samples is presented. The complementary and necessary characterization of the S/S matrix before and after testing is discussed and placed in perspective to the total evaluation of the laboratory-field scale leach testing for predicting long term performance and S/S technology design and improvement.

  2. Connecting the Physical Properties of Galaxies with the Overdensity and Tidal Shear of the Large-Scale Environment

    E-Print Network [OSTI]

    Jounghun Lee; Cheng Li

    2008-03-12T23:59:59.000Z

    We have examined the correlations between the large-scale environment of galaxies and their physical properties, using a sample of 28,354 nearby galaxies drawn from the Sloan Digital Sky Survey, and the large-scale tidal field reconstructed in real space from the 2Mass Redshift Survey and smoothed over a radius of $\\sim 6 h^{-1}$Mpc. The large-scale environment is expressed in terms of the overdensity, the ellipticity of the shear and the type of the large-scale structure. The physical properties analyzed include $r$-band absolute magnitude $M_{^{0.1}r}$, stellar mass $M_\\ast$, $g-r$ colour, concentration parameter $R_{90}/R_{50}$ and surface stellar mass density $\\mu_\\ast$. Both luminosity and stellar mass are found to be statistically linked to the large-scale environment, regardless of how the environment is quantified. More luminous (massive) galaxies reside preferentially in the regions with higher densities, lower ellipticities and halo-like structures. At fixed luminosity, the large-scale overdensity depends strongly on parameters related to the recent star formation history, that is colour and D(4000), but is almost independent of the structural parameters $R_{90}/R_{50}$ and $\\mu_\\ast$. All the physical properties are statistically linked to the shear of the large-scale environment even when the large-scale density is constrained to a narrow range. This statistical link has been found to be most significant in the quasi-linear regions where the large-scale density approximates to an order of unity, but no longer significant in highly nonlinear regimes with $\\delta_{\\rm LS}\\gg 1$.

  3. Experimental test of scaling of mixing by chaotic advection in droplets moving through microfluidic channels

    E-Print Network [OSTI]

    Ismagilov, Rustem F.

    Experimental test of scaling of mixing by chaotic advection in droplets moving through microfluidic that predicts the scaling of chaotic mixing in a droplet moving through a winding microfluidic channel microfluidic channels.1 In microfluidic systems2,3 operating at low values of the Reynolds number Re, streams

  4. Testing gravity on kiloparsec scales with strong gravitational lenses

    E-Print Network [OSTI]

    Tristan L. Smith

    2010-04-12T23:59:59.000Z

    Modifications to GR generically predict time and scale-dependent effects which may be probed by observations of strong lensing by galaxies. Measurements of the stellar velocity dispersion determine the dynamical mass whereas measurements of the Einstein radius determine the lensing mass. In GR these two masses are equal; in alternative gravity theories they may not be. Using measurements of the stellar velocity dispersion and strong lensing around galaxies from the Sloan Lens ACS (SLACS) survey we place constraints on lensing in modified gravity theories and extend previous studies by applying this data to explore its dependence on various properties of the lens such as the lens redshift or mass and thereby constrain scalar-tensor, f(R) gravity theories, and generic parameterizations of deviations from GR. Besides applying the observations to these specific gravity theories, the data places a constraint on a generic dependence of modifications to GR on the lens mass and redshift. At the 68% confidence level we find that the ratio between the lensing and dynamical masses can only vary by less then 50% over a mass range for the lens galaxies of 1E12 < M/Msun < 1E14 and less than 40% over the redshift range 0.06 < z < 0.36.

  5. PowerGrid - A Computation Engine for Large-Scale Electric Networks

    SciTech Connect (OSTI)

    Chika Nwankpa

    2011-01-31T23:59:59.000Z

    This Final Report discusses work on an approach for analog emulation of large scale power systems using Analog Behavioral Models (ABMs) and analog devices in PSpice design environment. ABMs are models based on sets of mathematical equations or transfer functions describing the behavior of a circuit element or an analog building block. The ABM concept provides an efficient strategy for feasibility analysis, quick insight of developing top-down design methodology of large systems and model verification prior to full structural design and implementation. Analog emulation in this report uses an electric circuit equivalent of mathematical equations and scaled relationships that describe the states and behavior of a real power system to create its solution trajectory. The speed of analog solutions is as quick as the responses of the circuit itself. Emulation therefore is the representation of desired physical characteristics of a real life object using an electric circuit equivalent. The circuit equivalent has within it, the model of a real system as well as the method of solution. This report presents a methodology of the core computation through development of ABMs for generators, transmission lines and loads. Results of ABMs used for the case of 3, 6, and 14 bus power systems are presented and compared with industrial grade numerical simulators for validation.

  6. Large Scale Ice Water Path and 3-D Ice Water Content

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Liu, Guosheng

    Cloud ice water concentration is one of the most important, yet poorly observed, cloud properties. Developing physical parameterizations used in general circulation models through single-column modeling is one of the key foci of the ARM program. In addition to the vertical profiles of temperature, water vapor and condensed water at the model grids, large-scale horizontal advective tendencies of these variables are also required as forcing terms in the single-column models. Observed horizontal advection of condensed water has not been available because the radar/lidar/radiometer observations at the ARM site are single-point measurement, therefore, do not provide horizontal distribution of condensed water. The intention of this product is to provide large-scale distribution of cloud ice water by merging available surface and satellite measurements. The satellite cloud ice water algorithm uses ARM ground-based measurements as baseline, produces datasets for 3-D cloud ice water distributions in a 10 deg x 10 deg area near ARM site. The approach of the study is to expand a (surface) point measurement to an (satellite) areal measurement. That is, this study takes the advantage of the high quality cloud measurements at the point of ARM site. We use the cloud characteristics derived from the point measurement to guide/constrain satellite retrieval, then use the satellite algorithm to derive the cloud ice water distributions within an area, i.e., 10 deg x 10 deg centered at ARM site.

  7. Large-scale weakly nonlinear perturbations of convective magnetic dynamos in a rotating layer

    E-Print Network [OSTI]

    Roman Chertovskih; Vladislav Zheligovsky

    2015-04-26T23:59:59.000Z

    We present a new mechanism for generation of large-scale magnetic field by thermal convection which does not involve the alpha-effect. We consider weakly nonlinear perturbations of space-periodic steady convective magnetic dynamos in a rotating layer that were identified in our previous work. The perturbations have a spatial scale in the horizontal direction that is much larger than the period of the perturbed convective magnetohydrodynamic state. Following the formalism of the multiscale stability theory, we have derived the system of amplitude equations governing the evolution of the leading terms in expansion of the perturbations in power series in the scale ratio. This asymptotic analysis is more involved than in the cases considered earlier, because the kernel of the operator of linearisation has zero-mean neutral modes whose origin lies in the spatial invariance of the perturbed regime, the operator reduced on the generalised kernel has two Jordan normal form blocks of size two, and simplifying symmetries of the perturbed state are now missing. Numerical results for the amplitude equations show that a perturbation, periodic in slow horizontal variable, either decays in time, or blows up at a finite time with amplitudes turning into a periodically-replicated delta-function moving at a constant speed.

  8. Combined Climate and Carbon-Cycle Effects of Large-Scale Deforestation

    SciTech Connect (OSTI)

    Bala, G; Caldeira, K; Wickett, M; Phillips, T J; Lobell, D B; Delire, C; Mirin, A

    2006-10-17T23:59:59.000Z

    The prevention of deforestation and promotion of afforestation have often been cited as strategies to slow global warming. Deforestation releases CO{sub 2} to the atmosphere, which exerts a warming influence on Earth's climate. However, biophysical effects of deforestation, which include changes in land surface albedo, evapotranspiration, and cloud cover also affect climate. Here we present results from several large-scale deforestation experiments performed with a three-dimensional coupled global carbon-cycle and climate model. These are the first such simulations performed using a fully three-dimensional model representing physical and biogeochemical interactions among land, atmosphere, and ocean. We find that global-scale deforestation has a net cooling influence on Earth's climate, since the warming carbon-cycle effects of deforestation are overwhelmed by the net cooling associated with changes in albedo and evapotranspiration. Latitude-specific deforestation experiments indicate that afforestation projects in the tropics would be clearly beneficial in mitigating global-scale warming, but would be counterproductive if implemented at high latitudes and would offer only marginal benefits in temperate regions. While these results question the efficacy of mid- and high-latitude afforestation projects for climate mitigation, forests remain environmentally valuable resources for many reasons unrelated to climate.

  9. Investigation of scaling and inhibition mechanisms and the influencing factors in static and dynamic inhibition tests

    SciTech Connect (OSTI)

    Yuan, M.D.; Jamieson, E.; Hammonds, P. [Baker Petrolite, Aberdeen (United Kingdom)

    1998-12-31T23:59:59.000Z

    This paper presents results of some recent laboratory study on barium sulfate scale inhibition in oilfield brines and investigation of several factors potentially effecting scale inhibition efficiency. In addition to well known mechanisms of scale nucleation inhibition and crystal growth retardation, dispersion/anti-conglomeration appears to be a significant inhibition mechanism associated with some scale inhibitors, which may play an important role in a dynamic flowing system. The contamination of a brine by an organic chelating agent such as EDTA or citric acid did not, in this study, show any significant effect on the barium sulfate inhibition efficiency of any of the three generically different scale inhibitors included. Experiments show that, in a properly enclosed system, the pH of an oilfield brine even with hydrogen bicarbonate presence can be sufficiently buffered with acetic acid. These new results are believed to be useful in evaluating/selecting scale inhibitors and improving barium sulfate scale inhibition test methods.

  10. Calculation of large scale relative permeabilities from stochastic properties of the permeability field and fluid properties

    SciTech Connect (OSTI)

    Lenormand, R.; Thiele, M.R. [Institut Francais du Petrole, Rueil Malmaison (France)

    1997-08-01T23:59:59.000Z

    The paper describes the method and presents preliminary results for the calculation of homogenized relative permeabilities using stochastic properties of the permeability field. In heterogeneous media, the spreading of an injected fluid is mainly sue to the permeability heterogeneity and viscosity fingering. At large scale, when the heterogeneous medium is replaced by a homogeneous one, we need to introduce a homogenized (or pseudo) relative permeability to obtain the same spreading. Generally, is derived by using fine-grid numerical simulations (Kyte and Berry). However, this operation is time consuming and cannot be performed for all the meshes of the reservoir. We propose an alternate method which uses the information given by the stochastic properties of the field without any numerical simulation. The method is based on recent developments on homogenized transport equations (the {open_quotes}MHD{close_quotes} equation, Lenormand SPE 30797). The MHD equation accounts for the three basic mechanisms of spreading of the injected fluid: (1) Dispersive spreading due to small scale randomness, characterized by a macrodispersion coefficient D. (2) Convective spreading due to large scale heterogeneities (layers) characterized by a heterogeneity factor H. (3) Viscous fingering characterized by an apparent viscosity ration M. In the paper, we first derive the parameters D and H as functions of variance and correlation length of the permeability field. The results are shown to be in good agreement with fine-grid simulations. The are then derived a function of D, H and M. The main result is that this approach lead to a time dependent . Finally, the calculated are compared to the values derived by history matching using fine-grid numerical simulations.

  11. Creation of the dam for the No. 2 Kambaratinskaya HPP by large-scale blasting: analysis of planning experience and lessons learned

    SciTech Connect (OSTI)

    Shuifer, M. I.; Argal, E. S. [JSC 'Gidrospetsproekt' (Russian Federation)

    2012-05-15T23:59:59.000Z

    Results of complex instrument observations and video taping during large-scale blasts detonated for creation of the dam at the No. 2 Kambaratinskaya HPP on the Naryn River in the Kyrgyz Republic are analyzed. Tests of the energy effectiveness of the explosives are evaluated, characteristics of LSB manifestations in seismic and air waves are revealed, and the shaping and movement of the rock mass are examined. A methodological analysis of the planning and production of the LSB is given.

  12. Cosmological parameter constraints from SDSS luminous red galaxies: a new treatment of large-scale clustering

    E-Print Network [OSTI]

    Ariel G. Sanchez; M. Crocce; A. Cabre; C. M. Baugh; E. Gaztanaga

    2009-08-19T23:59:59.000Z

    We apply a new model for the spherically averaged correlation function at large pair separations to the measurement of the clustering of luminous red galaxies (LRGs) made from the SDSS by Cabre and Gaztanaga(2009). Our model takes into account the form of the BAO peak and the large scale shape of the correlation function. We perform a Monte Carlo Markov chain analysis for different combinations of datasets and for different parameter sets. When used in combination with a compilation of the latest CMB measurements, the LRG clustering and the latest supernovae results give constraints on cosmological parameters which are comparable and in remarkably good agreement, resolving the tension reported in some studies. The best fitting model in the context of a flat, Lambda-CDM cosmology is specified by Omega_m=0.261+-0.013, Omega_b=0.044+-0.001, n_s=0.96+-0.01, H_0=71.6+-1.2 km/s/Mpc and sigma_8=0.80+-0.02. If we allow the time-independent dark energy equation of state parameter to vary, we find results consistent with a cosmological constant at the 5% level using all data sets: w_DE=-0.97+-0.05. The large scale structure measurements by themselves can constrain the dark energy equation of state parameter to w_DE=-1.05+-0.15, independently of CMB or supernovae data. We do not find convincing evidence for an evolving equation of state. We provide a set of "extended distance priors" that contain the most relevant information from the CMB power spectrum and the shape of the LRG correlation function which can be used to constrain dark energy models and spatial curvature. Our model should provide an accurate description of the clustering even in much larger, forthcoming surveys, such as those planned with NASA's JDEM or ESA's Euclid mission.

  13. Large Scale Power and Running Spectral Index in New Old Inflation

    SciTech Connect (OSTI)

    Dvali, G.

    2003-11-07T23:59:59.000Z

    We have proposed a new class of inflationary scenarios in which the first stage of expansion is driven by ''old'' false vacuum inflation. This ends by nucleation of a bubble, which then further inflates. Unlike the standard slow-roll scenarios the ''clock'' ending the second inflationary phase is not a local order parameter, but rather the average value of an oscillating scalar field, which locks the system at a saddle point of the potential in a temporary inflationary state. Inflation ends when the amplitude drops below a certain critical point and liberates the system from the false vacuum state. The second stage of inflation has only about 50 e-foldings, a number which is determined entirely by the ratio of the fundamental mass scales, such as the Planck/string scale and the supersymmetry breaking scale. The density perturbations are generated due to fluctuations of moduli-dependent Yukawa couplings. In this note we explore the observable imprints in the fluctuation spectrum of generic cross-couplings in the superpotential and in the Kaehler potential. We show that in the presence of generic non-renormalizable interactions in the superpotential between the fluctuating modulus and the oscillating inflaton, the amplitude of the density perturbations is exponentially cut-off for sufficiently large wavelengths. With reasonable choices of scales and interactions, this long wavelength cutoff can occur at approximately the current horizon size. The perturbative corrections in the Kaehler potential give non-trivial potentially observable tilt and a running of the spectral index which is different from the standard inflationary models.

  14. Impact of Potential Large-Scale Irrigation on the West African Monsoon and Its Dependence on Location of Irrigated Area

    E-Print Network [OSTI]

    Im, Eun-Soon

    This study investigates the impact of potential large-scale irrigation on the West African monsoon using the Massachusetts Institute of Technology regional climate model (MRCM). A new irrigation module is implemented to ...

  15. Solar Power in the Desert: Are the current large-scale solar developments really improving California’s environment?

    E-Print Network [OSTI]

    Allen, Michael F.; McHughen, Alan

    2011-01-01T23:59:59.000Z

    D EVELOPMENT I SSUES Solar Power in the Desert: Are the2 Most of the large-scale solar power projects utilize largethat will be affected by solar power facilities. There are

  16. The Role of the state in large-scale hydropower development perspectives from Chile, Ecuador, and Perú

    E-Print Network [OSTI]

    Zambrano-Barragán, Patricio Xavier

    2012-01-01T23:59:59.000Z

    In recent years, governments in South America have turned to large-scale hydropower as a cost-effective way to improve livelihoods while addressing the energy 'trilemma': ensuring that future energy technologies provide ...

  17. Agile project dynamics : a strategic project management approach to the study of large-scale software development using system dynamics

    E-Print Network [OSTI]

    Glaiel, Firas (Firas S.)

    2012-01-01T23:59:59.000Z

    Large-scale software engineering organizations have traditionally used plan-driven, heavyweight, waterfall-style approaches for the planning, execution, and monitoring of software development efforts. This approach often ...

  18. Generation of acoustic-gravity waves in ionospheric HF heating experiments : simulating large-scale natural heat sources

    E-Print Network [OSTI]

    Pradipta, Rezy

    2012-01-01T23:59:59.000Z

    In this thesis, we investigate the potential role played by large-scale anomalous heat sources (e.g. prolonged heat wave events) in generating acoustic-gravity waves (AGWs) that might trigger widespread plasma turbulence ...

  19. Model As-of Right Zoning Ordinance or Bylaw: Allowing Use of Large-Scale Solar Energy Facilities

    Broader source: Energy.gov [DOE]

    Note: This model ordinance was designed to provide guidance to local governments seeking to develop siting rules for large-scale, ground-mounted solar (250 kW and above). While it was developed as...

  20. Nonlinear effects resulting from the interaction of a large-scale Alfven wave with a density filament

    E-Print Network [OSTI]

    California at Los Angles, University of

    through the plasma-sheet boundary layer in the earth's magnetosphere at altitudes of 4­6 Earth radii-scale wave are large enough to produce oscillatory velocities comparable to the electron thermal velocity