Sample records for large scale energy

  1. Large-Scale Renewable Energy Guide Webinar

    Broader source: Energy.gov [DOE]

    Webinar introduces the “Large Scale Renewable Energy Guide." The webinar will provide an overview of this important FEMP guide, which describes FEMP's approach to large-scale renewable energy projects and provides guidance to Federal agencies and the private sector on how to develop a common process for large-scale renewable projects.

  2. Large Scale Energy Storage: From Nanomaterials to Large Systems

    E-Print Network [OSTI]

    Fisher, Frank

    Large Scale Energy Storage: From Nanomaterials to Large Systems Wednesday October 26, 2011, Babbio energy storage devices. Specifically, this talk discusses 1) the challenges for grid scale of emergent technologies with ultralow costs on new energy storage materials and mechanisms. Dr. Jun Liu

  3. Sandia Energy - Computational Fluid Dynamics & Large-Scale Uncertainty...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Large-Scale Uncertainty Quantification for Wind Energy Home Highlights - HPC Computational Fluid Dynamics & Large-Scale Uncertainty Quantification for Wind Energy Previous Next...

  4. Autonomie Large Scale Deployment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments fromof Energy Automation Worldof EnergyTAGS,Large Scale

  5. Large-Scale Renewable Energy Projects (Larger than 10 MWs) |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Large-Scale Renewable Energy Projects (Larger than 10 MWs) Large-Scale Renewable Energy Projects (Larger than 10 MWs) Renewable energy projects larger than 10 megawatts (MW) are...

  6. FEMP Helps Federal Facilities Develop Large-Scale Renewable Energy...

    Office of Environmental Management (EM)

    FEMP Helps Federal Facilities Develop Large-Scale Renewable Energy Projects FEMP Helps Federal Facilities Develop Large-Scale Renewable Energy Projects August 21, 2013 - 12:00am...

  7. Large Scale GSHP as Alternative Energy for American Farmers Geothermal...

    Open Energy Info (EERE)

    Scale GSHP as Alternative Energy for American Farmers Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Large Scale GSHP as Alternative...

  8. Strategies to Finance Large-Scale Deployment of Renewable Energy...

    Open Energy Info (EERE)

    Strategies to Finance Large-Scale Deployment of Renewable Energy Projects: An Economic Development and Infrastructure Approach Jump to: navigation, search Tool Summary LAUNCH TOOL...

  9. Large-Scale Eucalyptus Energy Farms and Power Cogeneration1

    E-Print Network [OSTI]

    Standiford, Richard B.

    Large-Scale Eucalyptus Energy Farms and Power Cogeneration1 Robert C. Noronla2 The initiation of a large-scale cogeneration project, especially one that combines construction of the power generation supplemental fuel source must be sought if the cogeneration facility will consume more fuel than

  10. Spatial Energy Balancing in Large-scale Wireless Multihop Networks

    E-Print Network [OSTI]

    de Veciana, Gustavo

    Spatial Energy Balancing in Large-scale Wireless Multihop Networks Seung Jun Baek and Gustavo de is on optimizing trade-offs between the energy cost of spreading traffic and the improved spatial balance of energy. We propose a parameterized family of energy balancing strategies for grids and approximate

  11. Electrochemical cells for medium- and large-scale energy storage

    SciTech Connect (OSTI)

    Wang, Wei; Wei, Xiaoliang; Choi, Daiwon; Lu, Xiaochuan; Yang, G.; Sun, C.

    2014-12-12T23:59:59.000Z

    This is one of the chapters in the book titled “Advances in batteries for large- and medium-scale energy storage: Applications in power systems and electric vehicles” that will be published by the Woodhead Publishing Limited. The chapter discusses the basic electrochemical fundamentals of electrochemical energy storage devices with a focus on the rechargeable batteries. Several practical secondary battery systems are also discussed as examples

  12. Large-Scale Liquid Hydrogen Handling Equipment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLEDControl ConceptCombustionLarge-Scale

  13. Large-Scale Renewable Energy Guide | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLEDControlDepartment of Energy

  14. Lessons from Large-Scale Renewable Energy Integration Studies: Preprint

    SciTech Connect (OSTI)

    Bird, L.; Milligan, M.

    2012-06-01T23:59:59.000Z

    In general, large-scale integration studies in Europe and the United States find that high penetrations of renewable generation are technically feasible with operational changes and increased access to transmission. This paper describes other key findings such as the need for fast markets, large balancing areas, system flexibility, and the use of advanced forecasting.

  15. An Energy-Efficient Framework for Large-Scale Parallel Storage Systems

    E-Print Network [OSTI]

    Qin, Xiao

    An Energy-Efficient Framework for Large-Scale Parallel Storage Systems Ziliang Zong, Matt Briggs-scale and energy-efficient parallel storage systems. To validate the efficiency of the proposed framework, a buffer that this new framework can significantly improves the energy efficiency of large-scale parallel storage systems

  16. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage

    E-Print Network [OSTI]

    Wang, Wei Hua

    Room-temperature stationary sodium-ion batteries for large-scale electric energy storage Huilin Pan attention particularly in large- scale electric energy storage applications for renewable energy and smart storage system in the near future. Broader context With the rapid development of renewable energy sources

  17. Harvesting Clean Energy How California Can Deploy Large-Scale Renewable

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Harvesting Clean Energy How California Can Deploy Large-Scale Renewable Energy Projects Harvesting Clean Energy: How California Can Deploy Large-Scale Renewable Energy Projects on Appropriate acres of impaired lands in the Westlands Water District in the Central Valley may soon have

  18. Large Scale Computing and Storage Requirements for High Energy Physics

    SciTech Connect (OSTI)

    Gerber, Richard A.; Wasserman, Harvey

    2010-11-24T23:59:59.000Z

    The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility for the Department of Energy's Office of Science, providing high-performance computing (HPC) resources to more than 3,000 researchers working on about 400 projects. NERSC provides large-scale computing resources and, crucially, the support and expertise needed for scientists to make effective use of them. In November 2009, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR), and DOE's Office of High Energy Physics (HEP) held a workshop to characterize the HPC resources needed at NERSC to support HEP research through the next three to five years. The effort is part of NERSC's legacy of anticipating users needs and deploying resources to meet those demands. The workshop revealed several key points, in addition to achieving its goal of collecting and characterizing computing requirements. The chief findings: (1) Science teams need access to a significant increase in computational resources to meet their research goals; (2) Research teams need to be able to read, write, transfer, store online, archive, analyze, and share huge volumes of data; (3) Science teams need guidance and support to implement their codes on future architectures; and (4) Projects need predictable, rapid turnaround of their computational jobs to meet mission-critical time constraints. This report expands upon these key points and includes others. It also presents a number of case studies as representative of the research conducted within HEP. Workshop participants were asked to codify their requirements in this case study format, summarizing their science goals, methods of solution, current and three-to-five year computing requirements, and software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, multi-core environment that is expected to dominate HPC architectures over the next few years. The report includes a section that describes efforts already underway or planned at NERSC that address requirements collected at the workshop. NERSC has many initiatives in progress that address key workshop findings and are aligned with NERSC's strategic plans.

  19. Large-Scale Integration of Deferrable Demand and Renewable Energy Sources

    E-Print Network [OSTI]

    Oren, Shmuel S.

    1 Large-Scale Integration of Deferrable Demand and Renewable Energy Sources Anthony Papavasiliou. In order to accurately assess the impacts of renewable energy integration and demand response integration model for assessing the impacts of the large-scale integration of renewable energy sources

  20. Autonomous and Energy-Aware Management of Large-Scale Cloud Infrastructures

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Autonomous and Energy-Aware Management of Large-Scale Cloud Infrastructures Eugen Feller Advisor.e. self-organization and healing); (3) energy-awareness. However, existing open-source cloud management, and energy-aware resource management frameworks for large-scale cloud infrastructures. Particularly, a novel

  1. Membraneless hydrogen bromine laminar flow battery for large-scale energy storage

    E-Print Network [OSTI]

    Braff, William Allan

    2014-01-01T23:59:59.000Z

    Electrochemical energy storage systems have been considered for a range of potential large-scale energy storage applications. These applications vary widely, both in the order of magnitude of energy storage that is required ...

  2. The Association of Large-Scale Climate Variability and Teleconnections on Wind Energy Resource

    E-Print Network [OSTI]

    The Association of Large-Scale Climate Variability and Teleconnections on Wind Energy Resource over on Wind Energy Resource over Europe and its Intermittency Pascal Kriesche* and Adam Schlosser* Abstract

  3. Probing the imprint of interacting dark energy on very large scales

    E-Print Network [OSTI]

    Duniya, Didam; Maartens, Roy

    2015-01-01T23:59:59.000Z

    The observed galaxy power spectrum acquires relativistic corrections from lightcone effects, and these corrections grow on very large scales. Future galaxy surveys in optical, infrared and radio bands will probe increasingly large wavelength modes and reach higher redshifts. In order to exploit the new data on large scales, an accurate analysis requires inclusion of the relativistic effects. This is especially the case for primordial non-Gaussianity and for extending tests of dark energy models to horizon scales. Here we investigate the latter, focusing on models where the dark energy interacts non-gravitationally with dark matter. Interaction in the dark sector can also lead to large-scale deviations in the power spectrum. If the relativistic effects are ignored, the imprint of interacting dark energy will be incorrectly identified and thus lead to a bias in constraints on interacting dark energy on very large scales.

  4. Tax Exemption for Large-Scale Renewable Energy Projects

    Broader source: Energy.gov [DOE]

    In August 2007 Kentucky established the ''Incentives for Energy Independence Act'' (IEIA) to promote the development of renewable energy and alternative fuel facilities, energy efficient buildings,...

  5. Energy Department Applauds Nation's First Large-Scale Industrial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in the global clean energy economy, creating new jobs while reducing carbon pollution," said US Energy Secretary Steven Chu. "This first of its kind project will bring...

  6. Large Scale Computing and Storage Requirements for Basic Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological and Environmental Science (BER) Fusion Energy Sciences (FES) High Energy Physics (HEP) Nuclear Physics (NP) Overview Published Reports Case Study FAQs Home Science at...

  7. Large-Scale Renewable Energy Projects (Larger than 10 MWs) |...

    Broader source: Energy.gov (indexed) [DOE]

    Renewable energy projects larger than 10 megawatts (MW) are complex and typically require private-sector financing. The Federal Energy Management Program (FEMP) developed a guide...

  8. Effects of large-scale distribution of wind energy in and around Europe

    E-Print Network [OSTI]

    Effects of large-scale distribution of wind energy in and around Europe Gregor Giebel Niels Gylling energy in Europe? · Distribution of wind energy all over Europe leads to smoothing of the wind power energy can easily supply up to ~20% of the European demand. At this stage, · Less than 13% of the wind

  9. A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage

    E-Print Network [OSTI]

    Cui, Yi

    A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage Yuan Yang,a Guangyuan Zhengb and Yi Cui*ac Large-scale energy storage represents a key challenge for renewable energy develop a new lithium/ polysulfide (Li/PS) semi-liquid battery for large-scale energy storage

  10. Locations of Smart Grid Demonstration and Large-Scale Energy...

    Broader source: Energy.gov (indexed) [DOE]

    the location of all projects created with funding from the Smart Grid Demonstration and Energy Storage Project, funded through the American Recovery and Reinvestment Act....

  11. Energy Department Loan Guarantee Would Support Large-Scale Rooftop...

    Broader source: Energy.gov (indexed) [DOE]

    Finalizes Partial Guarantee for 852 Million Loan to Support California Concentrating Solar Power Plant Energy Department Finalizes Loan Guarantee for Transformational Rooftop...

  12. Large Scale Computing and Storage Requirements for High Energy Physics

    E-Print Network [OSTI]

    Gerber, Richard A.

    2011-01-01T23:59:59.000Z

    number modeling of type ia supernovae. I. Hydrodynamics.number modeling of type ia supernovae. II. Energy evolution.Mach number modeling of type ia supernovae. III. Reactions.

  13. Large Scale GSHP as Alternative Energy for American Farmers Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind Energy Development Jump to:WaveLarderello

  14. Large-Scale Hydropower Basics | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction to Energy PerformanceJohn CymbalskyKristina

  15. Energy Department Applauds Nation's First Large-Scale Industrial Carbon

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOn July 2, 2014 inJohnSystems|in STEM Education | Department

  16. Dark Energy and Large-Scale Structure of the Universe

    E-Print Network [OSTI]

    Yu. Kulinich; B. Novosyadlyj

    2004-12-14T23:59:59.000Z

    The evolution of matter density perturbations in two-component model of the Universe consisting of dark energy (DE) and dust-like matter (M) is considered. We have analyzed it for two kinds of DE with $\\omega\

  17. Sandia Energy - Computational Fluid Dynamics & Large-Scale Uncertainty

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcomeLong Lifetime ofColin Humphreys

  18. Large Scale Computing and Storage Requirements for High Energy Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,sand CERNLandLargefor High Energy

  19. Lessons from Large-Scale Renewable Energy Integration Studies: Preprint

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found TheHot electron dynamics in807 DE89 002669

  20. INORGANIC NANOPARTICLES AS PHASE-CHANGE MATERIALS FOR LARGE-SCALE THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Pennycook, Steve

    INORGANIC NANOPARTICLES AS PHASE-CHANGE MATERIALS FOR LARGE- SCALE THERMAL ENERGY STORAGE Miroslaw storage performance. The expected immediate outcome of this effort is the demonstration of high-energy generation at high efficiency could revolutionize the development of solar energy. Nanoparticle-based phase

  1. A Scalable Model for Energy Load Balancing in Large-scale Sensor Networks

    E-Print Network [OSTI]

    de Veciana, Gustavo

    A Scalable Model for Energy Load Balancing in Large-scale Sensor Networks Seung Jun Baek we consider how one might achieve more balanced energy burdens across the network by spreading sinks change their locations to balance the energy burdens incurred accross the network nodes [1

  2. Funding for Large-Scale Sustainable Energy Projects Combining Expert Opinions to Support Decisions

    E-Print Network [OSTI]

    Mountziaris, T. J.

    Funding for Large-Scale Sustainable Energy Projects Combining Expert Opinions to Support Decisions for a sustainable energy future? Three teams, UMass, Harvard, and FEEM (Fondazione Eni Enrico Mattei), share a goal technologies to fund for optimal success for a sustainable energy future. Progress and Results · Created models

  3. Large Scale Computing and Storage Requirements for Basic Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLSLaboratoryRowland toShade LandscapingComputing

  4. Large Scale Computing and Storage Requirements for Fusion Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLSLaboratoryRowland toShadeEnvironmental

  5. Energy Evaluation of PMCMTP for Large-Scale Wireless Sensor Networks

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    slots inside each Personal Area Network (PAN)), · Energy balancing and saving to prolong networkEnergy Evaluation of PMCMTP for Large-Scale Wireless Sensor Networks Jamila Ben Slimane, Ye-Qiong Song, Anis Koub^aa§¶ and Mounir Frikha Sup'Com-MEDIATRON, City of Communication Technologies, 2083

  6. Measuring and tuning energy efficiency on large scale high performance computing platforms.

    SciTech Connect (OSTI)

    Laros, James H., III

    2011-08-01T23:59:59.000Z

    Recognition of the importance of power in the field of High Performance Computing, whether it be as an obstacle, expense or design consideration, has never been greater and more pervasive. While research has been conducted on many related aspects, there is a stark absence of work focused on large scale High Performance Computing. Part of the reason is the lack of measurement capability currently available on small or large platforms. Typically, research is conducted using coarse methods of measurement such as inserting a power meter between the power source and the platform, or fine grained measurements using custom instrumented boards (with obvious limitations in scale). To collect the measurements necessary to analyze real scientific computing applications at large scale, an in-situ measurement capability must exist on a large scale capability class platform. In response to this challenge, we exploit the unique power measurement capabilities of the Cray XT architecture to gain an understanding of power use and the effects of tuning. We apply these capabilities at the operating system level by deterministically halting cores when idle. At the application level, we gain an understanding of the power requirements of a range of important DOE/NNSA production scientific computing applications running at large scale (thousands of nodes), while simultaneously collecting current and voltage measurements on the hosting nodes. We examine the effects of both CPU and network bandwidth tuning and demonstrate energy savings opportunities of up to 39% with little or no impact on run-time performance. Capturing scale effects in our experimental results was key. Our results provide strong evidence that next generation large-scale platforms should not only approach CPU frequency scaling differently, but could also benefit from the capability to tune other platform components, such as the network, to achieve energy efficient performance.

  7. Large-scale Probabilistic Forecasting in Energy Systems using Sparse Gaussian Conditional Random Fields

    E-Print Network [OSTI]

    Kolter, J. Zico

    -Gaussian case using the copula transform. On a wind power forecasting task, we show that this probabilisticLarge-scale Probabilistic Forecasting in Energy Systems using Sparse Gaussian Conditional Random high-dimensional conditional Gaussian distributions to forecasting wind power and extend it to the non

  8. Studying the energy efficiency of large-scale computer systems requires models of the relationship

    E-Print Network [OSTI]

    Rivoire, Suzanne

    Abstract Studying the energy efficiency of large-scale computer systems requires models-node clusters using embedded, laptop, desktop, and server processors. These results demonstrate the need usage and power consumption. Therefore, a substantial body of literature models system-level power

  9. Identification of Market Power in Large-Scale Electric Energy Markets Bernard C. Lesieutre

    E-Print Network [OSTI]

    Identification of Market Power in Large-Scale Electric Energy Markets Bernard C. Lesieutre Hyung and competitive operation of centrally- dispatched electricity markets. Traditional measures for market power demand and reserve requirements, a centrally-dispatched electricity market provides a transparent

  10. U.S. Energy Infrastructure Investment: Large-Scale Integrated Smart Grid

    E-Print Network [OSTI]

    research on challenges facing the electric power industry and educating the next generation of powerU.S. Energy Infrastructure Investment: Large-Scale Integrated Smart Grid Solutions with High Penetration of Renewable Resources, Dispersed Generation, and Customer Participation White Paper Power Systems

  11. Energy, water and large-scale patterns of reptile and amphibian species richness in Europe

    E-Print Network [OSTI]

    Rodríguez, Miguel Ángel

    Energy, water and large-scale patterns of reptile and amphibian species richness in Europe Miguel Á and amphibian species richness in Europe and 11 environmental variables related to five hypotheses, an estimate of plant biomass generated through satellite remote sensing, both described similar proportions

  12. Materials Science and Materials Chemistry for Large Scale Electrochemical Energy Storage: From Transportation to Electrical Grid

    SciTech Connect (OSTI)

    Liu, Jun; Zhang, Jiguang; Yang, Zhenguo; Lemmon, John P.; Imhoff, Carl H.; Graff, Gordon L.; Li, Liyu; Hu, Jian Z.; Wang, Chong M.; Xiao, Jie; Xia, Guanguang; Viswanathan, Vilayanur V.; Baskaran, Suresh; Sprenkle, Vincent L.; Li, Xiaolin; Shao, Yuyan; Schwenzer, Birgit

    2013-02-15T23:59:59.000Z

    Large-scale electrical energy storage has become more important than ever for reducing fossil energy consumption in transportation and for the widespread deployment of intermittent renewable energy in electric grid. However, significant challenges exist for its applications. Here, the status and challenges are reviewed from the perspective of materials science and materials chemistry in electrochemical energy storage technologies, such as Li-ion batteries, sodium (sulfur and metal halide) batteries, Pb-acid battery, redox flow batteries, and supercapacitors. Perspectives and approaches are introduced for emerging battery designs and new chemistry combinations to reduce the cost of energy storage devices.

  13. Energy Spectra of Quantum Turbulence: Large-scale Simulation and Modeling

    E-Print Network [OSTI]

    Machida, Masahiko; Kano, Takuma; L'vov, Victor S; Rudenko, Oleksii; Tsubota, Makoto

    2010-01-01T23:59:59.000Z

    In 2048^3 simulation of quantum turbulence within the Gross-Pitaevskii equation we demonstrate that the large scale motions have a classical Kolmogorov-1941 energy spectrum E(k) ~ k^{-5/3}, followed by an energy accumulation with E(k) ~ const at 1/k about the mean intervortex distance. This behavior was predicted by the L'vov-Nazarenko-Rudenko bottleneck model [Phys.Rev.B 76, 024520 (2007)], further developed in the Letter.

  14. Survey of Climate Conditions for Demonstration of a Large Scale of Solar Energy Heating in Xi'an

    E-Print Network [OSTI]

    Li, A.; Liu, Y.

    2006-01-01T23:59:59.000Z

    Energiae Solaris Sinica" and the "Solar Energy" journal[6]. It accelerated application of solar energy in the northwest in China. Today, 25 years later, Xi?an is selected to demonstrate the large scale solar energy application in urban residential...

  15. Green queue : a framework for selecting energy optimal DVFS congurations in large scale MPI applications

    E-Print Network [OSTI]

    Peraza, Joshua

    2012-01-01T23:59:59.000Z

    settings . . . . . Green Queue Energy Savings with VariousApplication Figure 4.3: Green Queue Energy Savings withBlind Scaling Relative Energy Green Queue Relative Delay

  16. ARRA-Multi-Level Energy Storage and Controls for Large-Scale Wind Energy Integration

    SciTech Connect (OSTI)

    David Wenzhong Gao

    2012-09-30T23:59:59.000Z

    The Project Objective is to design innovative energy storage architecture and associated controls for high wind penetration to increase reliability and market acceptance of wind power. The project goals are to facilitate wind energy integration at different levels by design and control of suitable energy storage systems. The three levels of wind power system are: Balancing Control Center level, Wind Power Plant level, and Wind Power Generator level. Our scopes are to smooth the wind power fluctuation and also ensure adequate battery life. In the new hybrid energy storage system (HESS) design for wind power generation application, the boundary levels of the state of charge of the battery and that of the supercapacitor are used in the control strategy. In the controller, some logic gates are also used to control the operating time durations of the battery. The sizing method is based on the average fluctuation of wind profiles of a specific wind station. The calculated battery size is dependent on the size of the supercapacitor, state of charge of the supercapacitor and battery wear. To accommodate the wind power fluctuation, a hybrid energy storage system (HESS) consisting of battery energy system (BESS) and super-capacitor is adopted in this project. A probability-based power capacity specification approach for the BESS and super-capacitors is proposed. Through this method the capacities of BESS and super-capacitor are properly designed to combine the characteristics of high energy density of BESS and the characteristics of high power density of super-capacitor. It turns out that the super-capacitor within HESS deals with the high power fluctuations, which contributes to the extension of BESS lifetime, and the super-capacitor can handle the peaks in wind power fluctuations without the severe penalty of round trip losses associated with a BESS. The proposed approach has been verified based on the real wind data from an existing wind power plant in Iowa. An intelligent controller that increases battery life within hybrid energy storage systems for wind application was developed. Comprehensive studies have been conducted and simulation results are analyzed. A permanent magnet synchronous generator, coupled with a variable speed wind turbine, is connected to a power grid (14-bus system). A rectifier, a DC-DC converter and an inverter are used to provide a complete model of the wind system. An Energy Storage System (ESS) is connected to a DC-link through a DC-DC converter. An intelligent controller is applied to the DC-DC converter to help the Voltage Source Inverter (VSI) to regulate output power and also to control the operation of the battery and supercapacitor. This ensures a longer life time for the batteries. The detailed model is simulated in PSCAD/EMTP. Additionally, economic analysis has been done for different methods that can reduce the wind power output fluctuation. These methods are, wind power curtailment, dumping loads, battery energy storage system and hybrid energy storage system. From the results, application of single advanced HESS can save more money for wind turbines owners. Generally the income would be the same for most of methods because the wind does not change and maximum power point tracking can be applied to most systems. On the other hand, the cost is the key point. For short term and small wind turbine, the BESS is the cheapest and applicable method while for large scale wind turbines and wind farms the application of advanced HESS would be the best method to reduce the power fluctuation. The key outcomes of this project include a new intelligent controller that can reduce energy exchanged between the battery and DC-link, reduce charging/discharging cycles, reduce depth of discharge and increase time interval between charge/discharge, and lower battery temperature. This improves the overall lifetime of battery energy storages. Additionally, a new design method based on probability help optimize the power capacity specification for BESS and super-capacitors. Recommendations include experimental imp

  17. Developing Renewable Energy Projects Larger Than 10 MWs at Federal Facilities: Large-Scale Renewable Energy Guide

    Broader source: Energy.gov [DOE]

    Guide helps agency personnel navigate the complexities of developing large-scale renewable energy projects and assists them in attracting the necessary private capital to complete these projects. It also serves as a general resource to develop Federal employees' awareness and understanding of a project developer’s operating environment and the private sector’s awareness and understanding of the Federal environment.

  18. Large scale disease prediction

    E-Print Network [OSTI]

    Schmid, Patrick R. (Patrick Raphael)

    2008-01-01T23:59:59.000Z

    The objective of this thesis is to present the foundation of an automated large-scale disease prediction system. Unlike previous work that has typically focused on a small self-contained dataset, we explore the possibility ...

  19. Using calibrated engineering models to predict energy savings in large-scale geothermal heat pump projects

    SciTech Connect (OSTI)

    Shonder, J.A.; Hughes, P.J. [Oak Ridge National Lab., TN (United States); Thornton, J.W. [Thermal Energy System Specialists, Madison, WI (United States)

    1998-10-01T23:59:59.000Z

    Energy savings performance contracting (ESPC) is now receiving greater attention as a means of implementing large-scale energy conservation projects in housing. Opportunities for such projects exist for military housing, federally subsidized low-income housing, and planned communities (condominiums, townhomes, senior centers), to name a few. Accurate prior (to construction) estimates of the energy savings in these projects reduce risk, decrease financing costs, and help avoid post-construction disputes over performance contract baseline adjustments. This paper demonstrates an improved method of estimating energy savings before construction takes place. Using an engineering model calibrated to pre-construction energy-use data collected in the field, this method is able to predict actual energy savings to a high degree of accuracy. This is verified with post-construction energy-use data from a geothermal heat pump ESPC at Fort Polk, Louisiana. This method also allows determination of the relative impact of the various energy conservation measures installed in a comprehensive energy conservation project. As an example, the breakout of savings at Fort Polk for the geothermal heat pumps, desuperheaters, lighting retrofits, and low-flow hot water outlets is provided.

  20. Using Calibrated Engineering Models To Predict Energy Savings In Large-Scale Geothermal Heat Pump Projects

    SciTech Connect (OSTI)

    Shonder, John A [ORNL; Hughes, Patrick [ORNL; Thornton, Jeff W. [Thermal Energy Systems Specialists, Inc.

    1998-01-01T23:59:59.000Z

    Energy savings performance contracting (ESPC) is now receiving greater attention as a means of implementing large-scale energy conservation projects in housing. Opportunities for such projects exist for military housing, federally subsidized low-income housing, and planned communities (condominiums, townhomes, senior centers), to name a few. Accurate prior (to construction) estimates of the energy savings in these projects reduce risk, decrease financing costs, and help avoid post-construction disputes over performance contract baseline adjustments. This paper demonstrates an improved method of estimating energy savings before construction takes place. Using an engineering model calibrated to pre-construction energy-use data collected in the field, this method is able to predict actual energy savings to a high degree of accuracy. This is verified with post-construction energy-use data from a geothermal heat pump ESPC at Fort Polk, Louisiana. This method also allows determination of the relative impact of the various energy conservation measures installed in a comprehensive energy conservation project. As an example, the breakout of savings at Fort Polk for the geothermal heat pumps, desuperheaters, lighting retrofits, and low-flow hot water outlets is provided.

  1. Large-scale energy spectra in surface quasi-geostrophic turbulence

    E-Print Network [OSTI]

    Chuong V. Tran; John C. Bowman

    2004-12-10T23:59:59.000Z

    The large-scale energy spectrum in two-dimensional turbulence governed by the surface quasi-geostrophic (SQG) equation $$\\partial_t(-\\Delta)^{1/2}\\psi+J(\\psi,(-\\Delta)^{1/2}\\psi) =\\mu\\Delta\\psi+f$$ is studied. The nonlinear transfer of this system conserves the two quadratic quantities $\\Psi_1=/2$ and $\\Psi_2=/2$ (kinetic energy), where $$ denotes a spatial average. The energy density $\\Psi_2$ is bounded and its spectrum $\\Psi_2(k)$ is shallower than $k^{-1}$ in the inverse-transfer range. For bounded turbulence, $\\Psi_2(k)$ in the low-wavenumber region can be bounded by $Ck$ where $C$ is a constant independent of $k$ but dependent on the domain size. Results from numerical simulations confirming the theoretical predictions are presented.

  2. Biomass Energy for Transport and Electricity: Large scale utilization under low CO2 concentration scenarios

    SciTech Connect (OSTI)

    Luckow, Patrick; Wise, Marshall A.; Dooley, James J.; Kim, Son H.

    2010-01-25T23:59:59.000Z

    This paper examines the potential role of large scale, dedicated commercial biomass energy systems under global climate policies designed to stabilize atmospheric concentrations of CO2 at 400ppm and 450ppm. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. The costs of processing and transporting biomass energy at much larger scales than current experience are also incorporated into the modeling. From the scenario results, 120-160 EJ/year of biomass energy is produced by midcentury and 200-250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the dominant source. A key finding of this paper is the role that carbon dioxide capture and storage (CCS) technologies coupled with commercial biomass energy can play in meeting stringent emissions targets. Despite the higher technology costs of CCS, the resulting negative emissions used in combination with biomass are a very important tool in controlling the cost of meeting a target, offsetting the venting of CO2 from sectors of the energy system that may be more expensive to mitigate, such as oil use in transportation. The paper also discusses the role of cellulosic ethanol and Fischer-Tropsch biomass derived transportation fuels and shows that both technologies are important contributors to liquid fuels production, with unique costs and emissions characteristics. Through application of the GCAM integrated assessment model, it becomes clear that, given CCS availability, bioenergy will be used both in electricity and transportation.

  3. Very Large Scale Computations of the Free Energies of Eight Low-Lying Structures of Arginine in the Gas Phase

    E-Print Network [OSTI]

    Simons, Jack

    Very Large Scale Computations of the Free Energies of Eight Low-Lying Structures of Arginine and free energies of five canonical and three zwitterionic low-lying structures of the arginine molecule have been used on state-of-the-art parallel computers. The electronic energy and Gibbs free energy

  4. The Association of Large-Scale Climate Variability and Teleconnections on Wind Energy Resource over Europe and its Intermittency

    E-Print Network [OSTI]

    Kriesche, Pascal

    In times of increasing importance of wind power in the world’s energy mix, this study focuses on a better understanding of the influences of large-scale climate variability on wind power resource over Europe. The impact ...

  5. Impulsive phase flare energy transport by large-scale Alfven waves and the electron acceleration problem

    E-Print Network [OSTI]

    L. Fletcher; H. S. Hudson

    2007-12-20T23:59:59.000Z

    The impulsive phase of a solar flare marks the epoch of rapid conversion of energy stored in the pre-flare coronal magnetic field. Hard X-ray observations imply that a substantial fraction of flare energy released during the impulsive phase is converted to the kinetic energy of mildly relativistic electrons (10-100 keV). The liberation of the magnetic free energy can occur as the coronal magnetic field reconfigures and relaxes following reconnection. We investigate a scenario in which products of the reconfiguration - large-scale Alfven wave pulses - transport the energy and magnetic-field changes rapidly through the corona to the lower atmosphere. This offers two possibilities for electron acceleration. Firstly, in a coronal plasma with beta energies on the order of 10 keV and above, including by repeated interactions between electrons and wavefronts. Secondly, when they reflect and mode-convert in the chromosphere, a cascade to high wavenumbers may develop. This will also accelerate electrons by turbulence, in a medium with a locally high electron number density. This concept, which bridges MHD-based and particle-based views of a flare, provides an interpretation of the recently-observed rapid variations of the line-of-sight component of the photospheric magnetic field across the flare impulsive phase, and offers solutions to some perplexing flare problems, such as the flare "number problem" of finding and resupplying sufficient electrons to explain the impulsive-phase hard X-ray emission.

  6. Optimizing Cluster Heads for Energy Efficiency in Large-Scale Heterogeneous Wireless Sensor Networks

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gu, Yi; Wu, Qishi; Rao, Nageswara S. V.

    2010-01-01T23:59:59.000Z

    Many complex sensor network applications require deploying a large number of inexpensive and small sensors in a vast geographical region to achieve quality through quantity. Hierarchical clustering is generally considered as an efficient and scalable way to facilitate the management and operation of such large-scale networks and minimize the total energy consumption for prolonged lifetime. Judicious selection of cluster heads for data integration and communication is critical to the success of applications based on hierarchical sensor networks organized as layered clusters. We investigate the problem of selecting sensor nodes in a predeployed sensor network to be the cluster heads tomore »minimize the total energy needed for data gathering. We rigorously derive an analytical formula to optimize the number of cluster heads in sensor networks under uniform node distribution, and propose a Distance-based Crowdedness Clustering algorithm to determine the cluster heads in sensor networks under general node distribution. The results from an extensive set of experiments on a large number of simulated sensor networks illustrate the performance superiority of the proposed solution over the clustering schemes based onk-means algorithm.« less

  7. Computer Energy Modeling Techniques for Simulation Large Scale Correctional Institutes in Texas 

    E-Print Network [OSTI]

    Heneghan, T.; Haberl, J. S.; Saman, N.; Bou-Saada, T. E.

    1996-01-01T23:59:59.000Z

    Building energy simulation programs have undergone an increase in use for evaluating energy consumption and energy conservation retrofits in buildings. Utilization of computer simulation programs for large facilities with multiple buildings, however...

  8. In-Flight Measurement of the Absolute Energy Scale of the Fermi Large Area Telescope

    SciTech Connect (OSTI)

    Ackermann, M.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Ajello, M.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Allafort, A.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Atwood, W.B.; /UC, Santa Cruz; Axelsson, M.; /Stockholm U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm; Baldini, L.; /INFN, Pisa; Barbiellini, G.; /INFN, Trieste /Trieste U.; Bastieri, D.; /INFN, Padua /Padua U.; Bechtol, K.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Bellazzini, R.; /INFN, Pisa; Berenji, B.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Bloom, E.D.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Bouvier, A.; /UC, Santa Cruz; Bregeon, J.; /INFN, Pisa; Brez, A.; /INFN, Pisa; Brigida, M.; /Bari Polytechnic /INFN, Bari; Bruel, P.; /Ecole Polytechnique; Buehler, R.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Buson, S.; /INFN, Padua /Padua U. /CSIC, Catalunya /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /IASF, Milan /DAPNIA, Saclay /INFN, Perugia /Perugia U. /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Unlisted, US /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /ASDC, Frascati /Perugia U. /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Montpellier U. /ASDC, Frascati /Bari Polytechnic /INFN, Bari /Naval Research Lab, Wash., D.C. /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Montpellier U. /Bari Polytechnic /INFN, Bari /Ecole Polytechnique /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Ecole Polytechnique /Hiroshima U. /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Bari Polytechnic /INFN, Bari /INFN, Bari /NASA, Goddard /INFN, Perugia /Perugia U.; /more authors..

    2012-09-20T23:59:59.000Z

    The Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope is a pair-conversion telescope designed to survey the gamma-ray sky from 20 MeV to several hundreds of GeV. In this energy band there are no astronomical sources with sufficiently well known and sharp spectral features to allow an absolute calibration of the LAT energy scale. However, the geomagnetic cutoff in the cosmic ray electron-plus-positron (CRE) spectrum in low Earth orbit does provide such a spectral feature. The energy and spectral shape of this cutoff can be calculated with the aid of a numerical code tracing charged particles in the Earth's magnetic field. By comparing the cutoff value with that measured by the LAT in different geomagnetic positions, we have obtained several calibration points between {approx}6 and {approx}13 GeV with an estimated uncertainty of {approx}2%. An energy calibration with such high accuracy reduces the systematic uncertainty in LAT measurements of, for example, the spectral cutoff in the emission from gamma ray pulsars.

  9. Development of Graphical Indices for Displaying Large Scale Building Energy Data Sets

    E-Print Network [OSTI]

    Abbas, M.; Haberl, J. S.

    1994-01-01T23:59:59.000Z

    analyst view large amounts of hourly building energy consumption data in order to quickly and efficiently analyze the data, check for errors, or establish time and temperature related trends over a large period of time. The objective is to demonstrate...

  10. Using an Energy Performance Based Design-Build Process to Procure a Large Scale Low-Energy Building: Preprint

    SciTech Connect (OSTI)

    Pless, S.; Torcellini, P.; Shelton, D.

    2011-05-01T23:59:59.000Z

    This paper will review a procurement, acquisition, and contract process of a large-scale replicable net zero energy (ZEB) office building. The owners developed and implemented an energy performance based design-build process to procure a 220,000 ft2 office building with contractual requirements to meet demand side energy and LEED goals. We will outline the key procurement steps needed to ensure achievement of our energy efficiency and ZEB goals. The development of a clear and comprehensive Request for Proposals (RFP) that includes specific and measurable energy use intensity goals is critical to ensure energy goals are met in a cost effective manner. The RFP includes a contractual requirement to meet an absolute demand side energy use requirement of 25 kBtu/ft2, with specific calculation methods on what loads are included, how to normalize the energy goal based on increased space efficiency and data center allocation, specific plug loads and schedules, and calculation details on how to account for energy used from the campus hot and chilled water supply. Additional advantages of integrating energy requirements into this procurement process include leveraging the voluntary incentive program, which is a financial incentive based on how well the owner feels the design-build team is meeting the RFP goals.

  11. NV Energy Large-Scale Photovoltaic Integration Study: Intra-Hour Dispatch and AGC Simulation

    SciTech Connect (OSTI)

    Lu, Shuai; Etingov, Pavel V.; Meng, Da; Guo, Xinxin; Jin, Chunlian; Samaan, Nader A.

    2013-01-02T23:59:59.000Z

    The uncertainty and variability with photovoltaic (PV) generation make it very challenging to balance power system generation and load, especially under high penetration cases. Higher reserve requirements and more cycling of conventional generators are generally anticipated for large-scale PV integration. However, whether the existing generation fleet is flexible enough to handle the variations and how well the system can maintain its control performance are difficult to predict. The goal of this project is to develop a software program that can perform intra-hour dispatch and automatic generation control (AGC) simulation, by which the balancing operations of a system can be simulated to answer the questions posed above. The simulator, named Electric System Intra-Hour Operation Simulator (ESIOS), uses the NV Energy southern system as a study case, and models the system’s generator configurations, AGC functions, and operator actions to balance system generation and load. Actual dispatch of AGC generators and control performance under various PV penetration levels can be predicted by running ESIOS. With data about the load, generation, and generator characteristics, ESIOS can perform similar simulations and assess variable generation integration impacts for other systems as well. This report describes the design of the simulator and presents the study results showing the PV impacts on NV Energy real-time operations.

  12. Understanding the Impact of Large-Scale Penetration of Micro Combined Heat & Power Technologies within Energy Systems

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    of Micro Combined Heat & Power Technologies within Energy Systems by Karen de los Ángeles Tapia-based electricity generation technologies are considered, by energy experts and also policymakers, to be essentialUnderstanding the Impact of Large-Scale Penetration of Micro Combined Heat & Power Technologies

  13. Large Scale Computing and Storage Requirements for Basic Energy Sciences Research

    SciTech Connect (OSTI)

    Gerber, Richard; Wasserman, Harvey

    2011-03-31T23:59:59.000Z

    The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility supporting research within the Department of Energy's Office of Science. NERSC provides high-performance computing (HPC) resources to approximately 4,000 researchers working on about 400 projects. In addition to hosting large-scale computing facilities, NERSC provides the support and expertise scientists need to effectively and efficiently use HPC systems. In February 2010, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR) and DOE's Office of Basic Energy Sciences (BES) held a workshop to characterize HPC requirements for BES research through 2013. The workshop was part of NERSC's legacy of anticipating users future needs and deploying the necessary resources to meet these demands. Workshop participants reached a consensus on several key findings, in addition to achieving the workshop's goal of collecting and characterizing computing requirements. The key requirements for scientists conducting research in BES are: (1) Larger allocations of computational resources; (2) Continued support for standard application software packages; (3) Adequate job turnaround time and throughput; and (4) Guidance and support for using future computer architectures. This report expands upon these key points and presents others. Several 'case studies' are included as significant representative samples of the needs of science teams within BES. Research teams scientific goals, computational methods of solution, current and 2013 computing requirements, and special software and support needs are summarized in these case studies. Also included are researchers strategies for computing in the highly parallel, 'multi-core' environment that is expected to dominate HPC architectures over the next few years. NERSC has strategic plans and initiatives already underway that address key workshop findings. This report includes a brief summary of those relevant to issues raised by researchers at the workshop.

  14. Large-scale stable interacting dark energy model: Cosmological perturbations and observational constraints

    E-Print Network [OSTI]

    Yun-He Li; Xin Zhang

    2014-04-20T23:59:59.000Z

    Dark energy might interact with cold dark matter in a direct, nongravitational way. However, the usual interacting dark energy models (with constant $w$) suffer from some catastrophic difficulties. For example, the $Q\\propto\\rho_{\\rm c}$ model leads to an early-time large-scale instability, and the $Q\\propto\\rho_{\\rm de}$ model gives rise to the future unphysical result for cold dark matter density (in the case of a positive coupling). In order to overcome these fatal flaws, we propose in this paper an interacting dark energy model (with constant $w$) in which the interaction term is carefully designed to realize that $Q\\propto\\rho_{\\rm de}$ at the early times and $Q\\propto\\rho_{\\rm c}$ in the future, simultaneously solving the early-time superhorizon instability and future unphysical $\\rho_{\\rm c}$ problems. The concrete form of the interaction term in this model is $Q=3\\beta H \\frac{\\rho_{\\rm{de}}\\rho_{\\rm{c}}}{\\rho_{\\rm{de}}+\\rho_{\\rm{c}}}$, where $\\beta$ is the dimensionless coupling constant. We show that this model is actually equivalent to the decomposed new generalized Chaplygin gas (NGCG) model, with the relation $\\beta=-\\alpha w$. We calculate the cosmological perturbations in this model in a gauge-invariant way and show that the cosmological perturbations are stable during the whole expansion history provided that $\\beta>0$. Furthermore, we use the Planck data in conjunction with other astrophysical data to place stringent constraints on this model (with eight parameters), and we find that indeed $\\beta>0$ is supported by the joint constraint at more than 1$\\sigma$ level. The excellent theoretical features and the support from observations all indicate that the decomposed NGCG model deserves more attention and further investigation.

  15. Brownfields to green energy : redeveloping contaminated lands with large-scale renewable energy facilities

    E-Print Network [OSTI]

    Jensen, Bjorn B. (Bjorn Benjamin)

    2010-01-01T23:59:59.000Z

    This thesis uses case studies of one unsuccessful, and three successful brownfield-to-renewable energy projects to identify common barriers such projects face and how those barriers can be overcome. The most significant ...

  16. Large-Scale Renewable Energy Producers Property Tax Abatement (Nevada State Office of Energy)

    Broader source: Energy.gov [DOE]

    New or expanded businesses in Nevada may apply to the Director of the State Office of Energy for a property tax abatement of up to 55% for up to 20 years for real and personal property used to...

  17. Challenges and Opportunities in Large-Scale Deployment of Automated Energy Consumption

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    to the locational marginal price (LMP) at that bus. We show that a key challenge in large- scale deployment of ECS, locational marginal price. I. INTRODUCTION Real-time and time-of-use electricity pricing models can- edge among users on how to respond to time-varying prices and the lack of effective home automation

  18. Impact of Large Scale Energy Efficiency Programs On Consumer Tariffs and Utility Finances in India

    SciTech Connect (OSTI)

    Abhyankar, Nikit; Phadke, Amol

    2011-01-20T23:59:59.000Z

    Large-scale EE programs would modestly increase tariffs but reduce consumers' electricity bills significantly. However, the primary benefit of EE programs is a significant reduction in power shortages, which might make these programs politically acceptable even if tariffs increase. To increase political support, utilities could pursue programs that would result in minimal tariff increases. This can be achieved in four ways: (a) focus only on low-cost programs (such as replacing electric water heaters with gas water heaters); (b) sell power conserved through the EE program to the market at a price higher than the cost of peak power purchase; (c) focus on programs where a partial utility subsidy of incremental capital cost might work and (d) increase the number of participant consumers by offering a basket of EE programs to fit all consumer subcategories and tariff tiers. Large scale EE programs can result in consistently negative cash flows and significantly erode the utility's overall profitability. In case the utility is facing shortages, the cash flow is very sensitive to the marginal tariff of the unmet demand. This will have an important bearing on the choice of EE programs in Indian states where low-paying rural and agricultural consumers form the majority of the unmet demand. These findings clearly call for a flexible, sustainable solution to the cash-flow management issue. One option is to include a mechanism like FAC in the utility incentive mechanism. Another sustainable solution might be to have the net program cost and revenue loss built into utility's revenue requirement and thus into consumer tariffs up front. However, the latter approach requires institutionalization of EE as a resource. The utility incentive mechanisms would be able to address the utility disincentive of forgone long-run return but have a minor impact on consumer benefits. Fundamentally, providing incentives for EE programs to make them comparable to supply-side investments is a way of moving the electricity sector toward a model focused on providing energy services rather than providing electricity.

  19. Behavioral Initiatives for Energy Efficiency: Large-Scale Energy Reductions through Sensors, Feedback & Information Technology

    SciTech Connect (OSTI)

    None

    2010-01-12T23:59:59.000Z

    Broad Funding Opportunity Announcement Project: A team of researchers from more than 10 departments at Stanford University is collaborating to transform the way Americans interact with our energy-use data. The team built a web-based platform that collects historical electricity data which it uses to perform a variety of experiments to learn what triggers people to respond. Experiments include new financial incentives, a calculator to understand the potential savings of efficient appliances, new Facebook interface designs, communication studies using Twitter, and educational programs with the Girl Scouts. Economic modeling is underway to better understand how results from the San Francisco Bay Area can be broadened to other parts of the country.

  20. Copyright 2014 IEEE. Reprinted, with permission from: CERTS Microgrid Demonstration With Large-Scale Energy

    E-Print Network [OSTI]

    diesel generators. Adding a 2-MW, 4-MWh storage system, a fast static switch, and a power factor cor-Scale Energy Storage and Renewable Generation Eduardo Alegria, Member, IEEE; Tim Brown, Member, IEEE; Erin and Renewable Generation Eduardo Alegria, Member, IEEE, Tim Brown, Member, IEEE, Erin Minear, Member, IEEE

  1. Reducing Plug and Process Loads for a Large Scale, Low Energy Office Building: NREL's Research Support Facility; Preprint

    SciTech Connect (OSTI)

    Lobato, C.; Pless, S.; Sheppy, M.; Torcellini, P.

    2011-02-01T23:59:59.000Z

    This paper documents the design and operational plug and process load energy efficiency measures needed to allow a large scale office building to reach ultra high efficiency building goals. The appendices of this document contain a wealth of documentation pertaining to plug and process load design in the RSF, including a list of equipment was selected for use.

  2. A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage

    SciTech Connect (OSTI)

    Yang, Yuan; Zheng, Guangyuan; Cui, Yi

    2013-01-01T23:59:59.000Z

    Large-scale energy storage represents a key challenge for renewable energy and new systems with low cost, high energy density and long cycle life are desired. In this article, we develop a new lithium/polysulfide (Li/PS) semi-liquid battery for large-scale energy storage, with lithium polysulfide (Li{sub 2}S{sub 8}) in ether solvent as a catholyte and metallic lithium as an anode. Unlike previous work on Li/S batteries with discharge products such as solid state Li{sub 2}S{sub 2} and Li{sub 2}S, the catholyte is designed to cycle only in the range between sulfur and Li{sub 2}S{sub 4}. Consequently all detrimental effects due to the formation and volume expansion of solid Li{sub 2}S{sub 2}/Li{sub 2}S are avoided. This novel strategy results in excellent cycle life and compatibility with flow battery design. The proof-of-concept Li/PS battery could reach a high energy density of 170 W h kg{sup -1} and 190 W h L{sup -1} for large scale storage at the solubility limit, while keeping the advantages of hybrid flow batteries. We demonstrated that, with a 5 M Li{sub 2}S{sub 8} catholyte, energy densities of 97 W h kg{sup -1} and 108 W h L{sup -1} can be achieved. As the lithium surface is well passivated by LiNO{sub 3} additive in ether solvent, internal shuttle effect is largely eliminated and thus excellent performance over 2000 cycles is achieved with a constant capacity of 200 mA h g{sup -1}. This new system can operate without the expensive ion-selective membrane, and it is attractive for large-scale energy storage.

  3. Large scale tracking algorithms.

    SciTech Connect (OSTI)

    Hansen, Ross L.; Love, Joshua Alan; Melgaard, David Kennett; Karelitz, David B.; Pitts, Todd Alan; Zollweg, Joshua David; Anderson, Dylan Z.; Nandy, Prabal; Whitlow, Gary L.; Bender, Daniel A.; Byrne, Raymond Harry

    2015-01-01T23:59:59.000Z

    Low signal-to-noise data processing algorithms for improved detection, tracking, discrimination and situational threat assessment are a key research challenge. As sensor technologies progress, the number of pixels will increase signi cantly. This will result in increased resolution, which could improve object discrimination, but unfortunately, will also result in a significant increase in the number of potential targets to track. Many tracking techniques, like multi-hypothesis trackers, suffer from a combinatorial explosion as the number of potential targets increase. As the resolution increases, the phenomenology applied towards detection algorithms also changes. For low resolution sensors, "blob" tracking is the norm. For higher resolution data, additional information may be employed in the detection and classfication steps. The most challenging scenarios are those where the targets cannot be fully resolved, yet must be tracked and distinguished for neighboring closely spaced objects. Tracking vehicles in an urban environment is an example of such a challenging scenario. This report evaluates several potential tracking algorithms for large-scale tracking in an urban environment.

  4. Materials Science and Materials Chemistry for Large Scale Electrochemi...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science and Materials Chemistry for Large Scale Electrochemical Energy Storage: From Transportation to Electrical Grid Materials Science and Materials Chemistry for Large Scale...

  5. LARGE-SCALE HYDROGEN PRODUCTION FROM NUCLEAR ENERGY USING HIGH TEMPERATURE ELECTROLYSIS

    SciTech Connect (OSTI)

    James E. O'Brien

    2010-08-01T23:59:59.000Z

    Hydrogen can be produced from water splitting with relatively high efficiency using high-temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high-temperature process heat. When coupled to an advanced high temperature nuclear reactor, the overall thermal-to-hydrogen efficiency for high-temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. Demand for hydrogen is increasing rapidly for refining of increasingly low-grade petroleum resources, such as the Athabasca oil sands and for ammonia-based fertilizer production. Large quantities of hydrogen are also required for carbon-efficient conversion of biomass to liquid fuels. With supplemental nuclear hydrogen, almost all of the carbon in the biomass can be converted to liquid fuels in a nearly carbon-neutral fashion. Ultimately, hydrogen may be employed as a direct transportation fuel in a “hydrogen economy.” The large quantity of hydrogen that would be required for this concept should be produced without consuming fossil fuels or emitting greenhouse gases. An overview of the high-temperature electrolysis technology will be presented, including basic theory, modeling, and experimental activities. Modeling activities include both computational fluid dynamics and large-scale systems analysis. We have also demonstrated high-temperature electrolysis in our laboratory at the 15 kW scale, achieving a hydrogen production rate in excess of 5500 L/hr.

  6. New variational Monte Carlo method with an energy variance extrapolation for large-scale shell-model calculations

    E-Print Network [OSTI]

    Takahiro Mizusaki; Noritaka Shimizu

    2012-01-27T23:59:59.000Z

    We propose a new variational Monte Carlo (VMC) method with an energy variance extrapolation for large-scale shell-model calculations. This variational Monte Carlo is a stochastic optimization method with a projected correlated condensed pair state as a trial wave function, and is formulated with the M-scheme representation of projection operators, the Pfaffian and the Markov-chain Monte Carlo (MCMC). Using this method, we can stochastically calculate approximated yrast energies and electro-magnetic transition strengths. Furthermore, by combining this VMC method with energy variance extrapolation, we can estimate exact shell-model energies.

  7. Public attitudes regarding large-scale solar energy development in the U.S.

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Carlisle, Juliet E.; Kane, Stephanie L.; Solan, David; Bowman, Madelaine; Joe, Jeffrey C.

    2015-08-01T23:59:59.000Z

    Using data collected from both a National sample as well as an oversample in U.S. Southwest, we examine public attitudes toward the construction of utility-scale solar facilities in the U.S. as well as development in one’s own county. Our multivariate analyses assess demographic and sociopsychological factors as well as context in terms of proximity of proposed project by considering the effect of predictors for respondents living in the Southwest versus those from a National sample.We find that the predictors, and impact of the predictors, related to support and opposition to solar development vary in terms of psychological and physical distance.more »Overall, for respondents living in the U.S. Southwest we find that environmentalism, belief that developers receive too many incentives, and trust in project developers to be significantly related to support and opposition to solar development, in general. When Southwest respondents consider large-scale solar development in their county, the influence of these variables changes so that property value, race, and age only yield influence. Differential effects occur for respondents of our National sample.We believe our findings to be relevant for those outside the U.S. due to the considerable growth PV solar has experienced in the last decade, especially in China, Japan, Germany, and the U.S.« less

  8. High-Energy Physics Strategies and Future Large-Scale Projects

    E-Print Network [OSTI]

    Zimmermann, F

    2014-01-01T23:59:59.000Z

    We sketch the actual European and international strategies and possible future facilities. In the near term the High Energy Physics (HEP) community will fully exploit the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). Post-LHC options include a linear e+e- collider in Japan (ILC) or at CERN (CLIC), as well as circular lepton or hadron colliders in China (CepC/SppC) and Europe (FCC). We conclude with linear and circular acceleration approaches based on crystals, and some perspectives for the far future of accelerator-based particle physics.

  9. 978-1-4799-4394-4/14/$31.00 c 2014 IEEE Towards Energy Proportionality for Large-Scale Latency-Critical Workloads

    E-Print Network [OSTI]

    Kozyrakis, Christos

    978-1-4799-4394-4/14/$31.00 c 2014 IEEE Towards Energy Proportionality for Large-Scale Latency University Google, Inc. Abstract Reducing the energy footprint of warehouse-scale computer (WSC) systems is key to their affordability, yet difficult to achieve in practice. The lack of energy proportionality

  10. The Energy DataBus: NREL's Open-Source Application for Large-Scale Energy Data Collection and Analysis

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    NREL’s Energy DataBus is used for tracking and analyzing energy use on its own campus. The system is applicable to other facilities—including anything from a single building to a large military base or college campus—or for other energy data management needs. Managing and minimizing energy consumption on a large campus is usually a difficult task for facility managers: There may be hundreds of energy meters spread across a campus, and the meter data are often recorded by hand. Even when data are captured electronically, there may be measurement issues or time periods that may not coincide. Making sense of this limited and often confusing data can be a challenge that makes the assessment of building performance a struggle for many facility managers. The Energy DataBus software was developed by NREL to address these issues on its own campus, but with an eye toward offering its software solutions to other facilities. Key features include the software's ability to store large amounts of data collected at high frequencies—NREL collects some of its energy data every second—and rich functionality to integrate this wide variety of data into a single database [copied from http://en.openei.org/wiki/NREL_Energy_DataBus].

  11. Running Large Scale Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobs Running jobs Quick Instructions forRunning

  12. Large Scale Computing and Storage Requirements for Fusion Energy Sciences: Target 2017

    E-Print Network [OSTI]

    Gerber, Richard

    2014-01-01T23:59:59.000Z

    Requirements  for  Fusion  Energy  Sciences:  Target  2017  Requirements  for  Fusion  Energy  Sciences:  Target  and  Context   DOE’s  Fusion  Energy  Sciences  program  

  13. Large Scale Computing and Storage Requirements for Fusion Energy Sciences Research

    E-Print Network [OSTI]

    Gerber, Richard

    2012-01-01T23:59:59.000Z

    simulations of fusion and energy systems with unprecedentedRequirements  for  Fusion  Energy  Sciences   14 General  and  Storage  Requirements  for  Fusion  Energy  Sciences  

  14. Large-Scale PV Integration Study

    SciTech Connect (OSTI)

    Lu, Shuai; Etingov, Pavel V.; Diao, Ruisheng; Ma, Jian; Samaan, Nader A.; Makarov, Yuri V.; Guo, Xinxin; Hafen, Ryan P.; Jin, Chunlian; Kirkham, Harold; Shlatz, Eugene; Frantzis, Lisa; McClive, Timothy; Karlson, Gregory; Acharya, Dhruv; Ellis, Abraham; Stein, Joshua; Hansen, Clifford; Chadliev, Vladimir; Smart, Michael; Salgo, Richard; Sorensen, Rahn; Allen, Barbara; Idelchik, Boris

    2011-07-29T23:59:59.000Z

    This research effort evaluates the impact of large-scale photovoltaic (PV) and distributed generation (DG) output on NV Energy’s electric grid system in southern Nevada. It analyzes the ability of NV Energy’s generation to accommodate increasing amounts of utility-scale PV and DG, and the resulting cost of integrating variable renewable resources. The study was jointly funded by the United States Department of Energy and NV Energy, and conducted by a project team comprised of industry experts and research scientists from Navigant Consulting Inc., Sandia National Laboratories, Pacific Northwest National Laboratory and NV Energy.

  15. Large scale solubilization of coal and bioconversion to utilizable energy. Quarterly report, October 1--December 31, 1996

    SciTech Connect (OSTI)

    Mishra, N.C.

    1996-12-22T23:59:59.000Z

    In order to develop a system for a large scale coal solubilization and its bioconversion to utilizable fuel, the author plans to clone the genes encoding Neurospora protein that facilitate depolymerization of coal. He also plans to use desulfurizing bacteria to remove the sulfur in situ and use other microorganisms to convert biosolubilized coal into utilizable energy following an approach utilizing several microorganisms. In addition the product of coal solubilized by fungus will be characterized to determine their chemical nature and the mechanism of reaction catalyzed by fungal product during in vivo and in vitro solubilization by the fungus or purified fungal protein.

  16. Large scale solubilization of coal and bioconversion to utilizable energy. Fifth quarterly technical report, January 1, 1995--March 31, 1995

    SciTech Connect (OSTI)

    Mishra, N.C.

    1995-12-01T23:59:59.000Z

    In order to develop a system for a large scale coal solubilization and its bioconversion to utilizable fuel, we plan to clone the genes encoding Neurospora protein that facilitate depolymerization of coal. We also plan to use desulfurizing bacteria to remove the sulfur in situ and use other microorganisms to convert biosolubilized coal into utilizable energy following an approach utilizing several microorganisms. In addition the product of coal solubilized by fungus will be characterized to determine their chemical nature and the mechanism of reaction catalyzed by fungal product during in vivo and in vitro solubilization by the fungus or purified fungal protein.

  17. Impact of Large Scale Energy Efficiency Programs On Consumer Tariffs and Utility Finances in India

    E-Print Network [OSTI]

    Abhyankar, Nikit

    2011-01-01T23:59:59.000Z

    like refrigerator and air conditioner replacements. Thisiv) Replacement of conventional air conditioners by energy-ii) Replacement of conventional air conditioners by energy-

  18. Large Scale Computing and Storage Requirements for Basic Energy Sciences Research

    E-Print Network [OSTI]

    Gerber, Richard

    2012-01-01T23:59:59.000Z

    Coherent Light Source (LCLS). d) Architectures with largeCoherent Light Source (LCLS) at SLAC National Acceleratorto chart new directions. At LCLS, the short duration of hard

  19. Impact of Large Scale Energy Efficiency Programs On Consumer Tariffs and Utility Finances in India

    E-Print Network [OSTI]

    Abhyankar, Nikit

    2011-01-01T23:59:59.000Z

    Management (DSM) in the Electricity Sector: Urgent Need for1   Electricity Sector inin the Indian electricity sector has large potential for

  20. Impact of Large Scale Energy Efficiency Programs On Consumer Tariffs and Utility Finances in India

    E-Print Network [OSTI]

    Abhyankar, Nikit

    2011-01-01T23:59:59.000Z

    Council for an Energy-Efficienct Economy (ACEEE),. McNeil,Fans Conventional 10 (yrs) Efficien t 10 (yrs) Estimation to Promote Energy Efficiency: Case Study of a Prototypical

  1. Factors Influencing Water Heating Energy Use and Peak Demand in a Large Scale Residential Monitoring Study

    E-Print Network [OSTI]

    Bouchelle, M. P.; Parker, D. S.; Anello, M. T.

    2000-01-01T23:59:59.000Z

    , as well as obtain improved appliance energy consumption indexes and load profiles. A portion of the monitoring measures water heater energy use and demand in each home on a 15-minute basis....

  2. A Large-scale Study on Predicting and Contextualizing Building Energy Usage J. Zico Kolter

    E-Print Network [OSTI]

    Kolter, J. Zico

    fuels (Multiple 2009). In the United States, 41% of all energy is consumed in residential and commercial people with feedback about their energy use can itself produce behavior changes that significantly reduce the value of normative energy feedback, showing users how their usage relates to that of their peers

  3. NREL: News - NREL Offers an Open-Source Solution for Large-Scale Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NREL isDataWorkingVoltage0214 NREL Expert

  4. Impact of Large Scale Energy Efficiency Programs On Consumer Tariffs and Utility Finances in India

    E-Print Network [OSTI]

    Abhyankar, Nikit

    2011-01-01T23:59:59.000Z

    like refrigerator and air conditioner replacements. This5-star air conditioners are the efficient replacement, withiv) Replacement of conventional air conditioners by energy-

  5. Impact of Large Scale Energy Efficiency Programs On Consumer Tariffs and Utility Finances in India

    E-Print Network [OSTI]

    Abhyankar, Nikit

    2011-01-01T23:59:59.000Z

    India. Prayas. (2005). Demand-Side Management (DSM) in theEnergy Efficiency and Demand Side Management (DSM). PlanningDemand Growth Demand Side Management Delhi Transco Limited

  6. Energy Department Awards $66.7 Million for Large-Scale Carbon...

    Energy Savers [EERE]

    is a key component of the Bush Administration's comprehensive efforts to pursue clean coal technology to meet current and future energy needs and meet President Bush's goal of...

  7. First U.S. Large-Scale CO2 Storage Project Advances | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. AreSecond SolarExternal Technical6-OPAM2FederalEnergyProgramFirstDepartment

  8. Large Scale Renewable Energy Property Tax Abatement (Nevada State Office of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferApril 1, 1999Inspections Inspection ReportExcelFalls areEnergyTheEnergy) |

  9. Best Practices and Tools for Large-scale Deployment of Renewable Energy and

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher Homes Jump

  10. Large-Scale Residential Energy Efficiency Programs Based on CFLs | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou NewKoreaLaor Batteries Ltd JumpEnergy

  11. Strategies to Finance Large-Scale Deployment of Renewable Energy Projects:

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheastern IL ElecStrategic Capital InvestmentsStrategic EnergyOpenAn

  12. U.S. Signs International Fusion Energy Agreement; Large-Scale, Clean Fusion

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G. Theofanous, 1996ofDOE NationalEnergy

  13. A large-scale study on predicting and contextualizing building energy usage

    E-Print Network [OSTI]

    Kolter, Jeremy Z.

    In this paper we present a data-driven approach to modeling end user energy consumption in residential and commercial buildings. Our model is based upon a data set of monthly electricity and gas bills, collected by a utility ...

  14. Scenario Development and Analysis of Hydrogen as a Large-Scale Energy Storage Medium (Presentation)

    SciTech Connect (OSTI)

    Steward, D. M.

    2009-06-10T23:59:59.000Z

    The conclusions from this report are: (1) hydrogen has several important advantages over competing technologies, including - very high storage energy density (170 kWh/m{sup 3} vs. 2.4 for CAES and 0.7 for pumped hydro) which allows for potential economic viability of above-ground storage and relatively low environmental impact in comparison with other technologies; and (2) the major disadvantage of hydrogen energy storage is cost but research and deployment of electrolyzers and fuel cells may reduce cost significantly.

  15. Large Scale Computing and Storage Requirements for Fusion Energy Sciences: Target 2017

    SciTech Connect (OSTI)

    Gerber, Richard

    2014-05-02T23:59:59.000Z

    The National Energy Research Scientific Computing Center (NERSC) is the primary computing center for the DOE Office of Science, serving approximately 4,500 users working on some 650 projects that involve nearly 600 codes in a wide variety of scientific disciplines. In March 2013, NERSC, DOE?s Office of Advanced Scientific Computing Research (ASCR) and DOE?s Office of Fusion Energy Sciences (FES) held a review to characterize High Performance Computing (HPC) and storage requirements for FES research through 2017. This report is the result.

  16. HIGH-TEMPERATURE ELECTROLYSIS FOR LARGE-SCALE HYDROGEN AND SYNGAS PRODUCTION FROM NUCLEAR ENERGY – SYSTEM SIMULATION AND ECONOMICS

    SciTech Connect (OSTI)

    J. E. O'Brien; M. G. McKellar; E. A. Harvego; C. M. Stoots

    2009-05-01T23:59:59.000Z

    A research and development program is under way at the Idaho National Laboratory (INL) to assess the technological and scale-up issues associated with the implementation of solid-oxide electrolysis cell technology for efficient high-temperature hydrogen production from steam. This work is supported by the US Department of Energy, Office of Nuclear Energy, under the Nuclear Hydrogen Initiative. This paper will provide an overview of large-scale system modeling results and economic analyses that have been completed to date. System analysis results have been obtained using the commercial code UniSim, augmented with a custom high-temperature electrolyzer module. Economic analysis results were based on the DOE H2A analysis methodology. The process flow diagrams for the system simulations include an advanced nuclear reactor as a source of high-temperature process heat, a power cycle and a coupled steam electrolysis loop. Several reactor types and power cycles have been considered, over a range of reactor outlet temperatures. Pure steam electrolysis for hydrogen production as well as coelectrolysis for syngas production from steam/carbon dioxide mixtures have both been considered. In addition, the feasibility of coupling the high-temperature electrolysis process to biomass and coal-based synthetic fuels production has been considered. These simulations demonstrate that the addition of supplementary nuclear hydrogen to synthetic fuels production from any carbon source minimizes emissions of carbon dioxide during the production process.

  17. ABSTRACT--Due to the sun's intermittent nature, there must be energy storage on a large scale in order for solar

    E-Print Network [OSTI]

    Honsberg, Christiana

    ABSTRACT--Due to the sun's intermittent nature, there must be energy storage on a large scale electrode). Since this produces no carbon dioxide this is a very clean process. With the growing demand future. Hydrogen is a potential candidate to act as an energy storage medium in a sustainable energy

  18. How CMB and large-scale structure constrain chameleon interacting dark energy

    E-Print Network [OSTI]

    Boriero, Daniel; Wong, Yvonne Y Y

    2015-01-01T23:59:59.000Z

    We explore a chameleon type of interacting dark matter-dark energy scenario in which a scalar field adiabatically traces the minimum of an effective potential sourced by the dark matter density. We discuss extensively the effect of this coupling on cosmological observables, especially the parameter degeneracies expected to arise between the model parameters and other cosmological parameters, and then test the model against observations of the cosmic microwave background (CMB) anisotropies and other cosmological probes. We find that the chameleon parameters $\\alpha$ and $\\beta$, which determine respectively the slope of the scalar field potential and the dark matter-dark energy coupling strength, can be constrained to $\\alpha < 0.17$ and $\\beta < 0.19$ using CMB data alone. The latter parameter in particular is constrained only by the late Integrated Sachs-Wolfe effect. Adding measurements of the local Hubble expansion rate $H_0$ tightens the bound on $\\alpha$ by a factor of two, although this apparent i...

  19. Energy Department Awards $66.7 Million for Large-Scale Carbon Sequestration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard |in STEM Education | DepartmentDepartment of

  20. Large scale solubilization of coal and bioconversion to utilizable energy. Technical progress report, January 1--March 31, 1996

    SciTech Connect (OSTI)

    Mishra, N.C.

    1996-05-01T23:59:59.000Z

    In order develop a system for a large scale coal solubilization and its bioconversion to utilizable fuel, the authors plan to clone the genes encoding Neurospora protein that facilitates depolymerization of coal. They also plan to use desulfurizing bacteria to remove the sulfur in situ and use other microorganisms to convert biosolubilized coal into utilizable energy following an approach utilizing several microorganisms. In addition the products of coal solubilized by fungus will be characterized to determine their chemical nature and the mechanism of reaction catalyzed by fungal product during in vivo and in vitro solubilization by the fungus or purified fungal protein. Results are presented for the cloning of genes for Neurospora CSA-protein.

  1. Computer Energy Modeling Techniques for Simulation Large Scale Correctional Institutes in Texas

    E-Print Network [OSTI]

    Heneghan, T.; Haberl, J. S.; Saman, N.; Bou-Saada, T. E.

    1996-01-01T23:59:59.000Z

    using the DOE-2.1E building enegy simulation program to model a 1,000 bed case study correctional unit located in Texas. INTRODUCTION The Texas Department of Criminal Justice (TDCJ) Stephenson unit located in Cuero, Texas was N. Saman, Ph.D., P... building enegy simulation program (LBL 1980; 1981; 1982; 1989; 1994). The second part of the project included evaluating the energy consumption of this prototype unit. This paper presents a methodology that may be used to view and improve simulation...

  2. Energy Department Loan Guarantee Would Support Large-Scale Rooftop Solar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal RegisterHydrogen and Fuel Cellof Energy MobilePower for U.S.

  3. FEMP Helps Federal Facilities Develop Large-Scale Renewable Energy Projects

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010SaltInstrumentation andFE DOCKET NO.FEDERAL ENERGYFEMP|

  4. Locations of Smart Grid Demonstration and Large-Scale Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTerms Loan Terms TheNaturalemployee

  5. FEMP Helps Federal Facilities Develop Large-Scale Renewable Energy Projects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 FederalTexasManager FAQS Reference Guide| Department of Energy FEMP

  6. Panel 1, Towards Sustainable Energy Systems: The Role of Large-Scale Hydrogen Storage in Germany

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1 Termoelectrica U.SPRESS FACTBiofuels1ofHanno Butsch | Head of

  7. Locations of Smart Grid Demonstration and Large-Scale Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketing |Prepare for an Energy EmergencyRespond

  8. Harvey Wasserman! Large Scale Computing and Storage Requirements for High Energy Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cn SunnybankD.jpgHanford LEED&soil HanfordHappyHaroldHarvey Brooks,Harvey

  9. Copyright 2013 IEEE. Reprinted, with permission from: CERTS Microgrid Demonstration with Large-Scale Energy Storage and

    E-Print Network [OSTI]

    -Scale Energy Storage and Renewable Generation Eduardo Alegria, Member, IEEE; Tim Brown, Member, IEEE; Erin Minear, Member, IEEE; Robert H. Lasseter, Fellow, IEEE Submitted to "Energy Storage Applications--Distributed Generation, Distributed Resource, Islanding, Microgrid, Smart Grid, Renewable Energy, Advanced Energy Storage

  10. Model As-of Right Zoning Ordinance or Bylaw: Allowing Use of Large-Scale Solar Energy Facilities

    Broader source: Energy.gov [DOE]

    Note: This model ordinance was designed to provide guidance to local governments seeking to develop siting rules for large-scale, ground-mounted solar (250 kW and above). While it was developed as...

  11. Large and small-scale structures and the dust energy balance problem in spiral galaxies

    E-Print Network [OSTI]

    Saftly, W; De Geyter, G; Camps, P; Renaud, F; Guedes, J; De Looze, I

    2015-01-01T23:59:59.000Z

    The interstellar dust content in galaxies can be traced in extinction at optical wavelengths, or in emission in the far-infrared. Several studies have found that radiative transfer models that successfully explain the optical extinction in edge-on spiral galaxies generally underestimate the observed FIR/submm fluxes by a factor of about three. In order to investigate this so-called dust energy balance problem, we use two Milky Way-like galaxies produced by high-resolution hydrodynamical simulations. We create mock optical edge-on views of these simulated galaxies (using the radiative transfer code SKIRT), and we then fit the parameters of a basic spiral galaxy model to these images (using the fitting code FitSKIRT). The basic model includes smooth axisymmetric distributions along a S\\'ersic bulge and exponential disc for the stars, and a second exponential disc for the dust. We find that the dust mass recovered by the fitted models is about three times smaller than the known dust mass of the hydrodynamical in...

  12. Large Scale Duty Cycle (LSDC) Project: Tractive Energy Analysis Methodology and Results from Long-Haul Truck Drive Cycle Evaluations

    SciTech Connect (OSTI)

    LaClair, Tim J [ORNL

    2011-05-01T23:59:59.000Z

    This report addresses the approach that will be used in the Large Scale Duty Cycle (LSDC) project to evaluate the fuel savings potential of various truck efficiency technologies. The methods and equations used for performing the tractive energy evaluations are presented and the calculation approach is described. Several representative results for individual duty cycle segments are presented to demonstrate the approach and the significance of this analysis for the project. The report is divided into four sections, including an initial brief overview of the LSDC project and its current status. In the second section of the report, the concepts that form the basis of the analysis are presented through a discussion of basic principles pertaining to tractive energy and the role of tractive energy in relation to other losses on the vehicle. In the third section, the approach used for the analysis is formalized and the equations used in the analysis are presented. In the fourth section, results from the analysis for a set of individual duty cycle measurements are presented and different types of drive cycles are discussed relative to the fuel savings potential that specific technologies could bring if these drive cycles were representative of the use of a given vehicle or trucking application. Additionally, the calculation of vehicle mass from measured torque and speed data is presented and the accuracy of the approach is demonstrated.

  13. Visualization of Large-Scale Distributed Data

    E-Print Network [OSTI]

    Johnson, Andrew

    that are now considered the "lenses" for examining large-scale data. THE LARGE-SCALE DATA VISUALIZATIONVisualization of Large-Scale Distributed Data Jason Leigh1 , Andrew Johnson1 , Luc Renambot1 representation of data and the interactive manipulation and querying of the visualization. Large-scale data

  14. Addressing Energy Costs of Current Separation Processes with Advanced Materials and Large scale purification and separation processes transform low value resources into more

    E-Print Network [OSTI]

    Li, Mo

    Addressing Energy Costs of Current Separation Processes with Advanced Materials and Processes Large scale purification and separation processes transform low value resources into more useful fuels, basic chemicals, food and clean water; however, they also consume considerable energy. With growing global

  15. Large Scale Periodicity in Redshift Distribution

    E-Print Network [OSTI]

    K. Bajan; M. Biernacka; P. Flin; W. Godlowski; V. Pervushin; A. Zorin

    2004-08-30T23:59:59.000Z

    We review the previous studies of galaxies and quasar redshifts discretisation. We present also the investigations of the large scale periodicity, detected by pencil--beam observations, which revealed 128 (1/h) Mpc period, afterwards confirmed with supercluster studies. We present the theoretical possibility of obtaining such a periodicity using a toy-model. We solved the Kepler problem, i.e. the equation of motion of a particle with null energy moving in the uniform, expanding Universe, decribed by FLRW metrics. It is possible to obtain theoretically the separation between large scale structures similar to the observed one.

  16. ORNL, CINCINNATI partner to develop commercial large-scale additive...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory 865-574-7308 ORNL, CINCINNATI partner to develop commercial large-scale additive manufacturing system (From left) David Danielson, the Energy Department's...

  17. Using an Energy Performance Based Design-Build Process to Procure a Large Scale Low-Energy Building: PReprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps to Predict Solar Final Report toWIND ANDUsing an

  18. IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. Y, MONTH 2002 1 Techniques for Energy-Efficient Communication

    E-Print Network [OSTI]

    Potkonjak, Miodrag

    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. Y, MONTH 2002 1 of communication pipelines. At the same time, power/energy consumption is often another limiting factor in many portable systems. We address the problem of how to mini- mize the power consumption in system

  19. CyanoGEBA: A Better Understanding of Cynobacterial Diversity through Large-scale Genomics (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    SciTech Connect (OSTI)

    Shih, Patrick [Kerfeld Lab, UC Berkeley and JGI] [Kerfeld Lab, UC Berkeley and JGI

    2012-03-22T23:59:59.000Z

    Patrick Shih, representing both the University of California, Berkeley and JGI, gives a talk titled "CyanoGEBA: A Better Understanding of Cynobacterial Diversity through Large-scale Genomics" at the JGI 7th Annual Users Meeting: Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, California.

  20. CyanoGEBA: A Better Understanding of Cynobacterial Diversity through Large-scale Genomics (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    ScienceCinema (OSTI)

    Shih, Patrick [Kerfeld Lab, UC Berkeley and JGI

    2013-01-22T23:59:59.000Z

    Patrick Shih, representing both the University of California, Berkeley and JGI, gives a talk titled "CyanoGEBA: A Better Understanding of Cynobacterial Diversity through Large-scale Genomics" at the JGI 7th Annual Users Meeting: Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, California.

  1. Techno-economic Modeling of the Integration of 20% Wind and Large-scale Energy Storage in ERCOT by 2030

    SciTech Connect (OSTI)

    Ross Baldick; Michael Webber; Carey King; Jared Garrison; Stuart Cohen; Duehee Lee

    2012-12-21T23:59:59.000Z

    This study�¢����s objective is to examine interrelated technical and economic avenues for the Electric Reliability Council of Texas (ERCOT) grid to incorporate up to and over 20% wind generation by 2030. Our specific interests are to look at the factors that will affect the implementation of both high level of wind power penetration (> 20% generation) and installation of large scale storage.

  2. Conundrum of the Large Scale Streaming

    E-Print Network [OSTI]

    T. M. Malm

    1999-09-12T23:59:59.000Z

    The etiology of the large scale peculiar velocity (large scale streaming motion) of clusters would increasingly seem more tenuous, within the context of the gravitational instability hypothesis. Are there any alternative testable models possibly accounting for such large scale streaming of clusters?

  3. Survey of Climate Conditions for Demonstration of a Large Scale of Solar Energy Heating in Xi'an 

    E-Print Network [OSTI]

    Li, A.; Liu, Y.

    2006-01-01T23:59:59.000Z

    of Finance, together with the Ministry of Construction P.R.C, is selecting cities with different climates to carry out demonstrations of renewable energy applications in buildings. Xi'an, a representative city in the West, is selected to demonstrate large...

  4. Journal of Machine Learning Research 10 (2009) 743-746 Submitted 11/07; Revised 7/08; Published 3/09 Nieme: Large-Scale Energy-Based Models

    E-Print Network [OSTI]

    Kaski, Samuel

    for large-scale classification, re- gression and ranking. NIEME relies on the framework of energy learning, classification, ranking, regression, energy-based mod- els, machine learning software 1/09 Nieme: Large-Scale Energy-Based Models Francis Maes FRANCIS.MAES@LIP6.FR Universite Pierre et Marie

  5. Large-scale pool fires 

    E-Print Network [OSTI]

    Steinhaus, Thomas; Welch, Stephen; Carvel, Ricky O; Torero, Jose L

    2007-03-29T23:59:59.000Z

    A review of research into the burning behaviour of large pool fires and fuel spill fires is presented. The features which distinguish such fires from smaller pool fires are mainly associated with the fire dynamics at low ...

  6. DLFM library tools for large scale dynamic applications.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DLFM library tools for large scale dynamic applications DLFM library tools for large scale dynamic applications Large scale Python and other dynamic applications may spend huge...

  7. Microfluidic Large-Scale Integration: The Evolution

    E-Print Network [OSTI]

    Quake, Stephen R.

    Microfluidic Large-Scale Integration: The Evolution of Design Rules for Biological Automation, polydimethylsiloxane Abstract Microfluidic large-scale integration (mLSI) refers to the develop- ment of microfluidic, are discussed. Several microfluidic components used as building blocks to create effective, complex, and highly

  8. The effect of the geomagnetic field on cosmic ray energy estimates and large scale anisotropy searches on data from the Pierre Auger Observatory

    SciTech Connect (OSTI)

    Abreu, P.; /Lisbon, IST; Aglietta, M.; /IFSI, Turin; Ahn, E.J.; /Fermilab; Albuquerque, I.F.M.; /Sao Paulo U.; Allard, D.; /APC, Paris; Allekotte, I.; /Centro Atomico Bariloche; Allen, J.; /New York U.; Allison, P.; /Ohio State U.; Alvarez Castillo, J.; /Mexico U., ICN; Alvarez-Muniz, J.; /Santiago de Compostela U.; Ambrosio, M.; /Naples U. /INFN, Naples /Nijmegen U., IMAPP; ,

    2011-11-01T23:59:59.000Z

    We present a comprehensive study of the influence of the geomagnetic field on the energy estimation of extensive air showers with a zenith angle smaller than 60{sup o}, detected at the Pierre Auger Observatory. The geomagnetic field induces an azimuthal modulation of the estimated energy of cosmic rays up to the {approx} 2% level at large zenith angles. We present a method to account for this modulation of the reconstructed energy. We analyse the effect of the modulation on large scale anisotropy searches in the arrival direction distributions of cosmic rays. At a given energy, the geomagnetic effect is shown to induce a pseudo-dipolar pattern at the percent level in the declination distribution that needs to be accounted for. In this work, we have identified and quantified a systematic uncertainty affecting the energy determination of cosmic rays detected by the surface detector array of the Pierre Auger Observatory. This systematic uncertainty, induced by the influence of the geomagnetic field on the shower development, has a strength which depends on both the zenith and the azimuthal angles. Consequently, we have shown that it induces distortions of the estimated cosmic ray event rate at a given energy at the percent level in both the azimuthal and the declination distributions, the latter of which mimics an almost dipolar pattern. We have also shown that the induced distortions are already at the level of the statistical uncertainties for a number of events N {approx_equal} 32 000 (we note that the full Auger surface detector array collects about 6500 events per year with energies above 3 EeV). Accounting for these effects is thus essential with regard to the correct interpretation of large scale anisotropy measurements taking explicitly profit from the declination distribution.

  9. Large-scale Manufacturing of Nanoparticulate-based Lubrication Additives for Improved Energy Efficiency and Reduced Emissions

    SciTech Connect (OSTI)

    Erdemir, Ali [Argonne National Laboratory] [Argonne National Laboratory

    2013-09-26T23:59:59.000Z

    This project was funded under the Department of Energy (DOE) Lab Call on Nanomanufacturing for Energy Efficiency and was directed toward the development of novel boron-based nanocolloidal lubrication additives for improving the friction and wear performance of machine components in a wide range of industrial and transportation applications. Argonne?s research team concentrated on the scientific and technical aspects of the project, using a range of state-of-the art analytical and tribological test facilities. Argonne has extensive past experience and expertise in working with boron-based solid and liquid lubrication additives, and has intellectual property ownership of several. There were two industrial collaborators in this project: Ashland Oil (represented by its Valvoline subsidiary) and Primet Precision Materials, Inc. (a leading nanomaterials company). There was also a sub-contract with the University of Arkansas. The major objectives of the project were to develop novel boron-based nanocolloidal lubrication additives and to optimize and verify their performance under boundary-lubricated sliding conditions. The project also tackled problems related to colloidal dispersion, larger-scale manufacturing and blending of nano-additives with base carrier oils. Other important issues dealt with in the project were determination of the optimum size and concentration of the particles and compatibility with various base fluids and/or additives. Boron-based particulate additives considered in this project included boric acid (H{sub 3}BO{sub 3}), hexagonal boron nitride (h-BN), boron oxide, and borax. As part of this project, we also explored a hybrid MoS{sub 2} + boric acid formulation approach for more effective lubrication and reported the results. The major motivation behind this work was to reduce energy losses related to friction and wear in a wide spectrum of mechanical systems and thereby reduce our dependence on imported oil. Growing concern over greenhouse gas emissions was also a major reason. The transportation sector alone consumes about 13 million barrels of crude oil per day (nearly 60% of which is imported) and is responsible for about 30% of the CO{sub 2} emission. When we consider manufacturing and other energy-intensive industrial processes, the amount of petroleum being consumed due to friction and wear reaches more than 20 million barrels per day (from official energy statistics, U.S. Energy Information Administration). Frequent remanufacturing and/or replacement of worn parts due to friction-, wear-, and scuffing-related degradations also consume significant amounts of energy and give rise to additional CO{sub 2} emission. Overall, the total annual cost of friction- and wear-related energy and material losses is estimated to be rather significant (i.e., as much as 5% of the gross national products of highly industrialized nations). It is projected that more than half of the total friction- and wear-related energy losses can be recovered by developing and implementing advanced friction and wear control technologies. In transportation vehicles alone, 10% to 15% of the fuel energy is spent to overcome friction. If we can cut down the friction- and wear-related energy losses by half, then we can potentially save up to 1.5 million barrels of petroleum per day. Also, less friction and wear would mean less energy consumption as well as less carbon emissions and hazardous byproducts being generated and released to the environment. New and more robust anti-friction and -wear control technologies may thus have a significant positive impact on improving the efficiency and environmental cleanliness of the current legacy fleet and future transportation systems. Effective control of friction in other industrial sectors such as manufacturing, power generation, mining and oil exploration, and agricultural and earthmoving machinery may bring more energy savings. Therefore, this project was timely and responsive to the energy and environmental objectives of DOE and our nation. In this project, most of the boron-based mater

  10. Large-Scale Manifold Learning Ameet Talwalkar

    E-Print Network [OSTI]

    California at Irvine, University of

    Large-Scale Manifold Learning Ameet Talwalkar Courant Institute New York, NY ameet on spectral decom- position, we first analyze two approximate spectral decom- position techniques for large-dimensional embeddings for two large face datasets: CMU-PIE (35 thousand faces) and a web dataset (18 million faces). Our

  11. The effect of asymmetric large-scale dissipation on energy and potential enstrophy injection in two-layer quasi-geostrophic turbulence

    E-Print Network [OSTI]

    Eleftherios Gkioulekas

    2011-12-27T23:59:59.000Z

    In the Nastrom-Gage spectrum of atmospheric turbulence we observe a $k^{-3}$ energy spectrum that transitions into a $k^{-5/3}$ spectrum, with increasing wavenumber $k$. The transition occurs near a transition wavenumber $k_t$, located near the Rossby deformation wavenumber $k_R$. The Tung-Orlando theory interprets this spectrum as a double downscale cascade of potential enstrophy and energy, from large scales to small scales, in which the downscale potential enstrophy cascade coexists with the downscale energy cascade over the same length-scale range. We show that, in a temperature forced two-layer quasi-geostrophic model, the rates with which potential enstrophy and energy are injected place the transition wavenumber $k_t$ near $k_R$. We also show that if the potential energy dominates the kinetic energy in the forcing range, then the Ekman term suppresses the upscale cascading potential enstrophy more than it suppresses the upscale cascading energy, a behavior contrary to what occurs in two-dimensional turbulence. As a result, the ratio $\\gn/\\gee$ of injected potential enstrophy over injected energy, in the downscale direction, decreases, thereby tending to decrease the transition wavenumber $k_t$ further. Using a random Gaussian forcing model, we reach the same conclusion, under the modeling assumption that the asymmetric Ekman term predominantly suppresses the bottom layer forcing, thereby disregarding a possible entanglement between the Ekman term and the nonlinear interlayer interaction. Based on these results, we argue that the Tung-Orlando theory can account for the approximate coincidence between $k_t$ and $k_R$. We also identify certain open questions that require further investigation via numerical simulations.

  12. Black Thunder Coal Mine and Los Alamos National Laboratory experimental study of seismic energy generated by large scale mine blasting

    SciTech Connect (OSTI)

    Martin, R.L.; Gross, D. [Thunder Basin Coal Co., Wright, WY (United States); Pearson, D.C.; Stump, B.W. [Los Alamos National Lab., NM (United States); Anderson, D.P. [Southern Methodist Univ., Dallas, TX (United States). Dept. of Geological Sciences

    1996-12-31T23:59:59.000Z

    In an attempt to better understand the impact that large mining shots will have on verifying compliance with the international, worldwide, Comprehensive Test Ban Treaty (CTBT, no nuclear explosion tests), a series of seismic and videographic experiments has been conducted during the past two years at the Black Thunder Coal Mine. Personnel from the mine and Los Alamos National Laboratory have cooperated closely to design and perform experiments to produce results with mutual benefit to both organizations. This paper summarizes the activities, highlighting the unique results of each. Topics which were covered in these experiments include: (1) synthesis of seismic, videographic, acoustic, and computer modeling data to improve understanding of shot performance and phenomenology; (2) development of computer generated visualizations of observed blasting techniques; (3) documentation of azimuthal variations in radiation of seismic energy from overburden casting shots; (4) identification of, as yet unexplained, out of sequence, simultaneous detonation in some shots using seismic and videographic techniques; (5) comparison of local (0.1 to 15 kilometer range) and regional (100 to 2,000 kilometer range) seismic measurements leading to determine of the relationship between local and regional seismic amplitude to explosive yield for overburden cast, coal bulking and single fired explosions; and (6) determination of the types of mining shots triggering the prototype International Monitoring System for the CTBT.

  13. Large scale solubilization of coal and bioconversion to utilizable energy. Eighth quarterly technical progress report, July 1, 1995--September 30, 1995

    SciTech Connect (OSTI)

    Mishra, N.C.

    1996-02-01T23:59:59.000Z

    In order to develop a system for a large scale coal solubilization and its bioconversion to utilizable fuel, we plan to clone the genes encoding Neurospora protein that facilitate depolymerization of coal. We also plan to use desulfurizing bacteria to remove the sulfur in situ and use other microorganisms to convert biosolubilized coal into utilizable energy following an approach utilizing several microorganisms. In addition the product of coal solubilized by fungus will be characterized to determine their chemical nature and the mechanism of reaction catalyzed by fungal product during in vivo and in vitro solubilization by the fungus or purified fungal protein.

  14. Large scale solubilization of coal and bioconversion to utilizable energy. Seventh quarterly technical progress report, April 1, 1995--June 30, 1995

    SciTech Connect (OSTI)

    Mishra, N.C.

    1995-12-01T23:59:59.000Z

    In order to develop a system for a large scale coal solubilization and its bioconversion to utilizable fuel, we plan to clone the genes encoding Neurospora protein that facilitate depolymerization of coal. We also plan to use desulfurizing bacteria to remove the sulfur in situ and use other microorganisms to convert biosolubilized coal into utilizable energy following an approach utilizing several microorganisms. In addition the product of coal solubilized by fungus will be characterized to determine their chemical nature and the mechanism of reaction catalyzed by fungal product during in vivo and in vitro solubilization by the fungus or purified fungal protein.

  15. Program Management for Large Scale Engineering Programs

    E-Print Network [OSTI]

    Oehmen, Josef

    The goal of this whitepaper is to summarize the LAI research that applies to program management. The context of most of the research discussed in this whitepaper are large-scale engineering programs, particularly in the ...

  16. LARGE SCALE SIMULATIONS OF THE MECHANCIAL PROPERTIES OF LAYERED TRANSITION METAL TERNARY COMPOUNDS FOR FOSSIL ENERGY POWER SYSTEM APPLICATIONS

    SciTech Connect (OSTI)

    Ching, Wai-Yim

    2014-12-31T23:59:59.000Z

    Advanced materials with applications in extreme conditions such as high temperature, high pressure, and corrosive environments play a critical role in the development of new technologies to significantly improve the performance of different types of power plants. Materials that are currently employed in fossil energy conversion systems are typically the Ni-based alloys and stainless steels that have already reached their ultimate performance limits. Incremental improvements are unlikely to meet the more stringent requirements aimed at increased efficiency and reduce risks while addressing environmental concerns and keeping costs low. Computational studies can lead the way in the search for novel materials or for significant improvements in existing materials that can meet such requirements. Detailed computational studies with sufficient predictive power can provide an atomistic level understanding of the key characteristics that lead to desirable properties. This project focuses on the comprehensive study of a new class of materials called MAX phases, or Mn+1AXn (M = a transition metal, A = Al or other group III, IV, and V elements, X = C or N). The MAX phases are layered transition metal carbides or nitrides with a rare combination of metallic and ceramic properties. Due to their unique structural arrangements and special types of bonding, these thermodynamically stable alloys possess some of the most outstanding properties. We used a genomic approach in screening a large number of potential MAX phases and established a database for 665 viable MAX compounds on the structure, mechanical and electronic properties and investigated the correlations between them. This database if then used as a tool for materials informatics for further exploration of this class of intermetallic compounds.

  17. Network Coding for Large Scale Content Distribution

    E-Print Network [OSTI]

    Keinan, Alon

    Network Coding for Large Scale Content Distribution IEEE Infocom 2005 Christos Gkantsidis College propose a new scheme for content distribution of large files that is based on network coding. With network coding, each node of the distribution network is able to generate and transmit encoded blocks

  18. Low-risk and cost-effective prior savings estimates for large-scale energy conservation projects in housing: Learning from the Fort Polk GHP project

    SciTech Connect (OSTI)

    Shonder, J.A.; Hughes, P.J. [Oak Ridge National Lab., TN (United States); Thornton, J.W. [Thermal Energy Systems Specialists, Inc., Madison, WI (United States)

    1997-08-01T23:59:59.000Z

    Many opportunities exist for large-scale energy conservation projects in housing. Energy savings performance contracting (ESPC) is now receiving greater attention, as a means to implement such projects. This paper proposes an improved method for prior (to construction) savings estimates for these projects. The proposed approach to prior estimates is verified against data from Fort Polk, LA. In the course of evaluating the ESPC at Fort Polk, the authors have collected energy use data which allowed them to develop calibrated engineering models which accurately predict pre-retrofit energy consumption. They believe that such calibrated models could be used to provide much more accurate estimates of energy savings in retrofit projects. The improved savings estimating approach described here is based on an engineering model calibrated to field-collected data from the pre-retrofit period. A dynamic model of pre-retrofit energy use was developed for all housing and non-housing loads on a complete electrical feeder at Fort Polk. The model included the heat transfer characteristics of the buildings, the pre-retrofit air source heat pump, a hot water consumption model and a profile for electrical use by lights and other appliances. Energy consumption for all 200 apartments was totaled, and by adjusting thermostat setpoints and outdoor air infiltration parameters, the models were matched to field-collected energy consumption data for the entire feeder. The energy conservation measures were then implemented in the calibrated model: the air source heat pumps were replaced by geothermal heat pumps with desuperheaters; hot water loads were reduced to account for the low-flow shower heads; and lighting loads were reduced to account for fixture delamping and replacement with compact fluorescent lights. The analysis of pre- and post-retrofit data indicates that the retrofits have saved 30.3% of pre-retrofit electrical energy consumption on the feeder modeled in this paper.

  19. Transition from Large-Scale to Small-Scale Dynamo

    SciTech Connect (OSTI)

    Ponty, Y. [Universite de Nice Sophia-Antipolis, CNRS, Observatoire de la Cote d'Azur, B.P. 4229, Nice cedex 04 (France); Plunian, F. [Institut des Sciences de la Terre, CNRS, Universite Joseph Fourier, B.P. 53, 38041 Grenoble cedex 09 (France)

    2011-04-15T23:59:59.000Z

    The dynamo equations are solved numerically with a helical forcing corresponding to the Roberts flow. In the fully turbulent regime the flow behaves as a Roberts flow on long time scales, plus turbulent fluctuations at short time scales. The dynamo onset is controlled by the long time scales of the flow, in agreement with the former Karlsruhe experimental results. The is governed by a generalized {alpha} effect, which includes both the usual {alpha} effect and turbulent diffusion, plus all higher order effects. Beyond the onset we find that this generalized {alpha} effect scales as O(Rm{sup -1}), suggesting the takeover of small-scale dynamo action. This is confirmed by simulations in which dynamo occurs even if the large-scale field is artificially suppressed.

  20. Reducing Data Center Loads for a Large-Scale, Low-Energy Office Building: NREL's Research Support Facility (Book)

    SciTech Connect (OSTI)

    Sheppy, M.; Lobato, C.; Van Geet, O.; Pless, S.; Donovan, K.; Powers, C.

    2011-12-01T23:59:59.000Z

    This publication detailing the design, implementation strategies, and continuous performance monitoring of NREL's Research Support Facility data center. Data centers are energy-intensive spaces that facilitate the transmission, receipt, processing, and storage of digital data. These spaces require redundancies in power and storage, as well as infrastructure, to cool computing equipment and manage the resulting waste heat (Tschudi, Xu, Sartor, and Stein, 2003). Data center spaces can consume more than 100 times the energy of standard office spaces (VanGeet 2011). The U.S. Environmental Protection Agency (EPA) reported that data centers used 61 billion kilowatt-hours (kWh) in 2006, which was 1.5% of the total electricity consumption in the U.S. (U.S. EPA, 2007). Worldwide, data centers now consume more energy annually than Sweden (New York Times, 2009). Given their high energy consumption and conventional operation practices, there is a potential for huge energy savings in data centers. The National Renewable Energy Laboratory (NREL) is world renowned for its commitment to green building construction. In June 2010, the laboratory finished construction of a 220,000-square-foot (ft{sup 2}), LEED Platinum, Research Support Facility (RSF), which included a 1,900-ft{sup 2} data center. The RSF will expand to 360,000 ft{sup 2} with the opening of an additional wing December, 2011. The project's request for proposals (RFP) set a whole-building demand-side energy use requirement of a nominal 35 kBtu/ft{sup 2} per year. On-site renewable energy generation will offset the annual energy consumption. To support the RSF's energy goals, NREL's new data center was designed to minimize its energy footprint without compromising service quality. Several implementation challenges emerged during the design, construction, and first 11 months of operation of the RSF data center. This document highlights these challenges and describes in detail how NREL successfully overcame them. The IT settings and strategies outlined in this document have been used to significantly reduce data center energy requirements in the RSF; however, these can also be used in existing buildings and retrofits.

  1. Effect of Large Scale Transmission Limitations on Renewable Energy Load Matching for Western U.S.: Preprint

    SciTech Connect (OSTI)

    Diakov, V.; Short, W.; Gilchrist, B.

    2012-06-01T23:59:59.000Z

    Based on the available geographically dispersed data for the Western U.S. (excluding Alaska), we analyze to what extent the geographic diversity of these resources can offset their variability. Without energy storage and assuming unlimited energy flows between regions, wind and PV can meet up to 80% of loads in Western U.S. while less than 10% of the generated power is curtailed. Limiting hourly energy flows by the aggregated transmission line carrying capacities decreases the fraction of the load that can be met with wind and PV generation to approximately 70%.

  2. Understanding the impact of large-scale penetration of micro combined heat & power technologies within energy systems/

    E-Print Network [OSTI]

    Tapia-Ahumada, Karen de los Ángeles

    2011-01-01T23:59:59.000Z

    Significant energy challenges today come from security of supply and environmental concerns. Those surpass the quest for economic efficiency that has been the primary objective until recent times. In an intensive fossil-fuel ...

  3. Large-scale simulations of reionization

    SciTech Connect (OSTI)

    Kohler, Katharina; /JILA, Boulder /Fermilab; Gnedin, Nickolay Y.; /Fermilab; Hamilton, Andrew J.S.; /JILA, Boulder

    2005-11-01T23:59:59.000Z

    We use cosmological simulations to explore the large-scale effects of reionization. Since reionization is a process that involves a large dynamic range--from galaxies to rare bright quasars--we need to be able to cover a significant volume of the universe in our simulation without losing the important small scale effects from galaxies. Here we have taken an approach that uses clumping factors derived from small scale simulations to approximate the radiative transfer on the sub-cell scales. Using this technique, we can cover a simulation size up to 1280h{sup -1} Mpc with 10h{sup -1} Mpc cells. This allows us to construct synthetic spectra of quasars similar to observed spectra of SDSS quasars at high redshifts and compare them to the observational data. These spectra can then be analyzed for HII region sizes, the presence of the Gunn-Peterson trough, and the Lyman-{alpha} forest.

  4. Reducing Plug and Process Loads for a Large Scale, Low Energy Office Building: NREL's Research Support Facility: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection RadiationRecord-SettingHead of Contractingof

  5. Large scale solubilization of coal and bioconversion to utilizable energy. Third quarterly technical progress report, April 1, 1994--June 30, 1994

    SciTech Connect (OSTI)

    Mishra, N.C.

    1994-08-01T23:59:59.000Z

    In order to develop a system for a large scale coal solubilization and its bioconversion to utilizable fuel, the investigators plan to clone the genes encoding Neurospora protein that facilitate depolymerization of coal. They also plan to use desulfurizing bacteria to remove the sulfur in situ and use other microorganisms to convert biosolubilized coal into utilizable energy following an approach utilizing several microorganisms. In addition the product of coal solubilized by fungus will be characterized to determine their chemical nature and the mechanism of reaction catalyzed by fungal product during in vivo and in vitro solubilization by the fungus or purified fungal protein. Main objectives are: (1) cloning of Neurospora gene for coal depolymerization protein controlling solubilization in different host cells, utilizing Neurospora plasmid and other vector(s); (2) (a) development of a large scale electrophoretic separation of coal drived products obtained after microbial solubilization; (b) identification of the coal derived products obtained after biosolubilization by Neurospora cultures or obtained after Neurospora enzyme catalyzed reaction in in vitro by the wildtype and mutant enzymes; (3) bioconversion of coal drived products into utilizable fuel; and (4) characterization of Neurospora wildtype and mutant CSA protein(s) involved in solubilization of coal in order to assess the nature of the mechanism of solubilization and the role of Neurospora proteins in this process.

  6. Large-Scale Utilization of Biomass Energy and Carbon Dioxide Capture and Storage in the Transport and Electricity Sectors under Stringent CO2 Concentration Limit Scenarios

    SciTech Connect (OSTI)

    Luckow, Patrick; Wise, Marshall A.; Dooley, James J.; Kim, Son H.

    2010-08-05T23:59:59.000Z

    This paper examines the potential role of large scale, dedicated commercial biomass energy systems under global climate policies designed to meet atmospheric concentrations of CO2 at 400ppm and 450ppm by the end of the century. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. A key aspect of the research presented here is that the costs of processing and transporting biomass energy at much larger scales than current experience are explicitly incorporated into the modeling. From the scenario results, 120-160 EJ/year of biomass energy is produced globally by midcentury and 200-250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the majority source, along with growing utilization of waste-to-energy. The ability to draw on a diverse set of biomass based feedstocks helps to reduce the pressure for drastic large-scale changes in land use and the attendant environmental, ecological, and economic consequences those changes would unleash. In terms of the conversion of bioenergy feedstocks into value added energy, this paper demonstrates that biomass is and will continue to be used to generate electricity as well as liquid transportation fuels. A particular focus of this paper is to show how climate policies and technology assumptions - especially the availability of carbon dioxide capture and storage (CCS) technologies - affect the decisions made about where the biomass is used in the energy system. The potential for net-negative electric sector emissions through the use of CCS with biomass feedstocks provides an attractive part of the solution for meeting stringent emissions constraints; we find that at carbon prices above 150$/tCO2, over 90% of biomass in the energy system is used in combination with CCS. Despite the higher technology costs of CCS, it is a very important tool in controlling the cost of meeting a target, offsetting the venting of CO2 from sectors of the energy system that may be more expensive to mitigate, such as oil use in transportation. CCS is also used heavily with other fuels such as coal and natural gas, and by 2095 a total of 1530 GtCO2 has been stored in deep geologic reservoirs. The paper also discusses the role of cellulosic ethanol and Fischer-Tropsch biomass derived transportation fuels as two representative conversion processes and shows that both technologies may be important contributors to liquid fuels production, with unique costs and emissions characteristics.

  7. Low-Risk and Cost-Effective Prior Savings Estimates for Large-Scale Energy Conservation Projects in Housing: Learning from the Fort Polk GHP Project

    SciTech Connect (OSTI)

    Shonder, John A [ORNL; Hughes, Patrick [ORNL; Thornton, Jeff W. [Thermal Energy Systems Specialists, Inc.

    1997-08-01T23:59:59.000Z

    Many opportunities exist for large-scale energy conservation projects in housing: military housing, federally-subsidized low-income housing, and planned communities (condominiums, townhomes, senior centers) to name a few. Energy savings performance contracting (ESPC) is now receiving greater attention, as a means to implement such projects. This paper proposes an improved method for prior (to construction) savings estimates for these projects. More accurate prior estimates reduce project risk, decrease financing costs, and help avoid post-construction legal disputes over performance contract baseline adjustments. The proposed approach to prior estimates is verified against data from Fort Polk, LA. In the course of evaluating the ESPC at Fort Polk, Louisiana, we have collected energy use data - both at the electrical feeder level and at the level of individual residences - which allowed us to develop calibrated engineering models which accurately predict pre-retrofit energy consumption. We believe that such calibrated models could be used to provide much more accurate estimates of energy savings in retrofit projects, particularly in cases where the energy consumption of large populations of housing can be captured on one or a few meters. The improved savings estimating approach described here is based on an engineering model calibrated to field-collected data from the pre-retrofit period. A dynamic model of pre-retrofit energy use was developed for all housing and non-housing loads on a complete electrical feeder at Fort Polk. The feeder serves 46 buildings containing a total of 200 individual apartments. Of the 46 buildings, there are three unique types, and among these types the only difference is compass orientation. The model included the heat transfer characteristics of the buildings, the pre-retrofit air source heat pump, a hot water consumption model and a profile for electrical use by lights and other appliances. Energy consumption for all 200 apartments was totaled, and by adjusting thermostat setpoints and outdoor air infiltration parameters, the models were matched to field-collected energy consumption data for the entire feeder. The energy conservation measures were then implemented in the calibrated model: the air source heat pumps were replaced by geothermal heat pumps (GHPs) with desuperheaters; hot water loads were reduced to account for the low-flow shower heads; and lighting loads were reduced to account for fixture delamping and replacement with compact fluorescent lights (CFLs). Our analysis of pre- and post-retrofit data (Shonder and Hughes, 1997) indicates that the retrofits have saved 30.3% of pre-retrofit electrical energy consumption on the feeder modeled in this paper. Using the method outlined, we have been able to predict this savings within 0.1% of its measured value, using only pre-construction energy consumption data, and data from one pilot test site. It is well-known that predictions of savings from energy conservation programs are often optimistic, especially in the case of residential retrofits. Fels and keating (1993) cite several examples of programs which achieved as little as 20% of the predicted energy savings. Factors which influence the sometimes large discrepancies between actual and predicted savings include changes in occupancy, take-back effects (in which more efficient system operation leads occupants to choose higher levels of comfort), and changes in base energy use (e.g. through purchase of additional appliances such as washing machines and clothes dryers). An even larger factor, perhaps, is the inaccuracy inherent in the engineering models (BLAST, DOE-2, etc.) commonly used to estimate building energy consumption, if these models are not first calibrated to site-monitored data. For example, prior estimates of base-wide savings from the Fort Polk ESPC were on the order of 40% of pre-retrofit electrical use; our analysis has shown the true savings for the entire project (which includes 16 separate electrical feeders) to be about 32%. It should be noted that the retrofits ca

  8. Developing Renewable Energy Projects Larger Than 10 MWs at Federal Facilities (Book), Large-Scale Renewable Energy Guide, Federal Energy Management Program (FEMP)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H I E LGeothermalEnergy A NewLifeStudy

  9. Integrating the NEPA 216 process with large-scale privatization projects under the US Department of Energy

    SciTech Connect (OSTI)

    Eccleston, C.H.

    1994-05-01T23:59:59.000Z

    The US Department of Energy (DOE) is considering the possibility of replacing the existing Hanford Site 200 Are steam system through a privatization effort. Such an action would be subject to requirements of the National Environmental Policy Act (NEPA) of 1969. Section 216 of the Doe NEPA Implementation Procedures (216 Process) provides a specific mechanism for integrating the DOE procurement process with NEPA compliance requirements.

  10. Evaluation of the Potential Environmental Impacts from Large-Scale Use and Production of Hydrogen in Energy and Transportation Applications

    SciTech Connect (OSTI)

    Wuebbles, D.J.; Dubey, M.K., Edmonds, J.; Layzell, D.; Olsen, S.; Rahn, T.; Rocket, A.; Wang, D.; Jia, W.

    2010-06-01T23:59:59.000Z

    The purpose of this project is to systematically identify and examine possible near and long-term ecological and environmental effects from the production of hydrogen from various energy sources based on the DOE hydrogen production strategy and the use of that hydrogen in transportation applications. This project uses state-of-the-art numerical modeling tools of the environment and energy system emissions in combination with relevant new and prior measurements and other analyses to assess the understanding of the potential ecological and environmental impacts from hydrogen market penetration. H2 technology options and market penetration scenarios will be evaluated using energy-technology-economics models as well as atmospheric trace gas projections based on the IPCC SRES scenarios including the decline in halocarbons due to the Montreal Protocol. Specifically we investigate the impact of hydrogen releases on the oxidative capacity of the atmosphere, the long-term stability of the ozone layer due to changes in hydrogen emissions, the impact of hydrogen emissions and resulting concentrations on climate, the impact on microbial ecosystems involved in hydrogen uptake, and criteria pollutants emitted from distributed and centralized hydrogen production pathways and their impacts on human health, air quality, ecosystems, and structures under different penetration scenarios

  11. Computational Diagnostics based on Large Scale Gene

    E-Print Network [OSTI]

    Spang, Rainer

    Computational Diagnostics based on Large Scale Gene Expression Profiles using MCMC Rainer Spang = Data Loadings Singular values Expression levels of super genes, orthogonal matrix #12;)( genessuperall- #12;Given the Few Profiles With Known Diagnosis: · The uncertainty on the right model is high

  12. Large-Scale Offshore Wind Power in the United States: Assessment of Opportunities and Barriers, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,sand CERNLandLargefor High Offshore

  13. Large-scale anisotropy in stably stratified rotating flows

    SciTech Connect (OSTI)

    Marino, Dr. Raffaele [National Center for Atmospheric Research (NCAR); Mininni, Dr. Pablo D. [Universidad de Buenos Aires, Argentina; Rosenberg, Duane L [ORNL; Pouquet, Dr. Annick [National Center for Atmospheric Research (NCAR)

    2014-01-01T23:59:59.000Z

    We present results from direct numerical simulations of the Boussinesq equations in the presence of rotation and/or stratification, both in the vertical direction. The runs are forced isotropically and randomly at small scales and have spatial resolutions of up to $1024^3$ grid points and Reynolds numbers of $\\approx 1000$. We first show that solutions with negative energy flux and inverse cascades develop in rotating turbulence, whether or not stratification is present. However, the purely stratified case is characterized instead by an early-time, highly anisotropic transfer to large scales with almost zero net isotropic energy flux. This is consistent with previous studies that observed the development of vertically sheared horizontal winds, although only at substantially later times. However, and unlike previous works, when sufficient scale separation is allowed between the forcing scale and the domain size, the total energy displays a perpendicular (horizontal) spectrum with power law behavior compatible with $\\sim k_\\perp^{-5/3}$, including in the absence of rotation. In this latter purely stratified case, such a spectrum is the result of a direct cascade of the energy contained in the large-scale horizontal wind, as is evidenced by a strong positive flux of energy in the parallel direction at all scales including the largest resolved scales.

  14. Overcoming the Barrier to Achieving Large-Scale Production -...

    Office of Environmental Management (EM)

    Overcoming the Barrier to Achieving Large-Scale Production - A Case Study Overcoming the Barrier to Achieving Large-Scale Production - A Case Study This presentation summarizes the...

  15. Overcoming the Barrier to Achieving Large-Scale Production -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Semprius Confidential 1 Overcoming the Barriers to Achieving Large-Scale Production - A Case Study From concept to large-scale production, one manufacturer tells the story and...

  16. IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 10, OCTOBER 2013 1769 Enhancing the Efficiency of Energy-Constrained

    E-Print Network [OSTI]

    Kahng, Andrew B.

    often spend a large fraction of their lifetimes in a low-power mode. However, DVFS designs producedIEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 10, OCTOBER 2013 that allows a hardware design to reduce average power consumption while still enabling the design to meet

  17. Large-Scale Linear Programming Techniques for the Design of ...

    E-Print Network [OSTI]

    2002-02-05T23:59:59.000Z

    Feb 5, 2002 ... Page 1 ... We present large-scale optimization techniques to model the energy function that underlies the folding process of ..... which we will refer to from now on, we get a system. AT y ? b, ... Although we don't want to rule out that a so- ..... What we believe is interesting in this context is that the results from.

  18. Chemical engineers design, control and optimize large-scale chemical,

    E-Print Network [OSTI]

    Rohs, Remo

    Emphasis in Nanotechnology · ChemicalEngineering Emphasis in Petroleum Engineering · ChemicalEngineering38 Chemical engineers design, control and optimize large-scale chemical, physicochemical and electronics fields. Chemical Engineers are employed in areas as diverse as the chemical, materials, energy

  19. Suppression of large-scale perturbations by stiff solid

    E-Print Network [OSTI]

    Vladimír Balek; Matej Škovran

    2015-01-28T23:59:59.000Z

    Evolution of large-scale scalar perturbations in the presence of stiff solid (solid with pressure to energy density ratio > 1/3) is studied. If the solid dominated the dynamics of the universe long enough, the perturbations could end up suppressed by as much as several orders of magnitude. To avoid too steep large-angle power spectrum of CMB, radiation must have prevailed over the solid long enough before recombination.

  20. Suppression of large-scale perturbations by stiff solid

    E-Print Network [OSTI]

    Balek, Vladimír

    2015-01-01T23:59:59.000Z

    Evolution of large-scale scalar perturbations in the presence of stiff solid (solid with pressure to energy density ratio > 1/3) is studied. If the solid dominated the dynamics of the universe long enough, the perturbations could end up suppressed by as much as several orders of magnitude. To avoid too steep large-angle power spectrum of CMB, radiation must have prevailed over the solid long enough before recombination.

  1. Challenges in large scale distributed computing: bioinformatics.

    SciTech Connect (OSTI)

    Disz, T.; Kubal, M.; Olson, R.; Overbeek, R.; Stevens, R.; Mathematics and Computer Science; Univ. of Chicago; The Fellowship for the Interpretation of Genomes (FIG)

    2005-01-01T23:59:59.000Z

    The amount of genomic data available for study is increasing at a rate similar to that of Moore's law. This deluge of data is challenging bioinformaticians to develop newer, faster and better algorithms for analysis and examination of this data. The growing availability of large scale computing grids coupled with high-performance networking is challenging computer scientists to develop better, faster methods of exploiting parallelism in these biological computations and deploying them across computing grids. In this paper, we describe two computations that are required to be run frequently and which require large amounts of computing resource to complete in a reasonable time. The data for these computations are very large and the sequential computational time can exceed thousands of hours. We show the importance and relevance of these computations, the nature of the data and parallelism and we show how we are meeting the challenge of efficiently distributing and managing these computations in the SEED project.

  2. Influence of Western North Pacific Tropical Cyclones on Their Large-Scale Environment

    E-Print Network [OSTI]

    Sobel, Adam

    water vapor, and sea surface tem- perature (SST)] on an index of TC activity [accumulated cyclone energyInfluence of Western North Pacific Tropical Cyclones on Their Large-Scale Environment ADAM H. SOBEL) tropical cyclones (TCs) on their large-scale environment by lag regressing various large-scale climate

  3. Use of dual plane PIV to assess scale-by-scale energy budgets in wall turbulence

    E-Print Network [OSTI]

    Marusic, Ivan

    Use of dual plane PIV to assess scale-by-scale energy budgets in wall turbulence N Saikrishnan1-layer, the buffer region, the logarithmic region and the outer region. In the space of scales, turbulent energy is produced at the large scales and transferred to smaller scales, finally dissipating in the form of heat

  4. 1 National Roadmap Committee for Large-Scale Research Facilities the netherlands' roadmap for large-scale research facilities

    E-Print Network [OSTI]

    Horn, David

    #12;1 National Roadmap Committee for Large-Scale Research Facilities the netherlands' roadmap for large-scale research facilities #12;2 National Roadmap Committee for Large-Scale Research Facilities1 by Roselinde Supheert) #12;3 National Roadmap Committee for Large-Scale Research Facilities The Netherlands

  5. 336 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 4, APRIL 2006 Energy-Efficient Soft Error-Tolerant

    E-Print Network [OSTI]

    Shanbhag, Naresh R.

    for digital signal processing (DSP) systems. The proposed technique, referred to as algorithmic soft error and future systems vulnerable to deep-submicron (DSM) noise [1], [3] and soft errors due to particle hits [4336 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 4, APRIL 2006

  6. The Phoenix series large scale LNG pool fire experiments.

    SciTech Connect (OSTI)

    Simpson, Richard B.; Jensen, Richard Pearson; Demosthenous, Byron; Luketa, Anay Josephine; Ricks, Allen Joseph; Hightower, Marion Michael; Blanchat, Thomas K.; Helmick, Paul H.; Tieszen, Sheldon Robert; Deola, Regina Anne; Mercier, Jeffrey Alan; Suo-Anttila, Jill Marie; Miller, Timothy J.

    2010-12-01T23:59:59.000Z

    The increasing demand for natural gas could increase the number and frequency of Liquefied Natural Gas (LNG) tanker deliveries to ports across the United States. Because of the increasing number of shipments and the number of possible new facilities, concerns about the potential safety of the public and property from an accidental, and even more importantly intentional spills, have increased. While improvements have been made over the past decade in assessing hazards from LNG spills, the existing experimental data is much smaller in size and scale than many postulated large accidental and intentional spills. Since the physics and hazards from a fire change with fire size, there are concerns about the adequacy of current hazard prediction techniques for large LNG spills and fires. To address these concerns, Congress funded the Department of Energy (DOE) in 2008 to conduct a series of laboratory and large-scale LNG pool fire experiments at Sandia National Laboratories (Sandia) in Albuquerque, New Mexico. This report presents the test data and results of both sets of fire experiments. A series of five reduced-scale (gas burner) tests (yielding 27 sets of data) were conducted in 2007 and 2008 at Sandia's Thermal Test Complex (TTC) to assess flame height to fire diameter ratios as a function of nondimensional heat release rates for extrapolation to large-scale LNG fires. The large-scale LNG pool fire experiments were conducted in a 120 m diameter pond specially designed and constructed in Sandia's Area III large-scale test complex. Two fire tests of LNG spills of 21 and 81 m in diameter were conducted in 2009 to improve the understanding of flame height, smoke production, and burn rate and therefore the physics and hazards of large LNG spills and fires.

  7. Panel 1, Towards Sustainable Energy Systems: The Role of Large...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Towards sustainable energy systems - The role of large scale hydrogen storage in Germany May 14th, 2014 | Sacramento Political background for the transition to renewable...

  8. Large-scale Intelligent Transporation Systems simulation

    SciTech Connect (OSTI)

    Ewing, T.; Canfield, T.; Hannebutte, U.; Levine, D.; Tentner, A.

    1995-06-01T23:59:59.000Z

    A prototype computer system has been developed which defines a high-level architecture for a large-scale, comprehensive, scalable simulation of an Intelligent Transportation System (ITS) capable of running on massively parallel computers and distributed (networked) computer systems. The prototype includes the modelling of instrumented ``smart`` vehicles with in-vehicle navigation units capable of optimal route planning and Traffic Management Centers (TMC). The TMC has probe vehicle tracking capabilities (display position and attributes of instrumented vehicles), and can provide 2-way interaction with traffic to provide advisories and link times. Both the in-vehicle navigation module and the TMC feature detailed graphical user interfaces to support human-factors studies. The prototype has been developed on a distributed system of networked UNIX computers but is designed to run on ANL`s IBM SP-X parallel computer system for large scale problems. A novel feature of our design is that vehicles will be represented by autonomus computer processes, each with a behavior model which performs independent route selection and reacts to external traffic events much like real vehicles. With this approach, one will be able to take advantage of emerging massively parallel processor (MPP) systems.

  9. Large Scale Weather Control Using Nuclear Reactors

    E-Print Network [OSTI]

    Singh-Modgil, M

    2002-01-01T23:59:59.000Z

    It is pointed out that controlled release of thermal energy from fission type nuclear reactors can be used to alter weather patterns over significantly large geographical regions. (1) Nuclear heat creates a low pressure region, which can be used to draw moist air from oceans, onto deserts. (2) Creation of low pressure zones over oceans using Nuclear heat can lead to Controlled Cyclone Creation (CCC).(3) Nuclear heat can also be used to melt glaciers and control water flow in rivers.

  10. Large Scale Weather Control Using Nuclear Reactors

    E-Print Network [OSTI]

    Moninder Singh Modgil

    2002-10-02T23:59:59.000Z

    It is pointed out that controlled release of thermal energy from fission type nuclear reactors can be used to alter weather patterns over significantly large geographical regions. (1) Nuclear heat creates a low pressure region, which can be used to draw moist air from oceans, onto deserts. (2) Creation of low pressure zones over oceans using Nuclear heat can lead to Controlled Cyclone Creation (CCC).(3) Nuclear heat can also be used to melt glaciers and control water flow in rivers.

  11. Standards Development and Deployment of a Comprehensive, Integrated, Open-standard Monitoring and Equipment Control Networking Protocol Infrastructure for Effective Facility Energy Management of a Large-scale Industrial Site in Alberta, Canada

    E-Print Network [OSTI]

    Bernstein, R.

    2014-01-01T23:59:59.000Z

    Management of a Large-scale Industrial Site in Alberta, Canada Ron Bernstein ESL-IE-14-05-27 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20-23, 2014 Suncor – Oil Sands Recovery Process ESL-IE-14...

  12. Theoretical Tools for Large Scale Structure

    E-Print Network [OSTI]

    J. R. Bond; L. Kofman; D. Pogosyan; J. Wadsley

    1998-10-06T23:59:59.000Z

    We review the main theoretical aspects of the structure formation paradigm which impinge upon wide angle surveys: the early universe generation of gravitational metric fluctuations from quantum noise in scalar inflaton fields; the well understood and computed linear regime of CMB anisotropy and large scale structure (LSS) generation; the weakly nonlinear regime, where higher order perturbation theory works well, and where the cosmic web picture operates, describing an interconnected LSS of clusters bridged by filaments, with membranes as the intrafilament webbing. Current CMB+LSS data favour the simplest inflation-based $\\Lambda$CDM models, with a primordial spectral index within about 5% of scale invariant and $\\Omega_\\Lambda \\approx 2/3$, similar to that inferred from SNIa observations, and with open CDM models strongly disfavoured. The attack on the nonlinear regime with a variety of N-body and gas codes is described, as are the excursion set and peak-patch semianalytic approaches to object collapse. The ingredients are mixed together in an illustrative gasdynamical simulation of dense supercluster formation.

  13. CALIFORNIA ENERGY Large HVAC Building

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION Large HVAC Building Survey Information Database of Buildings over 100 Energy Systems: Productivity and Building Science Program. This program was funded by the California of Portland Energy Conservation, Inc. Project Management: Cathy Higgins, Program Director for New Buildings

  14. BLM and Forest Service Consider Large-Scale Geothermal Leasing...

    Energy Savers [EERE]

    and Forest Service Consider Large-Scale Geothermal Leasing BLM and Forest Service Consider Large-Scale Geothermal Leasing June 18, 2008 - 4:29pm Addthis In an effort to encourage...

  15. Reducing Data Center Loads for a Large-scale, Low Energy Office Building: NREL's Research Support Facility (Book), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection RadiationRecord-SettingHead of Contractingof the Forward

  16. Generation of large-scale winds in horizontally anisotropic convection

    E-Print Network [OSTI]

    von Hardenberg, J; Provenzale, A; Spiegel, E A

    2015-01-01T23:59:59.000Z

    We simulate three-dimensional, horizontally periodic Rayleigh-B\\'enard convection between free-slip horizontal plates, rotating about a horizontal axis. When both the temperature difference between the plates and the rotation rate are sufficiently large, a strong horizontal wind is generated that is perpendicular to both the rotation vector and the gravity vector. The wind is turbulent, large-scale, and vertically sheared. Horizontal anisotropy, engendered here by rotation, appears necessary for such wind generation. Most of the kinetic energy of the flow resides in the wind, and the vertical turbulent heat flux is much lower on average than when there is no wind.

  17. Large-Scale Anisotropy of EGRET Gamma Ray Sources

    E-Print Network [OSTI]

    Luis Anchordoqui; Thomas McCauley; Thomas Paul; Olaf Reimer; Diego F. Torres

    2005-06-24T23:59:59.000Z

    In the course of its operation, the EGRET experiment detected high-energy gamma ray sources at energies above 100 MeV over the whole sky. In this communication, we search for large-scale anisotropy patterns among the catalogued EGRET sources using an expansion in spherical harmonics, accounting for EGRET's highly non-uniform exposure. We find significant excess in the quadrupole and octopole moments. This is consistent with the hypothesis that, in addition to the galactic plane, a second mid-latitude (5^{\\circ} < |b| < 30^{\\circ}) population, perhaps associated with the Gould belt, contributes to the gamma ray flux above 100 MeV.

  18. Diffuse Gamma-Ray Emission from Large Scale Structures

    E-Print Network [OSTI]

    Dobardzic, Aleksandra

    2012-01-01T23:59:59.000Z

    For more than a decade now the complete origin of the diffuse gamma-ray emission background (EGRB) has been unknown. Major components like unresolved star-forming galaxies (making 10GeV. Moreover, we show that, even though the gamma-ray emission arising from structure formation shocks at galaxy clusters is below previous estimates, these large scale shocks can still give an important, and even dominant at high energies, contribution to the EGRB. Future detections of cluster gamma-ray emission would make our upper limit of the extragalactic gamma-ray emission from structure-formation process, a firm prediction, and give us deeper insight in evolution of these large scale shock.

  19. Potential Climatic Impacts and Reliability of Very Large-Scale Wind Farms

    E-Print Network [OSTI]

    Wang, Chien

    Meeting future world energy needs while addressing climate change requires large-scale deployment of low or zero greenhouse gas (GHG) emission technologies such as wind energy. The widespread availability of wind power has ...

  20. Information Delivery in Large Wireless Networks with Minimum Energy Expense

    E-Print Network [OSTI]

    Wang, Wenye

    transmission paths [8], [9]. By spending the energy resources in a wireless network wisely, the existingInformation Delivery in Large Wireless Networks with Minimum Energy Expense Yi Xu and Wenye Wang in large-scale multihop wireless networks because of the limited energy supplies from batteries. We

  1. Extragalactic jets on subpc and large scales

    E-Print Network [OSTI]

    F. Tavecchio

    2007-08-20T23:59:59.000Z

    Jets can be probed in their innermost regions (d~0.1 pc) through the study of the relativistically-boosted emission of blazars. On the other extreme of spatial scales, the study of structure and dynamics of extragalactic relativistic jets received renewed impulse after the discovery, made by Chandra, of bright X-ray emission from regions at distances larger than hundreds of kpc from the central engine. At both scales it is thus possible to infer some of the basic parameters of the flow (speed, density, magnetic field intensity, power). After a brief review of the available observational evidence, I discuss how the comparison between the physical quantities independently derived at the two scales can be used to shed light on the global dynamics of the jet, from the innermost regions to the hundreds of kpc scale.

  2. DECOMPOSITION OF LARGE-SCALE STOCHASTIC OPTIMAL ...

    E-Print Network [OSTI]

    2009-03-06T23:59:59.000Z

    consider dynamical systems that can be divided into small-scale independent .... realizations of the noise process are identical up to time t, then the same ..... without our approximation, the algorithm would build primal iterates that converge ...

  3. Large scale prediction models and algorithms

    E-Print Network [OSTI]

    Monsch, Matthieu (Matthieu Frederic)

    2013-01-01T23:59:59.000Z

    Over 90% of the data available across the world has been produced over the last two years, and the trend is increasing. It has therefore become paramount to develop algorithms which are able to scale to very high dimensions. ...

  4. Hydranet: network support for scaling of large scale servic es

    E-Print Network [OSTI]

    Chawla, Hamesh

    1998-01-01T23:59:59.000Z

    With the explosive growth of demand for services on the Internet, the networking infrastructure (routers 7 protocols, servers) is under considerable stress. Mechanisms are needed for current and future IP services to scale in a client transparent...

  5. Large Scale Computing Requirements for Basic Energy Sciences (An BES / ASCR / NERSC Workshop) Hilton Washington DC/Rockville Meeting Center, Rockville MD 3D Geophysical Imaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,sand CERNLandLarge

  6. Efficient random coordinate descent algorithms for large-scale ...

    E-Print Network [OSTI]

    2013-05-04T23:59:59.000Z

    (will be inserted by the editor). Efficient random coordinate descent algorithms for large-scale structured nonconvex optimization. Andrei Patrascu · Ion Necoara.

  7. Optimization Online - Large-Scale Linear Programming Techniques ...

    E-Print Network [OSTI]

    Michael Wagner

    2002-02-12T23:59:59.000Z

    Feb 12, 2002 ... Large-Scale Linear Programming Techniques for the Design of Protein Folding Potentials. Michael Wagner (mwagner ***at*** odu.edu)

  8. A Distribution Oblivious Scalable Approach for Large-Scale Scientific...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distribution Oblivious Scalable Approach for Large-Scale Scientific Data Processing June 12, 2013 Problem Statement: Runtimes of scientific data processing (SDP) methods vary...

  9. Advancing Cellulosic Ethanol for Large Scale Sustainable Transportation

    E-Print Network [OSTI]

    Wyman, C

    2007-01-01T23:59:59.000Z

    Advancing Cellulosic Ethanol for Large Scale SustainableHydrogen Batteries Nuclear By Lee Lynd, Dartmouth Ethanol •Ethanol, ethyl alcohol, fermentation ethanol, or just “

  10. ORNL demonstrates first large-scale graphene fabrication | ornl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ron Walli Communications 865.576.0226 ORNL demonstrates first large-scale graphene composite fabrication ORNL's ultrastrong graphene features layers of graphene and polymers and is...

  11. Optimization Online - A fictitious play approach to large-scale ...

    E-Print Network [OSTI]

    Theodore Lambert

    2004-08-01T23:59:59.000Z

    Aug 1, 2004 ... A fictitious play approach to large-scale optimization. Theodore Lambert (tlambert ***at*** tmcc.edu) Marina A. Epelman (mepelman ***at*** ...

  12. Effects of Volcanism, Crustal Thickness, and Large Scale Faulting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Volcanism, Crustal Thickness, and Large Scale Faulting on the Development and Evolution of Geothermal Systems: Collaborative Project in Chile Effects of Volcanism, Crustal...

  13. Solving large scale polynomial convex problems on \\ell_1/nuclear ...

    E-Print Network [OSTI]

    Aharon Ben-Tal

    2012-10-24T23:59:59.000Z

    Oct 24, 2012 ... Solving large scale polynomial convex problems on \\ell_1/nuclear norm balls by randomized first-order algorithms. Aharon Ben-Tal (abental ...

  14. Impacts of Large-Scale Wind Generators Penetration on the Voltage Stability of Power Systems

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    development of wind energy tech- nology and the current world-wide status of grid-connected as well as standImpacts of Large-Scale Wind Generators Penetration on the Voltage Stability of Power Systems M. J systems and their dynamic behaviours to identify critical issues that limit the large-scale integration

  15. Large-Scale Wind Training Program

    SciTech Connect (OSTI)

    Porter, Richard L. [Hudson Valley Community College

    2013-07-01T23:59:59.000Z

    Project objective is to develop a credit-bearing wind technician program and a non-credit safety training program, train faculty, and purchase/install large wind training equipment.

  16. Large-Scale Decentralized Unit Commitment

    E-Print Network [OSTI]

    2015-04-10T23:59:59.000Z

    Preprint submitted to Int. J. of Electrical Power & Energy Systems. April 10, 2015. Page 2. A compelling alternative is to decentralize, rather than centralize, these.

  17. Large-Scale in the United

    E-Print Network [OSTI]

    Sustainable Power Consulting Bureau of Ocean Energy Management, Regulation and Enforcement University of Delaware University of Massachusetts Rutgers University Cape Wind Associates Union of Concerned Scientists

  18. Climate impacts of a large-scale biofuels expansion*

    E-Print Network [OSTI]

    Climate impacts of a large-scale biofuels expansion* Willow Hallgren, C. Adam Schlosser, Erwan impacts of a large-scale biofuels expansion Willow Hallgren,1 C. Adam Schlosser,1 Erwan Monier,1 David March 2013. [1] A global biofuels program will potentially lead to intense pressures on land supply

  19. Measuring Similarity in Large-scale Folksonomies Giovanni Quattrone1

    E-Print Network [OSTI]

    Ferrara, Emilio

    Measuring Similarity in Large-scale Folksonomies Giovanni Quattrone1 , Emilio Ferrara2 , Pasquale by power law distributions of tags, over which commonly used similarity metrics, in- cluding the Jaccard to capture similarity in large-scale folksonomies, that is based on a mutual reinforcement principle: that is

  20. Attack Containment Framework for Large-Scale Critical Infrastructures

    E-Print Network [OSTI]

    Nahrstedt, Klara

    Attack Containment Framework for Large-Scale Critical Infrastructures Hoang Nguyen Department-- We present an attack containment framework against value-changing attacks in large-scale critical structure, called attack container, which captures the trust behavior of a group of nodes and assists

  1. POWER SYSTEMS STABILITY WITH LARGE-SCALE WIND POWER PENETRATION

    E-Print Network [OSTI]

    Bak-Jensen, Birgitte

    of offshore wind farms, wind power fluctuations may introduce several challenges to reliable power system behaviour due to natural wind fluctuations. The rapid power fluctuations from the large scale wind farms Generation Control (AGC) system which includes large- scale wind farms for long-term stability simulation

  2. Scalable Cache Memory Design for Large-Scale SMT Architectures

    E-Print Network [OSTI]

    Mudawa, Muhamed F.

    Scalable Cache Memory Design for Large-Scale SMT Architectures Muhamed F. Mudawar Computer Science in existing SMT and superscalar processors is optimized for latency, but not for bandwidth. The size of the L1 is not suitable for future large-scale SMT processors, which will demand high bandwidth instruction and data

  3. Modeling emergent large-scale structures of barchan dune fields

    E-Print Network [OSTI]

    Claudin, Philippe

    that cannot be readily explained by examining the dynamics at the scale of single dunes, or by appealingModeling emergent large-scale structures of barchan dune fields S. Worman , A.B. Murray , R for a range of field-scale phenomena including isolated patches of dunes and heterogeneous arrangements

  4. Bridging the Gap Between Commissioning Measures and Large Scale Retrofits in Existing Buildings

    E-Print Network [OSTI]

    Bynum, J.; Jones, A.; Claridge, D.E.

    2011-01-01T23:59:59.000Z

    Most often commissioning of existing buildings seeks to reduce a building's energy consumption by implementation of operational changes via the existing equipment. In contrast, large scale capital retrofits seek to make major changes...

  5. Bridging the Gap Between Commissioning Measures and Large Scale Retrofits in Existing Buildings

    E-Print Network [OSTI]

    Bynum, J.; Jones, A.; Claridge, D. E.

    Most often commissioning of existing buildings seeks to reduce a building’s energy consumption by implementation of operational changes via the existing equipment. In contrast, large scale capital retrofits seek to make major changes to the systems...

  6. Large-scale magnetic fields in the inflationary universe

    E-Print Network [OSTI]

    Kazuharu Bamba; Misao Sasaki

    2006-11-22T23:59:59.000Z

    The generation of large-scale magnetic fields is studied in inflationary cosmology. We consider the violation of the conformal invariance of the Maxwell field by dilatonic as well as non-minimal gravitational couplings. We derive a general formula for the spectrum of large-scale magnetic fields for a general form of the coupling term and the formula for the spectral index. The result tells us clearly the (necessary) condition for the generation of magnetic fields with sufficiently large amplitude.

  7. Goethite Bench-scale and Large-scale Preparation Tests

    SciTech Connect (OSTI)

    Josephson, Gary B.; Westsik, Joseph H.

    2011-10-23T23:59:59.000Z

    The Hanford Waste Treatment and Immobilization Plant (WTP) is the keystone for cleanup of high-level radioactive waste from our nation's nuclear defense program. The WTP will process high-level waste from the Hanford tanks and produce immobilized high-level waste glass for disposal at a national repository, low activity waste (LAW) glass, and liquid effluent from the vitrification off-gas scrubbers. The liquid effluent will be stabilized into a secondary waste form (e.g. grout-like material) and disposed on the Hanford site in the Integrated Disposal Facility (IDF) along with the low-activity waste glass. The major long-term environmental impact at Hanford results from technetium that volatilizes from the WTP melters and finally resides in the secondary waste. Laboratory studies have indicated that pertechnetate ({sup 99}TcO{sub 4}{sup -}) can be reduced and captured into a solid solution of {alpha}-FeOOH, goethite (Um 2010). Goethite is a stable mineral and can significantly retard the release of technetium to the environment from the IDF. The laboratory studies were conducted using reaction times of many days, which is typical of environmental subsurface reactions that were the genesis of this new process. This study was the first step in considering adaptation of the slow laboratory steps to a larger-scale and faster process that could be conducted either within the WTP or within the effluent treatment facility (ETF). Two levels of scale-up tests were conducted (25x and 400x). The largest scale-up produced slurries of Fe-rich precipitates that contained rhenium as a nonradioactive surrogate for {sup 99}Tc. The slurries were used in melter tests at Vitreous State Laboratory (VSL) to determine whether captured rhenium was less volatile in the vitrification process than rhenium in an unmodified feed. A critical step in the technetium immobilization process is to chemically reduce Tc(VII) in the pertechnetate (TcO{sub 4}{sup -}) to Tc(Iv)by reaction with the ferrous ion, Fe{sup 2+}-Fe{sup 2+} is oxidized to Fe{sup 3+} - in the presence of goethite seed particles. Rhenium does not mimic that process; it is not a strong enough reducing agent to duplicate the TcO{sub 4}{sup -}/Fe{sup 2+} redox reactions. Laboratory tests conducted in parallel with these scaled tests identified modifications to the liquid chemistry necessary to reduce ReO{sub 4}{sup -} and capture rhenium in the solids at levels similar to those achieved by Um (2010) for inclusion of Tc into goethite. By implementing these changes, Re was incorporated into Fe-rich solids for testing at VSL. The changes also changed the phase of iron that was in the slurry product: rather than forming goethite ({alpha}-FeOOH), the process produced magnetite (Fe{sub 3}O{sub 4}). Magnetite was considered by Pacific Northwest National Laboratory (PNNL) and VSL to probably be a better product to improve Re retention in the melter because it decomposes at a higher temperature than goethite (1538 C vs. 136 C). The feasibility tests at VSL were conducted using Re-rich magnetite. The tests did not indicate an improved retention of Re in the glass during vitrification, but they did indicate an improved melting rate (+60%), which could have significant impact on HLW processing. It is still to be shown whether the Re is a solid solution in the magnetite as {sup 99}Tc was determined to be in goethite.

  8. LargeScale FPGAbased Convolutional Networks Clement Farabet 1

    E-Print Network [OSTI]

    LeCun, Yann

    Large­Scale FPGA­based Convolutional Networks Clâ??ement Farabet 1 , Yann LeCun 1 , Koray Kavukcuoglu, Yale University, New Haven, USA Chapter in Machine Learning on Very Large Data Sets, edited by Ron Bekkerman, Mikhail Bilenko, and John Langford, Cambridge University Press, 2011. May 2, 2011 1 #12; Large

  9. Large-Scale Spray Releases: Additional Aerosol Test Results

    SciTech Connect (OSTI)

    Daniel, Richard C.; Gauglitz, Phillip A.; Burns, Carolyn A.; Fountain, Matthew S.; Shimskey, Rick W.; Billing, Justin M.; Bontha, Jagannadha R.; Kurath, Dean E.; Jenks, Jeromy WJ; MacFarlan, Paul J.; Mahoney, Lenna A.

    2013-08-01T23:59:59.000Z

    One of the events postulated in the hazard analysis for the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak event involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids that behave as a Newtonian fluid. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and in processing facilities across the DOE complex. To expand the data set upon which the WTP accident and safety analyses were based, an aerosol spray leak testing program was conducted by Pacific Northwest National Laboratory (PNNL). PNNL’s test program addressed two key technical areas to improve the WTP methodology (Larson and Allen 2010). The first technical area was to quantify the role of slurry particles in small breaches where slurry particles may plug the hole and prevent high-pressure sprays. The results from an effort to address this first technical area can be found in Mahoney et al. (2012a). The second technical area was to determine aerosol droplet size distribution and total droplet volume from prototypic breaches and fluids, including sprays from larger breaches and sprays of slurries for which literature data are mostly absent. To address the second technical area, the testing program collected aerosol generation data at two scales, commonly referred to as small-scale and large-scale testing. The small-scale testing and resultant data are described in Mahoney et al. (2012b), and the large-scale testing and resultant data are presented in Schonewill et al. (2012). In tests at both scales, simulants were used to mimic the relevant physical properties projected for actual WTP process streams.

  10. SIMULATING LARGE-SCALE STRUCTURE FORMATION FOR BSI POWER SPECTRA

    E-Print Network [OSTI]

    V. Mueller

    1995-05-30T23:59:59.000Z

    A double inflationary model provides perturbation spectra with enhanced power at large scales (Broken Scale Invariant perturbations -- BSI), leading to a promising scenario for the formation of cosmic structures. We describe a series of high-resolution PM simulations with a model for the thermodynamic evolution of baryons in which we are capable of identifying 'galaxy' halos with a reasonable mass spectrum and following the genesis of large and super-large scale structures. The power spectra and correlation functions of 'galaxies' are compared with reconstructed power spectra of the CfA catalogue and the correlation functions of the Las Campanas Deep Redshift Survey.

  11. Stabilization of Large Scale Structure by Adhesive Gravitational Clustering

    E-Print Network [OSTI]

    Thomas Buchert

    1999-08-13T23:59:59.000Z

    The interplay between gravitational and dispersive forces in a multi-streamed medium leads to an effect which is exposed in the present note as the genuine driving force of stabilization of large-scale structure. The conception of `adhesive gravitational clustering' is advanced to interlock the fairly well-understood epoch of formation of large-scale structure and the onset of virialization into objects that are dynamically in equilibrium with their large-scale structure environment. The classical `adhesion model' is opposed to a class of more general models traced from the physical origin of adhesion in kinetic theory.

  12. Superconducting materials for large scale applications

    SciTech Connect (OSTI)

    Scanlan, Ronald M.; Malozemoff, Alexis P.; Larbalestier, David C.

    2004-05-06T23:59:59.000Z

    Significant improvements in the properties ofsuperconducting materials have occurred recently. These improvements arebeing incorporated into the latest generation of wires, cables, and tapesthat are being used in a broad range of prototype devices. These devicesinclude new, high field accelerator and NMR magnets, magnets for fusionpower experiments, motors, generators, and power transmission lines.These prototype magnets are joining a wide array of existing applicationsthat utilize the unique capabilities of superconducting magnets:accelerators such as the Large Hadron Collider, fusion experiments suchas ITER, 930 MHz NMR, and 4 Tesla MRI. In addition, promising newmaterials such as MgB2 have been discovered and are being studied inorder to assess their potential for new applications. In this paper, wewill review the key developments that are leading to these newapplications for superconducting materials. In some cases, the key factoris improved understanding or development of materials with significantlyimproved properties. An example of the former is the development of Nb3Snfor use in high field magnets for accelerators. In other cases, thedevelopment is being driven by the application. The aggressive effort todevelop HTS tapes is being driven primarily by the need for materialsthat can operate at temperatures of 50 K and higher. The implications ofthese two drivers for further developments will be discussed. Finally, wewill discuss the areas where further improvements are needed in order fornew applications to be realized.

  13. Superconductivity for Large Scale Wind Turbines

    SciTech Connect (OSTI)

    R. Fair; W. Stautner; M. Douglass; R. Rajput-Ghoshal; M. Moscinski; P. Riley; D. Wagner; J. Kim; S. Hou; F. Lopez; K. Haran; J. Bray; T. Laskaris; J. Rochford; R. Duckworth

    2012-10-12T23:59:59.000Z

    A conceptual design has been completed for a 10MW superconducting direct drive wind turbine generator employing low temperature superconductors for the field winding. Key technology building blocks from the GE Wind and GE Healthcare businesses have been transferred across to the design of this concept machine. Wherever possible, conventional technology and production techniques have been used in order to support the case for commercialization of such a machine. Appendices A and B provide further details of the layout of the machine and the complete specification table for the concept design. Phase 1 of the program has allowed us to understand the trade-offs between the various sub-systems of such a generator and its integration with a wind turbine. A Failure Modes and Effects Analysis (FMEA) and a Technology Readiness Level (TRL) analysis have been completed resulting in the identification of high risk components within the design. The design has been analyzed from a commercial and economic point of view and Cost of Energy (COE) calculations have been carried out with the potential to reduce COE by up to 18% when compared with a permanent magnet direct drive 5MW baseline machine, resulting in a potential COE of 0.075 $/kWh. Finally, a top-level commercialization plan has been proposed to enable this technology to be transitioned to full volume production. The main body of this report will present the design processes employed and the main findings and conclusions.

  14. Data mining techniques for large-scale gene expression analysis

    E-Print Network [OSTI]

    Palmer, Nathan Patrick

    2011-01-01T23:59:59.000Z

    Modern computational biology is awash in large-scale data mining problems. Several high-throughput technologies have been developed that enable us, with relative ease and little expense, to evaluate the coordinated expression ...

  15. Exploration of large scale manufacturing of polydimethylsiloxane (PDMS) microfluidic devices

    E-Print Network [OSTI]

    Hum, Philip W. (Philip Wing-Jung)

    2006-01-01T23:59:59.000Z

    Discussion of the current manufacturing process of polydimethylsiloxane (PDMS) parts and the emergence of PDMS use in biomedical microfluidic devices addresses the need to develop large scale manufacturing processes for ...

  16. How Three Retail Buyers Source Large-Scale Solar Electricity

    Office of Energy Efficiency and Renewable Energy (EERE)

    Large-scale, non-utility solar power purchase agreements (PPAs) are still a rarity despite the growing popularity of PPAs across the country. In this webinar, participants will learn more about how...

  17. Parallel Stochastic Gradient Algorithms for Large-Scale Matrix ...

    E-Print Network [OSTI]

    2013-03-21T23:59:59.000Z

    parallel implementation that admits a speed-up nearly proportional to the ... On large-scale matrix completion tasks, Jellyfish is orders of magnitude more ...... get a consistent build of NNLS with mex optimizations at the time of this submission.

  18. Interference management techniques in large-scale wireless networks 

    E-Print Network [OSTI]

    Luo, Yi

    2015-06-29T23:59:59.000Z

    In this thesis, advanced interference management techniques are designed and evaluated for large-scale wireless networks with realistic assumptions, such as signal propagation loss, random node distribution and ...

  19. Large-scale simulator for global data infrastructure optimization

    E-Print Network [OSTI]

    Herrero-López, Sergio

    2012-01-01T23:59:59.000Z

    Companies depend on information systems to control their operations. During the last decade, Information Technology (IT) infrastructures have grown in scale and complexity. Any large company runs many enterprise applications ...

  20. Channel Meander Migration in Large-Scale Physical Model Study 

    E-Print Network [OSTI]

    Yeh, Po Hung

    2010-10-12T23:59:59.000Z

    A set of large-scale laboratory experiments were conducted to study channel meander migration. Factors affecting the migration of banklines, including the ratio of curvature to channel width, bend angle, and the Froude ...

  1. Chemical engineers design, control and optimize large-scale chemical,

    E-Print Network [OSTI]

    Rohs, Remo

    , Biochemical, Environmental, Petroleum Engineering and Nantoechnology. CHEMICAL&MATERIALSSCIENCE CHE OVERVIEW of Science 131 units · Chemical Engineering (Petroleum) Bachelor of Science 136 units · Chemical Engineering38 Chemical engineers design, control and optimize large-scale chemical, physicochemical

  2. Infrastructure for large-scale tests in marine autonomy

    E-Print Network [OSTI]

    Hummel, Robert A. (Robert Andrew)

    2012-01-01T23:59:59.000Z

    This thesis focuses on the development of infrastructure for research with large-scale autonomous marine vehicle fleets and the design of sampling trajectories for compressive sensing (CS). The newly developed infrastructure ...

  3. Platforms and real options in large-scale engineering systems

    E-Print Network [OSTI]

    Kalligeros, Konstantinos C., 1976-

    2006-01-01T23:59:59.000Z

    This thesis introduces a framework and two methodologies that enable engineering management teams to assess the value of real options in programs of large-scale, partially standardized systems implemented a few times over ...

  4. @scale: Insights from a Large, Long-Lived Appliance Stephen Dawson-Haggerty

    E-Print Network [OSTI]

    Culler, David E.

    Design, Measurement, Performance Keywords Energy, Audit, Building, Power, Wireless, Sensor Network 1@scale: Insights from a Large, Long-Lived Appliance Energy WSN Stephen Dawson-Haggerty , Steven Lanzisera , Jay Taneja , Richard Brown , and David Culler Computer Science Division Environmental Energy

  5. Ferroelectric opening switches for large-scale pulsed power drivers.

    SciTech Connect (OSTI)

    Brennecka, Geoffrey L.; Rudys, Joseph Matthew; Reed, Kim Warren; Pena, Gary Edward; Tuttle, Bruce Andrew; Glover, Steven Frank

    2009-11-01T23:59:59.000Z

    Fast electrical energy storage or Voltage-Driven Technology (VDT) has dominated fast, high-voltage pulsed power systems for the past six decades. Fast magnetic energy storage or Current-Driven Technology (CDT) is characterized by 10,000 X higher energy density than VDT and has a great number of other substantial advantages, but it has all but been neglected for all of these decades. The uniform explanation for neglect of CDT technology is invariably that the industry has never been able to make an effective opening switch, which is essential for the use of CDT. Most approaches to opening switches have involved plasma of one sort or another. On a large scale, gaseous plasmas have been used as a conductor to bridge the switch electrodes that provides an opening function when the current wave front propagates through to the output end of the plasma and fully magnetizes the plasma - this is called a Plasma Opening Switch (POS). Opening can be triggered in a POS using a magnetic field to push the plasma out of the A-K gap - this is called a Magnetically Controlled Plasma Opening Switch (MCPOS). On a small scale, depletion of electron plasmas in semiconductor devices is used to affect opening switch behavior, but these devices are relatively low voltage and low current compared to the hundreds of kilo-volts and tens of kilo-amperes of interest to pulsed power. This work is an investigation into an entirely new approach to opening switch technology that utilizes new materials in new ways. The new materials are Ferroelectrics and using them as an opening switch is a stark contrast to their traditional applications in optics and transducer applications. Emphasis is on use of high performance ferroelectrics with the objective of developing an opening switch that would be suitable for large scale pulsed power applications. Over the course of exploring this new ground, we have discovered new behaviors and properties of these materials that were here to fore unknown. Some of these unexpected discoveries have lead to new research directions to address challenges.

  6. Streamflow forecasting for large-scale hydrologic systems

    E-Print Network [OSTI]

    Awwad, Haitham Munir

    1991-01-01T23:59:59.000Z

    STREAMFLOW FORECASTING FOR LARGE-SCALE HYDROLOGIC SYSTEMS A Thesis by HAITHAM MUNIR AWWAD Submitted to the Office of Graduate Studies of Texas AkM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May... 1991 Major Subject: Civil Engineering STREAMFLOW FORECASTING FOR LARGE-SCALE HYDROLOGIC SYSTEMS A Thesis by HAITHAM MUNIR AWWAD Approved as to style and content by: uan B. Valdes (Chair of Committee) alph A. Wurbs (Member) Marshall J. Mc...

  7. 100 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION SYSTEMS, VOL. XX, NO. Y, MONTH 2004 A Framework for Energy and Transient Power

    E-Print Network [OSTI]

    Mohanty, Saraju P.

    A Framework for Energy and Transient Power Reduction during Behavioral Synthesis Saraju P. Mohanty, Student applications, the mini- mization of energy, average power, peak power, and peak power differential are equally reduction of the energy and transient power during behavioral synthesis. A new metric called "Cycle Power

  8. IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATTION (VLSI) SYSTEMS, VOL. 5, NO. 4, DECEMBER 1997 1 Energy Minimization Using Multiple Supply

    E-Print Network [OSTI]

    Pedram, Massoud

    dependencies, and the energy cost of level shifters. Experimental results show that using three supply voltage energy dissipation and higher rout- ing cost. The remaining issues (that is, level shifter cost and lack levels on a number of standard benchmarks, an average energy saving of 40.19% (with a computation time

  9. Scaled Solar | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:RoscommonSBYSaltonSprings,Sardinia,SawasdeeSayreville, NewScaled

  10. Large Scale Spatial Augmented Reality for Design and Prototyping

    E-Print Network [OSTI]

    Thomas, Bruce

    Chapter 10 Large Scale Spatial Augmented Reality for Design and Prototyping Michael R. Marner, Ross Augmented Reality allows the appearance of physical objects to be transformed using projected light commercial and personal use. This chapter explores how large Spatial Augmented Reality systems can be applied

  11. Large scale properties in turbulent spherically symmetric accretion

    E-Print Network [OSTI]

    Arnab K. Ray; J. K. Bhattacharjee

    2005-10-05T23:59:59.000Z

    The role of turbulence in a spherically symmetric accreting system has been studied on very large spatial scales of the system. This is also a highly subsonic flow region and here the accreting fluid has been treated as nearly incompressible. It has been shown here that the coupling of the mean flow and the turbulent fluctuations, gives rise to a scaling relation for an effective "turbulent viscosity". This in turn leads to a dynamic scaling for sound propagation in the accretion process. As a consequence of this scaling, the sonic horizon of the transonic inflow solution is shifted inwards, in comparison with the inviscid flow.

  12. Prototype Vector Machine for Large Scale Semi-Supervised Learning

    SciTech Connect (OSTI)

    Zhang, Kai; Kwok, James T.; Parvin, Bahram

    2009-04-29T23:59:59.000Z

    Practicaldataminingrarelyfalls exactlyinto the supervisedlearning scenario. Rather, the growing amount of unlabeled data poses a big challenge to large-scale semi-supervised learning (SSL). We note that the computationalintensivenessofgraph-based SSLarises largely from the manifold or graph regularization, which in turn lead to large models that are dificult to handle. To alleviate this, we proposed the prototype vector machine (PVM), a highlyscalable,graph-based algorithm for large-scale SSL. Our key innovation is the use of"prototypes vectors" for effcient approximation on both the graph-based regularizer and model representation. The choice of prototypes are grounded upon two important criteria: they not only perform effective low-rank approximation of the kernel matrix, but also span a model suffering the minimum information loss compared with the complete model. We demonstrate encouraging performance and appealing scaling properties of the PVM on a number of machine learning benchmark data sets.

  13. Toward Improved Support for Loosely Coupled Large Scale Simulation Workflows

    SciTech Connect (OSTI)

    Boehm, Swen [ORNL] [ORNL; Elwasif, Wael R [ORNL] [ORNL; Naughton, III, Thomas J [ORNL; Vallee, Geoffroy R [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    High-performance computing (HPC) workloads are increasingly leveraging loosely coupled large scale simula- tions. Unfortunately, most large-scale HPC platforms, including Cray/ALPS environments, are designed for the execution of long-running jobs based on coarse-grained launch capabilities (e.g., one MPI rank per core on all allocated compute nodes). This assumption limits capability-class workload campaigns that require large numbers of discrete or loosely coupled simulations, and where time-to-solution is an untenable pacing issue. This paper describes the challenges related to the support of fine-grained launch capabilities that are necessary for the execution of loosely coupled large scale simulations on Cray/ALPS platforms. More precisely, we present the details of an enhanced runtime system to support this use case, and report on initial results from early testing on systems at Oak Ridge National Laboratory.

  14. Small-Scale Energy Loan Program

    Broader source: Energy.gov [DOE]

    The Oregon Small-Scale Energy Loan Program (SELP) - created in 1981 after voters approved a constitutional amendment authorizing the sale of bonds to finance small-scale, local energy projects - is...

  15. Large-Scale Data Challenges in Future Power Grids

    SciTech Connect (OSTI)

    Yin, Jian; Sharma, Poorva; Gorton, Ian; Akyol, Bora A.

    2013-03-25T23:59:59.000Z

    This paper describes technical challenges in supporting large-scale real-time data analysis for future power grid systems and discusses various design options to address these challenges. Even though the existing U.S. power grid has served the nation remarkably well over the last 120 years, big changes are in the horizon. The widespread deployment of renewable generation, smart grid controls, energy storage, plug-in hybrids, and new conducting materials will require fundamental changes in the operational concepts and principal components. The whole system becomes highly dynamic and needs constant adjustments based on real time data. Even though millions of sensors such as phase measurement units (PMUs) and smart meters are being widely deployed, a data layer that can support this amount of data in real time is needed. Unlike the data fabric in cloud services, the data layer for smart grids must address some unique challenges. This layer must be scalable to support millions of sensors and a large number of diverse applications and still provide real time guarantees. Moreover, the system needs to be highly reliable and highly secure because the power grid is a critical piece of infrastructure. No existing systems can satisfy all the requirements at the same time. We examine various design options. In particular, we explore the special characteristics of power grid data to meet both scalability and quality of service requirements. Our initial prototype can improve performance by orders of magnitude over existing general-purpose systems. The prototype was demonstrated with several use cases from PNNL’s FPGI and was shown to be able to integrate huge amount of data from a large number of sensors and a diverse set of applications.

  16. Large-scale simulations of complex physical systems

    SciTech Connect (OSTI)

    Belic, A. [Scientific Computing Laboratory, Institute of Physics, Pregrevica 118, 11080 Belgrade (Serbia and Montenegro)

    2007-04-23T23:59:59.000Z

    Scientific computing has become a tool as vital as experimentation and theory for dealing with scientific challenges of the twenty-first century. Large scale simulations and modelling serve as heuristic tools in a broad problem-solving process. High-performance computing facilities make possible the first step in this process - a view of new and previously inaccessible domains in science and the building up of intuition regarding the new phenomenology. The final goal of this process is to translate this newly found intuition into better algorithms and new analytical results.In this presentation we give an outline of the research themes pursued at the Scientific Computing Laboratory of the Institute of Physics in Belgrade regarding large-scale simulations of complex classical and quantum physical systems, and present recent results obtained in the large-scale simulations of granular materials and path integrals.

  17. CHANGES OF SYSTEM OPERATION COSTS DUE TO LARGE-SCALE WIND INTEGRATION

    E-Print Network [OSTI]

    Model Institute of Energy Economics and the Rational Use of EnergyIER Changes of System Operation CostsCHANGES OF SYSTEM OPERATION COSTS DUE TO LARGE-SCALE WIND INTEGRATION Derk Jan SWIDER1 , Rüdiger-Essen, Germany 3 Risoe International Laboratory, Denmark Business and Policy Track: Integrating wind

  18. Fluid computation of the performanceenergy trade-off in large scale Markov models

    E-Print Network [OSTI]

    Imperial College, London

    Fluid computation of the performance­energy trade-off in large scale Markov models Anton Stefanek energy consumption while maintaining multiple service level agreements. 2. VIRTUALISED EXECUTION MODEL optimisation. We show how the fluid analysis naturally leads to a constrained global optimisation prob- lem

  19. Crude closure dynamics through large scale statistical theories Marcus J. Grote and Andrew J. Majda

    E-Print Network [OSTI]

    Majda, Andrew J.

    Crude closure dynamics through large scale statistical theories Marcus J. Grote and Andrew J. Majda 10012-1185 Received 22 January 1997; accepted 9 July 1997 Crude closure algorithms based on equilibrium on equilibrium energy-enstrophy statistical theory, or two parameters, the energy and circulation, for crude

  20. No Large Scale Curvature Perturbations during Waterfall of Hybrid Inflation

    E-Print Network [OSTI]

    Ali Akbar Abolhasani; Hassan Firouzjahi

    2011-01-18T23:59:59.000Z

    In this paper the possibility of generating large scale curvature perturbations induced from the entropic perturbations during the waterfall phase transition of standard hybrid inflation model is studied. We show that whether or not appreciable amounts of large scale curvature perturbations are produced during the waterfall phase transition depend crucially on the competition between the classical and the quantum mechanical back-reactions to terminate inflation. If one considers only the classical evolution of the system we show that the highly blue-tilted entropy perturbations induce highly blue-tilted large scale curvature perturbations during the waterfall phase transition which dominate over the original adiabatic curvature perturbations. However, we show that the quantum back-reactions of the waterfall field inhomogeneities produced during the phase transition dominate completely over the classical back-reactions. The cumulative quantum back-reactions of very small scales tachyonic modes terminate inflation very efficiently and shut off the curvature perturbations evolution during the waterfall phase transition. This indicates that the standard hybrid inflation model is safe under large scale curvature perturbations during the waterfall phase transition.

  1. Scaling self-organizing maps to model large cortical networks

    E-Print Network [OSTI]

    2004-01-01T23:59:59.000Z

    Self-organizing computational models with specific intracortical connections can explain many functional features of visual cortex, such as topographic orientation and ocular dominance maps. However, due to their computational requirements, it is difficult to use such detailed models to study large-scale phenomena like object segmentation and binding, object recognition, tilt illusions, optic flow, and fovea periphery interaction. This paper introduces two techniques that make large simulations practical. First, a set of general linear scaling equations for the RF-LISSOM self-organizing model is derived and shown to result in quantitatively equivalent maps over a wide range of simulation sizes. This capability makes it possible to debug small simulations and then scale them up to larger simulations only when needed. The scaling equations also facilitate the comparison of biological maps and parameters between individuals and species with different brain region sizes. Second, the equations are combined into a new growing map method called GLISSOM, which dramatically reduces the memory and computational requirements of large self-organizing networks. With GLISSOM it should be possible to simulate all of human V1 at the single-column level using existing supercomputers, making detailed computational study of large-scale phenomena possible.

  2. Large-scale tidal fields on primordial density perturbations ?

    E-Print Network [OSTI]

    Alejandro Gonzalez

    1997-02-17T23:59:59.000Z

    We calculate the strength of the tidal field produced by the large-scale density field acting on primordial density perturbations in power law models. By analysing changes in the orientation of the deformation tensor, resulted from smoothing the density field on different mass scales, we show that the large-scale tidal field can strongly affect the morphology and orientation of density peaks. The measure of the strength of the tidal field is performed as a function of the distance to the peak and of the spectral index. We detected evidence that two populations of perturbations seems to coexist; one, with a misalignment between the main axes of their inertia and deformation tensors. This would lead to the angular momentum acquisition and morphological changes. For the second population, the perturbations are found nearly aligned in the direction of the tidal field, which would imprint them low angular momentum and which would allow an alignment of structures as those reported between clusters of galaxies in filaments, and between galaxies in clusters. Evidence is presented that the correlation between the orientation of perturbations and the large-scale density field could be a common property of Gaussian density fields with spectral indexes $n < 0$. We argue that alignment of structures can be used to probe the flatness of the spectrum on large scales but it cannot determine the exact value of the spectral index.

  3. The Role of the state in large-scale hydropower development perspectives from Chile, Ecuador, and Perú

    E-Print Network [OSTI]

    Zambrano-Barragán, Patricio Xavier

    2012-01-01T23:59:59.000Z

    In recent years, governments in South America have turned to large-scale hydropower as a cost-effective way to improve livelihoods while addressing the energy 'trilemma': ensuring that future energy technologies provide ...

  4. Large-Scale Algal Cultivation, Harvesting and Downstream Processing Workshop

    Broader source: Energy.gov [DOE]

    ATP3 (Algae Testbed Public-Private Partnership) is hosting the Large-Scale Algal Cultivation, Harvesting and Downstream Processing Workshop on November 2–6, 2015, at the Arizona Center for Algae Technology and Innovation in Mesa, Arizona. Topics will include practical applications of growing and managing microalgal cultures at production scale (such as methods for handling cultures, screening strains for desirable characteristics, identifying and mitigating contaminants, scaling up cultures for outdoor growth, harvesting and processing technologies, and the analysis of lipids, proteins, and carbohydrates). Related training will include hands-on laboratory and field opportunities.

  5. Power Challenges of Large Scale Research Infrastructures: the Square Kilometer Array and Solar Energy Integration; Towards a zero-carbon footprint next generation telescope

    E-Print Network [OSTI]

    Barbosa, Domingos; Ruiz, Valeriano; Silva, Manuel; Verdes-Montenegro, Lourdes; Santander-Vela, Juande; Maia, Dalmiro; Antón, Sonia; van Ardenne, Arnold; Vetter, Matthias; Kramer, Michael; Keller, Reinhard; Pereira, Nuno; Silva, Vitor

    2012-01-01T23:59:59.000Z

    The Square Kilometer Array (SKA) will be the largest Global science project of the next two decades. It will encompass a sensor network dedicated to radioastronomy, covering two continents. It will be constructed in remote areas of South Africa and Australia, spreading over 3000Km, in high solar irradiance latitudes. Solar Power supply is therefore an option to power supply the SKA and contribute to a zero carbon footprint next generation telescope. Here we outline the major characteristics of the SKA and some innovation approaches on thermal solar energy Integration with SKA prototypes.

  6. PROPERTIES IMPORTANT TO MIXING FOR WTP LARGE SCALE INTEGRATED TESTING

    SciTech Connect (OSTI)

    Koopman, D.; Martino, C.; Poirier, M.

    2012-04-26T23:59:59.000Z

    Large Scale Integrated Testing (LSIT) is being planned by Bechtel National, Inc. to address uncertainties in the full scale mixing performance of the Hanford Waste Treatment and Immobilization Plant (WTP). Testing will use simulated waste rather than actual Hanford waste. Therefore, the use of suitable simulants is critical to achieving the goals of the test program. External review boards have raised questions regarding the overall representativeness of simulants used in previous mixing tests. Accordingly, WTP requested the Savannah River National Laboratory (SRNL) to assist with development of simulants for use in LSIT. Among the first tasks assigned to SRNL was to develop a list of waste properties that matter to pulse-jet mixer (PJM) mixing of WTP tanks. This report satisfies Commitment 5.2.3.1 of the Department of Energy Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 2010-2: physical properties important to mixing and scaling. In support of waste simulant development, the following two objectives are the focus of this report: (1) Assess physical and chemical properties important to the testing and development of mixing scaling relationships; (2) Identify the governing properties and associated ranges for LSIT to achieve the Newtonian and non-Newtonian test objectives. This includes the properties to support testing of sampling and heel management systems. The test objectives for LSIT relate to transfer and pump out of solid particles, prototypic integrated operations, sparger operation, PJM controllability, vessel level/density measurement accuracy, sampling, heel management, PJM restart, design and safety margin, Computational Fluid Dynamics (CFD) Verification and Validation (V and V) and comparison, performance testing and scaling, and high temperature operation. The slurry properties that are most important to Performance Testing and Scaling depend on the test objective and rheological classification of the slurry (i.e., Newtonian or non-Newtonian). The most important properties for testing with Newtonian slurries are the Archimedes number distribution and the particle concentration. For some test objectives, the shear strength is important. In the testing to collect data for CFD V and V and CFD comparison, the liquid density and liquid viscosity are important. In the high temperature testing, the liquid density and liquid viscosity are important. The Archimedes number distribution combines effects of particle size distribution, solid-liquid density difference, and kinematic viscosity. The most important properties for testing with non-Newtonian slurries are the slurry yield stress, the slurry consistency, and the shear strength. The solid-liquid density difference and the particle size are also important. It is also important to match multiple properties within the same simulant to achieve behavior representative of the waste. Other properties such as particle shape, concentration, surface charge, and size distribution breadth, as well as slurry cohesiveness and adhesiveness, liquid pH and ionic strength also influence the simulant properties either directly or through other physical properties such as yield stress.

  7. Large Scale Simulation of Tor: Modelling a Global Passive Adversary

    E-Print Network [OSTI]

    Blott, Stephen

    . Implementing global passive adversary attacks on currently deployed low latency anonymous networks designs have been developed which attempt to apply mixes to low latency traffic. The most widelyLarge Scale Simulation of Tor: Modelling a Global Passive Adversary Gavin O' Gorman and Stephen

  8. Materialized community ground models for large-scale earthquake simulation

    E-Print Network [OSTI]

    Shewchuk, Jonathan

    Materialized community ground models for large-scale earthquake simulation Steven W. Schlosser to ground motion sim- ulations, in which ground model datasets are fully materi- alized into octress stored as a service techniques in which scientific computation and storage services become more tightly intertwined. 1

  9. ORNL 2013-G00021/tcc Large Scale Graphene Production

    E-Print Network [OSTI]

    ORNL 2013-G00021/tcc 02.2013 Large Scale Graphene Production UT-B ID 201102606 Technology Summary Graphene is an emerging one-atom-thick carbon material which has the potential for a wide range research, graphene has quickly attained the status of a wonder nanomaterial and continued to draw

  10. Seamlessly Integrating Software & Hardware Modelling for Large-Scale Systems

    E-Print Network [OSTI]

    Zhao, Yuxiao

    Engineering, with the math- ematical modelling approach, Modelica, to address the software/hardware integration problem. The environment and hardware components are modelled in Modelica and integrated software-hardware codesign, large-scale sys- tems, Behavior Engineering, Modelica. 1. Introduction

  11. Determining Identifiable Parameterizations for Large-scale Physical Models in

    E-Print Network [OSTI]

    Van den Hof, Paul

    /Novem (Dutch Government). ISAPP (Integrated Systems Approach to Petroleum Production) is a joint project as applied in the field of petroleum reservoir engineering. Starting from a large-scale, physics-based model models in petroleum reservoir engineering. Petroleum reservoir engineering is concerned with maximizing

  12. Materials Availability Expands the Opportunity for Large-Scale

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Materials Availability Expands the Opportunity for Large-Scale Photovoltaics Deployment C Y R U S W of Chemistry, University of California, Berkeley, California 94720, Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, Department of Materials Science and Engineering

  13. On solving large scale polynomial convex problems by randomized ...

    E-Print Network [OSTI]

    2013-03-24T23:59:59.000Z

    Mar 24, 2013 ... We show that for large-scale problems with favourable geometry, this ...... justable “aggressive” stepsize policy [8]; up to this policy, this is nothing but SMP with Pz .... building this representation is O(1)km2 a.o. We build this ...

  14. Computational study of large-scale p-Median problems

    E-Print Network [OSTI]

    techniques to the simplex method for the solution of large-scale instances. ... instances up to 5535 nodes and 666639 arcs, arising from an industrial ..... For each node v ? TF ? AF we build a “layered” graph rooted in v, where layer.

  15. Load Distribution in Large Scale Network Monitoring Infrastructures

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    Load Distribution in Large Scale Network Monitoring Infrastructures Josep Sanju`as-Cuxart, Pere to build a scalable, distributed passive network mon- itoring system that can run several arbitrary the principal research challenges behind building a distributed network monitoring system to support

  16. Chemical engineers design, control and optimize large-scale chemical,

    E-Print Network [OSTI]

    Rohs, Remo

    · ChemicalEngineering (Nanotechnology) Bachelor of Science 131 units · ChemicalEngineering(Petroleum38 Chemical engineers design, control and optimize large-scale chemical, physicochemical and electronics fields. Chemical Engineers are employed in areas as diverse as the chemical, pharmaceutical

  17. Chemical engineers design, control and optimize large-scale chemical,

    E-Print Network [OSTI]

    Rohs, Remo

    in Nanotechnology · ChemicalEngineering Emphasis in Petroleum Engineering · ChemicalEngineering Emphasis in Polymers38 Chemical engineers design, control and optimize large-scale chemical, physicochemical and electronics fields. Chemical Engineers are employed in areas as diverse as the chemical, pharmaceutical

  18. IFIP/IEEE International Conference on Very Large Scale Integration

    E-Print Network [OSTI]

    Pierre, Laurence

    -Signal IC Design · 3-D Integration · Physical Design · SoC Design for Variability, Reliability, Fault22nd IFIP/IEEE International Conference on Very Large Scale Integration VLSI-SoC 2014 October 6-8, 2014 Playa del Carmen, Mexico Iberostar Tucán and Quetzal Hotel General Chairs: Arturo Sarmiento Reyes

  19. Achieving centimetre-scale supercollimation in a large-area

    E-Print Network [OSTI]

    Soljaèiæ, Marin

    demonstrations, and is an important enabling step towards the creation of high-density and low-cost optical unexpected but inherent robustness with respect to short-scale disorder such as fabrication roughness-cladding. A scanning electron micrograph of the large-area PhC possessing about 109 lattice points, fabricated through

  20. Developing A Grid Portal For Large-scale Reservoir Studies

    E-Print Network [OSTI]

    Allen, Gabrielle

    Developing A Grid Portal For Large-scale Reservoir Studies 1 Center for Computation & Technology 2 uncertainty. · Advantages of grid technology · Proposed Solution of the UCoMS Team · What is a Portal? · UCo of reservoir uncertainty... Petroleum drilling consist of many uncertainties. Main objective is to optimize

  1. Alignments of Galaxy Group Shapes with Large Scale Structure

    E-Print Network [OSTI]

    Paz, Dante J; Merchán, Manuel; Padilla, Nelson

    2011-01-01T23:59:59.000Z

    In this paper we analyse the alignment of galaxy groups with the surrounding large scale structure traced by spectroscopic galaxies from the Sloan Digital Sky Survey Data Release 7. We characterise these alignments by means of an extension of the classical two-point cross-correlation function, developed by Paz et al. 2008 (arXiv:0804.4477, MNRAS 389 1127). We find a strong alignment signal between the projected major axis of group shapes and the surrounding galaxy distribution up to scales of 30 Mpc/h. This observed anisotropy signal becomes larger as the galaxy group mass increases, in excellent agreement with the corresponding predicted alignment obtained from mock catalogues and LCDM cosmological simulations. These measurements provide new direct evidence of the adequacy of the gravitational instability picture to describe the large-scale structure formation of our Universe.

  2. Performance Health Monitoring of Large-Scale Systems

    SciTech Connect (OSTI)

    Rajamony, Ram

    2014-11-20T23:59:59.000Z

    This report details the progress made on the ASCR funded project Performance Health Monitoring for Large Scale Systems. A large-­?scale application may not achieve its full performance potential due to degraded performance of even a single subsystem. Detecting performance faults, isolating them, and taking remedial action is critical for the scale of systems on the horizon. PHM aims to develop techniques and tools that can be used to identify and mitigate such performance problems. We accomplish this through two main aspects. The PHM framework encompasses diagnostics, system monitoring, fault isolation, and performance evaluation capabilities that indicates when a performance fault has been detected, either due to an anomaly present in the system itself or due to contention for shared resources between concurrently executing jobs. Software components called the PHM Control system then build upon the capabilities provided by the PHM framework to mitigate degradation caused by performance problems.

  3. A steady-state L-mode tokamak fusion reactor : large scale and minimum scale

    E-Print Network [OSTI]

    Reed, Mark W. (Mark Wilbert)

    2010-01-01T23:59:59.000Z

    We perform extensive analysis on the physics of L-mode tokamak fusion reactors to identify (1) a favorable parameter space for a large scale steady-state reactor and (2) an operating point for a minimum scale steady-state ...

  4. Renewable Energy: Utility-Scale Policies and Programs | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Policies & Programs Renewable Energy: Utility-Scale Policies and Programs Renewable Energy: Utility-Scale Policies and Programs Utility-scale renewable energy projects are...

  5. Large-Scale Spray Releases: Initial Aerosol Test Results

    SciTech Connect (OSTI)

    Schonewill, Philip P.; Gauglitz, Phillip A.; Bontha, Jagannadha R.; Daniel, Richard C.; Kurath, Dean E.; Adkins, Harold E.; Billing, Justin M.; Burns, Carolyn A.; Davis, James M.; Enderlin, Carl W.; Fischer, Christopher M.; Jenks, Jeromy WJ; Lukins, Craig D.; MacFarlan, Paul J.; Shutthanandan, Janani I.; Smith, Dennese M.

    2012-12-01T23:59:59.000Z

    One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and across processing facilities in the DOE complex. Two key technical areas were identified where testing results were needed to improve the technical basis by reducing the uncertainty due to extrapolating existing literature results. The first technical need was to quantify the role of slurry particles in small breaches where the slurry particles may plug and result in substantially reduced, or even negligible, respirable fraction formed by high-pressure sprays. The second technical need was to determine the aerosol droplet size distribution and volume from prototypic breaches and fluids, specifically including sprays from larger breaches with slurries where data from the literature are scarce. To address these technical areas, small- and large-scale test stands were constructed and operated with simulants to determine aerosol release fractions and generation rates from a range of breach sizes and geometries. The properties of the simulants represented the range of properties expected in the WTP process streams and included water, sodium salt solutions, slurries containing boehmite or gibbsite, and a hazardous chemical simulant. The effect of anti-foam agents was assessed with most of the simulants. Orifices included round holes and rectangular slots. The round holes ranged in size from 0.2 to 4.46 mm. The slots ranged from (width × length) 0.3 × 5 to 2.74 × 76.2 mm. Most slots were oriented longitudinally along the pipe, but some were oriented circumferentially. In addition, a limited number of multi-hole test pieces were tested in an attempt to assess the impact of a more complex breach. Much of the testing was conducted at pressures of 200 and 380 psi, but some tests were conducted at 100 psi. Testing the largest postulated breaches was deemed impractical because of the large size of some of the WTP equipment. The purpose of this report is to present the experimental results and analyses for the aerosol measurements obtained in the large-scale test stand. The report includes a description of the simulants used and their properties, equipment and operations, data analysis methodology, and test results. The results of tests investigating the role of slurry particles in plugging of small breaches are reported in Mahoney et al. 2012a. The results of the aerosol measurements in the small-scale test stand are reported in Mahoney et al. (2012b).

  6. Quantum noise in large-scale coherent nonlinear photonic circuits

    E-Print Network [OSTI]

    Charles Santori; Jason S. Pelc; Raymond G. Beausoleil; Nikolas Tezak; Ryan Hamerly; Hideo Mabuchi

    2014-05-27T23:59:59.000Z

    A semiclassical simulation approach is presented for studying quantum noise in large-scale photonic circuits incorporating an ideal Kerr nonlinearity. A circuit solver is used to generate matrices defining a set of stochastic differential equations, in which the resonator field variables represent random samplings of the Wigner quasi-probability distributions. Although the semiclassical approach involves making a large-photon-number approximation, tests on one- and two-resonator circuits indicate satisfactory agreement between the semiclassical and full-quantum simulation results in the parameter regime of interest. The semiclassical model is used to simulate random errors in a large-scale circuit that contains 88 resonators and hundreds of components in total, and functions as a 4-bit ripple counter. The error rate as a function of on-state photon number is examined, and it is observed that the quantum fluctuation amplitudes do not increase as signals propagate through the circuit, an important property for scalability.

  7. Parallel I/O Software Infrastructure for Large-Scale Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Parallel IO Software Infrastructure for Large-Scale Systems Parallel IO Software Infrastructure for Large-Scale Systems | Tags: Math & Computer Science Choudhary.png An...

  8. Sean Large | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG -EnergyProcess|2StanfordOptimizationofSean

  9. Including Variability in Large-Scale Cluster Power Models

    E-Print Network [OSTI]

    Rivoire, Suzanne

    , mobile (laptop), desktop, and server processor spac- es, reflecting energy-efficient server.rivoire@sonoma.edu University of CA, Santa Cruz3 eka@soe.ucsc.edu Abstract--Studying the energy efficiency of large five-node clusters using embedded, laptop, desktop, and server processors. The variation is manifested

  10. Geospatial Optimization of Siting Large-Scale Solar Projects

    SciTech Connect (OSTI)

    Macknick, J.; Quinby, T.; Caulfield, E.; Gerritsen, M.; Diffendorfer, J.; Haines, S.

    2014-03-01T23:59:59.000Z

    Recent policy and economic conditions have encouraged a renewed interest in developing large-scale solar projects in the U.S. Southwest. However, siting large-scale solar projects is complex. In addition to the quality of the solar resource, solar developers must take into consideration many environmental, social, and economic factors when evaluating a potential site. This report describes a proof-of-concept, Web-based Geographical Information Systems (GIS) tool that evaluates multiple user-defined criteria in an optimization algorithm to inform discussions and decisions regarding the locations of utility-scale solar projects. Existing siting recommendations for large-scale solar projects from governmental and non-governmental organizations are not consistent with each other, are often not transparent in methods, and do not take into consideration the differing priorities of stakeholders. The siting assistance GIS tool we have developed improves upon the existing siting guidelines by being user-driven, transparent, interactive, capable of incorporating multiple criteria, and flexible. This work provides the foundation for a dynamic siting assistance tool that can greatly facilitate siting decisions among multiple stakeholders.

  11. Primordial quantum nonequilibrium and large-scale cosmic anomalies

    E-Print Network [OSTI]

    Samuel Colin; Antony Valentini

    2014-07-31T23:59:59.000Z

    We study incomplete relaxation to quantum equilibrium at long wavelengths, during a pre-inflationary phase, as a possible explanation for the reported large-scale anomalies in the cosmic microwave background (CMB). Our scenario makes use of the de Broglie-Bohm pilot-wave formulation of quantum theory, in which the Born probability rule has a dynamical origin. The large-scale power deficit could arise from incomplete relaxation for the amplitudes of the primordial perturbations. We show, by numerical simulations for a spectator scalar field, that if the pre-inflationary era is radiation dominated then the deficit in the emerging power spectrum will have a characteristic shape (an inverse-tangent dependence on wavenumber k, with oscillations). It is found that our scenario is able to produce a power deficit in the observed region and of the observed (approximate) magnitude for an appropriate choice of cosmological parameters. We also discuss the large-scale anisotropy, which could arise from incomplete relaxation for the phases of the primordial perturbations. We present numerical simulations for phase relaxation, and we show how to define characteristic scales for amplitude and phase nonequilibrium. The extent to which the data might support our scenario is left as a question for future work. Our results suggest that we have a potentially viable model that might explain two apparently independent cosmic anomalies by means of a single mechanism.

  12. Large-Scale Optimization for Bayesian Inference in Complex Systems

    SciTech Connect (OSTI)

    Willcox, Karen [MIT] [MIT; Marzouk, Youssef [MIT] [MIT

    2013-11-12T23:59:59.000Z

    The SAGUARO (Scalable Algorithms for Groundwater Uncertainty Analysis and Robust Optimization) Project focused on the development of scalable numerical algorithms for large-scale Bayesian inversion in complex systems that capitalize on advances in large-scale simulation-based optimization and inversion methods. The project was a collaborative effort among MIT, the University of Texas at Austin, Georgia Institute of Technology, and Sandia National Laboratories. The research was directed in three complementary areas: efficient approximations of the Hessian operator, reductions in complexity of forward simulations via stochastic spectral approximations and model reduction, and employing large-scale optimization concepts to accelerate sampling. The MIT--Sandia component of the SAGUARO Project addressed the intractability of conventional sampling methods for large-scale statistical inverse problems by devising reduced-order models that are faithful to the full-order model over a wide range of parameter values; sampling then employs the reduced model rather than the full model, resulting in very large computational savings. Results indicate little effect on the computed posterior distribution. On the other hand, in the Texas--Georgia Tech component of the project, we retain the full-order model, but exploit inverse problem structure (adjoint-based gradients and partial Hessian information of the parameter-to-observation map) to implicitly extract lower dimensional information on the posterior distribution; this greatly speeds up sampling methods, so that fewer sampling points are needed. We can think of these two approaches as ``reduce then sample'' and ``sample then reduce.'' In fact, these two approaches are complementary, and can be used in conjunction with each other. Moreover, they both exploit deterministic inverse problem structure, in the form of adjoint-based gradient and Hessian information of the underlying parameter-to-observation map, to achieve their speedups.

  13. Jet Energy Scale March 31, 2009

    E-Print Network [OSTI]

    Jet Energy Scale March 31, 2009 #12;Jet energy vs parton energy Eta-dependent corrections: even scale: conversion from calo measurement to underlying jet Underlying event and out-of-cone corrections region, near-100% efficiency ·Excellent momentum measurement #12;Jet clustering · Jets are formed

  14. How to calibrate the jet energy scale?

    SciTech Connect (OSTI)

    Hatakeyama, K.; /Rockefeller U.

    2006-01-01T23:59:59.000Z

    Top quarks dominantly decay into b-quark jets and W bosons, and the W bosons often decay into jets, thus the precise determination of the jet energy scale is crucial in measurements of many top quark properties. I present the strategies used by the CDF and D0 collaborations to determine the jet energy scale. The various cross checks performed to verify the determined jet energy scale and evaluate its systematic uncertainty are also discussed.

  15. Stability Analysis of Large-Scale Incompressible Flow Calculations on Massively Parallel Computers 1 Stability Analysis of Large-

    E-Print Network [OSTI]

    Stability Analysis of Large-Scale Incompressible Flow Calculations on Massively Parallel Computers 1 Stability Analysis of Large- Scale Incompressible Flow Calculations on Massively Parallel disturbances aligned with the associated eigenvectors will grow. The Cayley transformation, cou- pled

  16. Large Scale Computing and Storage Requirements for Nuclear Physics Research

    SciTech Connect (OSTI)

    Gerber, Richard A.; Wasserman, Harvey J.

    2012-03-02T23:59:59.000Z

    IThe National Energy Research Scientific Computing Center (NERSC) is the primary computing center for the DOE Office of Science, serving approximately 4,000 users and hosting some 550 projects that involve nearly 700 codes for a wide variety of scientific disciplines. In addition to large-scale computing resources NERSC provides critical staff support and expertise to help scientists make the most efficient use of these resources to advance the scientific mission of the Office of Science. In May 2011, NERSC, DOE’s Office of Advanced Scientific Computing Research (ASCR) and DOE’s Office of Nuclear Physics (NP) held a workshop to characterize HPC requirements for NP research over the next three to five years. The effort is part of NERSC’s continuing involvement in anticipating future user needs and deploying necessary resources to meet these demands. The workshop revealed several key requirements, in addition to achieving its goal of characterizing NP computing. The key requirements include: 1. Larger allocations of computational resources at NERSC; 2. Visualization and analytics support; and 3. Support at NERSC for the unique needs of experimental nuclear physicists. This report expands upon these key points and adds others. The results are based upon representative samples, called “case studies,” of the needs of science teams within NP. The case studies were prepared by NP workshop participants and contain a summary of science goals, methods of solution, current and future computing requirements, and special software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, “multi-core” environment that is expected to dominate HPC architectures over the next few years. The report also includes a section with NERSC responses to the workshop findings. NERSC has many initiatives already underway that address key workshop findings and all of the action items are aligned with NERSC strategic plans.

  17. Small-Scale Renewable Energy Incentive Program

    Broader source: Energy.gov [DOE]

    Vermont's Small Scale Renewable Energy Incentive Program (SSREIP), initiated in June 2003, provides funding for new solar water heating, solar electric (photovoltaic), modern wood pellet heating,...

  18. Commercial-Scale Renewable-Energy Grants

    Broader source: Energy.gov [DOE]

    The Rhode Island Commerce Corporation (Commerce RI) seeks to fund commercial scale renewable energy projects to generate electricity for onsite consumption. Commerce RI provides incentives for...

  19. Stochastic Ordering of Interferences in Large-scale Wireless Networks

    E-Print Network [OSTI]

    Lee, Junghoon

    2012-01-01T23:59:59.000Z

    Stochastic orders are binary relations defined on probability distributions which capture intuitive notions like being larger or being more variable. This paper introduces stochastic ordering of interference distributions in large-scale networks modeled as point process. Interference is the main performance-limiting factor in most wireless networks, thus it is important to understand its statistics. Since closed-form results for the distribution of interference for such networks are only available in limited cases, interference of networks are compared using stochastic orders, even when closed form expressions for interferences are not tractable. We show that the interference from a large-scale network depends on the fading distributions with respect to the stochastic Laplace transform order. The condition for path-loss models is also established to have stochastic ordering between interferences. The stochastic ordering of interferences between different networks are also shown. Monte-Carlo simulations are us...

  20. A first large-scale flood inundation forecasting model

    SciTech Connect (OSTI)

    Schumann, Guy J-P; Neal, Jeffrey C.; Voisin, Nathalie; Andreadis, Konstantinos M.; Pappenberger, Florian; Phanthuwongpakdee, Kay; Hall, Amanda C.; Bates, Paul D.

    2013-11-04T23:59:59.000Z

    At present continental to global scale flood forecasting focusses on predicting at a point discharge, with little attention to the detail and accuracy of local scale inundation predictions. Yet, inundation is actually the variable of interest and all flood impacts are inherently local in nature. This paper proposes a first large scale flood inundation ensemble forecasting model that uses best available data and modeling approaches in data scarce areas and at continental scales. The model was built for the Lower Zambezi River in southeast Africa to demonstrate current flood inundation forecasting capabilities in large data-scarce regions. The inundation model domain has a surface area of approximately 170k km2. ECMWF meteorological data were used to force the VIC (Variable Infiltration Capacity) macro-scale hydrological model which simulated and routed daily flows to the input boundary locations of the 2-D hydrodynamic model. Efficient hydrodynamic modeling over large areas still requires model grid resolutions that are typically larger than the width of many river channels that play a key a role in flood wave propagation. We therefore employed a novel sub-grid channel scheme to describe the river network in detail whilst at the same time representing the floodplain at an appropriate and efficient scale. The modeling system was first calibrated using water levels on the main channel from the ICESat (Ice, Cloud, and land Elevation Satellite) laser altimeter and then applied to predict the February 2007 Mozambique floods. Model evaluation showed that simulated flood edge cells were within a distance of about 1 km (one model resolution) compared to an observed flood edge of the event. Our study highlights that physically plausible parameter values and satisfactory performance can be achieved at spatial scales ranging from tens to several hundreds of thousands of km2 and at model grid resolutions up to several km2. However, initial model test runs in forecast mode revealed that it is crucial to account for basin-wide hydrological response time when assessing lead time performances notwithstanding structural limitations in the hydrological model and possibly large inaccuracies in precipitation data.

  1. Scaling Distributed Energy Storage for Grid Peak Reduction

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    large-scale centralized energy storage systems at strategic points in the grid, such as at power plants. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. e-Energy'13, May 21­24, 2013, Berkeley, California, USA. Copyright 2013 ACM 978

  2. Scaling ansatz, four zero Yukawa textures and large $?_{13}$

    E-Print Network [OSTI]

    Biswajit Adhikary; Mainak Chakraborty; Ambar Ghosal

    2012-07-09T23:59:59.000Z

    We investigate 'Scaling ansatz' in the neutrino sector within the framework of type I seesaw mechanism with diagonal charged lepton and right handed Majorana neutrino mass matrices ($M_R$). We also assume four zero texture of Dirac neutrino mass matrices ($m_D$) which severely constrain the phenomenological outcomes of such scheme. Scaling ansatz and the present neutrino data allow only Six such matrices out of 126 four zero Yukawa matrices. In this scheme, in order to generate large $\\theta_{13}$ we break scaling ansatz in $m_D$ through a perturbation parameter and we also show our breaking scheme is radiatively stable. We further investigate CP violation and baryogenesis via leptogenesis in those surviving textures.

  3. Large-Scale Fabrication, 3D Tomography, and Lithium-Ion Battery Application of Porous Silicon

    E-Print Network [OSTI]

    Zhou, Chongwu

    Large-Scale Fabrication, 3D Tomography, and Lithium-Ion Battery Application of Porous Silicon, United States *S Supporting Information ABSTRACT: Recently, silicon-based lithium-ion battery anodes have for the next-generation lithium-ion batteries with enhanced capacity and energy density. KEYWORDS: Cost

  4. Performance of Hybrid Methods for Large-Scale Unconstrained Optimization as Applied

    E-Print Network [OSTI]

    Navon, Michael

    Performance of Hybrid Methods for Large-Scale Unconstrained Optimization as Applied to Models. It is shown that for the optimal parameters the hybrid approach is typically two times more efficient in terms­1231, 2003 Key words: energy minimization; proteins; loops; hybrid method; truncated Newton; dielectric

  5. Advanced modeling of large-scale oxy-fuel combustion processes

    E-Print Network [OSTI]

    Yin, Chungen

    Advanced modeling of large-scale oxy-fuel combustion processes Chungen Yin Department of Energy Technology, Aalborg University, DK-9220 Aalborg, Denmark, chy@et.aau.dk Introduction Oxy-fuel combustion simulations of various oxy- fuel combustion processes and experimental validation. Result · A new weighted

  6. CALIFORNIA ENERGY Large HVAC Energy Impact Report

    E-Print Network [OSTI]

    , it is not individual building components, equipment, or materials that optimize energy efficiency. Instead, energy efficiency is improved through the integrated design, construction, and operation of building systems Buildings Institute Cathy Higgins, Program Director White Salmon, Washington CEC Contract No. 400

  7. Diffuse Pionic Gamma-Ray Emission from Large Scale Structures in the FERMI Era

    E-Print Network [OSTI]

    Aleksandra Dobardzic; Tijana Prodanovic

    2014-04-08T23:59:59.000Z

    For more than a decade now the complete origin of the diffuse gamma-ray emission background (EGRB) has been unknown. Major components like unresolved star-forming galaxies (making SFCR gamma-ray emission are weak (above the observed EGRB) in some case, in others, some of our models can provide a good fit to the observed EGRB. More importantly, we show that these large-scale shocks could still give an important contribution to the EGRB, especially at high energies. Future detections of cluster gamma-ray emission would help place tighter constraints on our models and give us a better insight into large-scale shocks forming around them.

  8. Development of fine-resolution analyses and expanded large-scale forcing properties. Part II: Scale-awareness and application to single-column model experiments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Feng, Sha [Univ. of California at Los Angeles, Los Angeles, CA (United States); California Inst. of Technology, Pasadena, CA (United States); Vogelmann, Andrew M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Li, Zhijin [California Inst. of Technology (CalTech), Pasadena, CA (United States); Univ. of California at Los Angeles, Los Angeles, CA (United States); Liu, Yangang [Brookhaven National Lab. (BNL), Upton, NY (United States); Lin, Wuyin [Brookhaven National Lab. (BNL), Upton, NY (United States); Zhang, Minghua [Stony Brook Univ., NY (United States); Toto, Tami [Brookhaven National Lab. (BNL), Upton, NY (United States); Endo, Satoshi [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-01-27T23:59:59.000Z

    Fine-resolution three-dimensional fields have been produced using the Community Gridpoint Statistical Interpolation (GSI) data assimilation system for the U.S. Department of Energy’s Atmospheric Radiation Measurement Program (ARM) Southern Great Plains region. The GSI system is implemented in a multi-scale data assimilation framework using the Weather Research and Forecasting model at a cloud-resolving resolution of 2 km. From the fine-resolution three-dimensional fields, large-scale forcing is derived explicitly at grid-scale resolution; a subgrid-scale dynamic component is derived separately, representing subgrid-scale horizontal dynamic processes. Analyses show that the subgrid-scale dynamic component is often a major component over the large-scale forcing for grid scales larger than 200 km. The single-column model (SCM) of the Community Atmospheric Model version 5 (CAM5) is used to examine the impact of the grid-scale and subgrid-scale dynamic components on simulated precipitation and cloud fields associated with a mesoscale convective system. It is found that grid-scale size impacts simulated precipitation, resulting in an overestimation for grid scales of about 200 km but an underestimation for smaller grids. The subgrid-scale dynamic component has an appreciable impact on the simulations, suggesting that grid-scale and subgrid-scale dynamic components should be considered in the interpretation of SCM simulations.

  9. Skewness and Kurtosis in Large-Scale Cosmic Fields

    E-Print Network [OSTI]

    F. Bernardeau

    1993-12-13T23:59:59.000Z

    In this paper, I present the calculation of the third and fourth moments of both the distribution function of the large--scale density and the large--scale divergence of the velocity field, $\\theta$. These calculations are made by the mean of perturbative calculations assuming Gaussian initial conditions and are expected to be valid in the linear or quasi linear regime. The moments are derived for a top--hat window function and for any cosmological parameters $\\Omega$ and $\\Lambda$. It turns out that the dependence with $\\Lambda$ is always very weak whereas the moments of the distribution function of the divergence are strongly dependent on $\\Omega$. A method to measure $\\Omega$ using the skewness of this field has already been presented by Bernardeau et al. (1993). I show here that the simultaneous measurement of the skewness and the kurtosis allows to test the validity of the gravitational instability scenario hypothesis. Indeed there is a combination of the first three moments of $\\theta$ that is almost independent of the cosmological parameters $\\Omega$ and $\\Lambda$, $${(-3^2) \\over ^2}\\approx 1.5,$$ (the value quoted is valid when the index of the power spectrum at the filtering scale is close to -1) so that any cosmic velocity field created by gravitational instabilities should verify such a property.

  10. Just enough inflation: power spectrum modifications at large scales

    E-Print Network [OSTI]

    Michele Cicoli; Sean Downes; Bhaskar Dutta; Francisco G. Pedro; Alexander Westphal

    2014-07-03T23:59:59.000Z

    We show that models of `just enough' inflation, where the slow-roll evolution lasted only $50-60$ e-foldings, feature modifications of the CMB power spectrum at large angular scales. We perform a systematic and model-independent analysis of any possible non-slow-roll background evolution prior to the final stage of slow-roll inflation. We find a high degree of universality since most common backgrounds like fast-roll evolution, matter or radiation-dominance give rise to a power loss at large angular scales and a peak together with an oscillatory behaviour at scales around the value of the Hubble parameter at the beginning of slow-roll inflation. Depending on the value of the equation of state parameter, different pre-inflationary epochs lead instead to an enhancement of power at low-$\\ell$, and so seem disfavoured by recent observational hints for a lack of CMB power at $\\ell\\lesssim 40$. We also comment on the importance of initial conditions and the possibility to have multiple pre-inflationary stages.

  11. Fractal Approach to Large-Scale Galaxy Distribution

    E-Print Network [OSTI]

    Yurij Baryshev; Pekka Teerikorpi

    2005-05-10T23:59:59.000Z

    We present a review of the history and the present state of the fractal approach to the large-scale distribution of galaxies. Angular correlation function was used as a general instrument for the structure analysis. It was realized later that a normalization condition for the reduced correlation function estimator results in distorted values for both R_{hom} and fractal dimension D. Moreover, according to a theorem on projections of fractals, galaxy angular catalogues can not be used for detecting a structure with the fractal dimension D>2. For this 3-d maps are required, and indeed modern extensive redshift-based 3-d maps have revealed the ``hidden'' fractal dimension of about 2, and have confirmed superclustering at scales even up to 500 Mpc (e.g. the Sloan Great Wall). On scales, where the fractal analysis is possible in completely embedded spheres, a power--law density field has been found. The fractal dimension D =2.2 +- 0.2 was directly obtained from 3-d maps and R_{hom} has expanded from 10 Mpc to scales approaching 100 Mpc. In concordance with the 3-d map results, modern all sky galaxy counts in the interval 10^m - 15^m give a 0.44m-law which corresponds to D=2.2 within a radius of 100h^{-1}_{100} Mpc. We emphasize that the fractal mass--radius law of galaxy clustering has become a key phenomenon in observational cosmology.

  12. Atypical Behavior Identification in Large Scale Network Traffic

    SciTech Connect (OSTI)

    Best, Daniel M.; Hafen, Ryan P.; Olsen, Bryan K.; Pike, William A.

    2011-10-23T23:59:59.000Z

    Cyber analysts are faced with the daunting challenge of identifying exploits and threats within potentially billions of daily records of network traffic. Enterprise-wide cyber traffic involves hundreds of millions of distinct IP addresses and results in data sets ranging from terabytes to petabytes of raw data. Creating behavioral models and identifying trends based on those models requires data intensive architectures and techniques that can scale as data volume increases. Analysts need scalable visualization methods that foster interactive exploration of data and enable identification of behavioral anomalies. Developers must carefully consider application design, storage, processing, and display to provide usability and interactivity with large-scale data. We present an application that highlights atypical behavior in enterprise network flow records. This is accomplished by utilizing data intensive architectures to store the data, aggregation techniques to optimize data access, statistical techniques to characterize behavior, and a visual analytic environment to render the behavioral trends, highlight atypical activity, and allow for exploration.

  13. Development of fine-resolution analyses and expanded large-scale forcing properties. Part II: Scale-awareness and application to single-column model experiments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Feng, Sha; Vogelmann, Andrew M.; Li, Zhijin; Liu, Yangang; Lin, Wuyin; Zhang, Minghua; Toto, Tami; Endo, Satoshi

    2015-01-27T23:59:59.000Z

    Fine-resolution three-dimensional fields have been produced using the Community Gridpoint Statistical Interpolation (GSI) data assimilation system for the U.S. Department of Energy’s Atmospheric Radiation Measurement Program (ARM) Southern Great Plains region. The GSI system is implemented in a multi-scale data assimilation framework using the Weather Research and Forecasting model at a cloud-resolving resolution of 2 km. From the fine-resolution three-dimensional fields, large-scale forcing is derived explicitly at grid-scale resolution; a subgrid-scale dynamic component is derived separately, representing subgrid-scale horizontal dynamic processes. Analyses show that the subgrid-scale dynamic component is often a major component over the large-scale forcing for grid scalesmore »larger than 200 km. The single-column model (SCM) of the Community Atmospheric Model version 5 (CAM5) is used to examine the impact of the grid-scale and subgrid-scale dynamic components on simulated precipitation and cloud fields associated with a mesoscale convective system. It is found that grid-scale size impacts simulated precipitation, resulting in an overestimation for grid scales of about 200 km but an underestimation for smaller grids. The subgrid-scale dynamic component has an appreciable impact on the simulations, suggesting that grid-scale and subgrid-scale dynamic components should be considered in the interpretation of SCM simulations.« less

  14. Solar cycle variations of large scale flows in the Sun

    E-Print Network [OSTI]

    Sarbani Basu; H. M. Antia

    2000-01-17T23:59:59.000Z

    Using data from the Michelson Doppler Imager (MDI) instrument on board the Solar and Heliospheric Observatory (SOHO), we study the large-scale velocity fields in the outer part of the solar convection zone using the ring diagram technique. We use observations from four different times to study possible temporal variations in flow velocity. We find definite changes in both the zonal and meridional components of the flows. The amplitude of the zonal flow appears to increase with solar activity and the flow pattern also shifts towards lower latitude with time.

  15. Statistical analysis of large-scale structure in the Universe

    E-Print Network [OSTI]

    Martin Kerscher

    1999-12-15T23:59:59.000Z

    Methods for the statistical characterization of the large-scale structure in the Universe will be the main topic of the present text. The focus is on geometrical methods, mainly Minkowski functionals and the J-function. Their relations to standard methods used in cosmology and spatial statistics and their application to cosmological datasets will be discussed. This work is not only meant as a short review for comologist, but also attempts to illustrate these morphological methods and to make them accessible to scientists from other fields. Consequently, a short introduction to the standard picture of cosmology is given.

  16. Robust Morphological Measures for Large-Scale Structure

    E-Print Network [OSTI]

    T. Buchert

    1994-12-17T23:59:59.000Z

    A complete family of statistical descriptors for the morphology of large--scale structure based on Minkowski--Functionals is presented. These robust and significant measures can be used to characterize the local and global morphology of spatial patterns formed by a coverage of point sets which represent galaxy samples. Basic properties of these measures are highlighted and their relation to the `genus statistics' is discussed. Test models like a Poissonian point process and samples generated from a Voronoi--model are put into perspective.

  17. Large scale obscuration and related climate effects open literature bibliography

    SciTech Connect (OSTI)

    Russell, N.A.; Geitgey, J.; Behl, Y.K.; Zak, B.D.

    1994-05-01T23:59:59.000Z

    Large scale obscuration and related climate effects of nuclear detonations first became a matter of concern in connection with the so-called ``Nuclear Winter Controversy`` in the early 1980`s. Since then, the world has changed. Nevertheless, concern remains about the atmospheric effects of nuclear detonations, but the source of concern has shifted. Now it focuses less on global, and more on regional effects and their resulting impacts on the performance of electro-optical and other defense-related systems. This bibliography reflects the modified interest.

  18. Planning under uncertainty solving large-scale stochastic linear programs

    SciTech Connect (OSTI)

    Infanger, G. (Stanford Univ., CA (United States). Dept. of Operations Research Technische Univ., Vienna (Austria). Inst. fuer Energiewirtschaft)

    1992-12-01T23:59:59.000Z

    For many practical problems, solutions obtained from deterministic models are unsatisfactory because they fail to hedge against certain contingencies that may occur in the future. Stochastic models address this shortcoming, but up to recently seemed to be intractable due to their size. Recent advances both in solution algorithms and in computer technology now allow us to solve important and general classes of practical stochastic problems. We show how large-scale stochastic linear programs can be efficiently solved by combining classical decomposition and Monte Carlo (importance) sampling techniques. We discuss the methodology for solving two-stage stochastic linear programs with recourse, present numerical results of large problems with numerous stochastic parameters, show how to efficiently implement the methodology on a parallel multi-computer and derive the theory for solving a general class of multi-stage problems with dependency of the stochastic parameters within a stage and between different stages.

  19. Fractal large-scale structure from a stochastic scaling law model

    E-Print Network [OSTI]

    S. Capozziello; S. Funkhouser

    2009-03-27T23:59:59.000Z

    A stochastic model relating the parameters of astrophysical structures to the parameters of their granular components is applied to the formation of hierarchical, large-scale structures from galaxies assumed as point-like objects. If the density profile of galaxies on a given scale is described by a power law then the stochastic model leads naturally to a mass function that is proportional to the square of the distance from an occupied point, which corresponds to a two-point correlation function that is inversely proportional to the distance. This result is consistent with observations indicating that galaxies are, on the largest scales, characterized by a fractal distribution with a dimension of order 2 and well-fit with transition to homogeneity at cosmological scales.

  20. Sub-metering to Electricity Use in Large-scale Commercial Buildings

    E-Print Network [OSTI]

    Yuan, W.

    2006-01-01T23:59:59.000Z

    ~240Hotel251218113~129Office Building181118103~119government office building4582775~89 #0;?#0;? Great Difference between each type Sub-metering and statistics to electricity use in commercial buildings 5 Situation of Energy consumption in Large...Sub-metering to Electricity Use in Large-scale Commercial Buildings Wang YuanTsinghua University2006.11 Sub-metering and statistics to electricity use in commercial buildings 2 Index #0;?#0;? Situation of Energy consumption in commercial buildings...

  1. Tribal Renewable Energy Advanced Course: Facility Scale Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facility Scale Project Development Tribal Renewable Energy Advanced Course: Facility Scale Project Development Watch the DOE Office of Indian Energy renewable energy course...

  2. Parallel Index and Query for Large Scale Data Analysis

    SciTech Connect (OSTI)

    Chou, Jerry; Wu, Kesheng; Ruebel, Oliver; Howison, Mark; Qiang, Ji; Prabhat,; Austin, Brian; Bethel, E. Wes; Ryne, Rob D.; Shoshani, Arie

    2011-07-18T23:59:59.000Z

    Modern scientific datasets present numerous data management and analysis challenges. State-of-the-art index and query technologies are critical for facilitating interactive exploration of large datasets, but numerous challenges remain in terms of designing a system for process- ing general scientific datasets. The system needs to be able to run on distributed multi-core platforms, efficiently utilize underlying I/O infrastructure, and scale to massive datasets. We present FastQuery, a novel software framework that address these challenges. FastQuery utilizes a state-of-the-art index and query technology (FastBit) and is designed to process mas- sive datasets on modern supercomputing platforms. We apply FastQuery to processing of a massive 50TB dataset generated by a large scale accelerator modeling code. We demonstrate the scalability of the tool to 11,520 cores. Motivated by the scientific need to search for inter- esting particles in this dataset, we use our framework to reduce search time from hours to tens of seconds.

  3. Optimal operation of large-scale power systems

    SciTech Connect (OSTI)

    Lee, K.Y.; Ortiz, J.L.; Mohtadi, M.A.; Park, Y.M.

    1988-05-01T23:59:59.000Z

    This paper presents a method for an optimal operation of large-scale power systems similar to the one utilized by the Houston Lighting and Power Company. The main objective is to minimize the system fuel costs, and maintain an acceptable system performance in terms of limits on generator real and reactive power outputs, transformer tap settings, and bus voltage levels. Minimizing the fuel costs of such large-scale systems enhances the performance of optimal real power generator allocation and of optimal power flow that results in an economic dispatch. The gradient projection method (GPM) is utilized in solving the optimization problems. It is an iterative numerical procedure for finding an extremum of a function of several variables that are required to satisfy various constraining relations without using penalty functions or Lagrange multipliers among other advantages. Mathematical models are developed to represent the sensitivity relationships between dependent and control variables for both real- and reactive-power optimization procedures; and thus eliminate the use of B-coefficients. Data provided by the Houston lighting and Power Company are used to demonstrate the effectiveness of the proposed procedures.

  4. Inflationary tensor fossils in large-scale structure

    E-Print Network [OSTI]

    Emanuela Dimastrogiovanni; Matteo Fasiello; Donghui Jeong; Marc Kamionkowski

    2014-07-30T23:59:59.000Z

    Inflation models make specific predictions for a tensor-scalar-scalar three-point correlation, or bispectrum, between one gravitational-wave (tensor) mode and two density-perturbation (scalar) modes. This tensor-scalar-scalar correlation leads to a local power quadrupole, an apparent departure from statistical isotropy in our Universe, as well as characteristic four-point correlations in the current mass distribution in the Universe. So far, the predictions for these observables have been worked out only for single-clock models in which certain consistency conditions between the tensor-scalar-scalar correlation and tensor and scalar power spectra are satisfied. Here we review the requirements on inflation models for these consistency conditions to be satisfied. We then consider several examples of inflation models, such as non-attractor and solid inflation models, in which these conditions are put to the test. In solid inflation the simplest consistency conditions are already violated whilst in the non-attractor model we find that, contrary to the standard scenario, the tensor-scalar-scalar correlator probes directly relevant model-dependent information. We work out the predictions for observables in these models. For non-attractor inflation we find an apparent local quadrupolar departure from statistical isotropy in large-scale structure but that this power quadrupole decreases very rapidly at smaller scales. The consistency of the CMB quadrupole with statistical isotropy then constrains the distance scale that corresponds to the transition from the non-attractor to attractor phase of inflation to be larger than the currently observable horizon. Solid inflation predicts clustering fossils signatures in the current galaxy distribution that may be large enough to be detectable with forthcoming, and possibly even current, galaxy surveys.

  5. Large-scale star formation in the Magellanic Clouds

    E-Print Network [OSTI]

    Jochen M. Braun

    2001-08-03T23:59:59.000Z

    In this contribution I will present the current status of our project of stellar population analyses and spatial information of both Magellanic Clouds (MCs). The Magellanic Clouds - especially the LMC with its large size and small depth (<300pc) - are suitable laboratories and testing ground for theoretical models of star formation. With distance moduli of 18.5 and 18.9mag for the LMC and SMC, respectively, and small galactic extinction, their stellar content can be studied in detail from the most massive stars of the youngest populations (<25Myr) connected to H-alpha emission down to the low mass end of about 1/10 of a solar mass. Based on broad-band photometry (U,B,V) I present results for the supergiant shell (SGS) SMC1, some regions at the LMC east side incl. LMC2 showing different overlapping young populations and the region around N171 with its large and varying colour excess, and LMC4. This best studied SGS shows a coeval population aged about 12Myr with little age spread and no correlation to distance from LMC4's centre. I will show that the available data are not compatible with many of the proposed scenarios like SSPSF or a central trigger (like a cluster or GRB), while a large-scale trigger like the bow-shock of the rotating LMC can do the job.

  6. The XMM/Megacam-VST/VIRMOS Large Scale Structure Survey

    E-Print Network [OSTI]

    M. Pierre

    2000-11-08T23:59:59.000Z

    The objective of the XMM-LSS Survey is to map the large scale structure of the universe, as highlighted by clusters and groups of galaxies, out to a redshift of about 1, over a single 8x8 sq.deg. area. For the first time, this will reveal the topology of the distribution of the deep potential wells and provide statistical measurements at truly cosmological distances. In addition, clusters identified via their X-ray properties will form the basis for the first uniformly-selected, multi-wavelength survey of the evolution of clusters and individual cluster galaxies as a function of redshift. The survey will also address the very important question of the QSO distribution within the cosmic web.

  7. Recovery Act - Large Scale SWNT Purification and Solubilization

    SciTech Connect (OSTI)

    Michael Gemano; Dr. Linda B. McGown

    2010-10-07T23:59:59.000Z

    The goal of this Phase I project was to establish a quantitative foundation for development of binary G-gels for large-scale, commercial processing of SWNTs and to develop scientific insight into the underlying mechanisms of solubilization, selectivity and alignment. In order to accomplish this, we performed systematic studies to determine the effects of G-gel composition and experimental conditions that will enable us to achieve our goals that include (1) preparation of ultra-high purity SWNTs from low-quality, commercial SWNT starting materials, (2) separation of MWNTs from SWNTs, (3) bulk, non-destructive solubilization of individual SWNTs in aqueous solution at high concentrations (10-100 mg/mL) without sonication or centrifugation, (4) tunable enrichment of subpopulations of the SWNTs based on metallic vs. semiconductor properties, diameter, or chirality and (5) alignment of individual SWNTs.

  8. Training a Large Scale Classifier with the Quantum Adiabatic Algorithm

    E-Print Network [OSTI]

    Hartmut Neven; Vasil S. Denchev; Geordie Rose; William G. Macready

    2009-12-04T23:59:59.000Z

    In a previous publication we proposed discrete global optimization as a method to train a strong binary classifier constructed as a thresholded sum over weak classifiers. Our motivation was to cast the training of a classifier into a format amenable to solution by the quantum adiabatic algorithm. Applying adiabatic quantum computing (AQC) promises to yield solutions that are superior to those which can be achieved with classical heuristic solvers. Interestingly we found that by using heuristic solvers to obtain approximate solutions we could already gain an advantage over the standard method AdaBoost. In this communication we generalize the baseline method to large scale classifier training. By large scale we mean that either the cardinality of the dictionary of candidate weak classifiers or the number of weak learners used in the strong classifier exceed the number of variables that can be handled effectively in a single global optimization. For such situations we propose an iterative and piecewise approach in which a subset of weak classifiers is selected in each iteration via global optimization. The strong classifier is then constructed by concatenating the subsets of weak classifiers. We show in numerical studies that the generalized method again successfully competes with AdaBoost. We also provide theoretical arguments as to why the proposed optimization method, which does not only minimize the empirical loss but also adds L0-norm regularization, is superior to versions of boosting that only minimize the empirical loss. By conducting a Quantum Monte Carlo simulation we gather evidence that the quantum adiabatic algorithm is able to handle a generic training problem efficiently.

  9. High Metallicity, Photoionised Gas in Intergalactic Large-Scale Filaments

    E-Print Network [OSTI]

    Bastien Aracil; Todd M. Tripp; David V. Bowen; Jason X. Proschaska; Hsiao-Wen Chen; Brenda L. Frye

    2006-08-21T23:59:59.000Z

    We present high-resolution UV spectra of absorption-line systems toward the low-z QSO HS0624+6907 (z=0.3700). Coupled with spectroscopic galaxy redshifts, we find that many of these absorbers are integalactic gas clouds distributed within large-scale structures. The gas is cool (T0.9). STIS data reveal a cluster of 13 HI Lyman alpha lines within a 1000 km/s interval at z=0.0635. We find 10 galaxies at this redshift with impact parameters ranging from 135 h^-1 kpc to 1.37 h^-1 Mpc. We attribute the HI Lya absorptions to intragroup medium gas, possibly from a large-scale filament viewed along its long axis. Remarkably, the metallicity is near-solar, [M/H] = -0.05 +/- 0.4 (2 sigma uncertainty), yet the nearest galaxy which might pollute the IGM is at least 135 h_70^-1 kpc away. Tidal stripping from nearby galaxies appears to be the most likely origin of this highly enriched, cool gas. More than six Abell galaxy clusters are found within 4 degree of the sight line suggesting that the QSO line of sight passes near a node in the cosmic web. At z~0.077, we find absorption systems as well as galaxies at the redshift of the nearby clusters Abell 564 and Abell 559. We conclude that the sight line pierces a filament of gas and galaxies feeding into these clusters. The absorber at z_abs = 0.07573 associated with Abell 564/559 also has a high metallicity with [C/H] > -0.6, but again the closest galaxy is relatively far from the sight line (293 h^-1 kpc).

  10. An experimental investigation of sediment drag forces on offshore pipelines in large scale drag tank

    E-Print Network [OSTI]

    Yin, Stanley Fuming

    1984-01-01T23:59:59.000Z

    for the degree of MASTER OF SCIENCE August 1984 Major Subject: Civil Engineering AN EXPERIMENTAL INVESTIGATION OF SEDIMENT DRAG FORCES ON OFFSHORE PIPELINES IN A LARGE SCALE DRAG TANK A Thesis by STANLEY FUMING YIN Approved as to style and content by... An ever increasing demand for petroleum products and energy has led to accelerated exploration and development of oil and gas deposits. Pipelines serve as an effective, efficient and reliable means of trans- porting the oil and gas from offshore...

  11. Large Scale Computing and Storage Requirements for Nuclear Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLSLaboratoryRowland toShadeEnvironmental Large

  12. Large-scale fabrication and assembly of carbon nanotubes via nanopelleting

    E-Print Network [OSTI]

    El Aguizy, Tarek A., 1977-

    2004-01-01T23:59:59.000Z

    Widespread use of carbon nanotubes is predicated on the development of robust large-scale manufacturing techniques. There remain, however, few feasible methods for the large-scale handling of aligned and geometrically ...

  13. Design advanced for large-scale, economic, floating LNG plant

    SciTech Connect (OSTI)

    Naklie, M.M. [Mobil Technology Co., Dallas, TX (United States)

    1997-06-30T23:59:59.000Z

    A floating LNG plant design has been developed which is technically feasible, economical, safe, and reliable. This technology will allow monetization of small marginal fields and improve the economics of large fields. Mobil`s world-scale plant design has a capacity of 6 million tons/year of LNG and up to 55,000 b/d condensate produced from 1 bcfd of feed gas. The plant would be located on a large, secure, concrete barge with a central moonpool. LNG storage is provided for 250,000 cu m and condensate storage for 650,000 bbl. And both products are off-loaded from the barge. Model tests have verified the stability of the barge structure: barge motions are low enough to permit the plant to continue operation in a 100-year storm in the Pacific Rim. Moreover, the barge is spread-moored, eliminating the need for a turret and swivel. Because the design is generic, the plant can process a wide variety of feed gases and operate in different environments, should the plant be relocated. This capability potentially gives the plant investment a much longer project life because its use is not limited to the life of only one producing area.

  14. Large Scale Obscuration and Related Climate Effects Workshop: Proceedings

    SciTech Connect (OSTI)

    Zak, B.D.; Russell, N.A.; Church, H.W.; Einfeld, W.; Yoon, D.; Behl, Y.K. [eds.

    1994-05-01T23:59:59.000Z

    A Workshop on Large Scale Obsurcation and Related Climate Effects was held 29--31 January, 1992, in Albuquerque, New Mexico. The objectives of the workshop were: to determine through the use of expert judgement the current state of understanding of regional and global obscuration and related climate effects associated with nuclear weapons detonations; to estimate how large the uncertainties are in the parameters associated with these phenomena (given specific scenarios); to evaluate the impact of these uncertainties on obscuration predictions; and to develop an approach for the prioritization of further work on newly-available data sets to reduce the uncertainties. The workshop consisted of formal presentations by the 35 participants, and subsequent topical working sessions on: the source term; aerosol optical properties; atmospheric processes; and electro-optical systems performance and climatic impacts. Summaries of the conclusions reached in the working sessions are presented in the body of the report. Copies of the transparencies shown as part of each formal presentation are contained in the appendices (microfiche).

  15. The Anatomy of a Large-Scale Hypertextual Web Search Sergey Brin and Lawrence Page

    E-Print Network [OSTI]

    Matwin, Stan

    . This paper addresses this question of how to build a practical large-scale system which can exploit of googol, or 10100 and fits well with our goal of building very large- scale search engines. 1.1 Web Search Engines -- Scaling Up: 1994 - 2000 Search engine technology has had to scale dramatically to keep up

  16. Feasibility of Large-Scale Ocean CO2 Sequestration

    SciTech Connect (OSTI)

    Peter Brewer

    2008-08-31T23:59:59.000Z

    Scientific knowledge of natural clathrate hydrates has grown enormously over the past decade, with spectacular new findings of large exposures of complex hydrates on the sea floor, the development of new tools for examining the solid phase in situ, significant progress in modeling natural hydrate systems, and the discovery of exotic hydrates associated with sea floor venting of liquid CO{sub 2}. Major unresolved questions remain about the role of hydrates in response to climate change today, and correlations between the hydrate reservoir of Earth and the stable isotopic evidence of massive hydrate dissociation in the geologic past. The examination of hydrates as a possible energy resource is proceeding apace for the subpermafrost accumulations in the Arctic, but serious questions remain about the viability of marine hydrates as an economic resource. New and energetic explorations by nations such as India and China are quickly uncovering large hydrate findings on their continental shelves. In this report we detail research carried out in the period October 1, 2007 through September 30, 2008. The primary body of work is contained in a formal publication attached as Appendix 1 to this report. In brief we have surveyed the recent literature with respect to the natural occurrence of clathrate hydrates (with a special emphasis on methane hydrates), the tools used to investigate them and their potential as a new source of natural gas for energy production.

  17. Large Scale Approximate Inference and Experimental Design for Sparse Linear Models

    E-Print Network [OSTI]

    Seeger, Matthias

    Large Scale Approximate Inference and Experimental Design for Sparse Linear Models Matthias W.kyb.tuebingen.mpg.de/bs/people/seeger/ 27 June 2008 Matthias W. Seeger (MPI BioCyb) Large Scale Bayesian Experimental Design 27/6/08 1 / 27 Algorithms 4 Magnetic Resonance Imaging Sequences Matthias W. Seeger (MPI BioCyb) Large Scale Bayesian

  18. LiveBench-2: Large-Scale Automated Evaluation of Protein Structure Prediction Servers

    E-Print Network [OSTI]

    Fischer, Daniel

    LiveBench-2: Large-Scale Automated Evaluation of Protein Structure Prediction Servers Janusz M from other evaluation experiments because it is a large-scale and a fully automated procedure. Since, to keep in pace with the development, we present the results of the second large-scale evaluation of pro

  19. Community- and Facility-Scale Tribal Renewable Energy Project...

    Office of Environmental Management (EM)

    Community- and Facility-Scale Tribal Renewable Energy Project Development and Finance Workshop: Colorado Community- and Facility-Scale Tribal Renewable Energy Project Development...

  20. Enabling Mass-Scale Financing for Federal Energy, Water, and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enabling Mass-Scale Financing for Federal Energy, Water, and Sustainability Projects Enabling Mass-Scale Financing for Federal Energy, Water, and Sustainability Projects...

  1. Tribal Renewable Energy Advanced Course: Commercial Scale Project...

    Energy Savers [EERE]

    Commercial Scale Project Development Tribal Renewable Energy Advanced Course: Commercial Scale Project Development Watch the DOE Office of Indian Energy advanced course...

  2. Tribal Renewable Energy Advanced Course: Community Scale Project...

    Energy Savers [EERE]

    Tribal Renewable Energy Advanced Course: Community Scale Project Development Tribal Renewable Energy Advanced Course: Community Scale Project Development Watch the DOE Office of...

  3. Utility Scale Renewable Energy Development Near DOD Installations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scale Renewable Energy Development Near DOD Installations: Making the Case for Land Use Compatitbility Utility Scale Renewable Energy Development Near DOD Installations: Making the...

  4. Building Scale vs. Community Scale Net-Zero Energy Performance

    SciTech Connect (OSTI)

    Katipamula, Srinivas; Fernandez, Nicholas; Brambley, Michael R.; Reddy, T. A.

    2010-06-30T23:59:59.000Z

    Many government and industry organizations are focusing building energy-efficiency goals around producing individual net-zero buildings (nZEBs), using photovoltaic (PV) technology to provide on-site renewable energy after substantially improving the energy efficiency of the buildings themselves. Seeking net-zero energy (NZE) at the community scale instead introduces the possibility of using a wider range of renewable energy technologies, such as solar-thermal electricity generation, solar-assisted heating/cooling systems, and wind energy, economically. This paper reports results of a study comparing NZE communities to communities consisting of individual nZEBs. Five scenarios are examined: 1) base case – a community of nZEBs with roof mounted PV systems; 2) NZE communities served by wind turbines on leased land; 3) NZE communities served by wind turbines on owned land; 4) communities served by solar-thermal electric generation; and 5) communities served by photovoltaic farms. All buildings are assumed to be highly efficient, e.g., 70% more efficient than current practice. The scenarios are analyzed for two climate locations (Chicago and Phoenix), and the levelized costs of electricity for the scenarios are compared. The results show that even for the climate in the U.S. most favorable to PV (Phoenix), more cost-effective approaches are available to achieving NZE than the conventional building-level approach (rooftop PV with aggressive building efficiency improvements). The paper shows that by expanding the measurement boundary for NZE, a community can take advantage of economies of scale, achieving improved economics while reaching the same overall energy-performance objective.

  5. ANALYSIS OF TURBULENT MIXING JETS IN LARGE SCALE TANK

    SciTech Connect (OSTI)

    Lee, S; Richard Dimenna, R; Robert Leishear, R; David Stefanko, D

    2007-03-28T23:59:59.000Z

    Flow evolution models were developed to evaluate the performance of the new advanced design mixer pump for sludge mixing and removal operations with high-velocity liquid jets in one of the large-scale Savannah River Site waste tanks, Tank 18. This paper describes the computational model, the flow measurements used to provide validation data in the region far from the jet nozzle, the extension of the computational results to real tank conditions through the use of existing sludge suspension data, and finally, the sludge removal results from actual Tank 18 operations. A computational fluid dynamics approach was used to simulate the sludge removal operations. The models employed a three-dimensional representation of the tank with a two-equation turbulence model. Both the computational approach and the models were validated with onsite test data reported here and literature data. The model was then extended to actual conditions in Tank 18 through a velocity criterion to predict the ability of the new pump design to suspend settled sludge. A qualitative comparison with sludge removal operations in Tank 18 showed a reasonably good comparison with final results subject to significant uncertainties in actual sludge properties.

  6. An improved voltage control on large-scale power system

    SciTech Connect (OSTI)

    Vu, H.; Pruvot, P.; Launay, C.; Harmand, Y. [Electricite de France, Clamart (France). Study and Research Div.] [Electricite de France, Clamart (France). Study and Research Div.

    1996-08-01T23:59:59.000Z

    To achieve a better voltage-var control in the electric power transmission system, different facilities are used. Generators are equipped with automatic voltage regulators to cope with sudden and random changes voltage caused by natural load fluctuations or failures. Other devices like capacitors, inductors, transformers with on load tap changers are installed on the network. Faced with the evolution of the network and operating conditions, electricity utilities are more and more interested in overall and coherent control systems, automatic or not. These systems are expected to coordinate the actions of local facilities for a better voltage control (more stable and faster reaction) inside different areas of the network in case of greater voltage and var variations. They affords besides a better use of existing reactive resources. Also, installation of new devices can be avoided allowing economy of investment. With this frame of mind, EDF has designed a system called Co-ordinated Secondary Voltage Control (CSVC). It`s an automatic closed loop system with a dynamic of a few minutes. It takes into account the network conditions (topology, loads), the voltage limits and the generator operating constraints. This paper presents recent improvements which allow the CSVC to control the voltage profile and different kinds of reactive means on a large-scale power system. Furthermore, this paper presents solution to spread out investment costs over several years, considering a deployment gradually extended.

  7. Classical Control of Large-Scale Quantum Computers

    E-Print Network [OSTI]

    Simon J. Devitt

    2014-05-20T23:59:59.000Z

    The accelerated development of quantum technology has reached a pivotal point. Early in 2014, several results were published demonstrating that several experimental technologies are now accurate enough to satisfy the requirements of fault-tolerant, error corrected quantum computation. While there are many technological and experimental issues that still need to be solved, the ability of experimental systems to now have error rates low enough to satisfy the fault-tolerant threshold for several error correction models is a tremendous milestone. Consequently, it is now a good time for the computer science and classical engineering community to examine the {\\em classical} problems associated with compiling quantum algorithms and implementing them on future quantum hardware. In this paper, we will review the basic operational rules of a topological quantum computing architecture and outline one of the most important classical problems that need to be solved; the decoding of error correction data for a large-scale quantum computer. We will endeavour to present these problems independently from the underlying physics as much of this work can be effectively solved by non-experts in quantum information or quantum mechanics.

  8. Testing Inflation with Large Scale Structure: Connecting Hopes with Reality

    E-Print Network [OSTI]

    Marcelo Alvarez; Tobias Baldauf; J. Richard Bond; Neal Dalal; Roland de Putter; Olivier Doré; Daniel Green; Chris Hirata; Zhiqi Huang; Dragan Huterer; Donghui Jeong; Matthew C. Johnson; Elisabeth Krause; Marilena Loverde; Joel Meyers; P. Daniel Meerburg; Leonardo Senatore; Sarah Shandera; Eva Silverstein; Anže Slosar; Kendrick Smith; Matias Zaldarriaga; Valentin Assassi; Jonathan Braden; Amir Hajian; Takeshi Kobayashi; George Stein; Alexander van Engelen

    2014-12-15T23:59:59.000Z

    The statistics of primordial curvature fluctuations are our window into the period of inflation, where these fluctuations were generated. To date, the cosmic microwave background has been the dominant source of information about these perturbations. Large scale structure is however from where drastic improvements should originate. In this paper, we explain the theoretical motivations for pursuing such measurements and the challenges that lie ahead. In particular, we discuss and identify theoretical targets regarding the measurement of primordial non-Gaussianity. We argue that when quantified in terms of the local (equilateral) template amplitude $f_{\\rm NL}^{\\rm loc}$ ($f_{\\rm NL}^{\\rm eq}$), natural target levels of sensitivity are $\\Delta f_{\\rm NL}^{\\rm loc, eq.} \\simeq 1$. We highlight that such levels are within reach of future surveys by measuring 2-, 3- and 4-point statistics of the galaxy spatial distribution. This paper summarizes a workshop held at CITA (University of Toronto) on October 23-24, 2014.

  9. Giant radio galaxies - II. Tracers of large-scale structure

    E-Print Network [OSTI]

    Malarecki, J M; Saripalli, L; Staveley-Smith, L; Subrahmanyan, R

    2015-01-01T23:59:59.000Z

    We have carried out optical spectroscopy with the Anglo-Australian Telescope for 24,726 objects surrounding a sample of 19 Giant Radio Galaxies (GRGs) selected to have redshifts in the range 0.05 to 0.15 and projected linear sizes from 0.8 to 3.2 Mpc. Such radio galaxies are ideal candidates to study the Warm-Hot Intergalactic Medium (WHIM) because their radio lobes extend beyond the ISM and halos of their host galaxies, and into the tenuous IGM. We were able to measure redshifts for 9,076 galaxies. Radio imaging of each GRG, including high-sensitivity, wideband radio observations from the Australia Telescope Compact Array for 12 GRGs and host optical spectra (presented in a previous paper, Malarecki et al. 2013), is used in conjunction with the surrounding galaxy redshifts to trace large-scale structure. We find that the mean galaxy number overdensity in volumes of ~700 Mpc$^3$ near the GRG host galaxies is ~70 indicating an overdense but non-virialized environment. A Fourier component analysis is used to qu...

  10. Hydrodynamic and hydromagnetic energy spectra from large eddy simulations

    E-Print Network [OSTI]

    N. E. L. Haugen; A. Brandenburg

    2006-06-29T23:59:59.000Z

    Direct and large eddy simulations of hydrodynamic and hydromagnetic turbulence have been performed in an attempt to isolate artifacts from real and possibly asymptotic features in the energy spectra. It is shown that in a hydrodynamic turbulence simulation with a Smagorinsky subgrid scale model using 512^3 meshpoints two important features of the 4096^3 simulation on the Earth simulator (Kaneda et al. 2003, Phys. Fluids 15, L21) are reproduced: a k^{-0.1} correction to the inertial range with a k^{-5/3} Kolmogorov slope and the form of the bottleneck just before the dissipative subrange. Furthermore, it is shown that, while a Smagorinsky-type model for the induction equation causes an artificial and unacceptable reduction in the dynamo efficiency, hyper-resistivity yields good agreement with direct simulations. In the large-scale part of the inertial range, an excess of the spectral magnetic energy over the spectral kinetic energy is confirmed. However, a trend towards spectral equipartition at smaller scales in the inertial range can be identified. With magnetic fields, no explicit bottleneck effect is seen.

  11. An IC/CMB interpretation for the large-scale jet X-ray emission of 3C 273

    E-Print Network [OSTI]

    Liu, Wen-Po

    2015-01-01T23:59:59.000Z

    We present that the model of inverse Compton scattering of cosmic microwave background photons (IC/CMB) could well explain the large-scale jet X-ray radiation of 3C 273, and does not violate new Fermi observations. For the individual knots, the synchrotron spectrum of the low-energy electrons responsible for the IC/CMB X-ray emission may be different from the extrapolation of the 10GHz radio spectrum of knots. Based on the IC/CMB model for the 3C 273 large-scale jet, the Fermi observations may mainly come from the small-scale jet of 3C 273 (i.e., the core). Future observations could examine our interpretation on the spectral energy distributions (SED) of knots and large-scale jet in 3C 273.

  12. Economic Impact of Large-Scale Deployment of Offshore Marine...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    both capital and O&M, for the wave energy facilities. Compared to wind or solar energy, wave energy technology is still immature and costly. Current estimated installed...

  13. Fact Sheet: Grid-Scale Flywheel Energy Storage Plant | Department...

    Office of Environmental Management (EM)

    Fact Sheet: Grid-Scale Flywheel Energy Storage Plant Fact Sheet: Grid-Scale Flywheel Energy Storage Plant Beacon Power will design, build, and operate a utility-scale 20 MW...

  14. National Grid (Electric)- Large Commercial Energy Efficiency Incentive Programs

    Broader source: Energy.gov [DOE]

    National Grid offers electric energy efficiency programs for large commercial and industrial customers.

  15. Advanced I/O for large-scale scientific applications.

    SciTech Connect (OSTI)

    Klasky, Scott (Oak Ridge National Laboratory, Oak Ridge, TN); Schwan, Karsten (Georgia Institute of Technology, Atlanta, GA); Oldfield, Ron A.; Lofstead, Gerald F., II (Georgia Institute of Technology, Atlanta, GA)

    2010-01-01T23:59:59.000Z

    As scientific simulations scale to use petascale machines and beyond, the data volumes generated pose a dual problem. First, with increasing machine sizes, the careful tuning of IO routines becomes more and more important to keep the time spent in IO acceptable. It is not uncommon, for instance, to have 20% of an application's runtime spent performing IO in a 'tuned' system. Careful management of the IO routines can move that to 5% or even less in some cases. Second, the data volumes are so large, on the order of 10s to 100s of TB, that trying to discover the scientifically valid contributions requires assistance at runtime to both organize and annotate the data. Waiting for offline processing is not feasible due both to the impact on the IO system and the time required. To reduce this load and improve the ability of scientists to use the large amounts of data being produced, new techniques for data management are required. First, there is a need for techniques for efficient movement of data from the compute space to storage. These techniques should understand the underlying system infrastructure and adapt to changing system conditions. Technologies include aggregation networks, data staging nodes for a closer parity to the IO subsystem, and autonomic IO routines that can detect system bottlenecks and choose different approaches, such as splitting the output into multiple targets, staggering output processes. Such methods must be end-to-end, meaning that even with properly managed asynchronous techniques, it is still essential to properly manage the later synchronous interaction with the storage system to maintain acceptable performance. Second, for the data being generated, annotations and other metadata must be incorporated to help the scientist understand output data for the simulation run as a whole, to select data and data features without concern for what files or other storage technologies were employed. All of these features should be attained while maintaining a simple deployment for the science code and eliminating the need for allocation of additional computational resources.

  16. Architecture for a large-scale ion-trap quantum computer

    E-Print Network [OSTI]

    individually experimentally demonstrated. The quantum CCD To build up a large-scale quantum computer, we have demonstrated in this system, there exist theoretical and technical obstacles to scaling up the approachArchitecture for a large-scale ion-trap quantum computer D. Kielpinski*, C. Monroe & D. J. Wineland

  17. Hamming embedding and weak geometric consistency for large scale image search

    E-Print Network [OSTI]

    Verbeek, Jakob

    Hamming embedding and weak geometric consistency for large scale image search Herve Jegou, Matthijs improves recent methods for large scale image search. State-of-the-art methods build on the bag large datasets. Exper- iments performed on a dataset of one million of images show a signifi- cant

  18. Large-Scale FPGA-based Convolutional Networks Clement Farabet1

    E-Print Network [OSTI]

    LeCun, Yann

    Large-Scale FPGA-based Convolutional Networks Cl´ement Farabet1 , Yann LeCun1 , Koray Kavukcuoglu1, New Haven, USA Chapter in Machine Learning on Very Large Data Sets, edited by Ron Bekkerman, Mikhail Bilenko, and John Langford, Cambridge University Press, 2011. May 2, 2011 1 #12;Large-Scale FPGA

  19. A Protocol for the Atomic Capture of Multiple Molecules on Large Scale Platforms

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A Protocol for the Atomic Capture of Multiple Molecules on Large Scale Platforms Marin Bertier services. Envi- sioned over largely distributed and highly dynamic platforms, expressing this coordination coordination of services. However, the execution of such programs over large scale platforms raises several

  20. 2014 Commercial-Scale Workshop | Department of Energy

    Energy Savers [EERE]

    of Indian Energy hosted a Commercial-Scale Renewable Energy Project Development and Finance Workshop July 29-31, 2014, at the National Renewable Energy Laboratory in Golden,...

  1. Community- and Facility-Scale Tribal Renewable Energy Project...

    Broader source: Energy.gov (indexed) [DOE]

    Energy's Community- and Facility-Scale Tribal Renewable Energy Project Development and Finance Workshop, which will be held September 18-20 at the National Renewable Energy...

  2. Issues in strategic management of large-scale software product line development

    E-Print Network [OSTI]

    Nivoit, Jean-Baptiste (Jean-Baptiste Henri)

    2013-01-01T23:59:59.000Z

    This thesis reflects on the issues and challenges large software product engineering managers face. Software is hard to engineer on a small scale, but at a larger scale, engineering and management tasks are even more ...

  3. Introduction to Small-Scale Wind Energy Systems (Including RETScreen...

    Open Energy Info (EERE)

    Introduction to Small-Scale Wind Energy Systems (Including RETScreen Case Study) (Webinar) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Introduction to Small-Scale...

  4. 2013 Community- and Facility-Scale Tribal Renewable Energy Project...

    Office of Environmental Management (EM)

    2013 Community- and Facility-Scale Tribal Renewable Energy Project Development and Finance Workshop Presentations and Agenda 2013 Community- and Facility-Scale Tribal Renewable...

  5. Commercial-Scale Renewable Energy Project Development Workshop...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Colorado Community- and Facility-Scale Tribal Renewable Energy Project Development and Finance Workshop: Colorado Community-Scale Project Development and Finance Workshop: Oklahoma...

  6. A Topological Framework for the Interactive Exploration of Large Scale Turbulent Combustion

    E-Print Network [OSTI]

    Bremer, Peer-Timo

    2010-01-01T23:59:59.000Z

    comparison of terascale combustion simulation data. Mathe-premixed hydrogen ?ames. Combustion and Flame, [7] J. L.of Large Scale Turbulent Combustion Peer-Timo Bremer 1 ,

  7. Performance Engineering: Understanding and Improving the Performance of Large-Scale Codes

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    An API for Runtime Code Patching,” Journal of Highof the Conference on Code Generation and Optimization,Performance of Large-Scale Codes David H. Bailey 1 , Robert

  8. A Large-Scale Sentiment Analysis for Yahoo! Answers Onur Kucuktunc

    E-Print Network [OSTI]

    Ferhatosmanoglu, Hakan

    and Behavioral Sciences]: Psychology, Sociology General Terms Design, Experimentation, Human Factors, MeasurementA Large-Scale Sentiment Analysis for Yahoo! Answers Onur Kucuktunc The Ohio State University

  9. a min-max regret robust optimization approach for large scale full ...

    E-Print Network [OSTI]

    admin

    2007-07-20T23:59:59.000Z

    the full-factorial scenario design of data uncertainty. The proposed algorithm is shown to be efficient for solving large-scale min-max regret robust optimization ...

  10. Temperature effect on the small-to-large crossover length-scale of hydrophobic hydration

    E-Print Network [OSTI]

    Yuri S. Djikaev; Eli Ruckenstein

    2013-07-29T23:59:59.000Z

    The thermodynamics of hydration changes gradually from entropic for small solutes to enthalpic for large ones. The small-to-large crossover lengthscale of hydrophobic hydration depends on the thermodynamic conditions of the solvent such as temperature, pressure, presence of additives, etc... We attempt to shed some light on the temperature dependence of the crossover lengthscale by using a probabilistic approach to water hydrogen bonding that allows one to obtain an analytic expression for the number of bonds per water molecule as a function of both its distance to a solute and solute radius. Incorporating that approach into the density functional theory, one can examine the solute size effects on its hydration over the entire small-to-large lengthscale range at different temperatures. Knowing the dependence of the hydration free energy on temperature and solute size, one can obtain its enthalpic and entropic contributions as functions of temperature and solute size. These function can provide interesting insight into the temperature dependence of the crossover lengthscale of hydrophobic hydration. The model was applied to the hydration of spherical particles of various radii in water in the temperature range from T=293.15 K to T=333.15 K. The model predictions for the temperature dependence of the hydration free energy of small hydrophobes are consistent with the experimental and simulational data. Three alternative definitions for the small-to-large crossover length-scale of hydrophobic hydration are proposed, and their temperature dependence is obtained. Depending on the definition and temperature, the small-to-large crossover in the hydration mechanism is predicted to occur for hydrophobes of radii from one to several nanometers. Independent of its definition, the crossover length-scale is predicted to decrease with increasing temperature.

  11. Atmospheric perturbations of large-scale nuclear war

    SciTech Connect (OSTI)

    Malone, R.C.

    1985-01-01T23:59:59.000Z

    Computer simulation of the injection into the atmosphere of a large quantity of smoke following a nuclear war are described. The focus is on what might happen to the smoke after it enters the atmosphere and what changes, or perturbations, could be induced in the atmospheric structure and circulation by the pressure of a large quantity of smoke. 4 refs., 7 figs. (ACR)

  12. On scale and magnitude of pressure build-up induced by large-scale geologic storage of CO2

    E-Print Network [OSTI]

    Zhou, Q.

    2012-01-01T23:59:59.000Z

    activities, such as oil production. Large-scale pressureannual volume of world oil production and the pore volumem 3 . In 2006, the world oil production was 4.3 km 3 (73.46

  13. Large-Scale Evacuation Network Model for Transporting Evacuees with Multiple Priorities

    E-Print Network [OSTI]

    Na, Hyeong Suk

    2014-05-01T23:59:59.000Z

    There are increasing numbers of natural disasters occurring worldwide, particularly in populated areas. Such events affect a large number of people causing injuries and fatalities. With ever increasing damage being caused by large-scale natural...

  14. Optimization Online - Large-Scale Decentralized Unit Commitment

    E-Print Network [OSTI]

    Mohammad Javad Feizollahi

    2014-05-05T23:59:59.000Z

    May 5, 2014 ... ... of decentralized power system operations, including growing interest ... to International Journal of Electrical Power & Energy Systems, 2014.

  15. Large-Scale Manufacturing of Nanoparticle-Based Lubrication Additives...

    Broader source: Energy.gov (indexed) [DOE]

    nanoparticulate-basedlubrication.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2014: Advanced Nanolubricants for Improved Energy Efficiency and...

  16. Advancing Cellulosic Ethanol for Large Scale Sustainable Transportation

    E-Print Network [OSTI]

    Wyman, C

    2007-01-01T23:59:59.000Z

    wastes • Sugar cane bagasse • Corn stover and fiber • FutureSugarcane Sugarcane Bagasse Louisiana Rice Hulls Pile Energy

  17. Large-Scale Federal Renewable Energy Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas » MethaneJohnsonKristinaLandscape2014) | Department

  18. Large-Scale Federal Renewable Energy Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas » MethaneJohnsonKristinaLandscape2014) |

  19. Wind Scanner: A full-scale Laser Facility for Wind and Turbulence Measurements around large Wind Turbines

    E-Print Network [OSTI]

    Wind Scanner: A full-scale Laser Facility for Wind and Turbulence Measurements around large Wind Turbines Torben Mikkelsen, Jakob Mann and Michael Courtney Wind Energy Department, Risø National Laboratory:Torben.Mikkelsen@Risoe.dk Summary RISØ DTU has started to build a newly designed laser-based lidar scanning facility for remote wind

  20. A Power Provision and Capping Architecture for Large Scale Systems Yongpeng Liu, Hong Zhu, Kai Lu and Yongyan Liu

    E-Print Network [OSTI]

    Zhu, Hong

    whole system's total power consumption under budget. Two policies are designed and implemented to select amount of energy. According to the recent TOP500 list of high performance systems [2], the average powerA Power Provision and Capping Architecture for Large Scale Systems Yongpeng Liu, Hong Zhu, Kai Lu

  1. Large scale nuclear sensor monitoring and diagnostics by means of an ensemble of regression models based on Evolving Clustering Methods

    E-Print Network [OSTI]

    Boyer, Edmond

    Large scale nuclear sensor monitoring and diagnostics by means of an ensemble of regression models , Enrico Ziob a Institute for Energy Technology, Halden, Norway b Polytechnic of Milan, Milan, Italy actions for safely steering critical situations and preventing accidents. To avoid misleading information

  2. Advancing Cellulosic Ethanol for Large Scale Sustainable Transportation

    E-Print Network [OSTI]

    Wyman, C

    2007-01-01T23:59:59.000Z

    Production and Demand: Actual and Forecasts thru 2030 Petroleum andproduction and demand are nearly balanced for all but one energy source: petroleum –

  3. Sandia National Laboratories: Large-scale integration of DER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microgrid, Modeling & Analysis, News, News & Events, Partnership, Renewable Energy, SMART Grid, Systems Analysis, Systems Engineering Mayor Says New System Will 'Keep Everyone...

  4. New Hampshire Electric Co-Op- Large Business Energy Solutions

    Broader source: Energy.gov [DOE]

    New Hampshire Electric Co-Op offers incentives for its large business customers (using 100 kW or more) to increase the energy efficiency of facilities through the Large Business Energy Solutions...

  5. Development of Large Format Lithium Ion Cells with Higher Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Large Format Lithium Ion Cells with Higher Energy Density Exceeding 500WhL Development of Large Format Lithium Ion Cells with Higher Energy Density Exceeding 500WhL 2012 DOE...

  6. Cosmological parameter constraints from SDSS luminous red galaxies: a new treatment of large-scale clustering

    E-Print Network [OSTI]

    Ariel G. Sanchez; M. Crocce; A. Cabre; C. M. Baugh; E. Gaztanaga

    2009-08-19T23:59:59.000Z

    We apply a new model for the spherically averaged correlation function at large pair separations to the measurement of the clustering of luminous red galaxies (LRGs) made from the SDSS by Cabre and Gaztanaga(2009). Our model takes into account the form of the BAO peak and the large scale shape of the correlation function. We perform a Monte Carlo Markov chain analysis for different combinations of datasets and for different parameter sets. When used in combination with a compilation of the latest CMB measurements, the LRG clustering and the latest supernovae results give constraints on cosmological parameters which are comparable and in remarkably good agreement, resolving the tension reported in some studies. The best fitting model in the context of a flat, Lambda-CDM cosmology is specified by Omega_m=0.261+-0.013, Omega_b=0.044+-0.001, n_s=0.96+-0.01, H_0=71.6+-1.2 km/s/Mpc and sigma_8=0.80+-0.02. If we allow the time-independent dark energy equation of state parameter to vary, we find results consistent with a cosmological constant at the 5% level using all data sets: w_DE=-0.97+-0.05. The large scale structure measurements by themselves can constrain the dark energy equation of state parameter to w_DE=-1.05+-0.15, independently of CMB or supernovae data. We do not find convincing evidence for an evolving equation of state. We provide a set of "extended distance priors" that contain the most relevant information from the CMB power spectrum and the shape of the LRG correlation function which can be used to constrain dark energy models and spatial curvature. Our model should provide an accurate description of the clustering even in much larger, forthcoming surveys, such as those planned with NASA's JDEM or ESA's Euclid mission.

  7. Feasibility Study of Large Scale Photosynthetic Biohydrogen Greg Burgess1

    E-Print Network [OSTI]

    2 , Javier G. Fernandez-Velasco2 , and Keith Lovegrove1 (1) Centre for Sustainable Energy Systems of hydrogen through microalgal photosynthesis is being developed. The technology involves renewable energy of culture, with the water being recyclable. Using an optimized microalga strain, the plant would yield up

  8. LARGE-SCALE ATMOSPHERE-OCEAN Geometric Methods and Models

    E-Print Network [OSTI]

    Morrison, Philip J.,

    , 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa http to be essentially energy criteria. The finite degree-of- freedom version of these criteria would amount to showing of these criteria are versions of Dirichlet's energy criterion for stabil- ity of Hamiltonian systems. Researchers

  9. Reconfiguration-Assisted Charging in Large-Scale Lithium-ion Battery Systems

    E-Print Network [OSTI]

    Reconfiguration-Assisted Charging in Large-Scale Lithium-ion Battery Systems Liang He1 , Linghe, TX, USA ABSTRACT Large-scale Lithium-ion batteries are widely adopted in many systems and heterogeneous discharging con- ditions, cells in the battery system may have differ- ent statuses

  10. A Topological Framework for the Interactive Exploration of Large Scale Turbulent Combustion

    E-Print Network [OSTI]

    Knowles, David William

    A Topological Framework for the Interactive Exploration of Large Scale Turbulent Combustion Peer a new topological framework for the analysis of large scale, time-varying, turbulent combustion consumption thresh- olds for an entire time-dependent combustion simulation. By computing augmented merge

  11. Wireless Ventilation Control for Large-Scale Systems: the Mining Industrial Case

    E-Print Network [OSTI]

    Boyer, Edmond

    Wireless Ventilation Control for Large-Scale Systems: the Mining Industrial Case E. Witrant1,, A. D, for large scale systems with high environmental impact: the mining ventilation control systems. Ventilation). We propose a new model for underground ventilation. The main components of the system dynamics

  12. Parallelisation of the revised simplex method for general large scale LP problems

    E-Print Network [OSTI]

    Hall, Julian

    Parallelisation of the revised simplex method for general large scale LP problems Julian Hall School of Mathematics University of Edinburgh August 9­10 2005 Parallelisation of the revised simplex method for general large scale LP problems #12;Overview · The (standard and revised) simplex method

  13. Towards Automatic Incorporation of Search engines into a Large-Scale Metasearch Engine

    E-Print Network [OSTI]

    Meng, Weiyi

    Towards Automatic Incorporation of Search engines into a Large-Scale Metasearch Engine Zonghuan Wu. of Computer Science Univ. of Illinois at Chicago yu@cs.uic.edu Abstract A metasearch engine supports unified access to multiple component search engines. To build a very large-scale metasearch engine that can

  14. Random Features for Large-Scale Kernel Machines Intel Research Seattle

    E-Print Network [OSTI]

    Kim, Tae-Kyun

    Random Features for Large-Scale Kernel Machines Ali Rahimi Intel Research Seattle Seattle, WA 98105 products of the transformed data are approximately equal to those in the feature space of a user specified on their ability to approximate various radial basis kernels, and show that in large-scale classification

  15. Hash-SVM: Scalable Kernel Machines for Large-Scale Visual Classification , Shih-Fu Chang

    E-Print Network [OSTI]

    Chang, Shih-Fu

    Hash-SVM: Scalable Kernel Machines for Large-Scale Visual Classification Yadong Mu , Gang Hua , Wei the efficiency of non-linear kernel SVM in very large scale visual classification prob- lems. Our key idea be transformed into solving a linear SVM over the hash bits. The proposed Hash-SVM enjoys dramatic storage cost

  16. Automatic Construction of Large-Scale Regular Expression Matching Engines on FPGA

    E-Print Network [OSTI]

    Prasanna, Viktor K.

    Automatic Construction of Large-Scale Regular Expression Matching Engines on FPGA Yi-Hua E. Yang@usc.edu, prasanna@usc.edu Abstract--We present algorithms for implementing large-scale regular expression matching (REM) on FPGA. Based on the proposed algorithms, we develop tools that first transform regular

  17. Evaluation of Segmentation Techniques for Inventory Management in Large Scale Multi-Item Inventory Systems1

    E-Print Network [OSTI]

    Rossetti, Manuel D.

    1 Evaluation of Segmentation Techniques for Inventory Management in Large Scale Multi-Item Inventory Systems1 Manuel D. Rossetti2 , Ph. D., P. E. Department of Industrial Engineering University of their inventory policies in a large-scale multi-item inventory system. Conventional inventory segmentation

  18. Electronic Properties of Large-scale Graphene Films Chemical Vapor Synthesized on Nickel and on Copper

    E-Print Network [OSTI]

    Chen, Yong P.

    transport properties of graphene films grown on Ni and Cu. Sample Preparation The synthesis of graphene film1 Electronic Properties of Large-scale Graphene Films Chemical Vapor Synthesized on Nickel of large scale graphene films grown by chemical vapor synthesis on Ni and Cu, and then transferred to SiO2

  19. QA-Pagelet: Data Preparation Techniques for Large Scale Data Analysis of the Deep Web

    E-Print Network [OSTI]

    Liu, Ling

    1 QA-Pagelet: Data Preparation Techniques for Large Scale Data Analysis of the Deep Web James data preparation technique for large scale data analysis of the Deep Web. To support QA the Deep Web. Two unique features of the Thor framework are (1) the novel page clustering for grouping

  20. QA-Pagelet: Data Preparation Techniques for Large-Scale Data Analysis of the Deep Web

    E-Print Network [OSTI]

    Caverlee, James

    QA-Pagelet: Data Preparation Techniques for Large-Scale Data Analysis of the Deep Web James the QA-Pagelet as a fundamental data preparation technique for large-scale data analysis of the Deep Web-Pagelets from the Deep Web. Two unique features of the Thor framework are 1) the novel page clustering

  1. LARGE-SCALE MOVEMENT PATTERNS OF MALE LOGGERHEAD SEA TURTLES (CARETTA CARETTA)

    E-Print Network [OSTI]

    LARGE-SCALE MOVEMENT PATTERNS OF MALE LOGGERHEAD SEA TURTLES (CARETTA CARETTA) IN SHARK BAY Management Title of Thesis: Large-Scale Movement Patterns of Male Loggerhead Sea Turtles (Caretta caretta) in Shark Bay, Australia Report No. 524 Examining Committee: Chair: Christine Gruman Master of Resource

  2. LETTER doi:10.1038/nature11727 Large-scale nanophotonic phased array

    E-Print Network [OSTI]

    Reif, Rafael

    and astronomy1 . The ability to generate arbi- trary radiation patterns with large-scale phased arrays has long been pursued. Although it is extremely expensive and cumbersome to deploy large-scale radiofrequency of the nanoantennas pre- cisely balanced in power and aligned in phase to generate a designed, sophisticated radiation

  3. GridMate: A Portable Simulation Environment for Large-Scale Adaptive Scientific Applications

    E-Print Network [OSTI]

    Li, Xiaolin "Andy"

    GridMate: A Portable Simulation Environment for Large-Scale Adaptive Scientific Applications: parashar@caip.rutgers.edu Abstract--In this paper, we present a portable sim- ulation environment GridMate for large-scale adaptive scientific applications in multi-site Grid environments. GridMate is a discrete

  4. PENMAN Upper Model Building a LargeScale Knowledge Base for Machine Translation

    E-Print Network [OSTI]

    Knight, Kevin

    f g et al. Abstract PENMAN Upper Model Building a Large­Scale Knowledge Base for Machine­ gineer to build up an index to a KB in a second language, such as Spanish or Japanese. USC is a three­site collabora­ tive effort to build a large­scale knowledge­based ma­ chine translation system

  5. Automated Data Verification in a Large-scale Citizen Science Project: a Case Study

    E-Print Network [OSTI]

    Wong, Weng-Keen

    Automated Data Verification in a Large-scale Citizen Science Project: a Case Study Jun Yu1 , Steve,jag73}@cornell.edu Abstract-- Although citizen science projects can engage a very large number with eBird, which is a broad-scale citizen science project to collect bird observations, has shown

  6. Optimal Selection of AC Cables for Large Scale Offshore Wind Farms

    E-Print Network [OSTI]

    Hu, Weihao

    Optimal Selection of AC Cables for Large Scale Offshore Wind Farms Peng Hou, Weihao Hu, Zhe Chen@et.aau.dk, whu@iet.aau.dk, zch@iet.aau.dk Abstract--The investment of large scale offshore wind farms is high the operational requirements of the offshore wind farms and the connected power systems. In this paper, a new cost

  7. GCP: Gossip-based Code Propagation for Large-scale Mobile Wireless Sensor Network

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    GCP: Gossip-based Code Propagation for Large-scale Mobile Wireless Sensor Network Name: Yann Busnel-Marie Kermarrec Extended abstract Wireless sensor networks (WSN) are in a plentiful expansion. They are expected transmission. Keywords Wireless sensor network, mobile computing, large scale, diusion, software update

  8. Large Scale Wind Turbine Siting Map Report NJ Department of Environmental Protection

    E-Print Network [OSTI]

    Holberton, Rebecca L.

    Large Scale Wind Turbine Siting Map Report NJ Department of Environmental Protection September 8 Jersey Department of Environmental Protection's (NJDEP) "Large Scale Wind Turbine Siting Map Management rules to address the development and permitting of wind turbines in the coastal zone

  9. Parallel domain decomposition for simulation of large-scale power grids

    E-Print Network [OSTI]

    Mohanram, Kartik

    of large-scale linear circuits such as power grids. DD techniques that use non-overlapping and overlap that with the proposed parallel DD framework, existing linear circuit simulators can be extended to handle large- scale can be solved independently in parallel using standard techniques for linear system analysis

  10. Evaluating the Potential for Large-Scale Biodiesel Deployments in a Global Context

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    Evaluating the Potential for Large-Scale Biodiesel Deployments in a Global Context by Matthew Johnston. All rights reserved. #12;#12;Evaluating the Potential for Large-Scale Biodiesel Deployments on the subject of biodiesel, but I can only hope she takes comfort knowing now much I appreciate everything she

  11. Multilevel method for modeling large-scale networks.

    SciTech Connect (OSTI)

    Safro, I. M. (Mathematics and Computer Science)

    2012-02-24T23:59:59.000Z

    Understanding the behavior of real complex networks is of great theoretical and practical significance. It includes developing accurate artificial models whose topological properties are similar to the real networks, generating the artificial networks at different scales under special conditions, investigating a network dynamics, reconstructing missing data, predicting network response, detecting anomalies and other tasks. Network generation, reconstruction, and prediction of its future topology are central issues of this field. In this project, we address the questions related to the understanding of the network modeling, investigating its structure and properties, and generating artificial networks. Most of the modern network generation methods are based either on various random graph models (reinforced by a set of properties such as power law distribution of node degrees, graph diameter, and number of triangles) or on the principle of replicating an existing model with elements of randomization such as R-MAT generator and Kronecker product modeling. Hierarchical models operate at different levels of network hierarchy but with the same finest elements of the network. However, in many cases the methods that include randomization and replication elements on the finest relationships between network nodes and modeling that addresses the problem of preserving a set of simplified properties do not fit accurately enough the real networks. Among the unsatisfactory features are numerically inadequate results, non-stability of algorithms on real (artificial) data, that have been tested on artificial (real) data, and incorrect behavior at different scales. One reason is that randomization and replication of existing structures can create conflicts between fine and coarse scales of the real network geometry. Moreover, the randomization and satisfying of some attribute at the same time can abolish those topological attributes that have been undefined or hidden from researchers. We propose to develop multilevel methods to model complex networks. The key point of the proposed strategy is that it will help to preserve part of the unknown structural attributes by guaranteeing the similar behavior of the real and artificial model on different scales.

  12. On the Evolution of Thermonuclear Flames on Large Scales

    E-Print Network [OSTI]

    Ju Zhang; O. E. Bronson Messer; Alexei M. Khokhlov; Tomasz Plewa

    2006-10-05T23:59:59.000Z

    The thermonuclear explosion of a massive white dwarf in a Type Ia supernova explosion is characterized by vastly disparate spatial and temporal scales. The extreme dynamic range inherent to the problem prevents the use of direct numerical simulation and forces modelers to resort to subgrid models to describe physical processes taking place on unresolved scales. We consider the evolution of a model thermonuclear flame in a constant gravitational field on a periodic domain. The gravitational acceleration is aligned with the overall direction of the flame propagation, making the flame surface subject to the Rayleigh-Taylor instability. The flame evolution is followed through an extended initial transient phase well into the steady-state regime. The properties of the evolution of flame surface are examined. We confirm the form of the governing equation of the evolution suggested by Khokhlov (1995). The mechanism of vorticity production and the interaction between vortices and the flame surface are discussed. The results of our investigation provide the bases for revising and extending previous subgrid-scale model.

  13. Impact of Friction and Scale-Dependent Initial Stress on Radiated Energy-Moment Scaling

    E-Print Network [OSTI]

    Shaw, Bruce E.

    . Shaw Lamont­Doherty Earth Observatory, Columbia University, New York, USA The radiated energy coming271 Impact of Friction and Scale-Dependent Initial Stress on Radiated Energy-Moment Scaling Bruce E of elucidat- ing their radiated energy-moment scaling. We find, contrary to expectations, that apparent stress

  14. Large-Scale Urban Modeling by Combining Ground Level Panoramic and Aerial Imagery

    E-Print Network [OSTI]

    Shahabi, Cyrus

    building or part of a build- ing. Due to error propagation, they are difficult to scale up to model aerial image, we can identify the footprints(up to a common scale) of the buildings, in- cluding of multiple tall buildings. Existing methods for large-scale modeling mostly de- pend on remote sensing

  15. Commercial-Scale Renewable Energy Project Development and Finance...

    Broader source: Energy.gov (indexed) [DOE]

    Commercial-Scale Renewable Energy Project Development and Finance Workshop Commercial-Scale Renewable Energy Project Development and Finance Workshop July 29, 2014 1:00PM MDT to...

  16. Community- and Facility-Scale Tribal Renewable Energy Project...

    Office of Environmental Management (EM)

    Community- and Facility-Scale Tribal Renewable Energy Project Workshop to be Held in September Community- and Facility-Scale Tribal Renewable Energy Project Workshop to be Held in...

  17. Large Scale Geothermal Exchange System for Residential, Office and Retail

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind Energy Development Jump to:WaveLarderelloDevelopment

  18. ORNL, CINCINNATI partner to develop commercial large-scale additive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627HomelandACRF Archive: Raymond McCord, Giri

  19. Improved Bounds for Large Scale Capacitated Arc Routing Problem

    E-Print Network [OSTI]

    2011-09-29T23:59:59.000Z

    ply a modified Iterated Local Search procedure to Capacitated Vehicle .... enter and leave the set S, in such a way that at least 2k(S) ? |?R(S)| times an ...... algorithm clearly outperformed, in terms of solution quality, those that dealt with large.

  20. Autonomous Science during Large-Scale Robotic David R. Thompson

    E-Print Network [OSTI]

    of geologic phenomena with a visible near-infrared spectrometer. We develop an approach to "sci- ence). Scientists can use these over-the-horizon modes to quickly characterize large areas and visit multiple geologic units between communications opportunities (Wettergreen et al., 2005; Cabrol et al., 2007

  1. Multi-scale interaction of driftWave turbulence with large scale shear flows

    E-Print Network [OSTI]

    McDevitt, Christopher J.

    2008-01-01T23:59:59.000Z

    then to impose outgoing wave energy boundary conditions [Appendix A, this outgoing wave energy condition implies thatMHD. Appendix A: Outgoing Wave Energy Boundary Conditions In

  2. TRACE-PENALTY MINIMIZATION FOR LARGE-SCALE ...

    E-Print Network [OSTI]

    2014-02-07T23:59:59.000Z

    AMS subject classification. ... puting (SciDAC) program funded by U.S. Department of Energy, Office of Science, Advanced Scientific Computing ... ScaLAPACK [3] library for distributed-memory parallel computers, the parallel efficiency of.

  3. How Regulatory Policy Impacts Large Scale Cogeneration Facilities

    E-Print Network [OSTI]

    Smith, A. J. Jr.

    Congress passed the Public Utility Regulatory Policies Act (PURPA) in November 1978. It was about two years before the Federal Energy Regulatory Commission (FERC) which was charged with promulgating rules implementing PURPA, completed this task...

  4. Robust, Multifunctional Joint for Large Scale Power Production Stacks -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection TechnicalResonantNovember 15 toAdvances

  5. 2013 Community- and Facility-Scale Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    held a Community- and Facility-Scale Tribal Renewable Energy Project Development and Finance Workshop September 18-20, 2013, at the National Renewable Energy Laboratory in...

  6. 2014 Commercial-Scale Renewable Energy Project Development and...

    Broader source: Energy.gov (indexed) [DOE]

    Commercial-Scale Tribal Renewable Energy Project Development and Finance workshop held July 29-31, 2014, at the National Renewable Energy Laboratory in Golden, Colorado. Agenda...

  7. Scaling up Renewable Energy in Developing Countries: finance...

    Open Energy Info (EERE)

    Renewable Energy in Developing Countries: finance and investment perspectives Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Scaling up Renewable Energy in Developing...

  8. Community- and Facility-Scale Renewable Energy Project Development...

    Energy Savers [EERE]

    energy.govindianenergy Community- and Facility-Scale Renewable Energy Project Development and Finance Workshop June 9-11, 2015 Riverwind Hotel and Casino Norman, Oklahoma DRAFT...

  9. Properties of liquid clusters in large-scale molecular dynamics nucleation simulations

    SciTech Connect (OSTI)

    Angélil, Raymond; Diemand, Jürg [Institute for Theoretical Physics, University of Zurich, 8057 Zurich (Switzerland)] [Institute for Theoretical Physics, University of Zurich, 8057 Zurich (Switzerland); Tanaka, Kyoko K.; Tanaka, Hidekazu [Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819 (Japan)] [Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819 (Japan)

    2014-02-21T23:59:59.000Z

    We have performed large-scale Lennard-Jones molecular dynamics simulations of homogeneous vapor-to-liquid nucleation, with 10{sup 9} atoms. This large number allows us to resolve extremely low nucleation rates, and also provides excellent statistics for cluster properties over a wide range of cluster sizes. The nucleation rates, cluster growth rates, and size distributions are presented in Diemand et al. [J. Chem. Phys. 139, 74309 (2013)], while this paper analyses the properties of the clusters. We explore the cluster temperatures, density profiles, potential energies, and shapes. A thorough understanding of the properties of the clusters is crucial to the formulation of nucleation models. Significant latent heat is retained by stable clusters, by as much as ?kT = 0.1? for clusters with size i = 100. We find that the clusters deviate remarkably from spherical—with ellipsoidal axis ratios for critical cluster sizes typically within b/c = 0.7 ± 0.05 and a/c = 0.5 ± 0.05. We examine cluster spin angular momentum, and find that it plays a negligible role in the cluster dynamics. The interfaces of large, stable clusters are thinner than planar equilibrium interfaces by 10%?30%. At the critical cluster size, the cluster central densities are between 5% and 30% lower than the bulk liquid expectations. These lower densities imply larger-than-expected surface areas, which increase the energy cost to form a surface, which lowers nucleation rates.

  10. Ice Dome Construction for Large Scale Habitats on Atmosphereless Bodies

    E-Print Network [OSTI]

    Farr, Stefan Harsan

    2013-01-01T23:59:59.000Z

    One of the greatest difficulties that space exploration faces is the lack of technology necessary to establish large volumes of habitable spaces on site. Both transporting the pre-built enclosures or transporting the equipment necessary for building them on site from conventional materials face the same enormous problem: the need to transport huge quantities of material into space, which is technically close to impossible. The current paper, explores the possibility and one approach of building these large spaces from an alternative material, water ice, a material that is a prerequisite for any settlement. The feasibility of dome shaped, pressurized, water ice buildings is analyzed from a structural integrity point of view and the possibility of building them with a technique using water sublimation and deposition onto a thin plastic film, a process which requires extremely little construction equipment with respect to the resulting habitable space.

  11. Sandia National Laboratories: Large-scale storage of low-pressure...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fuel and grid-scale energy applications offers several advantages over above-ground storage, says a recent Sandia study sponsored by the DOE Fuel Cell Technologies...

  12. COMMENTS OF THE LARGE-SCALE SOLAR ASSOCIATION TO DEPARTMENT

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The BigSidingState6Report,

  13. Breakthrough Large-Scale Industrial Project Begins Carbon Capture and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future of CSP: Challenges and OpportunitiesPitch forasUtilization

  14. DOE Completes Large-Scale Carbon Sequestration Project Awards | Department

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of Energy SafetyDOE CompetencyCleanup atof

  15. Large-Scale Manufacturing of Nanoparticle-Based Lubrication Additives |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLEDControlDepartment of Energy

  16. UNIVERSITY OF CALIFORNIA The Future of Large Scale Visual Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin TransitionProgram | Department HomeDialoguetANSWER OF THE2

  17. The Cielo Petascale Capability Supercomputer: Providing Large-Scale

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The item you requested,C.TechnicalGenomeTechnicalComputing

  18. Large-Scale Molecular Dynamics Simulations for Highly Parallel Infrastructures

    E-Print Network [OSTI]

    Pazúriková, Jana

    2014-01-01T23:59:59.000Z

    Computational chemistry allows researchers to experiment in sillico: by running a computer simulations of a biological or chemical processes of interest. Molecular dynamics with molecular mechanics model of interactions simulates N-body problem of atoms$-$it computes movements of atoms according to Newtonian physics and empirical descriptions of atomic electrostatic interactions. These simulations require high performance computing resources, as evaluations within each step are computationally demanding and billions of steps are needed to reach interesting timescales. Current methods decompose the spatial domain of the problem and calculate on parallel/distributed infrastructures. Even the methods with the highest strong scaling hit the limit at half a million cores: they are not able to cut the time to result if provided with more processors. At the dawn of exascale computing with massively parallel computational resources, we want to increase the level of parallelism by incorporating parallel-in-time comput...

  19. Cryogenic Control Architecture for Large-Scale Quantum Computing

    E-Print Network [OSTI]

    J. M. Hornibrook; J. I. Colless; I. D. Conway Lamb; S. J. Pauka; H. Lu; A. C. Gossard; J. D. Watson; G. C. Gardner; S. Fallahi; M. J. Manfra; D. J. Reilly

    2014-09-08T23:59:59.000Z

    Solid-state qubits have recently advanced to the level that enables them, in-principle, to be scaled-up into fault-tolerant quantum computers. As these physical qubits continue to advance, meeting the challenge of realising a quantum machine will also require the engineering of new classical hardware and control architectures with complexity far beyond the systems used in today's few-qubit experiments. Here, we report a micro-architecture for controlling and reading out qubits during the execution of a quantum algorithm such as an error correcting code. We demonstrate the basic principles of this architecture in a configuration that distributes components of the control system across different temperature stages of a dilution refrigerator, as determined by the available cooling power. The combined setup includes a cryogenic field-programmable gate array (FPGA) controlling a switching matrix at 20 millikelvin which, in turn, manipulates a semiconductor qubit.

  20. Performance of large electron energy filter in large volume plasma device

    SciTech Connect (OSTI)

    Singh, S. K.; Srivastava, P. K.; Awasthi, L. M.; Mattoo, S. K.; Sanyasi, A. K.; Kaw, P. K. [Institute for Plasma Research, Gandhinagar 382 428, Gujarat (India)] [Institute for Plasma Research, Gandhinagar 382 428, Gujarat (India); Singh, R. [Institute for Plasma Research, Gandhinagar 382 428, Gujarat (India) [Institute for Plasma Research, Gandhinagar 382 428, Gujarat (India); WCI Center for Fusion Theory, National Fusion Research Institute Gwahangno 113, Yu-seong-gu, Daejeon, 305-333 (Korea, Republic of)

    2014-03-15T23:59:59.000Z

    This paper describes an in-house designed large Electron Energy Filter (EEF) utilized in the Large Volume Plasma Device (LVPD) [S. K. Mattoo, V. P. Anita, L. M. Awasthi, and G. Ravi, Rev. Sci. Instrum. 72, 3864 (2001)] to secure objectives of (a) removing the presence of remnant primary ionizing energetic electrons and the non-thermal electrons, (b) introducing a radial gradient in plasma electron temperature without greatly affecting the radial profile of plasma density, and (c) providing a control on the scale length of gradient in electron temperature. A set of 19 independent coils of EEF make a variable aspect ratio, rectangular solenoid producing a magnetic field (B{sub x}) of 100?G along its axis and transverse to the ambient axial field (B{sub z} ? 6.2?G) of LVPD, when all its coils are used. Outside the EEF, magnetic field reduces rapidly to 1?G at a distance of 20 cm from the center of the solenoid on either side of target and source plasma. The EEF divides LVPD plasma into three distinct regions of source, EEF and target plasma. We report that the target plasma (n{sub e} ? 2 × 10{sup 11}?cm{sup ?3} and T{sub e} ? 2?eV) has no detectable energetic electrons and the radial gradients in its electron temperature can be established with scale length between 50?and?600 cm by controlling EEF magnetic field. Our observations reveal that the role of the EEF magnetic field is manifested by the energy dependence of transverse electron transport and enhanced transport caused by the plasma turbulence in the EEF plasma.

  1. Reducing cosmological small scale structure via a large dark matter-neutrino interaction: constraints and consequences

    E-Print Network [OSTI]

    Bridget Bertoni; Seyda Ipek; David McKeen; Ann E. Nelson

    2014-12-09T23:59:59.000Z

    Cold dark matter explains a wide range of data on cosmological scales. However, there has been a steady accumulation of evidence for discrepancies between simulations and observations at scales smaller than galaxy clusters. Solutions to these small scale structure problems may indicate that simulations need to improve how they include feedback from baryonic matter, or may imply that dark matter properties differ from the standard cold, noninteracting scenario. One promising way to affect structure formation on small scales is a relatively strong coupling of dark matter to neutrinos. We construct an experimentally viable, simple, renormalizable, model with new interactions between neutrinos and dark matter. We show that addressing the small scale structure problems requires dark matter with a mass that is tens of MeV, and a present-day density determined by an initial particle-antiparticle asymmetry in the dark sector. Generating a sufficiently large dark matter-neutrino coupling requires a new heavy neutrino with a mass around 100 MeV. The heavy neutrino is mostly sterile but has a substantial $\\tau$ neutrino component, while the three nearly massless neutrinos are partly sterile. We provide the first discussion of how such dark matter-neutrino interactions affect neutrino (especially $\\tau$ neutrino) phenomenology. This model can be tested by future astrophysical, particle physics, and neutrino oscillation data. A feature in the neutrino energy spectrum and flavor content from a future nearby supernova would provide strong evidence of neutrino-dark matter interactions. Promising signatures include anomalous matter effects in neutrino oscillations due to nonstandard interactions and a component of the $\\tau$ neutrino with mass around 100 MeV.

  2. Edit paper Methods for Large Scale Hydraulic Fracture Monitoring

    E-Print Network [OSTI]

    Ely, Gregory

    2013-01-01T23:59:59.000Z

    In this paper we propose computationally efficient and robust methods for estimating the moment tensor and location of micro-seismic event(s) for large search volumes. Our contribution is two-fold. First, we propose a novel joint-complexity measure, namely the sum of nuclear norms which while imposing sparsity on the number of fractures (locations) over a large spatial volume, also captures the rank-1 nature of the induced wavefield pattern. This wavefield pattern is modeled as the outer-product of the source signature with the amplitude pattern across the receivers from a seismic source. A rank-1 factorization of the estimated wavefield pattern at each location can therefore be used to estimate the seismic moment tensor using the knowledge of the array geometry. In contrast to existing work this approach allows us to drop any other assumption on the source signature. Second, we exploit the recently proposed first-order incremental projection algorithms for a fast and efficient implementation of the resulting...

  3. Large Scale Deployment of Renewables for Electricity Generation

    E-Print Network [OSTI]

    Neuhoff, Karsten

    2006-03-14T23:59:59.000Z

    to familiarise themselves with the technology through trial and error and learning through experience (Kaplan, 1999). Citizen support has been seriously affected by myths about wind turbines as bird killers41 or excessive energy-intensity of solar PV production... furnace or a gas turbine, but the technology is still in the pilot stage. Alternatively, biomass can be used to produce fuels for transportation, notably ethers from oilseeds and alcohol fuels from the fermentation and hydrolosis of sugar or lingo...

  4. Economical Large Scale Advanced Membrane and Sorbent Strategies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory Board Contributionsreduction system is mostPerspective, June

  5. Energy Department Announces $10 Million for Full-Scale Wave Energy...

    Office of Environmental Management (EM)

    10 Million for Full-Scale Wave Energy Device Testing Energy Department Announces 10 Million for Full-Scale Wave Energy Device Testing October 29, 2014 - 2:55pm Addthis The Energy...

  6. Reconfigurable middleware architectures for large scale sensor networks

    SciTech Connect (OSTI)

    Brennan, Sean M.

    2010-03-01T23:59:59.000Z

    Wireless sensor networks, in an e#11;ffort to be energy efficient, typically lack the high-level abstractions of advanced programming languages. Though strong, the dichotomy between these two paradigms can be overcome. The SENSIX software framework, described in this dissertation, uniquely integrates constraint-dominated wireless sensor networks with the flexibility of object-oriented programming models, without violating the principles of either. Though these two computing paradigms are contradictory in many ways, SENSIX bridges them to yield a dynamic middleware abstraction unifying low-level resource-aware task recon#12;figuration and high-level object recomposition.

  7. Large Scale Cosmological Inhomogeneities, Inflation and Acceleration Without Dark Matter

    E-Print Network [OSTI]

    J. W. Moffat

    2005-03-31T23:59:59.000Z

    We describe the universe as a local, inhomogeneous spherical bubble embedded in a flat matter dominated FLRW universe. Generalized exact Friedmann equations describe the expansion of the universe and an early universe inflationary de Sitter solution is obtained. A non-perturbative expression for the deceleration parameter q is derived that can possibly describe the acceleration of the universe without dark energy, due to the effects associated with very long wave length super-horizon inflationary perturbations. The suggestion by Kolbe et al. [9] that long wave length super-horizon inflationary modes can affect a local observable through inhomogeneities is considered in the light of our exact inhomogeneous model.

  8. ARM - Evaluation Product - Vertical Air Motion during Large-Scale

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006Datastreamstwrcam40m Documentation DataDatastreamsxsaprhsrhi1-minProductsMicroPulseStratiform Rain

  9. Cosmological Simulations for Large-Scale Sky Surveys | Argonne Leadership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site Office (FSO)CorporateCosmic FrontierComputing

  10. DOE Awards First Three Large-Scale Carbon Sequestration Projects |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout » ContactDepartment ofaProjects |LaboratoryDepartment of

  11. Large-Scale Industrial CCS Projects Selected for Continued Testing |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLEDControl ConceptCombustion Research2014)

  12. Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLEDControl ConceptCombustion

  13. Large-Scale Manufacturing of Nanoparticle-Based Lubrication Additives

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLEDControl

  14. DLFM library tools for large scale dynamic applications.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePART I SECTION A

  15. Large Scale Computing and Storage Requirements for Advanced Scientific

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLSLaboratoryRowland toShade LandscapingComputing

  16. Large Scale Computing and Storage Requirements for Biological and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLSLaboratoryRowland toShade

  17. Large Scale Computing and Storage Requirements for Biological and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLSLaboratoryRowland toShadeEnvironmental Research:

  18. Large Scale Production Computing and Storage Requirements for Nuclear

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLSLaboratoryRowland toShadeEnvironmental

  19. Microsoft Word - Vit Plant Large Scale Testing_20110901.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA / USACE625 FINALOptimizationForArticle from theSept. 1,

  20. Petascale Systems Integration into Large Scale Facilties workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding accessPeptoid Nanosheets Offer a MathPetascale Post-Doc Project a

  1. Breakthrough Large-Scale Industrial Project Begins Carbon Capture and

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'s ReplyApplicationCommittee |FY14JuneforUtilization | Department of

  2. COLLOQUIUM: Large Scale Superconducting Magnets for Variety of Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess StoriesFebruary 26, 2014, 4:00pm to| Princeton Plasma Physics

  3. Capacitor placement and real time control in large-scale unbalanced distribution systems: Numerical studies

    SciTech Connect (OSTI)

    Wang, J.C.; Chiang, H.D.; Miu, K.N. [Cornell Univ., Ithaca, NY (United States). School of Electrical Engineering; Darling, G. [NYSEG Corp., Binghamton, NY (United States). Distribution System Dept.

    1997-04-01T23:59:59.000Z

    A novel solution algorithm for capacitor placement and real-time control in real large-scale unbalanced distribution systems is evaluated and implemented to determine the number, locations, sizes, types and control schemes of capacitors to be placed on large-scale unbalanced distribution systems. A detailed numerical study regarding the solution algorithm in large scale unbalanced distribution systems is undertaken. Promising numerical results on both 292 bus and 394 bus real unbalanced distribution systems containing unbalanced loads and phasing and various types of transformers are presented. The computational performance for the capacitor control problem under load variations is encouraging.

  4. Lower scaling dimensions of quarks and gluons and new energy scales

    E-Print Network [OSTI]

    F. Palumbo

    1996-05-08T23:59:59.000Z

    We consider the possibility that quarks and gluons, due to confinement, have lower scaling dimensions. In such a case there appear naturally new energy scales below which the standard theory is recovered. Arguments are given whereby for dimension $1/2$ of the quarks the theory is unitary also above these energy scales.

  5. Aquifer sensitivity assessment modeling at a large scale

    SciTech Connect (OSTI)

    Berg, R.C.; Abert, C.C. (Illinois State Geological Survey, Champaign, IL (United States))

    1994-03-01T23:59:59.000Z

    A 480 square-mile region within Will County, northeastern Illinois was used as a test region for an evaluation of the sensitivity of aquifers to contamination. An aquifer sensitivity model was developed using a Geographic Information System (GIS) with ARC/INFO software to overlay and combine several data layers. Many of the input data layers were developed using 2-dimensional surface modeling (Interactive Surface Modeling (ISM)) and 3-dimensional volume modeling (Geologic Modeling Program (GMP)) computer software. Most of the input data layers (drift thickness, thickness of sand and gravel, depth to first aquifer) were derived from interpolation of descriptive logs for water wells and engineering borings from their study area. A total of 2,984 logs were used to produce these maps. The components used for the authors' model are (1) depth to sand and gravel or bedrock, (2) thickness of the uppermost sand and gravel aquifer, (3) drift thickness, and (4) absence or presence of uppermost bedrock aquifer. The model is an improvement over many aquifer sensitivity models because it combines specific information on depth to the uppermost sand and gravel aquifer with information on the thickness of the uppermost sand and gravel aquifer. The manipulation of the source maps according to rules-based assumptions results in a colored aquifer sensitivity map for the Will County study area. This colored map differentiates 42 aquifer sensitivity map areas by using line patterns within colors. The county-scale model results in an aquifer sensitivity map that can be a useful tool for making land-use planning decisions regarding aquifer protection and management of groundwater resources.

  6. The role of large-scale, extratropical dynamics in climate change

    SciTech Connect (OSTI)

    Shepherd, T.G. [ed.

    1994-02-01T23:59:59.000Z

    The climate modeling community has focused recently on improving our understanding of certain processes, such as cloud feedbacks and ocean circulation, that are deemed critical to climate-change prediction. Although attention to such processes is warranted, emphasis on these areas has diminished a general appreciation of the role played by the large-scale dynamics of the extratropical atmosphere. Lack of interest in extratropical dynamics may reflect the assumption that these dynamical processes are a non-problem as far as climate modeling is concerned, since general circulation models (GCMs) calculate motions on this scale from first principles. Nevertheless, serious shortcomings in our ability to understand and simulate large-scale dynamics exist. Partly due to a paucity of standard GCM diagnostic calculations of large-scale motions and their transports of heat, momentum, potential vorticity, and moisture, a comprehensive understanding of the role of large-scale dynamics in GCM climate simulations has not been developed. Uncertainties remain in our understanding and simulation of large-scale extratropical dynamics and their interaction with other climatic processes, such as cloud feedbacks, large-scale ocean circulation, moist convection, air-sea interaction and land-surface processes. To address some of these issues, the 17th Stanstead Seminar was convened at Bishop`s University in Lennoxville, Quebec. The purpose of the Seminar was to promote discussion of the role of large-scale extratropical dynamics in global climate change. Abstracts of the talks are included in this volume. On the basis of these talks, several key issues emerged concerning large-scale extratropical dynamics and their climatic role. Individual records are indexed separately for the database.

  7. Large Scale Wind and Solar Integration in Germany

    SciTech Connect (OSTI)

    Ernst, Bernhard; Schreirer, Uwe; Berster, Frank; Pease, John; Scholz, Cristian; Erbring, Hans-Peter; Schlunke, Stephan; Makarov, Yuri V.

    2010-02-28T23:59:59.000Z

    This report provides key information concerning the German experience with integrating of 25 gigawatts of wind and 7 gigawatts of solar power capacity and mitigating its impacts on the electric power system. The report has been prepared based on information provided by the Amprion GmbH and 50Hertz Transmission GmbH managers and engineers to the Bonneville Power Administration (BPA) and Pacific Northwest National Laboratory representatives during their visit to Germany in October 2009. The trip and this report have been sponsored by the BPA Technology Innovation office. Learning from the German experience could help the Bonneville Power Administration engineers to compare and evaluate potential new solutions for managing higher penetrations of wind energy resources in their control area. A broader dissemination of this experience will benefit wind and solar resource integration efforts in the United States.

  8. Optimized multi-site local orbitals in the large-scale DFT program CONQUEST

    E-Print Network [OSTI]

    Nakata, Ayako; Miyazaki, Tsuyoshi

    2015-01-01T23:59:59.000Z

    We introduce numerical optimization of multi-site support functions in the linear-scaling DFT code CONQUEST. Multi-site support functions, which are linear combinations of pseudo-atomic orbitals on a target atom and those neighbours within a cutoff, have been recently proposed to reduce the number of support functions to the minimal basis while keeping the accuracy of a large basis [J. Chem. Theory Comput., 2014, 10, 4813]. The coefficients were determined by using the local filter diagonalization (LFD) method [Phys. Rev. B, 2009, 80, 205104]. We analyse the effect of numerical optimization of the coefficients produced by the LFD method. Tests on crystalline silicon, a benzene molecule and hydrated DNA systems show that the optimization improves the accuracy of the multi-site support functions with small cutoffs. It is also confirmed that the optimization guarantees the variational energy minimizations with multi-site support functions.

  9. The Large Scale Cosmic-Ray Anisotropy as Observed with Milagro

    E-Print Network [OSTI]

    Abdo, A A; Aune, T; Berley, D; Casanova, S; Chen, C; Dingus, B L; Ellsworth, R W; Fleysher, L; Fleysher, R; González, M M; Goodman, J A; Hoffman, C M; Hopper, B; Hüntemeyer, P H; Kolterman, B E; Lansdell, C P; Linnemann, J T; McEnery, J E; Mincer, A I; Némethy, P; Noyes, D; Ryan, J M; Parkinson, P M Saz; Shoup, A; Sinnis, G; Smith, A J; Sullivan, G W; Vasileiou, V; Walker, G P; Williams, D A; Yodh, G B

    2008-01-01T23:59:59.000Z

    Results are presented of a harmonic analysis of the large scale cosmic-ray anisotropy as observed by the Milagro observatory. We show a two-dimensional display of the sidereal anisotropy projections in right ascension generated by the fitting of three harmonics to 18 separate declination bands. The Milagro observatory is a water Cherenkov detector located in the Jemez mountains near Los Alamos, New Mexico. With a high duty cycle and large field-of-view, Milagro is an excellent instrument for measuring this anisotropy with high sensitivity at TeV energies. The analysis is conducted using a seven year data sample consisting of more than 95 billion events. We observe an anisotropy with a magnitude around 0.1% for cosmic rays with a median energy of 6 TeV. The dominant feature is a deficit region of depth (-2.85 +/- 0.06 stat. +/- 0.08 syst.)x10^(-3) in the direction of the Galactic North Pole with a range in declination of -10 to 45 degrees and 150 to 225 degrees in right ascension. We observe a steady increase ...

  10. The Large Scale Cosmic-Ray Anisotropy as Observed with Milagro

    E-Print Network [OSTI]

    A. A. Abdo; B. T. Allen; T. Aune; D. Berley; S. Casanova; C. Chen; B. L. Dingus; R. W. Ellsworth; L. Fleysher; R. Fleysher; M. M. Gonzalez; J. A. Goodman; C. M. Hoffman; B. Hopper; P. H. Hüntemeyer; B. E. Kolterman; C. P. Lansdell; J. T. Linnemann; J. E. McEnery; A. I. Mincer; P. Nemethy; D. Noyes; J. Pretz; J. M. Ryan; P. M. Saz Parkinson; A. Shoup; G. Sinnis; A. J. Smith; G. W. Sullivan; V. Vasileiou; G. P. Walker; D. A. Williams; G. B. Yodh

    2009-04-20T23:59:59.000Z

    Results are presented of a harmonic analysis of the large scale cosmic-ray anisotropy as observed by the Milagro observatory. We show a two-dimensional display of the sidereal anisotropy pro jections in right ascension generated by the fitting of three harmonics to 18 separate declination bands. The Milagro observatory is a water Cherenkov detector located in the Jemez mountains near Los Alamos, New Mexico. With a high duty cycle and large field-of-view, Milagro is an excellent instrument for measuring this anisotropy with high sensitivity at TeV energies. The analysis is conducted using a seven year data sample consisting of more than 95 billion events, the largest such data set in existence. We observe an anisotropy with a magnitude around 0.1% for cosmic rays with a median energy of 6 TeV. The dominant feature is a deficit region of depth (2.49 +/- 0.02 stat. +/- 0.09 sys.)x10^(-3) in the direction of the Galactic North Pole centered at 189 degrees right ascension. We observe a steady increase in the magnitude of the signal over seven years.

  11. LARGE-SCALE UNSTEADINESS IN A TWO-DIMENSIONAL DIFFUSER: NUMERICAL STUDY TOWARD ACTIVE SEPARATION CONTROL

    E-Print Network [OSTI]

    Colonius, Tim

    of Technology, Pasadena, California 91125 ABSTRACT We develop a reduced order model for large-scale unsteadiness mass injection can pinch off vortices with a smaller size; accordingly, their convective velocity

  12. Programmable window : a large-scale transparent electronic display using SPD film

    E-Print Network [OSTI]

    Ramos, Martin (Ramos Rizo-Patron)

    2004-01-01T23:59:59.000Z

    This research demonstrates that Suspended Particle Device (SPD) film is a viable option for the development of large-scale transparent display systems. The thesis analyzes the SPD film from an architectural display application ...

  13. A multiperiod optimization model to schedule large-scale petroleum development projects

    E-Print Network [OSTI]

    Husni, Mohammed Hamza

    2009-05-15T23:59:59.000Z

    This dissertation solves an optimization problem in the area of scheduling large-scale petroleum development projects under several resources constraints. The dissertation focuses on the application of a metaheuristic search Genetic Algorithm (GA...

  14. Large scale oceanic circulation and fluxes of freshwater, heat, nutrients and oxygen

    E-Print Network [OSTI]

    Ganachaud, Alexandre Similien, 1970-

    2000-01-01T23:59:59.000Z

    A new, global inversion is used to estimate the large scale oceanic circulation based on the World Ocean Circulation Experiment and Java Australia Dynamic Experiment hydrographic data. A linear inverse "box" model is used ...

  15. A randomized Mirror-Prox method for solving structured large-scale ...

    E-Print Network [OSTI]

    2011-12-06T23:59:59.000Z

    Dec 6, 2011 ... value optimization, large-scale problems, matrix exponentiation .... conclusions are demonstrated by numerical evidence: for solving problems (up to ...... To build such a procedure, we can specify T = T(?) in such a way.

  16. Fault prophet : a fault injection tool for large scale computer systems

    E-Print Network [OSTI]

    Tchwella, Tal

    2014-01-01T23:59:59.000Z

    In this thesis, I designed and implemented a fault injection tool, to study the impact of soft errors for large scale systems. Fault injection is used as a mechanism to simulate soft errors, measure the output variability ...

  17. LARGE SCALE PERMEABILITY TEST OF THE GRANITE IN THE STRIPA MINE AND THERMAL CONDUCTIVITY TEST

    E-Print Network [OSTI]

    Lundstrom, L.

    2011-01-01T23:59:59.000Z

    No.2 LARGE SCALE PERMEABILITY TEST OF THE GRANITE' IN THEMINE AND, THERMAL CONDUCTIVITY TEST Lars Lundstrom and HakanSUMMARY REPORT Background TEST SITE Layout of test places

  18. Census: Location-Aware Membership Management for Large-Scale Distributed Systems

    E-Print Network [OSTI]

    Cowling, James Alexander

    We present Census, a platform for building large-scale distributed applications. Census provides a membership service and a multicast mechanism. The membership service provides every node with a consistent view of the ...

  19. Model-constrained optimization methods for reduction of parameterized large-scale systems

    E-Print Network [OSTI]

    Bui-Thanh, Tan

    2007-01-01T23:59:59.000Z

    Most model reduction techniques employ a projection framework that utilizes a reduced-space basis. The basis is usually formed as the span of a set of solutions of the large-scale system, which are computed for selected ...

  20. Model-Constrained Optimization Methods for Reduction of Parameterized Large-Scale Systems

    E-Print Network [OSTI]

    Tan, Bui-Thanh

    Most model reduction techniques employ a projection framework that utilizes a reduced-space basis. The basis is usually formed as the span of a set of solutions of the large-scale system, which are computed for selected ...

  1. Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation

    E-Print Network [OSTI]

    Collins, James J.

    Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America, 2 Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America, 3 Boston

  2. A statistical learning framework for data mining of large-scale systems : algorithms, implementation, and applications

    E-Print Network [OSTI]

    Tsou, Ching-Huei, 1973-

    2007-01-01T23:59:59.000Z

    A machine learning framework is presented that supports data mining and statistical modeling of systems that are monitored by large-scale sensor networks. The proposed algorithm is novel in that it takes both observations ...

  3. Metal Catalyzed sp2 Bonded Carbon - Large-scale Graphene Synthesis...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metal Catalyzed sp2 Bonded Carbon - Large-scale Graphene Synthesis and Beyond December 1, 2009 at 3pm36-428 Peter Sutter Center for Functional Nanomaterials sutter abstract:...

  4. Chemical engineers design, control and optimize large-scale chemical, physicochemical and

    E-Print Network [OSTI]

    Rohs, Remo

    , Biochemical, Environmental, Petroleum Engineering and Nantoechnology. CHEMICAL&MATERIALSSCIENCE CHE OVERVIEW of Science 131 units · Chemical Engineering (Petroleum) Bachelor of Science 136 units · Chemical Engineering38 Chemical engineers design, control and optimize large-scale chemical, physicochemical

  5. Large scale test rig for flow visualization and leakage measurement of labyrinth seals

    E-Print Network [OSTI]

    Broussard, Daniel Harold

    1991-01-01T23:59:59.000Z

    LARGE SCALE TEST RIG FOR FLOW VISUALIZATION AND LEAKAGE MEASUREMENT OF LABYRINTH SEALS A Thesis by DANIEL HAROLD BROUSSARD Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of requirements for degree... of MASTER OF SCIENCE December 1991 Major Subject: Mechanical Engineering LARGE SCALE TEST RIG FOR FLOW VISUALIZATION AND LEAKAGE MEASUREMENT OF LABYRINTH SEALS A Thesis by DANIEL HAROLD BROUSSARD Approved as to style and content by: David L. Rhode...

  6. Large-Scale Analysis of Individual and Task Differences in Search Result Page Examination Strategies

    E-Print Network [OSTI]

    Dumais, Susan

    Large-Scale Analysis of Individual and Task Differences in Search Result Page Examination users examine results which are similar to those observed in small-scale studies. Our findings have differences on search result page examination strategies is important in develop- ing improved search engines

  7. Environmental impacts of large-scale grid-connected ground-mounted PV installations

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Environmental impacts of large-scale grid-connected ground-mounted PV installations Antoine Beylota-scale ground-mounted PV installations by considering a life-cycle approach. The methodology is based. Mobile PV installations with dual-axis trackers show the largest impact potential on ecosystem quality

  8. Personal Workspace for Large-Scale Data-Driven Computational Experiment

    E-Print Network [OSTI]

    Plale, Beth

    's personal workspace is a virtual repository of a user's data products. Its conceptual space is organizedPersonal Workspace for Large-Scale Data-Driven Computational Experiment Yiming Sun, Scott Jensen@cs.indiana.edu plale@cs.indiana.edu Abstract 1 -- As the scale and complexity of data-driven computational science

  9. Communications via Systems-on-Chips Clustering in Large-Scaled Sensor Networks

    E-Print Network [OSTI]

    Fan, Jeffrey

    node, the large-scaled senor network is proposed to be transformed into a maze diagram by a user of data, including temperature, humidity, pressure, noise levels, vehicular movement, etc to the functionalities of a highly scaled VLSI silicon chip with multi-cored environments. In other words, each SoC has

  10. Domain Controlled Architecture A New Approach for Large Scale Software Integrated Automotive Systems

    E-Print Network [OSTI]

    Kühnhauser, Winfried

    Domain Controlled Architecture A New Approach for Large Scale Software Integrated Automotive Scale Software Integration, LSSI, Automotive Real Time, Multi-core, Many-core, Embedded Automo- tive mobility domain. The automotive in- dustry is confronted with a rising system complexity and several

  11. Sandia Energy - Sandia Study Shows Large LNG Fires Hotter but...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Study Shows Large LNG Fires Hotter but Smaller Than Expected Home Infrastructure Security News News & Events Energy Assurance Modeling Modeling & Analysis Analysis Sandia Study...

  12. PSNH- Large Business Energy Efficiency Retrofit Rebate Program

    Broader source: Energy.gov [DOE]

    Public Service of New Hampshire (PSNH), in collaboration with [http://www.nhsaves.com/ nhsaves], encourages large commercial and industrial customers in existing facilities to conserve energy...

  13. Large Industrial Renewable Energy Purchase Program (New Brunswick)

    Broader source: Energy.gov [DOE]

    Beginning January 1, 2012 the Large Industrial Renewable Energy Purchase Program allows NB Power to purchase renewable energy generated by its largest customers at a rate of $95/MWh. This...

  14. Observation time scale, free-energy landscapes, and molecular symmetry

    E-Print Network [OSTI]

    Salamon, Peter

    Observation time scale, free-energy landscapes, and molecular symmetry David J. Walesa,1 and Peter structures that interconvert on a given time scale are lumped together, the corresponding free-energy surface that are connected by free-energy barriers below a certain threshold. We illustrate this time dependence for some

  15. I/O-Conscious Data Preparation for Large-Scale Web Search Engines

    E-Print Network [OSTI]

    Chiueh, Tzi-cker

    a general technique for efficiently car- rying out large sets of simple transformation or queryingI/O-Conscious Data Preparation for Large-Scale Web Search Engines Maxim Lifantsev Tzi-cker Chiueh of the transformation and querying operations that work with the data. This data and processing partitioning is natu

  16. Facility Location under Demand Uncertainty: Response to a Large-scale Bioterror Attack

    E-Print Network [OSTI]

    Dessouky, Maged

    Facility Location under Demand Uncertainty: Response to a Large-scale Bioterror Attack Abstract In the event of a catastrophic bio-terror attack, major urban centers need to effi- ciently distribute large of a hypothetical anthrax attack in Los Angeles County. Keywords: Capacitated facility location, distance

  17. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Variability of Power from Large

    E-Print Network [OSTI]

    and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Variability of Power from Large Scale Solar Photovoltaic Scenarios in the State of Gujarat Renewable Energy World India Brian ParsonsNREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency

  18. Large-Scale Wind Integration Studies in the United States: Preliminary Results; Preprint

    SciTech Connect (OSTI)

    Milligan, M.; Lew, D.; Corbus, D.; Piwko, R.; Miller, N.; Clark, K.; Jordan, G.; Freeman, L.; Zavadil, B.; Schuerger, M.

    2009-09-01T23:59:59.000Z

    The National Renewable Energy Laboratory is managing two large regional wind integration studies on behalf of the United States Department of Energy. These two studies are believed to be the largest ever undertaken in the United States.

  19. EM Active Sites (large) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised FindingDepartmentDepartmentStatement |DepartmentEnergyEnergyActive

  20. Alden Large Flume | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy Resources Jump to: navigation, searchAlcoa Jump to: