National Library of Energy BETA

Sample records for large scale energy

  1. Large Scale Energy Storage: From Nanomaterials to Large Systems

    E-Print Network [OSTI]

    Fisher, Frank

    Large Scale Energy Storage: From Nanomaterials to Large Systems Wednesday October 26, 2011, Babbio energy storage devices. Specifically, this talk discusses 1) the challenges for grid scale of emergent technologies with ultralow costs on new energy storage materials and mechanisms. Dr. Jun Liu

  2. Batteries for Large Scale Energy Storage

    SciTech Connect (OSTI)

    Soloveichik, Grigorii L.

    2011-07-15

    In recent years, with the deployment of renewable energy sources, advances in electrified transportation, and development in smart grids, the markets for large-scale stationary energy storage have grown rapidly. Electrochemical energy storage methods are strong candidate solutions due to their high energy density, flexibility, and scalability. This review provides an overview of mature and emerging technologies for secondary and redox flow batteries. New developments in the chemistry of secondary and flow batteries as well as regenerative fuel cells are also considered. Advantages and disadvantages of current and prospective electrochemical energy storage options are discussed. The most promising technologies in the short term are high-temperature sodium batteries with ?”-alumina electrolyte, lithium-ion batteries, and flow batteries. Regenerative fuel cells and lithium metal batteries with high energy density require further research to become practical.

  3. Locations of Smart Grid Demonstration and Large-Scale Energy...

    Office of Environmental Management (EM)

    Locations of Smart Grid Demonstration and Large-Scale Energy Storage Projects Locations of Smart Grid Demonstration and Large-Scale Energy Storage Projects Map of the United States...

  4. FEMP Helps Federal Facilities Develop Large-Scale Renewable Energy...

    Office of Environmental Management (EM)

    FEMP Helps Federal Facilities Develop Large-Scale Renewable Energy Projects FEMP Helps Federal Facilities Develop Large-Scale Renewable Energy Projects August 21, 2013 - 12:00am...

  5. Energy Department Loan Guarantee Would Support Large-Scale Rooftop...

    Energy Savers [EERE]

    Loan Guarantee Would Support Large-Scale Rooftop Solar Power for U.S. Military Housing Energy Department Loan Guarantee Would Support Large-Scale Rooftop Solar Power for U.S....

  6. Optimizing Cluster Heads for Energy Efficiency in Large-Scale...

    Office of Scientific and Technical Information (OSTI)

    Optimizing Cluster Heads for Energy Efficiency in Large-Scale Heterogeneous Wireless Sensor Networks Gu, Yi; Wu, Qishi; Rao, Nageswara S. V. Hindawi Publishing Corporation None...

  7. Optimizing Cluster Heads for Energy Efficiency in Large-Scale...

    Office of Scientific and Technical Information (OSTI)

    clustering is generally considered as an efficient and scalable way to facilitate the management and operation of such large-scale networks and minimize the total energy...

  8. Autonomie Large Scale Deployment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research atDepartmentAuditsDepartment of(TEG)of Energy1Large

  9. Large-Scale Eucalyptus Energy Farms and Power Cogeneration1

    E-Print Network [OSTI]

    Large-Scale Eucalyptus Energy Farms and Power Cogeneration1 Robert C. Noronla2 The initiation of a large-scale cogeneration project, especially one that combines construction of the power generation supplemental fuel source must be sought if the cogeneration facility will consume more fuel than

  10. Large Scale Computing and Storage Requirements for High Energy Physics

    E-Print Network [OSTI]

    Gerber, Richard A.

    2011-01-01

    Journal of Computational Physics, Large Scale Computing andRequirements for High Energy Physics [3] A. S. Almgren, J.Journal of Computational Physics, 87:171–200, 1990. [7] G.

  11. Large Scale Cosmic Microwave Background Anisotropies and Dark Energy

    E-Print Network [OSTI]

    J. Weller; A. M. Lewis

    2003-08-29

    In this note we investigate the effects of perturbations in a dark energy component with a constant equation of state on large scale cosmic microwave background anisotropies. The inclusion of perturbations increases the large scale power. We investigate more speculative dark energy models with w<-1 and find the opposite behaviour. Overall the inclusion of perturbations in the dark energy component increases the degeneracies. We generalise the parameterization of the dark energy fluctuations to allow for an arbitrary const ant sound speeds and show how constraints from cosmic microwave background experiments change if this is included. Combining cosmic microwave background with large scale structure, Hubble parameter and Supernovae observations we obtain w=-1.02+-0.16 (1 sigma) as a constraint on the equation of state, which is almost independent of the sound speed chosen. With the presented analysis we find no significant constraint on the constant speed of sound of the dark energy component.

  12. Large-scale cosmic flows and moving dark energy

    E-Print Network [OSTI]

    Jose Beltran Jimenez; Antonio L. Maroto

    2009-02-24

    Large-scale matter bulk flows with respect to the cosmic microwave background have very recently been detected on scales 100 Mpc/h and 300 Mpc/h by using two different techniques showing an excellent agreement in the motion direction. However, the unexpectedly large measured amplitudes are difficult to understand within the context of standard LCDM cosmology. In this work we show that the existence of such a flow could be signaling the presence of moving dark energy at the time when photons decoupled from matter. We also comment on the relation between the direction of the CMB dipole and the preferred axis observed in the quadrupole in this scenario.

  13. Electrochemical cells for medium- and large-scale energy storage

    SciTech Connect (OSTI)

    Wang, Wei; Wei, Xiaoliang; Choi, Daiwon; Lu, Xiaochuan; Yang, G.; Sun, C.

    2014-12-12

    This is one of the chapters in the book titled “Advances in batteries for large- and medium-scale energy storage: Applications in power systems and electric vehicles” that will be published by the Woodhead Publishing Limited. The chapter discusses the basic electrochemical fundamentals of electrochemical energy storage devices with a focus on the rechargeable batteries. Several practical secondary battery systems are also discussed as examples

  14. Large Scale GSHP as Alternative Energy for American Farmers Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona: Energy ResourcesProject | Open Energy Information Large Scale

  15. Large-Scale Federal Renewable Energy Projects | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Renewable energy projects larger than 10 megawatts (MW), also known as utility-scale projects, are complex and typically require private-sector financing. The Federal Energy...

  16. Large-Scale Magnetic Fields, Dark Energy and QCD

    E-Print Network [OSTI]

    Federico R. Urban; Ariel R. Zhitnitsky

    2010-08-20

    Cosmological magnetic fields are being observed with ever increasing correlation lengths, possibly reaching the size of superclusters, therefore disfavouring the conventional picture of generation through primordial seeds later amplified by galaxy-bound dynamo mechanisms. In this paper we put forward a fundamentally different approach that links such large-scale magnetic fields to the cosmological vacuum energy. In our scenario the dark energy is due to the Veneziano ghost (which solves the $U(1)_A$ problem in QCD). The Veneziano ghost couples through the triangle anomaly to the electromagnetic field with a constant which is unambiguously fixed in the standard model. While this interaction does not produce any physical effects in Minkowski space, it triggers the generation of a magnetic field in an expanding universe at every epoch. The induced energy of the magnetic field is thus proportional to cosmological vacuum energy: $\\rho_{EM}\\simeq B^2 \\simeq (\\frac{\\alpha}{4\\pi})^2 \\rho_{DE}$, $\\rho_{DE}$ hence acting as a source for the magnetic energy $\\rho_{EM}$. The corresponding numerical estimate leads to a magnitude in the nG range. There are two unique and distinctive predictions of our proposal: an uninterrupted active generation of Hubble size correlated magnetic fields throughout the evolution of the universe; the presence of parity violation on the enormous scales $1/H$, which apparently has been already observed in CMB. These predictions are entirely rooted into the standard model of particle physics.

  17. Energy Department Applauds Nation's First Large-Scale Industrial...

    Office of Environmental Management (EM)

    Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction The 15,000 square-foot sustainably designed National Sequestration Education Center, located at Richland...

  18. Energy Department Applauds Nation's First Large-Scale Industrial...

    Broader source: Energy.gov (indexed) [DOE]

    today's groundbreaking for construction of the nation's first large-scale industrial carbon capture and storage (ICCS) facility in Decatur, Illinois. Supported by the 2009...

  19. Large Scale GSHP as Alternative Energy for American Farmers Geothermal...

    Open Energy Info (EERE)

    technologies, and remove the farming business risk associated with fluctuating fuel prices. PI Xu has many years experience in large scale GSHP for commercial and industrial...

  20. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage

    E-Print Network [OSTI]

    Wang, Wei Hua

    Room-temperature stationary sodium-ion batteries for large-scale electric energy storage Huilin Pan attention particularly in large- scale electric energy storage applications for renewable energy and smart, such as the wind and the sun, large-scale electric energy storage systems are becoming extremely important

  1. Lessons from Large-Scale Renewable Energy Integration Studies: Preprint

    SciTech Connect (OSTI)

    Bird, L.; Milligan, M.

    2012-06-01

    In general, large-scale integration studies in Europe and the United States find that high penetrations of renewable generation are technically feasible with operational changes and increased access to transmission. This paper describes other key findings such as the need for fast markets, large balancing areas, system flexibility, and the use of advanced forecasting.

  2. Large-Scale Renewable Energy Guide: Developing Renewable Energy Projects Larger Than 10 MWs at Federal Facilities

    Broader source: Energy.gov [DOE]

    The Large-Scale Renewable Energy Guide: Developing Renewable Energy Projects Larger Than 10 MWs at Federal Facilities provides best practices and other helpful guidance for federal agencies developing large-scale renewable energy projects.

  3. An Energy-Efficient Framework for Large-Scale Parallel Storage Systems

    E-Print Network [OSTI]

    Qin, Xiao

    An Energy-Efficient Framework for Large-Scale Parallel Storage Systems Ziliang Zong, Matt Briggs-scale and energy-efficient parallel storage systems. To validate the efficiency of the proposed framework, a buffer that this new framework can significantly improves the energy efficiency of large-scale parallel storage systems

  4. Energy Modeling of Supercomputers and Large-Scale Scientific Applications

    E-Print Network [OSTI]

    Pakin, Scott

    include 1) the presentation of a practical, regression model that expresses energy consumption consumption, 2) a validation of the model's ability to describe the energy consumption of a few large needed for an application to reduce its energy consumption and an identification of the CPU frequency

  5. Large-Scale Renewable Energy Guide | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIALU.S.Leadership on Clean Energy | DepartmentDepartment

  6. Large-Scale Federal Renewable Energy Projects | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOE Safety StandardsLabor Relations ActAvenue,Workshop | Department

  7. Harvesting Clean Energy How California Can Deploy Large-Scale Renewable

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Harvesting Clean Energy How California Can Deploy Large-Scale Renewable Energy Projects Harvesting Clean Energy: How California Can Deploy Large-Scale Renewable Energy Projects on Appropriate acres of impaired lands in the Westlands Water District in the Central Valley may soon have

  8. Large Scale Computing and Storage Requirements for High Energy Physics

    SciTech Connect (OSTI)

    Gerber, Richard A.; Wasserman, Harvey

    2010-11-24

    The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility for the Department of Energy's Office of Science, providing high-performance computing (HPC) resources to more than 3,000 researchers working on about 400 projects. NERSC provides large-scale computing resources and, crucially, the support and expertise needed for scientists to make effective use of them. In November 2009, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR), and DOE's Office of High Energy Physics (HEP) held a workshop to characterize the HPC resources needed at NERSC to support HEP research through the next three to five years. The effort is part of NERSC's legacy of anticipating users needs and deploying resources to meet those demands. The workshop revealed several key points, in addition to achieving its goal of collecting and characterizing computing requirements. The chief findings: (1) Science teams need access to a significant increase in computational resources to meet their research goals; (2) Research teams need to be able to read, write, transfer, store online, archive, analyze, and share huge volumes of data; (3) Science teams need guidance and support to implement their codes on future architectures; and (4) Projects need predictable, rapid turnaround of their computational jobs to meet mission-critical time constraints. This report expands upon these key points and includes others. It also presents a number of case studies as representative of the research conducted within HEP. Workshop participants were asked to codify their requirements in this case study format, summarizing their science goals, methods of solution, current and three-to-five year computing requirements, and software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, multi-core environment that is expected to dominate HPC architectures over the next few years. The report includes a section that describes efforts already underway or planned at NERSC that address requirements collected at the workshop. NERSC has many initiatives in progress that address key workshop findings and are aligned with NERSC's strategic plans.

  9. Membraneless hydrogen bromine laminar flow battery for large-scale energy storage

    E-Print Network [OSTI]

    Braff, William Allan

    2014-01-01

    Electrochemical energy storage systems have been considered for a range of potential large-scale energy storage applications. These applications vary widely, both in the order of magnitude of energy storage that is required ...

  10. Sandia Energy - Large-Scale Computational Fluid Dynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal Energy &Water Power ProgramLarge Eddy Simulation

  11. Testing coupled dark energy with large scale structure observation

    SciTech Connect (OSTI)

    Yang, Weiqiang; Xu, Lixin, E-mail: d11102004@mail.dlut.edu.cn, E-mail: lxxu@dlut.edu.cn [Institute of Theoretical Physics, School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian, 116024 (China)

    2014-08-01

    The coupling between the dark components provides a new approach to mitigate the coincidence problem of cosmological standard model. In this paper, dark energy is treated as a fluid with a constant equation of state, whose coupling with dark matter is Q-bar =3H?{sub x}?-bar {sub x}. In the frame of dark energy, we derive the evolution equations for the density and velocity perturbations. According to the Markov Chain Monte Carlo method, we constrain the model by currently available cosmic observations which include cosmic microwave background radiation, baryon acoustic oscillation, type Ia supernovae, and f?{sub 8}(z) data points from redshift-space distortion. The results show the interaction rate in ? regions: ?{sub x} = 0.00328{sub -0.00328-0.00328-0.00328}{sup +0.000736+0.00549+0.00816}, which means that the recently cosmic observations favor a small interaction rate which is up to the order of 10{sup -2}, meanwhile, the measurement of redshift-space distortion could rule out the large interaction rate in the ? region.

  12. Strategies to Finance Large-Scale Deployment of Renewable Energy...

    Open Energy Info (EERE)

    and Infrastructure Approach AgencyCompany Organization: International Energy Agency (IEA) Sector: Energy Focus Area: Renewable Energy Topics: Finance, Implementation, Policies...

  13. U.S. Energy Infrastructure Investment: Large-Scale Integrated Smart Grid

    E-Print Network [OSTI]

    U.S. Energy Infrastructure Investment: Large-Scale Integrated Smart Grid Solutions with High: LargeScale Integrated Smart Grid Solutions with High Penetration of Renewable Resources, Dispersed- ing electricity grid. Much attention is being given to smart grid development in the U.S. and around

  14. Energy Efficiency for Large-Scale MapReduce Workloads with Significant Interactive Analysis

    E-Print Network [OSTI]

    California at Irvine, University of

    Energy Efficiency for Large-Scale MapReduce Workloads with Significant Interactive Analysis Yanpei make energy efficiency a critical concern. Prior works on MapReduce energy efficiency have not yet con to achieve for MIA workloads. These concerns lead us to develop BEEMR (Berkeley Energy Efficient Map

  15. A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage

    E-Print Network [OSTI]

    Cui, Yi

    A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage Yuan Yang,a Guangyuan Zhengb and Yi Cui*ac Large-scale energy storage represents a key challenge for renewable energy develop a new lithium/ polysulfide (Li/PS) semi-liquid battery for large-scale energy storage

  16. Copyright 2014 IEEE. Reprinted, with permission from: CERTS Microgrid Demonstration With Large-Scale Energy

    E-Print Network [OSTI]

    Copyright © 2014 IEEE. Reprinted, with permission from: CERTS Microgrid Demonstration With Large GRID, VOL. 5, NO. 2, MARCH 2014 937 CERTS Microgrid Demonstration With Large-Scale Energy Storage (CERTS) Microgrid concept captures the emerging po- tential of Distributed Energy Resource (DER) using

  17. Large Scale Renewable Energy Property Tax Abatement (Nevada State...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    renewable energy resources including solar, wind, biomass*, fuel cells, geothermal or hydro. Generation facilities must have a capacity of at least 10 megawatts (MW). Facilities...

  18. Large Scale Computing and Storage Requirements for High Energy Physics

    E-Print Network [OSTI]

    Gerber, Richard A.

    2011-01-01

    number modeling of type ia supernovae. I. Hydrodynamics.number modeling of type ia supernovae. II. Energy evolution.Mach number modeling of type ia supernovae. III. Reactions.

  19. Bounding Energy Consumption in Large-Scale MPI Programs

    E-Print Network [OSTI]

    Funk, Shelby Hyatt

    can execute parts of a program at a slower CPU speed to achieve energy savings with a relatively small savings is NP-complete, which has led to many heuristic energy- saving algorithms. To determine how closely these algorithms approach optimal savings, we developed a system that determines a bound on the en

  20. Spatial Energy Balancing in Large-scale Wireless Multihop Networks

    E-Print Network [OSTI]

    de Veciana, Gustavo

    communications systems and/or distributed sensing ap- plications, where energy storage and availability may be quite limited. There are many levels at which one can address this problem. Advances in silicon

  1. Day-Ahead and Real-Time Models for Large-Scale Energy Storage

    E-Print Network [OSTI]

    Engineering Research Center Empowering Minds to Engineer the Future Electric Energy System #12;DayDay-Ahead and Real-Time Models for Large-Scale Energy Storage Final Project Report Power Systems of Electrical, Computer, and Energy Engineering P.O. BOX 875706 Tempe, AZ 85287-5706 Phone: 480 965-1276 Fax

  2. Effects of large-scale distribution of wind energy in and around Europe

    E-Print Network [OSTI]

    Effects of large-scale distribution of wind energy in and around Europe Gregor Giebel Niels Gylling Mortensen Risø National Laboratory Gregor Czisch ISET #12;Outline · How to achieve high penetrations of wind energy in Europe? · Distribution of wind energy all over Europe leads to smoothing of the wind power

  3. The Association of Large-Scale Climate Variability and Teleconnections on Wind Energy Resource

    E-Print Network [OSTI]

    The Association of Large-Scale Climate Variability and Teleconnections on Wind Energy Resource over on Wind Energy Resource over Europe and its Intermittency Pascal Kriesche* and Adam Schlosser* Abstract In times of increasing importance of wind power in the world's energy mix, this study focuses on a better

  4. A Scalable Model for Energy Load Balancing in Large-scale Sensor Networks

    E-Print Network [OSTI]

    de Veciana, Gustavo

    A Scalable Model for Energy Load Balancing in Large-scale Sensor Networks Seung Jun Baek we consider how one might achieve more balanced energy burdens across the network by spreading sinks change their locations to balance the energy burdens incurred accross the network nodes [1

  5. Energy, water and large-scale patterns of reptile and amphibian species richness in Europe

    E-Print Network [OSTI]

    Rodríguez, Miguel Ángel

    Energy, water and large-scale patterns of reptile and amphibian species richness in Europe Miguel Á energy, that proposes that richness will be best described by energy inputs into an area (e.g., Turner et and amphibian species richness in Europe and 11 environmental variables related to five hypotheses

  6. INORGANIC NANOPARTICLES AS PHASE-CHANGE MATERIALS FOR LARGE-SCALE THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Pennycook, Steve

    INORGANIC NANOPARTICLES AS PHASE-CHANGE MATERIALS FOR LARGE- SCALE THERMAL ENERGY STORAGE Miroslaw storage performance. The expected immediate outcome of this effort is the demonstration of high-energy generation at high efficiency could revolutionize the development of solar energy. Nanoparticle-based phase

  7. Energy Department Applauds Nation's First Large-Scale Industrial Carbon

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPL EnergyPlus,DepartmentFederalJuly 8,toDepartment ofin STEMCapture and

  8. Solar energy teaching lab with large scale working model

    SciTech Connect (OSTI)

    Pearson, J.; Cook, T.

    1980-01-01

    An active solar energy retrofit has been added to an engineering building at John Brown University. A new system dependent evaluation procedure incorporating the f-chart method was used for panel selection. The system is designed and instrumented in order to provide various laboratory experiences and data collection capability. Data collection and system control are provided by a microcomputer. 7 refs.

  9. Large Scale Computing and Storage Requirements for Basic Energy Sciences:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse Bergkamp Graduate studentScienceLaboratory programTarget 2014 Large

  10. Large-Scale Liquid Hydrogen Handling Equipment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIALU.S.Leadership on Clean Energy | Department

  11. Large-Scale Hydropower Basics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLforLDRDEnergyTurbine blades beingLM Executive2014) | Departmentscale

  12. A Large-scale Study on Predicting and Contextualizing Building Energy Usage J. Zico Kolter

    E-Print Network [OSTI]

    Kolter, J. Zico

    Joseph Ferreira Jr. Department of Urban Studies and Planning Massachusetts Institute of TechnologyA Large-scale Study on Predicting and Contextualizing Building Energy Usage J. Zico Kolter Computer Cambridge, MA 02139 Abstract In this paper we present a data-driven approach to mod- eling end user energy

  13. Exploring Adaptive Reconfiguration to Optimize Energy Efficiency in Large-Scale Battery Systems

    E-Print Network [OSTI]

    with hundreds or thousands of batteries are now widely used in electric vehicles [33], [36], energy storageExploring Adaptive Reconfiguration to Optimize Energy Efficiency in Large-Scale Battery Systems systems such as electric vehicles and smart micro-grids. For many applications, the load requirements

  14. Membraneless Hydrogen Bromine Laminar Flow Battery for Large-Scale Energy Storage

    E-Print Network [OSTI]

    Poonen, Bjorn

    Membraneless Hydrogen Bromine Laminar Flow Battery for Large-Scale Energy Storage by William Allan and examined for its potential to provide low cost energy storage using the rapid reaction kinetics of hydrogen by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . David E. Hardt Chairman, Department Committee on Graduate Theses #12;2 #12;Membraneless Hydrogen Bromine

  15. Large-scale Probabilistic Forecasting in Energy Systems using Sparse Gaussian Conditional Random Fields

    E-Print Network [OSTI]

    Kolter, J. Zico

    in a wide range of energy systems, including forecasting demand, renewable generation, and electricityLarge-scale Probabilistic Forecasting in Energy Systems using Sparse Gaussian Conditional Random demonstrated that in the context of electrical demand and wind power, probabilistic forecasts can offer

  16. Running Large Scale Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    try on their large scale applications on Hopper for better performance. Try different compilers and compiler options The available compilers on Hopper are PGI, Cray, Intel, GNU,...

  17. Measuring and tuning energy efficiency on large scale high performance computing platforms.

    SciTech Connect (OSTI)

    Laros, James H., III

    2011-08-01

    Recognition of the importance of power in the field of High Performance Computing, whether it be as an obstacle, expense or design consideration, has never been greater and more pervasive. While research has been conducted on many related aspects, there is a stark absence of work focused on large scale High Performance Computing. Part of the reason is the lack of measurement capability currently available on small or large platforms. Typically, research is conducted using coarse methods of measurement such as inserting a power meter between the power source and the platform, or fine grained measurements using custom instrumented boards (with obvious limitations in scale). To collect the measurements necessary to analyze real scientific computing applications at large scale, an in-situ measurement capability must exist on a large scale capability class platform. In response to this challenge, we exploit the unique power measurement capabilities of the Cray XT architecture to gain an understanding of power use and the effects of tuning. We apply these capabilities at the operating system level by deterministically halting cores when idle. At the application level, we gain an understanding of the power requirements of a range of important DOE/NNSA production scientific computing applications running at large scale (thousands of nodes), while simultaneously collecting current and voltage measurements on the hosting nodes. We examine the effects of both CPU and network bandwidth tuning and demonstrate energy savings opportunities of up to 39% with little or no impact on run-time performance. Capturing scale effects in our experimental results was key. Our results provide strong evidence that next generation large-scale platforms should not only approach CPU frequency scaling differently, but could also benefit from the capability to tune other platform components, such as the network, to achieve energy efficient performance.

  18. Funding for Large-Scale Sustainable Energy Projects Combining Expert Opinions to Support Decisions

    E-Print Network [OSTI]

    Mountziaris, T. J.

    Funding for Large-Scale Sustainable Energy Projects Combining Expert Opinions to Support Decisions technologies: solar, carbon capture, nuclear, biofuels, and electricity from biomass. The challenge a probability distribution over outcomes dependent on R&D funding amounts. This probability distribution

  19. Energy Policy 34 (2006) 395410 The economics of large-scale wind power in a carbon

    E-Print Network [OSTI]

    Barlaz, Morton A.

    2006-01-01

    Energy Policy 34 (2006) 395­410 The economics of large-scale wind power in a carbon constrained to supplement variable wind power output to meet a time-varying load. We find that, with somewhat optimistic cost of delivered wind power. Due to residual CO2 emissions, compressed air storage is surprisingly

  20. Identification of Market Power in Large-Scale Electric Energy Markets Bernard C. Lesieutre

    E-Print Network [OSTI]

    Identification of Market Power in Large-Scale Electric Energy Markets Bernard C. Lesieutre Hyung and competitive operation of centrally- dispatched electricity markets. Traditional measures for market power demand and reserve requirements, a centrally-dispatched electricity market provides a transparent

  1. Materials Science and Materials Chemistry for Large Scale Electrochemical Energy Storage: From Transportation to Electrical Grid

    SciTech Connect (OSTI)

    Liu, Jun; Zhang, Jiguang; Yang, Zhenguo; Lemmon, John P.; Imhoff, Carl H.; Graff, Gordon L.; Li, Liyu; Hu, Jian Z.; Wang, Chong M.; Xiao, Jie; Xia, Guanguang; Viswanathan, Vilayanur V.; Baskaran, Suresh; Sprenkle, Vincent L.; Li, Xiaolin; Shao, Yuyan; Schwenzer, Birgit

    2013-02-15

    Large-scale electrical energy storage has become more important than ever for reducing fossil energy consumption in transportation and for the widespread deployment of intermittent renewable energy in electric grid. However, significant challenges exist for its applications. Here, the status and challenges are reviewed from the perspective of materials science and materials chemistry in electrochemical energy storage technologies, such as Li-ion batteries, sodium (sulfur and metal halide) batteries, Pb-acid battery, redox flow batteries, and supercapacitors. Perspectives and approaches are introduced for emerging battery designs and new chemistry combinations to reduce the cost of energy storage devices.

  2. Disk Accretion Flow Driven by Large-Scale Magnetic Fields: Solutions with Constant Specific Energy

    E-Print Network [OSTI]

    Li-Xin Li

    2003-05-29

    (Abridged) We study the dynamical evolution of a stationary, axisymmetric, and perfectly conducting cold accretion disk containing a large-scale magnetic field around a Kerr black hole, trying to understand the relation between accretion and the transportation of angular momentum and energy. We solve the radial momentum equation for solutions corresponding to an accretion flow that starts from a subsonic state at infinity, smoothly passes the fast critical point, then supersonically falls into the horizon of the black hole. The solutions always have the following features: 1) The specific energy of fluid particles remains constant but the specific angular momentum is effectively removed by the magnetic field. 2) At large radii, where the disk motion is dominantly rotational, the energy density of the magnetic field is equipartitioned with the rotational energy density of the disk. 3) Inside the fast critical point, where radial motion becomes important, the ratio of the electromagnetic energy density to the kinetic energy density drops quickly. The results indicate that: 1) Disk accretion does not necessarily imply energy dissipation since magnetic fields do not have to transport or dissipate a lot of energy as they effectively transport angular momentum. 2) When resistivity is small, the large-scale magnetic field is amplified by the shearing rotation of the disk until the magnetic energy density is equipartitioned with the rotational energy density, ending up with a geometrically thick disk. This is in contrast with the evolution of small-scale magnetic fields where if the resistivity is nonzero the magnetic energy density is likely to be equipartitioned with the kinetic energy density associated with local random motions (e.g., turbulence), making a thin Keplerian disk possible.

  3. The Future of the Local Large Scale Structure: the roles of Dark Matter and Dark Energy

    E-Print Network [OSTI]

    Yehuda Hoffman; Ofer Lahav; Gustavo Yepes; Yaniv Dover

    2007-10-10

    We study the distinct effects of Dark Matter and Dark Energy on the future evolution of nearby large scale structures using constrained N-body simulations. We contrast a model of Cold Dark Matter and a Cosmological Constant (LCDM) with an Open CDM (OCDM) model with the same matter density Omega_m =0.3 and the same Hubble constant h=0.7. Already by the time the scale factor increased by a factor of 6 (29 Gyr from now in LCDM; 78 Gyr from now in OCDM) the comoving position of the Local Group is frozen. Well before that epoch the two most massive members of the Local Group, the Milky Way and Andromeda, will merge. However, as the expansion rates of the scale factor in the two models are different, the Local Group will be receding in physical coordinates from Virgo exponentially in a LCDM model and at a roughly constant velocity in an OCDM model. More generally, in comoving coordinates the future large scale structure will look like a sharpened image of the present structure: the skeleton of the cosmic web will remain the same, but clusters will be more `isolated' and the filaments will become thinner. This implies that the long-term fate of large scale structure as seen in comoving coordinates is determined primarily by the matter density. We conclude that although the LCDM model is accelerating at present due to its Dark Energy component while the OCDM model is non accelerating, their large scale structure in the future will look very similar in comoving coordinates.

  4. Green queue : a framework for selecting energy optimal DVFS congurations in large scale MPI applications

    E-Print Network [OSTI]

    Peraza, Joshua

    2012-01-01

    settings . . . . . Green Queue Energy Savings with VariousApplication Figure 4.3: Green Queue Energy Savings withBlind Scaling Relative Energy Green Queue Relative Delay

  5. ARRA-Multi-Level Energy Storage and Controls for Large-Scale Wind Energy Integration

    SciTech Connect (OSTI)

    David Wenzhong Gao

    2012-09-30

    The Project Objective is to design innovative energy storage architecture and associated controls for high wind penetration to increase reliability and market acceptance of wind power. The project goals are to facilitate wind energy integration at different levels by design and control of suitable energy storage systems. The three levels of wind power system are: Balancing Control Center level, Wind Power Plant level, and Wind Power Generator level. Our scopes are to smooth the wind power fluctuation and also ensure adequate battery life. In the new hybrid energy storage system (HESS) design for wind power generation application, the boundary levels of the state of charge of the battery and that of the supercapacitor are used in the control strategy. In the controller, some logic gates are also used to control the operating time durations of the battery. The sizing method is based on the average fluctuation of wind profiles of a specific wind station. The calculated battery size is dependent on the size of the supercapacitor, state of charge of the supercapacitor and battery wear. To accommodate the wind power fluctuation, a hybrid energy storage system (HESS) consisting of battery energy system (BESS) and super-capacitor is adopted in this project. A probability-based power capacity specification approach for the BESS and super-capacitors is proposed. Through this method the capacities of BESS and super-capacitor are properly designed to combine the characteristics of high energy density of BESS and the characteristics of high power density of super-capacitor. It turns out that the super-capacitor within HESS deals with the high power fluctuations, which contributes to the extension of BESS lifetime, and the super-capacitor can handle the peaks in wind power fluctuations without the severe penalty of round trip losses associated with a BESS. The proposed approach has been verified based on the real wind data from an existing wind power plant in Iowa. An intelligent controller that increases battery life within hybrid energy storage systems for wind application was developed. Comprehensive studies have been conducted and simulation results are analyzed. A permanent magnet synchronous generator, coupled with a variable speed wind turbine, is connected to a power grid (14-bus system). A rectifier, a DC-DC converter and an inverter are used to provide a complete model of the wind system. An Energy Storage System (ESS) is connected to a DC-link through a DC-DC converter. An intelligent controller is applied to the DC-DC converter to help the Voltage Source Inverter (VSI) to regulate output power and also to control the operation of the battery and supercapacitor. This ensures a longer life time for the batteries. The detailed model is simulated in PSCAD/EMTP. Additionally, economic analysis has been done for different methods that can reduce the wind power output fluctuation. These methods are, wind power curtailment, dumping loads, battery energy storage system and hybrid energy storage system. From the results, application of single advanced HESS can save more money for wind turbines owners. Generally the income would be the same for most of methods because the wind does not change and maximum power point tracking can be applied to most systems. On the other hand, the cost is the key point. For short term and small wind turbine, the BESS is the cheapest and applicable method while for large scale wind turbines and wind farms the application of advanced HESS would be the best method to reduce the power fluctuation. The key outcomes of this project include a new intelligent controller that can reduce energy exchanged between the battery and DC-link, reduce charging/discharging cycles, reduce depth of discharge and increase time interval between charge/discharge, and lower battery temperature. This improves the overall lifetime of battery energy storages. Additionally, a new design method based on probability help optimize the power capacity specification for BESS and super-capacitors. Recommendations include experimental imp

  6. Using calibrated engineering models to predict energy savings in large-scale geothermal heat pump projects

    SciTech Connect (OSTI)

    Shonder, J.A.; Hughes, P.J.; Thornton, J.W.

    1998-10-01

    Energy savings performance contracting (ESPC) is now receiving greater attention as a means of implementing large-scale energy conservation projects in housing. Opportunities for such projects exist for military housing, federally subsidized low-income housing, and planned communities (condominiums, townhomes, senior centers), to name a few. Accurate prior (to construction) estimates of the energy savings in these projects reduce risk, decrease financing costs, and help avoid post-construction disputes over performance contract baseline adjustments. This paper demonstrates an improved method of estimating energy savings before construction takes place. Using an engineering model calibrated to pre-construction energy-use data collected in the field, this method is able to predict actual energy savings to a high degree of accuracy. This is verified with post-construction energy-use data from a geothermal heat pump ESPC at Fort Polk, Louisiana. This method also allows determination of the relative impact of the various energy conservation measures installed in a comprehensive energy conservation project. As an example, the breakout of savings at Fort Polk for the geothermal heat pumps, desuperheaters, lighting retrofits, and low-flow hot water outlets is provided.

  7. Using Calibrated Engineering Models To Predict Energy Savings In Large-Scale Geothermal Heat Pump Projects

    SciTech Connect (OSTI)

    Shonder, John A; Hughes, Patrick; Thornton, Jeff W.

    1998-01-01

    Energy savings performance contracting (ESPC) is now receiving greater attention as a means of implementing large-scale energy conservation projects in housing. Opportunities for such projects exist for military housing, federally subsidized low-income housing, and planned communities (condominiums, townhomes, senior centers), to name a few. Accurate prior (to construction) estimates of the energy savings in these projects reduce risk, decrease financing costs, and help avoid post-construction disputes over performance contract baseline adjustments. This paper demonstrates an improved method of estimating energy savings before construction takes place. Using an engineering model calibrated to pre-construction energy-use data collected in the field, this method is able to predict actual energy savings to a high degree of accuracy. This is verified with post-construction energy-use data from a geothermal heat pump ESPC at Fort Polk, Louisiana. This method also allows determination of the relative impact of the various energy conservation measures installed in a comprehensive energy conservation project. As an example, the breakout of savings at Fort Polk for the geothermal heat pumps, desuperheaters, lighting retrofits, and low-flow hot water outlets is provided.

  8. Biomass Energy for Transport and Electricity: Large scale utilization under low CO2 concentration scenarios

    SciTech Connect (OSTI)

    Luckow, Patrick; Wise, Marshall A.; Dooley, James J.; Kim, Son H.

    2010-01-25

    This paper examines the potential role of large scale, dedicated commercial biomass energy systems under global climate policies designed to stabilize atmospheric concentrations of CO2 at 400ppm and 450ppm. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. The costs of processing and transporting biomass energy at much larger scales than current experience are also incorporated into the modeling. From the scenario results, 120-160 EJ/year of biomass energy is produced by midcentury and 200-250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the dominant source. A key finding of this paper is the role that carbon dioxide capture and storage (CCS) technologies coupled with commercial biomass energy can play in meeting stringent emissions targets. Despite the higher technology costs of CCS, the resulting negative emissions used in combination with biomass are a very important tool in controlling the cost of meeting a target, offsetting the venting of CO2 from sectors of the energy system that may be more expensive to mitigate, such as oil use in transportation. The paper also discusses the role of cellulosic ethanol and Fischer-Tropsch biomass derived transportation fuels and shows that both technologies are important contributors to liquid fuels production, with unique costs and emissions characteristics. Through application of the GCAM integrated assessment model, it becomes clear that, given CCS availability, bioenergy will be used both in electricity and transportation.

  9. The Association of Large-Scale Climate Variability and Teleconnections on Wind Energy Resource over Europe and its Intermittency

    E-Print Network [OSTI]

    Kriesche, Pascal

    In times of increasing importance of wind power in the world’s energy mix, this study focuses on a better understanding of the influences of large-scale climate variability on wind power resource over Europe. The impact ...

  10. How CMB and large-scale structure constrain chameleon interacting dark energy

    E-Print Network [OSTI]

    Daniel Boriero; Subinoy Das; Yvonne Y. Y. Wong

    2015-05-12

    We explore a chameleon type of interacting dark matter-dark energy scenario in which a scalar field adiabatically traces the minimum of an effective potential sourced by the dark matter density. We discuss extensively the effect of this coupling on cosmological observables, especially the parameter degeneracies expected to arise between the model parameters and other cosmological parameters, and then test the model against observations of the cosmic microwave background (CMB) anisotropies and other cosmological probes. We find that the chameleon parameters $\\alpha$ and $\\beta$, which determine respectively the slope of the scalar field potential and the dark matter-dark energy coupling strength, can be constrained to $\\alpha radiation component, despite a passing similarity between the two scenarios in that they both delay the epoch of matter-radiation equality. Based on the derived parameter constraints, we discuss possible signatures of the model for ongoing and future large-scale structure surveys.

  11. Optimizing Cluster Heads for Energy Efficiency in Large-Scale Heterogeneous Wireless Sensor Networks

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gu, Yi; Wu, Qishi; Rao, Nageswara S. V.

    2010-01-01

    Many complex sensor network applications require deploying a large number of inexpensive and small sensors in a vast geographical region to achieve quality through quantity. Hierarchical clustering is generally considered as an efficient and scalable way to facilitate the management and operation of such large-scale networks and minimize the total energy consumption for prolonged lifetime. Judicious selection of cluster heads for data integration and communication is critical to the success of applications based on hierarchical sensor networks organized as layered clusters. We investigate the problem of selecting sensor nodes in a predeployed sensor network to be the cluster headsmore »to minimize the total energy needed for data gathering. We rigorously derive an analytical formula to optimize the number of cluster heads in sensor networks under uniform node distribution, and propose a Distance-based Crowdedness Clustering algorithm to determine the cluster heads in sensor networks under general node distribution. The results from an extensive set of experiments on a large number of simulated sensor networks illustrate the performance superiority of the proposed solution over the clustering schemes based on k -means algorithm. « less

  12. Computer Energy Modeling Techniques for Simulation Large Scale Correctional Institutes in Texas 

    E-Print Network [OSTI]

    Heneghan, T.; Haberl, J. S.; Saman, N.; Bou-Saada, T. E.

    1996-01-01

    Building energy simulation programs have undergone an increase in use for evaluating energy consumption and energy conservation retrofits in buildings. Utilization of computer simulation programs for large facilities with multiple buildings, however...

  13. In-Flight Measurement of the Absolute Energy Scale of the Fermi Large Area Telescope

    SciTech Connect (OSTI)

    Ackermann, M.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Ajello, M.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Allafort, A.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Atwood, W.B.; /UC, Santa Cruz; Axelsson, M.; /Stockholm U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm; Baldini, L.; /INFN, Pisa; Barbiellini, G.; /INFN, Trieste /Trieste U.; Bastieri, D.; /INFN, Padua /Padua U.; Bechtol, K.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Bellazzini, R.; /INFN, Pisa; Berenji, B.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Bloom, E.D.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Bouvier, A.; /UC, Santa Cruz; Bregeon, J.; /INFN, Pisa; Brez, A.; /INFN, Pisa; Brigida, M.; /Bari Polytechnic /INFN, Bari; Bruel, P.; /Ecole Polytechnique; Buehler, R.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Buson, S.; /INFN, Padua /Padua U. /CSIC, Catalunya /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /IASF, Milan /DAPNIA, Saclay /INFN, Perugia /Perugia U. /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Unlisted, US /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /ASDC, Frascati /Perugia U. /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Montpellier U. /ASDC, Frascati /Bari Polytechnic /INFN, Bari /Naval Research Lab, Wash., D.C. /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Montpellier U. /Bari Polytechnic /INFN, Bari /Ecole Polytechnique /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Ecole Polytechnique /Hiroshima U. /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Bari Polytechnic /INFN, Bari /INFN, Bari /NASA, Goddard /INFN, Perugia /Perugia U.; /more authors..

    2012-09-20

    The Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope is a pair-conversion telescope designed to survey the gamma-ray sky from 20 MeV to several hundreds of GeV. In this energy band there are no astronomical sources with sufficiently well known and sharp spectral features to allow an absolute calibration of the LAT energy scale. However, the geomagnetic cutoff in the cosmic ray electron-plus-positron (CRE) spectrum in low Earth orbit does provide such a spectral feature. The energy and spectral shape of this cutoff can be calculated with the aid of a numerical code tracing charged particles in the Earth's magnetic field. By comparing the cutoff value with that measured by the LAT in different geomagnetic positions, we have obtained several calibration points between {approx}6 and {approx}13 GeV with an estimated uncertainty of {approx}2%. An energy calibration with such high accuracy reduces the systematic uncertainty in LAT measurements of, for example, the spectral cutoff in the emission from gamma ray pulsars.

  14. Impulsive phase flare energy transport by large-scale Alfven waves and the electron acceleration problem

    E-Print Network [OSTI]

    L. Fletcher; H. S. Hudson

    2007-12-20

    The impulsive phase of a solar flare marks the epoch of rapid conversion of energy stored in the pre-flare coronal magnetic field. Hard X-ray observations imply that a substantial fraction of flare energy released during the impulsive phase is converted to the kinetic energy of mildly relativistic electrons (10-100 keV). The liberation of the magnetic free energy can occur as the coronal magnetic field reconfigures and relaxes following reconnection. We investigate a scenario in which products of the reconfiguration - large-scale Alfven wave pulses - transport the energy and magnetic-field changes rapidly through the corona to the lower atmosphere. This offers two possibilities for electron acceleration. Firstly, in a coronal plasma with beta waves propagate as inertial Alfven waves. In the presence of strong spatial gradients, these generate field-aligned electric fields that can accelerate electrons to energies on the order of 10 keV and above, including by repeated interactions between electrons and wavefronts. Secondly, when they reflect and mode-convert in the chromosphere, a cascade to high wavenumbers may develop. This will also accelerate electrons by turbulence, in a medium with a locally high electron number density. This concept, which bridges MHD-based and particle-based views of a flare, provides an interpretation of the recently-observed rapid variations of the line-of-sight component of the photospheric magnetic field across the flare impulsive phase, and offers solutions to some perplexing flare problems, such as the flare "number problem" of finding and resupplying sufficient electrons to explain the impulsive-phase hard X-ray emission.

  15. Large scale tracking algorithms.

    SciTech Connect (OSTI)

    Hansen, Ross L.; Love, Joshua Alan; Melgaard, David Kennett; Karelitz, David B.; Pitts, Todd Alan; Zollweg, Joshua David; Anderson, Dylan Z.; Nandy, Prabal; Whitlow, Gary L.; Bender, Daniel A.; Byrne, Raymond Harry

    2015-01-01

    Low signal-to-noise data processing algorithms for improved detection, tracking, discrimination and situational threat assessment are a key research challenge. As sensor technologies progress, the number of pixels will increase signi cantly. This will result in increased resolution, which could improve object discrimination, but unfortunately, will also result in a significant increase in the number of potential targets to track. Many tracking techniques, like multi-hypothesis trackers, suffer from a combinatorial explosion as the number of potential targets increase. As the resolution increases, the phenomenology applied towards detection algorithms also changes. For low resolution sensors, "blob" tracking is the norm. For higher resolution data, additional information may be employed in the detection and classfication steps. The most challenging scenarios are those where the targets cannot be fully resolved, yet must be tracked and distinguished for neighboring closely spaced objects. Tracking vehicles in an urban environment is an example of such a challenging scenario. This report evaluates several potential tracking algorithms for large-scale tracking in an urban environment.

  16. NV Energy Large-Scale Photovoltaic Integration Study: Intra-Hour Dispatch and AGC Simulation

    SciTech Connect (OSTI)

    Lu, Shuai; Etingov, Pavel V.; Meng, Da; Guo, Xinxin; Jin, Chunlian; Samaan, Nader A.

    2013-01-02

    The uncertainty and variability with photovoltaic (PV) generation make it very challenging to balance power system generation and load, especially under high penetration cases. Higher reserve requirements and more cycling of conventional generators are generally anticipated for large-scale PV integration. However, whether the existing generation fleet is flexible enough to handle the variations and how well the system can maintain its control performance are difficult to predict. The goal of this project is to develop a software program that can perform intra-hour dispatch and automatic generation control (AGC) simulation, by which the balancing operations of a system can be simulated to answer the questions posed above. The simulator, named Electric System Intra-Hour Operation Simulator (ESIOS), uses the NV Energy southern system as a study case, and models the system’s generator configurations, AGC functions, and operator actions to balance system generation and load. Actual dispatch of AGC generators and control performance under various PV penetration levels can be predicted by running ESIOS. With data about the load, generation, and generator characteristics, ESIOS can perform similar simulations and assess variable generation integration impacts for other systems as well. This report describes the design of the simulator and presents the study results showing the PV impacts on NV Energy real-time operations.

  17. Fuels generated from renewable energy: a possible solution for large scale energy storage

    E-Print Network [OSTI]

    Franssen, Michael

    To perform leading fundamental research in the fields of fusion energy and solar fuels, New Mission DIFFER, energy infrastructure essential #12;4/22/2012 3 Theoretical potential energy sources Solar energy....... solar generation ...energy demand Storage and transport is part of the challenge! #12;4/22/2012 6 PV

  18. Using an Energy Performance Based Design-Build Process to Procure a Large Scale Low-Energy Building: Preprint

    SciTech Connect (OSTI)

    Pless, S.; Torcellini, P.; Shelton, D.

    2011-05-01

    This paper will review a procurement, acquisition, and contract process of a large-scale replicable net zero energy (ZEB) office building. The owners developed and implemented an energy performance based design-build process to procure a 220,000 ft2 office building with contractual requirements to meet demand side energy and LEED goals. We will outline the key procurement steps needed to ensure achievement of our energy efficiency and ZEB goals. The development of a clear and comprehensive Request for Proposals (RFP) that includes specific and measurable energy use intensity goals is critical to ensure energy goals are met in a cost effective manner. The RFP includes a contractual requirement to meet an absolute demand side energy use requirement of 25 kBtu/ft2, with specific calculation methods on what loads are included, how to normalize the energy goal based on increased space efficiency and data center allocation, specific plug loads and schedules, and calculation details on how to account for energy used from the campus hot and chilled water supply. Additional advantages of integrating energy requirements into this procurement process include leveraging the voluntary incentive program, which is a financial incentive based on how well the owner feels the design-build team is meeting the RFP goals.

  19. Large Scale Computing and Storage Requirements for Basic Energy Sciences Research

    SciTech Connect (OSTI)

    Gerber, Richard; Wasserman, Harvey

    2011-03-31

    The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility supporting research within the Department of Energy's Office of Science. NERSC provides high-performance computing (HPC) resources to approximately 4,000 researchers working on about 400 projects. In addition to hosting large-scale computing facilities, NERSC provides the support and expertise scientists need to effectively and efficiently use HPC systems. In February 2010, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR) and DOE's Office of Basic Energy Sciences (BES) held a workshop to characterize HPC requirements for BES research through 2013. The workshop was part of NERSC's legacy of anticipating users future needs and deploying the necessary resources to meet these demands. Workshop participants reached a consensus on several key findings, in addition to achieving the workshop's goal of collecting and characterizing computing requirements. The key requirements for scientists conducting research in BES are: (1) Larger allocations of computational resources; (2) Continued support for standard application software packages; (3) Adequate job turnaround time and throughput; and (4) Guidance and support for using future computer architectures. This report expands upon these key points and presents others. Several 'case studies' are included as significant representative samples of the needs of science teams within BES. Research teams scientific goals, computational methods of solution, current and 2013 computing requirements, and special software and support needs are summarized in these case studies. Also included are researchers strategies for computing in the highly parallel, 'multi-core' environment that is expected to dominate HPC architectures over the next few years. NERSC has strategic plans and initiatives already underway that address key workshop findings. This report includes a brief summary of those relevant to issues raised by researchers at the workshop.

  20. Phenomenology of dark energy: general features of large-scale perturbations

    E-Print Network [OSTI]

    Louis Perenon; Federico Piazza; Christian Marinoni; Lam Hui

    2015-07-10

    We present a systematic exploration of dark energy and modified gravity models containing a single scalar field non-minimally coupled to the metric. Even though the parameter space is large, by exploiting an effective field theory (EFT) formulation and by imposing simple physical constraints such as stability conditions and (sub-)luminal propagation of perturbations, we arrive at a number of generic predictions. (1) The linear growth rate of matter density fluctuations is generally suppressed compared to $\\Lambda$CDM at intermediate redshifts ($0.5 \\lesssim z \\lesssim 1$), despite the introduction of an attractive long-range scalar force. This is due to the fact that, in self-accelerating models, the background gravitational coupling weakens at intermediate redshifts, over-compensating the effect of the attractive scalar force. (2) At higher redshifts, the opposite happens; we identify a period of super-growth when the linear growth rate is larger than that predicted by $\\Lambda$CDM. (3) The gravitational slip parameter $\\eta$ - the ratio of the space part of the metric perturbation to the time part - is bounded from above. For Brans-Dicke-type theories $\\eta$ is at most unity. For more general theories, $\\eta$ can exceed unity at intermediate redshifts, but not more than about $1.5$ if, at the same time, the linear growth rate is to be compatible with current observational constraints. We caution against phenomenological parametrization of data that do not correspond to predictions from viable physical theories. We advocate the EFT approach as a way to constrain new physics from future large-scale-structure data.

  1. Energy-Efficient Antenna Selection and Power Allocation for Large-Scale Multiple Antenna

    E-Print Network [OSTI]

    ) sector has been estimated to represent about 2 percent of the global CO2 emissions [1], and 1.8 percent reduce CO2 emissions [5]. On the other hand, large-scale multiple antenna systems which employ hundreds of the total world electricity consumption [2]. The mobile network operational expenditure (OPEX

  2. Impact of Large Scale Energy Efficiency Programs On Consumer Tariffs and Utility Finances in India

    SciTech Connect (OSTI)

    Abhyankar, Nikit; Phadke, Amol

    2011-01-20

    Large-scale EE programs would modestly increase tariffs but reduce consumers' electricity bills significantly. However, the primary benefit of EE programs is a significant reduction in power shortages, which might make these programs politically acceptable even if tariffs increase. To increase political support, utilities could pursue programs that would result in minimal tariff increases. This can be achieved in four ways: (a) focus only on low-cost programs (such as replacing electric water heaters with gas water heaters); (b) sell power conserved through the EE program to the market at a price higher than the cost of peak power purchase; (c) focus on programs where a partial utility subsidy of incremental capital cost might work and (d) increase the number of participant consumers by offering a basket of EE programs to fit all consumer subcategories and tariff tiers. Large scale EE programs can result in consistently negative cash flows and significantly erode the utility's overall profitability. In case the utility is facing shortages, the cash flow is very sensitive to the marginal tariff of the unmet demand. This will have an important bearing on the choice of EE programs in Indian states where low-paying rural and agricultural consumers form the majority of the unmet demand. These findings clearly call for a flexible, sustainable solution to the cash-flow management issue. One option is to include a mechanism like FAC in the utility incentive mechanism. Another sustainable solution might be to have the net program cost and revenue loss built into utility's revenue requirement and thus into consumer tariffs up front. However, the latter approach requires institutionalization of EE as a resource. The utility incentive mechanisms would be able to address the utility disincentive of forgone long-run return but have a minor impact on consumer benefits. Fundamentally, providing incentives for EE programs to make them comparable to supply-side investments is a way of moving the electricity sector toward a model focused on providing energy services rather than providing electricity.

  3. Brownfields to green energy : redeveloping contaminated lands with large-scale renewable energy facilities

    E-Print Network [OSTI]

    Jensen, Bjorn B. (Bjorn Benjamin)

    2010-01-01

    This thesis uses case studies of one unsuccessful, and three successful brownfield-to-renewable energy projects to identify common barriers such projects face and how those barriers can be overcome. The most significant ...

  4. Management of Large-Scale International

    E-Print Network [OSTI]

    Management of Large- Scale International Science Projects Dr. Benjamin J. Cross, P.E. Savannah of Government Commerce) #12;Extending Project Management to New, Complex Challenges · Emergence of large-scale-of-the-art R&D and technologies ­ Exceedingly high energies, temperatures, radiological conditions, special

  5. Reducing Plug and Process Loads for a Large Scale, Low Energy Office Building: NREL's Research Support Facility; Preprint

    SciTech Connect (OSTI)

    Lobato, C.; Pless, S.; Sheppy, M.; Torcellini, P.

    2011-02-01

    This paper documents the design and operational plug and process load energy efficiency measures needed to allow a large scale office building to reach ultra high efficiency building goals. The appendices of this document contain a wealth of documentation pertaining to plug and process load design in the RSF, including a list of equipment was selected for use.

  6. A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage

    SciTech Connect (OSTI)

    Yang, Yuan; Zheng, Guangyuan; Cui, Yi

    2013-01-01

    Large-scale energy storage represents a key challenge for renewable energy and new systems with low cost, high energy density and long cycle life are desired. In this article, we develop a new lithium/polysulfide (Li/PS) semi-liquid battery for large-scale energy storage, with lithium polysulfide (Li{sub 2}S{sub 8}) in ether solvent as a catholyte and metallic lithium as an anode. Unlike previous work on Li/S batteries with discharge products such as solid state Li{sub 2}S{sub 2} and Li{sub 2}S, the catholyte is designed to cycle only in the range between sulfur and Li{sub 2}S{sub 4}. Consequently all detrimental effects due to the formation and volume expansion of solid Li{sub 2}S{sub 2}/Li{sub 2}S are avoided. This novel strategy results in excellent cycle life and compatibility with flow battery design. The proof-of-concept Li/PS battery could reach a high energy density of 170 W h kg{sup -1} and 190 W h L{sup -1} for large scale storage at the solubility limit, while keeping the advantages of hybrid flow batteries. We demonstrated that, with a 5 M Li{sub 2}S{sub 8} catholyte, energy densities of 97 W h kg{sup -1} and 108 W h L{sup -1} can be achieved. As the lithium surface is well passivated by LiNO{sub 3} additive in ether solvent, internal shuttle effect is largely eliminated and thus excellent performance over 2000 cycles is achieved with a constant capacity of 200 mA h g{sup -1}. This new system can operate without the expensive ion-selective membrane, and it is attractive for large-scale energy storage.

  7. Large scale structure and the generalised Chaplygin gas as dark energy

    E-Print Network [OSTI]

    T. Multamaki; M. Manera; E. Gaztanaga

    2003-10-31

    The growth of large scale structure is studied in a universe containing both cold dark matter (CDM) and generalized Chaplygin gas (GCg). GCg is assumed to contribute only to the background evolution of the universe while the CDM component collapses and forms structures. We present some new analytical as well as numerical results for linear and non-linear growth in such model. The model passes the standard cosmological distance test without the need of a cosmological constant (LCDM). But we find that the scenario is severely constrained by current observations of large scale structure. Any small deviations of the GCg parameters away from the standard Lambda dominated cosmology (LCDM) produces substantial suppression for the growth of structures.

  8. Behavioral Initiatives for Energy Efficiency: Large-Scale Energy Reductions through Sensors, Feedback & Information Technology

    SciTech Connect (OSTI)

    2010-01-12

    Broad Funding Opportunity Announcement Project: A team of researchers from more than 10 departments at Stanford University is collaborating to transform the way Americans interact with our energy-use data. The team built a web-based platform that collects historical electricity data which it uses to perform a variety of experiments to learn what triggers people to respond. Experiments include new financial incentives, a calculator to understand the potential savings of efficient appliances, new Facebook interface designs, communication studies using Twitter, and educational programs with the Girl Scouts. Economic modeling is underway to better understand how results from the San Francisco Bay Area can be broadened to other parts of the country.

  9. LARGE-SCALE HYDROGEN PRODUCTION FROM NUCLEAR ENERGY USING HIGH TEMPERATURE ELECTROLYSIS

    SciTech Connect (OSTI)

    James E. O'Brien

    2010-08-01

    Hydrogen can be produced from water splitting with relatively high efficiency using high-temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high-temperature process heat. When coupled to an advanced high temperature nuclear reactor, the overall thermal-to-hydrogen efficiency for high-temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. Demand for hydrogen is increasing rapidly for refining of increasingly low-grade petroleum resources, such as the Athabasca oil sands and for ammonia-based fertilizer production. Large quantities of hydrogen are also required for carbon-efficient conversion of biomass to liquid fuels. With supplemental nuclear hydrogen, almost all of the carbon in the biomass can be converted to liquid fuels in a nearly carbon-neutral fashion. Ultimately, hydrogen may be employed as a direct transportation fuel in a “hydrogen economy.” The large quantity of hydrogen that would be required for this concept should be produced without consuming fossil fuels or emitting greenhouse gases. An overview of the high-temperature electrolysis technology will be presented, including basic theory, modeling, and experimental activities. Modeling activities include both computational fluid dynamics and large-scale systems analysis. We have also demonstrated high-temperature electrolysis in our laboratory at the 15 kW scale, achieving a hydrogen production rate in excess of 5500 L/hr.

  10. Running Large Scale Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumni > The Energy MaterialsRooftopRunning Jobs by

  11. Large-Scale PV Integration Study

    SciTech Connect (OSTI)

    Lu, Shuai; Etingov, Pavel V.; Diao, Ruisheng; Ma, Jian; Samaan, Nader A.; Makarov, Yuri V.; Guo, Xinxin; Hafen, Ryan P.; Jin, Chunlian; Kirkham, Harold; Shlatz, Eugene; Frantzis, Lisa; McClive, Timothy; Karlson, Gregory; Acharya, Dhruv; Ellis, Abraham; Stein, Joshua; Hansen, Clifford; Chadliev, Vladimir; Smart, Michael; Salgo, Richard; Sorensen, Rahn; Allen, Barbara; Idelchik, Boris

    2011-07-29

    This research effort evaluates the impact of large-scale photovoltaic (PV) and distributed generation (DG) output on NV Energy’s electric grid system in southern Nevada. It analyzes the ability of NV Energy’s generation to accommodate increasing amounts of utility-scale PV and DG, and the resulting cost of integrating variable renewable resources. The study was jointly funded by the United States Department of Energy and NV Energy, and conducted by a project team comprised of industry experts and research scientists from Navigant Consulting Inc., Sandia National Laboratories, Pacific Northwest National Laboratory and NV Energy.

  12. Public attitudes regarding large-scale solar energy development in the U.S.

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Carlisle, Juliet E.; Kane, Stephanie L.; Solan, David; Bowman, Madelaine; Joe, Jeffrey C.

    2015-08-01

    Using data collected from both a National sample as well as an oversample in U.S. Southwest, we examine public attitudes toward the construction of utility-scale solar facilities in the U.S. as well as development in one’s own county. Our multivariate analyses assess demographic and sociopsychological factors as well as context in terms of proximity of proposed project by considering the effect of predictors for respondents living in the Southwest versus those from a National sample.We find that the predictors, and impact of the predictors, related to support and opposition to solar development vary in terms of psychological and physical distance.more »Overall, for respondents living in the U.S. Southwest we find that environmentalism, belief that developers receive too many incentives, and trust in project developers to be significantly related to support and opposition to solar development, in general. When Southwest respondents consider large-scale solar development in their county, the influence of these variables changes so that property value, race, and age only yield influence. Differential effects occur for respondents of our National sample.We believe our findings to be relevant for those outside the U.S. due to the considerable growth PV solar has experienced in the last decade, especially in China, Japan, Germany, and the U.S.« less

  13. Public attitudes regarding large-scale solar energy development in the U.S.

    SciTech Connect (OSTI)

    Carlisle, Juliet E.; Kane, Stephanie L.; Solan, David; Bowman, Madelaine; Joe, Jeffrey C.

    2015-08-01

    Using data collected from both a National sample as well as an oversample in U.S. Southwest, we examine public attitudes toward the construction of utility-scale solar facilities in the U.S. as well as development in one’s own county. Our multivariate analyses assess demographic and sociopsychological factors as well as context in terms of proximity of proposed project by considering the effect of predictors for respondents living in the Southwest versus those from a National sample.We find that the predictors, and impact of the predictors, related to support and opposition to solar development vary in terms of psychological and physical distance. Overall, for respondents living in the U.S. Southwest we find that environmentalism, belief that developers receive too many incentives, and trust in project developers to be significantly related to support and opposition to solar development, in general. When Southwest respondents consider large-scale solar development in their county, the influence of these variables changes so that property value, race, and age only yield influence. Differential effects occur for respondents of our National sample.We believe our findings to be relevant for those outside the U.S. due to the considerable growth PV solar has experienced in the last decade, especially in China, Japan, Germany, and the U.S.

  14. High-Energy Physics Strategies and Future Large-Scale Projects

    E-Print Network [OSTI]

    Zimmermann, F

    2014-01-01

    We sketch the actual European and international strategies and possible future facilities. In the near term the High Energy Physics (HEP) community will fully exploit the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). Post-LHC options include a linear e+e- collider in Japan (ILC) or at CERN (CLIC), as well as circular lepton or hadron colliders in China (CepC/SppC) and Europe (FCC). We conclude with linear and circular acceleration approaches based on crystals, and some perspectives for the far future of accelerator-based particle physics.

  15. 978-1-4799-4394-4/14/$31.00 c 2014 IEEE Towards Energy Proportionality for Large-Scale Latency-Critical Workloads

    E-Print Network [OSTI]

    Kozyrakis, Christos

    978-1-4799-4394-4/14/$31.00 c 2014 IEEE Towards Energy Proportionality for Large-Scale Latency University Google, Inc. Abstract Reducing the energy footprint of warehouse-scale computer (WSC) systems is key to their affordability, yet difficult to achieve in practice. The lack of energy proportionality

  16. Impact of Large Scale Energy Efficiency Programs On Consumer Tariffs and Utility Finances in India

    E-Print Network [OSTI]

    Abhyankar, Nikit

    2011-01-01

    Mechanisms to Promote Energy Efficiency: Case Study of ato improvements in energy efficiency. Energy Policy, 19(10),Deficit through Energy Efficiency in India: An Evaluation of

  17. Impact of Large Scale Energy Efficiency Programs On Consumer Tariffs and Utility Finances in India

    E-Print Network [OSTI]

    Abhyankar, Nikit

    2011-01-01

    American Council for an Energy-Efficienct Economy (ACEEE),.Mechanisms to Promote Energy Efficiency: Case Study of ato improvements in energy efficiency. Energy Policy, 19(10),

  18. Large-scale gyrokinetic particle simulation of

    E-Print Network [OSTI]

    Oliker, Leonid

    areas of research including plasma astrophysics and fusion energy science. Fusion is the power source that are still needed to make fusion energy a practical realization. Research in plasma science requiresLarge-scale gyrokinetic particle simulation of microturbulence in magnetically confined fusion

  19. Risk Management and Combinatorial Optimization for Large-Scale Demand Response and Renewable Energy Integration

    E-Print Network [OSTI]

    Yang, Insoon

    2015-01-01

    flexible future grid in which renewable energy sources andflexible future grid in which distributed renewable energy

  20. Large Scale Computing and Storage Requirements for Basic Energy Sciences Research

    E-Print Network [OSTI]

    Gerber, Richard

    2012-01-01

    experiments in solar energy conversion. To reiterate, higherscience of solar energy conversion. He joined the Caltechdevelopment of solar photo-energy conversion. The Division

  1. Risk Management and Combinatorial Optimization for Large-Scale Demand Response and Renewable Energy Integration

    E-Print Network [OSTI]

    Yang, Insoon

    2015-01-01

    Demand Response and Renewable Energy Integration by InsoonDemand Response and Renewable Energy Integration CopyrightDemand Response and Renewable Energy Integration by Insoon

  2. Large Scale Computing and Storage Requirements for Fusion Energy Sciences Research

    E-Print Network [OSTI]

    Gerber, Richard

    2012-01-01

    simulations of fusion and energy systems with unprecedentedRequirements  for  Fusion  Energy  Sciences   14 General  and  Storage  Requirements  for  Fusion  Energy  Sciences  

  3. Large Scale Computing and Storage Requirements for Fusion Energy Sciences: Target 2017

    E-Print Network [OSTI]

    Gerber, Richard

    2014-01-01

    Requirements  for  Fusion  Energy  Sciences:  Target  2017  Requirements  for  Fusion  Energy  Sciences:  Target  and  Context   DOE’s  Fusion  Energy  Sciences  program  

  4. Impact of Large Scale Energy Efficiency Programs On Consumer Tariffs and Utility Finances in India

    E-Print Network [OSTI]

    Abhyankar, Nikit

    2011-01-01

    The Case of India: Environmental Energy Technologiesand Energy Savings Potential in Selected Industrial Sectors in India.Deficit through Energy Efficiency in India: An Evaluation of

  5. Large Scale Computing and Storage Requirements for Fusion Energy Sciences Research

    E-Print Network [OSTI]

    Gerber, Richard

    2012-01-01

    and  Storage  Requirements  for  Fusion  Energy  Sciences  Requirements  for  Fusion  Energy  Sciences   14 General  Storage  Requirements  for  Fusion  Energy  Sciences   i  

  6. The Energy DataBus: NREL's Open-Source Application for Large-Scale Energy Data Collection and Analysis

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    NREL’s Energy DataBus is used for tracking and analyzing energy use on its own campus. The system is applicable to other facilities—including anything from a single building to a large military base or college campus—or for other energy data management needs. Managing and minimizing energy consumption on a large campus is usually a difficult task for facility managers: There may be hundreds of energy meters spread across a campus, and the meter data are often recorded by hand. Even when data are captured electronically, there may be measurement issues or time periods that may not coincide. Making sense of this limited and often confusing data can be a challenge that makes the assessment of building performance a struggle for many facility managers. The Energy DataBus software was developed by NREL to address these issues on its own campus, but with an eye toward offering its software solutions to other facilities. Key features include the software's ability to store large amounts of data collected at high frequencies—NREL collects some of its energy data every second—and rich functionality to integrate this wide variety of data into a single database [copied from http://en.openei.org/wiki/NREL_Energy_DataBus].

  7. Phenomenology of dark energy: general features of large-scale perturbations

    E-Print Network [OSTI]

    Perenon, Louis; Marinoni, Christian; Hui, Lam

    2015-01-01

    We present a systematic exploration of dark energy and modified gravity models containing a single scalar field non-minimally coupled to the metric. Even though the parameter space is large, by exploiting an effective field theory (EFT) formulation and by imposing simple physical constraints such as stability conditions and (sub-)luminal propagation of perturbations, we arrive at a number of generic predictions. (1) The linear growth rate of matter density fluctuations is generally suppressed compared to $\\Lambda$CDM at intermediate redshifts ($0.5 \\lesssim z \\lesssim 1$), despite the introduction of an attractive long-range scalar force. This is due to the fact that, in self-accelerating models, the background gravitational coupling weakens at intermediate redshifts, over-compensating the effect of the attractive scalar force. (2) At higher redshifts, the opposite happens; we identify a period of super-growth when the linear growth rate is larger than that predicted by $\\Lambda$CDM. (3) The gravitational sli...

  8. Green queue : a framework for selecting energy optimal DVFS congurations in large scale MPI applications

    E-Print Network [OSTI]

    Peraza, Joshua

    2012-01-01

    that an application is only as fast as its critical path.Any computation not on the critical path can be scaled downdown code not on the critical path [22]. Freeh et al. used

  9. Large Scale Computing and Storage Requirements for Basic Energy Sciences Research

    E-Print Network [OSTI]

    Gerber, Richard

    2012-01-01

    Coherent Light Source (LCLS). d) Architectures with largeCoherent Light Source (LCLS) at SLAC National Acceleratorto chart new directions. At LCLS, the short duration of hard

  10. Enterprise Audit Modeling of Large-Scale Agencies' Energy and Carbon Dioxide Accounting

    E-Print Network [OSTI]

    Wade, Brigitta Alexandra Anne

    2011-12-31

    Calculating and accounting of embodied and operational energy and carbon emissions within buildings is still not standardized. No regulations exist for standard equations, databases, or best practice methods to evaluate energy and carbon...

  11. Factors Influencing Water Heating Energy Use and Peak Demand in a Large Scale Residential Monitoring Study 

    E-Print Network [OSTI]

    Bouchelle, M. P.; Parker, D. S.; Anello, M. T.

    2000-01-01

    , as well as obtain improved appliance energy consumption indexes and load profiles. A portion of the monitoring measures water heater energy use and demand in each home on a 15-minute basis....

  12. Risk Management and Combinatorial Optimization for Large-Scale Demand Response and Renewable Energy Integration

    E-Print Network [OSTI]

    Yang, Insoon

    2015-01-01

    results: demand response . . . . . . . . . . . . . . . . . .Institute. “Automated Demand Response Today”. In: (2012). [Energy. “Benefits of demand response in electricity markets

  13. Large Scale Computing and Storage Requirements for Basic Energy Sciences Research

    E-Print Network [OSTI]

    Gerber, Richard

    2012-01-01

    Basic research in a broad range of energy technologies leadsbasic research that underpins a broad range of energy technologies.Basic  Energy  Sciences   10.2.5 Reaction  Dynamics  in  Complex  Molecular  Systems   Principal Investigator: Thomas Miller, California Institute of Technology

  14. IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS 2004 1 Minimizing Energy Consumption In Large-scale

    E-Print Network [OSTI]

    de Veciana, Gustavo

    -temporal field. We begin by formulating a distributed compression problem subject to aggregation (energy) costs energy-aware routing[10], [11] and/or distributed medium access control[12]. In this paper we address of such expenditures may be critical. Indeed if nodes do not have renewable sources of energy, their batteries ma

  15. Impact of Large Scale Energy Efficiency Programs On Consumer Tariffs and Utility Finances in India

    E-Print Network [OSTI]

    Abhyankar, Nikit

    2011-01-01

    India. Prayas. (2005). Demand-Side Management (DSM) in theEnergy Efficiency and Demand Side Management (DSM). PlanningDemand Growth Demand Side Management Delhi Transco Limited

  16. Energy Department Awards $66.7 Million for Large-Scale Carbon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    recent awards through the Department of Energy's (DOE) Regional Carbon Sequestration Partnership Program, DOE today awarded 66.7 million to the Midwest Geological Sequestration...

  17. The optical depth of the Universe to ultrahigh energy cosmic ray scattering in the magnetized large scale structure

    E-Print Network [OSTI]

    Kumiko Kotera; Martin Lemoine

    2008-04-30

    This paper provides an analytical description of the transport of ultrahigh energy cosmic rays in an inhomogeneously magnetized intergalactic medium. This latter is modeled as a collection of magnetized scattering centers such as radio cocoons, magnetized galactic winds, clusters or magnetized filaments of large scale structure, with negligible magnetic fields in between. Magnetic deflection is no longer a continuous process, it is rather dominated by scattering events. We study the interaction between high energy cosmic rays and the scattering agents. We then compute the optical depth of the Universe to cosmic ray scattering and discuss the phenomological consequences for various source scenarios. For typical parameters of the scattering centers, the optical depth is greater than unity at 5x10^{19}eV, but the total angular deflection is smaller than unity. One important consequence of this scenario is the possibility that the last scattering center encountered by a cosmic ray be mistaken with the source of this cosmic ray. In particular, we suggest that part of the correlation recently reported by the Pierre Auger Observatory may be affected by such delusion: this experiment may be observing in part the last scattering surface of ultrahigh energy cosmic rays rather than their source population. Since the optical depth falls rapidly with increasing energy, one should probe the arrival directions of the highest energy events beyond 10^{20}eV on an event by event basis to circumvent this effect.

  18. Energy Department Awards $66.7 Million for Large-Scale Carbon Sequestration

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPL EnergyPlus,DepartmentFederalJulyDepartment of Energy awardedProject

  19. Energy Department Loan Guarantee Would Support Large-Scale Rooftop Solar

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLfor Innovative Solar Power Plant |Projects |of EnergyEnergyPower

  20. Clean Energy Solutions Large Scale CHP and Fuel Cells Program | Department

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p aDepartment of Energyof the Clean Energy Finance<|A fact

  1. Development of Graphical Indices for Displaying Large Scale Building Energy Data Sets 

    E-Print Network [OSTI]

    Abbas, M.; Haberl, J. S.

    1994-01-01

    several years of hourly data (20,000 to 30,000 data points) collected from LoanSTAR sites. These indices are meant to be efficient displays that present data in specific graphic forms developed to highlight certain features. In a large program like Loan...

  2. A large-scale study on predicting and contextualizing building energy usage

    E-Print Network [OSTI]

    Kolter, Jeremy Z.

    In this paper we present a data-driven approach to modeling end user energy consumption in residential and commercial buildings. Our model is based upon a data set of monthly electricity and gas bills, collected by a utility ...

  3. Panel 1, Towards Sustainable Energy Systems: The Role of Large-Scale Hydrogen Storage in Germany

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1, CONDUCT P - .EnergyHYDROGEN ENERGY STORAGEHanno

  4. Large Scale Renewable Energy Property Tax Abatement (Nevada State Office of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIALU.S.Leadership on Clean Energy | Department ofTheEnergy) |

  5. Large Scale Computing and Storage Requirements for Fusion Energy Sciences: Target 2017

    SciTech Connect (OSTI)

    Gerber, Richard

    2014-05-02

    The National Energy Research Scientific Computing Center (NERSC) is the primary computing center for the DOE Office of Science, serving approximately 4,500 users working on some 650 projects that involve nearly 600 codes in a wide variety of scientific disciplines. In March 2013, NERSC, DOE?s Office of Advanced Scientific Computing Research (ASCR) and DOE?s Office of Fusion Energy Sciences (FES) held a review to characterize High Performance Computing (HPC) and storage requirements for FES research through 2017. This report is the result.

  6. Scenario Development and Analysis of Hydrogen as a Large-Scale Energy Storage Medium (Presentation)

    SciTech Connect (OSTI)

    Steward, D. M.

    2009-06-10

    The conclusions from this report are: (1) hydrogen has several important advantages over competing technologies, including - very high storage energy density (170 kWh/m{sup 3} vs. 2.4 for CAES and 0.7 for pumped hydro) which allows for potential economic viability of above-ground storage and relatively low environmental impact in comparison with other technologies; and (2) the major disadvantage of hydrogen energy storage is cost but research and deployment of electrolyzers and fuel cells may reduce cost significantly.

  7. Large-Scale Residential Energy Efficiency Programs Based on CFLs | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervar HydroElectricColorado:EnergyLaor BatteriesEnergy

  8. First U.S. Large-Scale CO2 Storage Project Advances | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015Executive Order14,EnergyFinancingWIPP |Department of EnergyFirst

  9. Locations of Smart Grid Demonstration and Large-Scale Energy Storage

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPA PublicLED1,400 Jobs | Department ofEnergy LocalProjects |

  10. HIGH-TEMPERATURE ELECTROLYSIS FOR LARGE-SCALE HYDROGEN AND SYNGAS PRODUCTION FROM NUCLEAR ENERGY – SYSTEM SIMULATION AND ECONOMICS

    SciTech Connect (OSTI)

    J. E. O'Brien; M. G. McKellar; E. A. Harvego; C. M. Stoots

    2009-05-01

    A research and development program is under way at the Idaho National Laboratory (INL) to assess the technological and scale-up issues associated with the implementation of solid-oxide electrolysis cell technology for efficient high-temperature hydrogen production from steam. This work is supported by the US Department of Energy, Office of Nuclear Energy, under the Nuclear Hydrogen Initiative. This paper will provide an overview of large-scale system modeling results and economic analyses that have been completed to date. System analysis results have been obtained using the commercial code UniSim, augmented with a custom high-temperature electrolyzer module. Economic analysis results were based on the DOE H2A analysis methodology. The process flow diagrams for the system simulations include an advanced nuclear reactor as a source of high-temperature process heat, a power cycle and a coupled steam electrolysis loop. Several reactor types and power cycles have been considered, over a range of reactor outlet temperatures. Pure steam electrolysis for hydrogen production as well as coelectrolysis for syngas production from steam/carbon dioxide mixtures have both been considered. In addition, the feasibility of coupling the high-temperature electrolysis process to biomass and coal-based synthetic fuels production has been considered. These simulations demonstrate that the addition of supplementary nuclear hydrogen to synthetic fuels production from any carbon source minimizes emissions of carbon dioxide during the production process.

  11. Toward Large-Scale Energy Harvesting by a Nanoparticle-Enhanced Triboelectric Nanogenerator

    E-Print Network [OSTI]

    Wang, Zhong L.

    by commonly available ambient mechanical energy such as human footfalls, a NG with size smaller than a human palm can generate maximum short-circuit current of 2 mA, delivering instantaneous power output of 1.2 W to external load. The power output corresponds to an area power density of 313 W/m2 and a volume power density

  12. FEMP Helps Federal Facilities Develop Large-Scale Renewable Energy Projects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy Services » Program ManagementAct FAQs Related to| Department of

  13. The value of electricity storage under large-scale penetration of renewable energy : a hybrid modeling approach

    E-Print Network [OSTI]

    Octaviano Villasana, Claudia Alejandra

    2015-01-01

    Due to the physics of electricity, and the current high costs of storage technologies, electricity generation and demand need to be instantaneously balanced at all times. The large-scale deployment of intermittent renewables ...

  14. Strategies to Finance Large-Scale Deployment of Renewable Energy Projects:

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter BatterySolarfinMarket StudiesStrategic Energy LLC Place:ResourcesAn

  15. Best Practices and Tools for Large-scale Deployment of Renewable Energy and

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYorkColoradoBelcher Homes JumpCreekEastBuy Jump

  16. U.S. Signs International Fusion Energy Agreement; Large-Scale, Clean Fusion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With WIPP UPDATE: AprilCubicProduction CapacityU.S.KeroseneEnergy

  17. Large Scale Duty Cycle (LSDC) Project: Tractive Energy Analysis Methodology and Results from Long-Haul Truck Drive Cycle Evaluations

    SciTech Connect (OSTI)

    LaClair, Tim J

    2011-05-01

    This report addresses the approach that will be used in the Large Scale Duty Cycle (LSDC) project to evaluate the fuel savings potential of various truck efficiency technologies. The methods and equations used for performing the tractive energy evaluations are presented and the calculation approach is described. Several representative results for individual duty cycle segments are presented to demonstrate the approach and the significance of this analysis for the project. The report is divided into four sections, including an initial brief overview of the LSDC project and its current status. In the second section of the report, the concepts that form the basis of the analysis are presented through a discussion of basic principles pertaining to tractive energy and the role of tractive energy in relation to other losses on the vehicle. In the third section, the approach used for the analysis is formalized and the equations used in the analysis are presented. In the fourth section, results from the analysis for a set of individual duty cycle measurements are presented and different types of drive cycles are discussed relative to the fuel savings potential that specific technologies could bring if these drive cycles were representative of the use of a given vehicle or trucking application. Additionally, the calculation of vehicle mass from measured torque and speed data is presented and the accuracy of the approach is demonstrated.

  18. Addressing Energy Costs of Current Separation Processes with Advanced Materials and Large scale purification and separation processes transform low value resources into more

    E-Print Network [OSTI]

    Li, Mo

    Addressing Energy Costs of Current Separation Processes with Advanced Materials and Processes Large scale purification and separation processes transform low value resources into more useful fuels, basic chemicals, food and clean water; however, they also consume considerable energy. With growing global

  19. Conundrum of the Large Scale Streaming

    E-Print Network [OSTI]

    T. M. Malm

    1999-09-12

    The etiology of the large scale peculiar velocity (large scale streaming motion) of clusters would increasingly seem more tenuous, within the context of the gravitational instability hypothesis. Are there any alternative testable models possibly accounting for such large scale streaming of clusters?

  20. Large-Scale Information Systems

    SciTech Connect (OSTI)

    D. M. Nicol; H. R. Ammerlahn; M. E. Goldsby; M. M. Johnson; D. E. Rhodes; A. S. Yoshimura

    2000-12-01

    Large enterprises are ever more dependent on their Large-Scale Information Systems (LSLS), computer systems that are distinguished architecturally by distributed components--data sources, networks, computing engines, simulations, human-in-the-loop control and remote access stations. These systems provide such capabilities as workflow, data fusion and distributed database access. The Nuclear Weapons Complex (NWC) contains many examples of LSIS components, a fact that motivates this research. However, most LSIS in use grew up from collections of separate subsystems that were not designed to be components of an integrated system. For this reason, they are often difficult to analyze and control. The problem is made more difficult by the size of a typical system, its diversity of information sources, and the institutional complexities associated with its geographic distribution across the enterprise. Moreover, there is no integrated approach for analyzing or managing such systems. Indeed, integrated development of LSIS is an active area of academic research. This work developed such an approach by simulating the various components of the LSIS and allowing the simulated components to interact with real LSIS subsystems. This research demonstrated two benefits. First, applying it to a particular LSIS provided a thorough understanding of the interfaces between the system's components. Second, it demonstrated how more rapid and detailed answers could be obtained to questions significant to the enterprise by interacting with the relevant LSIS subsystems through simulated components designed with those questions in mind. In a final, added phase of the project, investigations were made on extending this research to wireless communication networks in support of telemetry applications.

  1. CyanoGEBA: A Better Understanding of Cynobacterial Diversity through Large-scale Genomics (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    SciTech Connect (OSTI)

    Shih, Patrick [Kerfeld Lab, UC Berkeley and JGI] [Kerfeld Lab, UC Berkeley and JGI

    2012-03-22

    Patrick Shih, representing both the University of California, Berkeley and JGI, gives a talk titled "CyanoGEBA: A Better Understanding of Cynobacterial Diversity through Large-scale Genomics" at the JGI 7th Annual Users Meeting: Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, California.

  2. Addressing Energy Costs of Current Separation Processes with Advanced Materials and Large scale purification and separation processes transform low value resources into more

    E-Print Network [OSTI]

    Nair, Sankar

    . Recent developments in membrane materials now appear likely to extend the low energy intensity separation revolution beyond water to include the full spectrum of large scale feeds. Gas separations are particularly approaches make polymer-derived advanced materials attractive for many emerging membrane-based separations

  3. CyanoGEBA: A Better Understanding of Cynobacterial Diversity through Large-scale Genomics (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    ScienceCinema (OSTI)

    Shih, Patrick [Kerfeld Lab, UC Berkeley and JGI

    2013-01-22

    Patrick Shih, representing both the University of California, Berkeley and JGI, gives a talk titled "CyanoGEBA: A Better Understanding of Cynobacterial Diversity through Large-scale Genomics" at the JGI 7th Annual Users Meeting: Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, California.

  4. High Performance Electronic Structure Engineering: Large Scale...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Performance Electronic Structure Engineering: Large Scale GW Calculations Event Sponsor: Argonne Leadership Computing Facility Seminar Start Date: Aug 7 2015 - 10:00am...

  5. Techno-economic Modeling of the Integration of 20% Wind and Large-scale Energy Storage in ERCOT by 2030

    SciTech Connect (OSTI)

    Ross Baldick; Michael Webber; Carey King; Jared Garrison; Stuart Cohen; Duehee Lee

    2012-12-21

    This study�¢����s objective is to examine interrelated technical and economic avenues for the Electric Reliability Council of Texas (ERCOT) grid to incorporate up to and over 20% wind generation by 2030. Our specific interests are to look at the factors that will affect the implementation of both high level of wind power penetration (> 20% generation) and installation of large scale storage.

  6. Large-scale pool fires 

    E-Print Network [OSTI]

    Steinhaus, Thomas; Welch, Stephen; Carvel, Ricky O; Torero, Jose L

    2007-03-29

    A review of research into the burning behaviour of large pool fires and fuel spill fires is presented. The features which distinguish such fires from smaller pool fires are mainly associated with the fire dynamics at low ...

  7. A Stable Vanadium Redox-Flow Battery with High Energy Density for Large-scale Energy Storage

    SciTech Connect (OSTI)

    Li, Liyu; Kim, Soowhan; Wang, Wei; Vijayakumar, M.; Nie, Zimin; Chen, Baowei; Zhang, Jianlu; Xia, Guanguang; Hu, Jian Z.; Graff, Gordon L.; Liu, Jun; Yang, Zhenguo

    2011-05-01

    Low cost, high performance redox flow batteries are highly demanded for up to multi-megawatt levels of renewable and grid energy storage. Here, we report a new vanadium redox flow battery with a significant improvement over the current technologies. This new battery utilizes a sulfate-chloride mixed solution, which is capable of dissolving more than 2.5 M vanadium or about a 70% increase in the energy storage capacity over the current vanadium sulfate system. More importantly, the new electrolyte remains stable over a wide temperature range of -5 to 60oC, potentially eliminating the need of active heat management. Its high energy density, broad operational temperature window, and excellent electrochemical performance would lead to a significant reduction in the cost of energy storage, thus accelerating its market penetration.

  8. Microfluidic Large-Scale Integration: The Evolution

    E-Print Network [OSTI]

    Quake, Stephen R.

    Microfluidic Large-Scale Integration: The Evolution of Design Rules for Biological Automation, polydimethylsiloxane Abstract Microfluidic large-scale integration (mLSI) refers to the develop- ment of microfluidic, are discussed. Several microfluidic components used as building blocks to create effective, complex, and highly

  9. DLFM library tools for large scale dynamic applications.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DLFM library tools for large scale dynamic applications DLFM library tools for large scale dynamic applications Large scale Python and other dynamic applications may spend huge...

  10. Program Management for Large Scale Engineering Programs

    E-Print Network [OSTI]

    Oehmen, Josef

    The goal of this whitepaper is to summarize the LAI research that applies to program management. The context of most of the research discussed in this whitepaper are large-scale engineering programs, particularly in the ...

  11. The effect of the geomagnetic field on cosmic ray energy estimates and large scale anisotropy searches on data from the Pierre Auger Observatory

    SciTech Connect (OSTI)

    Abreu, P.; Aglietta, M.; Ahn, E.J.; Albuquerque, I.F.M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Ambrosio, M.; ,

    2011-11-01

    We present a comprehensive study of the influence of the geomagnetic field on the energy estimation of extensive air showers with a zenith angle smaller than 60{sup o}, detected at the Pierre Auger Observatory. The geomagnetic field induces an azimuthal modulation of the estimated energy of cosmic rays up to the {approx} 2% level at large zenith angles. We present a method to account for this modulation of the reconstructed energy. We analyse the effect of the modulation on large scale anisotropy searches in the arrival direction distributions of cosmic rays. At a given energy, the geomagnetic effect is shown to induce a pseudo-dipolar pattern at the percent level in the declination distribution that needs to be accounted for. In this work, we have identified and quantified a systematic uncertainty affecting the energy determination of cosmic rays detected by the surface detector array of the Pierre Auger Observatory. This systematic uncertainty, induced by the influence of the geomagnetic field on the shower development, has a strength which depends on both the zenith and the azimuthal angles. Consequently, we have shown that it induces distortions of the estimated cosmic ray event rate at a given energy at the percent level in both the azimuthal and the declination distributions, the latter of which mimics an almost dipolar pattern. We have also shown that the induced distortions are already at the level of the statistical uncertainties for a number of events N {approx_equal} 32 000 (we note that the full Auger surface detector array collects about 6500 events per year with energies above 3 EeV). Accounting for these effects is thus essential with regard to the correct interpretation of large scale anisotropy measurements taking explicitly profit from the declination distribution.

  12. Large-scale Manufacturing of Nanoparticulate-based Lubrication Additives for Improved Energy Efficiency and Reduced Emissions

    SciTech Connect (OSTI)

    Erdemir, Ali

    2013-09-26

    This project was funded under the Department of Energy (DOE) Lab Call on Nanomanufacturing for Energy Efficiency and was directed toward the development of novel boron-based nanocolloidal lubrication additives for improving the friction and wear performance of machine components in a wide range of industrial and transportation applications. Argonne?s research team concentrated on the scientific and technical aspects of the project, using a range of state-of-the art analytical and tribological test facilities. Argonne has extensive past experience and expertise in working with boron-based solid and liquid lubrication additives, and has intellectual property ownership of several. There were two industrial collaborators in this project: Ashland Oil (represented by its Valvoline subsidiary) and Primet Precision Materials, Inc. (a leading nanomaterials company). There was also a sub-contract with the University of Arkansas. The major objectives of the project were to develop novel boron-based nanocolloidal lubrication additives and to optimize and verify their performance under boundary-lubricated sliding conditions. The project also tackled problems related to colloidal dispersion, larger-scale manufacturing and blending of nano-additives with base carrier oils. Other important issues dealt with in the project were determination of the optimum size and concentration of the particles and compatibility with various base fluids and/or additives. Boron-based particulate additives considered in this project included boric acid (H{sub 3}BO{sub 3}), hexagonal boron nitride (h-BN), boron oxide, and borax. As part of this project, we also explored a hybrid MoS{sub 2} + boric acid formulation approach for more effective lubrication and reported the results. The major motivation behind this work was to reduce energy losses related to friction and wear in a wide spectrum of mechanical systems and thereby reduce our dependence on imported oil. Growing concern over greenhouse gas emissions was also a major reason. The transportation sector alone consumes about 13 million barrels of crude oil per day (nearly 60% of which is imported) and is responsible for about 30% of the CO{sub 2} emission. When we consider manufacturing and other energy-intensive industrial processes, the amount of petroleum being consumed due to friction and wear reaches more than 20 million barrels per day (from official energy statistics, U.S. Energy Information Administration). Frequent remanufacturing and/or replacement of worn parts due to friction-, wear-, and scuffing-related degradations also consume significant amounts of energy and give rise to additional CO{sub 2} emission. Overall, the total annual cost of friction- and wear-related energy and material losses is estimated to be rather significant (i.e., as much as 5% of the gross national products of highly industrialized nations). It is projected that more than half of the total friction- and wear-related energy losses can be recovered by developing and implementing advanced friction and wear control technologies. In transportation vehicles alone, 10% to 15% of the fuel energy is spent to overcome friction. If we can cut down the friction- and wear-related energy losses by half, then we can potentially save up to 1.5 million barrels of petroleum per day. Also, less friction and wear would mean less energy consumption as well as less carbon emissions and hazardous byproducts being generated and released to the environment. New and more robust anti-friction and -wear control technologies may thus have a significant positive impact on improving the efficiency and environmental cleanliness of the current legacy fleet and future transportation systems. Effective control of friction in other industrial sectors such as manufacturing, power generation, mining and oil exploration, and agricultural and earthmoving machinery may bring more energy savings. Therefore, this project was timely and responsive to the energy and environmental objectives of DOE and our nation. In this project, most of the boron-based mater

  13. Office of Inspector General audit report on the US Department of Energy`s large-scale demonstration and deployment projects

    SciTech Connect (OSTI)

    NONE

    1999-05-01

    The Department of Energy has about 7,000 surplus buildings that will eventually require deactivation and decommissioning (D and D). The estimated cost of D and D for the Department`s surplus facilities is over $11 billion with an additional $20 billion to stabilize, deactivate and decommission facilities which are currently active. The Office of Environmental Management is responsible for assuring that adequate technologies are available to address these D and D needs. Through the development and widespread deployment of new technologies, the Department has established a goal of reducing D and D costs by approximately $1 billion by 2006. Environmental Management uses Large-Scale Demonstration and Deployment Projects to identify and promote deployment of improved technologies throughout the Department. These projects are intended to provide an opportunity to compare the cost and performance of new or improved technologies against established technologies. To date, the projects have demonstrated many technologies which offer cost and performance improvements over established technologies. Environmental Management uses a concept of Integrating Contractor Teams to manage each project. The objective of the audit was to determine if opportunities exist to increase D and D technology deployments within the Department and to reduce the cost of managing technology demonstration projects.

  14. Survey of Climate Conditions for Demonstration of a Large Scale of Solar Energy Heating in Xi'an 

    E-Print Network [OSTI]

    Li, A.; Liu, Y.

    2006-01-01

    A special Energy-Efficiency Plan, for medium and long-term periods, was brought forward by the National Development and Reform Commission of China in 2005. Energy efficiency in buildings is highly emphasized in this energy ...

  15. learn invent impact Design of Large Scale

    E-Print Network [OSTI]

    McCalley, James D.

    learn invent impact Design of Large Scale Permanent Magnet Synchronous Generators for Wind Turbines.iastate.edu Permanent Magnet Synchronous Generators (PMSGs) Source: http://www.digikey.com/en-US/articles/techzone/2012of% 20PM_Generator_RPI_Qu_v8.pdf Permanent Magnet Synchronous Generators Rotor PMDD Generator Full

  16. Best Practices and Tools for Large-scale Deployment of Renewable...

    Open Energy Info (EERE)

    Best Practices and Tools for Large-scale Deployment of Renewable Energy and Energy Efficiency Techniques Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Best Practices...

  17. Large scale simulations of the mechanical properties of layered transition metal ternary compounds for fossil energy power system applications

    SciTech Connect (OSTI)

    Ching, Wai-Yim

    2014-12-31

    Advanced materials with applications in extreme conditions such as high temperature, high pressure, and corrosive environments play a critical role in the development of new technologies to significantly improve the performance of different types of power plants. Materials that are currently employed in fossil energy conversion systems are typically the Ni-based alloys and stainless steels that have already reached their ultimate performance limits. Incremental improvements are unlikely to meet the more stringent requirements aimed at increased efficiency and reduce risks while addressing environmental concerns and keeping costs low. Computational studies can lead the way in the search for novel materials or for significant improvements in existing materials that can meet such requirements. Detailed computational studies with sufficient predictive power can provide an atomistic level understanding of the key characteristics that lead to desirable properties. This project focuses on the comprehensive study of a new class of materials called MAX phases, or Mn+1AXn (M = a transition metal, A = Al or other group III, IV, and V elements, X = C or N). The MAX phases are layered transition metal carbides or nitrides with a rare combination of metallic and ceramic properties. Due to their unique structural arrangements and special types of bonding, these thermodynamically stable alloys possess some of the most outstanding properties. We used a genomic approach in screening a large number of potential MAX phases and established a database for 665 viable MAX compounds on the structure, mechanical and electronic properties and investigated the correlations between them. This database if then used as a tool for materials informatics for further exploration of this class of intermetallic compounds.

  18. Engineering Large scale separation and purification processes

    E-Print Network [OSTI]

    glassy polymers, polymer-selective nanoparticle hybrids and carbon molecular sieve (CMS) materials cover a heavy burden on available energy resources and lead to large increases in carbon dioxide emissions under a "business as usual" scenario. Advanced membrane and sorbent approaches that minimize energy intensive phase

  19. Linear Scaling 3D Fragment Method for Large-scale Electronic Structure Calculations

    E-Print Network [OSTI]

    Linear Scaling 3D Fragment Method for Large-scale Electronic Structure Calculations Lin-Wang Wang devices or optical devices like solar cells. Understanding the electronic structures of such systems structure, the charge density, the total energy and the atomic forces of a material system

  20. Understanding the Impact of Large-Scale Penetration of Micro Combined Heat & Power Technologies within Energy Systems

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    that has been the primary objective until recent times. In an intensive fossil-fuel energy world-CHP, is an attractive alternative because of the potential for enhancing energy efficiency, reducing GHG emissions within Energy Systems by Karen de los Ángeles Tapia-Ahumada B.S., Civil Industrial Engineering

  1. The Effective Field Theory of Cosmological Large Scale Structures...

    Office of Scientific and Technical Information (OSTI)

    The Effective Field Theory of Cosmological Large Scale Structures Citation Details In-Document Search Title: The Effective Field Theory of Cosmological Large Scale Structures...

  2. The Effective Field Theory of Cosmological Large Scale Structures...

    Office of Scientific and Technical Information (OSTI)

    The Effective Field Theory of Cosmological Large Scale Structures Citation Details In-Document Search Title: The Effective Field Theory of Cosmological Large Scale Structures ...

  3. ACCOLADES: A Scalable Workflow Framework for Large-Scale Simulation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ACCOLADES: A Scalable Workflow Framework for Large-Scale Simulation and Analyses of Automotive Engines Title ACCOLADES: A Scalable Workflow Framework for Large-Scale Simulation and...

  4. Large Scale Computing and Storage Requirements for Advanced Scientific...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research: Target 2014 ASCRFrontcover.png Large Scale Computing and Storage Requirements for...

  5. Overcoming the Barrier to Achieving Large-Scale Production -...

    Office of Environmental Management (EM)

    Overcoming the Barrier to Achieving Large-Scale Production - A Case Study Overcoming the Barrier to Achieving Large-Scale Production - A Case Study This presentation summarizes the...

  6. Low-risk and cost-effective prior savings estimates for large-scale energy conservation projects in housing: Learning from the Fort Polk GHP project

    SciTech Connect (OSTI)

    Shonder, J.A.; Hughes, P.J.; Thornton, J.W.

    1997-08-01

    Many opportunities exist for large-scale energy conservation projects in housing. Energy savings performance contracting (ESPC) is now receiving greater attention, as a means to implement such projects. This paper proposes an improved method for prior (to construction) savings estimates for these projects. The proposed approach to prior estimates is verified against data from Fort Polk, LA. In the course of evaluating the ESPC at Fort Polk, the authors have collected energy use data which allowed them to develop calibrated engineering models which accurately predict pre-retrofit energy consumption. They believe that such calibrated models could be used to provide much more accurate estimates of energy savings in retrofit projects. The improved savings estimating approach described here is based on an engineering model calibrated to field-collected data from the pre-retrofit period. A dynamic model of pre-retrofit energy use was developed for all housing and non-housing loads on a complete electrical feeder at Fort Polk. The model included the heat transfer characteristics of the buildings, the pre-retrofit air source heat pump, a hot water consumption model and a profile for electrical use by lights and other appliances. Energy consumption for all 200 apartments was totaled, and by adjusting thermostat setpoints and outdoor air infiltration parameters, the models were matched to field-collected energy consumption data for the entire feeder. The energy conservation measures were then implemented in the calibrated model: the air source heat pumps were replaced by geothermal heat pumps with desuperheaters; hot water loads were reduced to account for the low-flow shower heads; and lighting loads were reduced to account for fixture delamping and replacement with compact fluorescent lights. The analysis of pre- and post-retrofit data indicates that the retrofits have saved 30.3% of pre-retrofit electrical energy consumption on the feeder modeled in this paper.

  7. Impacts of Large-scale Surface Modifications on Meteorological Conditions and Energy Use: A 10-Region Modeling Study

    E-Print Network [OSTI]

    Taha, H.

    2011-01-01

    and Sasa Gabersek, Heat Island Project, Environmental EnergySpecial Issue on Urban Heat Islands and Cool Communities,Special Issue on Urban Heat Islands and Cool communities,

  8. Model As-of Right Zoning Ordinance or Bylaw: Allowing Use of Large-Scale Solar Energy Facilities

    Office of Energy Efficiency and Renewable Energy (EERE)

    As part of the Green Communities Act (passed in 2008), the Massachusetts Department of Energy Resources (DOER) and the Massachusetts Executive Office of Environmental Affairs (EOEA) developed an ...

  9. Reducing Data Center Loads for a Large-Scale, Low-Energy Office Building: NREL's Research Support Facility (Book)

    SciTech Connect (OSTI)

    Sheppy, M.; Lobato, C.; Van Geet, O.; Pless, S.; Donovan, K.; Powers, C.

    2011-12-01

    This publication detailing the design, implementation strategies, and continuous performance monitoring of NREL's Research Support Facility data center. Data centers are energy-intensive spaces that facilitate the transmission, receipt, processing, and storage of digital data. These spaces require redundancies in power and storage, as well as infrastructure, to cool computing equipment and manage the resulting waste heat (Tschudi, Xu, Sartor, and Stein, 2003). Data center spaces can consume more than 100 times the energy of standard office spaces (VanGeet 2011). The U.S. Environmental Protection Agency (EPA) reported that data centers used 61 billion kilowatt-hours (kWh) in 2006, which was 1.5% of the total electricity consumption in the U.S. (U.S. EPA, 2007). Worldwide, data centers now consume more energy annually than Sweden (New York Times, 2009). Given their high energy consumption and conventional operation practices, there is a potential for huge energy savings in data centers. The National Renewable Energy Laboratory (NREL) is world renowned for its commitment to green building construction. In June 2010, the laboratory finished construction of a 220,000-square-foot (ft{sup 2}), LEED Platinum, Research Support Facility (RSF), which included a 1,900-ft{sup 2} data center. The RSF will expand to 360,000 ft{sup 2} with the opening of an additional wing December, 2011. The project's request for proposals (RFP) set a whole-building demand-side energy use requirement of a nominal 35 kBtu/ft{sup 2} per year. On-site renewable energy generation will offset the annual energy consumption. To support the RSF's energy goals, NREL's new data center was designed to minimize its energy footprint without compromising service quality. Several implementation challenges emerged during the design, construction, and first 11 months of operation of the RSF data center. This document highlights these challenges and describes in detail how NREL successfully overcame them. The IT settings and strategies outlined in this document have been used to significantly reduce data center energy requirements in the RSF; however, these can also be used in existing buildings and retrofits.

  10. Effect of Large Scale Transmission Limitations on Renewable Energy Load Matching for Western U.S.: Preprint

    SciTech Connect (OSTI)

    Diakov, V.; Short, W.; Gilchrist, B.

    2012-06-01

    Based on the available geographically dispersed data for the Western U.S. (excluding Alaska), we analyze to what extent the geographic diversity of these resources can offset their variability. Without energy storage and assuming unlimited energy flows between regions, wind and PV can meet up to 80% of loads in Western U.S. while less than 10% of the generated power is curtailed. Limiting hourly energy flows by the aggregated transmission line carrying capacities decreases the fraction of the load that can be met with wind and PV generation to approximately 70%.

  11. Copyright 2013 IEEE. Reprinted, with permission from: CERTS Microgrid Demonstration with Large-Scale Energy Storage and

    E-Print Network [OSTI]

    Copyright © 2013 IEEE. Reprinted, with permission from: CERTS Microgrid Demonstration with Large Technology Solutions (CERTS) Microgrid concept captures the emerging potential of using a system approach to distributed generation. CERTS views generation and associated loads as a subsystem or a "Microgrid

  12. Understanding the impact of large-scale penetration of micro combined heat & power technologies within energy systems/

    E-Print Network [OSTI]

    Tapia-Ahumada, Karen de los Ángeles

    2011-01-01

    Significant energy challenges today come from security of supply and environmental concerns. Those surpass the quest for economic efficiency that has been the primary objective until recent times. In an intensive fossil-fuel ...

  13. A Robust Data Delivery Protocol for Large Scale Sensor Networks

    E-Print Network [OSTI]

    California at Los Angeles, University of

    by the sender. GRAB design harnesses the advantage of large scale and relies on the col- lective e#11;orts simulation exper- iments, GRAB can successfully deliver above 90% of data with relatively low energy cost the small, power-limited sensor nodes are prone to errors. Severe operational conditions (e.g. strong wind

  14. Large-Scale Utilization of Biomass Energy and Carbon Dioxide Capture and Storage in the Transport and Electricity Sectors under Stringent CO2 Concentration Limit Scenarios

    SciTech Connect (OSTI)

    Luckow, Patrick; Wise, Marshall A.; Dooley, James J.; Kim, Son H.

    2010-08-05

    This paper examines the potential role of large scale, dedicated commercial biomass energy systems under global climate policies designed to meet atmospheric concentrations of CO2 at 400ppm and 450ppm by the end of the century. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. A key aspect of the research presented here is that the costs of processing and transporting biomass energy at much larger scales than current experience are explicitly incorporated into the modeling. From the scenario results, 120-160 EJ/year of biomass energy is produced globally by midcentury and 200-250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the majority source, along with growing utilization of waste-to-energy. The ability to draw on a diverse set of biomass based feedstocks helps to reduce the pressure for drastic large-scale changes in land use and the attendant environmental, ecological, and economic consequences those changes would unleash. In terms of the conversion of bioenergy feedstocks into value added energy, this paper demonstrates that biomass is and will continue to be used to generate electricity as well as liquid transportation fuels. A particular focus of this paper is to show how climate policies and technology assumptions - especially the availability of carbon dioxide capture and storage (CCS) technologies - affect the decisions made about where the biomass is used in the energy system. The potential for net-negative electric sector emissions through the use of CCS with biomass feedstocks provides an attractive part of the solution for meeting stringent emissions constraints; we find that at carbon prices above 150$/tCO2, over 90% of biomass in the energy system is used in combination with CCS. Despite the higher technology costs of CCS, it is a very important tool in controlling the cost of meeting a target, offsetting the venting of CO2 from sectors of the energy system that may be more expensive to mitigate, such as oil use in transportation. CCS is also used heavily with other fuels such as coal and natural gas, and by 2095 a total of 1530 GtCO2 has been stored in deep geologic reservoirs. The paper also discusses the role of cellulosic ethanol and Fischer-Tropsch biomass derived transportation fuels as two representative conversion processes and shows that both technologies may be important contributors to liquid fuels production, with unique costs and emissions characteristics.

  15. Low-Risk and Cost-Effective Prior Savings Estimates for Large-Scale Energy Conservation Projects in Housing: Learning from the Fort Polk GHP Project

    SciTech Connect (OSTI)

    Shonder, John A; Hughes, Patrick; Thornton, Jeff W.

    1997-08-01

    Many opportunities exist for large-scale energy conservation projects in housing: military housing, federally-subsidized low-income housing, and planned communities (condominiums, townhomes, senior centers) to name a few. Energy savings performance contracting (ESPC) is now receiving greater attention, as a means to implement such projects. This paper proposes an improved method for prior (to construction) savings estimates for these projects. More accurate prior estimates reduce project risk, decrease financing costs, and help avoid post-construction legal disputes over performance contract baseline adjustments. The proposed approach to prior estimates is verified against data from Fort Polk, LA. In the course of evaluating the ESPC at Fort Polk, Louisiana, we have collected energy use data - both at the electrical feeder level and at the level of individual residences - which allowed us to develop calibrated engineering models which accurately predict pre-retrofit energy consumption. We believe that such calibrated models could be used to provide much more accurate estimates of energy savings in retrofit projects, particularly in cases where the energy consumption of large populations of housing can be captured on one or a few meters. The improved savings estimating approach described here is based on an engineering model calibrated to field-collected data from the pre-retrofit period. A dynamic model of pre-retrofit energy use was developed for all housing and non-housing loads on a complete electrical feeder at Fort Polk. The feeder serves 46 buildings containing a total of 200 individual apartments. Of the 46 buildings, there are three unique types, and among these types the only difference is compass orientation. The model included the heat transfer characteristics of the buildings, the pre-retrofit air source heat pump, a hot water consumption model and a profile for electrical use by lights and other appliances. Energy consumption for all 200 apartments was totaled, and by adjusting thermostat setpoints and outdoor air infiltration parameters, the models were matched to field-collected energy consumption data for the entire feeder. The energy conservation measures were then implemented in the calibrated model: the air source heat pumps were replaced by geothermal heat pumps (GHPs) with desuperheaters; hot water loads were reduced to account for the low-flow shower heads; and lighting loads were reduced to account for fixture delamping and replacement with compact fluorescent lights (CFLs). Our analysis of pre- and post-retrofit data (Shonder and Hughes, 1997) indicates that the retrofits have saved 30.3% of pre-retrofit electrical energy consumption on the feeder modeled in this paper. Using the method outlined, we have been able to predict this savings within 0.1% of its measured value, using only pre-construction energy consumption data, and data from one pilot test site. It is well-known that predictions of savings from energy conservation programs are often optimistic, especially in the case of residential retrofits. Fels and keating (1993) cite several examples of programs which achieved as little as 20% of the predicted energy savings. Factors which influence the sometimes large discrepancies between actual and predicted savings include changes in occupancy, take-back effects (in which more efficient system operation leads occupants to choose higher levels of comfort), and changes in base energy use (e.g. through purchase of additional appliances such as washing machines and clothes dryers). An even larger factor, perhaps, is the inaccuracy inherent in the engineering models (BLAST, DOE-2, etc.) commonly used to estimate building energy consumption, if these models are not first calibrated to site-monitored data. For example, prior estimates of base-wide savings from the Fort Polk ESPC were on the order of 40% of pre-retrofit electrical use; our analysis has shown the true savings for the entire project (which includes 16 separate electrical feeders) to be about 32%. It should be noted that the retrofits ca

  16. IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. NN, MMM YYYY 1 System-Wide Leakage-Aware Energy Minimization

    E-Print Network [OSTI]

    Mishra, Prabhat

    the advantage of the fact that linear reduction in the supply voltage can quadratically reduce the power System-Wide Leakage-Aware Energy Minimization using Dynamic Voltage Scaling and Cache Reconfiguration voltage scaling (DVS) is well studied and known to be successful in reducing processor energy consumption

  17. A Model of Plasma Heating by Large-Scale Flow

    E-Print Network [OSTI]

    Pongkitiwanichakul, P; Boldyrev, S; Mason, J; Perez, J C

    2015-01-01

    In this work we study the process of energy dissipation triggered by a slow large scale motion of a magnetized conducting fluid. Our consideration is motivated by the problem of heating the solar corona, which is believed to be governed by fast reconnection events set off by the slow motion of magnetic field lines anchored in the photospheric plasma. To elucidate the physics governing the disruption of the imposed laminar motion and the energy transfer to small scales, we propose a simplified model where the large-scale motion of magnetic field lines is prescribed not at the footpoints but rather imposed volumetrically. As a result, the problem can be treated numerically with an efficient, highly-accurate spectral method, allowing us to use a resolution and statistical ensemble exceeding those of the previous work. We find that, even though the large-scale deformations are slow, they eventually lead to reconnection events that drive a turbulent state at smaller scales. The small-scale turbulence displays many...

  18. Greening the Networks of Large-Scale Distributed Systems

    E-Print Network [OSTI]

    Lefèvre, Laurent

    -tier fat-tree architecture Energy savings of Green compared to No off : - 73% for a 20% workload - 68Greening the Networks of Large-Scale Distributed Systems ENS de Lyon ­ INRIA RESO ­ UCBL ­ LIP://perso.ens-lyon.fr/annececile.orgerie/networks.html HERMES : High-level Energy-awaRe Model for bandwidth reservation in End-to-end NetworkS · Unused network

  19. Evaluation of the Potential Environmental Impacts from Large-Scale Use and Production of Hydrogen in Energy and Transportation Applications

    SciTech Connect (OSTI)

    Wuebbles, D.J.; Dubey, M.K., Edmonds, J.; Layzell, D.; Olsen, S.; Rahn, T.; Rocket, A.; Wang, D.; Jia, W.

    2010-06-01

    The purpose of this project is to systematically identify and examine possible near and long-term ecological and environmental effects from the production of hydrogen from various energy sources based on the DOE hydrogen production strategy and the use of that hydrogen in transportation applications. This project uses state-of-the-art numerical modeling tools of the environment and energy system emissions in combination with relevant new and prior measurements and other analyses to assess the understanding of the potential ecological and environmental impacts from hydrogen market penetration. H2 technology options and market penetration scenarios will be evaluated using energy-technology-economics models as well as atmospheric trace gas projections based on the IPCC SRES scenarios including the decline in halocarbons due to the Montreal Protocol. Specifically we investigate the impact of hydrogen releases on the oxidative capacity of the atmosphere, the long-term stability of the ozone layer due to changes in hydrogen emissions, the impact of hydrogen emissions and resulting concentrations on climate, the impact on microbial ecosystems involved in hydrogen uptake, and criteria pollutants emitted from distributed and centralized hydrogen production pathways and their impacts on human health, air quality, ecosystems, and structures under different penetration scenarios

  20. Organo-sulfur molecules enable iron-based battery electrodes to meet the challenges of large-scale electrical energy storage

    SciTech Connect (OSTI)

    Yang, B; Malkhandi, S; Manohar, AK; Prakash, GKS; Narayanan, SR

    2014-07-03

    Rechargeable iron-air and nickel-iron batteries are attractive as sustainable and inexpensive solutions for large-scale electrical energy storage because of the global abundance and eco-friendliness of iron, and the robustness of iron-based batteries to extended cycling. Despite these advantages, the commercial use of iron-based batteries has been limited by their low charging efficiency. This limitation arises from the iron electrodes evolving hydrogen extensively during charging. The total suppression of hydrogen evolution has been a significant challenge. We have found that organo-sulfur compounds with various structural motifs (linear and cyclic thiols, dithiols, thioethers and aromatic thiols) when added in milli-molar concentration to the aqueous alkaline electrolyte, reduce the hydrogen evolution rate by 90%. These organo-sulfur compounds form strongly adsorbed layers on the iron electrode and block the electrochemical process of hydrogen evolution. The charge-transfer resistance and double-layer capacitance of the iron/electrolyte interface confirm that the extent of suppression of hydrogen evolution depends on the degree of surface coverage and the molecular structure of the organo-sulfur compound. An unanticipated electrochemical effect of the adsorption of organo-sulfur molecules is "de-passivation" that allows the iron electrode to be discharged at high current values. The strongly adsorbed organo-sulfur compounds were also found to resist electro-oxidation even at the positive electrode potentials at which oxygen evolution can occur. Through testing on practical rechargeable battery electrodes we have verified the substantial improvements to the efficiency during charging and the increased capability to discharge at high rates. We expect these performance advances to enable the design of efficient, inexpensive and eco-friendly iron-based batteries for large-scale electrical energy storage.

  1. Reducing Plug and Process Loads for a Large Scale, Low Energy Office Building: NREL's Research Support Facility: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100 Winners * Impactsand engineersAcquisition Office of Energy

  2. 1 National Roadmap Committee for Large-Scale Research Facilities the netherlands' roadmap for large-scale research facilities

    E-Print Network [OSTI]

    Horn, David

    #12;1 National Roadmap Committee for Large-Scale Research Facilities the netherlands' roadmap for large-scale research facilities #12;2 National Roadmap Committee for Large-Scale Research Facilities1 by Roselinde Supheert) #12;3 National Roadmap Committee for Large-Scale Research Facilities The Netherlands

  3. Aalborg Universitet Optimal Selection of AC Cables for Large Scale Offshore Wind Farms

    E-Print Network [OSTI]

    Hu, Weihao

    Aalborg Universitet Optimal Selection of AC Cables for Large Scale Offshore Wind Farms Hou, Peng Cables for Large Scale Offshore Wind Farms. In Proceedings of the 40th Annual Conference of IEEE of AC Cables for Large Scale Offshore Wind Farms Peng Hou, Weihao Hu, Zhe Chen Department of Energy

  4. The Phoenix series large scale LNG pool fire experiments.

    SciTech Connect (OSTI)

    Simpson, Richard B.; Jensen, Richard Pearson; Demosthenous, Byron; Luketa, Anay Josephine; Ricks, Allen Joseph; Hightower, Marion Michael; Blanchat, Thomas K.; Helmick, Paul H.; Tieszen, Sheldon Robert; Deola, Regina Anne; Mercier, Jeffrey Alan; Suo-Anttila, Jill Marie; Miller, Timothy J.

    2010-12-01

    The increasing demand for natural gas could increase the number and frequency of Liquefied Natural Gas (LNG) tanker deliveries to ports across the United States. Because of the increasing number of shipments and the number of possible new facilities, concerns about the potential safety of the public and property from an accidental, and even more importantly intentional spills, have increased. While improvements have been made over the past decade in assessing hazards from LNG spills, the existing experimental data is much smaller in size and scale than many postulated large accidental and intentional spills. Since the physics and hazards from a fire change with fire size, there are concerns about the adequacy of current hazard prediction techniques for large LNG spills and fires. To address these concerns, Congress funded the Department of Energy (DOE) in 2008 to conduct a series of laboratory and large-scale LNG pool fire experiments at Sandia National Laboratories (Sandia) in Albuquerque, New Mexico. This report presents the test data and results of both sets of fire experiments. A series of five reduced-scale (gas burner) tests (yielding 27 sets of data) were conducted in 2007 and 2008 at Sandia's Thermal Test Complex (TTC) to assess flame height to fire diameter ratios as a function of nondimensional heat release rates for extrapolation to large-scale LNG fires. The large-scale LNG pool fire experiments were conducted in a 120 m diameter pond specially designed and constructed in Sandia's Area III large-scale test complex. Two fire tests of LNG spills of 21 and 81 m in diameter were conducted in 2009 to improve the understanding of flame height, smoke production, and burn rate and therefore the physics and hazards of large LNG spills and fires.

  5. Large Scale Weather Control Using Nuclear Reactors

    E-Print Network [OSTI]

    Moninder Singh Modgil

    2002-10-02

    It is pointed out that controlled release of thermal energy from fission type nuclear reactors can be used to alter weather patterns over significantly large geographical regions. (1) Nuclear heat creates a low pressure region, which can be used to draw moist air from oceans, onto deserts. (2) Creation of low pressure zones over oceans using Nuclear heat can lead to Controlled Cyclone Creation (CCC).(3) Nuclear heat can also be used to melt glaciers and control water flow in rivers.

  6. Large Scale Weather Control Using Nuclear Reactors

    E-Print Network [OSTI]

    Singh-Modgil, M

    2002-01-01

    It is pointed out that controlled release of thermal energy from fission type nuclear reactors can be used to alter weather patterns over significantly large geographical regions. (1) Nuclear heat creates a low pressure region, which can be used to draw moist air from oceans, onto deserts. (2) Creation of low pressure zones over oceans using Nuclear heat can lead to Controlled Cyclone Creation (CCC).(3) Nuclear heat can also be used to melt glaciers and control water flow in rivers.

  7. Large-scale Offshore Wind Power in the United States. Assessment of Opportunities and Barriers

    SciTech Connect (OSTI)

    Musial, Walter; Ram, Bonnie

    2010-09-01

    This report describes the benefits of and barriers to large-scale deployment of offshore wind energy systems in U.S. waters.

  8. Theoretical Tools for Large Scale Structure

    E-Print Network [OSTI]

    J. R. Bond; L. Kofman; D. Pogosyan; J. Wadsley

    1998-10-06

    We review the main theoretical aspects of the structure formation paradigm which impinge upon wide angle surveys: the early universe generation of gravitational metric fluctuations from quantum noise in scalar inflaton fields; the well understood and computed linear regime of CMB anisotropy and large scale structure (LSS) generation; the weakly nonlinear regime, where higher order perturbation theory works well, and where the cosmic web picture operates, describing an interconnected LSS of clusters bridged by filaments, with membranes as the intrafilament webbing. Current CMB+LSS data favour the simplest inflation-based $\\Lambda$CDM models, with a primordial spectral index within about 5% of scale invariant and $\\Omega_\\Lambda \\approx 2/3$, similar to that inferred from SNIa observations, and with open CDM models strongly disfavoured. The attack on the nonlinear regime with a variety of N-body and gas codes is described, as are the excursion set and peak-patch semianalytic approaches to object collapse. The ingredients are mixed together in an illustrative gasdynamical simulation of dense supercluster formation.

  9. Application and Mode Establishment of Asset-backed Securitization in Existing Large-scale Public Building Retrofit Financing in China 

    E-Print Network [OSTI]

    Sun, J.; Wu, Y.; Dai, Z.; Hao, Y.

    2006-01-01

    to reconstruct existing large-scale public buildings for large-scale public buildings having the characteristics of high-energy consumption and low-energy efficiency. Existing building retrofit is a system engineering involving technology, policy and management...

  10. Large-Scale Anisotropy of EGRET Gamma Ray Sources

    E-Print Network [OSTI]

    Luis Anchordoqui; Thomas McCauley; Thomas Paul; Olaf Reimer; Diego F. Torres

    2005-06-24

    In the course of its operation, the EGRET experiment detected high-energy gamma ray sources at energies above 100 MeV over the whole sky. In this communication, we search for large-scale anisotropy patterns among the catalogued EGRET sources using an expansion in spherical harmonics, accounting for EGRET's highly non-uniform exposure. We find significant excess in the quadrupole and octopole moments. This is consistent with the hypothesis that, in addition to the galactic plane, a second mid-latitude (5^{\\circ} < |b| < 30^{\\circ}) population, perhaps associated with the Gould belt, contributes to the gamma ray flux above 100 MeV.

  11. Use of dual plane PIV to assess scale-by-scale energy budgets in wall turbulence

    E-Print Network [OSTI]

    Marusic, Ivan

    Use of dual plane PIV to assess scale-by-scale energy budgets in wall turbulence N Saikrishnan1-layer, the buffer region, the logarithmic region and the outer region. In the space of scales, turbulent energy is produced at the large scales and transferred to smaller scales, finally dissipating in the form of heat

  12. Panel 1, Towards Sustainable Energy Systems: The Role of Large...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Towards sustainable energy systems - The role of large scale hydrogen storage in Germany May 14th, 2014 | Sacramento Political background for the transition to renewable...

  13. Large Energy Users Program

    Broader source: Energy.gov [DOE]

    The program is administered by the NJ Board of Public Utilities and is under management by TRC Energy Solutions.

  14. Sensitivity technologies for large scale simulation.

    SciTech Connect (OSTI)

    Collis, Samuel Scott; Bartlett, Roscoe Ainsworth; Smith, Thomas Michael; Heinkenschloss, Matthias; Wilcox, Lucas C.; Hill, Judith C.; Ghattas, Omar; Berggren, Martin Olof; Akcelik, Volkan; Ober, Curtis Curry; van Bloemen Waanders, Bart Gustaaf; Keiter, Eric Richard

    2005-01-01

    Sensitivity analysis is critically important to numerous analysis algorithms, including large scale optimization, uncertainty quantification,reduced order modeling, and error estimation. Our research focused on developing tools, algorithms and standard interfaces to facilitate the implementation of sensitivity type analysis into existing code and equally important, the work was focused on ways to increase the visibility of sensitivity analysis. We attempt to accomplish the first objective through the development of hybrid automatic differentiation tools, standard linear algebra interfaces for numerical algorithms, time domain decomposition algorithms and two level Newton methods. We attempt to accomplish the second goal by presenting the results of several case studies in which direct sensitivities and adjoint methods have been effectively applied, in addition to an investigation of h-p adaptivity using adjoint based a posteriori error estimation. A mathematical overview is provided of direct sensitivities and adjoint methods for both steady state and transient simulations. Two case studies are presented to demonstrate the utility of these methods. A direct sensitivity method is implemented to solve a source inversion problem for steady state internal flows subject to convection diffusion. Real time performance is achieved using novel decomposition into offline and online calculations. Adjoint methods are used to reconstruct initial conditions of a contamination event in an external flow. We demonstrate an adjoint based transient solution. In addition, we investigated time domain decomposition algorithms in an attempt to improve the efficiency of transient simulations. Because derivative calculations are at the root of sensitivity calculations, we have developed hybrid automatic differentiation methods and implemented this approach for shape optimization for gas dynamics using the Euler equations. The hybrid automatic differentiation method was applied to a first order approximation of the Euler equations and used as a preconditioner. In comparison to other methods, the AD preconditioner showed better convergence behavior. Our ultimate target is to perform shape optimization and hp adaptivity using adjoint formulations in the Premo compressible fluid flow simulator. A mathematical formulation for mixed-level simulation algorithms has been developed where different physics interact at potentially different spatial resolutions in a single domain. To minimize the implementation effort, explicit solution methods can be considered, however, implicit methods are preferred if computational efficiency is of high priority. We present the use of a partial elimination nonlinear solver technique to solve these mixed level problems and show how these formulation are closely coupled to intrusive optimization approaches and sensitivity analyses. Production codes are typically not designed for sensitivity analysis or large scale optimization. The implementation of our optimization libraries into multiple production simulation codes in which each code has their own linear algebra interface becomes an intractable problem. In an attempt to streamline this task, we have developed a standard interface between the numerical algorithm (such as optimization) and the underlying linear algebra. These interfaces (TSFCore and TSFCoreNonlin) have been adopted by the Trilinos framework and the goal is to promote the use of these interfaces especially with new developments. Finally, an adjoint based a posteriori error estimator has been developed for discontinuous Galerkin discretization of Poisson's equation. The goal is to investigate other ways to leverage the adjoint calculations and we show how the convergence of the forward problem can be improved by adapting the grid using adjoint-based error estimates. Error estimation is usually conducted with continuous adjoints but if discrete adjoints are available it may be possible to reuse the discrete version for error estimation. We investigate the advantages and disadvantages of continuous and discre

  15. Potential Climatic Impacts and Reliability of Very Large-Scale Wind Farms

    E-Print Network [OSTI]

    Wang, Chien

    Meeting future world energy needs while addressing climate change requires large-scale deployment of low or zero greenhouse gas (GHG) emission technologies such as wind energy. The widespread availability of wind power has ...

  16. Language Requirements for Large-Scale Generic Libraries

    E-Print Network [OSTI]

    Lumsdaine, Andrew

    Language Requirements for Large-Scale Generic Libraries Jeremy Siek and Andrew Lumsdaine {jsiek-scale software libraries. The fundamental principle of generic pro- gramming is the realization of interfaces programming and large-scale libraries. In this paper, we present an overview of G and analyze

  17. Detection and Classification of Ash Dieback on Large-Scale

    E-Print Network [OSTI]

    Detection and Classification of Ash Dieback on Large-Scale Color Aerial Photographs Ralph J of Agriculture 1966 #12;Croxton, Ralph J. 1966. Detection and classification of ash dieback on large- scale. Forest Serv. Res. Paper PSW-35) Aerial color photographs were taken at two scales over ash stands in New

  18. Large scale prediction models and algorithms

    E-Print Network [OSTI]

    Monsch, Matthieu (Matthieu Frederic)

    2013-01-01

    Over 90% of the data available across the world has been produced over the last two years, and the trend is increasing. It has therefore become paramount to develop algorithms which are able to scale to very high dimensions. ...

  19. High Areal Capacity Hybrid Magnesium-Lithium-Ion Battery with 99.9% Coulombic Efficiency for Large-Scale Energy Storage

    E-Print Network [OSTI]

    High Areal Capacity Hybrid Magnesium-Lithium-Ion Battery with 99.9% Coulombic Efficiency for Large, United States *S Supporting Information ABSTRACT: Hybrid magnesium-lithium-ion batteries (MLIBs magnesium-lithium-ion batteries (MLIBs), energy storage, Coulombic efficiency, dendrite-free magnesium

  20. ORNL demonstrates first large-scale graphene fabrication | ornl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ORNL demonstrates first large-scale graphene composite fabrication ORNL's ultrastrong graphene features layers of graphene and polymers and is an effective conductor of...

  1. A Model for Turbulent Combustion Simulation of Large Scale Hydrogen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Model for Turbulent Combustion Simulation of Large Scale Hydrogen Explosions Event Sponsor: Argonne Leadership Computing Facility Seminar Start Date: Oct 6 2015 - 10:00am...

  2. Effects of Volcanism, Crustal Thickness, and Large Scale Faulting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Effects of Volcanism, Crustal Thickness, and Large Scale Faulting on the Development and Evolution of Geothermal Systems: Collaborative Project in Chile Effects of Volcanism,...

  3. Optimization Online - A fictitious play approach to large-scale ...

    E-Print Network [OSTI]

    Theodore Lambert

    2004-08-01

    Aug 1, 2004 ... A fictitious play approach to large-scale optimization. Theodore Lambert (tlambert ***at*** tmcc.edu) Marina A. Epelman (mepelman ***at*** ...

  4. Advancing Cellulosic Ethanol for Large Scale Sustainable Transportation

    E-Print Network [OSTI]

    Wyman, C

    2007-01-01

    Advancing Cellulosic Ethanol for Large Scale SustainableHydrogen Batteries Nuclear By Lee Lynd, Dartmouth Ethanol •Ethanol, ethyl alcohol, fermentation ethanol, or just “

  5. Towards a Large-Scale Recording System: Demonstration of Polymer...

    Office of Scientific and Technical Information (OSTI)

    Towards a Large-Scale Recording System: Demonstration of Polymer-Based Penetrating Array for Chronic Neural Recording Citation Details In-Document Search Title: Towards a...

  6. An Occupied Subspace Optimization for Linear Scaling in LargeScale Ab Initio Electronic

    E-Print Network [OSTI]

    Raczkowski, David

    1 CONTENTS An Occupied Subspace Optimization for Linear Scaling in Large­Scale Ab Initio Electronic 2000 Physics An Occupied Subspace Optimization for Linear Scaling in Large Scale Ab Initio Electronic Structure Calculations Abstract We present an approach to electronic structure calcu­ lations that replaces

  7. CALIFORNIA ENERGY Large HVAC Building

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION Large HVAC Building Survey Information Database of Buildings over 100 Energy Systems: Productivity and Building Science Program. This program was funded by the California of Portland Energy Conservation, Inc. Project Management: Cathy Higgins, Program Director for New Buildings

  8. Large-Scale Wind Training Program

    SciTech Connect (OSTI)

    Porter, Richard L. [Hudson Valley Community College

    2013-07-01

    Project objective is to develop a credit-bearing wind technician program and a non-credit safety training program, train faculty, and purchase/install large wind training equipment.

  9. POWER SYSTEMS STABILITY WITH LARGE-SCALE WIND POWER PENETRATION

    E-Print Network [OSTI]

    Bak-Jensen, Birgitte

    of offshore wind farms, wind power fluctuations may introduce several challenges to reliable power system behaviour due to natural wind fluctuations. The rapid power fluctuations from the large scale wind farms Generation Control (AGC) system which includes large- scale wind farms for long-term stability simulation

  10. Climate impacts of a large-scale biofuels expansion*

    E-Print Network [OSTI]

    Climate impacts of a large-scale biofuels expansion* Willow Hallgren, C. Adam Schlosser, Erwan impacts of a large-scale biofuels expansion Willow Hallgren,1 C. Adam Schlosser,1 Erwan Monier,1 David March 2013. [1] A global biofuels program will potentially lead to intense pressures on land supply

  11. Markov Chain Analysis for Large-Scale Grid Systems

    E-Print Network [OSTI]

    Markov Chain Analysis for Large-Scale Grid Systems Christopher Dabrowski Fern Hunt NISTIR 7566 #12;2 #12;3 NISTIR 7566 Markov Chain Analysis for Large-Scale Grid Systems Christopher Dabrowski Software and Systems Division Information Technology Laboratory National Institute of Standards and Technology

  12. Large Scale Evaluation fo Nickel Aluminide Rolls

    SciTech Connect (OSTI)

    2005-09-01

    This completed project was a joint effort between Oak Ridge National Laboratory and Bethlehem Steel (now Mittal Steel) to demonstrate the effectiveness of using nickel aluminide intermetallic alloy rolls as part of an updated, energy-efficient, commercial annealing furnace system.

  13. Goethite Bench-scale and Large-scale Preparation Tests

    SciTech Connect (OSTI)

    Josephson, Gary B.; Westsik, Joseph H.

    2011-10-23

    The Hanford Waste Treatment and Immobilization Plant (WTP) is the keystone for cleanup of high-level radioactive waste from our nation's nuclear defense program. The WTP will process high-level waste from the Hanford tanks and produce immobilized high-level waste glass for disposal at a national repository, low activity waste (LAW) glass, and liquid effluent from the vitrification off-gas scrubbers. The liquid effluent will be stabilized into a secondary waste form (e.g. grout-like material) and disposed on the Hanford site in the Integrated Disposal Facility (IDF) along with the low-activity waste glass. The major long-term environmental impact at Hanford results from technetium that volatilizes from the WTP melters and finally resides in the secondary waste. Laboratory studies have indicated that pertechnetate ({sup 99}TcO{sub 4}{sup -}) can be reduced and captured into a solid solution of {alpha}-FeOOH, goethite (Um 2010). Goethite is a stable mineral and can significantly retard the release of technetium to the environment from the IDF. The laboratory studies were conducted using reaction times of many days, which is typical of environmental subsurface reactions that were the genesis of this new process. This study was the first step in considering adaptation of the slow laboratory steps to a larger-scale and faster process that could be conducted either within the WTP or within the effluent treatment facility (ETF). Two levels of scale-up tests were conducted (25x and 400x). The largest scale-up produced slurries of Fe-rich precipitates that contained rhenium as a nonradioactive surrogate for {sup 99}Tc. The slurries were used in melter tests at Vitreous State Laboratory (VSL) to determine whether captured rhenium was less volatile in the vitrification process than rhenium in an unmodified feed. A critical step in the technetium immobilization process is to chemically reduce Tc(VII) in the pertechnetate (TcO{sub 4}{sup -}) to Tc(Iv)by reaction with the ferrous ion, Fe{sup 2+}-Fe{sup 2+} is oxidized to Fe{sup 3+} - in the presence of goethite seed particles. Rhenium does not mimic that process; it is not a strong enough reducing agent to duplicate the TcO{sub 4}{sup -}/Fe{sup 2+} redox reactions. Laboratory tests conducted in parallel with these scaled tests identified modifications to the liquid chemistry necessary to reduce ReO{sub 4}{sup -} and capture rhenium in the solids at levels similar to those achieved by Um (2010) for inclusion of Tc into goethite. By implementing these changes, Re was incorporated into Fe-rich solids for testing at VSL. The changes also changed the phase of iron that was in the slurry product: rather than forming goethite ({alpha}-FeOOH), the process produced magnetite (Fe{sub 3}O{sub 4}). Magnetite was considered by Pacific Northwest National Laboratory (PNNL) and VSL to probably be a better product to improve Re retention in the melter because it decomposes at a higher temperature than goethite (1538 C vs. 136 C). The feasibility tests at VSL were conducted using Re-rich magnetite. The tests did not indicate an improved retention of Re in the glass during vitrification, but they did indicate an improved melting rate (+60%), which could have significant impact on HLW processing. It is still to be shown whether the Re is a solid solution in the magnetite as {sup 99}Tc was determined to be in goethite.

  14. Supplemental Text Constructing a computational insertion energy scale. A scale of amino acid insertion

    E-Print Network [OSTI]

    Grabe, Michael

    Supplemental Text Constructing a computational insertion energy scale. A scale of amino acid insertion energies is only meaningful if the energy values are largely independent of the protein complex to which they belong. In the present case, we wish to extract individual insertion energies for particular

  15. Large-Scale Spray Releases: Additional Aerosol Test Results

    SciTech Connect (OSTI)

    Daniel, Richard C.; Gauglitz, Phillip A.; Burns, Carolyn A.; Fountain, Matthew S.; Shimskey, Rick W.; Billing, Justin M.; Bontha, Jagannadha R.; Kurath, Dean E.; Jenks, Jeromy WJ; MacFarlan, Paul J.; Mahoney, Lenna A.

    2013-08-01

    One of the events postulated in the hazard analysis for the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak event involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids that behave as a Newtonian fluid. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and in processing facilities across the DOE complex. To expand the data set upon which the WTP accident and safety analyses were based, an aerosol spray leak testing program was conducted by Pacific Northwest National Laboratory (PNNL). PNNL’s test program addressed two key technical areas to improve the WTP methodology (Larson and Allen 2010). The first technical area was to quantify the role of slurry particles in small breaches where slurry particles may plug the hole and prevent high-pressure sprays. The results from an effort to address this first technical area can be found in Mahoney et al. (2012a). The second technical area was to determine aerosol droplet size distribution and total droplet volume from prototypic breaches and fluids, including sprays from larger breaches and sprays of slurries for which literature data are mostly absent. To address the second technical area, the testing program collected aerosol generation data at two scales, commonly referred to as small-scale and large-scale testing. The small-scale testing and resultant data are described in Mahoney et al. (2012b), and the large-scale testing and resultant data are presented in Schonewill et al. (2012). In tests at both scales, simulants were used to mimic the relevant physical properties projected for actual WTP process streams.

  16. Superconducting materials for large scale applications

    SciTech Connect (OSTI)

    Scanlan, Ronald M.; Malozemoff, Alexis P.; Larbalestier, David C.

    2004-05-06

    Significant improvements in the properties ofsuperconducting materials have occurred recently. These improvements arebeing incorporated into the latest generation of wires, cables, and tapesthat are being used in a broad range of prototype devices. These devicesinclude new, high field accelerator and NMR magnets, magnets for fusionpower experiments, motors, generators, and power transmission lines.These prototype magnets are joining a wide array of existing applicationsthat utilize the unique capabilities of superconducting magnets:accelerators such as the Large Hadron Collider, fusion experiments suchas ITER, 930 MHz NMR, and 4 Tesla MRI. In addition, promising newmaterials such as MgB2 have been discovered and are being studied inorder to assess their potential for new applications. In this paper, wewill review the key developments that are leading to these newapplications for superconducting materials. In some cases, the key factoris improved understanding or development of materials with significantlyimproved properties. An example of the former is the development of Nb3Snfor use in high field magnets for accelerators. In other cases, thedevelopment is being driven by the application. The aggressive effort todevelop HTS tapes is being driven primarily by the need for materialsthat can operate at temperatures of 50 K and higher. The implications ofthese two drivers for further developments will be discussed. Finally, wewill discuss the areas where further improvements are needed in order fornew applications to be realized.

  17. Stabilization of Large Scale Structure by Adhesive Gravitational Clustering

    E-Print Network [OSTI]

    Thomas Buchert

    1999-08-13

    The interplay between gravitational and dispersive forces in a multi-streamed medium leads to an effect which is exposed in the present note as the genuine driving force of stabilization of large-scale structure. The conception of `adhesive gravitational clustering' is advanced to interlock the fairly well-understood epoch of formation of large-scale structure and the onset of virialization into objects that are dynamically in equilibrium with their large-scale structure environment. The classical `adhesion model' is opposed to a class of more general models traced from the physical origin of adhesion in kinetic theory.

  18. Information Delivery in Large Wireless Networks with Minimum Energy Expense

    E-Print Network [OSTI]

    Wang, Wenye

    Information Delivery in Large Wireless Networks with Minimum Energy Expense Yi Xu and Wenye Wang in large-scale multihop wireless networks because of the limited energy supplies from batteries. We and strategies that reduce energy consumption in wireless net- works to extend network lifetimes. Examples

  19. Superconductivity for Large Scale Wind Turbines

    SciTech Connect (OSTI)

    R. Fair; W. Stautner; M. Douglass; R. Rajput-Ghoshal; M. Moscinski; P. Riley; D. Wagner; J. Kim; S. Hou; F. Lopez; K. Haran; J. Bray; T. Laskaris; J. Rochford; R. Duckworth

    2012-10-12

    A conceptual design has been completed for a 10MW superconducting direct drive wind turbine generator employing low temperature superconductors for the field winding. Key technology building blocks from the GE Wind and GE Healthcare businesses have been transferred across to the design of this concept machine. Wherever possible, conventional technology and production techniques have been used in order to support the case for commercialization of such a machine. Appendices A and B provide further details of the layout of the machine and the complete specification table for the concept design. Phase 1 of the program has allowed us to understand the trade-offs between the various sub-systems of such a generator and its integration with a wind turbine. A Failure Modes and Effects Analysis (FMEA) and a Technology Readiness Level (TRL) analysis have been completed resulting in the identification of high risk components within the design. The design has been analyzed from a commercial and economic point of view and Cost of Energy (COE) calculations have been carried out with the potential to reduce COE by up to 18% when compared with a permanent magnet direct drive 5MW baseline machine, resulting in a potential COE of 0.075 $/kWh. Finally, a top-level commercialization plan has been proposed to enable this technology to be transitioned to full volume production. The main body of this report will present the design processes employed and the main findings and conclusions.

  20. CONSTRAINING PRIMORDIAL MAGNETIC FIELDS THROUGH LARGE-SCALE STRUCTURE

    SciTech Connect (OSTI)

    Kahniashvili, Tina; Natarajan, Aravind; Battaglia, Nicholas [McWilliams Center for Cosmology and Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); Maravin, Yurii [Department of Physics, Kansas State University, 116 Cardwell Hall, Manhattan, KS 66506 (United States); Tevzadze, Alexander G., E-mail: tinatin@andrew.cmu.edu [Faculty of Exact and Natural Sciences, Javakhishvili Tbilisi State University, 3 Chavchavadze Avenue, Tbilisi 0128 (Georgia)

    2013-06-10

    We study primordial magnetic field effects on the matter perturbations in the universe. We assume magnetic field generation prior to the big bang nucleosynthesis (BBN), i.e., during the radiation-dominated epoch of the universe expansion, but do not limit analysis by considering a particular magnetogenesis scenario. Contrary to previous studies, we limit the total magnetic field energy density and not the smoothed amplitude of the magnetic field at large (of the order of 1 Mpc) scales. We review several cosmological signatures, such as halo abundance, thermal Sunyaev-Zel'dovich effect, and Ly{alpha} data. For a cross-check, we compare our limits with that obtained through the cosmic microwave background faraday rotation effect and BBN. The limits range between 1.5 nG and 4.5 nG for n{sub B} in (- 3; -1.5).

  1. How Three Retail Buyers Source Large-Scale Solar Electricity

    Broader source: Energy.gov [DOE]

    Large-scale, non-utility solar power purchase agreements (PPAs) are still a rarity despite the growing popularity of PPAs across the country. In this webinar, participants will learn more about how...

  2. LARGE-SCALE CORONAL PROPAGATING FRONTS IN SOLAR ERUPTIONS AS...

    Office of Scientific and Technical Information (OSTI)

    LARGE-SCALE CORONAL PROPAGATING FRONTS IN SOLAR ERUPTIONS AS OBSERVED BY THE ATMOSPHERIC IMAGING ASSEMBLY ON BOARD THE SOLAR DYNAMICS OBSERVATORY-AN ENSEMBLE STUDY Re-direct...

  3. Surrogate modeling for large-scale black-box systems

    E-Print Network [OSTI]

    Liem, Rhea Patricia

    2007-01-01

    This research introduces a systematic method to reduce the complexity of large-scale blackbox systems for which the governing equations are unavailable. For such systems, surrogate models are critical for many applications, ...

  4. Exploration of large scale manufacturing of polydimethylsiloxane (PDMS) microfluidic devices

    E-Print Network [OSTI]

    Hum, Philip W. (Philip Wing-Jung)

    2006-01-01

    Discussion of the current manufacturing process of polydimethylsiloxane (PDMS) parts and the emergence of PDMS use in biomedical microfluidic devices addresses the need to develop large scale manufacturing processes for ...

  5. Infrastructure for large-scale tests in marine autonomy

    E-Print Network [OSTI]

    Hummel, Robert A. (Robert Andrew)

    2012-01-01

    This thesis focuses on the development of infrastructure for research with large-scale autonomous marine vehicle fleets and the design of sampling trajectories for compressive sensing (CS). The newly developed infrastructure ...

  6. Platforms and real options in large-scale engineering systems

    E-Print Network [OSTI]

    Kalligeros, Konstantinos C., 1976-

    2006-01-01

    This thesis introduces a framework and two methodologies that enable engineering management teams to assess the value of real options in programs of large-scale, partially standardized systems implemented a few times over ...

  7. The Promise Of Data Grouping In Large Scale Storage Systems

    E-Print Network [OSTI]

    Wildani, Avani

    2013-01-01

    Martin. Why traditional storage systems donâ??t help us saveB. Dufrasne et al. IBM XIV Storage System Gen3 Architecture,in large scale storage systems. In Proceedings of the 11th

  8. Interference management techniques in large-scale wireless networks 

    E-Print Network [OSTI]

    Luo, Yi

    2015-06-29

    In this thesis, advanced interference management techniques are designed and evaluated for large-scale wireless networks with realistic assumptions, such as signal propagation loss, random node distribution and ...

  9. Channel Meander Migration in Large-Scale Physical Model Study 

    E-Print Network [OSTI]

    Yeh, Po Hung

    2010-10-12

    A set of large-scale laboratory experiments were conducted to study channel meander migration. Factors affecting the migration of banklines, including the ratio of curvature to channel width, bend angle, and the Froude number were tested...

  10. Data mining techniques for large-scale gene expression analysis

    E-Print Network [OSTI]

    Palmer, Nathan Patrick

    2011-01-01

    Modern computational biology is awash in large-scale data mining problems. Several high-throughput technologies have been developed that enable us, with relative ease and little expense, to evaluate the coordinated expression ...

  11. Large Scale Analysis of BitTorrent Proxy for Green Internet File Sharing

    E-Print Network [OSTI]

    Özkasap, Öznur

    -based approach. Keywords: BitTorrent, Energy Efficiency, Green Internet 1 Introduction With energy efficiencyLarge Scale Analysis of BitTorrent Proxy for Green Internet File Sharing Sena Cebeci1 , Oznur,oozkasap}@ku.edu.tr,giuseppe.anastasi@iet.unipi.it Abstract. Addressing energy efficiency in P2P services has the poten- tial to make the Internet greener

  12. Modeling emergent large-scale structures of barchan dune fields

    E-Print Network [OSTI]

    Claudin, Philippe

    Modeling emergent large-scale structures of barchan dune fields S. Worman , A.B. Murray , R, barchan dunes typically exist as members of larger fields that display strik- ing, enigmatic structures that cannot be readily explained by examining the dynamics at the scale of single dunes, or by appealing

  13. Large-Scale Manufacturing of Nanoparticle-Based Lubrication Additives

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    component failure. Poor lubricant performance can cause significant energy and material losses. The already large global demand for lubricants is expected to continue growing in...

  14. Materials Availability Expands the Opportunity for Large-Scale

    E-Print Network [OSTI]

    Kammen, Daniel M.

    , 2009. Accepted January 22, 2009. Solar photovoltaics have great promise for a low-carbon future­3). Solar photovoltaics (PV) are frequently cited as a promising but an economically unre- alistic largeMaterials Availability Expands the Opportunity for Large-Scale Photovoltaics Deployment C Y R U S W

  15. Hi-LION: Hierarchical Large-Scale Interconnection Optical Network

    E-Print Network [OSTI]

    Yoo, S. J. Ben

    Hi-LION: Hierarchical Large-Scale Interconnection Optical Network With AWGRs [Invited] Zheng Cao, Roberto Proietti, and S. J. B. Yoo Abstract--This paper proposes Hi-LION, a hierarchical large wavelength routing property of AWGRs together with electrical switching inside the processors, Hi-LION can

  16. Scaling relations for molecular gas in the Large Magellanic Cloud

    E-Print Network [OSTI]

    Hardcastle, Martin

    Scaling relations for molecular gas in the Large Magellanic Cloud By A r t o H e i kk i l ¨a e (virial mass versus CO luminosity, luminosity versus size, linewidth versus size) for molecular clouds in the 30 Dor and N 159 regions in the Large Magel­ lanic Cloud. The analysis is based on CO J = 1 ! 0

  17. A NEW APPROACH TO MODELING LARGE-SCALE ALTERNATIVE FUEL AND VEHICLE TRANSITIONS

    E-Print Network [OSTI]

    Lin, C.-Y. Cynthia

    counter-intuitive dynamic: high energy prices can discourage wide scale adoption of alternative fueled 1 A NEW APPROACH TO MODELING LARGE-SCALE ALTERNATIVE FUEL AND VEHICLE TRANSITIONS by Joel to alternative fuels and vehicles will be challenging. New modeling approaches are necessary to supplement

  18. On the self-sustained nature of large-scale motions in turbulent Couette flow

    E-Print Network [OSTI]

    Rawat, Subhandu; Hwang, Yongyun; Rincon, François

    2015-01-01

    Large-scale motions in wall-bounded turbulent flows are frequently interpreted as resulting from an aggregation process of smaller-scale structures. Here, we explore the alternative possibility that such large-scale motions are themselves self-sustained and do not draw their energy from smaller-scale turbulent motions activated in buffer layers. To this end, it is first shown that large-scale motions in turbulent Couette flow at Re=2150 self-sustain even when active processes at smaller scales are artificially quenched by increasing the Smagorinsky constant Cs in large eddy simulations. These results are in agreement with earlier results on pressure driven turbulent channels. We further investigate the nature of the large-scale coherent motions by computing upper and lower-branch nonlinear steady solutions of the filtered (LES) equations with a Newton-Krylov solver,and find that they are connected by a saddle-node bifurcation at large values of Cs. Upper branch solutions for the filtered large scale motions a...

  19. EINSTEIN'S SIGNATURE IN COSMOLOGICAL LARGE-SCALE STRUCTURE

    SciTech Connect (OSTI)

    Bruni, Marco; Hidalgo, Juan Carlos; Wands, David

    2014-10-10

    We show how the nonlinearity of general relativity generates a characteristic nonGaussian signal in cosmological large-scale structure that we calculate at all perturbative orders in a large-scale limit. Newtonian gravity and general relativity provide complementary theoretical frameworks for modeling large-scale structure in ?CDM cosmology; a relativistic approach is essential to determine initial conditions, which can then be used in Newtonian simulations studying the nonlinear evolution of the matter density. Most inflationary models in the very early universe predict an almost Gaussian distribution for the primordial metric perturbation, ?. However, we argue that it is the Ricci curvature of comoving-orthogonal spatial hypersurfaces, R, that drives structure formation at large scales. We show how the nonlinear relation between the spatial curvature, R, and the metric perturbation, ?, translates into a specific nonGaussian contribution to the initial comoving matter density that we calculate for the simple case of an initially Gaussian ?. Our analysis shows the nonlinear signature of Einstein's gravity in large-scale structure.

  20. Large-Scale Data Challenges in Future Power Grids

    SciTech Connect (OSTI)

    Yin, Jian; Sharma, Poorva; Gorton, Ian; Akyol, Bora A.

    2013-03-25

    This paper describes technical challenges in supporting large-scale real-time data analysis for future power grid systems and discusses various design options to address these challenges. Even though the existing U.S. power grid has served the nation remarkably well over the last 120 years, big changes are in the horizon. The widespread deployment of renewable generation, smart grid controls, energy storage, plug-in hybrids, and new conducting materials will require fundamental changes in the operational concepts and principal components. The whole system becomes highly dynamic and needs constant adjustments based on real time data. Even though millions of sensors such as phase measurement units (PMUs) and smart meters are being widely deployed, a data layer that can support this amount of data in real time is needed. Unlike the data fabric in cloud services, the data layer for smart grids must address some unique challenges. This layer must be scalable to support millions of sensors and a large number of diverse applications and still provide real time guarantees. Moreover, the system needs to be highly reliable and highly secure because the power grid is a critical piece of infrastructure. No existing systems can satisfy all the requirements at the same time. We examine various design options. In particular, we explore the special characteristics of power grid data to meet both scalability and quality of service requirements. Our initial prototype can improve performance by orders of magnitude over existing general-purpose systems. The prototype was demonstrated with several use cases from PNNL’s FPGI and was shown to be able to integrate huge amount of data from a large number of sensors and a diverse set of applications.

  1. "Biomaterials for Use in Large Scale Wind Turbine Blades" Malia Charter

    E-Print Network [OSTI]

    Mountziaris, T. J.

    "Biomaterials for Use in Large Scale Wind Turbine Blades" Malia Charter Advising: Rachel Koh, Dr into the feasibility of using biocomposites for wind turbine blades. While bast fiber composites are also being Peggi Clouston Wind energy is growing rapidly to address concerns of non-renewable energy resources. One

  2. PERSPECTIVES This large-scale variation in base compo-

    E-Print Network [OSTI]

    Eyre-Walker, Adam

    ,000 kb kb 2,500 3,000 3,500 4,000 b Class II Class III Class I Figure 1 | Large-scale variation in G+C, according to its G+C content, by ultracentrifugation, and found that there was substantial variation in its mammals and birds, and that the G+C content of large (>300-kb) blocks of DNA varied from ~35 to 55

  3. The Role of the state in large-scale hydropower development perspectives from Chile, Ecuador, and Perú

    E-Print Network [OSTI]

    Zambrano-Barragán, Patricio Xavier

    2012-01-01

    In recent years, governments in South America have turned to large-scale hydropower as a cost-effective way to improve livelihoods while addressing the energy 'trilemma': ensuring that future energy technologies provide ...

  4. Importance-Truncated Large-Scale Shell Model

    E-Print Network [OSTI]

    Stumpf, Christina; Roth, Robert

    2015-01-01

    We propose an importance-truncation scheme for the large-scale nuclear shell model that extends its range of applicability to larger valence spaces and mid-shell nuclei. It is based on a perturbative measure for the importance of individual basis states that acts as an additional truncation for the many-body model space in which the eigenvalue problem of the Hamiltonian is solved numerically. Through a posteriori extrapolations of all observables to vanishing importance threshold, the full shell-model results can be recovered. In addition to simple threshold extrapolations, we explore extrapolations based on the energy variance. We apply the importance-truncated shell model for the study of 56-Ni in the pf valence space and of 60-Zn and 64-Ge in the pfg9/2 space. We demonstrate the efficiency and accuracy of the approach, which pave the way for future shell-model calculations in larger valence spaces with valence-space interactions derived in ab initio approaches.

  5. IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATTION (VLSI) SYSTEMS, VOL. 5, NO. 4, DECEMBER 1997 1 Energy Minimization Using Multiple Supply

    E-Print Network [OSTI]

    Pedram, Massoud

    Energy Minimization Using Multiple Supply Voltages Jui-Ming Chang, Massoud Pedram Abstract|We present dependencies, and the energy cost of level shifters. Experimental results show that using three supply voltage level. Keywords| Energy Minimization, Multiple Supply Volt- ages, Scheduling, Dynamic Programming

  6. 392 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 2, FEBRUARY 2015 Energy Aware Mapping for Reconfigurable Wireless MPSoCs

    E-Print Network [OSTI]

    Martin, Jim

    , if a reconfigurable fabric is used then there is a reconfiguration energy cost associated with the change of con Energy Aware Mapping for Reconfigurable Wireless MPSoCs Amr M. A. Hussien, Rahul Amin, Ahmed M. Eltawil, and Jim Martin Abstract--Energy management for multimode software defined radio systems remains a daunting

  7. PROPERTIES IMPORTANT TO MIXING FOR WTP LARGE SCALE INTEGRATED TESTING

    SciTech Connect (OSTI)

    Koopman, D.; Martino, C.; Poirier, M.

    2012-04-26

    Large Scale Integrated Testing (LSIT) is being planned by Bechtel National, Inc. to address uncertainties in the full scale mixing performance of the Hanford Waste Treatment and Immobilization Plant (WTP). Testing will use simulated waste rather than actual Hanford waste. Therefore, the use of suitable simulants is critical to achieving the goals of the test program. External review boards have raised questions regarding the overall representativeness of simulants used in previous mixing tests. Accordingly, WTP requested the Savannah River National Laboratory (SRNL) to assist with development of simulants for use in LSIT. Among the first tasks assigned to SRNL was to develop a list of waste properties that matter to pulse-jet mixer (PJM) mixing of WTP tanks. This report satisfies Commitment 5.2.3.1 of the Department of Energy Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 2010-2: physical properties important to mixing and scaling. In support of waste simulant development, the following two objectives are the focus of this report: (1) Assess physical and chemical properties important to the testing and development of mixing scaling relationships; (2) Identify the governing properties and associated ranges for LSIT to achieve the Newtonian and non-Newtonian test objectives. This includes the properties to support testing of sampling and heel management systems. The test objectives for LSIT relate to transfer and pump out of solid particles, prototypic integrated operations, sparger operation, PJM controllability, vessel level/density measurement accuracy, sampling, heel management, PJM restart, design and safety margin, Computational Fluid Dynamics (CFD) Verification and Validation (V and V) and comparison, performance testing and scaling, and high temperature operation. The slurry properties that are most important to Performance Testing and Scaling depend on the test objective and rheological classification of the slurry (i.e., Newtonian or non-Newtonian). The most important properties for testing with Newtonian slurries are the Archimedes number distribution and the particle concentration. For some test objectives, the shear strength is important. In the testing to collect data for CFD V and V and CFD comparison, the liquid density and liquid viscosity are important. In the high temperature testing, the liquid density and liquid viscosity are important. The Archimedes number distribution combines effects of particle size distribution, solid-liquid density difference, and kinematic viscosity. The most important properties for testing with non-Newtonian slurries are the slurry yield stress, the slurry consistency, and the shear strength. The solid-liquid density difference and the particle size are also important. It is also important to match multiple properties within the same simulant to achieve behavior representative of the waste. Other properties such as particle shape, concentration, surface charge, and size distribution breadth, as well as slurry cohesiveness and adhesiveness, liquid pH and ionic strength also influence the simulant properties either directly or through other physical properties such as yield stress.

  8. Harmonic influence in large-scale networks Daron Acemoglu

    E-Print Network [OSTI]

    Como, Giacomo

    Harmonic influence in large-scale networks Daron Acemoglu , Giacomo Como , Fabio Fagnani , and Asuman Ozdaglar§ 1. INTRODUCTION Harmonic influence has been recently introduced as a measure = 0 and xs1 = 1, respectively, the harmonic influence vector x measures the relative influence of s1

  9. A Reconfigurable Fabric for Accelerating Large-Scale Datacenter Services

    E-Print Network [OSTI]

    Hauck, Scott

    A Reconfigurable Fabric for Accelerating Large-Scale Datacenter Services Andrew Putnam, Adrian M, Doug Burger Abstract To advance datacenter capabilities beyond what commodity server designs can,632 servers and FPGAs in a production datacenter and successfully used to accelerate the ranking portion

  10. Evolving Large Scale UAV Communication System Adrian Agogino

    E-Print Network [OSTI]

    Tumer, Kagan

    Evolving Large Scale UAV Communication System Adrian Agogino UCSC at NASA Ames Mail Stop 269 Corvallis, OR 97331 Kagan.Tumer@ oregonstate.edu ABSTRACT Unmanned Aerial Vehicles (UAVs) have traditionally powered unmanned aerial vehicles (UAVs) to fly long term missions at high altitudes. This will revo

  11. Characterizing Google Hacking: A First Large-Scale Quantitative Study

    E-Print Network [OSTI]

    Gu, Guofei

    Characterizing Google Hacking: A First Large-Scale Quantitative Study Jialong Zhang, Jayant Notani.com Abstract. Google Hacking continues to be abused by attackers to find vulnerable websites on current the characteristics of vulnerabilities targeted by Google Hacking (e.g., what kind of vulnerabilities are typically

  12. Optimal Transmission Radius for Flooding in Large Scale Sensor Networks

    E-Print Network [OSTI]

    Krishnamachari, Bhaskar

    1 Optimal Transmission Radius for Flooding in Large Scale Sensor Networks Marco Z´u~niga Z and bandwidth resources, the flooded packet may keep the transmission medium within the network busy for too long, reducing overall network throughput. We analyze the impact of the transmission radius

  13. Optimal Transmission Radius for Flooding in Large Scale Sensor Networks

    E-Print Network [OSTI]

    Krishnamachari, Bhaskar

    1 Optimal Transmission Radius for Flooding in Large Scale Sensor Networks Marco Z´u~niga Z. If the transmission radius is not set optimally, the flooded packet may be holding the transmission medium for longer periods than are necessary, reducing overall network throughput. We analyze the impact of the transmission

  14. IFIP/IEEE International Conference on Very Large Scale Integration

    E-Print Network [OSTI]

    Pierre, Laurence

    -Signal IC Design · 3-D Integration · Physical Design · SoC Design for Variability, Reliability, Fault22nd IFIP/IEEE International Conference on Very Large Scale Integration VLSI-SoC 2014 October 6-8, 2014 Playa del Carmen, Mexico Iberostar Tucán and Quetzal Hotel General Chairs: Arturo Sarmiento Reyes

  15. PERSPECTIVE SPECIAL SERIES IN LARGE-SCALE BIOLOGY

    E-Print Network [OSTI]

    Gent, Universiteit

    PERSPECTIVE SPECIAL SERIES IN LARGE-SCALE BIOLOGY PLAZA: a comparative genomics resource to study gene and genome evolution in plants Sebastian Proost1,2+ , Michiel Van Bel1,2+ , Lieven Sterck1: comparative genomics, evolution, colinearity, gene family, plants Running title: Comparative genomics

  16. Feasibility Study of Large Scale Photosynthetic Biohydrogen Greg Burgess1

    E-Print Network [OSTI]

    Feasibility Study of Large Scale Photosynthetic Biohydrogen Production Greg Burgess1 , Joel Freeman.Burgess@anu.edu.au, Javier.Fernandez@rsbs.anu.edu.au, Keith.Lovegrove@anu.edu.au A method of industrial production, the same as in some non-biological systems of H2 production. In normal conditions in algae and all plants

  17. Large-scale Scene Understanding Challenge: Eye Tracking Saliency Estimation

    E-Print Network [OSTI]

    Xiao, Jianxiong

    Large-scale Scene Understanding Challenge: Eye Tracking Saliency Estimation Yinda Zhang, Fisher Yu of eye tracking saliency challenge is to generate a saliency map (Fig. 1(c)), which can predict map and unzip them in to a same folder, e.g. Root. The raw images are collected from SUN database [2

  18. Supplementary Material: Large Scale Read Classification for Next Generation Sequencing

    E-Print Network [OSTI]

    Liang, Huizhi "Elly"

    genomics. 1 Introduction This document provides a list of sequences used in the study Large Scale Read.3 Bordetella bronchiseptica RB50 chromosome, complete genome 2 Negative NC_009495.1 Clostridium botulinum A str. ATCC 3502 chromosome, complete genome 2 Negative NC_022121.1 Chlamydia trachomatis strain J/31

  19. Large-Scale Streamwise Turbulent Structures in Hypersonic Boundary Layers 

    E-Print Network [OSTI]

    English, Benjamin L.

    2013-04-22

    Prior research in the field of boundary layer turbulence has identified streamwise-elongated large-scale turbulence structures in both low speed compressible and high speed (M=2.0) flow. No experimental work has been done in any flow of M> or =3...

  20. LARGE-SCALE MOTIONS IN THE PERSEUS GALAXY CLUSTER

    SciTech Connect (OSTI)

    Simionescu, A.; Werner, N.; Urban, O.; Allen, S. W.; Fabian, A. C.; Sanders, J. S.; Mantz, A.; Nulsen, P. E. J.; Takei, Y.

    2012-10-01

    By combining large-scale mosaics of ROSAT PSPC, XMM-Newton, and Suzaku X-ray observations, we present evidence for large-scale motions in the intracluster medium of the nearby, X-ray bright Perseus Cluster. These motions are suggested by several alternating and interleaved X-ray bright, low-temperature, low-entropy arcs located along the east-west axis, at radii ranging from {approx}10 kpc to over a Mpc. Thermodynamic features qualitatively similar to these have previously been observed in the centers of cool-core clusters, and were successfully modeled as a consequence of the gas sloshing/swirling motions induced by minor mergers. Our observations indicate that such sloshing/swirling can extend out to larger radii than previously thought, on scales approaching the virial radius.

  1. Performance Health Monitoring of Large-Scale Systems

    SciTech Connect (OSTI)

    Rajamony, Ram

    2014-11-20

    This report details the progress made on the ASCR funded project Performance Health Monitoring for Large Scale Systems. A large-­?scale application may not achieve its full performance potential due to degraded performance of even a single subsystem. Detecting performance faults, isolating them, and taking remedial action is critical for the scale of systems on the horizon. PHM aims to develop techniques and tools that can be used to identify and mitigate such performance problems. We accomplish this through two main aspects. The PHM framework encompasses diagnostics, system monitoring, fault isolation, and performance evaluation capabilities that indicates when a performance fault has been detected, either due to an anomaly present in the system itself or due to contention for shared resources between concurrently executing jobs. Software components called the PHM Control system then build upon the capabilities provided by the PHM framework to mitigate degradation caused by performance problems.

  2. A steady-state L-mode tokamak fusion reactor : large scale and minimum scale

    E-Print Network [OSTI]

    Reed, Mark W. (Mark Wilbert)

    2010-01-01

    We perform extensive analysis on the physics of L-mode tokamak fusion reactors to identify (1) a favorable parameter space for a large scale steady-state reactor and (2) an operating point for a minimum scale steady-state ...

  3. Small-scale thin film experiments provide models for large-scale engineering applications

    E-Print Network [OSTI]

    Reis, Pedro Miguel

    Small-scale thin film experiments provide models for large-scale engineering applicationsMIT's Department of Civil and Environmental Engineering · http://cee.mit.edu Delamination occurs in a thin film blisters occur in a predictable manner. Photo / Donna Coveney, MIT PROBLEM Thin films are omnipresent

  4. Large-Scale Spray Releases: Initial Aerosol Test Results

    SciTech Connect (OSTI)

    Schonewill, Philip P.; Gauglitz, Phillip A.; Bontha, Jagannadha R.; Daniel, Richard C.; Kurath, Dean E.; Adkins, Harold E.; Billing, Justin M.; Burns, Carolyn A.; Davis, James M.; Enderlin, Carl W.; Fischer, Christopher M.; Jenks, Jeromy WJ; Lukins, Craig D.; MacFarlan, Paul J.; Shutthanandan, Janani I.; Smith, Dennese M.

    2012-12-01

    One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and across processing facilities in the DOE complex. Two key technical areas were identified where testing results were needed to improve the technical basis by reducing the uncertainty due to extrapolating existing literature results. The first technical need was to quantify the role of slurry particles in small breaches where the slurry particles may plug and result in substantially reduced, or even negligible, respirable fraction formed by high-pressure sprays. The second technical need was to determine the aerosol droplet size distribution and volume from prototypic breaches and fluids, specifically including sprays from larger breaches with slurries where data from the literature are scarce. To address these technical areas, small- and large-scale test stands were constructed and operated with simulants to determine aerosol release fractions and generation rates from a range of breach sizes and geometries. The properties of the simulants represented the range of properties expected in the WTP process streams and included water, sodium salt solutions, slurries containing boehmite or gibbsite, and a hazardous chemical simulant. The effect of anti-foam agents was assessed with most of the simulants. Orifices included round holes and rectangular slots. The round holes ranged in size from 0.2 to 4.46 mm. The slots ranged from (width × length) 0.3 × 5 to 2.74 × 76.2 mm. Most slots were oriented longitudinally along the pipe, but some were oriented circumferentially. In addition, a limited number of multi-hole test pieces were tested in an attempt to assess the impact of a more complex breach. Much of the testing was conducted at pressures of 200 and 380 psi, but some tests were conducted at 100 psi. Testing the largest postulated breaches was deemed impractical because of the large size of some of the WTP equipment. The purpose of this report is to present the experimental results and analyses for the aerosol measurements obtained in the large-scale test stand. The report includes a description of the simulants used and their properties, equipment and operations, data analysis methodology, and test results. The results of tests investigating the role of slurry particles in plugging of small breaches are reported in Mahoney et al. 2012a. The results of the aerosol measurements in the small-scale test stand are reported in Mahoney et al. (2012b).

  5. Control of Large-Scale Heat Transport by Small-Scale Mixing PAOLA CESSI, W. R. YOUNG, AND JEFF A. POLTON

    E-Print Network [OSTI]

    Young, William R.

    Control of Large-Scale Heat Transport by Small-Scale Mixing PAOLA CESSI, W. R. YOUNG, AND JEFF A of entropy production, mechanical energy balance, and heat trans- port. The flow is rapidly rotating in terms of the external parameters. The scaling theory predicts relations between heat transport

  6. Primordial quantum nonequilibrium and large-scale cosmic anomalies

    E-Print Network [OSTI]

    Samuel Colin; Antony Valentini

    2015-06-12

    We study incomplete relaxation to quantum equilibrium at long wavelengths, during a pre-inflationary phase, as a possible explanation for the reported large-scale anomalies in the cosmic microwave background (CMB). Our scenario makes use of the de Broglie-Bohm pilot-wave formulation of quantum theory, in which the Born probability rule has a dynamical origin. The large-scale power deficit could arise from incomplete relaxation for the amplitudes of the primordial perturbations. We show, by numerical simulations for a spectator scalar field, that if the pre-inflationary era is radiation dominated then the deficit in the emerging power spectrum will have a characteristic shape (an inverse-tangent dependence on wavenumber k, with oscillations). It is found that our scenario is able to produce a power deficit in the observed region and of the observed (approximate) magnitude for an appropriate choice of cosmological parameters. We also discuss the large-scale anisotropy, which might arise from incomplete relaxation for the phases of the primordial perturbations. We present numerical simulations for phase relaxation, and we show how to define characteristic scales for amplitude and phase nonequilibrium. The extent to which the data might support our scenario is left as a question for future work. Our results suggest that we have a potentially viable model that might explain two apparently independent cosmic anomalies by means of a single mechanism.

  7. Geospatial Optimization of Siting Large-Scale Solar Projects

    SciTech Connect (OSTI)

    Macknick, J.; Quinby, T.; Caulfield, E.; Gerritsen, M.; Diffendorfer, J.; Haines, S.

    2014-03-01

    Recent policy and economic conditions have encouraged a renewed interest in developing large-scale solar projects in the U.S. Southwest. However, siting large-scale solar projects is complex. In addition to the quality of the solar resource, solar developers must take into consideration many environmental, social, and economic factors when evaluating a potential site. This report describes a proof-of-concept, Web-based Geographical Information Systems (GIS) tool that evaluates multiple user-defined criteria in an optimization algorithm to inform discussions and decisions regarding the locations of utility-scale solar projects. Existing siting recommendations for large-scale solar projects from governmental and non-governmental organizations are not consistent with each other, are often not transparent in methods, and do not take into consideration the differing priorities of stakeholders. The siting assistance GIS tool we have developed improves upon the existing siting guidelines by being user-driven, transparent, interactive, capable of incorporating multiple criteria, and flexible. This work provides the foundation for a dynamic siting assistance tool that can greatly facilitate siting decisions among multiple stakeholders.

  8. Magnetic Fields and Large Scale Structure in a hot Universe. I. General Equations

    E-Print Network [OSTI]

    E. Battaner; E. Florido; J. Jimenez-Vicente

    1997-10-06

    We consider that no mean magnetic field exists during this epoch, but that there is a mean magnetic energy associated with large-scale magnetic inhomogeneities. We study the evolution of these inhomogeneities and their influence on the large scale density structure, by introducing linear perturbations in Maxwell equations, the conservation of momentum-energy equation, and in Einstein field equations. The primordial magnetic field structure is time independent in the linear approximation, only being diluted by the general expansion, so that $\\vec{B}R^2$ is conserved in comoving coordinates. Magnetic fields have a strong influence on the formation of large-scale structure. Firstly, relatively low fields are able to generate density structures even if they were inexistent at earlier times. Second, magnetic fields act anisotropically more recently, modifying the evolution of individual density clouds. Magnetic flux tubes have a tendency to concentrate photons in filamentary patterns.

  9. Large Scale Computing and Storage Requirements for Nuclear Physics Research

    SciTech Connect (OSTI)

    Gerber, Richard A.; Wasserman, Harvey J.

    2012-03-02

    IThe National Energy Research Scientific Computing Center (NERSC) is the primary computing center for the DOE Office of Science, serving approximately 4,000 users and hosting some 550 projects that involve nearly 700 codes for a wide variety of scientific disciplines. In addition to large-scale computing resources NERSC provides critical staff support and expertise to help scientists make the most efficient use of these resources to advance the scientific mission of the Office of Science. In May 2011, NERSC, DOE’s Office of Advanced Scientific Computing Research (ASCR) and DOE’s Office of Nuclear Physics (NP) held a workshop to characterize HPC requirements for NP research over the next three to five years. The effort is part of NERSC’s continuing involvement in anticipating future user needs and deploying necessary resources to meet these demands. The workshop revealed several key requirements, in addition to achieving its goal of characterizing NP computing. The key requirements include: 1. Larger allocations of computational resources at NERSC; 2. Visualization and analytics support; and 3. Support at NERSC for the unique needs of experimental nuclear physicists. This report expands upon these key points and adds others. The results are based upon representative samples, called “case studies,” of the needs of science teams within NP. The case studies were prepared by NP workshop participants and contain a summary of science goals, methods of solution, current and future computing requirements, and special software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, “multi-core” environment that is expected to dominate HPC architectures over the next few years. The report also includes a section with NERSC responses to the workshop findings. NERSC has many initiatives already underway that address key workshop findings and all of the action items are aligned with NERSC strategic plans.

  10. Stochastic Ordering of Interferences in Large-scale Wireless Networks

    E-Print Network [OSTI]

    Lee, Junghoon

    2012-01-01

    Stochastic orders are binary relations defined on probability distributions which capture intuitive notions like being larger or being more variable. This paper introduces stochastic ordering of interference distributions in large-scale networks modeled as point process. Interference is the main performance-limiting factor in most wireless networks, thus it is important to understand its statistics. Since closed-form results for the distribution of interference for such networks are only available in limited cases, interference of networks are compared using stochastic orders, even when closed form expressions for interferences are not tractable. We show that the interference from a large-scale network depends on the fading distributions with respect to the stochastic Laplace transform order. The condition for path-loss models is also established to have stochastic ordering between interferences. The stochastic ordering of interferences between different networks are also shown. Monte-Carlo simulations are us...

  11. Large-scale flow generation by inhomogeneous helicity

    E-Print Network [OSTI]

    Yokoi, Nobumitsu

    2015-01-01

    The effect of kinetic helicity (velocity--vorticity correlation) on turbulent momentum transport is investigated. The turbulent kinetic helicity (pseudoscalar) enters into the Reynolds stress (mirrorsymmetric tensor) expression in the form of a helicity gradient as the coupling coefficient for the mean vorticity and/or the angular velocity (axial vector), which suggests the possibility of mean-flow generation in the presence of inhomogeneous helicity. This inhomogeneous helicity effect, which was previously confirmed at the level of a turbulence- or closure-model simulation, is examined with the aid of direct numerical simulations of rotating turbulence with non-uniform helicity sustained by an external forcing. The numerical simulations show that the spatial distribution of the Reynolds stress is in agreement with the helicity-related term coupled with the angular velocity, and that a large-scale flow is generated in the direction of angular velocity. Such a large-scale flow is not induced in the case of hom...

  12. Simulating the Large-Scale Structure of HI Intensity Maps

    E-Print Network [OSTI]

    Seehars, Sebastian; Witzemann, Amadeus; Refregier, Alexandre; Amara, Adam; Akeret, Joel

    2015-01-01

    Intensity mapping of neutral hydrogen (HI) is a promising observational probe of cosmology and large-scale structure. We present wide field simulations of HI intensity maps based on N-body simulations, the halo model, and a phenomenological prescription for assigning HI mass to halos. The simulations span a redshift range of 0.35 HI. We apply and compare several estimators for the angular power spectrum and its covariance. We verify that they agree with analytic predictions on large scales and study the validity of approximations based on Gaussian random fields, particularly in the context of the covariance. We discuss how our results and the simulated maps can be useful for planning and interpreting future HI intensity mapping surveys.

  13. Clusters and Large-Scale Structure: the Synchrotron Keys

    E-Print Network [OSTI]

    Rudnick, L; Andernach, H; Battaglia, N; Brown, S; Brunetti, Gf; Burns, J; Clarke, T; Dolag, K; Farnsworth, D; Giovannini, G; Hallman, E; Johnston-Hollit, M; Jones, T W; Kang, H; Kassim, N; Kravtsov, A; Lazio, J; Lonsdale, C; McNamara, B; Myers, S; Owen, F; Pfrommer, C; Ryu, D; Sarazin, C; Subrahmanyan, R; Taylor, G; Taylor, R

    2009-01-01

    For over four decades, synchrotron-radiating sources have played a series of pathfinding roles in the study of galaxy clusters and large scale structure. Such sources are uniquely sensitive to the turbulence and shock structures of large-scale environments, and their cosmic rays and magnetic fields often play important dynamic and thermodynamic roles. They provide essential complements to studies at other wavebands. Over the next decade, they will fill essential gaps in both cluster astrophysics and the cosmological growth of structure in the universe, especially where the signatures of shocks and turbulence, or even the underlying thermal plasma itself, are otherwise undetectable. Simultaneously, synchrotron studies offer a unique tool for exploring the fundamental question of the origins of cosmic magnetic fields. This work will be based on the new generation of m/cm-wave radio telescopes now in construction, as well as major advances in the sophistication of 3-D MHD simulations.

  14. Self-Adaptive Management of The Sleep Depths of Idle Nodes in Large Scale Systems to Balance Between Energy Consumption and Response Times

    E-Print Network [OSTI]

    Zhu, Hong

    U.S. electricity consumption or the output of about 15 typical power plants [2]. In 2007, the electricity consumption of global cloud computing was 623 billion kWh which is larger than the 5th largest Between Energy Consumption and Response Times Yongpeng Liu(1) , Hong Zhu(2) , Kai Lu(1) , Xiaoping Wang(1

  15. IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. Y, MONTH 2002 1 Techniques for Energy-Efficient Communication

    E-Print Network [OSTI]

    Potkonjak, Miodrag

    and exploit advantages pro- vided by variable voltage design methodology to optimally select voltage, our system may have different stages running at different speeds to conserve energy while providing fragmentation and voltage setting. We further study a less practical case when each stage can dynamically change

  16. 100 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION SYSTEMS, VOL. XX, NO. Y, MONTH 2004 A Framework for Energy and Transient Power

    E-Print Network [OSTI]

    Mohanty, Saraju P.

    important to improve reliability and efficiency. The peak power and the peak power differential drive reduction of the energy and transient power during behavioral synthesis. A new metric called "Cycle Power of the normalized mean cycle power and the normalized mean cycle differential power. Minimizing CPF using multiple

  17. Constraining ultra large-scale cosmology with multiple tracers in optical and radio surveys

    E-Print Network [OSTI]

    Alonso, David

    2015-01-01

    Multiple tracers of the cosmic density field, with different bias, number and luminosity evolution, can be used to measure the large-scale properties of the Universe. We show how an optimal combination of tracers can be used to detect general-relativistic effects in the observed density of sources. We forecast for the detectability of these effects, as well as measurements of primordial non-Gaussianity and large-scale lensing magnification with current and upcoming large-scale structure experiments. In particular we quantify the significance of these detections in the short term with experiments such as the Dark Energy Survey (DES), and in the long term with the Large Synoptic Survey Telescope (LSST) and the Square Kilometre Array (SKA). We review the main observational challenges that must be overcome to carry out these measurements.

  18. Large scale structure simulations of inhomogeneous LTB void models

    E-Print Network [OSTI]

    David Alonso; Juan Garcia-Bellido; Troels Haugboelle; Julian Vicente

    2011-01-11

    We perform numerical simulations of large scale structure evolution in an inhomogeneous Lemaitre-Tolman-Bondi (LTB) model of the Universe. We follow the gravitational collapse of a large underdense region (a void) in an otherwise flat matter-dominated Einstein-deSitter model. We observe how the (background) density contrast at the centre of the void grows to be of order one, and show that the density and velocity profiles follow the exact non-linear LTB solution to the full Einstein equations for all but the most extreme voids. This result seems to contradict previous claims that fully relativistic codes are needed to properly handle the non-linear evolution of large scale structures, and that local Newtonian dynamics with an explicit expansion term is not adequate. We also find that the (local) matter density contrast grows with the scale factor in a way analogous to that of an open universe with a value of the matter density OmegaM(r) corresponding to the appropriate location within the void.

  19. Large scale CMB anomalies from thawing cosmic strings

    E-Print Network [OSTI]

    Christophe Ringeval; Daisuke Yamauchi; Jun'ichi Yokoyama; Francois R. Bouchet

    2015-10-07

    Cosmic strings formed during inflation are expected to be either diluted over super-Hubble distances, i.e., invisible today, or to have crossed our past light cone very recently. We discuss the latter situation in which a few strings imprint their signature in the Cosmic Microwave Background (CMB) Anisotropies after recombination. Being almost frozen in the Hubble flow, these strings are quasi static and evade almost all of the previously derived constraints on their tension while being able to source large scale anisotropies in the CMB sky. Using a local variance estimator on thousand of numerically simulated Nambu-Goto all sky maps, we compute the expected signal and show that it can mimic a dipole modulation at large angular scales while being negligible at small angles. Interestingly, such a scenario generically produces one cold spot from the thawing of a cosmic string loop. Mixed with anisotropies of inflationary origin, we find that a few strings of tension GU = O(1) x 10^(-6) match the amplitude of the dipole modulation reported in the Planck satellite measurements and could be at the origin of other large scale anomalies.

  20. Electronic copy available at: http://ssrn.com/abstract=2014754 Joshua M. Pearce, "Industrial Symbiosis for Very Large Scale Photovoltaic

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Symbiosis for Very Large Scale Photovoltaic Manufacturing", Renewable Energy 33, pp. 11011108, 2008. http://dx.doi.org/10.1016/j.renene.2007.07.002 Industrial Symbiosis of Very Large Scale Photovoltaic Manufacturing. Solar photovoltaic (PV) cells offer a technically sustainable solution to the projected enormous future

  1. Large-Scale Fabrication, 3D Tomography, and Lithium-Ion Battery Application of Porous Silicon

    E-Print Network [OSTI]

    Zhou, Chongwu

    Large-Scale Fabrication, 3D Tomography, and Lithium-Ion Battery Application of Porous Silicon, United States *S Supporting Information ABSTRACT: Recently, silicon-based lithium-ion battery anodes have for the next-generation lithium-ion batteries with enhanced capacity and energy density. KEYWORDS: Cost

  2. ORNL/TM-2011/455 Large Scale Duty Cycle (LSDC) Project

    E-Print Network [OSTI]

    and Results from Long-Haul Truck Drive Cycle Evaluations May 2011 Prepared by Tim LaClair #12;#12;ORNL/TM-2011 ANALYSIS METHODOLOGY AND RESULTS FROM LONG-HAUL TRUCK DRIVE CYCLE EVALUATIONS Tim LaClair Date PublishedORNL/TM-2011/455 Large Scale Duty Cycle (LSDC) Project: Tractive Energy Analysis Methodology

  3. Self-Adaptive Power Management of Idle Nodes in Large Scale Systems

    E-Print Network [OSTI]

    Zhu, Hong

    Self-Adaptive Power Management of Idle Nodes in Large Scale Systems YONGPENG LIU(1) , HONG ZHU(2 with multiple level dynamic sleep mechanisms to reduce power consumption. However, awaking sleeping nodes takes to balance between the systems energy consumption and the response time is a key problem in the power

  4. Power Challenges of Large Scale Research Infrastructures: the Square Kilometer Array and Solar Energy Integration; Towards a zero-carbon footprint next generation telescope

    E-Print Network [OSTI]

    Barbosa, Domingos; Ruiz, Valeriano; Silva, Manuel; Verdes-Montenegro, Lourdes; Santander-Vela, Juande; Maia, Dalmiro; Antón, Sonia; van Ardenne, Arnold; Vetter, Matthias; Kramer, Michael; Keller, Reinhard; Pereira, Nuno; Silva, Vitor

    2012-01-01

    The Square Kilometer Array (SKA) will be the largest Global science project of the next two decades. It will encompass a sensor network dedicated to radioastronomy, covering two continents. It will be constructed in remote areas of South Africa and Australia, spreading over 3000Km, in high solar irradiance latitudes. Solar Power supply is therefore an option to power supply the SKA and contribute to a zero carbon footprint next generation telescope. Here we outline the major characteristics of the SKA and some innovation approaches on thermal solar energy Integration with SKA prototypes.

  5. Large Scale Geothermal Exchange System for Residential, Office and Retail

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona: Energy ResourcesProject | Open Energy Information Large

  6. Nuclear-pumped lasers for large-scale applications

    SciTech Connect (OSTI)

    Anderson, R.E.; Leonard, E.M.; Shea, R.F.; Berggren, R.R.

    1989-05-01

    Efficient initiation of large-volume chemical lasers may be achieved by neutron induced reactions which produce charged particles in the final state. When a burst mode nuclear reactor is used as the neutron source, both a sufficiently intense neutron flux and a sufficiently short initiation pulse may be possible. Proof-of-principle experiments are planned to demonstrate lasing in a direct nuclear-pumped large-volume system; to study the effects of various neutron absorbing materials on laser performance; to study the effects of long initiation pulse lengths; to demonstrate the performance of large-scale optics and the beam quality that may be obtained; and to assess the performance of alternative designs of burst systems that increase the neutron output and burst repetition rate. 21 refs., 8 figs., 5 tabs.

  7. Nuclear-pumped lasers for large-scale applications

    SciTech Connect (OSTI)

    Anderson, R.E.; Leonard, E.M.; Shea, R.E.; Berggren, R.R.

    1988-01-01

    Efficient initiation of large-volume chemical lasers may be achieved by neutron induced reactions which produce charged particles in the final state. When a burst mode nuclear reactor is used as the neutron source, both a sufficiently intense neutron flux and a sufficient short initiation pulse may be possible. Proof-of-principle experiments are planned to demonstrate lasing in a direct nuclear-pumped large-volume system: to study the effects of various neutron absorbing materials on laser performance; to study the effects of long initiation pulse lengths; to determine the performance of large-scale optics and the beam quality that may bo obtained; and to assess the performance of alternative designs of burst systems that increase the neutron output and burst repetition rate. 21 refs., 7 figs., 5 tabs.

  8. Large-Angular-Scale Clustering as a Clue to the Source of UHECRs

    E-Print Network [OSTI]

    Andreas A. Berlind; Glennys R. Farrar

    2007-10-16

    We show that future Ultra-High Energy Cosmic Ray samples should be able to distinguish whether the sources of UHECRs are hosted by galaxy clusters or ordinary galaxies, or whether the sources are uncorrelated with the large-scale structure of the universe. Moreover, this is true independently of arrival direction uncertainty due to magnetic deflection or measurement error. The reason for this is the simple property that the strength of large-scale clustering for extragalactic sources depends on their mass, with more massive objects, such as galaxy clusters, clustering more strongly than lower mass objects, such as ordinary galaxies.

  9. Coverage and large scale anisotropies estimation methods for the Pierre Auger Observatory

    SciTech Connect (OSTI)

    Hamilton, Jean-Christophe; /Paris, IN2P3

    2005-07-01

    When searching for anisotropies in the arrival directions of Ultra High Energy Cosmic Rays, one must estimate the number of events expected in each direction of the sky in the case of a perfect isotropy. We present in this article a new method, developed for the Auger Observatory, based on a smooth estimate of the zenith angle distribution obtained from the data itself (which is essentially unchanged in the case of the presence of a large scale anisotropy pattern). We also study the sensitivity of several methods to detect large-scale anisotropies in the cosmic ray arrival direction distribution : Rayleigh analysis, dipole fitting and angular power spectrum estimation.

  10. Just enough inflation: power spectrum modifications at large scales

    SciTech Connect (OSTI)

    Cicoli, Michele [Dipartimento di Fisica ed Astronomia, Università di Bologna, via Irnerio 46, 40126 Bologna (Italy); Downes, Sean [Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan (China); Dutta, Bhaskar [Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843-4242 (United States); Pedro, Francisco G.; Westphal, Alexander, E-mail: mcicoli@ictp.it, E-mail: ssdownes@phys.ntu.edu.tw, E-mail: dutta@physics.tamu.edu, E-mail: francisco.pedro@desy.de, E-mail: alexander.westphal@desy.de [Deutsches Elektronen-Synchrotron DESY, Theory Group, D-22603 Hamburg (Germany)

    2014-12-01

    We show that models of 'just enough' inflation, where the slow-roll evolution lasted only 50- 60 e-foldings, feature modifications of the CMB power spectrum at large angular scales. We perform a systematic analytic analysis in the limit of a sudden transition between any possible non-slow-roll background evolution and the final stage of slow-roll inflation. We find a high degree of universality since most common backgrounds like fast-roll evolution, matter or radiation-dominance give rise to a power loss at large angular scales and a peak together with an oscillatory behaviour at scales around the value of the Hubble parameter at the beginning of slow-roll inflation. Depending on the value of the equation of state parameter, different pre-inflationary epochs lead instead to an enhancement of power at low ?, and so seem disfavoured by recent observational hints for a lack of CMB power at ??< 40. We also comment on the importance of initial conditions and the possibility to have multiple pre-inflationary stages.

  11. Large scale structures in gas-liquid mixture flows

    SciTech Connect (OSTI)

    Davis, M.R.; Fungtamasan, B.

    1984-12-01

    Relatively slow variations in mixture void fraction in gas-liquid mixture flows are indicated by low pass filter averaging. The slow void fluctuations are found to have a regular characteristic frequency or scale in the churn flow regime or near the boundary with the dispersed bubble flow regime. These regular disturbances develop inherently in a vertical pipe flow in strength and in size and are not due to the method of flow mixing. There was no evidence of distinctive gas slugs in the flow, and the structures were identified as large clouds of bubbles which moved faster than the average velocity, growing in size and strength as they moved with the flow. The magnitude of the voidage fluctuations in the churn flow regime was on average 57% of the value for a slug flow. The large scale bubble clouds convect coherently over relatively long distances a up to 1.45 times the mean mixture flow velocity at a gas volume flow fraction of 0.4. In the bubbl flow regime, the slow voidage variations were more random in scale and were only approx. 10% of the slug flow (maximum possible) value. However, even in the bubble flow regime, the disturbances convected coherently over relatively long distances at a velocity of approx. 1.1 time the mean mixture velocity.

  12. Development of fine-resolution analyses and expanded large-scale forcing properties. Part II: Scale-awareness and application to single-column model experiments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Feng, Sha [Univ. of California at Los Angeles, Los Angeles, CA (United States); California Inst. of Technology, Pasadena, CA (United States); Vogelmann, Andrew M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Li, Zhijin [California Inst. of Technology (CalTech), Pasadena, CA (United States); Univ. of California at Los Angeles, Los Angeles, CA (United States); Liu, Yangang [Brookhaven National Lab. (BNL), Upton, NY (United States); Lin, Wuyin [Brookhaven National Lab. (BNL), Upton, NY (United States); Zhang, Minghua [Stony Brook Univ., NY (United States); Toto, Tami [Brookhaven National Lab. (BNL), Upton, NY (United States); Endo, Satoshi [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-01-27

    Fine-resolution three-dimensional fields have been produced using the Community Gridpoint Statistical Interpolation (GSI) data assimilation system for the U.S. Department of Energy’s Atmospheric Radiation Measurement Program (ARM) Southern Great Plains region. The GSI system is implemented in a multi-scale data assimilation framework using the Weather Research and Forecasting model at a cloud-resolving resolution of 2 km. From the fine-resolution three-dimensional fields, large-scale forcing is derived explicitly at grid-scale resolution; a subgrid-scale dynamic component is derived separately, representing subgrid-scale horizontal dynamic processes. Analyses show that the subgrid-scale dynamic component is often a major component over the large-scale forcing for grid scales larger than 200 km. The single-column model (SCM) of the Community Atmospheric Model version 5 (CAM5) is used to examine the impact of the grid-scale and subgrid-scale dynamic components on simulated precipitation and cloud fields associated with a mesoscale convective system. It is found that grid-scale size impacts simulated precipitation, resulting in an overestimation for grid scales of about 200 km but an underestimation for smaller grids. The subgrid-scale dynamic component has an appreciable impact on the simulations, suggesting that grid-scale and subgrid-scale dynamic components should be considered in the interpretation of SCM simulations.

  13. Robust Morphological Measures for Large-Scale Structure

    E-Print Network [OSTI]

    T. Buchert

    1994-12-17

    A complete family of statistical descriptors for the morphology of large--scale structure based on Minkowski--Functionals is presented. These robust and significant measures can be used to characterize the local and global morphology of spatial patterns formed by a coverage of point sets which represent galaxy samples. Basic properties of these measures are highlighted and their relation to the `genus statistics' is discussed. Test models like a Poissonian point process and samples generated from a Voronoi--model are put into perspective.

  14. Large scale obscuration and related climate effects open literature bibliography

    SciTech Connect (OSTI)

    Russell, N.A.; Geitgey, J.; Behl, Y.K.; Zak, B.D.

    1994-05-01

    Large scale obscuration and related climate effects of nuclear detonations first became a matter of concern in connection with the so-called ``Nuclear Winter Controversy`` in the early 1980`s. Since then, the world has changed. Nevertheless, concern remains about the atmospheric effects of nuclear detonations, but the source of concern has shifted. Now it focuses less on global, and more on regional effects and their resulting impacts on the performance of electro-optical and other defense-related systems. This bibliography reflects the modified interest.

  15. Future large-scale water-Cherenkov detector

    E-Print Network [OSTI]

    L. Agostino; M. Buizza-Avanzini; M. Marafini; T. Patzak; A. Tonazzo; M. Dracos; N. Vassilopoulos; D. Duchesneau; M. Mezzetto; L. Mosca

    2013-06-28

    MEMPHYS (MEgaton Mass PHYSics) is a proposed large-scale water-Cherenkov experiment to be performed deep underground. It is dedicated to nucleon decay searches and the detection of neutrinos from supernovae, solar, and atmospheric neutrinos, as well as neutrinos from a future beam to measure the CP violating phase in the leptonic sector and the mass hierarchy. This paper provides an overview of the latest studies on the expected performance of MEMPHYS in view of detailed estimates of its physics reach, mainly concerning neutrino beams.

  16. Streamflow forecasting for large-scale hydrologic systems 

    E-Print Network [OSTI]

    Awwad, Haitham Munir

    1991-01-01

    Farland (Member) J esTR ao (Head of Department) May 1991 ABSTRACT Streamflow Forecasting for Large-Scale Hydrologic Systems. (May 1991) Haitham Munir Awwad, B. S. , University of Jordan Chair of Advisory Committee: Dr. Juan B. Valdes An on-line streamflow... thankful to Dr. Ralph A. Wurbs and Dr. Marshall J. McFarland for their assistance on my advisory committee. Support for this thesis by the Department of Civil Engineering through the Engineering Excellence Fund, and by the U, S. Army Corps of Engineers...

  17. Planning under uncertainty solving large-scale stochastic linear programs

    SciTech Connect (OSTI)

    Infanger, G. . Dept. of Operations Research Technische Univ., Vienna . Inst. fuer Energiewirtschaft)

    1992-12-01

    For many practical problems, solutions obtained from deterministic models are unsatisfactory because they fail to hedge against certain contingencies that may occur in the future. Stochastic models address this shortcoming, but up to recently seemed to be intractable due to their size. Recent advances both in solution algorithms and in computer technology now allow us to solve important and general classes of practical stochastic problems. We show how large-scale stochastic linear programs can be efficiently solved by combining classical decomposition and Monte Carlo (importance) sampling techniques. We discuss the methodology for solving two-stage stochastic linear programs with recourse, present numerical results of large problems with numerous stochastic parameters, show how to efficiently implement the methodology on a parallel multi-computer and derive the theory for solving a general class of multi-stage problems with dependency of the stochastic parameters within a stage and between different stages.

  18. Development of fine-resolution analyses and expanded large-scale forcing properties. Part II: Scale-awareness and application to single-column model experiments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Feng, Sha; Vogelmann, Andrew M.; Li, Zhijin; Liu, Yangang; Lin, Wuyin; Zhang, Minghua; Toto, Tami; Endo, Satoshi

    2015-01-20

    Fine-resolution three-dimensional fields have been produced using the Community Gridpoint Statistical Interpolation (GSI) data assimilation system for the U.S. Department of Energy’s Atmospheric Radiation Measurement Program (ARM) Southern Great Plains region. The GSI system is implemented in a multi-scale data assimilation framework using the Weather Research and Forecasting model at a cloud-resolving resolution of 2 km. From the fine-resolution three-dimensional fields, large-scale forcing is derived explicitly at grid-scale resolution; a subgrid-scale dynamic component is derived separately, representing subgrid-scale horizontal dynamic processes. Analyses show that the subgrid-scale dynamic component is often a major component over the large-scale forcing for grid scalesmore »larger than 200 km. The single-column model (SCM) of the Community Atmospheric Model version 5 (CAM5) is used to examine the impact of the grid-scale and subgrid-scale dynamic components on simulated precipitation and cloud fields associated with a mesoscale convective system. It is found that grid-scale size impacts simulated precipitation, resulting in an overestimation for grid scales of about 200 km but an underestimation for smaller grids. The subgrid-scale dynamic component has an appreciable impact on the simulations, suggesting that grid-scale and subgrid-scale dynamic components should be considered in the interpretation of SCM simulations.« less

  19. Large scale CMB anomalies from thawing cosmic strings

    E-Print Network [OSTI]

    Ringeval, Christophe; Yokoyama, Jun'ichi; Bouchet, Francois R

    2015-01-01

    Cosmic strings formed during inflation are expected to be either diluted over super-Hubble distances, i.e., invisible today, or to have crossed our past light cone very recently. We discuss the latter situation in which a few strings imprint their signature in the Cosmic Microwave Background (CMB) Anisotropies after recombination. Being almost frozen in the Hubble flow, these strings are quasi static and evade almost all of the previously derived constraints on their tension while being able to source large scale anisotropies in the CMB sky. Using a local variance estimator on thousand of numerically simulated Nambu-Goto all sky maps, we compute the expected signal and show that it can mimic a dipole modulation at large angular scales while being negligible at small angles. Interestingly, such a scenario generically produces one cold spot from the thawing of a cosmic string loop. Mixed with anisotropies of inflationary origin, we find that a few strings of tension GU = O(1) x 10^(-6) match the amplitude of th...

  20. Large scale steam valve test: Performance testing of large butterfly valves and full scale high flowrate steam testing

    SciTech Connect (OSTI)

    Meadows, J.B.; Robbins, G.E.; Roselius, D.G. [and others

    1995-05-01

    This report presents the results of the design testing of large (36-inch diameter) butterfly valves under high flow conditions. The two butterfly valves were pneumatically operated air-open, air-shut valves (termed valves 1 and 2). These butterfly valves were redesigned to improve their ability to function under high flow conditions. Concern was raised regarding the ability of the butterfly valves to function as required with high flow-induced torque imposed on the valve discs during high steam flow conditions. High flow testing was required to address the flow-induced torque concerns. The valve testing was done using a heavily instrumented piping system. This test program was called the Large Scale Steam Valve Test (LSSVT). The LSSVT program demonstrated that the redesigned valves operated satisfactorily under high flow conditions.

  1. Large-scale chromosome fluctuations are driven by chromatin folding organization at small scales

    E-Print Network [OSTI]

    Ana Maria Florescu; Pierre Therizols; Angelo Rosa

    2015-11-18

    Characterizing the link between small-scale chromatin structure and large-scale chromosome conformation is a prerequisite for understanding transcription. Yet, it remains poorly characterized. We present a simple biophysical model, where chromosomes are described in terms of folding of a chromatin sequence with alternating blocks of fibers with different thickness. We demonstrate that chromosomes undergo prominent conformational changes when the two fibers form separate domains. Conversely, when small stretches of the thinner fiber are randomly distributed, they act as impurities and conformational changes can be observed only at small length and time scales. Our results bring a limit to the possibility of detecting variations in the behavior of chromosomes due to chromatin modifications, and suggest that the debate whether chromosomes expand upon transcription, which is fueled by conflicting experimental observations, can be reconciled by examining how transcribed loci are distributed. Finally, to validate our conclusions, we compare our results to experimental FISH data.

  2. The XMM/Megacam-VST/VIRMOS Large Scale Structure Survey

    E-Print Network [OSTI]

    M. Pierre

    2000-11-08

    The objective of the XMM-LSS Survey is to map the large scale structure of the universe, as highlighted by clusters and groups of galaxies, out to a redshift of about 1, over a single 8x8 sq.deg. area. For the first time, this will reveal the topology of the distribution of the deep potential wells and provide statistical measurements at truly cosmological distances. In addition, clusters identified via their X-ray properties will form the basis for the first uniformly-selected, multi-wavelength survey of the evolution of clusters and individual cluster galaxies as a function of redshift. The survey will also address the very important question of the QSO distribution within the cosmic web.

  3. Unfolding large-scale online collaborative human dynamics

    E-Print Network [OSTI]

    Zha, Yilong; Zhou, Changsong

    2015-01-01

    Large-scale interacting human activities underlie all social and economic phenomena, but quantitative understanding of regular patterns and mechanism is very challenging and still rare. Self-organized online collaborative activities with precise record of event timing provide unprecedented opportunity. Our empirical analysis of the history of millions of updates in Wikipedia shows a universal double power-law distribution of time intervals between consecutive updates of an article. We then propose a generic model to unfold collaborative human activities into three modules: (i) individual behavior characterized by Poissonian initiation of an action, (ii) human interaction captured by a cascading response to others with a power-law waiting time, and (iii) population growth due to increasing number of interacting individuals. This unfolding allows us to obtain analytical formula that is fully supported by the universal patterns in empirical data. Our modeling approaches reveal "simplicity" beyond complex interac...

  4. Recovery Act - Large Scale SWNT Purification and Solubilization

    SciTech Connect (OSTI)

    Michael Gemano; Dr. Linda B. McGown

    2010-10-07

    The goal of this Phase I project was to establish a quantitative foundation for development of binary G-gels for large-scale, commercial processing of SWNTs and to develop scientific insight into the underlying mechanisms of solubilization, selectivity and alignment. In order to accomplish this, we performed systematic studies to determine the effects of G-gel composition and experimental conditions that will enable us to achieve our goals that include (1) preparation of ultra-high purity SWNTs from low-quality, commercial SWNT starting materials, (2) separation of MWNTs from SWNTs, (3) bulk, non-destructive solubilization of individual SWNTs in aqueous solution at high concentrations (10-100 mg/mL) without sonication or centrifugation, (4) tunable enrichment of subpopulations of the SWNTs based on metallic vs. semiconductor properties, diameter, or chirality and (5) alignment of individual SWNTs.

  5. Training a Large Scale Classifier with the Quantum Adiabatic Algorithm

    E-Print Network [OSTI]

    Hartmut Neven; Vasil S. Denchev; Geordie Rose; William G. Macready

    2009-12-04

    In a previous publication we proposed discrete global optimization as a method to train a strong binary classifier constructed as a thresholded sum over weak classifiers. Our motivation was to cast the training of a classifier into a format amenable to solution by the quantum adiabatic algorithm. Applying adiabatic quantum computing (AQC) promises to yield solutions that are superior to those which can be achieved with classical heuristic solvers. Interestingly we found that by using heuristic solvers to obtain approximate solutions we could already gain an advantage over the standard method AdaBoost. In this communication we generalize the baseline method to large scale classifier training. By large scale we mean that either the cardinality of the dictionary of candidate weak classifiers or the number of weak learners used in the strong classifier exceed the number of variables that can be handled effectively in a single global optimization. For such situations we propose an iterative and piecewise approach in which a subset of weak classifiers is selected in each iteration via global optimization. The strong classifier is then constructed by concatenating the subsets of weak classifiers. We show in numerical studies that the generalized method again successfully competes with AdaBoost. We also provide theoretical arguments as to why the proposed optimization method, which does not only minimize the empirical loss but also adds L0-norm regularization, is superior to versions of boosting that only minimize the empirical loss. By conducting a Quantum Monte Carlo simulation we gather evidence that the quantum adiabatic algorithm is able to handle a generic training problem efficiently.

  6. Bias in the Effective Field Theory of Large Scale Structures

    E-Print Network [OSTI]

    Leonardo Senatore

    2014-11-05

    We study how to describe collapsed objects, such as galaxies, in the context of the Effective Field Theory of Large Scale Structures. The overdensity of galaxies at a given location and time is determined by the initial tidal tensor, velocity gradients and spatial derivatives of the regions of dark matter that, during the evolution of the universe, ended up at that given location. Similarly to what recently done for dark matter, we show how this Lagrangian space description can be recovered by upgrading simpler Eulerian calculations. We describe the Eulerian theory. We show that it is perturbatively local in space, but non-local in time, and we explain the observational consequences of this fact. We give an argument for why to a certain degree of accuracy the theory can be considered as quasi time-local and explain what the operator structure is in this case. We describe renormalization of the bias coefficients so that, after this and after upgrading the Eulerian calculation to a Lagrangian one, the perturbative series for galaxies correlation functions results in a manifestly convergent expansion in powers of $k/k_{\\rm NL}$ and $k/k_{\\rm M}$, where $k$ is the wavenumber of interest, $k_{\\rm NL}$ is the wavenumber associated to the non-linear scale, and $k_{\\rm M}$ is the comoving wavenumber enclosing the mass of a galaxy.

  7. Frozen-in Fractals All Around: Inferring the Large Scale Effects of Small-Scale Magnetic Structure

    E-Print Network [OSTI]

    McAteer, R T James

    2015-01-01

    The large-scale structure of the magnetic field in the solar corona provides the energy to power large-scale solar eruptive events. Our physical understanding of this structure, and hence our ability to predict these events, is limited by the type of data currently available. It is shown that the multifractal spectrum is a powerful tool to study this structure, by providing a physical connection between the details of photospheric magnetic gradients and current density at all size scales. This uses concepts associated with geometric measure theory and the theory of weakly differentiable functions to compare Amp\\`{e}re's law to the wavelet-transform modulus maximum method. The H\\"{o}lder exponent provides a direct measure of the rate of change of current density across spatial size scales. As this measure is independent of many features of the data (pixel resolution, data size, data type, presence of quiet-Sun data), it provides a unique approach to studying magnetic-field complexity and hence a potentially po...

  8. Cosmological implications of the CMB large-scale structure

    SciTech Connect (OSTI)

    Melia, Fulvio

    2015-01-01

    The Wilkinson Microwave Anisotropy Probe (WMAP) and Planck may have uncovered several anomalies in the full cosmic microwave background (CMB) sky that could indicate possible new physics driving the growth of density fluctuations in the early universe. These include an unusually low power at the largest scales and an apparent alignment of the quadrupole and octopole moments. In a ?CDM model where the CMB is described by a Gaussian Random Field, the quadrupole and octopole moments should be statistically independent. The emergence of these low probability features may simply be due to posterior selections from many such possible effects, whose occurrence would therefore not be as unlikely as one might naively infer. If this is not the case, however, and if these features are not due to effects such as foreground contamination, their combined statistical significance would be equal to the product of their individual significances. In the absence of such extraneous factors, and ignoring the biasing due to posterior selection, the missing large-angle correlations would have a probability as low as ?0.1% and the low-l multipole alignment would be unlikely at the ?4.9% level; under the least favorable conditions, their simultaneous observation in the context of the standard model could then be likely at only the ?0.005% level. In this paper, we explore the possibility that these features are indeed anomalous, and show that the corresponding probability of CMB multipole alignment in the R{sub h}=ct universe would then be ?7–10%, depending on the number of large-scale Sachs–Wolfe induced fluctuations. Since the low power at the largest spatial scales is reproduced in this cosmology without the need to invoke cosmic variance, the overall likelihood of observing both of these features in the CMB is ?7%, much more likely than in ?CDM, if the anomalies are real. The key physical ingredient responsible for this difference is the existence in the former of a maximum fluctuation size at the time of recombination, which is absent in the latter because of inflation.

  9. Large Scale Obscuration and Related Climate Effects Workshop: Proceedings

    SciTech Connect (OSTI)

    Zak, B.D.; Russell, N.A.; Church, H.W.; Einfeld, W.; Yoon, D.; Behl, Y.K.

    1994-05-01

    A Workshop on Large Scale Obsurcation and Related Climate Effects was held 29--31 January, 1992, in Albuquerque, New Mexico. The objectives of the workshop were: to determine through the use of expert judgement the current state of understanding of regional and global obscuration and related climate effects associated with nuclear weapons detonations; to estimate how large the uncertainties are in the parameters associated with these phenomena (given specific scenarios); to evaluate the impact of these uncertainties on obscuration predictions; and to develop an approach for the prioritization of further work on newly-available data sets to reduce the uncertainties. The workshop consisted of formal presentations by the 35 participants, and subsequent topical working sessions on: the source term; aerosol optical properties; atmospheric processes; and electro-optical systems performance and climatic impacts. Summaries of the conclusions reached in the working sessions are presented in the body of the report. Copies of the transparencies shown as part of each formal presentation are contained in the appendices (microfiche).

  10. Large scale electromechanical transistor with application in mass sensing

    SciTech Connect (OSTI)

    Jin, Leisheng; Li, Lijie

    2014-12-07

    Nanomechanical transistor (NMT) has evolved from the single electron transistor, a device that operates by shuttling electrons with a self-excited central conductor. The unfavoured aspects of the NMT are the complexity of the fabrication process and its signal processing unit, which could potentially be overcome by designing much larger devices. This paper reports a new design of large scale electromechanical transistor (LSEMT), still taking advantage of the principle of shuttling electrons. However, because of the large size, nonlinear electrostatic forces induced by the transistor itself are not sufficient to drive the mechanical member into vibration—an external force has to be used. In this paper, a LSEMT device is modelled, and its new application in mass sensing is postulated using two coupled mechanical cantilevers, with one of them being embedded in the transistor. The sensor is capable of detecting added mass using the eigenstate shifts method by reading the change of electrical current from the transistor, which has much higher sensitivity than conventional eigenfrequency shift approach used in classical cantilever based mass sensors. Numerical simulations are conducted to investigate the performance of the mass sensor.

  11. Design advanced for large-scale, economic, floating LNG plant

    SciTech Connect (OSTI)

    Naklie, M.M.

    1997-06-30

    A floating LNG plant design has been developed which is technically feasible, economical, safe, and reliable. This technology will allow monetization of small marginal fields and improve the economics of large fields. Mobil`s world-scale plant design has a capacity of 6 million tons/year of LNG and up to 55,000 b/d condensate produced from 1 bcfd of feed gas. The plant would be located on a large, secure, concrete barge with a central moonpool. LNG storage is provided for 250,000 cu m and condensate storage for 650,000 bbl. And both products are off-loaded from the barge. Model tests have verified the stability of the barge structure: barge motions are low enough to permit the plant to continue operation in a 100-year storm in the Pacific Rim. Moreover, the barge is spread-moored, eliminating the need for a turret and swivel. Because the design is generic, the plant can process a wide variety of feed gases and operate in different environments, should the plant be relocated. This capability potentially gives the plant investment a much longer project life because its use is not limited to the life of only one producing area.

  12. Large scale simulations of the jet-IGM interaction Martin G. H. Krause

    E-Print Network [OSTI]

    Krause, Martin

    in that phase. Here, I present new, bipolar, simulations of very light jets in 2.5D and 3D, reaching (Carvalho and O'Dea, 2002a; Car- valho and O'Dea, 2002b; Saxton et al., 2002; Krause, 2003; Zanni et al ambient gas mass distribution and E(t) is the energy injection law. Here, I show 3D and 2.5D large scale

  13. SMALL SCALE WASTE-TO-ENERGY TECHNOLOGIES Claudine Ellyin

    E-Print Network [OSTI]

    Columbia University

    1 SMALL SCALE WASTE-TO-ENERGY TECHNOLOGIES Claudine Ellyin Advisor: Prof. Nickolas J. Themelis for large Waste-to-Energy (WTE) facilities is combustion on a moving grate of "as-received" municipal solid, one in Germany, and one in the UK; they range in capacity from 30 tons/day per unit to a high of 118

  14. Reducing Data Center Loads for a Large-Scale, Net Zero Office...

    Energy Savers [EERE]

    Reducing Data Center Loads for a Large-Scale, Net Zero Office Building Reducing Data Center Loads for a Large-Scale, Net Zero Office Building Document describes the design,...

  15. The IR-resummed Effective Field Theory of Large Scale Structures...

    Office of Scientific and Technical Information (OSTI)

    The IR-resummed Effective Field Theory of Large Scale Structures Citation Details In-Document Search Title: The IR-resummed Effective Field Theory of Large Scale Structures We...

  16. HyLights -- Tools to Prepare the Large-Scale European Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HyLights -- Tools to Prepare the Large-Scale European Demonstration Projects on Hydrogen for Transport HyLights -- Tools to Prepare the Large-Scale European Demonstration Projects...

  17. Feasibility of Large-Scale Ocean CO2 Sequestration

    SciTech Connect (OSTI)

    Peter Brewer

    2008-08-31

    Scientific knowledge of natural clathrate hydrates has grown enormously over the past decade, with spectacular new findings of large exposures of complex hydrates on the sea floor, the development of new tools for examining the solid phase in situ, significant progress in modeling natural hydrate systems, and the discovery of exotic hydrates associated with sea floor venting of liquid CO{sub 2}. Major unresolved questions remain about the role of hydrates in response to climate change today, and correlations between the hydrate reservoir of Earth and the stable isotopic evidence of massive hydrate dissociation in the geologic past. The examination of hydrates as a possible energy resource is proceeding apace for the subpermafrost accumulations in the Arctic, but serious questions remain about the viability of marine hydrates as an economic resource. New and energetic explorations by nations such as India and China are quickly uncovering large hydrate findings on their continental shelves. In this report we detail research carried out in the period October 1, 2007 through September 30, 2008. The primary body of work is contained in a formal publication attached as Appendix 1 to this report. In brief we have surveyed the recent literature with respect to the natural occurrence of clathrate hydrates (with a special emphasis on methane hydrates), the tools used to investigate them and their potential as a new source of natural gas for energy production.

  18. SMALL AND LARGE-SCALE MAGNETIC FIELDS INVOLVED WITH SOLAR FLARES

    E-Print Network [OSTI]

    ABSTRACT SMALL AND LARGE-SCALE MAGNETIC FIELDS INVOLVED WITH SOLAR FLARES by Chang Liu Solar flares of an EUV sigmoid. #12;SMALL AND LARGE-SCALE MAGNETIC FIELDS INVOLVED WITH SOLAR FLARES by Chang Liu RESERVED #12;APPROVAL PAGE SMALL AND LARGE-SCALE MAGNETIC FIELDS INVOLVED WITH SOLAR FLARES Chang Liu Dr

  19. Microwave Mapping As a Possible New Diagnostic Tool for LargeScale Solar Magnetic Fields

    E-Print Network [OSTI]

    Petrovay, Kristóf

    Microwave Mapping As a Possible New Diagnostic Tool for Large­Scale Solar Magnetic Fields M of microwave maps in the study of weak large­scale solar magnetic fields is discussed. Our knowledge of the large­scale solar background magnetic fields is limited by the circumstance that magnetograph

  20. UNIVERSITY OF SOUTHERN CALIFORNIA Large-Scale Active Middleware (LSAM) September 3, 1997 1 of 27

    E-Print Network [OSTI]

    Touch, Joe

    transport UNIVERSITY OF SOUTHERN CALIFORNIA Large-Scale Active Middleware (LSAM) September 3, 1997 8 of 27UNIVERSITY OF SOUTHERN CALIFORNIA Large-Scale Active Middleware (LSAM) September 3, 1997 1 of 27 Middleware Project USC/ISI Computer Networks Division UNIVERSITY OF SOUTHERN CALIFORNIA Large-Scale Active

  1. Development of a Large-Scale Ubiquitous Computing Interface We propose the development of a unique experimental facility for the exploration of large-scale ubiquitous computing

    E-Print Network [OSTI]

    Haro, Antonio

    Development of a Large-Scale Ubiquitous Computing Interface 1 Summary We propose the development of a unique experimental facility for the exploration of large-scale ubiquitous computing interfaces reveal how it will be used and the scientific issues raised. Current ubiquitous computing experiments

  2. ANALYSIS OF TURBULENT MIXING JETS IN LARGE SCALE TANK

    SciTech Connect (OSTI)

    Lee, S; Richard Dimenna, R; Robert Leishear, R; David Stefanko, D

    2007-03-28

    Flow evolution models were developed to evaluate the performance of the new advanced design mixer pump for sludge mixing and removal operations with high-velocity liquid jets in one of the large-scale Savannah River Site waste tanks, Tank 18. This paper describes the computational model, the flow measurements used to provide validation data in the region far from the jet nozzle, the extension of the computational results to real tank conditions through the use of existing sludge suspension data, and finally, the sludge removal results from actual Tank 18 operations. A computational fluid dynamics approach was used to simulate the sludge removal operations. The models employed a three-dimensional representation of the tank with a two-equation turbulence model. Both the computational approach and the models were validated with onsite test data reported here and literature data. The model was then extended to actual conditions in Tank 18 through a velocity criterion to predict the ability of the new pump design to suspend settled sludge. A qualitative comparison with sludge removal operations in Tank 18 showed a reasonably good comparison with final results subject to significant uncertainties in actual sludge properties.

  3. Energy-aware Workflow Scheduling Using Frequency Scaling Ilia Pietri, Rizos Sakellariou

    E-Print Network [OSTI]

    Sakellariou, Rizos

    Energy-aware Workflow Scheduling Using Frequency Scaling Ilia Pietri, Rizos Sakellariou School in modern computing systems. This may lead to higher energy savings for large-scale computational problems. In this paper, we propose a scheduling algorithm that adopts frequency scaling to reduce overall energy

  4. Advancing Cellulosic Ethanol for Large Scale Sustainable Transportation

    E-Print Network [OSTI]

    Wyman, C

    2007-01-01

    all but one energy source: petroleum – We use more petroleumMetrics for Ethanol Petroleum in/Energy out Fossil energyMetrics for Ethanol Petroleum in/Energy out Fossil energy

  5. Development of large scale production of Nd-doped phosphate glasses for megajoule-scale laser systems

    SciTech Connect (OSTI)

    Ficini, G.; Campbell, J.H.

    1996-05-01

    Nd-doped phosphate glasses are the preferred gain medium for high-peak-power lasers used for Inertial Confinement Fusion research because they have excellent energy storage and extraction characteristics. In addition, these glasses can be manufactured defect-free in large sizes and at relatively low cost. To meet the requirements of the future mega-joule size lasers, advanced laser glass manufacturing methods are being developed that would enable laser glass to be continuously produced at the rate of several thousand large (790 x 440 x 44 mm{sup 3}) plates of glass per year. This represents more than a 10 to 100-fold improvement in the scale of the present manufacturing technology.

  6. Multiscale spatial density smoothing: an application to large-scale radiological survey and anomaly detection

    E-Print Network [OSTI]

    Tansey, Wesley; Reinhart, Alex; Scott, James G

    2015-01-01

    We consider the problem of estimating a spatially varying density function, motivated by problems that arise in large-scale radiological survey and anomaly detection. In this context, the density functions to be estimated are the background gamma-ray energy spectra at sites spread across a large geographical area, such as nuclear production and waste-storage sites, military bases, medical facilities, university campuses, or the downtown of a city. Several challenges combine to make this a difficult problem. First, the spectral density at any given spatial location may have both smooth and non-smooth features. Second, the spatial correlation in these density functions is neither stationary nor locally isotropic. Third, the spatial correlation decays at different length scales at different locations in the support of the underlying density. Finally, at some spatial locations, there is very little data. We present a method called multiscale spatial density smoothing that successfully addresses these challenges. ...

  7. IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 29, NO. 1, JANUARY 2014 489 Large-Scale Integration of Deferrable

    E-Print Network [OSTI]

    Oren, Shmuel S.

    of Deferrable Demand and Renewable Energy Sources Anthony Papavasiliou, Student Member, IEEE, and Shmuel S. Oren of the large-scale integration of renewable energy sources and deferrable demand in power systems in terms and the coupling of renewable resources with deferrable loads. We motivate coupling as an alternative

  8. Development of explosive event scale model testing capability at Sandia`s large scale centrifuge facility

    SciTech Connect (OSTI)

    Blanchat, T.K.; Davie, N.T.; Calderone, J.J.

    1998-02-01

    Geotechnical structures such as underground bunkers, tunnels, and building foundations are subjected to stress fields produced by the gravity load on the structure and/or any overlying strata. These stress fields may be reproduced on a scaled model of the structure by proportionally increasing the gravity field through the use of a centrifuge. This technology can then be used to assess the vulnerability of various geotechnical structures to explosive loading. Applications of this technology include assessing the effectiveness of earth penetrating weapons, evaluating the vulnerability of various structures, counter-terrorism, and model validation. This document describes the development of expertise in scale model explosive testing on geotechnical structures using Sandia`s large scale centrifuge facility. This study focused on buried structures such as hardened storage bunkers or tunnels. Data from this study was used to evaluate the predictive capabilities of existing hydrocodes and structural dynamics codes developed at Sandia National Laboratories (such as Pronto/SPH, Pronto/CTH, and ALEGRA). 7 refs., 50 figs., 8 tabs.

  9. Advanced I/O for large-scale scientific applications.

    SciTech Connect (OSTI)

    Klasky, Scott (Oak Ridge National Laboratory, Oak Ridge, TN); Schwan, Karsten (Georgia Institute of Technology, Atlanta, GA); Oldfield, Ron A.; Lofstead, Gerald F., II (Georgia Institute of Technology, Atlanta, GA)

    2010-01-01

    As scientific simulations scale to use petascale machines and beyond, the data volumes generated pose a dual problem. First, with increasing machine sizes, the careful tuning of IO routines becomes more and more important to keep the time spent in IO acceptable. It is not uncommon, for instance, to have 20% of an application's runtime spent performing IO in a 'tuned' system. Careful management of the IO routines can move that to 5% or even less in some cases. Second, the data volumes are so large, on the order of 10s to 100s of TB, that trying to discover the scientifically valid contributions requires assistance at runtime to both organize and annotate the data. Waiting for offline processing is not feasible due both to the impact on the IO system and the time required. To reduce this load and improve the ability of scientists to use the large amounts of data being produced, new techniques for data management are required. First, there is a need for techniques for efficient movement of data from the compute space to storage. These techniques should understand the underlying system infrastructure and adapt to changing system conditions. Technologies include aggregation networks, data staging nodes for a closer parity to the IO subsystem, and autonomic IO routines that can detect system bottlenecks and choose different approaches, such as splitting the output into multiple targets, staggering output processes. Such methods must be end-to-end, meaning that even with properly managed asynchronous techniques, it is still essential to properly manage the later synchronous interaction with the storage system to maintain acceptable performance. Second, for the data being generated, annotations and other metadata must be incorporated to help the scientist understand output data for the simulation run as a whole, to select data and data features without concern for what files or other storage technologies were employed. All of these features should be attained while maintaining a simple deployment for the science code and eliminating the need for allocation of additional computational resources.

  10. Large-Scale Sequencing: The Future of Genomic Sciences Colloquium

    SciTech Connect (OSTI)

    Margaret Riley; Merry Buckley

    2009-01-01

    Genetic sequencing and the various molecular techniques it has enabled have revolutionized the field of microbiology. Examining and comparing the genetic sequences borne by microbes - including bacteria, archaea, viruses, and microbial eukaryotes - provides researchers insights into the processes microbes carry out, their pathogenic traits, and new ways to use microorganisms in medicine and manufacturing. Until recently, sequencing entire microbial genomes has been laborious and expensive, and the decision to sequence the genome of an organism was made on a case-by-case basis by individual researchers and funding agencies. Now, thanks to new technologies, the cost and effort of sequencing is within reach for even the smallest facilities, and the ability to sequence the genomes of a significant fraction of microbial life may be possible. The availability of numerous microbial genomes will enable unprecedented insights into microbial evolution, function, and physiology. However, the current ad hoc approach to gathering sequence data has resulted in an unbalanced and highly biased sampling of microbial diversity. A well-coordinated, large-scale effort to target the breadth and depth of microbial diversity would result in the greatest impact. The American Academy of Microbiology convened a colloquium to discuss the scientific benefits of engaging in a large-scale, taxonomically-based sequencing project. A group of individuals with expertise in microbiology, genomics, informatics, ecology, and evolution deliberated on the issues inherent in such an effort and generated a set of specific recommendations for how best to proceed. The vast majority of microbes are presently uncultured and, thus, pose significant challenges to such a taxonomically-based approach to sampling genome diversity. However, we have yet to even scratch the surface of the genomic diversity among cultured microbes. A coordinated sequencing effort of cultured organisms is an appropriate place to begin, since not only are their genomes available, but they are also accompanied by data on environment and physiology that can be used to understand the resulting data. As single cell isolation methods improve, there should be a shift toward incorporating uncultured organisms and communities into this effort. Efforts to sequence cultivated isolates should target characterized isolates from culture collections for which biochemical data are available, as well as other cultures of lasting value from personal collections. The genomes of type strains should be among the first targets for sequencing, but creative culture methods, novel cell isolation, and sorting methods would all be helpful in obtaining organisms we have not yet been able to cultivate for sequencing. The data that should be provided for strains targeted for sequencing will depend on the phylogenetic context of the organism and the amount of information available about its nearest relatives. Annotation is an important part of transforming genome sequences into useful resources, but it represents the most significant bottleneck to the field of comparative genomics right now and must be addressed. Furthermore, there is a need for more consistency in both annotation and achieving annotation data. As new annotation tools become available over time, re-annotation of genomes should be implemented, taking advantage of advancements in annotation techniques in order to capitalize on the genome sequences and increase both the societal and scientific benefit of genomics work. Given the proper resources, the knowledge and ability exist to be able to select model systems, some simple, some less so, and dissect them so that we may understand the processes and interactions at work in them. Colloquium participants suggest a five-pronged, coordinated initiative to exhaustively describe six different microbial ecosystems, designed to describe all the gene diversity, across genomes. In this effort, sequencing should be complemented by other experimental data, particularly transcriptomics and metabolomics data, all of which

  11. Tribal Renewable Energy Advanced Course: Facility Scale Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facility Scale Project Development Tribal Renewable Energy Advanced Course: Facility Scale Project Development Watch the DOE Office of Indian Energy renewable energy course...

  12. Large-Scale Manufacturing of Nanoparticulate-Based Lubrication Additives

    SciTech Connect (OSTI)

    2009-06-01

    This factsheet describes a research project whose goal is to design, develop, manufacture, and scale up boron-based nanoparticulate lubrication additives.

  13. Model Abstraction Techniques for Large-Scale Power Systems

    E-Print Network [OSTI]

    that lend themselves to assessment of the impact of wind energy. The first part of the re- port summarizes of Energy Office of Electricity Delivery and Energy Reliability Under Cooperative Agreement No. DE-FC26-06NT42847 Hawai`i Distributed Energy Resource Technologies for Energy Security Subtask 10.3 Deliverable 2

  14. The influence of large-scale wind power on global climate

    E-Print Network [OSTI]

    Barlaz, Morton A.

    The influence of large-scale wind power on global climate David W. Keith* , Joseph F. De, CA, September 19, 2004 (received for review April 16, 2004) Large-scale use of wind power can alter of wind power at regional to global scales by using two general circulation models and several

  15. Standards Development and Deployment of a Comprehensive, Integrated, Open-standard Monitoring and Equipment Control Networking Protocol Infrastructure for Effective Facility Energy Management of a Large-scale Industrial Site in Alberta, Canada 

    E-Print Network [OSTI]

    Bernstein, R.

    2014-01-01

    Integration (FMSI) Responsibilities • Building Automation System Panel Integration • Design, Maintain, and Supply BMS Panels • Building Management System • User interface • Common dashboard look and feel • Database management and maintenance • BMS software... Suncor Building Management System Standards Development and Deployment of a Comprehensive, Integrated, Open-standard Monitoring and Equipment Control Networking Protocol Infrastructure for Effective Facility Energy Management of a Large...

  16. Modulational instability, wave breaking and formation of large scale dipoles in the atmosphere

    E-Print Network [OSTI]

    A. Iafrati; A. Babanin; M. Onorato

    2012-08-27

    In the present Letter we use the Direct Numerical Simulation (DNS) of the Navier-Stokes equation for a two-phase flow (water and air) to study the dynamics of the modulational instability of free surface waves and its contribution to the interaction between ocean and atmosphere. If the steepness of the initial wave is large enough, we observe a wave breaking and the formation of large scale dipole structures in the air. Because of the multiple steepening and breaking of the waves under unstable wave packets, a train of dipoles is released and propagate in the atmosphere at a height comparable with the wave length. The amount of energy dissipated by the breaker in water and air is considered and, contrary to expectations, we observe that the energy dissipation in air is larger than the one in the water. Possible consequences on the wave modelling and on the exchange of aerosols and gases between air and water are discussed.

  17. Detecting and mitigating abnormal events in large scale networks: budget constrained placement on smart grids

    SciTech Connect (OSTI)

    Santhi, Nandakishore; Pan, Feng

    2010-10-19

    Several scenarios exist in the modern interconnected world which call for an efficient network interdiction algorithm. Applications are varied, including various monitoring and load shedding applications on large smart energy grids, computer network security, preventing the spread of Internet worms and malware, policing international smuggling networks, and controlling the spread of diseases. In this paper we consider some natural network optimization questions related to the budget constrained interdiction problem over general graphs, specifically focusing on the sensor/switch placement problem for large-scale energy grids. Many of these questions turn out to be computationally hard to tackle. We present a particular form of the interdiction question which is practically relevant and which we show as computationally tractable. A polynomial-time algorithm will be presented for solving this problem.

  18. Large-scale Gadolinium-doped Water Cerenkov Detector for Non-Proliferation

    E-Print Network [OSTI]

    Sweany, M; Bowden, N S; Dazeley, S; Keefer, G; Svoboda, R; Tripathi, M

    2011-01-01

    Fission events from Special Nuclear Material (SNM), such as highly enriched uranium or plutonium, can produce simultaneous emission of multiple neutrons and high energy gamma-rays. The observation of time correlations between any of these particles is a significant indicator of the presence of fissionable material. Cosmogenic processes can also mimic these types of correlated signals. However, if the background is sufficiently low and fully characterized, significant changes in the correlated event rate in the presence of a target of interest constitutes a robust signature of the presence of SNM. Since fission emissions are isotropic, adequate sensitivity to these multiplicities requires a high efficiency detector with a large solid angle with respect to the target. Water Cerenkov detectors are a cost-effective choice when large solid angle coverage is required. In order to characterize the neutron detection performance of large-scale water Cerenkov detectors, we have designed and built a 3.5 kL water Cerenko...

  19. Large-Scale Optimization of Complex Separator and Reactor Networks

    E-Print Network [OSTI]

    Ghougassian, Paul Gougas

    2013-01-01

    BOILER CONDENSER PUMP Mass Stream Energy Stream Figure 5.1:Reboiler PUMP Mass Stream Energy Stream Figure 5.4: Steamthis heating/vaporization energy, stream “Steam In”, which

  20. Sheared stably stratified turbulence and large-scale waves in a lid driven cavity

    E-Print Network [OSTI]

    Cohen, N; Elperin, T; Kleeorin, N; Rogachevskii, I

    2014-01-01

    We investigated experimentally stably stratified turbulent flows in a lid driven cavity with a non-zero vertical mean temperature gradient in order to identify the parameters governing the mean and turbulent flows and to understand their effects on the momentum and heat transfer. We found that the mean velocity patterns (e.g., the form and the sizes of the large-scale circulations) depend strongly on the degree of the temperature stratification. In the case of strong stable stratification, the strong turbulence region is located in the vicinity of the main large-scale circulation. We detected the large-scale nonlinear oscillations in the case of strong stable stratification which can be interpreted as nonlinear internal gravity waves. The ratio of the main energy-containing frequencies of these waves in velocity and temperature fields in the nonlinear stage is about 2. The amplitude of the waves increases in the region of weak turbulence (near the bottom wall of the cavity), whereby the vertical mean temperat...

  1. Holography, Dark Energy and Entropy of Large Cosmic Structures

    E-Print Network [OSTI]

    C. Sivaram; Kenath Arun

    2013-03-15

    As is well known, black hole entropy is proportional to the area of the horizon suggesting a holographic principle wherein all degrees of freedom contributing to the entropy reside on the surface. In this note, we point out that large scale dark energy (such as a cosmological constant) constraining cosmic structures can imply a similar situation for the entropy of a hierarchy of such objects.

  2. Large Energy Users Program | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOE Safety StandardsLabor Relations ActAvenue, S.W.Site|Commercial

  3. Large-scale structure of the fast solar wind

    E-Print Network [OSTI]

    Bisi, M. M.; Fallows, R. A.; Breen, A. R.; Habbal, S. Rifai; Jones, R. A.

    2007-01-01

    to detect small variations in the fast solar wind struc-small-scale (?100 km) density variations in the solar wind.small step in density seen in the Ulysses data indicated the presence of two modes of fast wind,

  4. Issues in strategic management of large-scale software product line development

    E-Print Network [OSTI]

    Nivoit, Jean-Baptiste (Jean-Baptiste Henri)

    2013-01-01

    This thesis reflects on the issues and challenges large software product engineering managers face. Software is hard to engineer on a small scale, but at a larger scale, engineering and management tasks are even more ...

  5. Study of the performance of a large scale water-Cherenkov detector (MEMPHYS)

    E-Print Network [OSTI]

    L. Agostino; M. Buizza-Avanzini; M. Dracos; D. Duchesneau; M. Marafini; M. Mezzetto; L. Mosca; T. Patzak; A. Tonazzo; N. Vassilopoulos

    2013-01-21

    MEMPHYS (MEgaton Mass PHYSics) is a proposed large-scale water Cherenkov experiment to be performed deep underground. It is dedicated to nucleon decay searches, neutrinos from supernovae, solar and atmospheric neutrinos, as well as neutrinos from a future Super-Beam or Beta-Beam to measure the CP violating phase in the leptonic sector and the mass hierarchy. A full simulation of the detector has been performed to evaluate its performance for beam physics. The results are given in terms of "Migration Matrices" of reconstructed versus true neutrino energy, taking into account all the experimental effects.

  6. Large-Scale Production of Marine Microalgae for Fuel and Feeds

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review Large-Scale Production of Marine Microalgae for Fuel and Feeds March 24, 2015 Algae Platform Review Mark Huntley Cornell Marine Algal Biofuels Consortium This...

  7. A Tractable Approach to Understanding the Results from Large-Scale 3D Transient

    E-Print Network [OSTI]

    Peraire, Jaime

    ) problems or NASA's HPCC (High Performance Computing & Communication) grand challenges, can easily. Introduction Large-scale simulations of physical phenomena on high performance computing systems (often on mas

  8. Asymmetry in In-Degree and Out-Degree Distributions of Large-Scale Industrial Networks

    E-Print Network [OSTI]

    Luo, Jianxi; Whitney, Daniel E.

    2015-01-01

    Network structures in industrial pricing: the effect ofrecession? ranking U.S. industrial sectors by the Power-of-distributions of large-scale industrial networks Jianxi Luo

  9. A Topological Framework for the Interactive Exploration of Large Scale Turbulent Combustion

    E-Print Network [OSTI]

    Bremer, Peer-Timo

    2010-01-01

    comparison of terascale combustion simulation data. Mathe-premixed hydrogen ?ames. Combustion and Flame, [7] J. L.of Large Scale Turbulent Combustion Peer-Timo Bremer 1 ,

  10. Parallel I/O Software Infrastructure for Large-Scale Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems Parallel IO Software Infrastructure for Large-Scale Systems | Tags: Math & Computer Science Choudhary.png An illustration of how MPI---IO file domain alignment...

  11. In-situ sampling of a large-scale particle simulation for interactive...

    Office of Scientific and Technical Information (OSTI)

    random sampling of data from large scale particle simulations, such as the Roadrunner Universe MCsup 3 cosmological simulation, to be used for interactive post-analysis and...

  12. Large Higgs energy region in Higgs associated top pair production...

    Office of Scientific and Technical Information (OSTI)

    Large Higgs energy region in Higgs associated top pair production at the Linear Collider Citation Details In-Document Search Title: Large Higgs energy region in Higgs associated...

  13. Higher order corrections to the large scale matter power spectrum in the presence of massive neutrinos

    E-Print Network [OSTI]

    Yvonne Y. Y. Wong

    2008-10-06

    We present the first systematic derivation of the one-loop correction to the large scale matter power spectrum in a mixed cold+hot dark matter cosmology with subdominant massive neutrino hot dark matter. Starting with the equations of motion for the density and velocity fields, we derive perturbative solutions to these quantities and construct recursion relations for the interaction kernels, noting and justifying all approximations along the way. We find interaction kernels similar to those for a cold dark matter-only universe, but with additional dependences on the neutrino energy density fraction f_nu and the linear growth functions of the incoming wavevectors. Compared with the f_nu=0 case, the one-loop corrected matter power spectrum for a mixed dark matter cosmology exhibits a decrease in small scale power exceeding the canonical ~8 f_nu suppression predicted by linear theory, a feature also seen in multi-component N-body simulations.

  14. Scaled Solar | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk,Sage ResourcesFlorida:Satcon JumpSawmill,Sayreville, NewScaled

  15. On scale and magnitude of pressure build-up induced by large-scale geologic storage of CO2

    E-Print Network [OSTI]

    Zhou, Q.

    2012-01-01

    activities, such as oil production. Large-scale pressureannual volume of world oil production and the pore volumem 3 . In 2006, the world oil production was 4.3 km 3 (73.46

  16. A framework for delay emulation of large-scale internetworks 

    E-Print Network [OSTI]

    Venkata, Shravan Rangaraju

    2001-01-01

    Several network applications require access to a large number of geographically distributed machines for testing and debugging purposes. Typically, it is the case that either access is not available for so many machines, ...

  17. RICE UNIVERSITY Argos: Practical Base Stations for Large-scale

    E-Print Network [OSTI]

    Zhong, Lin

    , Thesis Committee: Lin Zhong, Chair Associate Professor Electrical and Computer Engineering Ashutosh Sabharwal Associate Professor Electrical and Computer Engineering Edward Knightly Professor Electrical-scale Beamforming by Clayton W. Shepard MU-MIMO theory predicts manyfold capacity gains by leveraging many antennas

  18. Power-Saving in Large-Scale Storage Systems with Data Migration Koji Hasebe, Tatsuya Niwa, Akiyoshi Sugiki, and Kazuhiko Kato

    E-Print Network [OSTI]

    Banbara, Mutsunori

    Power-Saving in Large-Scale Storage Systems with Data Migration Koji Hasebe, Tatsuya Niwa, Akiyoshi,kato}@cs.tsukuba.ac.jp Abstract--We present a power-saving method for large- scale distributed storage systems. The key idea. In particular, as a high percentage of the total computing system's energy is used by the data storage systems

  19. RISK-AVERSE FEASIBLE POLICIES FOR LARGE-SCALE ...

    E-Print Network [OSTI]

    2012-09-10

    inventory problems [3], [6], [29], electric energy, oil, and finance [39, Ch. 10], .... This assumption, together with the inflow condition stating that P(?t ? 0) = 1 for ...

  20. 2014 Commercial-Scale Renewable Energy Project Development and...

    Energy Savers [EERE]

    2014 Commercial-Scale Renewable Energy Project Development and Finance Workshop Agenda and Presentations 2014 Commercial-Scale Renewable Energy Project Development and Finance...

  1. Tribal Renewable Energy Advanced Course: Commercial Scale Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Scale Project Development Tribal Renewable Energy Advanced Course: Commercial Scale Project Development Watch the DOE Office of Indian Energy advanced course...

  2. FEMP Offers Training on Distributed-Scale Renewable Energy Projects...

    Energy Savers [EERE]

    Training on Distributed-Scale Renewable Energy Projects: From Planning to Project Closeout FEMP Offers Training on Distributed-Scale Renewable Energy Projects: From Planning to...

  3. Community- and Facility-Scale Tribal Renewable Energy Project...

    Energy Savers [EERE]

    Community- and Facility-Scale Tribal Renewable Energy Project Development and Finance Workshop: Colorado Community- and Facility-Scale Tribal Renewable Energy Project Development...

  4. Tribal Renewable Energy Advanced Course: Community Scale Project...

    Energy Savers [EERE]

    Tribal Renewable Energy Advanced Course: Community Scale Project Development Tribal Renewable Energy Advanced Course: Community Scale Project Development Watch the DOE Office of...

  5. 2013 Commercial-Scale Tribal Renewable Energy Project Development...

    Energy Savers [EERE]

    2013 Commercial-Scale Tribal Renewable Energy Project Development and Finance Workshop Presentations and Agenda 2013 Commercial-Scale Tribal Renewable Energy Project Development...

  6. Hydrodynamic and hydromagnetic energy spectra from large eddy simulations

    E-Print Network [OSTI]

    N. E. L. Haugen; A. Brandenburg

    2006-06-29

    Direct and large eddy simulations of hydrodynamic and hydromagnetic turbulence have been performed in an attempt to isolate artifacts from real and possibly asymptotic features in the energy spectra. It is shown that in a hydrodynamic turbulence simulation with a Smagorinsky subgrid scale model using 512^3 meshpoints two important features of the 4096^3 simulation on the Earth simulator (Kaneda et al. 2003, Phys. Fluids 15, L21) are reproduced: a k^{-0.1} correction to the inertial range with a k^{-5/3} Kolmogorov slope and the form of the bottleneck just before the dissipative subrange. Furthermore, it is shown that, while a Smagorinsky-type model for the induction equation causes an artificial and unacceptable reduction in the dynamo efficiency, hyper-resistivity yields good agreement with direct simulations. In the large-scale part of the inertial range, an excess of the spectral magnetic energy over the spectral kinetic energy is confirmed. However, a trend towards spectral equipartition at smaller scales in the inertial range can be identified. With magnetic fields, no explicit bottleneck effect is seen.

  7. Wind Scanner: A full-scale Laser Facility for Wind and Turbulence Measurements around large Wind Turbines

    E-Print Network [OSTI]

    Wind Scanner: A full-scale Laser Facility for Wind and Turbulence Measurements around large Wind Turbines Torben Mikkelsen, Jakob Mann and Michael Courtney Wind Energy Department, Risø National Laboratory:Torben.Mikkelsen@Risoe.dk Summary RISØ DTU has started to build a newly designed laser-based lidar scanning facility for remote wind

  8. Multilevel method for modeling large-scale networks.

    SciTech Connect (OSTI)

    Safro, I. M. (Mathematics and Computer Science)

    2012-02-24

    Understanding the behavior of real complex networks is of great theoretical and practical significance. It includes developing accurate artificial models whose topological properties are similar to the real networks, generating the artificial networks at different scales under special conditions, investigating a network dynamics, reconstructing missing data, predicting network response, detecting anomalies and other tasks. Network generation, reconstruction, and prediction of its future topology are central issues of this field. In this project, we address the questions related to the understanding of the network modeling, investigating its structure and properties, and generating artificial networks. Most of the modern network generation methods are based either on various random graph models (reinforced by a set of properties such as power law distribution of node degrees, graph diameter, and number of triangles) or on the principle of replicating an existing model with elements of randomization such as R-MAT generator and Kronecker product modeling. Hierarchical models operate at different levels of network hierarchy but with the same finest elements of the network. However, in many cases the methods that include randomization and replication elements on the finest relationships between network nodes and modeling that addresses the problem of preserving a set of simplified properties do not fit accurately enough the real networks. Among the unsatisfactory features are numerically inadequate results, non-stability of algorithms on real (artificial) data, that have been tested on artificial (real) data, and incorrect behavior at different scales. One reason is that randomization and replication of existing structures can create conflicts between fine and coarse scales of the real network geometry. Moreover, the randomization and satisfying of some attribute at the same time can abolish those topological attributes that have been undefined or hidden from researchers. We propose to develop multilevel methods to model complex networks. The key point of the proposed strategy is that it will help to preserve part of the unknown structural attributes by guaranteeing the similar behavior of the real and artificial model on different scales.

  9. Nonlinear Seismic Correlation Analysis of the JNES/NUPEC Large-Scale Piping System Tests.

    SciTech Connect (OSTI)

    Nie,J.; DeGrassi, G.; Hofmayer, C.; Ali, S.

    2008-06-01

    The Japan Nuclear Energy Safety Organization/Nuclear Power Engineering Corporation (JNES/NUPEC) large-scale piping test program has provided valuable new test data on high level seismic elasto-plastic behavior and failure modes for typical nuclear power plant piping systems. The component and piping system tests demonstrated the strain ratcheting behavior that is expected to occur when a pressurized pipe is subjected to cyclic seismic loading. Under a collaboration agreement between the US and Japan on seismic issues, the US Nuclear Regulatory Commission (NRC)/Brookhaven National Laboratory (BNL) performed a correlation analysis of the large-scale piping system tests using derailed state-of-the-art nonlinear finite element models. Techniques are introduced to develop material models that can closely match the test data. The shaking table motions are examined. The analytical results are assessed in terms of the overall system responses and the strain ratcheting behavior at an elbow. The paper concludes with the insights about the accuracy of the analytical methods for use in performance assessments of highly nonlinear piping systems under large seismic motions.

  10. On the Evolution of Thermonuclear Flames on Large Scales

    E-Print Network [OSTI]

    Ju Zhang; O. E. Bronson Messer; Alexei M. Khokhlov; Tomasz Plewa

    2006-10-05

    The thermonuclear explosion of a massive white dwarf in a Type Ia supernova explosion is characterized by vastly disparate spatial and temporal scales. The extreme dynamic range inherent to the problem prevents the use of direct numerical simulation and forces modelers to resort to subgrid models to describe physical processes taking place on unresolved scales. We consider the evolution of a model thermonuclear flame in a constant gravitational field on a periodic domain. The gravitational acceleration is aligned with the overall direction of the flame propagation, making the flame surface subject to the Rayleigh-Taylor instability. The flame evolution is followed through an extended initial transient phase well into the steady-state regime. The properties of the evolution of flame surface are examined. We confirm the form of the governing equation of the evolution suggested by Khokhlov (1995). The mechanism of vorticity production and the interaction between vortices and the flame surface are discussed. The results of our investigation provide the bases for revising and extending previous subgrid-scale model.

  11. Breakthrough Large-Scale Industrial Project Begins Carbon Capture and

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De pEnergy Industrialof Energy 7:30PM PDT

  12. NREL: News - NREL Offers an Open-Source Solution for Large-Scale...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    single building to a large military base or college campus-or for other energy data management needs. Managing and minimizing energy consumption on a large campus is usually a...

  13. Autonomous Science during Large-Scale Robotic David R. Thompson

    E-Print Network [OSTI]

    of geologic phenomena with a visible near-infrared spectrometer. We develop an approach to "sci- ence). Scientists can use these over-the-horizon modes to quickly characterize large areas and visit multiple geologic units between communications opportunities (Wettergreen et al., 2005; Cabrol et al., 2007

  14. Large Scale Test of Sensor Fingerprint Camera Identification Miroslav Goljan, Jessica Fridrich, and Toms Filler

    E-Print Network [OSTI]

    Fridrich, Jessica

    Large Scale Test of Sensor Fingerprint Camera Identification Miroslav Goljan, Jessica Fridrich This paper presents a large scale test of camera identification from sensor fingerprints. To overcome-line image sharing site. In our experiment, we tested over one million images spanning 6896 individual

  15. Large-Scale Trends in the Evolution of Gene Structures within 11 Animal Genomes

    E-Print Network [OSTI]

    Yandell, Mark

    Large-Scale Trends in the Evolution of Gene Structures within 11 Animal Genomes Mark Yandell1,2,3¤a-source software library called CGL (for ``Comparative Genomics Library''). Our results demonstrate that change. Citation: Yandell M, Mungall CJ, Smith C, Prochnik S, Kaminker J, et al (2006) Large-scale trends

  16. Scheduling of large scale crude oil blending Felipe Diaz-Alvarado1, Francisco Trespalacios2,

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Scheduling of large scale crude oil blending Felipe D´iaz-Alvarado1, Francisco Trespalacios2, 30 (4): 614-634. D´iaz-Alvarado, Trespalacios, Grossmann Scheduling of large scale crude oil blending, P. A Novel Priority-Slot Based Continuous-Time Formulation for Crude-Oil Scheduling Problems

  17. Towards Automatic Incorporation of Search engines into a Large-Scale Metasearch Engine

    E-Print Network [OSTI]

    Meng, Weiyi

    Towards Automatic Incorporation of Search engines into a Large-Scale Metasearch Engine Zonghuan Wu. of Computer Science Univ. of Illinois at Chicago yu@cs.uic.edu Abstract A metasearch engine supports unified access to multiple component search engines. To build a very large-scale metasearch engine that can

  18. 2D MHD MODELS OF THE LARGE SCALE SOLAR Eirik Endeve

    E-Print Network [OSTI]

    California at Berkeley, University of

    by the ideal gas law, P 2nkT. In order to study the acceleration of high- and low- speed solar wind one must2D MHD MODELS OF THE LARGE SCALE SOLAR CORONA Eirik Endeve£ , Thomas E. Holzer and Egil Leer to determine the structure of the large scale solar corona. When our numerical calculations are initiated

  19. Reconfiguration-Assisted Charging in Large-Scale Lithium-ion Battery Systems

    E-Print Network [OSTI]

    Reconfiguration-Assisted Charging in Large-Scale Lithium-ion Battery Systems Liang He1 , Linghe, TX, USA ABSTRACT Large-scale Lithium-ion batteries are widely adopted in many systems and heterogeneous discharging con- ditions, cells in the battery system may have differ- ent statuses

  20. Electronic Properties of Large-scale Graphene Films Chemical Vapor Synthesized on Nickel and on Copper

    E-Print Network [OSTI]

    Chen, Yong P.

    transport properties of graphene films grown on Ni and Cu. Sample Preparation The synthesis of graphene film1 Electronic Properties of Large-scale Graphene Films Chemical Vapor Synthesized on Nickel of large scale graphene films grown by chemical vapor synthesis on Ni and Cu, and then transferred to SiO2

  1. Monte Carlo Adaptive Technique for Sensitivity Analysis of a Large-scale Air Pollution Model

    E-Print Network [OSTI]

    Dimov, Ivan

    Monte Carlo Adaptive Technique for Sensitivity Analysis of a Large-scale Air Pollution Model Ivan of input parameters contribution into output variability of a large- scale air pollution model]. This model simulates the transport of air pollutants and has been developed by Dr. Z. Zlatev and his

  2. QA-Pagelet: Data Preparation Techniques for Large Scale Data Analysis of the Deep Web

    E-Print Network [OSTI]

    Liu, Ling

    1 QA-Pagelet: Data Preparation Techniques for Large Scale Data Analysis of the Deep Web James data preparation technique for large scale data analysis of the Deep Web. To support QA the Deep Web. Two unique features of the Thor framework are (1) the novel page clustering for grouping

  3. QA-Pagelet: Data Preparation Techniques for Large-Scale Data Analysis of the Deep Web

    E-Print Network [OSTI]

    Caverlee, James

    QA-Pagelet: Data Preparation Techniques for Large-Scale Data Analysis of the Deep Web James the QA-Pagelet as a fundamental data preparation technique for large-scale data analysis of the Deep Web-Pagelets from the Deep Web. Two unique features of the Thor framework are 1) the novel page clustering

  4. Experimental Investigation on Rapid Filling of a Large-Scale Pipeline

    E-Print Network [OSTI]

    Tijsseling, A.S.

    ; Unsteady flow; Two-phase flow; Air­water interface; Flow-regime transition. Introduction Rapid pipe filling experiments of the two-phase pressurized flow behavior during the rapid filling of a large-scale pipelineExperimental Investigation on Rapid Filling of a Large-Scale Pipeline Qingzhi Hou1 ; Arris S

  5. LETTER doi:10.1038/nature11727 Large-scale nanophotonic phased array

    E-Print Network [OSTI]

    Reif, Rafael

    and astronomy1 . The ability to generate arbi- trary radiation patterns with large-scale phased arrays has long been pursued. Although it is extremely expensive and cumbersome to deploy large-scale radiofrequency of the nanoantennas pre- cisely balanced in power and aligned in phase to generate a designed, sophisticated radiation

  6. Parallel domain decomposition for simulation of large-scale power grids

    E-Print Network [OSTI]

    Mohanram, Kartik

    of large-scale linear circuits such as power grids. DD techniques that use non-overlapping and overlap that with the proposed parallel DD framework, existing linear circuit simulators can be extended to handle large- scale can be solved independently in parallel using standard techniques for linear system analysis

  7. Passive scalar in a large-scale velocity field I. Kolokolov

    E-Print Network [OSTI]

    Lebedev, Vladimir

    Passive scalar in a large-scale velocity field I. Kolokolov Budker Institute of Nuclear Physics advection of a passive scalar (t,r) by an incompressible large-scale turbulent flow. In the framework of and for the passive scalar difference (r1) (r2) for separations r1 r2 lying in the convective interval are found

  8. Linear Algebraic Calculation of Green's function for Large-Scale Electronic Structure Theory

    E-Print Network [OSTI]

    Hoshi, Takeo

    Linear Algebraic Calculation of Green's function for Large-Scale Electronic Structure Theory R (Dated: March 2, 2006) A linear algebraic method named the shifted conjugate-orthogonal-conjugate-gradient method is introduced for large-scale electronic structure calculation. The method gives an iterative

  9. Type-Preserving Compilation for Large-Scale Optimizing Object-Oriented Compilers

    E-Print Network [OSTI]

    California at Berkeley, University of

    Type-Preserving Compilation for Large-Scale Optimizing Object-Oriented Compilers Juan Chen Chris polyvios@cs.umd.edu Abstract Type-preserving compilers translate well-typed source code, such as Java or C- mentation of type-preserving compilation in a complex, large-scale optimizing compiler. Compared to prior

  10. Platforms and Real Options in Large-Scale Engineering Konstantinos Kalligeros

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Platforms and Real Options in Large-Scale Engineering Systems by Konstantinos Kalligeros Dipl teams to assess the value of real options in programs of large-scale, partially stan- dardized systems. A novel valuation process is introduced to value the developer's real options to choose among

  11. AMP: An Affinity-based Metadata Prefetching Scheme in Large-Scale Distributed Storage Systems

    E-Print Network [OSTI]

    Zhu, Yifeng

    1 AMP: An Affinity-based Metadata Prefetching Scheme in Large-Scale Distributed Storage Systems Lin significantly reduce access latency for I/O systems. In distributed storage systems, prefetching for metadata Prefetching (AMP) scheme is proposed for metadata servers in large-scale distributed storage systems

  12. Role of large-scale soil structure in organic carbon turnover: Evidence from California grassland soils

    E-Print Network [OSTI]

    Role of large-scale soil structure in organic carbon turnover: Evidence from California grassland soils Stephanie A. Ewing,1 Jonathan Sanderman,1 W. Troy Baisden,2 Yang Wang,3 and Ronald Amundson1 characterized the effect of large-scale (>20 mm) soil physical structure on the age and recalcitrance of soil

  13. Automated Data Verification in a Large-scale Citizen Science Project: a Case Study

    E-Print Network [OSTI]

    Wong, Weng-Keen

    Automated Data Verification in a Large-scale Citizen Science Project: a Case Study Jun Yu1 , Steve,jag73}@cornell.edu Abstract-- Although citizen science projects can engage a very large number with eBird, which is a broad-scale citizen science project to collect bird observations, has shown

  14. Phoenix Rebirth: Scalable MapReduce on a Large-Scale Shared-Memory System

    E-Print Network [OSTI]

    Kozyrakis, Christos

    Phoenix Rebirth: Scalable MapReduce on a Large-Scale Shared-Memory System Richard M. Yoo, Anthony for large-scale, shared-memory systems can be challenging. This work optimizes Phoenix, a MapReduce runtime for clusters and CMP systems [5]­[8]. This work focuses on Phoenix [5], a MapReduce imple- mentation for shared

  15. Disentangling the Multiple Sources of Large-Scale Variability in Australian Wintertime Precipitation

    E-Print Network [OSTI]

    Sherwood, Steven

    Precipitation PENELOPE MAHER AND STEVEN C. SHERWOOD Climate Change Research Centre and ARC Centre of Excellence received 25 October 2013, in final form 4 March 2014) ABSTRACT Precipitation is influenced by multiple large-scale natural processes. Many of these large-scale precipitation ``drivers'' are not independent

  16. Hurricane Activity and the Large-Scale Pattern of Spread of an Invasive Plant Species

    E-Print Network [OSTI]

    Cronin, James T.

    Hurricane Activity and the Large-Scale Pattern of Spread of an Invasive Plant Species Ganesh P of invasive species. However, the effects of large-scale disturbances, such as hurricanes and tropical storms. australis stands expanded in size by 6­35% per year. Based on tropical storm and hurricane activity over

  17. Multi-scale interaction of driftWave turbulence with large scale shear flows

    E-Print Network [OSTI]

    McDevitt, Christopher J.

    2008-01-01

    then to impose outgoing wave energy boundary conditions [Appendix A, this outgoing wave energy condition implies thatMHD. Appendix A: Outgoing Wave Energy Boundary Conditions In

  18. Large Scale Comparative Visualisation of Regulatory Networks with TRNDiff

    SciTech Connect (OSTI)

    Chua, Xin-Yi [QFAB Bioinformatics, Inst. for Molecular Biosciences, Brisbane (Austrialia); Buckingham, Lawrence [School of EECS, QUT, Brisbane (Australia); Hogan, James M. [School of EECS, QUT, Brisbane (Australia); Novichkov, Pavel [Lawrence Berkeley National Lab., CA (United States)

    2015-01-01

    The advent of Next Generation Sequencing (NGS) technologies has seen explosive growth in genomic datasets, and dense coverage of related organisms, supporting study of subtle, strain-specific variations as a determinant of function. Such data collections present fresh and complex challenges for bioinformatics, those of comparing models of complex relationships across hundreds and even thousands of sequences. Transcriptional Regulatory Network (TRN) structures document the influence of regulatory proteins called Transcription Factors (TFs) on associated Target Genes (TGs). TRNs are routinely inferred from model systems or iterative search, and analysis at these scales requires simultaneous displays of multiple networks well beyond those of existing network visualisation tools [1]. In this paper we describe TRNDiff, an open source system supporting the comparative analysis and visualization of TRNs (and similarly structured data) from many genomes, allowing rapid identification of functional variations within species. The approach is demonstrated through a small scale multiple TRN analysis of the Fur iron-uptake system of Yersinia, suggesting a number of candidate virulence factors; and through a larger study exploiting integration with the RegPrecise database (http://regprecise.lbl.gov; [2]) - a collection of hundreds of manually curated and predicted transcription factor regulons drawn from across the entire spectrum of prokaryotic organisms.

  19. Large Scale Comparative Visualisation of Regulatory Networks with TRNDiff

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chua, Xin-Yi; Buckingham, Lawrence; Hogan, James M.; Novichkov, Pavel

    2015-06-01

    The advent of Next Generation Sequencing (NGS) technologies has seen explosive growth in genomic datasets, and dense coverage of related organisms, supporting study of subtle, strain-specific variations as a determinant of function. Such data collections present fresh and complex challenges for bioinformatics, those of comparing models of complex relationships across hundreds and even thousands of sequences. Transcriptional Regulatory Network (TRN) structures document the influence of regulatory proteins called Transcription Factors (TFs) on associated Target Genes (TGs). TRNs are routinely inferred from model systems or iterative search, and analysis at these scales requires simultaneous displays of multiple networks well beyond thosemore »of existing network visualisation tools [1]. In this paper we describe TRNDiff, an open source system supporting the comparative analysis and visualization of TRNs (and similarly structured data) from many genomes, allowing rapid identification of functional variations within species. The approach is demonstrated through a small scale multiple TRN analysis of the Fur iron-uptake system of Yersinia, suggesting a number of candidate virulence factors; and through a larger study exploiting integration with the RegPrecise database (http://regprecise.lbl.gov; [2]) - a collection of hundreds of manually curated and predicted transcription factor regulons drawn from across the entire spectrum of prokaryotic organisms.« less

  20. Large-scale Gadolinium-doped Water Cerenkov Detector for Non-Proliferation

    E-Print Network [OSTI]

    M. Sweany; A. Bernstein; N. S. Bowden; S. Dazeley; G. Keefer; R. Svoboda; M. Tripathi

    2011-05-11

    Fission events from Special Nuclear Material (SNM), such as highly enriched uranium or plutonium, can produce simultaneous emission of multiple neutrons and high energy gamma-rays. The observation of time correlations between any of these particles is a significant indicator of the presence of fissionable material. Cosmogenic processes can also mimic these types of correlated signals. However, if the background is sufficiently low and fully characterized, significant changes in the correlated event rate in the presence of a target of interest constitutes a robust signature of the presence of SNM. Since fission emissions are isotropic, adequate sensitivity to these multiplicities requires a high efficiency detector with a large solid angle with respect to the target. Water Cerenkov detectors are a cost-effective choice when large solid angle coverage is required. In order to characterize the neutron detection performance of large-scale water Cerenkov detectors, we have designed and built a 3.5 kL water Cerenkov-based gamma-ray and neutron detector, and modeled the detector response in Geant4 [1]. We report the position-dependent neutron detection efficiency and energy response of the detector, as well as the basic characteristics of the simulation.

  1. Process Integration Techniques for Planning Large-Scale Deployment of

    E-Print Network [OSTI]

    Ahrendt, Wolfgang

    Trends Strong demand growth for reliable, low-cost energy in the developing world will continue requirement to supply bioenergy 0.74-1.94 ha/capita Nonhebel (2005) #12;CO2 Abatement Technology "Wedges of existing power generation facilities Disadvantages Loss of power (15 ­ 20%) Increased cost of electricity

  2. Chemical engineers design, control and optimize large-scale chemical,

    E-Print Network [OSTI]

    Rohs, Remo

    of equilibrium phase relations and principles of material and energy balance for design, operation of Probability and Statistics for Chemical Engineers (3, Fa) Principles of probability and statistics, random to Biomaterials and Tissue Engineering (3, Fa) (Enroll in BME 410) CHE 442 Chemical Reactor Analysis (3, Fa) Basic

  3. Chemical engineers design, control and optimize large-scale chemical,

    E-Print Network [OSTI]

    Rohs, Remo

    ) Principles of probability and statistics, random variables and random functions. Application to chemical) CHE 442 Chemical Reactor Analysis (3, Fa) Basic concepts of chemical kinetics and chemical reactor to Separation Pro- cesses (3, Sp) Use of equilibrium phase relations and principles of material and energy

  4. Motion Planning of Large Scale Vehicles for Remote Material Transportation

    E-Print Network [OSTI]

    -frame based on new technologies and alternative energies such as solar, geothermal and nuclear, fission between the Tokamak Building and the Hot Cell Building, the two main buildings of the ITER facility described in this chapter are the definition of motion planning strategies that cope with the building maps

  5. Large Scale Power Suppression in a Multifield Landscape

    E-Print Network [OSTI]

    Blanco-Pillado, Jose J; Frazer, Jonathan; Sousa, Kepa

    2015-01-01

    Power suppression of the cosmic microwave background on the largest observable scales could provide valuable clues about the particle physics underlying inflation. Here we consider the prospect of power suppression in the context of the multifield landscape. Based on the assumption that our observable universe emerges from a tunnelling event and that the relevant features originate purely from inflationary dynamics, we find that the power spectrum not only contains information on single-field dynamics, but also places strong con- straints on all scalar fields present in the theory. We find that the simplest single-field models giving rise to power suppression do not generalise to multifield models in a straightforward way, as the resulting superhorizon evolution of the curvature perturbation tends to erase any power suppression present at horizon crossing. On the other hand, multifield effects do present a means of generating power suppression which to our knowledge has so far not been considered. We propose ...

  6. Large-Scale Molecular Dynamics Simulations for Highly Parallel Infrastructures

    E-Print Network [OSTI]

    Pazúriková, Jana

    2014-01-01

    Computational chemistry allows researchers to experiment in sillico: by running a computer simulations of a biological or chemical processes of interest. Molecular dynamics with molecular mechanics model of interactions simulates N-body problem of atoms$-$it computes movements of atoms according to Newtonian physics and empirical descriptions of atomic electrostatic interactions. These simulations require high performance computing resources, as evaluations within each step are computationally demanding and billions of steps are needed to reach interesting timescales. Current methods decompose the spatial domain of the problem and calculate on parallel/distributed infrastructures. Even the methods with the highest strong scaling hit the limit at half a million cores: they are not able to cut the time to result if provided with more processors. At the dawn of exascale computing with massively parallel computational resources, we want to increase the level of parallelism by incorporating parallel-in-time comput...

  7. DLFM library tools for large scale dynamic applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HAB Packet Hanford Advisory Board6/23/2014DLFM library tools for large

  8. Large-scale seismic signal analysis with Hadoop

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Addair, T. G.; Dodge, D. A.; Walter, W. R.; Ruppert, S. D.

    2014-05-01

    In seismology, waveform cross correlation has been used for years to produce high-precision hypocenter locations and for sensitive detectors. Because correlated seismograms generally are found only at small hypocenter separation distances, correlation detectors have historically been reserved for spotlight purposes. However, many regions have been found to produce large numbers of correlated seismograms, and there is growing interest in building next-generation pipelines that employ correlation as a core part of their operation. In an effort to better understand the distribution and behavior of correlated seismic events, we have cross correlated a global dataset consisting of over 300 million seismograms. Thismore »was done using a conventional distributed cluster, and required 42 days. In anticipation of processing much larger datasets, we have re-architected the system to run as a series of MapReduce jobs on a Hadoop cluster. In doing so we achieved a factor of 19 performance increase on a test dataset. We found that fundamental algorithmic transformations were required to achieve the maximum performance increase. Whereas in the original IO-bound implementation, we went to great lengths to minimize IO, in the Hadoop implementation where IO is cheap, we were able to greatly increase the parallelism of our algorithms by performing a tiered series of very fine-grained (highly parallelizable) transformations on the data. Each of these MapReduce jobs required reading and writing large amounts of data.« less

  9. Edit paper Methods for Large Scale Hydraulic Fracture Monitoring

    E-Print Network [OSTI]

    Ely, Gregory

    2013-01-01

    In this paper we propose computationally efficient and robust methods for estimating the moment tensor and location of micro-seismic event(s) for large search volumes. Our contribution is two-fold. First, we propose a novel joint-complexity measure, namely the sum of nuclear norms which while imposing sparsity on the number of fractures (locations) over a large spatial volume, also captures the rank-1 nature of the induced wavefield pattern. This wavefield pattern is modeled as the outer-product of the source signature with the amplitude pattern across the receivers from a seismic source. A rank-1 factorization of the estimated wavefield pattern at each location can therefore be used to estimate the seismic moment tensor using the knowledge of the array geometry. In contrast to existing work this approach allows us to drop any other assumption on the source signature. Second, we exploit the recently proposed first-order incremental projection algorithms for a fast and efficient implementation of the resulting...

  10. Large Scale Deployment of Renewables for Electricity Generation

    E-Print Network [OSTI]

    Neuhoff, Karsten

    2006-03-14

    is the most difficult to predict, but still has capacity factors in the 30 – 40% range. Geothermal is typically available 95% of the time over the productive life of the reservoir, usually 20 – 30 years. Wind, solar and wave intermittency can... conventional uranium reserves and resources of only about 20 million tonnes (this includes estimated resources at extraction costs up to $260/kg). 10 Initially, the production of solar PV cells was rather energy intensive. However, by 1999, rooftop-installed...

  11. Large-Scale Manufacturing of Nanoparticle-Based Lubrication Additives |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIALU.S.Leadership on Clean Energy | DepartmentDepartment of

  12. Large-Scale Industrial CCS Projects Selected for Continued Testing |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPA PublicLED ADOPTION REPORTLand and Facility Use Policy2014)

  13. Large-Scale Algal Cultivation, Harvesting and Downstream Processing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyApril 2014 | InternationalLand and Asset Transfer forfor»Workshop |

  14. Optimal pump selection for large-scale irrigation systems

    SciTech Connect (OSTI)

    Buchleiter, G.W.

    1986-01-01

    A general computer program was developed to provide recommendations for improving the water and energy management on a branched irrigation distribution pipeline network with a single source and multiple pump stations. The program has three main parts: (1) irrigation scheduling, (2) hydraulic model for the determination of head and flow requirements for any desired irrigation schedule, and (3) optimal pump selection that supplies the head and flow requirements. Irrigation scheduling provides recommendations for irrigating each field served by the distribution network. The hydraulic model calculates the flow and head required at each pump station to satisfy any irrigation schedule desired by the user. The pump-selection algorithm recommends the pump combination at each pump station, which gives the lowest total energy cost for the farm. The program was field tested on a 4850 ha. farm in north central Oregon for two irrigation seasons. Preliminary estimates indicate that energy costs can be reduced by at least 20% by operating the most economical pump combinations. Additional savings are possible by applying only the water required by the crop, by rearranging irrigation schedules to reduce peak electrical demands, and taking advantage of lower electrical-demand charges during off-peak time periods.

  15. Large-Scale Hybrid Dynamic Simulation Employing Field Measurements

    SciTech Connect (OSTI)

    Huang, Zhenyu; Guttromson, Ross T.; Hauer, John F.

    2004-06-30

    Simulation and measurements are two primary ways for power engineers to gain understanding of system behaviors and thus accomplish tasks in system planning and operation. Many well-developed simulation tools are available in today's market. On the other hand, large amount of measured data can be obtained from traditional SCADA systems and currently fast growing phasor networks. However, simulation and measurement are still two separate worlds. There is a need to combine the advantages of simulation and measurements. In view of this, this paper proposes the concept of hybrid dynamic simulation which opens up traditional simulation by providing entries for measurements. A method is presented to implement hybrid simulation with PSLF/PSDS. Test studies show the validity of the proposed hybrid simulation method. Applications of such hybrid simulation include system event playback, model validation, and software validation.

  16. Nonlinear modulation of the HI power spectrum on ultra-large scales. I

    E-Print Network [OSTI]

    Umeh, Obinna; Santos, Mario

    2015-01-01

    Intensity mapping of the neutral hydrogen brightness temperature promises to provide a three-dimensional view of the universe on very large scales. Nonlinear effects are typically thought to alter only the small-scale power, but we show how they can bias the extraction of cosmological information contained in the power spectrum on ultra-large scales. For linear perturbations to remain valid on large scales, we need to renormalize perturbations at higher order. In the case of intensity mapping, the second-order contribution to clustering from weak lensing dominates nonlinear contribution at high redshift. Renormalization modifies the mean brightness temperature and therefore the evolution bias. It also introduces a term that mimics white noise. These effects can influence forecasting analysis on ultra-large scales.

  17. Survey and analysis of selected jointly owned large-scale electric utility storage projects

    SciTech Connect (OSTI)

    Not Available

    1982-05-01

    The objective of this study was to examine and document the issues surrounding the curtailment in commercialization of large-scale electric storage projects. It was sensed that if these issues could be uncovered, then efforts might be directed toward clearing away these barriers and allowing these technologies to penetrate the market to their maximum potential. Joint-ownership of these projects was seen as a possible solution to overcoming the major barriers, particularly economic barriers, of commercializaton. Therefore, discussions with partners involved in four pumped storage projects took place to identify the difficulties and advantages of joint-ownership agreements. The four plants surveyed included Yards Creek (Public Service Electric and Gas and Jersey Central Power and Light); Seneca (Pennsylvania Electric and Cleveland Electric Illuminating Company); Ludington (Consumers Power and Detroit Edison, and Bath County (Virginia Electric Power Company and Allegheny Power System, Inc.). Also investigated were several pumped storage projects which were never completed. These included Blue Ridge (American Electric Power); Cornwall (Consolidated Edison); Davis (Allegheny Power System, Inc.) and Kttatiny Mountain (General Public Utilities). Institutional, regulatory, technical, environmental, economic, and special issues at each project were investgated, and the conclusions relative to each issue are presented. The major barriers preventing the growth of energy storage are the high cost of these systems in times of extremely high cost of capital, diminishing load growth and regulatory influences which will not allow the building of large-scale storage systems due to environmental objections or other reasons. However, the future for energy storage looks viable despite difficult economic times for the utility industry. Joint-ownership can ease some of the economic hardships for utilites which demonstrate a need for energy storage.

  18. Large Scale Power Suppression in a Multifield Landscape

    E-Print Network [OSTI]

    Jose J. Blanco-Pillado; Mafalda Dias; Jonathan Frazer; Kepa Sousa

    2015-03-25

    Power suppression of the cosmic microwave background on the largest observable scales could provide valuable clues about the particle physics underlying inflation. Here we consider the prospect of power suppression in the context of the multifield landscape. Based on the assumption that our observable universe emerges from a tunnelling event and that the relevant features originate purely from inflationary dynamics, we find that the power spectrum not only contains information on single-field dynamics, but also places strong con- straints on all scalar fields present in the theory. We find that the simplest single-field models giving rise to power suppression do not generalise to multifield models in a straightforward way, as the resulting superhorizon evolution of the curvature perturbation tends to erase any power suppression present at horizon crossing. On the other hand, multifield effects do present a means of generating power suppression which to our knowledge has so far not been considered. We propose a mechanism to illustrate this, which we dub flume inflation.

  19. On Soft Limits of Large-Scale Structure Correlation Functions

    E-Print Network [OSTI]

    Ido Ben-Dayan; Thomas Konstandin; Rafael A. Porto; Laura Sagunski

    2015-02-24

    We study soft limits of correlation functions for the density and velocity fields in the theory of structure formation. First, we re-derive the (resummed) consistency conditions at unequal times using the eikonal approximation. These are solely based on symmetry arguments and are therefore universal. Then, we explore the existence of equal-time relations in the soft limit which, on the other hand, depend on the interplay between soft and hard modes. We scrutinize two approaches in the literature: The time-flow formalism, and a background method where the soft mode is absorbed into a locally curved cosmology. The latter has been recently used to set up (angular averaged) `equal-time consistency relations'. We explicitly demonstrate that the time-flow relations and `equal-time consistency conditions' are only fulfilled at the linear level, and fail at next-to-leading order for an Einstein de-Sitter universe. While applied to the velocities both proposals break down beyond leading order, we find that the `equal-time consistency conditions' quantitatively approximates the perturbative results for the density contrast. Thus, we generalize the background method to properly incorporate the effect of curvature in the density and velocity fluctuations on short scales, and discuss the reasons behind this discrepancy. We conclude with a few comments on practical implementations and future directions.

  20. Single-field consistency relations of large scale structure

    SciTech Connect (OSTI)

    Creminelli, Paolo; Noreña, Jorge; Simonovi?, Marko; Vernizzi, Filippo E-mail: jorge.norena@icc.ub.edu E-mail: filippo.vernizzi@cea.fr

    2013-12-01

    We derive consistency relations for the late universe (CDM and ?CDM): relations between an n-point function of the density contrast ? and an (n+1)-point function in the limit in which one of the (n+1) momenta becomes much smaller than the others. These are based on the observation that a long mode, in single-field models of inflation, reduces to a diffeomorphism since its freezing during inflation all the way until the late universe, even when the long mode is inside the horizon (but out of the sound horizon). These results are derived in Newtonian gauge, at first and second order in the small momentum q of the long mode and they are valid non-perturbatively in the short-scale ?. In the non-relativistic limit our results match with [1]. These relations are a consequence of diffeomorphism invariance; they are not satisfied in the presence of extra degrees of freedom during inflation or violation of the Equivalence Principle (extra forces) in the late universe.

  1. Compression, Segmentation, and Modeling of Large-Scale Filamentary Volumetric Data

    E-Print Network [OSTI]

    Keyser, John

    Compression, Segmentation, and Modeling of Large-Scale Filamentary Volumetric Data Bruce H. Mc Department ABSTRACT We describe a method for processing large amounts of volumetric data collected from struc- tures extending over very large regions that prior volumetric rep- resentations have difficulty

  2. Multi-scale interaction of driftWave turbulence with large scale shear flows

    E-Print Network [OSTI]

    McDevitt, Christopher J.

    2008-01-01

    pro?le, killing the free energy source of the turbulence.environmentally benign source of energy free from many ofin fact act as a source of free energy for the convective

  3. Reconfigurable middleware architectures for large scale sensor networks

    SciTech Connect (OSTI)

    Brennan, Sean M.

    2010-03-01

    Wireless sensor networks, in an e#11;ffort to be energy efficient, typically lack the high-level abstractions of advanced programming languages. Though strong, the dichotomy between these two paradigms can be overcome. The SENSIX software framework, described in this dissertation, uniquely integrates constraint-dominated wireless sensor networks with the flexibility of object-oriented programming models, without violating the principles of either. Though these two computing paradigms are contradictory in many ways, SENSIX bridges them to yield a dynamic middleware abstraction unifying low-level resource-aware task recon#12;figuration and high-level object recomposition.

  4. Robust, Multifunctional Joint for Large Scale Power Production Stacks -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis of Protein Structures Print Scientists have developed aEnergy

  5. COMMENTS OF THE LARGE-SCALE SOLAR ASSOCIATION TO DEPARTMENT

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l DeInsulation at04-86)ContractorsCNG Exports byCHAPTER 8THE

  6. DOE Awards First Three Large-Scale Carbon Sequestration Projects |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle10 DOE ASSESSMENTathasBestI) AprilSupportDepartment of

  7. DOE Completes Large-Scale Carbon Sequestration Project Awards | Department

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle10 DOEEnvironmentalwith Recovery Act Funds | Department

  8. Zero discharge and large-scale DCS are plant highlights

    SciTech Connect (OSTI)

    Solar, R.

    1995-04-01

    This article reports that the Mulberry cogeneration facility has several features that make it notable in the power field. A zero-discharge wastewater system, an inlet-air chilling system, a secondary boiler, and an extensive distributed-control system (DCS) for overall plant operation are examples. Ability to meet the two-stage NO{sub x}-emission limits -- 25 ppm during the first three years and 15 ppm thereafter -- is a unique challenge. The plant design allows the lower limit to be met now, and retrofit with different burners is possible if NO{sub x}-emission limits are tightened later. The facility, near Bartow in Polk County, Fla, is owned by Polk Power Partners LP, whose members include Central and South West Energy Inc (CSW) of Dallas and ARK Energy of Laguna Hills, Calif. The operating company, CSW Operations, is a subsidiary of CSW. Heart of the plant is a single gas-turbine (GT)/HRSG/steam-turbine combined cycle, providing electric power to Tampa Electric Co and Florida Power Corp, with up to 25,000 lb/hr of process steam for an adjacent ethanol plant which was developed by the facility`s partnership. Commercial operation of Mulberry began on Sept 2, 1994.

  9. Aquifer sensitivity assessment modeling at a large scale

    SciTech Connect (OSTI)

    Berg, R.C.; Abert, C.C. (Illinois State Geological Survey, Champaign, IL (United States))

    1994-03-01

    A 480 square-mile region within Will County, northeastern Illinois was used as a test region for an evaluation of the sensitivity of aquifers to contamination. An aquifer sensitivity model was developed using a Geographic Information System (GIS) with ARC/INFO software to overlay and combine several data layers. Many of the input data layers were developed using 2-dimensional surface modeling (Interactive Surface Modeling (ISM)) and 3-dimensional volume modeling (Geologic Modeling Program (GMP)) computer software. Most of the input data layers (drift thickness, thickness of sand and gravel, depth to first aquifer) were derived from interpolation of descriptive logs for water wells and engineering borings from their study area. A total of 2,984 logs were used to produce these maps. The components used for the authors' model are (1) depth to sand and gravel or bedrock, (2) thickness of the uppermost sand and gravel aquifer, (3) drift thickness, and (4) absence or presence of uppermost bedrock aquifer. The model is an improvement over many aquifer sensitivity models because it combines specific information on depth to the uppermost sand and gravel aquifer with information on the thickness of the uppermost sand and gravel aquifer. The manipulation of the source maps according to rules-based assumptions results in a colored aquifer sensitivity map for the Will County study area. This colored map differentiates 42 aquifer sensitivity map areas by using line patterns within colors. The county-scale model results in an aquifer sensitivity map that can be a useful tool for making land-use planning decisions regarding aquifer protection and management of groundwater resources.

  10. Large Scale Wind and Solar Integration in Germany

    SciTech Connect (OSTI)

    Ernst, Bernhard; Schreirer, Uwe; Berster, Frank; Pease, John; Scholz, Cristian; Erbring, Hans-Peter; Schlunke, Stephan; Makarov, Yuri V.

    2010-02-28

    This report provides key information concerning the German experience with integrating of 25 gigawatts of wind and 7 gigawatts of solar power capacity and mitigating its impacts on the electric power system. The report has been prepared based on information provided by the Amprion GmbH and 50Hertz Transmission GmbH managers and engineers to the Bonneville Power Administration (BPA) and Pacific Northwest National Laboratory representatives during their visit to Germany in October 2009. The trip and this report have been sponsored by the BPA Technology Innovation office. Learning from the German experience could help the Bonneville Power Administration engineers to compare and evaluate potential new solutions for managing higher penetrations of wind energy resources in their control area. A broader dissemination of this experience will benefit wind and solar resource integration efforts in the United States.

  11. Penn Large Water Tunnel | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly Smart GridNorth Carolina:ParamountEnergy GroupPeetzPenescalLarge

  12. A Large Scale Double Beta and Dark Matter Experiment: GENIUS

    E-Print Network [OSTI]

    J. Hellmig; H. V. Klapdor-Kleingrothaus

    1998-01-21

    The recent results from the HEIDELBERG-MOSCOW experiment have demonstrated the large potential of double beta decay to search for new physics beyond the Standard Model. To increase by a major step the present sensitivity for double beta decay and dark matter search much bigger source strengths and much lower backgrounds are needed than used in experiments under operation at present or under construction. We present here a study of a project proposed recently, which would operate one ton of 'naked' enriched GErmanium-detectors in liquid NItrogen as shielding in an Underground Setup (GENIUS). It improves the sensitivity to neutrino masses to 0.01 eV. A ten ton version would probe neutrino masses even down to 10^-3 eV. The first version would allow to test the atmospheric neutrino problem, the second at least part of the solar neutrino problem. Both versions would allow in addition significant contributions to testing several classes of GUT models. These are especially tests of R-parity breaking supersymmetry models, leptoquark masses and mechanism and right-handed W-boson masses comparable to LHC. The second issue of the experiment is the search for dark matter in the universe. The entire MSSM parameter space for prediction of neutralinos as dark matter particles could be covered already in a first step of the full experiment - with the same purity requirements but using only 100 kg of 76Ge or even of natural Ge - making the experiment competitive to LHC in the search for supersymmetry. The layout of the proposed experiment is discussed and the shielding and purity requirements are studied using GEANT Monte Carlo simulations. As a demonstration of the feasibility of the experiment first results of operating a 'naked' Ge detector in liquid nitrogen are presented.

  13. Method for large-scale fabrication of atomic-scale structures on material surfaces using surface vacancies

    DOE Patents [OSTI]

    Lim, Chong Wee (Urbana, IL); Ohmori, Kenji (Urbana, IL); Petrov, Ivan Georgiev (Champaign, IL); Greene, Joseph E. (Champaign, IL)

    2004-07-13

    A method for forming atomic-scale structures on a surface of a substrate on a large-scale includes creating a predetermined amount of surface vacancies on the surface of the substrate by removing an amount of atoms on the surface of the material corresponding to the predetermined amount of the surface vacancies. Once the surface vacancies have been created, atoms of a desired structure material are deposited on the surface of the substrate to enable the surface vacancies and the atoms of the structure material to interact. The interaction causes the atoms of the structure material to form the atomic-scale structures.

  14. The role of large-scale, extratropical dynamics in climate change

    SciTech Connect (OSTI)

    Shepherd, T.G. [ed.

    1994-02-01

    The climate modeling community has focused recently on improving our understanding of certain processes, such as cloud feedbacks and ocean circulation, that are deemed critical to climate-change prediction. Although attention to such processes is warranted, emphasis on these areas has diminished a general appreciation of the role played by the large-scale dynamics of the extratropical atmosphere. Lack of interest in extratropical dynamics may reflect the assumption that these dynamical processes are a non-problem as far as climate modeling is concerned, since general circulation models (GCMs) calculate motions on this scale from first principles. Nevertheless, serious shortcomings in our ability to understand and simulate large-scale dynamics exist. Partly due to a paucity of standard GCM diagnostic calculations of large-scale motions and their transports of heat, momentum, potential vorticity, and moisture, a comprehensive understanding of the role of large-scale dynamics in GCM climate simulations has not been developed. Uncertainties remain in our understanding and simulation of large-scale extratropical dynamics and their interaction with other climatic processes, such as cloud feedbacks, large-scale ocean circulation, moist convection, air-sea interaction and land-surface processes. To address some of these issues, the 17th Stanstead Seminar was convened at Bishop`s University in Lennoxville, Quebec. The purpose of the Seminar was to promote discussion of the role of large-scale extratropical dynamics in global climate change. Abstracts of the talks are included in this volume. On the basis of these talks, several key issues emerged concerning large-scale extratropical dynamics and their climatic role. Individual records are indexed separately for the database.

  15. The Origin of Large-scale HI structures in the Magellanic Bridge

    E-Print Network [OSTI]

    E. Muller; K. Bekki

    2007-06-27

    We investigate the formation of a number of key large-scale HI features in the ISM of the Magellanic Bridge using dissipationless numerical simulation techniques. This study comprises the first direct comparison between detailed HI maps of the Bridge and numerical simulations. We confirm that the SMC forms two tidal filaments: a near arm, which forms the connection between the SMC and LMC, and a counterarm. We show that the HI of the most dense part of the Bridge can become arranged into a bimodal configuration, and that the formation of a "loop" of HI, located off the North-Eastern edge of the SMC can be reproduced simply as a projection of the counter-arm, and without invoking localised energy-deposition processes such as SNe or stellar winds.

  16. Large-scale jets in the magnetosheath and plasma penetration across the magnetopause: THEMIS observations

    E-Print Network [OSTI]

    Dmitriev, A V

    2015-01-01

    THEMIS multi-point observation of the plasma and magnetic fields, conducted simultaneously in the dayside magnetosheath and magnetosphere, were used to collect 646 large-scale magnetosheath plasma jets interacting with the magnetopause. The jets were identified as dense and fast streams of the magnetosheath plasma whose energy density is higher than that of the upstream solar wind. The jet interaction with the magnetopause was revealed from sudden inward motion of the magnetopause and an enhancement in the geomagnetic field. The penetration was determined as appearance of the magnetosheath plasma against the background of the hot magnetospheric particle population. We found that almost 60% of the jets penetrated through the magnetopause. Vast majority of the penetrating jets was characterized by high velocities V > 220 km/s and kinetic bk > 1 that corresponded to a combination of finite Larmor radius effect with a mechanisms of impulsive penetration. The average plasma flux in the penetrating jets was found t...

  17. Influence of oxygen in architecting large scale nonpolar GaN nanowires

    E-Print Network [OSTI]

    Patsha, Avinash; Pandian, Ramanathaswamy; Dhara, S

    2015-01-01

    Manipulation of surface architecture of semiconducting nanowires with a control in surface polarity is one of the important objectives for nanowire based electronic and optoelectronic devices for commercialization. We report the growth of exceptionally high structural and optical quality nonpolar GaN nanowires with controlled and uniform surface morphology and size distribution, for large scale production. The role of O contamination (~1-10^5 ppm) in the surface architecture of these nanowires is investigated with the possible mechanism involved. Nonpolar GaN nanowires grown in O rich condition show the inhomogeneous surface morphologies and sizes (50 - 150 nm) while nanowires are having precise sizes of 40(5) nm and uniform surface morphology, for the samples grown in O reduced condition. Relative O contents are estimated using electron energy loss spectroscopy studies. Size-selective growth of uniform nanowires is also demonstrated, in the O reduced condition, using different catalyst sizes. Photoluminescen...

  18. 2013 Commercial-Scale Workshop | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    of Indian Energy hosted a Commercial-Scale Renewable Energy Project Development and Finance Workshop July 9-11 at the National Renewable Energy Laboratory in Golden, Colorado....

  19. 2014 Commercial-Scale Workshop | Department of Energy

    Energy Savers [EERE]

    of Indian Energy hosted a Commercial-Scale Renewable Energy Project Development and Finance Workshop July 29-31, 2014, at the National Renewable Energy Laboratory in Golden,...

  20. Community- and Facility-Scale Tribal Renewable Energy Project...

    Broader source: Energy.gov (indexed) [DOE]

    Energy's Community- and Facility-Scale Tribal Renewable Energy Project Development and Finance Workshop, which will be held September 18-20 at the National Renewable Energy...

  1. The Large Scale Cosmic-Ray Anisotropy as Observed with Milagro

    E-Print Network [OSTI]

    A. A. Abdo; B. T. Allen; T. Aune; D. Berley; S. Casanova; C. Chen; B. L. Dingus; R. W. Ellsworth; L. Fleysher; R. Fleysher; M. M. Gonzalez; J. A. Goodman; C. M. Hoffman; B. Hopper; P. H. Hüntemeyer; B. E. Kolterman; C. P. Lansdell; J. T. Linnemann; J. E. McEnery; A. I. Mincer; P. Nemethy; D. Noyes; J. Pretz; J. M. Ryan; P. M. Saz Parkinson; A. Shoup; G. Sinnis; A. J. Smith; G. W. Sullivan; V. Vasileiou; G. P. Walker; D. A. Williams; G. B. Yodh

    2009-04-20

    Results are presented of a harmonic analysis of the large scale cosmic-ray anisotropy as observed by the Milagro observatory. We show a two-dimensional display of the sidereal anisotropy pro jections in right ascension generated by the fitting of three harmonics to 18 separate declination bands. The Milagro observatory is a water Cherenkov detector located in the Jemez mountains near Los Alamos, New Mexico. With a high duty cycle and large field-of-view, Milagro is an excellent instrument for measuring this anisotropy with high sensitivity at TeV energies. The analysis is conducted using a seven year data sample consisting of more than 95 billion events, the largest such data set in existence. We observe an anisotropy with a magnitude around 0.1% for cosmic rays with a median energy of 6 TeV. The dominant feature is a deficit region of depth (2.49 +/- 0.02 stat. +/- 0.09 sys.)x10^(-3) in the direction of the Galactic North Pole centered at 189 degrees right ascension. We observe a steady increase in the magnitude of the signal over seven years.

  2. The Large Scale Cosmic-Ray Anisotropy as Observed with Milagro

    E-Print Network [OSTI]

    Abdo, A A; Aune, T; Berley, D; Casanova, S; Chen, C; Dingus, B L; Ellsworth, R W; Fleysher, L; Fleysher, R; González, M M; Goodman, J A; Hoffman, C M; Hopper, B; Hüntemeyer, P H; Kolterman, B E; Lansdell, C P; Linnemann, J T; McEnery, J E; Mincer, A I; Némethy, P; Noyes, D; Ryan, J M; Parkinson, P M Saz; Shoup, A; Sinnis, G; Smith, A J; Sullivan, G W; Vasileiou, V; Walker, G P; Williams, D A; Yodh, G B

    2008-01-01

    Results are presented of a harmonic analysis of the large scale cosmic-ray anisotropy as observed by the Milagro observatory. We show a two-dimensional display of the sidereal anisotropy projections in right ascension generated by the fitting of three harmonics to 18 separate declination bands. The Milagro observatory is a water Cherenkov detector located in the Jemez mountains near Los Alamos, New Mexico. With a high duty cycle and large field-of-view, Milagro is an excellent instrument for measuring this anisotropy with high sensitivity at TeV energies. The analysis is conducted using a seven year data sample consisting of more than 95 billion events. We observe an anisotropy with a magnitude around 0.1% for cosmic rays with a median energy of 6 TeV. The dominant feature is a deficit region of depth (-2.85 +/- 0.06 stat. +/- 0.08 syst.)x10^(-3) in the direction of the Galactic North Pole with a range in declination of -10 to 45 degrees and 150 to 225 degrees in right ascension. We observe a steady increase ...

  3. FY results for the Los Alamos large scale demonstration and deployment project

    SciTech Connect (OSTI)

    Stallings, E.; McFee, J.

    2000-11-01

    The Los Alamos Large Scale Demonstration and Deployment Project (LSDDP) in support of the US Department of Energy (DOE) Deactivation and Decommissioning Focus Area (DDFA) is identifying and demonstrating technologies to reduce the cost and risk of management of transuranic element contaminated large metal objects, i.e. gloveboxes. DOE must dispose of hundreds of gloveboxes from Rocky Flats, Los Alamos and other DOE sites. Current practices for removal, decontamination and size reduction of large metal objects translates to a DOE system-wide cost in excess of $800 million, without disposal costs. In FY99 and FY00 the Los Alamos LSDDP performed several demonstrations on cost/risk savings technologies. Commercial air pallets were demonstrated for movement and positioning of the oversized crates in neutron counting equipment. The air pallets are able to cost effectively address the complete waste management inventory, whereas the baseline wheeled carts could address only 25% of the inventory with higher manpower costs. A gamma interrogation radiography technology was demonstrated to support characterization of the crates. The technology was developed for radiography of trucks for identification of contraband. The radiographs were extremely useful in guiding the selection and method for opening very large crated metal objects. The cost of the radiography was small and the operating benefit is high. Another demonstration compared a Blade Cutting Plunger and reciprocating saw for removal of glovebox legs and appurtenances. The cost comparison showed that the Blade Cutting Plunger costs were comparable, and a significant safety advantage was reported. A second radiography demonstration was conducted evaluation of a technology based on WIPP-type x-ray characterization of large boxes. This technology provides considerable detail of the contents of the crates. The technology identified details as small as the fasteners in the crates, an unpunctured aerosol can, and a vessel containing liquids. The cost of this technology is higher than the gamma interrogation technique, but the detail provided is much greater.

  4. Fixed Low-Order Controller Design and H Optimization for Large-Scale

    E-Print Network [OSTI]

    Overton, Michael L.

    fuel cell system (Wang and Fixed Low-Order Controller Design and H Optimization for Large-Scale Dynamical Systems Tim Mitchell maximizer of the associated transfer function. Our controller design code uses nonsmooth optimization

  5. Metal Catalyzed sp2 Bonded Carbon - Large-scale Graphene Synthesis...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metal Catalyzed sp2 Bonded Carbon - Large-scale Graphene Synthesis and Beyond December 1, 2009 at 3pm36-428 Peter Sutter Center for Functional Nanomaterials sutter abstract:...

  6. LARGE SCALE PERMEABILITY TEST OF THE GRANITE IN THE STRIPA MINE AND THERMAL CONDUCTIVITY TEST

    E-Print Network [OSTI]

    Lundstrom, L.

    2011-01-01

    No.2 LARGE SCALE PERMEABILITY TEST OF THE GRANITE' IN THEMINE AND, THERMAL CONDUCTIVITY TEST Lars Lundstrom and HakanSUMMARY REPORT Background TEST SITE Layout of test places

  7. Modeling and Analysis of Large-Scale On-Chip Interconnects 

    E-Print Network [OSTI]

    Feng, Zhuo

    2010-07-14

    dimensional process-voltage-temperature (PVT) variations demand much more modeling and analysis efforts than ever before, while the analysis of large scale on-chip interconnects that requires solving tens of millions of unknowns imposes great challenges...

  8. Partition-of-unity finite-element method for large scale quantum...

    Office of Scientific and Technical Information (OSTI)

    can be investigated by such accurate, quantum mechanical means. The current state of the art for large-scale quantum simulations is the planewave (PW) method, as implemented in now...

  9. Programmable window : a large-scale transparent electronic display using SPD film

    E-Print Network [OSTI]

    Ramos, Martin (Ramos Rizo-Patron)

    2004-01-01

    This research demonstrates that Suspended Particle Device (SPD) film is a viable option for the development of large-scale transparent display systems. The thesis analyzes the SPD film from an architectural display application ...

  10. Large-Scale CAD Model Visualization on a Scalable Shared-Memory Architecture

    E-Print Network [OSTI]

    Wald, Ingo

    Boeing 777 air- liner. 1 Introduction Computer Aided Design (CAD) has practically be- come ubiquitous in large-scale manufacturing are potential overlaps of assembly parts, as well as the difficulty in prop

  11. Large-Scale Simulation of Neural Networks with Biophysically Accurate Models on Graphics Processors 

    E-Print Network [OSTI]

    Wang, Mingchao

    2012-07-16

    Efficient simulation of large-scale mammalian brain models provides a crucial computational means for understanding complex brain functions and neuronal dynamics. However, such tasks are hindered by significant computational complexities...

  12. Statistical and Directable Methods for Large-Scale Rigid Body Simulation 

    E-Print Network [OSTI]

    Hsu, Shu-Wei

    2013-05-07

    This dissertation describes several techniques to improve performance and controllability of large-scale rigid body simulations. We first describe a statistical simulation method that replaces certain stages of rigid body simulation with a...

  13. Model-constrained optimization methods for reduction of parameterized large-scale systems

    E-Print Network [OSTI]

    Bui-Thanh, Tan

    2007-01-01

    Most model reduction techniques employ a projection framework that utilizes a reduced-space basis. The basis is usually formed as the span of a set of solutions of the large-scale system, which are computed for selected ...

  14. Model-Constrained Optimization Methods for Reduction of Parameterized Large-Scale Systems

    E-Print Network [OSTI]

    Tan, Bui-Thanh

    Most model reduction techniques employ a projection framework that utilizes a reduced-space basis. The basis is usually formed as the span of a set of solutions of the large-scale system, which are computed for selected ...

  15. Large Scale Performance Measurement of Content-Based Automated Image-Orientation Detection

    E-Print Network [OSTI]

    Tomkins, Andrew

    Large Scale Performance Measurement of Content-Based Automated Image-Orientation Detection Abstract (sepia toned), contains reflections in water, and contains few markers. Row 4: If deeper information

  16. Fast kernel spectral clustering based on incomplete Cholesky factorization for large scale data analysis

    E-Print Network [OSTI]

    Arenberg 10, B-3001 Leuven, Belgium Abstract A fast spectral clustering algorithm, suitable for large scale´ak) #12;1. Introduction1 Clustering algorithms comprise unsupervised, explanatory data mining tech-2

  17. LARGE-SCALE UNSTEADINESS IN A TWO-DIMENSIONAL DIFFUSER: NUMERICAL STUDY TOWARD ACTIVE SEPARATION CONTROL

    E-Print Network [OSTI]

    Colonius, Tim

    of Technology, Pasadena, California 91125 ABSTRACT We develop a reduced order model for large-scale unsteadiness mass injection can pinch off vortices with a smaller size; accordingly, their convective velocity

  18. Comparison of the effects in the rock mass of large-scale chemical...

    Office of Scientific and Technical Information (OSTI)

    Comparison of the effects in the rock mass of large-scale chemical and nuclear explosions. Final technical report, June 9, 1994--October 9, 1994 Citation Details In-Document Search...

  19. Efficient Nonlinear Optimization with Rigorous Models for Large Scale Industrial Chemical Processes 

    E-Print Network [OSTI]

    Zhu, Yu

    2011-08-08

    of Department, Michael Pishko May 2011 Major Subject: Chemical Engineering iii ABSTRACT Efficient Nonlinear Optimization with Rigorous Models for Large Scale Industrial Chemical Processes. (May 2011) Yu Zhu, B.S., Zhejiang University; M.S., Zhejiang... . . . . . . . . . . . . . . . . . . . . . . . . . . 1 A. Nonlinear Optimization with Rigorous Large Scale Models 1 B. Chemical Applications of Nonlinear Optimization . . . . . 2 1. Design under Uncertainty . . . . . . . . . . . . . . . . 3 2. Optimal Operations with Steady State Models . . . . 4...

  20. Large-Scale Software Unit Testing on the Grid Yaohang Li, 2

    E-Print Network [OSTI]

    Li, Yaohang

    Large-Scale Software Unit Testing on the Grid 1 Yaohang Li, 2 Tao Dong, 3 Xinyu Zhang, 4 Yongduan-scale and cost-efficient computational grid resources as a software testing test bed to support automated software unit test in a complicated system. Within this test framework, a dynamic bag-of-tasks model

  1. Distinct large-scale turbulent-laminar states in transitional pipe flow

    E-Print Network [OSTI]

    Barkley, Dwight

    ) When fluid flows through a channel, pipe, or duct, there are two basic forms of motion: smooth laminarDistinct large-scale turbulent-laminar states in transitional pipe flow David Moxey1 and Dwight alternat- ing turbulent-laminar flow states on long length scales in subcri- tical shear flows (12

  2. Environmental impacts of large-scale grid-connected ground-mounted PV installations

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Environmental impacts of large-scale grid-connected ground-mounted PV installations Antoine Beylota-scale ground-mounted PV installations by considering a life-cycle approach. The methodology is based. Mobile PV installations with dual-axis trackers show the largest impact potential on ecosystem quality

  3. Domain Controlled Architecture A New Approach for Large Scale Software Integrated Automotive Systems

    E-Print Network [OSTI]

    Kühnhauser, Winfried

    Domain Controlled Architecture A New Approach for Large Scale Software Integrated Automotive Scale Software Integration, LSSI, Automotive Real Time, Multi-core, Many-core, Embedded Automo- tive mobility domain. The automotive in- dustry is confronted with a rising system complexity and several

  4. Large Synoptic Survey Telescope: Dark Energy Science Collaboration

    E-Print Network [OSTI]

    LSST Dark Energy Science Collaboration

    2012-11-01

    This white paper describes the LSST Dark Energy Science Collaboration (DESC), whose goal is the study of dark energy and related topics in fundamental physics with data from the Large Synoptic Survey Telescope (LSST). It provides an overview of dark energy science and describes the current and anticipated state of the field. It makes the case for the DESC by laying out a robust analytical framework for dark energy science that has been defined by its members and the comprehensive three-year work plan they have developed for implementing that framework. The analysis working groups cover five key probes of dark energy: weak lensing, large scale structure, galaxy clusters, Type Ia supernovae, and strong lensing. The computing working groups span cosmological simulations, galaxy catalogs, photon simulations and a systematic software and computational framework for LSST dark energy data analysis. The technical working groups make the connection between dark energy science and the LSST system. The working groups have close linkages, especially through the use of the photon simulations to study the impact of instrument design and survey strategy on analysis methodology and cosmological parameter estimation. The white paper describes several high priority tasks identified by each of the 16 working groups. Over the next three years these tasks will help prepare for LSST analysis, make synergistic connections with ongoing cosmological surveys and provide the dark energy community with state of the art analysis tools. Members of the community are invited to join the LSST DESC, according to the membership policies described in the white paper. Applications to sign up for associate membership may be made by submitting the Web form at http://www.slac.stanford.edu/exp/lsst/desc/signup.html with a short statement of the work they wish to pursue that is relevant to the LSST DESC.

  5. Development of Large Format Lithium Ion Cells with Higher Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Large Format Lithium Ion Cells with Higher Energy Density Exceeding 500WhL Development of Large Format Lithium Ion Cells with Higher Energy Density Exceeding 500WhL 2012 DOE...

  6. Nuclear EMP simulation for large-scale urban environments. FDTD for electrically large problems.

    SciTech Connect (OSTI)

    Smith, William S.; Bull, Jeffrey S.; Wilcox, Trevor; Bos, Randall J.; Shao, Xuan-Min; Goorley, John T.; Costigan, Keeley R.

    2012-08-13

    In case of a terrorist nuclear attack in a metropolitan area, EMP measurement could provide: (1) a prompt confirmation of the nature of the explosion (chemical or nuclear) for emergency response; and (2) and characterization parameters of the device (reaction history, yield) for technical forensics. However, urban environment could affect the fidelity of the prompt EMP measurement (as well as all other types of prompt measurement): (1) Nuclear EMP wavefront would no longer be coherent, due to incoherent production, attenuation, and propagation of gamma and electrons; and (2) EMP propagation from source region outward would undergo complicated transmission, reflection, and diffraction processes. EMP simulation for electrically-large urban environment: (1) Coupled MCNP/FDTD (Finite-difference time domain Maxwell solver) approach; and (2) FDTD tends to be limited to problems that are not 'too' large compared to the wavelengths of interest because of numerical dispersion and anisotropy. We use a higher-order low-dispersion, isotropic FDTD algorithm for EMP propagation.

  7. Large-Scale Wind Integration Studies in the United States: Preliminary Results; Preprint

    SciTech Connect (OSTI)

    Milligan, M.; Lew, D.; Corbus, D.; Piwko, R.; Miller, N.; Clark, K.; Jordan, G.; Freeman, L.; Zavadil, B.; Schuerger, M.

    2009-09-01

    The National Renewable Energy Laboratory is managing two large regional wind integration studies on behalf of the United States Department of Energy. These two studies are believed to be the largest ever undertaken in the United States.

  8. Architecture for a large-scale ion-trap quantum computer

    E-Print Network [OSTI]

    Monroe, Christopher

    Architecture for a large-scale ion-trap quantum computer D. Kielpinski*, C. Monroe & D. J. Wineland ........................................................................................................................................................................................................................... Among the numerous types of architecture being explored for quantum computers are systems utilizing ion proposed a `quantum charge-coupled device' (QCCD) architecture consisting of a large number

  9. Development of Large Scale High Performance Applications with a Parallelizing Compiler

    E-Print Network [OSTI]

    Vlad, Gregorio

    Development of Large Scale High Performance Applications with a Parallelizing Compiler B. DI parallel computations, and lack of robustness of parallelizing HPF compilers in handling large sized codes directives, into explicitly parallel code, by means of parallelizing compilers. This method is not only

  10. PARAFAC algorithms for large-scale problems Anh Huy Phan a,, Andrzej Cichocki b

    E-Print Network [OSTI]

    Cichocki, Andrzej

    PARAFAC algorithms for large-scale problems Anh Huy Phan a,Ã, Andrzej Cichocki b a Lab for Advanced a multidimensional data. Most of the existing algorithms for the PARAFAC, especially the alternating least squares (ALS) algorithm need to compute Khatri­Rao products of tall factors and multiplication of large

  11. Impact of Friction and Scale-Dependent Initial Stress on Radiated Energy-Moment Scaling

    E-Print Network [OSTI]

    Shaw, Bruce E.

    . Shaw Lamont­Doherty Earth Observatory, Columbia University, New York, USA The radiated energy coming271 Impact of Friction and Scale-Dependent Initial Stress on Radiated Energy-Moment Scaling Bruce E of elucidat- ing their radiated energy-moment scaling. We find, contrary to expectations, that apparent stress

  12. Simultaneous effect of modified gravity and primordial non-Gaussianity in large scale structure observations

    SciTech Connect (OSTI)

    Mirzatuny, Nareg; Khosravi, Shahram; Baghram, Shant; Moshafi, Hossein E-mail: khosravi@mail.ipm.ir E-mail: hosseinmoshafi@iasbs.ac.ir

    2014-01-01

    In this work we study the simultaneous effect of primordial non-Gaussianity and the modification of the gravity in f(R) framework on large scale structure observations. We show that non-Gaussianity and modified gravity introduce a scale dependent bias and growth rate functions. The deviation from ?CDM in the case of primordial non-Gaussian models is in large scales, while the growth rate deviates from ?CDM in small scales for modified gravity theories. We show that the redshift space distortion can be used to distinguish positive and negative f{sub NL} in standard background, while in f(R) theories they are not easily distinguishable. The galaxy power spectrum is generally enhanced in presence of non-Gaussianity and modified gravity. We also obtain the scale dependence of this enhancement. Finally we define galaxy growth rate and galaxy growth rate bias as new observational parameters to constrain cosmology.

  13. Performance of large electron energy filter in large volume plasma device

    SciTech Connect (OSTI)

    Singh, S. K.; Srivastava, P. K.; Awasthi, L. M.; Mattoo, S. K.; Sanyasi, A. K.; Kaw, P. K. [Institute for Plasma Research, Gandhinagar 382 428, Gujarat (India)] [Institute for Plasma Research, Gandhinagar 382 428, Gujarat (India); Singh, R. [Institute for Plasma Research, Gandhinagar 382 428, Gujarat (India) [Institute for Plasma Research, Gandhinagar 382 428, Gujarat (India); WCI Center for Fusion Theory, National Fusion Research Institute Gwahangno 113, Yu-seong-gu, Daejeon, 305-333 (Korea, Republic of)

    2014-03-15

    This paper describes an in-house designed large Electron Energy Filter (EEF) utilized in the Large Volume Plasma Device (LVPD) [S. K. Mattoo, V. P. Anita, L. M. Awasthi, and G. Ravi, Rev. Sci. Instrum. 72, 3864 (2001)] to secure objectives of (a) removing the presence of remnant primary ionizing energetic electrons and the non-thermal electrons, (b) introducing a radial gradient in plasma electron temperature without greatly affecting the radial profile of plasma density, and (c) providing a control on the scale length of gradient in electron temperature. A set of 19 independent coils of EEF make a variable aspect ratio, rectangular solenoid producing a magnetic field (B{sub x}) of 100?G along its axis and transverse to the ambient axial field (B{sub z} ? 6.2?G) of LVPD, when all its coils are used. Outside the EEF, magnetic field reduces rapidly to 1?G at a distance of 20 cm from the center of the solenoid on either side of target and source plasma. The EEF divides LVPD plasma into three distinct regions of source, EEF and target plasma. We report that the target plasma (n{sub e} ? 2 × 10{sup 11}?cm{sup ?3} and T{sub e} ? 2?eV) has no detectable energetic electrons and the radial gradients in its electron temperature can be established with scale length between 50?and?600 cm by controlling EEF magnetic field. Our observations reveal that the role of the EEF magnetic field is manifested by the energy dependence of transverse electron transport and enhanced transport caused by the plasma turbulence in the EEF plasma.

  14. A Minimal Model for Large-scale Epitaxial Growth Kinetics of Graphene

    E-Print Network [OSTI]

    Jiang, Huijun

    2015-01-01

    Epitaxial growth via chemical vapor deposition is considered to be the most promising way towards synthesizing large area graphene with high quality. However, it remains a big theoretical challenge to reveal growth kinetics with atomically energetic and large-scale spatial information included. Here, we propose a minimal kinetic Monte Carlo model to address such an issue on an active catalyst surface with graphene/substrate lattice mismatch, which facilitates us to perform large scale simulations of the growth kinetics over two dimensional surface with growth fronts of complex shapes. A geometry-determined large-scale growth mechanism is revealed, where the rate-dominating event is found to be $C_{1}$-attachment for concave growth front segments and $C_{5}$-attachment for others. This growth mechanism leads to an interesting time-resolved growth behavior which is well consistent with that observed in a recent scanning tunneling microscopy experiment.

  15. A Systematic Approach to the Design of a Large Scale Detritiation System for Controlled Thermonuclear Fusion Experiments

    E-Print Network [OSTI]

    A Systematic Approach to the Design of a Large Scale Detritiation System for Controlled Thermonuclear Fusion Experiments

  16. Large-scale eddies and their role in entrainment in turbulent jets and wakes Jimmy Philip and Ivan Marusic

    E-Print Network [OSTI]

    Marusic, Ivan

    Large-scale eddies and their role in entrainment in turbulent jets and wakes Jimmy Philip and Ivan. Fluids 24, 086101 (2012) The influence of large-scale structures on entrainment in a decelerating://pof.aip.org/about/rights_and_permissions #12;PHYSICS OF FLUIDS 24, 055108 (2012) Large-scale eddies and their role in entrainment in turbulent

  17. Wavelength-Striped Multicasting of Optically-Connected Memory for Large-Scale Computing Systems

    E-Print Network [OSTI]

    Bergman, Keren

    offer a high-bandwidth, energy-efficient approach to continue scaling the size and performance-bed. A high-speed field-programmable gate array (FPGA) is used to realize the processing core and Micron DDR2

  18. EBRD-Sustainable Energy Initiative: Scaling Up Finance for Climate...

    Open Energy Info (EERE)

    EBRD-Sustainable Energy Initiative: Scaling Up Finance for Climate Change Mitigation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: EBRD-Sustainable Energy Initiative:...

  19. 2013 Community- and Facility-Scale Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    held a Community- and Facility-Scale Tribal Renewable Energy Project Development and Finance Workshop September 18-20, 2013, at the National Renewable Energy Laboratory in...

  20. 2013 Community- and Facility-Scale Tribal Renewable Energy Project...

    Broader source: Energy.gov (indexed) [DOE]

    Office of Indian Energy's Community- and Facility-Scale Tribal Renewable Energy Project Development and Finance workshop held September 18-20, 2013, at the National Renewable...

  1. Commercial-Scale Renewable Energy Project Development and Finance Workshop

    Broader source: Energy.gov [DOE]

    Agenda for the Office of Indian Energy Commercial-Scale Renewable Energy Project Development and Finance Workshop July 9-11.

  2. Energy scaling laws for conically constrained thin elastic Jeremy Brandman

    E-Print Network [OSTI]

    Energy scaling laws for conically constrained thin elastic sheets Jeremy Brandman , Robert V. Kohn Classification: 74B20, 74K20 Keywords: d-cone, thin elastic sheets, energy scaling laws 1 Introduction 1 consistent with a conical deformation? In particular: ­ What is the elastic energy scaling law

  3. Scaling Dynamical Correlation Energy from Density Functional Theory Correlation Functionals

    E-Print Network [OSTI]

    Ramachandran, Bala (Ramu)

    Scaling Dynamical Correlation Energy from Density Functional Theory Correlation Functionals B for molecules by scaling the electron correlation energy calculated by density functional theory (DFT)1 ReceiVed: February 2, 2005; In Final Form: April 18, 2005 The scaling of dynamical correlation energy

  4. What Will the Neighbors Think? Building Large-Scale Science Projects Around the World

    ScienceCinema (OSTI)

    Jones, Craig; Mrotzek, Christian; Toge, Nobu; Sarno, Doug

    2010-01-08

    Public participation is an essential ingredient for turning the International Linear Collider into a reality. Wherever the proposed particle accelerator is sited in the world, its neighbors -- in any country -- will have something to say about hosting a 35-kilometer-long collider in their backyards. When it comes to building large-scale physics projects, almost every laboratory has a story to tell. Three case studies from Japan, Germany and the US will be presented to examine how community relations are handled in different parts of the world. How do particle physics laboratories interact with their local communities? How do neighbors react to building large-scale projects in each region? How can the lessons learned from past experiences help in building the next big project? These and other questions will be discussed to engage the audience in an active dialogue about how a large-scale project like the ILC can be a good neighbor.

  5. Copy of Using Emulation and Simulation to Understand the Large-Scale Behavior of the Internet.

    SciTech Connect (OSTI)

    Adalsteinsson, Helgi; Armstrong, Robert C.; Chiang, Ken; Gentile, Ann C.; Lloyd, Levi; Minnich, Ronald G.; Vanderveen, Keith; Van Randwyk, Jamie A; Rudish, Don W.

    2008-10-01

    We report on the work done in the late-start LDRDUsing Emulation and Simulation toUnderstand the Large-Scale Behavior of the Internet. We describe the creation of a researchplatform that emulates many thousands of machines to be used for the study of large-scale inter-net behavior. We describe a proof-of-concept simple attack we performed in this environment.We describe the successful capture of a Storm bot and, from the study of the bot and furtherliterature search, establish large-scale aspects we seek to understand via emulation of Storm onour research platform in possible follow-on work. Finally, we discuss possible future work.3

  6. Large-Scale Urban Decontamination; Developments, Historical Examples and Lessons Learned

    SciTech Connect (OSTI)

    Rick Demmer

    2007-02-01

    Recent terrorist threats and actual events have lead to a renewed interest in the technical field of large scale, urban environment decontamination. One of the driving forces for this interest is the real potential for the cleanup and removal of radioactive dispersal device (RDD or “dirty bomb”) residues. In response the U. S. Government has spent many millions of dollars investigating RDD contamination and novel decontamination methodologies. Interest in chemical and biological (CB) cleanup has also peaked with the threat of terrorist action like the anthrax attack at the Hart Senate Office Building and with catastrophic natural events such as Hurricane Katrina. The efficiency of cleanup response will be improved with these new developments and a better understanding of the “old reliable” methodologies. Perhaps the most interesting area of investigation for large area decontamination is that of the RDD. While primarily an economic and psychological weapon, the need to cleanup and return valuable or culturally significant resources to the public is nonetheless valid. Several private companies, universities and National Laboratories are currently developing novel RDD cleanup technologies. Because of its longstanding association with radioactive facilities, the U. S. Department of Energy National Laboratories are at the forefront in developing and testing new RDD decontamination methods. However, such cleanup technologies are likely to be fairly task specific; while many different contamination mechanisms, substrate and environmental conditions will make actual application more complicated. Some major efforts have also been made to model potential contamination, to evaluate both old and new decontamination techniques and to assess their readiness for use. Non-radioactive, CB threats each have unique decontamination challenges and recent events have provided some examples. The U. S. Environmental Protection Agency (EPA), as lead agency for these emergency cleanup responses, has a sound approach for decontamination decision-making that has been applied several times. The anthrax contamination at the U. S. Hart Senate Office Building and numerous U. S. Post Office facilities are examples of employing novel technical responses. Decontamination of the Hart Office building required development of a new approach for high level decontamination of biological contamination as well as techniques for evaluating the technology effectiveness. The World Trade Center destruction also demonstrated the need for, and successful implementation of, appropriate cleanup methodologies. There are a number of significant lessons that can be gained from a look at previous large scale cleanup projects. Too often we are quick to apply a costly “package and dispose” method when sound technological cleaning approaches are available. Understanding historical perspectives, advanced planning and constant technology improvement are essential to successful decontamination.

  7. Towards a model of large scale dynamics in transitional wall-bounded flows

    E-Print Network [OSTI]

    Manneville, Paul

    2015-01-01

    A system of simplified equations is proposed to govern the feedback interactions of large-scale flows present in laminar-turbulent patterns of transitional wall-bounded flows, with small-scale Reynolds stresses generated by the self-sustainment process of turbulence itself modeled using an extension of Waleffe's approach (Phys. Fluids 9 (1997) 883-900), the detailed expression of which is displayed as an annex to the main text.

  8. Large scale magnetic field of the Milky Way from WMAP3 data

    E-Print Network [OSTI]

    Ronnie Jansson; Glennys R. Farrar; Andre Waelkens; Torsten A. Ensslin

    2007-08-20

    We report on initial results from a project to constrain the large-scale and turbulent magnetic fields of the Milky Way galaxy, which eventually will incorporate all of the relevant observational data. In this paper we fit popular large scale magnetic field models to WMAP3 polarization maps. We find that the polarization data can constrain certain model parameters but does not uniquely determine the best-fit parameters. We also find that the polarization data alone cannot distinguish between model symmetries, e.g., the existence of field reversals. We show how future UHECR data can break this degeneracy.

  9. Large scale magnetic fields and coherent structures in nonuniform unmagnetized plasma

    SciTech Connect (OSTI)

    Jucker, Martin; Andrushchenko, Zhanna N.; Pavlenko, Vladimir P.

    2006-07-15

    The properties of streamers and zonal magnetic structures in magnetic electron drift mode turbulence are investigated. The stability of such large scale structures is investigated in the kinetic and the hydrodynamic regime, for which an instability criterion similar to the Lighthill criterion for modulational instability is found. Furthermore, these large scale flows can undergo further nonlinear evolution after initial linear growth, which can lead to the formation of long-lived coherent structures consisting of self-bound wave packets between the surfaces of two different flow velocities with an expected modification of the anomalous electron transport properties.

  10. Philippines: Small-scale renewable energy update

    SciTech Connect (OSTI)

    1997-12-01

    This paper gives an overview of the application of small scale renewable energy sources in the Philippines. Sources looked at include solar, biomass, micro-hydroelectric, mini-hydroelectric, wind, mini-geothermal, and hybrid. A small power utilities group is being spun off the major utility, to provide a structure for developing rural electrification programs. In some instances, private companies have stepped forward, avoiding what is perceived as overwhelming beaurocracy, and installed systems with private financing. The paper provides information on survey work which has been done on resources, and the status of cooperative programs to develop renewable systems in the nation.

  11. Community-Scale Development | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle (PEV)Day-June 22,Fresno U.S. Departmentcommunity-scale

  12. Two-scale large deviations for chemical reaction kinetics through second quantization path integral

    E-Print Network [OSTI]

    Tiejun Li; Feng Lin

    2015-08-26

    Motivated by the study of the rare event for a typical genetic switching model in systems biology, we aim to establish the general two-scale large deviations for chemical reaction kinetic systems in this paper. We build a formal approach to explicitly obtain the large deviation rate functionals of the considered two-scale processes based upon the second-quantization path integral technique. This approach is shown to be superior than the well-known WKB asymptotics in giving the correct large deviation rate functionals rather than a non-unique Hamilton-Jacobi equation for the quasi-potential. We get three important types of large deviation results when the underlying two times scales are in three different regimes. This is realized by singular perturbation analysis to the rate functionals obtained by path integral. We find that the three regimes correspond to the same mean-field deterministic limit but completely different chemical Langevin approximations. The obtained results are natural extensions of the classical large volume limit in chemical reaction kinetics. Our framework and results can be applied to understand general multi-scale systems including diffusion processes.

  13. Thermal Performance Evaluation of Attic Radiant Barrier Systems Using the Large Scale Climate Simulator (LSCS)

    SciTech Connect (OSTI)

    Shrestha, Som S [ORNL] [ORNL; Miller, William A [ORNL] [ORNL; Desjarlais, Andre Omer [ORNL] [ORNL

    2013-01-01

    Application of radiant barriers and low-emittance surface coatings in residential building attics can significantly reduce conditioning loads from heat flow through attic floors. The roofing industry has been developing and using various radiant barrier systems and low-emittance surface coatings to increase energy efficiency in buildings; however, minimal data are available that quantifies the effectiveness of these technologies. This study evaluates performance of various attic radiant barrier systems under simulated summer daytime conditions and nighttime or low solar gain daytime winter conditions using the large scale climate simulator (LSCS). The four attic configurations that were evaluated are 1) no radiant barrier (control), 2) perforated low-e foil laminated oriented strand board (OSB) deck, 3) low-e foil stapled on rafters, and 4) liquid applied low-emittance coating on roof deck and rafters. All test attics used nominal RUS 13 h-ft2- F/Btu (RSI 2.29 m2-K/W) fiberglass batt insulation on attic floor. Results indicate that the three systems with radiant barriers had heat flows through the attic floor during summer daytime condition that were 33%, 50%, and 19% lower than the control, respectively.

  14. Page Digest for Large-Scale Web Services Daniel Rocco, David Buttler, Ling Liu

    E-Print Network [OSTI]

    Liu, Ling

    Page Digest for Large-Scale Web Services Daniel Rocco, David Buttler, Ling Liu Georgia Institute, 2003 Abstract The rapid growth of the World Wide Web and the Internet has fueled interest in Web services and the Semantic Web, which are quickly becoming important parts of modern electronic commerce

  15. A fast, large-scale learning method for protein sequence classification

    E-Print Network [OSTI]

    Pavlovic, Vladimir

    A fast, large-scale learning method for protein sequence classification Pavel Kuksa, Pai-Hsi Huang spatial sample kernels (SSSK). The approach offers state-of-the-art accuracy for sequence classification]: Applications; I.5.2. [Pattern Recognition]: De- corresponding author Permission to make digital or hard copies

  16. YouTubeEvent: on Large-Scale Video Event Classification Bingbing Ni

    E-Print Network [OSTI]

    Cortes, Corinna

    YouTubeEvent: on Large-Scale Video Event Classification Bingbing Ni Advanced Digital Sciences the problem of general event classification from uncontrolled YouTube videos. It is a challenging task due from YouTube to represent these categories. To improve classification per- formance, video content

  17. Aalborg Universitet Impact of Wind Shear and Tower Shadow Effects on Power System with Large Scale

    E-Print Network [OSTI]

    Hu, Weihao

    @et.aau.dk, csu@et.aau.dk, zch@et.aau.dk Abstract ­ Grid connected wind turbines are fluctuating power sources due and the power flow situation of the original power system especially when the integration of wind powerAalborg Universitet Impact of Wind Shear and Tower Shadow Effects on Power System with Large Scale

  18. Analysis of Large-Scale Social Surveys1 Elaine Zanutto2

    E-Print Network [OSTI]

    Gelman, Andrew

    Large-scale social surveys are an important source of information for a wide range of topics an inexpensive and easily accessible source of information on a wide range of topics including education, health, economics, demography, politics, and criminal justice. These surveys may serve as a primary data source

  19. Solving Large Scale Binary Quadratic Problems: Spectral Methods vs. Semidefinite Programming

    E-Print Network [OSTI]

    Lunds Universitet

    with good performance. 1 1. Introduction Spectral relaxation methods can be applied to a wide variety]. In partic- ular, large scale problems that can be formulated with a binary quadratic objective function. The two methods are based on a sub- gradient optimization scheme. We show good performance on a number

  20. Simulation-based optimization of communication protocols for large-scale wireless sensor networks1

    E-Print Network [OSTI]

    Maróti, Miklós

    everyday life more comfortable, e.g. Intelligent Spaces [3]. These sensor networks often use distributed of the wireless sensors may vary greatly, but invariably each of the intelligent sensors is a compact device1 Simulation-based optimization of communication protocols for large-scale wireless sensor networks