Sample records for large power high

  1. High voltage-high power components for large space power distribution systems

    SciTech Connect (OSTI)

    Renz, D.D.

    1984-08-01T23:59:59.000Z

    For over a decade, Lewis Research Center has been developing space power components. These components include a family of bi-polar power switching transistors, fast switching power diodes, heat pipe cooled high-frequency transformers and inductors, high frequency conduction cooled transformers, high powerhigh frequency capacitors, remote power controllers and rotary power transfer devices. Many of these components such as the power switching transistors, power diodes and the high frequency capacitor are commercially available. All the other components have been developed to the prototype level. Series resonant dc/dc converters have been built to the 25 kW level.

  2. The Use of Large Transparent Ceramics in a High Powered, Diode Pumped Solid State Laser

    SciTech Connect (OSTI)

    Yamamoto, R; Bhachu, B; Cutter, K; Fochs, S; Letts, S; Parks, C; Rotter, M; Soules, T

    2007-09-24T23:59:59.000Z

    The advent of large transparent ceramics is one of the key enabling technological advances that have shown that the development of very high average power compact solid state lasers is achievable. Large ceramic neodymium doped yttrium aluminum garnet (Nd:YAG) amplifier slabs are used in Lawrence Livermore National Laboratory's (LLNL) Solid State Heat Capacity Laser (SSHCL), which has achieved world record average output powers in excess of 67 kilowatts. We will describe the attributes of using large transparent ceramics, our present system architecture and corresponding performance; as well as describe our near term future plans.

  3. Development of Low-Voltage and Large Current DC Power Supply with High-Frequency Transformer Coupling

    E-Print Network [OSTI]

    Fujimoto, Hiroshi

    Development of Low-Voltage and Large Current DC Power Supply with High-Frequency Transformer excellent performance. Keywords DC power supply, low-voltage and large-current, high-frequency transformer Iobe (MACOHO Co., Ltd.) Abstract This paper describes low-voltage and large-current DC power supplies

  4. Development of Low-Voltage and Large-Current DC Power Supply with High-Frequency Transformer Coupling

    E-Print Network [OSTI]

    Fujimoto, Hiroshi

    Development of Low-Voltage and Large-Current DC Power Supply with High-Frequency Transformer-voltage and large-current DC power supply with a high-frequency transformer coupling. The power supply is simply·,Zü"gg"X·C~R,êC"_N^"X Keywords: DC power supply, low-voltage and large-current, high-frequency transformer, leakage inductance 1

  5. Improved Structure and Fabrication of Large, High-Power KHPS Rotors - Final Scientific/Technical Report

    SciTech Connect (OSTI)

    Corren, Dean [Verdant Power, Inc.; Colby, Jonathan [Verdant Power, Inc.; Adonizio, Mary Ann [Verdant Power, Inc.

    2013-01-29T23:59:59.000Z

    Verdant Power, Inc, working in partnership with the National Renewable Energy Laboratory (NREL), Sandia National Laboratories (SNL), and the University of Minnesota St. Anthony Falls Laboratory (SAFL), among other partners, used evolving Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) models and techniques to improve the structure and fabrication of large, high-power composite Kinetic Hydropower System (KHPS) rotor blades. The objectives of the project were to: design; analyze; develop for manufacture and fabricate; and thoroughly test, in the lab and at full scale in the water, the improved KHPS rotor blade.

  6. Large power transformers

    SciTech Connect (OSTI)

    Karsai, K.; Kerenyi, D.; Kiss, L.

    1987-01-01T23:59:59.000Z

    The book deals with the following aspects of transformer engineering: general principles governing the function of transformers, iron cores, windings, stray losses caused by stray flux, the insulation of transformers, and the structural parts and accessories. This edition includes the developments in theory and practice on the basis of the authors' experience in design, manufacturing and testing of large transformers. New developments have been particularly extensive in the fields of new magnetic materials, cooling methods, dielectric strength for overvoltages of different types, and stray-load loss problems, which are presented in the book in detail. The many diagrams in the book can be used directly in the design, manufacture and testing of large transformers. In preparing their text, the authors have aimed to satisfy the demand for a work that summarizes the latest experience in development and design of large power transformers.

  7. Large-dimension, high-ZT Thermoelectric Nanocomposites for High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Large-dimension, high-ZT Thermoelectric Nanocomposites for High-Power High-efficiency Waste Heat Recovery for Electricity Generation Large-dimension, high-ZT Thermoelectric...

  8. Large-dimension, high-ZT Thermoelectric Nanocomposites for High-Power High-efficiency Waste Heat Recovery for Electricity Generation

    Broader source: Energy.gov [DOE]

    Large-dimension, high-ZT BiTe and Pb-based nanocomposites produced with a low-cost scalable process were used for development and testing of TE module prototypes, and demonstration of a waste heat recovery system

  9. POWER SYSTEMS STABILITY WITH LARGE-SCALE WIND POWER PENETRATION

    E-Print Network [OSTI]

    Bak-Jensen, Birgitte

    of offshore wind farms, wind power fluctuations may introduce several challenges to reliable power system behaviour due to natural wind fluctuations. The rapid power fluctuations from the large scale wind farms Generation Control (AGC) system which includes large- scale wind farms for long-term stability simulation

  10. SPEAR3 LARGE DC MAGNET POWER SUPPLIES

    SciTech Connect (OSTI)

    de Lira, A

    2004-06-23T23:59:59.000Z

    The Stanford Synchrotron Radiation Laboratory (SSRL) has successfully commissioned SPEAR3, its newly upgraded 3-GeV synchrotron light source. First stored beam occurred December 15, 2003 and 100mA operation was reached on January 20, 2004. This paper describes the specification, design, and performance of the SPEAR3 DC magnet large power supplies (LGPS) that consist of tightly-regulated (better than {+-}10 ppm) current sources ranging from 100A to 225A and output powers ranging from 70kW to 135kW. A total of 6 LGPS are in successful operation and are used to power strings of quadrupoles and sextupoles. The LGPS are isolated by a delta/delta-wye 60Hz step-down transformer that provides power to 2 series-connected chopper stages operating phase-shifted at a switching frequency of 18-kHz to provide for fast output response and high efficiency. Also described are outside procurement aspects, installation, in-house testing, and operation of the power supplies.

  11. High power microwave generator

    DOE Patents [OSTI]

    Ekdahl, C.A.

    1983-12-29T23:59:59.000Z

    A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

  12. High Power Cryogenic Targets

    SciTech Connect (OSTI)

    Gregory Smith

    2011-08-01T23:59:59.000Z

    The development of high power cryogenic targets for use in parity violating electron scattering has been a crucial ingredient in the success of those experiments. As we chase the precision frontier, the demands and requirements for these targets have grown accordingly. We discuss the state of the art, and describe recent developments and strategies in the design of the next generation of these targets.

  13. Laser Power Meter Large, bright, backlit LCD

    E-Print Network [OSTI]

    Woodall, Jerry M.

    Laser Power Meter FEATURES Large, bright, backlit LCD display Digital accuracy with analog-like movement for laser tuning Works with thermopile and optical sensors Intuitive button-driven user COMPATIBILITY PowerMax thermal sensors Optical sensors FieldMaxII-TO Coherent Laser Measurement and Control

  14. Large power grid analysis using domain decomposition

    E-Print Network [OSTI]

    Mohanram, Kartik

    -scale linear circuits such as power distribution networks. Simulation results show that by inte- grating the proposed DD framework, existing linear circuit simulators can be extended to handle otherwise intractableLarge power grid analysis using domain decomposition Quming Zhou, Kai Sun, Kartik Mohanram, Danny C

  15. High power connection system

    DOE Patents [OSTI]

    Schaefer, Christopher E. (Warren, OH); Beer, Robert C. (Noblesville, IN); McCall, Mark D. (Youngstown, OH)

    2000-01-01T23:59:59.000Z

    A high power connection system adapted for automotive environments which provides environmental and EMI shielding includes a female connector, a male connector, and a panel mount. The female connector includes a female connector base and a snap fitted female connector cover. The male connector includes a male connector base and a snap fitted male connector cover. The female connector base has at least one female power terminal cavity for seatably receiving a respective female power terminal. The male connector base has at least one male power terminal cavity for seatably receiving a respective male power terminal. The female connector is covered by a cover seal and a conductive shroud. A pair of lock arms protrude outward from the front end of the male connector base, pass through the panel mount and interface with a lever of a lever rotatably connected to the shroud to thereby mechanically assist mating of the male and female connectors. Safety terminals in the male and female connectors provide a last-to-connect-first-to-break connection with an HVIL circuit.

  16. SIMULATING LARGE-SCALE STRUCTURE FORMATION FOR BSI POWER SPECTRA

    E-Print Network [OSTI]

    V. Mueller

    1995-05-30T23:59:59.000Z

    A double inflationary model provides perturbation spectra with enhanced power at large scales (Broken Scale Invariant perturbations -- BSI), leading to a promising scenario for the formation of cosmic structures. We describe a series of high-resolution PM simulations with a model for the thermodynamic evolution of baryons in which we are capable of identifying 'galaxy' halos with a reasonable mass spectrum and following the genesis of large and super-large scale structures. The power spectra and correlation functions of 'galaxies' are compared with reconstructed power spectra of the CfA catalogue and the correlation functions of the Las Campanas Deep Redshift Survey.

  17. HIGH-POWER, HIGH-EFFICIENCY FELS

    E-Print Network [OSTI]

    Sessler, A.M.

    2008-01-01T23:59:59.000Z

    M. Kumada, "Scaling of the FEL-ID Equations", ELF Note 128,Instability in a High-power, Short- Wavelength FEL", Proc.of the Ninth FEL" Conference, Williamsburg (1988), and

  18. Energy Storage Testing and Analysis High Power and High Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing and Analysis High Power and High Energy Development Energy Storage Testing and Analysis High Power and High Energy Development 2009 DOE Hydrogen Program and Vehicle...

  19. Small high cooling power space cooler

    SciTech Connect (OSTI)

    Nguyen, T. V.; Raab, J.; Durand, D.; Tward, E. [Northrop Grumman Aerospace Systems Redondo Beach, Ca, 90278 (United States)

    2014-01-29T23:59:59.000Z

    The small High Efficiency pulse tube Cooler (HEC) cooler, that has been produced and flown on a number of space infrared instruments, was originally designed to provide cooling of 10 W @ 95 K. It achieved its goal with >50% margin when limited by the 180 W output ac power of its flight electronics. It has also been produced in 2 stage configurations, typically for simultaneously cooling of focal planes to temperatures as low as 35 K and optics at higher temperatures. The need for even higher cooling power in such a low mass cryocooler is motivated by the advent of large focal plane arrays. With the current availability at NGAS of much larger power cryocooler flight electronics, reliable long term operation in space with much larger cooling powers is now possible with the flight proven 4 kg HEC mechanical cooler. Even though the single stage cooler design can be re-qualified for those larger input powers without design change, we redesigned both the linear and coaxial version passive pulse tube cold heads to re-optimize them for high power cooling at temperatures above 130 K while rejecting heat to 300 K. Small changes to the regenerator packing, the re-optimization of the tuned inertance and no change to the compressor resulted in the increased performance at 150 K. The cooler operating at 290 W input power achieves 35 W@ 150 K corresponding to a specific cooling power at 150 K of 8.25 W/W and a very high specific power of 72.5 W/Kg. At these powers the cooler still maintains large stroke, thermal and current margins. In this paper we will present the measured data and the changes to this flight proven cooler that were made to achieve this increased performance.

  20. Powers of Ten Thousand: Navigating in Large Information Spaces

    E-Print Network [OSTI]

    Powers of Ten Thousand: Navigating in Large Information Spaces Henry Lieberman Media Laboratory large display space, for example, a street map of the entire United States? The traditional solution, on a scale of at least 1 to 10,000. Powers of ten thousand The book and film Powers of Ten [Morrison

  1. Lessons Learned: Planning and Operating Power Systems with Large

    E-Print Network [OSTI]

    Lessons Learned: Planning and Operating Power Systems with Large Amounts of Renewable Energy agency thereof. #12;Lessons Learned: Planning and Operating Power Systems with Large Amounts of Renewable to their systems powered by as-available renewable energy sources (primarily wind and solar). The Big Island also

  2. Large-Scale Data Challenges in Future Power Grids

    SciTech Connect (OSTI)

    Yin, Jian; Sharma, Poorva; Gorton, Ian; Akyol, Bora A.

    2013-03-25T23:59:59.000Z

    This paper describes technical challenges in supporting large-scale real-time data analysis for future power grid systems and discusses various design options to address these challenges. Even though the existing U.S. power grid has served the nation remarkably well over the last 120 years, big changes are in the horizon. The widespread deployment of renewable generation, smart grid controls, energy storage, plug-in hybrids, and new conducting materials will require fundamental changes in the operational concepts and principal components. The whole system becomes highly dynamic and needs constant adjustments based on real time data. Even though millions of sensors such as phase measurement units (PMUs) and smart meters are being widely deployed, a data layer that can support this amount of data in real time is needed. Unlike the data fabric in cloud services, the data layer for smart grids must address some unique challenges. This layer must be scalable to support millions of sensors and a large number of diverse applications and still provide real time guarantees. Moreover, the system needs to be highly reliable and highly secure because the power grid is a critical piece of infrastructure. No existing systems can satisfy all the requirements at the same time. We examine various design options. In particular, we explore the special characteristics of power grid data to meet both scalability and quality of service requirements. Our initial prototype can improve performance by orders of magnitude over existing general-purpose systems. The prototype was demonstrated with several use cases from PNNLs FPGI and was shown to be able to integrate huge amount of data from a large number of sensors and a diverse set of applications.

  3. High Average Power, High Energy Short Pulse Fiber Laser System

    SciTech Connect (OSTI)

    Messerly, M J

    2007-11-13T23:59:59.000Z

    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  4. Ris-R-Report Power fluctuations from large wind farms -

    E-Print Network [OSTI]

    Abstract (max. 2000 char.): Experience from power system operation with the first large offshore wind farm acquired at the two large offshore wind farms in Denmark are applied to validate the models. FinallyRis-R-Report Power fluctuations from large wind farms - Final report Poul Srensen, Pierre Pinson

  5. High-Average Power Facilities

    SciTech Connect (OSTI)

    Dowell, David H.; /SLAC; Power, John G.; /Argonne

    2012-09-05T23:59:59.000Z

    There has been significant progress in the development of high-power facilities in recent years yet major challenges remain. The task of WG4 was to identify which facilities were capable of addressing the outstanding R&D issues presently preventing high-power operation. To this end, information from each of the facilities represented at the workshop was tabulated and the results are presented herein. A brief description of the major challenges is given, but the detailed elaboration can be found in the other three working group summaries.

  6. Just enough inflation: power spectrum modifications at large scales

    E-Print Network [OSTI]

    Michele Cicoli; Sean Downes; Bhaskar Dutta; Francisco G. Pedro; Alexander Westphal

    2014-07-03T23:59:59.000Z

    We show that models of `just enough' inflation, where the slow-roll evolution lasted only $50-60$ e-foldings, feature modifications of the CMB power spectrum at large angular scales. We perform a systematic and model-independent analysis of any possible non-slow-roll background evolution prior to the final stage of slow-roll inflation. We find a high degree of universality since most common backgrounds like fast-roll evolution, matter or radiation-dominance give rise to a power loss at large angular scales and a peak together with an oscillatory behaviour at scales around the value of the Hubble parameter at the beginning of slow-roll inflation. Depending on the value of the equation of state parameter, different pre-inflationary epochs lead instead to an enhancement of power at low-$\\ell$, and so seem disfavoured by recent observational hints for a lack of CMB power at $\\ell\\lesssim 40$. We also comment on the importance of initial conditions and the possibility to have multiple pre-inflationary stages.

  7. QER- Comment of Large Public Power Council 2

    Broader source: Energy.gov [DOE]

    Attached please find comments by the Large Public Power Council for the record regarding the April 11thQER meeting.

  8. QER- Comment of Large Public Power Council 1

    Broader source: Energy.gov [DOE]

    Attached are the Comments of the Large Public Power Council on the QER. Please feel to contact me if you have any questions.

  9. Effect of Large Dynamic Loads on Interconnected Power Systems with Power Oscillation Damping

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    Effect of Large Dynamic Loads on Interconnected Power Systems with Power Oscillation Damping.hossain and H.Pota)@adfa.edu.au Abstract--Power systems are composed of dynamic loads. In this paper presents an analysis to investigate the effects of large dynamic loads on interconnected power systems

  10. Large-Scale Eucalyptus Energy Farms and Power Cogeneration1

    E-Print Network [OSTI]

    Standiford, Richard B.

    Large-Scale Eucalyptus Energy Farms and Power Cogeneration1 Robert C. Noronla2 The initiation of a large-scale cogeneration project, especially one that combines construction of the power generation supplemental fuel source must be sought if the cogeneration facility will consume more fuel than

  11. High power fast ramping power supplies

    SciTech Connect (OSTI)

    Marneris,I.; Bajon, E.; Bonati, R.; Sandberg, J.; Roser, T.; Tsoupas, N.

    2009-05-04T23:59:59.000Z

    Hundred megawatt level fast ramping power converters to drive proton and heavy ion machines are under research and development at accelerator facilities in the world. This is a leading edge technology. There are several topologies to achieve this power level. Their advantages and related issues will be discussed.

  12. Impact of Wind Shear and Tower Shadow Effects on Power System with Large Scale Wind Power

    E-Print Network [OSTI]

    Hu, Weihao

    Impact of Wind Shear and Tower Shadow Effects on Power System with Large Scale Wind Power to wind speed variations, the wind shear and the tower shadow effects. The fluctuating power may be ableSILENT/PowerFactory. In this paper, the impacts of wind shear and tower shadow effects on the small signal stability of power systems

  13. High power, high beam quality regenerative amplifier

    DOE Patents [OSTI]

    Hackel, Lloyd A. (Livermore, CA); Dane, Clifford B. (Livermore, CA)

    1993-01-01T23:59:59.000Z

    A regenerative laser amplifier system generates high peak power and high energy per pulse output beams enabling generation of X-rays used in X-ray lithography for manufacturing integrated circuits. The laser amplifier includes a ring shaped optical path with a limited number of components including a polarizer, a passive 90 degree phase rotator, a plurality of mirrors, a relay telescope, and a gain medium, the components being placed close to the image plane of the relay telescope to reduce diffraction or phase perturbations in order to limit high peak intensity spiking. In the ring, the beam makes two passes through the gain medium for each transit of the optical path to increase the amplifier gain to loss ratio. A beam input into the ring makes two passes around the ring, is diverted into an SBS phase conjugator and proceeds out of the SBS phase conjugator back through the ring in an equal but opposite direction for two passes, further reducing phase perturbations. A master oscillator inputs the beam through an isolation cell (Faraday or Pockels) which transmits the beam into the ring without polarization rotation. The isolation cell rotates polarization only in beams proceeding out of the ring to direct the beams out of the amplifier. The diffraction limited quality of the input beam is preserved in the amplifier so that a high power output beam having nearly the same diffraction limited quality is produced.

  14. High power, high beam quality regenerative amplifier

    DOE Patents [OSTI]

    Hackel, L.A.; Dane, C.B.

    1993-08-24T23:59:59.000Z

    A regenerative laser amplifier system generates high peak power and high energy per pulse output beams enabling generation of X-rays used in X-ray lithography for manufacturing integrated circuits. The laser amplifier includes a ring shaped optical path with a limited number of components including a polarizer, a passive 90 degree phase rotator, a plurality of mirrors, a relay telescope, and a gain medium, the components being placed close to the image plane of the relay telescope to reduce diffraction or phase perturbations in order to limit high peak intensity spiking. In the ring, the beam makes two passes through the gain medium for each transit of the optical path to increase the amplifier gain to loss ratio. A beam input into the ring makes two passes around the ring, is diverted into an SBS phase conjugator and proceeds out of the SBS phase conjugator back through the ring in an equal but opposite direction for two passes, further reducing phase perturbations. A master oscillator inputs the beam through an isolation cell (Faraday or Pockels) which transmits the beam into the ring without polarization rotation. The isolation cell rotates polarization only in beams proceeding out of the ring to direct the beams out of the amplifier. The diffraction limited quality of the input beam is preserved in the amplifier so that a high power output beam having nearly the same diffraction limited quality is produced.

  15. High Power, Linear CMOS Power Amplifier for WLAN Applications /

    E-Print Network [OSTI]

    Afsahi, Ali

    2013-01-01T23:59:59.000Z

    components in silicon, achieving a high power enhancement ratio from a single stage LC matching network or single transformer

  16. Computing GIC in large power systems

    SciTech Connect (OSTI)

    Prabhakara, F.S. (Power Technologies, Inc., Schenectady, NY (United States)); Ponder, J.Z.; Towle, J.N.

    1992-01-01T23:59:59.000Z

    On March 13, 1989, a severe geomagnetic disturbance affected power and communications systems in the North American continent. Since the geomagnetic disturbance, several other disturbances have occurred. The Pennsylvania, New Jersey, and Maryland (PJM) Interconnection system, its member companies, and some of the neighboring utilities experienced the geomagnetic induced current (GIC) effects on March 13, 1989, as well as during the subsequent geomagnetic disturbances. As a result, considerable effort is being focused on measurement, analysis, and mitigation of GIC in the PJM system. Some of the analytical and computational work completed so far is summarized in this article.

  17. High-Power Rf Load

    DOE Patents [OSTI]

    Tantawi, Sami G. (San Mateo, CA); Vlieks, Arnold E. (Livermore, CA)

    1998-09-01T23:59:59.000Z

    A compact high-power RF load comprises a series of very low Q resonators, or chokes [16], in a circular waveguide [10]. The sequence of chokes absorb the RF power gradually in a short distance while keeping the bandwidth relatively wide. A polarizer [12] at the input end of the load is provided to convert incoming TE.sub.10 mode signals to circularly polarized TE.sub.11 mode signals. Because the load operates in the circularly polarized mode, the energy is uniformly and efficiently absorbed and the load is more compact than a rectangular load. Using these techniques, a load having a bandwidth of 500 MHz can be produced with an average power dissipation level of 1.5 kW at X-band, and a peak power dissipation of 100 MW. The load can be made from common lossy materials, such as stainless steel, and is less than 15 cm in length. These techniques can also produce loads for use as an alternative to ordinary waveguide loads in small and medium RF accelerators, in radar systems, and in other microwave applications. The design is easily scalable to other RF frequencies and adaptable to the use of other lossy materials.

  18. Vulnerability of nuclear power plant structures to large external fires

    SciTech Connect (OSTI)

    Bennett, D.E.

    1983-08-01T23:59:59.000Z

    This report examines the inherent vulnerability of nuclear power plant structures to the thermal environments arising from large, external fires. The inherent vulnerability is the capacity of the concrete safety-related structures to absorb thermal loads without exceeding the appropriate thermal and structural design criteria. The potential sources of these thermal environments are large, offsite fires arising from accidents involving the transportation or storage of large quantities of flammable gases or liquids. A realistic thermal response analysis of a concrete panel was performed using three limiting criteria: temperature at the first rebar location, erosion and ablation of the front (exterior) surface due to high heat fluxes, and temperature at the back (interior) surface. The results of this analysis yield a relationship between incident heat flux and the maximum allowable exposure duration. Example calculations for the break of a 0.91 m (3') diameter high-pressure natural gas pipeline and a 1 m/sup 2/ hole in a 2-1/2 million gallon gasoline tank show that the resulting fires do not pose a significant hazard for ranges of 500 m or greater.

  19. High voltage DC power supply

    DOE Patents [OSTI]

    Droege, Thomas F. (Batavia, IL)

    1989-01-01T23:59:59.000Z

    A high voltage DC power supply having a first series resistor at the output for limiting current in the event of a short-circuited output, a second series resistor for sensing the magnitude of output current, and a voltage divider circuit for providing a source of feedback voltage for use in voltage regulation is disclosed. The voltage divider circuit is coupled to the second series resistor so as to compensate the feedback voltage for a voltage drop across the first series resistor. The power supply also includes a pulse-width modulated control circuit, having dual clock signals, which is responsive to both the feedback voltage and a command voltage, and also includes voltage and current measuring circuits responsive to the feedback voltage and the voltage developed across the second series resistor respectively.

  20. High voltage DC power supply

    DOE Patents [OSTI]

    Droege, T.F.

    1989-12-19T23:59:59.000Z

    A high voltage DC power supply having a first series resistor at the output for limiting current in the event of a short-circuited output, a second series resistor for sensing the magnitude of output current, and a voltage divider circuit for providing a source of feedback voltage for use in voltage regulation is disclosed. The voltage divider circuit is coupled to the second series resistor so as to compensate the feedback voltage for a voltage drop across the first series resistor. The power supply also includes a pulse-width modulated control circuit, having dual clock signals, which is responsive to both the feedback voltage and a command voltage, and also includes voltage and current measuring circuits responsive to the feedback voltage and the voltage developed across the second series resistor respectively. 7 figs.

  1. High-Efficiency and High-Power CMOS Power Amplifiers for Millimeter-Wave Applications /

    E-Print Network [OSTI]

    Agah, Amir

    2013-01-01T23:59:59.000Z

    large output powers at the millimeter-wave regime has been mainly focused on power combining techniques, using Wilkinson combiners and transformer-

  2. Glendale Water and Power- Large Business Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Glendale Water and Power (GWP) offers a rebate to its medium and large business customers with electric bills of more than $3000 per month (electric usage of 250,000 kWh annually ~ $36,000 per year...

  3. High Power UV LED Industrial Curing Systems

    SciTech Connect (OSTI)

    Karlicek, Robert, F., Jr; Sargent, Robert

    2012-05-14T23:59:59.000Z

    UV curing is a green technology that is largely underutilized because UV radiation sources like Hg Lamps are unreliable and difficult to use. High Power UV LEDs are now efficient enough to replace Hg Lamps, and offer significantly improved performance relative to Hg Lamps. In this study, a modular, scalable high power UV LED curing system was designed and tested, performing well in industrial coating evaluations. In order to achieve mechanical form factors similar to commercial Hg Lamp systems, a new patent pending design was employed enabling high irradiance at long working distances. While high power UV LEDs are currently only available at longer UVA wavelengths, rapid progress on UVC LEDs and the development of new formulations designed specifically for use with UV LED sources will converge to drive more rapid adoption of UV curing technology. An assessment of the environmental impact of replacing Hg Lamp systems with UV LED systems was performed. Since UV curing is used in only a small portion of the industrial printing, painting and coating markets, the ease of use of UV LED systems should increase the use of UV curing technology. Even a small penetration of the significant number of industrial applications still using oven curing and drying will lead to significant reductions in energy consumption and reductions in the emission of green house gases and solvent emissions.

  4. Model Abstraction Techniques for Large-Scale Power Systems

    E-Print Network [OSTI]

    Report on System Simulation using High Performance Computing Prepared by New Mexico Tech New Mexico: Application of High Performance Computing to Electric Power System Modeling, Simulation and Analysis Task Two

  5. Power Compensation Effect of an Adjustable-Speed Rotary Condenser with a Flywheel for a Large Capacity Magnet Power Supply

    E-Print Network [OSTI]

    Akagi, H

    1999-01-01T23:59:59.000Z

    Power Compensation Effect of an Adjustable-Speed Rotary Condenser with a Flywheel for a Large Capacity Magnet Power Supply

  6. High-Efficiency and High-Power CMOS Power Amplifiers for Millimeter-Wave Applications /

    E-Print Network [OSTI]

    Agah, Amir

    2013-01-01T23:59:59.000Z

    K. Han, W-band, 5W Solid-State Power Amplifier/Combiner,materials have made high-power solid-state power amplifiersCMOS RF power amplifier for GSM-EDGE, IEEE J. Solid-State

  7. Computing High Accuracy Power Spectra with Pico

    E-Print Network [OSTI]

    William A. Fendt; Benjamin D. Wandelt

    2007-12-02T23:59:59.000Z

    This paper presents the second release of Pico (Parameters for the Impatient COsmologist). Pico is a general purpose machine learning code which we have applied to computing the CMB power spectra and the WMAP likelihood. For this release, we have made improvements to the algorithm as well as the data sets used to train Pico, leading to a significant improvement in accuracy. For the 9 parameter nonflat case presented here Pico can on average compute the TT, TE and EE spectra to better than 1% of cosmic standard deviation for nearly all $\\ell$ values over a large region of parameter space. Performing a cosmological parameter analysis of current CMB and large scale structure data, we show that these power spectra give very accurate 1 and 2 dimensional parameter posteriors. We have extended Pico to allow computation of the tensor power spectrum and the matter transfer function. Pico runs about 1500 times faster than CAMB at the default accuracy and about 250,000 times faster at high accuracy. Training Pico can be done using massively parallel computing resources, including distributed computing projects such as Cosmology@Home. On the homepage for Pico, located at http://cosmos.astro.uiuc.edu/pico, we provide new sets of regression coefficients and make the training code available for public use.

  8. Ferroelectric opening switches for large-scale pulsed power drivers.

    SciTech Connect (OSTI)

    Brennecka, Geoffrey L.; Rudys, Joseph Matthew; Reed, Kim Warren; Pena, Gary Edward; Tuttle, Bruce Andrew; Glover, Steven Frank

    2009-11-01T23:59:59.000Z

    Fast electrical energy storage or Voltage-Driven Technology (VDT) has dominated fast, high-voltage pulsed power systems for the past six decades. Fast magnetic energy storage or Current-Driven Technology (CDT) is characterized by 10,000 X higher energy density than VDT and has a great number of other substantial advantages, but it has all but been neglected for all of these decades. The uniform explanation for neglect of CDT technology is invariably that the industry has never been able to make an effective opening switch, which is essential for the use of CDT. Most approaches to opening switches have involved plasma of one sort or another. On a large scale, gaseous plasmas have been used as a conductor to bridge the switch electrodes that provides an opening function when the current wave front propagates through to the output end of the plasma and fully magnetizes the plasma - this is called a Plasma Opening Switch (POS). Opening can be triggered in a POS using a magnetic field to push the plasma out of the A-K gap - this is called a Magnetically Controlled Plasma Opening Switch (MCPOS). On a small scale, depletion of electron plasmas in semiconductor devices is used to affect opening switch behavior, but these devices are relatively low voltage and low current compared to the hundreds of kilo-volts and tens of kilo-amperes of interest to pulsed power. This work is an investigation into an entirely new approach to opening switch technology that utilizes new materials in new ways. The new materials are Ferroelectrics and using them as an opening switch is a stark contrast to their traditional applications in optics and transducer applications. Emphasis is on use of high performance ferroelectrics with the objective of developing an opening switch that would be suitable for large scale pulsed power applications. Over the course of exploring this new ground, we have discovered new behaviors and properties of these materials that were here to fore unknown. Some of these unexpected discoveries have lead to new research directions to address challenges.

  9. Ver.2003.01.27 Development of Low-Voltage and Large-Current DC Power Supply

    E-Print Network [OSTI]

    Fujimoto, Hiroshi

    describes low-voltage and large-current DC power supplies with a high-frequency transformer coupling. Two Ver.2003.01.27 Development of Low-Voltage and Large-Current DC Power Supply-bridge inverter, an amorphous-core step down transformer and a schottky diode rectifier. One power supply operates

  10. Development of 13-V, 5000-A DC Power Supply with High-Frequency Transformer Coupling

    E-Print Network [OSTI]

    Fujimoto, Hiroshi

    -voltage and large-current DC power supply with a high-frequency transformer coupling, which is applied to electric. Keywords-DC power supply; low-voltage and large-current; high-frequency transformer; Schottky diodeDevelopment of 13-V, 5000-A DC Power Supply with High-Frequency Transformer Coupling Applied

  11. (Insulating materials and large high voltage electric systems)

    SciTech Connect (OSTI)

    Dale, S.J.

    1990-09-18T23:59:59.000Z

    The traveler attended the 33rd Session of CIGRE (The International Conference on Large High Voltage Electric Systems in Paris, France) as a US technical expert advisor the Study Committee 15, Insulating Materials. Over 200 papers were discussed, contributed from over 45 countries at the conference on all aspects of electric power generation and transmission. Of special interest was a panel session on superconducting technology for electric power systems and the participation on a new task force on the electrical insulation at cryogenic temperatures. Significant insight was gained into the development of superconducting power technologies in Europe and Japan. CIGRE has set up a committee to follow the development in research on the biological effects of electric and magnetic fields. The traveler also visited the Centre for Electric Power Engineering at the University of Strathclyde, Glasgow, Scotland and discussed research on degradation of polymeric cable insulation and gas insulated equipment. 5 refs.

  12. Limits to the power density of very large wind farms

    E-Print Network [OSTI]

    Nishino, Takafumi

    2013-01-01T23:59:59.000Z

    A simple analysis is presented concerning an upper limit of the power density (power per unit land area) of a very large wind farm located at the bottom of a fully developed boundary layer. The analysis suggests that the limit of the power density is about 0.38 times $\\tau_{w0}U_{F0}$, where $\\tau_{w0}$ is the natural shear stress on the ground (that is observed before constructing the wind farm) and $U_{F0}$ is the natural or undisturbed wind speed averaged across the height of the farm to be constructed. Importantly, this implies that the maximum extractable power from such a very large wind farm will not be proportional to the cubic of the wind speed at the farm height, or even the farm height itself, but be proportional to $U_{F0}$.

  13. Low power, scalable multichannel high voltage controller

    DOE Patents [OSTI]

    Stamps, James Frederick (Livermore, CA); Crocker, Robert Ward (Fremont, CA); Yee, Daniel Dadwa (Dublin, CA); Dils, David Wright (Fort Worth, TX)

    2008-03-25T23:59:59.000Z

    A low voltage control circuit is provided for individually controlling high voltage power provided over bus lines to a multitude of interconnected loads. An example of a load is a drive for capillary channels in a microfluidic system. Control is distributed from a central high voltage circuit, rather than using a number of large expensive central high voltage circuits to enable reducing circuit size and cost. Voltage is distributed to each individual load and controlled using a number of high voltage controller channel switches connected to high voltage bus lines. The channel switches each include complementary pull up and pull down photo isolator relays with photo isolator switching controlled from the central high voltage circuit to provide a desired bus line voltage. Switching of the photo isolator relays is further controlled in each channel switch using feedback from a resistor divider circuit to maintain the bus voltage swing within desired limits. Current sensing is provided using a switched resistive load in each channel switch, with switching of the resistive loads controlled from the central high voltage circuit.

  14. Low power, scalable multichannel high voltage controller

    DOE Patents [OSTI]

    Stamps, James Frederick (Livermore, CA); Crocker, Robert Ward (Fremont, CA); Yee, Daniel Dadwa (Dublin, CA); Dils, David Wright (Fort Worth, TX)

    2006-03-14T23:59:59.000Z

    A low voltage control circuit is provided for individually controlling high voltage power provided over bus lines to a multitude of interconnected loads. An example of a load is a drive for capillary channels in a microfluidic system. Control is distributed from a central high voltage circuit, rather than using a number of large expensive central high voltage circuits to enable reducing circuit size and cost. Voltage is distributed to each individual load and controlled using a number of high voltage controller channel switches connected to high voltage bus lines. The channel switches each include complementary pull up and pull down photo isolator relays with photo isolator switching controlled from the central high voltage circuit to provide a desired bus line voltage. Switching of the photo isolator relays is further controlled in each channel switch using feedback from a resistor divider circuit to maintain the bus voltage swing within desired limits. Current sensing is provided using a switched resistive load in each channel switch, with switching of the resistive loads controlled from the central high voltage circuit.

  15. Optimal operation of large-scale power systems

    SciTech Connect (OSTI)

    Lee, K.Y.; Ortiz, J.L.; Mohtadi, M.A.; Park, Y.M.

    1988-05-01T23:59:59.000Z

    This paper presents a method for an optimal operation of large-scale power systems similar to the one utilized by the Houston Lighting and Power Company. The main objective is to minimize the system fuel costs, and maintain an acceptable system performance in terms of limits on generator real and reactive power outputs, transformer tap settings, and bus voltage levels. Minimizing the fuel costs of such large-scale systems enhances the performance of optimal real power generator allocation and of optimal power flow that results in an economic dispatch. The gradient projection method (GPM) is utilized in solving the optimization problems. It is an iterative numerical procedure for finding an extremum of a function of several variables that are required to satisfy various constraining relations without using penalty functions or Lagrange multipliers among other advantages. Mathematical models are developed to represent the sensitivity relationships between dependent and control variables for both real- and reactive-power optimization procedures; and thus eliminate the use of B-coefficients. Data provided by the Houston lighting and Power Company are used to demonstrate the effectiveness of the proposed procedures.

  16. Nanostructured Thermoelectric Materials and High Efficiency Power...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanostructured Thermoelectric Materials and High Efficiency Power Generation Modules Home Author: T. Hogan, A. Downey, J. Short, S. D. Mahanti, H. Schock, E. Case Year: 2007...

  17. High Power Lasers... Another approach to

    E-Print Network [OSTI]

    Average Power Laser (HAPL) Program #12;4 Electricity Generator Reaction chamber The laser fusion energy drive targets Can lead to an attractive electricity generating power plant Developing Laser Fusion Attributes : Beam uniformity, wavelength, cost, scaling to large systems Technologies for rep

  18. Design considerations for large space electric power systems

    SciTech Connect (OSTI)

    Renz, D.D.; Finke, R.C.; Stevens, N.J.; Triner, J.E.; Hansen, I.G.

    1983-04-01T23:59:59.000Z

    As power levels of spacecraft rise to the 50 to 100 kW range, it becomes apparent that low voltage (28 V) dc power distribution and management systems will not operate efficiently at these higher power levels. The concept of transforming a solar array voltage at 150 V dc into a 1000 V ac distribution system operating at 20 kHz is examined. The transformation is accomplished with series-resonant inverter by using a rotary transformer to isolate the solar array from the spacecraft. The power can then be distributed in any desired method such as three phase delta to delta. The distribution voltage can be easily transformed to any desired load voltage and operating frequency. The reasons for the voltage limitations on the solar array due to plasma interactions and the many advantages of a high voltage, high frequency at distribution system are discussed.

  19. High power laser perforating tools and systems

    DOE Patents [OSTI]

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2014-04-22T23:59:59.000Z

    ystems devices and methods for the transmission of 1 kW or more of laser energy deep into the earth and for the suppression of associated nonlinear phenomena. Systems, devices and methods for the laser perforation of a borehole in the earth. These systems can deliver high power laser energy down a deep borehole, while maintaining the high power to perforate such boreholes.

  20. Optimization of auxiliary power systems design for large generating units

    SciTech Connect (OSTI)

    Fabri, E.I.; Kang, E.K.; Dusterdick, R.W.

    1980-01-01T23:59:59.000Z

    Modern fossil and nuclear generating units require the support of a fairly large and complex electric auxiliary power system. The selection of an optimized and cost-effective auxiliary power transformer rating may be a difficult process, since the loading profile and coincident operation of the loads often cannot be firmly defined at an early stage of design. The authors believe that this important design process could be greatly aided by systematic field tests and recording of the actual auxiliary loading profiles during various modes of plant operations.

  1. Thermal Strategies for High Efficiency Thermoelectric Power Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategies for High Efficiency Thermoelectric Power Generation Thermal Strategies for High Efficiency Thermoelectric Power Generation Developing integrated TE system configurations...

  2. Large dynamic range diagnostics for high current electron LINACs

    SciTech Connect (OSTI)

    Evtushenko, P., E-mail: Pavel.Evtushenko@jlab.org [Thomas Jefferson National Accelerator Facility 12000 Jefferson Avenue, Newport News, VA 23606 (United States)

    2013-11-07T23:59:59.000Z

    The Jefferson Lab FEL driver accelerator - Energy Recovery Linac has provided a beam with average current of up to 9 mA and beam energy of 135 MeV. The high power beam operations have allowed developing and testing methods and approaches required to set up and tune such a facility simultaneously for the high beam power and high beam quality required for high performance FEL operations. In this contribution we briefly review this experience and outline problems that are specific to high current - high power non-equilibrium linac beams. While the original strategy for beam diagnostics and tuning have proven to be quite successful, some shortcomings and unresolved issues were also observed. The most important issues are the non-equilibrium (non-Gaussian) nature of the linac beam and the presence of small intensity - large amplitude fraction of the beam a.k.a. beam halo. Thus we also present a list of the possible beam halo sources and discuss possible mitigations means. We argue that for proper understanding and management of the beam halo large dynamic range (>10{sup 6}) transverse and longitudinal beam diagnostics can be used. We also present results of transverse beam profile measurements with the dynamic range approaching 10{sup 5} and demonstrate the effect the increased dynamic range has on the beam characterization, i.e., emittance and Twiss parameters measurements. We also discuss near future work planned in this field and where the JLab FEL facility will be used for beam tests of the developed of new diagnostics.

  3. A Power Provision and Capping Architecture for Large Scale Systems Yongpeng Liu, Hong Zhu, Kai Lu and Yongyan Liu

    E-Print Network [OSTI]

    Zhu, Hong

    whole system's total power consumption under budget. Two policies are designed and implemented to select amount of energy. According to the recent TOP500 list of high performance systems [2], the average powerA Power Provision and Capping Architecture for Large Scale Systems Yongpeng Liu, Hong Zhu, Kai Lu

  4. Global Wind Power Conference September 18-21, 2006, Adelaide, Australia Design and Operation of Power Systems with Large Amounts of Wind Power, first

    E-Print Network [OSTI]

    of Power Systems with Large Amounts of Wind Power, first results of IEA collaboration Hannele Holttinen1.holttinen@vtt.fi Abstract: An international forum for exchange of knowledge of power system impacts of wind power has been Systems with Large Amounts of Wind Power"will analyse existing case studies from different power systems

  5. High Power Co-Axial Coupler

    SciTech Connect (OSTI)

    Neubauer, M. [Muons, Inc.; Dudas, A. [Muons, Inc.; Rimmer, Robert A. [JLAB; Guo, Jiquan [JLAB; Williams, R. Scott [JLAB

    2013-12-01T23:59:59.000Z

    A very high power Coax RF Coupler (MW-Level) is very desirable for a number of accelerator and commercial applications. For example, the development of such a coupler operating at 1.5 GHz may permit the construction of a higher-luminosity version of the Electron-Ion Collider (EIC) being planned at JLab. Muons, Inc. is currently funded by a DOE STTR grant to develop a 1.5-GHz high-power doublewindowcoax coupler with JLab (about 150 kW). Excellent progress has been made on this R&D project, so we propose an extension of this development to build a very high power coax coupler (MW level peak power and a max duty factor of about 4%). The dimensions of the current coax coupler will be scaled up to provide higher power capability.

  6. High power rechargeable batteries Paul V. Braun

    E-Print Network [OSTI]

    Braun, Paul

    and/or self-heating, which ultimately limit the max provide the required electrical output for a given application. It is the cells making up the battery (e.g. fast charging electric vehicles and consumer electronics, high power portable tools, power grid

  7. High voltage photovoltaic power converter

    DOE Patents [OSTI]

    Haigh, Ronald E. (Arvada, CO); Wojtczuk, Steve (Cambridge, MA); Jacobson, Gerard F. (Livermore, CA); Hagans, Karla G. (Livermore, CA)

    2001-01-01T23:59:59.000Z

    An array of independently connected photovoltaic cells on a semi-insulating substrate contains reflective coatings between the cells to enhance efficiency. A uniform, flat top laser beam profile is illuminated upon the array to produce electrical current having high voltage. An essentially wireless system includes a laser energy source being fed through optic fiber and cast upon the photovoltaic cell array to prevent stray electrical signals prior to use of the current from the array. Direct bandgap, single crystal semiconductor materials, such as GaAs, are commonly used in the array. Useful applications of the system include locations where high voltages are provided to confined spaces such as in explosive detonation, accelerators, photo cathodes and medical appliances.

  8. Aging assessment of large electric motors in nuclear power plants

    SciTech Connect (OSTI)

    Villaran, M.; Subudhi, M. [Brookhaven National Lab., Upton, NY (United States)

    1996-03-01T23:59:59.000Z

    Large electric motors serve as the prime movers to drive high capacity pumps, fans, compressors, and generators in a variety of nuclear plant systems. This study examined the stressors that cause degradation and aging in large electric motors operating in various plant locations and environments. The operating history of these machines in nuclear plant service was studied by review and analysis of failure reports in the NPRDS and LER databases. This was supplemented by a review of motor designs, and their nuclear and balance of plant applications, in order to characterize the failure mechanisms that cause degradation, aging, and failure in large electric motors. A generic failure modes and effects analysis for large squirrel cage induction motors was performed to identify the degradation and aging mechanisms affecting various components of these large motors, the failure modes that result, and their effects upon the function of the motor. The effects of large motor failures upon the systems in which they are operating, and on the plant as a whole, were analyzed from failure reports in the databases. The effectiveness of the industry`s large motor maintenance programs was assessed based upon the failure reports in the databases and reviews of plant maintenance procedures and programs.

  9. High Efficiency Broadband Envelope-Tracking Power Amplifiers

    E-Print Network [OSTI]

    Yan, Jonmei Johana

    17] Bumman, K. , et.al; "Efficiently Amplified," MicrowaveM. , Wideband High Efficiency Envelope Tracking PowerPeter M. , High-Efficiency Envelope Tracking High Power

  10. High Efficiency Broadband Envelope-Tracking Power Amplifiers

    E-Print Network [OSTI]

    Yan, Jonmei Johana

    M. , Wideband High Efficiency Envelope Tracking PowerPeter M. , High-Efficiency Envelope Tracking High PowerMemory! DPD! Drain! Efficiency! (%)! Gain! (dB)! Output!

  11. Large

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,sand CERNLand and AssetLandscapingLarge

  12. High power regenerative laser amplifier

    DOE Patents [OSTI]

    Miller, John L. (Livermore, CA); Hackel, Lloyd A. (Livermore, CA); Dane, Clifford B. (Dublin, CA); Zapata, Luis E. (Livermore, CA)

    1994-01-01T23:59:59.000Z

    A regenerative amplifier design capable of operating at high energy per pulse, for instance, from 20-100 Joules, at moderate repetition rates, for instance from 5-20 Hertz is provided. The laser amplifier comprises a gain medium and source of pump energy coupled with the gain medium; a Pockels cell, which rotates an incident beam in response to application of a control signal; an optical relay system defining a first relay plane near the gain medium and a second relay plane near the rotator; and a plurality of reflectors configured to define an optical path through the gain medium, optical relay and Pockels cell, such that each transit of the optical path includes at least one pass through the gain medium and only one pass through the Pockels cell. An input coupler, and an output coupler are provided, implemented by a single polarizer. A control circuit coupled to the Pockels cell generates the control signal in timed relationship with the input pulse so that the input pulse is captured by the input coupler and proceeds through at least one transit of the optical path, and then the control signal is applied to cause rotation of the pulse to a polarization reflected by the polarizer, after which the captured pulse passes through the gain medium at least once more and is reflected out of the optical path by the polarizer before passing through the rotator again to provide an amplified pulse.

  13. High power regenerative laser amplifier

    DOE Patents [OSTI]

    Miller, J.L.; Hackel, L.A.; Dane, C.B.; Zapata, L.E.

    1994-02-08T23:59:59.000Z

    A regenerative amplifier design capable of operating at high energy per pulse, for instance, from 20-100 Joules, at moderate repetition rates, for instance from 5-20 Hertz is provided. The laser amplifier comprises a gain medium and source of pump energy coupled with the gain medium; a Pockels cell, which rotates an incident beam in response to application of a control signal; an optical relay system defining a first relay plane near the gain medium and a second relay plane near the rotator; and a plurality of reflectors configured to define an optical path through the gain medium, optical relay and Pockels cell, such that each transit of the optical path includes at least one pass through the gain medium and only one pass through the Pockels cell. An input coupler, and an output coupler are provided, implemented by a single polarizer. A control circuit coupled to the Pockels cell generates the control signal in timed relationship with the input pulse so that the input pulse is captured by the input coupler and proceeds through at least one transit of the optical path, and then the control signal is applied to cause rotation of the pulse to a polarization reflected by the polarizer, after which the captured pulse passes through the gain medium at least once more and is reflected out of the optical path by the polarizer before passing through the rotator again to provide an amplified pulse. 7 figures.

  14. The NASA CSTI High Capacity Power Project

    SciTech Connect (OSTI)

    Winter, J.; Dudenhoefer, J.; Juhasz, A.; Schwarze, G.; Patterson, R.; Ferguson, D.; Titran, R. [National Aeronautics and Space Administration, Cleveland, OH (United States). Lewis Research Center; Schmitz, P. [Sverdrup Technology, Inc., Brook Park, OH (United States). Lewis Research Center Group; Vandersande, J. [Jet Propulsion Lab., Pasadena, CA (United States)

    1994-09-01T23:59:59.000Z

    The SP-100 Space Nuclear Power Program was established in 1983 by DOD, DOE, and NASA as a joint program to develop technology for military and civil applications. Starting in 1986, NASA has funded a technology program to maintain the momentum of promising aerospace technology advancement started during Phase I of SP-100 and to strengthen, in key areas, the changes for successful development and growth capability of space nuclear reactor power systems for a wide range of future space applications. The elements of the CSTI High Capacity Power Project include Systems Analysis, Stirling Power Conversion, Thermoelectric Power Conversion, Thermal Management, Power Management, Systems Diagnostics, Environmental Interactions, and Material/Structural Development. Technology advancement in all elements is required to provide the growth capability, high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall project with develop and demonstrate the technology base required to provide a wide range of modular power systems compatible with the SP-100 reactor which facilitates operation during lunar and planetary day/night cycles as well as allowing spacecraft operation at any attitude or distance from the sun. Significant accomplishments in all of the project elements will be presented, along with revised goals and project timelines recently developed.

  15. Ultra high vacuum broad band high power microwave window

    DOE Patents [OSTI]

    Nguyen-Tuong, Viet (Seaford, VA); Dylla, III, Henry Frederick (Yorktown, VA)

    1997-01-01T23:59:59.000Z

    An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost.

  16. Ultra high vacuum broad band high power microwave window

    DOE Patents [OSTI]

    Nguyen-Tuong, V.; Dylla, H.F. III

    1997-11-04T23:59:59.000Z

    An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost. 5 figs.

  17. Liquid Walls Innovative High Power Density Concepts

    E-Print Network [OSTI]

    California at Los Angeles, University of

    Surface Heat Flux > 2 MW/m2 2. High Power Conversion Efficiency (> 40%) 3. High Availability -Lower rrr = V r J r PV r B r 1P 2P g r + - V r #12;V(initial momentum) g rFluidIn FluidOutBackingWall 2Dsurfaceturbulence Poloidal Pumping + - J r - flowpoloidal direction - Enhancesurfaceheat transferwith2D turbulence

  18. GPGPUs: How to Combine High Computational Power with High Reliability

    E-Print Network [OSTI]

    Gurumurthi, Sudhanva

    recent results derived from radiation experiments about the reliability of GPGPUs. Third, it describes of applications running on GPGPUs. Keywords--GPGPUs, reliability, HPC, fault injection, radiation experiments I their appearance on the market. Their very high computational power combined with low cost, reduced power

  19. High power density supercapacitors using locally aligned carbon nanotube electrodes

    E-Print Network [OSTI]

    Du, C S; Yeh, J; Pan, Ning

    2005-01-01T23:59:59.000Z

    4484/16/4/003 High power density supercapacitors usingproduced very high speci?c power density of about 30 kW kg ?manufacturing of high power density supercapacitors and

  20. A Completely Modular Power Converter for High-Power High-Current DC Applications

    E-Print Network [OSTI]

    Paderborn, Universitt

    and filter components. Reliability and availability are other important requirements from the power converter connection of semiconductor devices, however, several centralized components (filters, transformer etc.) are used, which lead to multiple failure modes. Replacement of these large power components is both time

  1. Efficient Transmitters and Receivers for High-Power Wireless Powering Systems

    E-Print Network [OSTI]

    Popovic, Zoya

    Efficient Transmitters and Receivers for High-Power Wireless Powering Systems Zoya Popovic, Tibault of a wireless powering system is maximized when the power transmitter power-added efficiency (PAE), power system, which is valid for any type of wireless power coupling. Experimental results for high

  2. Update to Large Power Transformers and the U.S. Electric Grid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Update to Large Power Transformers and the U.S. Electric Grid Report Now Available Update to Large Power Transformers and the U.S. Electric Grid Report Now Available April 25, 2014...

  3. The NASA CSTI High Capacity Power Program

    SciTech Connect (OSTI)

    Winter, J.M.

    1994-09-01T23:59:59.000Z

    The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil applications. During 1986 and 1987, the NASA Advanced Technology Program was responsible for maintaining the momentum of promising technology advancement efforts started during Phase I of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In 1988, the NASA Advanced Technology Program was incorporated into NASA`s new Civil Space Technology Initiative (CSTI). The CSTI program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA advanced technology project, and provides a bridge to the NASA exploration technology programs. The elements of CSTI high capacity power development include conversion systems - Stirling and thermoelectric, thermal management, power management, system diagnostics, and environmental interactions. Technology advancement in all areas, including materials, is required to provide the growth capability, high reliability and 7 to 10 years lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems while minimizing the impact of day/night operation as well as attitudes and distance from the Sun. Significant accomplishments in all of the program elements will be discussed, along with revised goals and project timelines recently developed.

  4. Modeling Combustion Control for High Power Diesel Mode Switching...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Control for High Power Diesel Mode Switching Modeling Combustion Control for High Power Diesel Mode Switching Poster presentation given at the 16th Directions in...

  5. USABC Energy Storage Testing - High Power and PHEV Development...

    Energy Savers [EERE]

    Energy Storage Testing - High Power and PHEV Development USABC Energy Storage Testing - High Power and PHEV Development Presentation from the U.S. DOE Office of Vehicle...

  6. High-Temperatuer Solar Selective Coating Development for Power...

    Broader source: Energy.gov (indexed) [DOE]

    High-Temperatuer Solar Selective Coating Development for Power Tower Receivers High-Temperatuer Solar Selective Coating Development for Power Tower Receivers This presentation was...

  7. Planar Optical Waveguide Coupler Transformers for High-Power...

    Broader source: Energy.gov (indexed) [DOE]

    Planar Optical Waveguide Coupler Transformers for High-Power Solar Enegy Collection and Transmission Planar Optical Waveguide Coupler Transformers for High-Power Solar Enegy...

  8. High power density supercapacitors using locally aligned carbon nanotube electrodes

    E-Print Network [OSTI]

    Du, C S; Yeh, J; Pan, Ning

    2005-01-01T23:59:59.000Z

    High power density supercapacitors using locally alignedof high power density supercapacitors and other similarcells [6], and for supercapacitors [718]. As unique energy

  9. High Dialectric Constant Capacitors for Power Electronic Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Dialectric Constant Capacitors for Power Electronic Systems High Dialectric Constant Capacitors for Power Electronic Systems 2012 DOE Hydrogen and Fuel Cells Program and...

  10. High-Dialectric-Constant Capacitors for Power Electronic Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Dialectric-Constant Capacitors for Power Electronic Systems High-Dialectric-Constant Capacitors for Power Electronic Systems 2011 DOE Hydrogen and Fuel Cells Program, and...

  11. Low Cost High Concentration PV Systems for Utility Power Generation...

    Energy Savers [EERE]

    Low Cost High Concentration PV Systems for Utility Power Generation Amonix, Inc. Low Cost High Concentration PV Systems for Utility Power Generation Amonix, Inc. A series of brief...

  12. Texas Tech Effort Overview Collaborative Research on Novel High Power

    E-Print Network [OSTI]

    Anlage, Steven

    N) Nonlinear Transmission lines High Power Microwave source development High reprate rf sources HPM wave Power Microwave breakdown Vacuum UV Spectroscopy in atmospheric gases Explosively driven HPM

  13. An improved voltage control on large-scale power system

    SciTech Connect (OSTI)

    Vu, H.; Pruvot, P.; Launay, C.; Harmand, Y. [Electricite de France, Clamart (France). Study and Research Div.] [Electricite de France, Clamart (France). Study and Research Div.

    1996-08-01T23:59:59.000Z

    To achieve a better voltage-var control in the electric power transmission system, different facilities are used. Generators are equipped with automatic voltage regulators to cope with sudden and random changes voltage caused by natural load fluctuations or failures. Other devices like capacitors, inductors, transformers with on load tap changers are installed on the network. Faced with the evolution of the network and operating conditions, electricity utilities are more and more interested in overall and coherent control systems, automatic or not. These systems are expected to coordinate the actions of local facilities for a better voltage control (more stable and faster reaction) inside different areas of the network in case of greater voltage and var variations. They affords besides a better use of existing reactive resources. Also, installation of new devices can be avoided allowing economy of investment. With this frame of mind, EDF has designed a system called Co-ordinated Secondary Voltage Control (CSVC). It`s an automatic closed loop system with a dynamic of a few minutes. It takes into account the network conditions (topology, loads), the voltage limits and the generator operating constraints. This paper presents recent improvements which allow the CSVC to control the voltage profile and different kinds of reactive means on a large-scale power system. Furthermore, this paper presents solution to spread out investment costs over several years, considering a deployment gradually extended.

  14. 2144 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 22, NO. 4, NOVEMBER 2007 Fast SCUC for Large-Scale Power Systems

    E-Print Network [OSTI]

    Fu, Yong

    2144 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 22, NO. 4, NOVEMBER 2007 Fast SCUC for Large introduces an efficient fast SCUC (F-SCUC) for large-scale power systems. Main components used-changing and phase-shifting transformers, and so on [1]. Such SCUC problem is a nonconvex, nonlinear, large

  15. High Power Laser Innovation Sparks Geothermal Power Potential...

    Office of Environmental Management (EM)

    power source among renewables, is poised to emerge also as a flexible power source, balancing intermittent wind and solar power production and reducing variability in energy...

  16. High-power, high-intensity laser propagation and interactions

    SciTech Connect (OSTI)

    Sprangle, Phillip [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States); Electrical and Computer Engineering and Physics, University of Maryland, College Park, Maryland 20740 (United States); Hafizi, Bahman [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2014-05-15T23:59:59.000Z

    This paper presents overviews of a number of processes and applications associated with high-power, high-intensity lasers, and their interactions. These processes and applications include: free electron lasers, backward Raman amplification, atmospheric propagation of laser pulses, laser driven acceleration, atmospheric lasing, and remote detection of radioactivity. The interrelated physical mechanisms in the various processes are discussed.

  17. MI high power operation and future plans

    SciTech Connect (OSTI)

    Kourbanis, Ioanis; /Fermilab

    2008-09-01T23:59:59.000Z

    Fermilab's Main Injector on acceleration cycles to 120 GeV has been running a mixed mode operation delivering beam to both the antiproton source for pbar production and to the NuMI[1] target for neutrino production since 2005. On January 2008 the slip stacking process used to increase the beam to the pbar target was expanded to include the beam to the NuMI target increasing both the beam intensity and power. The current high power MI operation will be described along with the near future plans.

  18. High power density solid oxide fuel cells

    SciTech Connect (OSTI)

    Pham, Ai Quoc; Glass, Robert S.

    2004-10-12T23:59:59.000Z

    A method for producing ultra-high power density solid oxide fuel cells (SOFCs). The method involves the formation of a multilayer structure cells wherein a buffer layer of doped-ceria is deposited intermediate a zirconia electrolyte and a cobalt iron based electrode using a colloidal spray deposition (CSD) technique. For example, a cobalt iron based cathode composed of (La,Sr)(Co,Fe)O (LSCF) may be deposited on a zirconia electrolyte via a buffer layer of doped-ceria deposited by the CSD technique. The thus formed SOFC have a power density of 1400 mW/cm.sup.2 at 600.degree. C. and 900 mW/cm.sup.2 at 700.degree. C. which constitutes a 2-3 times increased in power density over conventionally produced SOFCs.

  19. High power THz sources for nonlinear imaging

    SciTech Connect (OSTI)

    Tekavec, Patrick F.; Kozlov, Vladimir G. [Microtech Instruments, 858 West Park Street, Eugene, OR 97401 (United States)

    2014-02-18T23:59:59.000Z

    Many biological and chemical compounds have unique absorption features in the THz (0.1 - 10 THz) region, making the use of THz waves attractive for imaging in defense, security, biomedical imaging, and monitoring of industrial processes. Unlike optical radiation, THz frequencies can pass through many substances such as paper, clothing, ceramic, etc. with little attenuation. The use of currently available THz systems is limited by lack of highpower, sources as well as sensitive detectors and detector arrays operating at room temperature. Here we present a novel, high power THz source based on intracavity downconverison of optical pulses. The source delivers 6 ps pulses at 1.5 THz, with an average power of >300 ?W and peak powers >450 mW. We propose an imaging method based on frequency upconverison that is ideally suited to use the narrow bandwidth and high peak powers produced by the source. By upconverting the THz image to the infrared, commercially available detectors can be used for real time imaging.

  20. High Power, Linear CMOS Power Amplifier for WLAN Applications /

    E-Print Network [OSTI]

    Afsahi, Ali

    2013-01-01T23:59:59.000Z

    Tracking OFDM Power Amplier, IEEE Journal of Solid-StateGSM/GPRS CMOS Power Ampli?er, IEEE Journal of Solid-StateEnded Switching Power Ampli?es, IEEE Journal of Solid-State

  1. A High Power Density DC-DC Converter for Distributed PV Architectures

    SciTech Connect (OSTI)

    Mohammed S. Agamy; Song Chi; Ahmed Elasser; Maja Harfman-Todorovic; Yan Jiang; Frank Mueller; Fengfeng Tao

    2012-06-01T23:59:59.000Z

    In order to maximize solar energy harvesting capabilities, power converters have to be designed for high efficiency and good MPPT and voltage/current performance. When many converters are used in distributed systems, power density also becomes an important factor as it allows for simpler system integration. In this paper a high power density string dc-dc converter suitable for distributed medium to large scale PV installation is presented. A simple partial power processing topology, implemented with all silicon carbide devices provides high efficiency as well as high power density. A 3.5kW, 100kHz converter is designed and tested to verify the proposed methods.

  2. A comparison of instrumentation for measuring the losses of large power transformers

    SciTech Connect (OSTI)

    Malewski, R.; Arseneau, R.; Moore, W.; So, E.

    1983-06-01T23:59:59.000Z

    The results of a comparison of several different types of equipment and techniques for measuring the short circuit (copper) and open circuit (iron) losses of a large power transformer are presented. The measurements were made on a 233-MVA, 735-kV, single phase, 60-Hz power transformer with a short circuit power factor of 1.3%, at currents up to rated, and open circuit voltages to 115 percent of the rating. The short circuit tests were performed using two current comparator type high-voltage capacitance bridges, a thermal wattmeter, an electro-dynamic wattmeter system with conventional instrument transformers and a new semi-automated digital wattmeter system. For the open-circuit tests only the three wattmeters were employed. The average discrepancy between the five measuring systems used in the short circuit tests was less than 1% and between the three systems in the open circuit tests less than 0.5%.

  3. Models for Assessing Power Fluctuations from Large Wind Farms N. A. Cutululis1)

    E-Print Network [OSTI]

    that the active power supplied from the first large 160 MW offshore wind farm in this system, Horns Rev today). Figure 1. Power generation of Horns Rev offshore wind farm and onshore turbines, January 18 2005Models for Assessing Power Fluctuations from Large Wind Farms N. A. Cutululis1) , P. Srensen1) , A

  4. Large Parabolic Dish collectors with small gas-turbine, Stirling engine or photovoltaic power conversion systems

    SciTech Connect (OSTI)

    Gehlisch, K.; Heikal, H.; Mobarak, A.; Simon, M.

    1982-08-01T23:59:59.000Z

    A comparison for different solar thermal power plants is presented and demonstrates that the large parabolic dish in association with a gas turbine or a Sterling engine could be a competitive system design in the net power range of 50-1000KW. The important advantages of the Large Parabolic Dish concept compared to the Farm and Tower concept are discussed: concentration ratios up to 5000 and uniform heat flux distribution throughout the day which allow very high receiver temperatures and therefor high receiver efficiency to operate effectively Stirling motors or small gas turbines in the mentioned power range with an overall efficiency of 20 to 30%. The high focal plane concentration leads to the efficient use of ceramic materials for receivers of the next generation, applicable in temperature ranges up to 1,300 /sup 0/C for energy converters. Besides the production of electricity, the system can supply process heat in the temperature range of 100 to 400 /sup 0/C as waste heat from the gas turbo converter and heat at temperature levels from 500 to 900 /sup 0/C (1300 /sup 0/C) directly out of the receiver.

  5. High performance magnet power supply optimization

    SciTech Connect (OSTI)

    Jackson, L.T.

    1988-01-01T23:59:59.000Z

    The power supply system for the joint LBL--SLAC proposed accelerator PEP provides the opportunity to take a fresh look at the current techniques employed for controlling large amounts of dc power and the possibility of using a new one. A basic requirement of +- 100 ppM regulation is placed on the guide field of the bending magnets and quadrupoles placed around the 2200 meter circumference of the accelerator. The optimization questions to be answered by this paper are threefold: Can a firing circuit be designed to reduce the combined effects of the harmonics and line voltage combined effects of the harmonics and line voltage unbalance to less than 100 ppM in the magnet field. Given the ambiguity of the previous statement, is the addition of a transistor bank to a nominal SCR controlled system the way to go or should one opt for an SCR chopper system running at 1 KHz where multiple supplies are fed from one large dc bus and the cost--performance evaluation of the three possible systems.

  6. High Dielectric Constant Capacitors for Power Electronic Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dielectric Constant Capacitors for Power Electronic Systems High Dielectric Constant Capacitors for Power Electronic Systems 2009 DOE Hydrogen Program and Vehicle Technologies...

  7. High Dialectric Constant Capacitors for Power Electronic Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dialectric Constant Capacitors for Power Electronic Systems High Dialectric Constant Capacitors for Power Electronic Systems 2010 DOE Vehicle Technologies and Hydrogen Programs...

  8. advanced large power: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  9. IEEE TRANSACTIONS ON POWER SYSTEMS 1 Large-Scale Integration of Deferrable

    E-Print Network [OSTI]

    Oren, Shmuel S.

    . Index Terms--Load management, power generation scheduling, wind power generation. I. INTRODUCTION on power system operations it is necessary to represent the balancing oper- ations of the remaining gridIEEE TRANSACTIONS ON POWER SYSTEMS 1 Large-Scale Integration of Deferrable Demand and Renewable

  10. innovati nNREL Confirms Large Potential for Grid Integration of Wind, Solar Power

    E-Print Network [OSTI]

    innovati nNREL Confirms Large Potential for Grid Integration of Wind, Solar Power To fully harvest a database of potential wind power sites and detailed, time-dependent estimates of the power that would the nation's bountiful wind and solar resources, it is critical to know how much electrical power from

  11. Impacts of Large Amounts of Wind Power on Design and Operation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Impacts of Large Amounts of Wind Power on Design and Operation of Power Systems; Results of IEA Collaboration B. Parsons and E. Ela National Renewable Energy Laboratory, USA H....

  12. A decomposition approach to optimal reactive power dispatch in large-scale power systems

    SciTech Connect (OSTI)

    Deeb, N.I.

    1989-01-01T23:59:59.000Z

    Power systems network operation is aimed at reducing system losses and minimizing the operational cost while satisfying performance requirements in normal and contingency situations. In this project, the procedure for the reactive power optimization has the solutions for investment and operation subproblems. The global solution is an iterative process between these two subproblems using the Bender decomposition method. In the investment subproblem decisions for the capacity and location of new reactive sources are made. These decisions are used in the optimization of the system operation. The outstanding features of the proposed method are that it does not require any matrix inversion, will save computation time and memory space, and can be implemented on very large scale power systems. The method employs a linearized objective function and constraints, and is based on adjusting control variables which are tap positions of transformers and reactive power injections. Linear programming is used to calculate voltage increments, which would minimize transmission losses, and adjustments of control variables would be obtained by a modified Jacobian matrix. This approach would greatly simplify the application of Dantzig-Wolfe decomposition method for solving the operation subproblem. According to the mathematical features of the Dantzig-Wolfe method, a multi-area approach is implemented and system equations are decomposed into a master problem and several subproblems. The master problem is formed by constraints, which represent linking transmission lines between areas. Two updated techniques are incorporated in the method to enhance the optimization process, which would save additional computation time and memory space. The proposed method is applied to the IEEE-30 bus system, a 60-bus system, a 180-bus system and a 1200-bus system, and numerical results are presented.

  13. Reactive power planning of large-scale systems

    SciTech Connect (OSTI)

    Burchett, R.C.; Happ, H.H.; Vierath, D.R.

    1983-01-01T23:59:59.000Z

    This paper discusses short-term operations planning applications in reactive power management involving existing equipment. Reactive power planning involves the sizing and siting of additional reactive support equipment in order to satisfy system voltage constraints (minimum and maximum limits) under both normal and contingency conditions. The use of the Optimal Power Flow (OPF) and the VARPLAN computer codes for operations planning are examined. The OPF software can be used to determine if reactive outputs from nearby generators are scheduled properly, and to confirm that parallel transformers have been properly set. A major benefit of the system planning software VARPLAN is the ability to simultaneously consider both normal and contingency conditions, while adding a minimal amount of new reactive power. Applications to long-term system planning of new reactive power sources are described.

  14. High-power-density spot cooling using bulk thermoelectrics

    E-Print Network [OSTI]

    Zhang, Y; Shakouri, A; Zeng, G H

    2004-01-01T23:59:59.000Z

    model, the cooling power densities of the devices can alsothe cooling power densities 224 times. Experimentally, the14 4 OCTOBER 2004 High-power-density spot cooling using bulk

  15. High frequency inductive lamp and power oscillator

    DOE Patents [OSTI]

    MacLennan, Donald A. (Gaithersburg, MD); Dymond, Jr., Lauren E. (North Potomac, MD); Gitsevich, Aleksandr (Montgomery Village, MD); Grimm, William G. (Silver Spring, MD); Kipling, Kent (Gaithersburg, MD); Kirkpatrick, Douglas A. (Great Falls, VA); Ola, Samuel A. (Silver Spring, MD); Simpson, James E. (Gaithersburg, MD); Trimble, William C. (Columbia, MD); Tsai, Peter (Olney, MD); Turner, Brian P. (Damascus, MD)

    2001-01-01T23:59:59.000Z

    A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and I or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to adjust the driving frequency of the oscillator.

  16. High frequency inductive lamp and power oscillator

    DOE Patents [OSTI]

    MacLennan, Donald A. (Gaithersburg, MD); Turner, Brian P. (Damascus, MD); Dolan, James T. (Frederick, MD); Kirkpatrick, Douglas A. (Great Falls, VA); Leng, Yongzhang (Damascus, MD)

    2000-01-01T23:59:59.000Z

    A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and/or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to match the driving frequency of the oscillator to a plurality of tuning states of the lamp.

  17. Large Power Transformers and the U.S. Electric Grid Report Update...

    Broader source: Energy.gov (indexed) [DOE]

    Reliability has released an update to its 2012 Large Power Transformers and the U.S. Electric Grid report. The new report includes updated information about global electrical...

  18. High power radio frequency attenuation device

    DOE Patents [OSTI]

    Kerns, Quentin A. (Bloomingdale, IL); Miller, Harold W. (Winfield, IL)

    1984-01-01T23:59:59.000Z

    A resistor device for attenuating radio frequency power includes a radio frequency conductor connected to a series of fins formed of high relative magnetic permeability material. The fins are dimensional to accommodate the skin depth of the current conduction therethrough, as well as an inner heat conducting portion where current does not travel. Thermal connections for air or water cooling are provided for the inner heat conducting portions of each fin. Also disclosed is a resistor device to selectively alternate unwanted radio frequency energy in a resonant cavity.

  19. High-Powered Lasers for Clean Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNot Logged3 HanfordHarry|High-Powered Lasers

  20. High-density thermoelectric power generation and nanoscale thermal metrology

    E-Print Network [OSTI]

    Mayer, Peter (Peter Matthew), 1978-

    2007-01-01T23:59:59.000Z

    Thermoelectric power generation has been around for over 50 years but has seen very little large scale implementation due to the inherently low efficiencies and powers available from known materials. Recent material advances ...

  1. FACTS Devices for Large Wind Power Plants A. Adamczyk

    E-Print Network [OSTI]

    Teodorescu, Remus

    -of-the-art in FACTS for large WPPs with AC connection is given. FACTS devices (excluding HVDC) with their properties

  2. Mandatory Green Power Option for Large Municipal Utilities

    Broader source: Energy.gov [DOE]

    Municipal electric utilities serving more than 40,000 customers in Colorado must offer an optional green-power program that allows retail customers the choice of supporting emerging renewable...

  3. Analysis and design of high frequency link power conversion systems for fuel cell power conditioning

    E-Print Network [OSTI]

    Song, Yu Jin

    2005-11-01T23:59:59.000Z

    In this dissertation, new high frequency link power conversion systems for the fuel cell power conditioning are proposed to improve the performance and optimize the cost, size, and weight of the power conversion systems. ...

  4. Analysis and design of high frequency link power conversion systems for fuel cell power conditioning

    E-Print Network [OSTI]

    Song, Yu Jin

    2005-11-01T23:59:59.000Z

    In this dissertation, new high frequency link power conversion systems for the fuel cell power conditioning are proposed to improve the performance and optimize the cost, size, and weight of the power conversion systems. The first study proposes a...

  5. Power excursion analysis for high burnup cores

    SciTech Connect (OSTI)

    Diamond, D.J.; Neymotin, L.; Kohut, P. [Brookhaven National Lab., Upton, NY (United States)

    1996-02-01T23:59:59.000Z

    A study was undertaken of power excursions in high burnup cores. There were three objectives in this study. One was to identify boiling water reactor (BWR) and pressurized water reactor (PWR) transients in which there is significant energy deposition in the fuel. Another was to analyze the response of BWRs to the rod drop accident (RDA) and other transients in which there is a power excursion. The last objective was to investigate the sources of uncertainty in the RDA analysis. In a boiling water reactor, the events identified as having significant energy deposition in the fuel were a rod drop accident, a recirculation flow control failure, and the overpressure events; in a pressurized water reactor, they were a rod ejection accident and boron dilution events. The RDA analysis was done with RAMONA-4B, a computer code that models the space- dependent neutron kinetics throughout the core along with the thermal hydraulics in the core, vessel, and steamline. The results showed that the calculated maximum fuel enthalpy in high burnup fuel will be affected by core design, initial conditions, and modeling assumptions. The important uncertainties in each of these categories are discussed in the report.

  6. Water Cooling of High Power Light Emitting Diode Henrik Srensen

    E-Print Network [OSTI]

    Berning, Torsten

    Water Cooling of High Power Light Emitting Diode Henrik Srensen Department of Energy Technology and product lifetime. The high power Light Emitting Diodes (LED) belongs to the group of electronics

  7. High-Temperature Solar Selective Coating Development for Power...

    Broader source: Energy.gov (indexed) [DOE]

    High-Temperature Solar Selective Coating Development for Power Tower Receivers - FY13 Q1 High-Temperature Solar Selective Coating Development for Power Tower Receivers - FY13 Q1...

  8. High-Temperature Solar Selective Coating Development for Power...

    Broader source: Energy.gov (indexed) [DOE]

    High-Temperature Solar Selective Coating Development for Power Tower Receivers - FY13 Q2 High-Temperature Solar Selective Coating Development for Power Tower Receivers - FY13 Q2...

  9. California Geothermal Power Plant to Help Meet High Lithium Demand...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California Geothermal Power Plant to Help Meet High Lithium Demand California Geothermal Power Plant to Help Meet High Lithium Demand September 20, 2012 - 1:15pm Addthis Ever...

  10. High Efficiency Interleaved Power Electronics Converter for wide operating power range

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    High Efficiency Interleaved Power Electronics Converter for wide operating power range K driving strategy for improving the efficiency of power converters even if they are not used is presented. Index Terms-Power converters, Interleaved, Power efficiency I. CONTEXTE, INTRODUCTION One

  11. High Mass Accuracy and High Mass Resolving Power FT-ICR Secondary...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Mass Accuracy and High Mass Resolving Power FT-ICR Secondary Ion Mass Spectrometry for Biological Tissue Imaging. High Mass Accuracy and High Mass Resolving Power FT-ICR...

  12. A SUBSPACE APPROACH TO FAULT DIAGNOSTICS IN LARGE POWER SYSTEMS

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    and to fast detect and identify possible failures. In this article, we focus on failures in power lines which translate in sudden changes in the electric impedance. To keep track of the current flowing in the line), transmission line states are only refreshed on an hourly basis [1]. For rather static systems, the au- thors

  13. Obtaining the right large power transformer for a hydro plant

    SciTech Connect (OSTI)

    Clemen, D.M. [Harza Engineering Company, Chicago, IL (United States)

    1995-07-01T23:59:59.000Z

    Transformer efficiency and reliability are important factors in determining the productivity of a hydroelectric generating plant. A well-supervised testing program can help plant owners and engineers improve the quality of equipment installed at their plant. This paper addresses such a program as applied to the selection of the generator step-up, or main power, transformer at a hydroelectric generating station.

  14. DECENTRALIZED REAL-TIME MANAGEMENT LARGELY UNPREDICTABLE POWER NEEDS AND SUPPLY

    E-Print Network [OSTI]

    Wedde, Horst F.

    of unpredictable power need and supply situations. We model a representative scenario to explain variousDECENTRALIZED REAL-TIME MANAGEMENT OF LARGELY UNPREDICTABLE POWER NEEDS AND SUPPLY H. F. Wedde*, F technologies based on solar or wind power, or on renewable energy sources, is an adequate management

  15. Simulating the Power Consumption of Large-Scale Sensor Network Applications

    E-Print Network [OSTI]

    Simulating the Power Consumption of Large-Scale Sensor Network Applications Victor Shnayder, Mark of the most important as- pects of sensor application design: that of power consump- tion. While simple approximations of overall power usage can be derived from estimates of node duty cycle and com- munication rates

  16. A SPECULATIVE FRAMEWORK FOR THE APPLICATION OF ARTIFICIAL INTELLIGENCE TO LARGE SCALE INTERCONNECTED POWER SYSTEMS

    E-Print Network [OSTI]

    Hartley, Roger

    INTERCONNECTED POWER SYSTEMS By Nadipuram R. Prasad Satish J. Ranade Electrical Engineering Department New Mexico) technologies to the operation and control of large scale interconnected electric power systems. A fundamental issue discussed in this paper is the control structure of power systems. An evaluation of the control

  17. High power solid state laser modulator

    DOE Patents [OSTI]

    Birx, Daniel L.; Ball, Don G.; Cook, Edward G.

    2004-04-27T23:59:59.000Z

    A multi-stage magnetic modulator provides a pulse train of .+-.40 kV electrical pulses at a 5-7 kHz repetition rate to a metal vapor laser. A fractional turn transformer steps up the voltage by a factor of 80 to 1 and magnetic pulse compression is used to reduce the pulse width of the pulse train. The transformer is fabricated utilizing a rod and plate stack type of construction to achieve a high packing factor. The pulses are controlled by an SCR stack where a plurality of SCRs are electrically connected in parallel, each SCR electrically connected to a saturable inductor, all saturable inductors being wound on the same core of magnetic material for enhanced power handling characteristics.

  18. Method and apparatus for improved high power impulse magnetron sputtering

    DOE Patents [OSTI]

    Anders, Andre

    2013-11-05T23:59:59.000Z

    A high power impulse magnetron sputtering apparatus and method using a vacuum chamber with a magnetron target and a substrate positioned in the vacuum chamber. A field coil being positioned between the magnetron target and substrate, and a pulsed power supply and/or a coil bias power supply connected to the field coil. The pulsed power supply connected to the field coil, and the pulsed power supply outputting power pulse widths of greater that 100 .mu.s.

  19. Measuring and tuning energy efficiency on large scale high performance computing platforms.

    SciTech Connect (OSTI)

    Laros, James H., III

    2011-08-01T23:59:59.000Z

    Recognition of the importance of power in the field of High Performance Computing, whether it be as an obstacle, expense or design consideration, has never been greater and more pervasive. While research has been conducted on many related aspects, there is a stark absence of work focused on large scale High Performance Computing. Part of the reason is the lack of measurement capability currently available on small or large platforms. Typically, research is conducted using coarse methods of measurement such as inserting a power meter between the power source and the platform, or fine grained measurements using custom instrumented boards (with obvious limitations in scale). To collect the measurements necessary to analyze real scientific computing applications at large scale, an in-situ measurement capability must exist on a large scale capability class platform. In response to this challenge, we exploit the unique power measurement capabilities of the Cray XT architecture to gain an understanding of power use and the effects of tuning. We apply these capabilities at the operating system level by deterministically halting cores when idle. At the application level, we gain an understanding of the power requirements of a range of important DOE/NNSA production scientific computing applications running at large scale (thousands of nodes), while simultaneously collecting current and voltage measurements on the hosting nodes. We examine the effects of both CPU and network bandwidth tuning and demonstrate energy savings opportunities of up to 39% with little or no impact on run-time performance. Capturing scale effects in our experimental results was key. Our results provide strong evidence that next generation large-scale platforms should not only approach CPU frequency scaling differently, but could also benefit from the capability to tune other platform components, such as the network, to achieve energy efficient performance.

  20. Including Variability in Large-Scale Cluster Power Models

    E-Print Network [OSTI]

    Rivoire, Suzanne

    , mobile (laptop), desktop, and server processor spac- es, reflecting energy-efficient server.rivoire@sonoma.edu University of CA, Santa Cruz3 eka@soe.ucsc.edu Abstract--Studying the energy efficiency of large five-node clusters using embedded, laptop, desktop, and server processors. The variation is manifested

  1. High power linear pulsed beam annealer

    DOE Patents [OSTI]

    Strathman, Michael D. (Concord, CA); Sadana, Devendra K. (Berkeley, CA); True, Richard B. (Sunnyvale, CA)

    1983-01-01T23:59:59.000Z

    A high power pulsed electron beam is produced in a system comprised of an electron gun having a heated cathode, control grid, focus ring, and a curved drift tube. The drift tube is maintained at a high positive voltage with respect to the cathode to accelerate electrons passing through the focus ring and to thereby eliminate space charge. A coil surrounding the curved drift tube provides a magnetic field which maintains the electron beam focused about the axis of the tube and imparts motion on electrons in a spiral path for shallow penetration of the electrons into a target. The curvature of the tube is selected so there is no line of sight between the cathode and a target holder positioned within a second drift tube spaced coaxially from the curved tube. The second tube and the target holder are maintained at a reference voltage that decelerates the electrons. A second coil surrounding the second drift tube maintains the electron beam focused about the axis of the second drift tube and compresses the electron beam to the area of the target. The target holder can be adjusted to position the target where the cross section of the beam matches the area of the target.

  2. Safety approaches for high power modular laser operation

    SciTech Connect (OSTI)

    Handren, R.T.

    1993-03-01T23:59:59.000Z

    Approximately 20 years ago, a program was initiated at the Lawrence Livermore National Laboratory (LLNL) to study the feasibility of using lasers to separate isotopes of uranium and other materials. Of particular interest has been the development of a uranium enrichment method for the production of commercial nuclear power reactor fuel to replace current more expensive methods. The Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) Program has progressed to the point where a plant-scale facility to demonstrate commercial feasibility has been built and is being tested. The U-AVLIS Program uses copper vapor lasers which pump frequency selective dye lasers to photoionize uranium vapor produced by an electron beam. The selectively ionized isotopes are electrostatically collected. The copper lasers are arranged in oscillator/amplifier chains. The current configuration consists of 12 chains, each with a nominal output of 800 W for a system output in excess of 9 kW. The system requirements are for continuous operation (24 h a day, 7 days a week) and high availability. To meet these requirements, the lasers are designed in a modular form allowing for rapid change-out of the lasers requiring maintenance. Since beginning operation in early 1985, the copper lasers have accumulated over 2 million unit hours at a >90% availability. The dye laser system provides approximately 2.5 kW average power in the visible wavelength range. This large-scale laser system has many safety considerations, including high-power laser beams, high voltage, and large quantities ({approximately}3000 gal) of ethanol dye solutions. The Laboratory`s safety policy requires that safety controls be designed into any process, equipment, or apparatus in the form of engineering controls. Administrative controls further reduce the risk to an acceptable level. Selected examples of engineering and administrative controls currently being used in the U-AVLIS Program are described.

  3. High Reliability, High TemperatureThermoelectric Power Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Thermoelectrics: From Space Power Systems to Terrestrial Waste Heat Recovery Applications Thermoelectrics: From Space Power Systems to Terrestrial Waste...

  4. Adaptive-feedback spectral-phase control for interactions with transform-limited ultrashort high-power laser pulses

    E-Print Network [OSTI]

    Umstadter, Donald

    Adaptive-feedback spectral-phase control for interactions with transform-limited ultrashort high-power large spectral bandwidths. The availability of ultrashort pulses (femto- second) of high-power (petawatt Powers, Isaac Ghebregziabher, and Donald Umstadter* Department of Physics and Astronomy, University

  5. Particle contamination levels in oil-filled large power transformers

    SciTech Connect (OSTI)

    Oommen, T.V.; Petrie, E.M.

    1983-05-01T23:59:59.000Z

    A study of particle levels in transformer oil was conducted, covering about 200 samples taken from field and factory units. Factory samples were included to determine a relative base condition on which to compare field data. Particle distribution curves show size and count relationship in transformers. The particles were studied also by Atomic Absorption Spectroscopy to measure the content of iron, copper and other common metals expected. Particle analysis can supplement more standard laboratory techniques to judge the condition of oil in operating power transformers. The diagnostic value of such analysis, especially in determining pump performance problems, is illustrated with examples.

  6. Thin liquid lithium targets for high power density

    E-Print Network [OSTI]

    McDonald, Kirk

    High charge state High velocity flow ~60 m/s High heat capacity of Li Absorbs power depositedThin liquid lithium targets for high power density applications: heavy ion beam strippers and beta Hilton Malmö City #12;Outline Liquid Lithium Stripper idea for FRIB Brief theory of film stability

  7. High energy, high average power solid state green or UV laser

    DOE Patents [OSTI]

    Hackel, Lloyd A.; Norton, Mary; Dane, C. Brent

    2004-03-02T23:59:59.000Z

    A system for producing a green or UV output beam for illuminating a large area with relatively high beam fluence. A Nd:glass laser produces a near-infrared output by means of an oscillator that generates a high quality but low power output and then multi-pass through and amplification in a zig-zag slab amplifier and wavefront correction in a phase conjugator at the midway point of the multi-pass amplification. The green or UV output is generated by means of conversion crystals that follow final propagation through the zig-zag slab amplifier.

  8. Temporal structure of aggregate power fluctuations in large-eddy simulations of extended wind-farms

    E-Print Network [OSTI]

    Stevens, Richard J A M

    2014-01-01T23:59:59.000Z

    Fluctuations represent a major challenge for the incorporation of electric power from large wind-farms into power grids. Wind farm power output fluctuates strongly in time, over various time scales. Understanding these fluctuations, especially their spatio-temporal characteristics, is particularly important for the design of backup power systems that must be readily available in conjunction with wind-farms. In this work we analyze the power fluctuations associated with the wind-input variability at scales between minutes to several hours, using large eddy simulations (LES) of extended wind-parks, interacting with the atmospheric boundary layer. LES studies enable careful control of parameters and availability of wind-velocities simultaneously across the entire wind-farm. The present study focuses on neutral atmospheric conditions and flat terrain, using actuator-disk representations of the individual wind-turbines. We consider power from various aggregates of wind-turbines such as the total average power sign...

  9. Techniques for high-efficiency outphasing power amplifiers

    E-Print Network [OSTI]

    Godoy, Philip (Philip Andrew)

    2011-01-01T23:59:59.000Z

    A trade-off between linearity and efficiency exists in conventional power amplifiers (PAs). The outphase amplifying concept overcomes this trade-off by enabling the use of high efficiency, non-linear power amplifiers for ...

  10. FUTURE POWER GRID INITIATIVE Real-time High-Performance

    E-Print Network [OSTI]

    FUTURE POWER GRID INITIATIVE Real-time High-Performance Computing Infrastructure for Next- Generation Power Grid Analysis OBJECTIVE We are developing infrastructure, software, formal models for real Infrastructure Operations Center (EIOC), the Pacific Northwest National Laboratory's (PNNL) national electric

  11. Innovative fuel designs for high power density pressurized water reactor

    E-Print Network [OSTI]

    Feng, Dandong, Ph. D. Massachusetts Institute of Technology

    2006-01-01T23:59:59.000Z

    One of the ways to lower the cost of nuclear energy is to increase the power density of the reactor core. Features of fuel design that enhance the potential for high power density are derived based on characteristics of ...

  12. Design of annular fuel for high power density BWRs

    E-Print Network [OSTI]

    Morra, Paolo

    2005-01-01T23:59:59.000Z

    Enabling high power density in the core of Boiling Water Reactors (BWRs) is economically profitable for existing or new reactors. In this work, we examine the potential for increasing the power density in BWR plants by ...

  13. High Power, Linear CMOS Power Amplifier for WLAN Applications /

    E-Print Network [OSTI]

    Afsahi, Ali

    2013-01-01T23:59:59.000Z

    S. Tian, A Highly Linear Direct-Conversion Transmit MixerIntegrated MIMO Multiband Direct Conversion CMOS Transceiver

  14. Broadband High Power Amplifier using Spatial Power Combining Pengcheng Jia 1

    E-Print Network [OSTI]

    and low noise are among the most important features in amplifier design. Broadband spatial power combining the heat sinking in high power application. A high power amplifier using the compact combiner design maintaining good linearity and improving phase noise of the MMIC amplifiers. Coaxial waveguide was used

  15. Nuclear power high technology colloquium: proceedings

    SciTech Connect (OSTI)

    Not Available

    1984-12-10T23:59:59.000Z

    Reports presenting information on technology advancements in the nuclear industry and nuclear power plant functions have been abstracted and are available on the energy data base.

  16. A new power combining and outphasing modulation system for high-efficiency power amplification

    E-Print Network [OSTI]

    Perreault, David J.

    This paper describes a new power combining and outphasing system that provides both high efficiency and linear output control. Whereas conventional outphasing systems utilize two power amplifiers, the system introduced ...

  17. A New Power Combining and Outphasing Modulation System for High-Efficiency Power Amplification

    E-Print Network [OSTI]

    Perreault, David J.

    This paper describes a new power combining and outphasing system that provides both high efficiency and linear output control. Whereas conventional outphasing systems utilize two power amplifiers, the system introduced ...

  18. IEEE TRANSACTIONS LARGE SCALE INTEGRATION (VLSI) SYSTEMS, MARCH Trading Off Transient Fault Tolerance and Power

    E-Print Network [OSTI]

    Tessier, Russell

    tolerance also ultra­low­power consumption limited battery In paper, a highly accurate method estimating. INTRODUCTION T RENDS CMOS technology, applications, operating conditions resulting in circuits higher power con batteries their source power. limited battery the ability of replace recharge battery, circuits used

  19. Planar Optical Waveguide Coupler Transformers for High-Power...

    Broader source: Energy.gov (indexed) [DOE]

    PLANAR OPTICAL WAVEGUIDE COUPLER TRANSFORMERS FOR HIGH-POWER SOLAR ENERGY COLLECTION AND TRAMSMISSION Nobuhiko P. Kobayashi Baskin School of Engineering, University of California...

  20. High Power Superconducting Continuous Wave Linacs for Protons...

    Office of Science (SC) Website

    research, national security, therapeutic isotopes and transmutation of spent nuclear fuel Argonne National Laboratory has been working on research and development of high power...

  1. Novel Manufacturing Technologies for High Power Induction and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Power Induction and Permanent Magnet Electric Motors 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

  2. Modeling Combustion Control for High Power Diesel Mode Switching

    Broader source: Energy.gov (indexed) [DOE]

    Directions in Engine-Efficiency and Emissions Research Conference 2010 Modeling Combustion Control for High Power Diesel Mode Switching Siddhartha Banerjee, Christopher J. Rutland...

  3. Gated Si nanowires for large thermoelectric power factors Neophytos Neophytou1

    E-Print Network [OSTI]

    1 Gated Si nanowires for large thermoelectric power factors Neophytos Neophytou1 and Hans Kosina2 1.Neophytou@warwick.ac.uk Abstract We investigate the effect of electrostatic gating on the thermoelectric power factor of p-type Si, coupled to linearized Boltzmann transport equation for the calculation of the thermoelectric coefficients

  4. PNNL-SA-XXXXX Ultra Large-Scale Power System Control and

    E-Print Network [OSTI]

    Low, Steven H.

    PNNL-SA-XXXXX Ultra Large-Scale Power System Control and Coordination Architecture A Strategic Institute of Technology Rick Geiger Utilities and Smart Grid Cisco Systems #12;#12;PNNL-SA-XXXXX #12;PNNL Richland, Washington 99352 #12;PNNL-SA-XXXXX #12;#12;PNNL-SA-XXXXX 1.0 Introduction Electric power grids

  5. NTL Detection of Electricity Theft and Abnormalities for Large Power Consumers In TNB Malaysia

    E-Print Network [OSTI]

    Ducatelle, Frederick

    in power utilities originating from electricity theft and other customer malfeasances are termed as Non]. Investigations are undertaken by electric utility companies to assess the impact of technical lossesNTL Detection of Electricity Theft and Abnormalities for Large Power Consumers In TNB Malaysia J

  6. Optimization and control of large power engineering systems (principal investigation results)

    SciTech Connect (OSTI)

    Belyaev, L.S.; Gorskii, Yu.M.; Krumm, L.A.; Makarov, A.A.; Merenkov, A.P.; Popyrin, L.S.; Rudenko, Yu.N.; Sher, I.A.

    1980-01-01T23:59:59.000Z

    Principal scientific and practical results of investigations in the development of theory and methods of optimization and control of large power engineering systems, conducted under the scientific and methodological management of the USSR Academy of Sciences Scientific Council on complex problems of power engineering are characterized and the investigation development tasks are formulated. 52 refs.

  7. Identification of Market Power in Large-Scale Electric Energy Markets Bernard C. Lesieutre

    E-Print Network [OSTI]

    Identification of Market Power in Large-Scale Electric Energy Markets Bernard C. Lesieutre Hyung and competitive operation of centrally- dispatched electricity markets. Traditional measures for market power demand and reserve requirements, a centrally-dispatched electricity market provides a transparent

  8. Energy Policy 35 (2007) 15841598 Public opinion about large offshore wind power: Underlying factors

    E-Print Network [OSTI]

    Firestone, Jeremy

    2007-01-01T23:59:59.000Z

    Energy Policy 35 (2007) 15841598 Public opinion about large offshore wind power: Underlying opinion regarding offshore wind power based on a survey of residents near a proposed development off Cape, the first offshore wind proposal in North America, in Nantucket Sound (MA, USA) has generated a strong

  9. The Power of a Few Large Blocks: A credible assumption with incredible efficiency

    E-Print Network [OSTI]

    Foster, Dean P.

    i.i.d. assumption about the error structure, the two-sample t-statistic for oil was significantThe Power of a Few Large Blocks: A credible assumption with incredible efficiency Dongyu Lin and Dean P. Foster Abstract The most powerful assumption in data analysis is that of independence. Unfortu

  10. Princeton Power Systems (TRL 5 6 Component)- Marine High-Voltage Power Conditioning and Transmission System with Integrated Energy Storage

    Broader source: Energy.gov [DOE]

    Princeton Power Systems (TRL 5 6 Component) - Marine High-Voltage Power Conditioning and Transmission System with Integrated Energy Storage

  11. An evolutionary fuel assembly design for high power density BWRs

    E-Print Network [OSTI]

    Karahan, Aydin

    2007-01-01T23:59:59.000Z

    An evolutionary BWR fuel assembly design was studied as a means to increase the power density of current and future BWR cores. The new assembly concept is based on replacing four traditional assemblies and large water gap ...

  12. Large Scale Computing and Storage Requirements for High Energy Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,sand CERNLandLargefor High Energy

  13. Impacts of Large-Scale Wind Generators Penetration on the Voltage Stability of Power Systems

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    development of wind energy tech- nology and the current world-wide status of grid-connected as well as standImpacts of Large-Scale Wind Generators Penetration on the Voltage Stability of Power Systems M. J systems and their dynamic behaviours to identify critical issues that limit the large-scale integration

  14. Parallel domain decomposition for simulation of large-scale power grids

    E-Print Network [OSTI]

    Mohanram, Kartik

    of large-scale linear circuits such as power grids. DD techniques that use non-overlapping and overlap that with the proposed parallel DD framework, existing linear circuit simulators can be extended to handle large- scale can be solved independently in parallel using standard techniques for linear system analysis

  15. E-beam high voltage switching power supply

    DOE Patents [OSTI]

    Shimer, D.W.; Lange, A.C.

    1996-10-15T23:59:59.000Z

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules. 5 figs.

  16. E-beam high voltage switching power supply

    DOE Patents [OSTI]

    Shimer, Daniel W. (Danville, CA); Lange, Arnold C. (Livermore, CA)

    1996-01-01T23:59:59.000Z

    A high-power power supply produces a controllable, constant high voltage put under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules.

  17. Solar Power in the Desert: Are the current large-scale solar developments really improving Californias environment?

    E-Print Network [OSTI]

    Allen, Michael F.; McHughen, Alan

    2011-01-01T23:59:59.000Z

    D EVELOPMENT I SSUES Solar Power in the Desert: Are the2 Most of the large-scale solar power projects utilize largethat will be affected by solar power facilities. There are

  18. Soft Magnetic Materials in High-Frequency, High-Power Conversion Applications

    E-Print Network [OSTI]

    McHenry, Michael E.

    Voltage DC (HVDC) technologies aim to improve the effi- ciency of power networks and benefit from high

  19. assisted high power: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    V. Braun , Jiung Cho, James H. Pikul, William P. King storage Secondary batteries High energy density High power density Lithium ion battery 3D battery electrodes a b s t r a c t...

  20. A new high power, fast charge, sealed lead acid battery

    SciTech Connect (OSTI)

    Juergens, T.; Nelson, R.F.; Ruderman, M.A. [Bolder Technology Corp., Wheat Ridge, CO (United States)

    1994-12-31T23:59:59.000Z

    A new approach to the design of lead acid batteries has been developed based on the use of very thin lead foil current collectors and very high current carrying capacity. The basic cell construction and the performance characteristics for the new cell are described. Spiral wrap cells based on this electrode concept exhibit extremely high power output with excellent capacity maintenance. Additionally, these cells exhibit flat voltage at all currents, and are capable of very rapid recharge. Applications for this high power technology cover a broad spectrum such as portable power tools, UPS systems, electrically heated catalytic converters, pulse power applications and electric and hybrid vehicles. 9 refs.

  1. Do high redshift quasars have powerful jets?

    E-Print Network [OSTI]

    Fabian, A. C.; Walker, S. A.; Celotti, A.; Ghisellini, G.; Mocz, P.; Blundell, K. M.; McMahon, R. G.

    2014-06-04T23:59:59.000Z

    for the injection spectrum and surrounding gas profile (set [A] in Mocz et al (2011): the in- jection spectrum is given by a power-law index 2.14 and Lorentz factors ranging between 1 to 106; the surrounding density profile has a powerlaw index of 1.5). We assume... the galaxy hosts of quasars at z > 3 are com- pact (Szomoru et al 2013), and their group and cluster gas have more energy than is explainable by gravitational infall alone (Wu et al 2000; McCarthy et al 2012). Powerful jets are a considerable source of energy...

  2. High energy physics - The large and the small

    SciTech Connect (OSTI)

    Santoro, Alberto [Universidade do Estado do Rio de Janeiro (Brazil)

    2012-09-24T23:59:59.000Z

    In this Sixth International School on Field Theory and Gravitation, I was invited to give this talk to the students and researchers of Field Theory mainly about LHC - The Large Hadron Collider and results. I will try to summarize the main daily life of the high energy physics and give an idea about the experiments and the expectations for the near future. I will comment the present results and the prospects to LHC/CMS.

  3. Self-consistent electrodynamics of large-area high-frequency capacitive plasma discharge

    SciTech Connect (OSTI)

    Chen Zhigang; Rauf, Shahid; Collins, Ken [Applied Materials, Inc., 974 E. Arques Avenue, Sunnyvale, California 94085 (United States)

    2010-10-15T23:59:59.000Z

    Capacitively coupled plasmas (CCPs) generated using high frequency (3-30 MHz) and very high frequency (30-300 MHz) radio-frequency (rf) sources are used for many plasma processing applications including thin film etching and deposition. When chamber dimensions become commensurate with the effective rf wavelength in the plasma, electromagnetic wave effects impose a significant influence on plasma behavior. Because the effective rf wavelength in plasma depends upon both rf and plasma process conditions (e.g., rf power and gas pressure), a self-consistent model including both the rf power delivery system and the plasma discharge is highly desirable to capture a more complete physical picture of the plasma behavior. A three-dimensional model for self-consistently studying both electrodynamic and plasma dynamic behavior of large-area (Gen 10, >8 m{sup 2}) CCP is described in this paper. This model includes Maxwell's equations and transport equations for charged and neutral species, which are coupled and solved in the time domain. The complete rf plasma discharge chamber including the rf power delivery subsystem, rf feed, electrodes, and the plasma domain is modeled as an integrated system. Based on this full-wave solution model, important limitations for processing uniformity imposed by electromagnetic wave propagation effects in a large-area CCP (3.05x2.85 m{sup 2} electrode size) are studied. The behavior of H{sub 2} plasmas in such a reactor is examined from 13.56 to 200 MHz. It is shown that various rectangular harmonics of electromagnetic fields can be excited in a large-area rectangular reactor as the rf or power is increased. The rectangular harmonics can create not only center-high plasma distribution but also high plasma density at the corners and along the edges of the reactor.

  4. IAEACN69/EXP2/12 Highly Radiative Plasmas for Local Transport Studies and Power and Particle

    E-Print Network [OSTI]

    fusion energy production (7.6 MJ) in a TFTR pulse. Comparisons of the measured radiated power profiles the severe problem of concentrated power loading of the divertor. [2] Experiments have shown that a large1 IAEACN69/EXP2/12 Highly Radiative Plasmas for Local Transport Studies and Power and Particle

  5. IAEA-CN-69/EXP2/12 Highly Radiative Plasmas for Local Transport Studies and Power and Particle

    E-Print Network [OSTI]

    energy production (7.6MJ) in a TFTR pulse. Comparisons of the measured radiated power profiles the severe problem of concentrated power loading of the divertor.[2] Experiments have shown that a large1 IAEA-CN-69/EXP2/12 Highly Radiative Plasmas for Local Transport Studies and Power and Particle

  6. High Power Laser Innovation Sparks Geothermal Power Potential | Department

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov.Energy02.pdf7 OPAM Flash2011-37 OPAMResourceEmploymentHealth,HelpHigh

  7. High power density thermophotovoltaic energy conversion

    SciTech Connect (OSTI)

    Noreen, D.L. [R& D Technologies, Inc., Hoboken, New Jersey 07030 (United States); Du, H. [Department of Materials Science and Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030 (United States)

    1995-01-05T23:59:59.000Z

    R&D Technologies is developing thermophotovoltaic (TPV) technology based on the use of porous/fibrous ceramic broadband-type emitter designs that utilize recuperative or regenerative techniques to improve thermal efficiency and power density. This paper describes preliminary estimates of what will be required to accomplish sufficient power density to develop a practical, commercially-viable TPV generator. It addresses the needs for improved, thermal shock-resistant, long-life porous/fibrous ceramic emitters and provides information on the photocell technology required to achieve acceptable power density in broadband-type (with selective filter) TPV systems. TPV combustors/systems operating at a temperature of 1500 {degree}C with a broadband-type emitter is proposed as a viable starting point for cost-effective TPV conversion. Based on current projections for photocell cost, system power densities of 7.5--10 watts per square centimeter of emitter area will be required for TPV to become a commercially viable technology. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  8. High Power Hg Target Conceptual Design Review

    E-Print Network [OSTI]

    McDonald, Kirk

    Monitor $12000Total $5500 LabView control system (software & hardware) $500 Control box (power supplies in Solidworks $4800AL Base Support Secondary Containment Primary Containment Sump Subsystem $13000Total $5700SS U. S. DEPARTMENT OF ENERGY Conceptual Design Review 7-8 Feb 05 Outline · Procured systems - Syringe

  9. High Power Target Design and Operational Considerations

    E-Print Network [OSTI]

    McDonald, Kirk

    remote handling is a major driving requirement). #12;3 Managed by UT-Battelle for the U.S. Department Issues · Steady state power handling. ­ Cooling of target/enclosure window ­ wettability. ­ Hot spots systems: ­ Mercury loop operation. ­ Remote handling. · Nuclear data. #12;4 Managed by UT

  10. Transient Stability Assessment of Power System with Large Amount of Wind Power Penetration: the

    E-Print Network [OSTI]

    Bak, Claus Leth

    the transient stability. In Denmark, the onshore and offshore wind farms are connected to distribution system and transmission system respectively. The control and protection methodologies of onshore and offshore wind farms definitely affect the transient stability of power system. In this paper, the onshore and offshore wind farms

  11. HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER

    SciTech Connect (OSTI)

    BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

    2003-06-01T23:59:59.000Z

    OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil fuels has trace contaminants (primarily carbon monoxide) that are detrimental to precious metal catalyzed fuel cells, as is now recognized by many of the world's largest automobile companies. Thermochemical hydrogen will not contain carbon monoxide as an impurity at any level. Electrolysis, the alternative process for producing hydrogen using nuclear energy, suffers from thermodynamic inefficiencies in both the production of electricity and in electrolytic parts of the process. The efficiency of electrolysis (electricity to hydrogen) is currently about 80%. Electric power generation efficiency would have to exceed 65% (thermal to electrical) for the combined efficiency to exceed the 52% (thermal to hydrogen) calculated for one thermochemical cycle. Thermochemical water-splitting cycles have been studied, at various levels of effort, for the past 35 years. They were extensively studied in the late 70s and early 80s but have received little attention in the past 10 years, particularly in the U.S. While there is no question about the technical feasibility and the potential for high efficiency, cycles with proven low cost and high efficiency have yet to be developed commercially. Over 100 cycles have been proposed, but substantial research has been executed on only a few. This report describes work accomplished during a three-year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first phase was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most three) for further detailed consideration. During Phase 1, an exhaustive literature search was performed to locate all cycles previously proposed. The cycles located were screened using objective criteria to determine which could benefit, in terms of efficien

  12. Cryogenic System for a High Temperature Superconducting Power Transmission Cable

    SciTech Connect (OSTI)

    Demko, J.A.; Gouge, M.J.; Hughey, R.L.; Lue, J.W.; Martin, R.; Sinha, U.; Stovall, J.P.

    1999-07-12T23:59:59.000Z

    High-temperature superconducting (HTS) cable systems for power transmission are under development that will use pressurized liquid nitrogen to provide cooling of the cable and termination hardware. Southwire Company and Oak Ridge National Laboratory have been operating a prototype HTS cable system that contains many of the typical components needed for a commercial power transmission application. It is being used to conduct research in the development of components and systems for eventual commercial deployment. The cryogenic system was built by Air Products and Chemicals, Allentown, Pennsylvania, and can circulate up to 0.35 kg/s of liquid nitrogen at temperatures as low as 67 K at pressures of 1 to 10 bars. Sufficient cooling is provided for testing a 5-m-long HTS transmission cable system that includes the terminations required for room temperature electrical connections. Testing of the 5-m HTS transmission cable has been conducted at the design ac conditions of 1250 A and 7.5 kV line to ground. This paper contains a description of the essential features of the HTS cable cryogenic system and performance results obtained during operation of the system. The salient features of the operation that are important in large commercial HTS cable applications will be discussed.

  13. High-Temperatuer Solar Selective Coating Development for Power...

    Broader source: Energy.gov (indexed) [DOE]

    must maintain high absorptance in the solar spectrum but lower emittance in the infrared spectrum. It must also be stable in air, easily applied at large scales, cost...

  14. Modular high voltage power supply for chemical analysis

    DOE Patents [OSTI]

    Stamps, James F. (Livermore, CA); Yee, Daniel D. (Dublin, CA)

    2010-05-04T23:59:59.000Z

    A high voltage power supply for use in a system such as a microfluidics system, uses a DC-DC converter in parallel with a voltage-controlled resistor. A feedback circuit provides a control signal for the DC-DC converter and voltage-controlled resistor so as to regulate the output voltage of the high voltage power supply, as well as, to sink or source current from the high voltage supply.

  15. Modular high voltage power supply for chemical analysis

    SciTech Connect (OSTI)

    Stamps, James F. (Livermore, CA); Yee, Daniel D. (Dublin, CA)

    2007-01-09T23:59:59.000Z

    A high voltage power supply for use in a system such as a microfluidics system, uses a DC--DC converter in parallel with a voltage-controlled resistor. A feedback circuit provides a control signal for the DC--DC converter and voltage-controlled resistor so as to regulate the output voltage of the high voltage power supply, as well as, to sink or source current from the high voltage supply.

  16. Modular high voltage power supply for chemical analysis

    SciTech Connect (OSTI)

    Stamps, James F. (Livermore, CA); Yee, Daniel D. (Dublin, CA)

    2008-07-15T23:59:59.000Z

    A high voltage power supply for use in a system such as a microfluidics system, uses a DC-DC converter in parallel with a voltage-controlled resistor. A feedback circuit provides a control signal for the DC-DC converter and voltage-controlled resistor so as to regulate the output voltage of the high voltage power supply, as well as, to sink or source current from the high voltage supply.

  17. High-Efficiency Harmonically-Terminated Rectifier for Wireless Powering Applications Michael Roberg, Erez Falkenstein and Zoya Popovic

    E-Print Network [OSTI]

    Popovic, Zoya

    High-Efficiency Harmonically-Terminated Rectifier for Wireless Powering Applications Michael Roberg of Colorado, Boulder, CO, 80309-0425 Abstract-In wireless powering, the rectifier efficiency has a large effect on overall system efficiency. This paper presents an approach to high-efficiency microwave

  18. Efficient, high power battery module; d. c. transformers and multi-terminal d. c. power networks utilizing same

    SciTech Connect (OSTI)

    Heitz, R.G.

    1981-06-16T23:59:59.000Z

    Multiterminal, high voltage dc power networks is disclosed in which the sub-terminals are electrically isolated from each other comprise dc transformers, as the terminals. Each transformer comprises a large number of efficient, high energy batteries, connected as two separate groups: one group made up of paralleled long strings of series connected batteries and the other group made up of paralleled short strings of one or more batteries each. Each transformer also comprises automatic monitoring, control and switching means for periodically exchanging charged and discharged strings between the two groups, one of which-the ''primary''-is connected across the supply lines from the power source(s) for the network and the other of which-the ''secondary''-is connected across the service lines providing power to users thereof.

  19. A High Power-Density Mediator-Free Microfluidic Biophotovoltaic Device for Cyanobacterial Cells

    E-Print Network [OSTI]

    Bombelli, Paolo; Mueller, Thomas; Herling, Therese W.; Howe, Christopher J.; Knowles, Tuomas P. J.

    2014-09-16T23:59:59.000Z

    A High Power-Density Mediator-Free Microfluidic Biophotovoltaic Device for Cyanobacterial Cells Paolo Bombelli,1, a) Thomas Muller,2, a) Therese W. Herling,2 Christopher J. Howe,1, b) and Tuomas P. J. Knowles2, c) 1)Department of Biochemistry... that achievable through synthetic materials. Here, we devise a platform to harness the large power densities afforded by miniaturised geometries. To this effect, we have developed a soft-lithography approach for the fabrication of microfluidic biophotovoltaic...

  20. Thermalization in collisions of large nuclei at high energies

    E-Print Network [OSTI]

    Aleksi Kurkela

    2013-03-19T23:59:59.000Z

    Hydrodynamical analysis of experimental data of ultrarelativistic heavy ion collisions seems to indicate that the hot QCD matter created in the collisions thermalizes very quickly. Theoretically, we have no idea why this should be true. In this proceeding, I will describe how the thermalization takes place in the most theoretically clean limit -- that of large nuclei at asymptotically high energy per nucleon, where the system is described by weak-coupling QCD. In this limit, plasma instabilities dominate the dynamics from immediately after the collision until well after the plasma becomes nearly in equilibrium at time t \\alpha^(-5/2)Q^(-1).

  1. Suppression of static electrification of insulating oil for large power transformers

    SciTech Connect (OSTI)

    Yasuda, M.; Goto, K.; Ishii, T.; Masunaga, M.; Mori, E.; Okubo, H.

    1982-11-01T23:59:59.000Z

    Streaming electrification of large power transformers is discussed here from the standpoint of characteristics of insulating oils used in them. First, the relation between the thermal degradation and charging tendency of insulating oils is defined to show that suppressing the degradation of oils to be caused by long term operation of the transformers can minimize the rise in charging tendency, leading to suppressed streaming electrification within the transformer. Second, experimental results show that alkylbenzene mixture oil and benzotriazol additive oil are excellent in charging characteristics when used as insulating oils of large power transformers.

  2. SOLAR POWERING OF HIGH EFFICIENCY ABSORPTION CHILLER

    SciTech Connect (OSTI)

    Randy C. Gee

    2004-11-15T23:59:59.000Z

    This is the Final Report for two solar cooling projects under this Cooperative Agreement. The first solar cooling project is a roof-integrated solar cooling and heating system, called the Power Roof{trademark}, which began operation in Raleigh, North Carolina in late July 2002. This system provides 176 kW (50 ton) of solar-driven space cooling using a unique nonimaging concentrating solar collector. The measured performance of the system during its first months of operation is reported here, along with a description of the design and operation of this system. The second solar cooling system, with a 20-ton capacity, is being retrofit to a commercial office building in Charleston, South Carolina but has not yet been completed.

  3. A SIMPLIFIED ANALYSIS FOR HIGH POWER MICROWAVE BANDPASS FILTER STRUCTURES

    E-Print Network [OSTI]

    Yu, Ming

    and wireless diplexers. An exact analysis of the voltage/power distribution inside a filter involves the 3D is derived. This transformation is then used to relate the actual voltage distribution inside a transmissionA SIMPLIFIED ANALYSIS FOR HIGH POWER MICROWAVE BANDPASS FILTER STRUCTURES Apu Sivadas, Ming Yu

  4. High Performance Circuits for Power Management and Millimeter Wave Applications

    E-Print Network [OSTI]

    Amer, Ahmed 1979-

    2012-01-23T23:59:59.000Z

    to achieve the required goals in terms of small silicon area and power consumption while at the same time achieve high performance. Four key building blocks in power management and a switchable harmonic mixer with pre-amplifier and poly-phase generator as a...

  5. Production cost and air emissions impacts of coal cycling in power systems with large-scale wind penetration

    E-Print Network [OSTI]

    Jaramillo, Paulina

    on dispatchable generating capacity, such as coal and natural gas power plants, which can be cycled in responseProduction cost and air emissions impacts of coal cycling in power systems with large-scale wind emissions impacts of coal cycling in power systems with large-scale wind penetration David Luke Oates

  6. Inflation that runs naturally: Gravitational waves and suppression of power at large and small scales

    E-Print Network [OSTI]

    Quinn E. Minor; Manoj Kaplinghat

    2015-03-08T23:59:59.000Z

    We point out three correlated predictions of the axion monodromy inflation model: large amplitude of gravitational waves, suppression of power on horizon scales and on scales relevant for the formation of dwarf galaxies. While these predictions are likely generic to models with oscillations in the inflaton potential, the axion monodromy model naturally accommodates the required running spectral index through Planck-scale corrections to the inflaton potential. Applying this model to a combined data set of Planck, ACT, SPT, and WMAP low-$\\ell$ polarization cosmic microwave background (CMB) data, we find a best-fit tensor-to-scalar ratio $r_{0.05} = 0.07^{+0.05}_{-0.04}$ due to gravitational waves, which may have been observed by the BICEP2 experiment. Despite the contribution of gravitational waves, the total power on large scales (CMB power spectrum at low multipoles) is lower than the standard $\\Lambda$CDM cosmology with a power-law spectrum of initial perturbations and no gravitational waves, thus mitigating some of the tension on large scales. There is also a reduction in the matter power spectrum of 20-30\\% at scales corresponding to $k = 10~{\\rm Mpc}^{-1}$, which are relevant for dwarf galaxy formation. This will alleviate some of the unsolved small-scale structure problems in the standard $\\Lambda$CDM cosmology. The inferred matter power spectrum is also found to be consistent with recent Lyman-$\\alpha$ forest data, which is in tension with the Planck-favored $\\Lambda$CDM model with power-law primordial power spectrum.

  7. Power conversion architecture for grid interface at high switching frequency

    E-Print Network [OSTI]

    Lim, Seungbum

    This paper presents a new power conversion architecture for single-phase grid interface. The proposed architecture is suitable for realizing miniaturized ac-dc converters operating at high frequencies (HF, above 3 MHz) and ...

  8. High voltage ignition of high pressure microwave powered UV light sources

    SciTech Connect (OSTI)

    Frank, J.D.; Cekic, M.; Wood, C.H. [Fusion U.V. Curing Systems Corp., Gaithersburg, MD (United States)

    1997-12-31T23:59:59.000Z

    Industrial microwave powered (electrodeless) light sources have been limited to quiescent pressures of {approximately}300 Torr of buffer gas and metal-halide fills. The predominant reason for such restrictions has been the inability to microwave ignite the plasma due to the collisionality of higher pressure fills and/or the electronegativity of halide bulb chemistries. Commercially interesting bulb fills require electric fields for ionization that are often large multiples of the breakdown voltage for air. Many auxiliary ignition methods are evaluated for efficiency and practicality before the choice of a high-voltage system with a retractable external electrode. The scheme utilizes a high voltage pulse power supply and a novel field emission source. Acting together they create localized condition of pressure reduction and high free electron density. This allows the normal microwave fields to drive this small region into avalanche, ignite the bulb, and heat the plasma to its operating point (T{sub e} {approx} 0.5 eV). This process is currently being used in a new generation of lamps, which are using multi-atmospheric excimer laser chemistries and pressure and constituent enhanced metal-halide systems. At the present time, production prototypes produce over 900 W of radiation in a 30 nm band, centered at 308 nm. Similarly, these prototypes when loaded with metal-halide bulb fills produce over 1 kW of radiation in 30 nm wide bands, centered about the wavelength of interest.

  9. Static reactive power compensators for high-voltage power systems. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-04-01T23:59:59.000Z

    A study conducted to summarize the role of static reactive power compensators for high voltage power system applications is described. This information should be useful to the utility system planning engineer in applying static var systems (SVS) to high voltage as (HVAC) systems. The static var system is defined as a form of reactive power compensator. The general need for reactive power compensation in HVAC systems is discussed, and the static var system is compared to other devices utilized to provide reactive power compensation. Examples are presented of applying SVS for specific functions, such as the prevention of voltage collapse. The operating principles of commercially available SVS's are discussed in detail. The perormance and active power loss characteristics of SVS types are compared.

  10. High power laser workover and completion tools and systems

    DOE Patents [OSTI]

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2014-10-28T23:59:59.000Z

    Workover and completion systems, devices and methods for utilizing 10 kW or more laser energy transmitted deep into the earth with the suppression of associated nonlinear phenomena. Systems and devices for the laser workover and completion of a borehole in the earth. These systems and devices can deliver high power laser energy down a deep borehole, while maintaining the high power to perform laser workover and completion operations in such boreholes deep within the earth.

  11. Apparatus for advancing a wellbore using high power laser energy

    DOE Patents [OSTI]

    Zediker, Mark S.; Land, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Koblick, Yeshaya; Moxley, Joel F.

    2014-09-02T23:59:59.000Z

    Delivering high power laser energy to form a borehole deep into the earth using laser energy. Down hole laser tools, laser systems and laser delivery techniques for advancement, workover and completion activities. A laser bottom hole assembly (LBHA) for the delivery of high power laser energy to the surfaces of a borehole, which assembly may have laser optics, a fluid path for debris removal and a mechanical means to remove earth.

  12. High Metallicity, Photoionised Gas in Intergalactic Large-Scale Filaments

    E-Print Network [OSTI]

    Bastien Aracil; Todd M. Tripp; David V. Bowen; Jason X. Proschaska; Hsiao-Wen Chen; Brenda L. Frye

    2006-08-21T23:59:59.000Z

    We present high-resolution UV spectra of absorption-line systems toward the low-z QSO HS0624+6907 (z=0.3700). Coupled with spectroscopic galaxy redshifts, we find that many of these absorbers are integalactic gas clouds distributed within large-scale structures. The gas is cool (T0.9). STIS data reveal a cluster of 13 HI Lyman alpha lines within a 1000 km/s interval at z=0.0635. We find 10 galaxies at this redshift with impact parameters ranging from 135 h^-1 kpc to 1.37 h^-1 Mpc. We attribute the HI Lya absorptions to intragroup medium gas, possibly from a large-scale filament viewed along its long axis. Remarkably, the metallicity is near-solar, [M/H] = -0.05 +/- 0.4 (2 sigma uncertainty), yet the nearest galaxy which might pollute the IGM is at least 135 h_70^-1 kpc away. Tidal stripping from nearby galaxies appears to be the most likely origin of this highly enriched, cool gas. More than six Abell galaxy clusters are found within 4 degree of the sight line suggesting that the QSO line of sight passes near a node in the cosmic web. At z~0.077, we find absorption systems as well as galaxies at the redshift of the nearby clusters Abell 564 and Abell 559. We conclude that the sight line pierces a filament of gas and galaxies feeding into these clusters. The absorber at z_abs = 0.07573 associated with Abell 564/559 also has a high metallicity with [C/H] > -0.6, but again the closest galaxy is relatively far from the sight line (293 h^-1 kpc).

  13. Silicon carbide mirrors for high power applications

    SciTech Connect (OSTI)

    Takacs, P.Z.

    1981-11-01T23:59:59.000Z

    The advent of synchrotron radiation (SR) sources and high energy lasers (HEL) in recent years has brought about the need for optical materials that can withstand the harsh operating conditions in such devices. SR mirrors must be ultra-high vacuum compatible, must withstand intense x-ray irradiation without surface damage, must maintain surface figure under thermal loading and must be capable of being polished to an extremely smooth surface finish. Chemical vapor deposited (CVD) silicon carbide in combination with sintered substrate material meets these requirements and offers additional benefits as well. It is an extremely hard material and offers the possibility of being cleaned and recoated many times without degradation of the surface finish, thereby prolonging the lifetime of expensive optical components. It is an extremely strong material and offers the possibility of weight reduction over conventional mirror materials.

  14. A TWO-STAGE APPROACH TO SOLVING LARGE-SCALE OPTIMAL POWER FLOWS

    E-Print Network [OSTI]

    Gross, George

    A TWO-STAGE APPROACH TO SOLVING LARGE-SCALE OPTIMAL POWER FLOWS *F e l i x F. Wu George Gross James problem is formulated as an unconstrained minimization problem using penalty functions and i s solved ] and Sasson and Merrill [ 3 ] . The s i z e and t h e extensive amount of computation involved i n solving t h

  15. Lamp for generating high power ultraviolet radiation

    DOE Patents [OSTI]

    Morgan, Gary L. (Elkridge, MD); Potter, James M. (Los Alamos, NM)

    2001-01-01T23:59:59.000Z

    The apparatus is a gas filled ultraviolet generating lamp for use as a liquid purifier. The lamp is powred by high voltage AC, but has no metallic electrodes within or in contact with the gas enclosure which is constructed as two concentric quartz cylinders sealed together at their ends with the gas fill between the cylinders. Cooling liquid is pumped through the volume inside the inner quartz cylinder where an electrically conductive pipe spaced from the inner cylinder is used to supply the cooling liquid and act as the high voltage electrode. The gas enclosure is enclosed within but spaced from a metal housing which is connected to operate as the ground electrode of the circuit and through which the treated fluid flows. Thus, the electrical circuit is from the central pipe, and through the cooling liquid, the gas enclosure, the treated liquid on the outside of the outer quartz cylinder, and to the housing. The high voltage electrode is electrically isolated from the source of cooling liquid by a length of insulated hose which also supplies the cooling liquid.

  16. Low Cost Components: Advanced High Power & High Energy Battery...

    Energy Savers [EERE]

    DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland. merit08amine2.pdf More Documents & Publications Engineering of High...

  17. Large-scale Ocean-based or Geothermal Power Plants by Thermoelectric Effects

    E-Print Network [OSTI]

    Liu, Liping

    2012-01-01T23:59:59.000Z

    Heat resources of small temperature difference are easily accessible, free and unlimited on earth. Thermoelectric effects provide the technology for converting these heat resources directly into electricity. We present designs of electricity generators based on thermoelectric effects and using heat resources of small temperature difference, e.g., ocean water at different depths and geothermal sources, and conclude that large-scale power plants based on thermoelectric effects are feasible and economically competitive. The key observation is that the power factor of thermoelectric materials, unlike the figure of merit, can be improved by orders of magnitude upon laminating good conductors and good thermoelectric materials. The predicted large-scale power plants based on thermoelectric effects, if validated, will have a global economic and social impact for its scalability, and the renewability, free and unlimited supply of heat resources of small temperature difference on earth.

  18. High power terahertz generation using 1550?nm plasmonic photomixers

    SciTech Connect (OSTI)

    Berry, Christopher W. [Electrical Engineering and Computer Science Department, University of Michigan, Ann Arbor, Michigan 48109 (United States); Hashemi, Mohammad R.; Jarrahi, Mona [Electrical Engineering and Computer Science Department, University of Michigan, Ann Arbor, Michigan 48109 (United States); Electrical Engineering Department, University of California Los Angeles, Los Angeles, California 90095 (United States); Preu, Sascha [Department of Electrical Engineering and Information Technology, Technical University Darmstadt, D-64283 Darmstadt (Germany); Lu, Hong; Gossard, Arthur C. [Materials Department, University of California, Santa Barbara, California 93106 (United States)

    2014-07-07T23:59:59.000Z

    We present a 1550?nm plasmonic photomixer operating under pumping duty cycles below 10%, which offers significantly higher terahertz radiation power levels compared to previously demonstrated photomixers. The record-high terahertz radiation powers are enabled by enhancing the device quantum efficiency through use of plasmonic contact electrodes, and by mitigating thermal breakdown at high optical pump power levels through use of a low duty cycle optical pump. The repetition rate of the optical pump can be specifically selected at a given pump duty cycle to control the spectral linewidth of the generated terahertz radiation. At an average optical pump power of 150 mW with a pump modulation frequency of 1 MHz and pump duty cycle of 2%, we demonstrate up to 0.8 mW radiation power at 1 THz, within each continuous wave radiation cycle.

  19. Large Hybrid Energy Systems for Making Low CO2 Load-Following Power and Synthetic Fuel

    SciTech Connect (OSTI)

    Robert S. Cherry; Richard D. Boardman; Steven Aumeier

    2012-02-01T23:59:59.000Z

    Hybrid energy systems using nuclear heat sources can economically produce load-following electrical power by exploiting the surplus generation capacity available at night or seasonally to make synthetic fuel. Vehicle fuel is the only current energy use large enough to absorb all the energy capacity that might be diverted from the power industry, and its ease of storage obviates problems with discontinuous synfuel production. The potential benefits and challenges of synfuels integration are illustrated by the production of methanol from natural gas (as a source of carbon) using steam from a light water nuclear power reactor which is assumed to be available in accord with a year's worth of power demand data. Methanol's synthesis process is easily adapted to using 300 C heat from a light water reactor and this simple compound can be further processed into gasoline, biodiesel, or dimethyl ether, fuels which can be used with the current vehicle fleet. A supplemental feed to the methanol process of natural gas (for energy) allows operation at constant full rate when the nuclear heat is being used to produce electrical power. The higher capital costs of such a system are offset by a lower cost of heat and power production from a large base load type of plant and by reduced costs associated with much lower CO2 emissions. Other less tangible economic benefits of this and similar hybrid systems include better use of natural resource for fuels and greater energy services security from the domestic production of vehicle fuel.

  20. For economic energy, we need: tritium, large size to obtain hot fusing plasma; high fields and large currents

    E-Print Network [OSTI]

    11 For economic energy, we need: tritium, large size to obtain hot fusing plasma; high fields: a Component Test Facility is much needed; ST appears simplest and most economic in tritium: BUT the high cost

  1. Control of high power IGBT modules in the active region for fast pulsed power converters

    E-Print Network [OSTI]

    Cravero, JM; Garcia Retegui, R; Maestri, S; Uicich, G

    2014-01-01T23:59:59.000Z

    At CERN, fast pulsed power converters are used to supply trapezoidal current in different magnet loads. These converters perform output current regulation by using a high power IGBT module in its ohmic region. This paper presents a new strategy for pulsed current control applications using a specifically designed IGBT driver.

  2. Using a Balun Transformer Combiner for High Power Microwave Experiments

    SciTech Connect (OSTI)

    Kaufman, Michael C [ORNL; Pesavento, Philip V [ORNL

    2011-01-01T23:59:59.000Z

    A novel coaxial power combiner design has been duplicated that has distinct advantages over other combiner geometries that can handle high power. This design is being applied to combine four 3 kW power supplies to obtain a 10 kW, 5 MHz system for an ICRF antenna on HSX. In the past, Wilkinson type combiners have had limited application to high power systems because of the lack of non-inductive, high power, 100 Omega balance loads. With this new design, standard 50 Omega dummy loads can be used instead for the balance load. The cost is considerably lower than lumped element combiner designs which are dominated by capacitor costs. At such a relatively low frequency, a 3-dB quarter-wave coupled-line coupler becomes impractically long, and a conventional branch-line hybrid requires 35 Omega-line, which is commercially unavailable. The balun combiner uses less transmission line than a ring hybrid and has good bandwidth characteristics even away from its best line impedance. Theoretical calculations and modeling were performed for line impedances from 65 Omega to 75 Omega. Measurements from a low-power test device show excellent agreement with theory, and construction of the high power system is underway.

  3. Active high-power RF switch and pulse compression system

    DOE Patents [OSTI]

    Tantawi, Sami G. (San Mateo, CA); Ruth, Ronald D. (Woodside, CA); Zolotorev, Max (Mountain View, CA)

    1998-01-01T23:59:59.000Z

    A high-power RF switching device employs a semiconductor wafer positioned in the third port of a three-port RF device. A controllable source of directed energy, such as a suitable laser or electron beam, is aimed at the semiconductor material. When the source is turned on, the energy incident on the wafer induces an electron-hole plasma layer on the wafer, changing the wafer's dielectric constant, turning the third port into a termination for incident RF signals, and. causing all incident RF signals to be reflected from the surface of the wafer. The propagation constant of RF signals through port 3, therefore, can be changed by controlling the beam. By making the RF coupling to the third port as small as necessary, one can reduce the peak electric field on the unexcited silicon surface for any level of input power from port 1, thereby reducing risk of damaging the wafer by RF with high peak power. The switch is useful to the construction of an improved pulse compression system to boost the peak power of microwave tubes driving linear accelerators. In this application, the high-power RF switch is placed at the coupling iris between the charging waveguide and the resonant storage line of a pulse compression system. This optically controlled high power RF pulse compression system can handle hundreds of Megawatts of power at X-band.

  4. Electronic power conditioning for dynamic power conversion in high-power space systems

    E-Print Network [OSTI]

    Hansen, James Michael

    1991-01-01T23:59:59.000Z

    . 55. 56. 57. Voltage and Current Waveforms for the Single-Phase PM System at Full Power ? w = v, z, z . Voltage and Current Waveforms f' or the Single-Phase PiVI System at Full Power ? ~ & cu, q, s, Compensated Voltage and Current Waveforms..., Compensated Voltage and Current Waveforms for the Single-Phase PM System at Half Power ? ~ & ~?, z, s, Compensated Voltage and Current Waveforms for the Three-Phase WF System at Full Power ? w: M, gtpd Voltage and Current Waveforms for the Three-Phase WF...

  5. Abstract--A large share of integrated wind power causes technical and financial impacts on the operation of the existing

    E-Print Network [OSTI]

    the future wind power feed-in. But in an efficient market setting, power plant operators will take1 Abstract-- A large share of integrated wind power causes technical and financial impacts behaviour of the wind power generation and of the prediction error. It can be used for the evaluation

  6. Single-mode optical fiber for high-power, low-loss UV transmission

    E-Print Network [OSTI]

    Yves Colombe; Daniel H. Slichter; Andrew C. Wilson; Dietrich Leibfried; David J. Wineland

    2014-08-08T23:59:59.000Z

    We report large-mode-area solid-core photonic crystal fibers made from fused silica that resist ultraviolet (UV) solarization even at relatively high optical powers. Using a process of hydrogen loading and UV irradiation of the fibers, we demonstrate stable single-mode transmission over hundreds of hours for fiber output powers of 10 mW at 280 nm and 125 mW at 313 nm (limited only by the available laser power). Fiber attenuation ranges from 0.9 dB/m to 0.13 dB/m at these wavelengths, and is unaffected by bending for radii above 50 mm.

  7. High Performance Multivariate Visual Data Exploration for Extremely Large Data

    SciTech Connect (OSTI)

    Rubel, Oliver; Wu, Kesheng; Childs, Hank; Meredith, Jeremy; Geddes, Cameron G.R.; Cormier-Michel, Estelle; Ahern, Sean; Weber, Gunther H.; Messmer, Peter; Hagen, Hans; Hamann, Bernd; Bethel, E. Wes; Prabhat,

    2008-08-22T23:59:59.000Z

    One of the central challenges in modern science is the need to quickly derive knowledge and understanding from large, complex collections of data. We present a new approach that deals with this challenge by combining and extending techniques from high performance visual data analysis and scientific data management. This approach is demonstrated within the context of gaining insight from complex, time-varying datasets produced by a laser wakefield accelerator simulation. Our approach leverages histogram-based parallel coordinates for both visual information display as well as a vehicle for guiding a data mining operation. Data extraction and subsetting are implemented with state-of-the-art index/query technology. This approach, while applied here to accelerator science, is generally applicable to a broad set of science applications, and is implemented in a production-quality visual data analysis infrastructure. We conduct a detailed performance analysis and demonstrate good scalability on a distributed memory Cray XT4 system.

  8. Highly Effective Action from Large N Gauge Fields

    E-Print Network [OSTI]

    Hyun Seok Yang

    2014-09-25T23:59:59.000Z

    Recently John H. Schwarz put forward a conjecture that the world-volume action of a probe D3-brane in an AdS5 x S5 background of type IIB superstring theory can be reinterpreted as the highly effective action (HEA) of four-dimensional N=4 superconformal field theory on the Coulomb branch. We argue that the HEA can be derived from the noncommutative (NC) field theory representation of the AdS/CFT correspondence and the Seiberg-Witten (SW) map defining a spacetime field redefinition between ordinary and NC gauge fields. It is based only on the well-known facts that the master fields of large N matrices are higher-dimensional NC U(1) gauge fields and the SW map is a local coordinate transformation eliminating U(1) gauge fields known as the Darboux theorem in symplectic geometry.

  9. In high-tech industries, large amounts of reliable, high-quality

    E-Print Network [OSTI]

    energy technologies that make use of "waste heat" from onsite generators in a combined heat and power cooling, according to Verizon engineers. High-grade waste heat from the fuel cells is recovered and used. During the winter months, the waste heat is used by the HRSG for heating, as needed, to supplement

  10. Klamath Falls: High-Power Acoustic Well Stimulation Technology

    SciTech Connect (OSTI)

    Black, Brian

    2006-07-24T23:59:59.000Z

    Acoustic well stimulation (AWS) technology uses high-power sonic waves from specific frequency spectra in an attempt to stimulate production in a damaged or low-production wellbore. AWS technology is one of the most promising technologies in the oil and gas industry, but it has proven difficult for the industry to develop an effective downhole prototype. This collaboration between Klamath Falls Inc. and the Rocky Mountain Oilfield Testing Center (RMOTC) included a series of tests using high-power ultrasonic tools to stimulate oil and gas production. Phase I testing was designed and implemented to verify tool functionality, power requirements, and capacity of high-power AWS tools. The purpose of Phase II testing was to validate the production response of wells with marginal production rates to AWS stimulation and to capture and identify any changes in the downhole environment after tool deployment. This final report presents methodology and results.

  11. Power and polarization monitor development for high power millimeter-wave

    SciTech Connect (OSTI)

    Makino, R., E-mail: makino.ryohhei@ms.nifs.ac.jp; Kobayashi, K. [Department of Energy Engineering and Science, Nagoya University, Nagoya 464-8603 (Japan); Kubo, S. [Department of Energy Engineering and Science, Nagoya University, Nagoya 464-8603 (Japan); National Institute for Fusion Science, Toki 509-5292 (Japan); Kobayashi, S.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Takahashi, H.; Mutoh, T. [National Institute for Fusion Science, Toki 509-5292 (Japan)

    2014-11-15T23:59:59.000Z

    A new type monitor of power and polarization states of millimeter-waves has been developed to be installed at a miter-bend, which is a part of transmission lines of millimeter-waves, for electron cyclotron resonance heating on the Large Helical Device. The monitor measures amplitudes and phase difference of the electric field of the two orthogonal polarizations which are needed for calculation of the power and polarization states of waves. The power and phase differences of two orthogonal polarizations were successfully detected simultaneously.

  12. Energy deposition studies for the High-Luminosity Large Hadron Collider inner triplet magnets

    E-Print Network [OSTI]

    Mokhov, N V; Tropin, I S; Cerutti, F; Esposito, L S; Lechner, A

    2015-01-01T23:59:59.000Z

    A detailed model of the High Luminosity LHC inner triplet region with new large-aperture Nb3Sn magnets, field maps, corrector packages, and segmented tungsten inner absorbers was built and implemented into the FLUKA and MARS15 codes. In the optimized configuration, the peak power density averaged over the magnet inner cable width is safely below the quench limit. For the integrated luminosity of 3000 fb-1, the peak dose in the innermost magnet insulator ranges from 20 to 35 MGy. Dynamic heat loads to the triplet magnet cold mass are calculated to evaluate the cryogenic capability. In general, FLUKA and MARS results are in a very good agreement.

  13. Uppsala High Power Test Stand for ESS Spoke Cavities

    E-Print Network [OSTI]

    Yogi, RA; Dancila, D; Gajewski, K; Hermansson, L; Noor, M; Wedberg, R; Santiago-Kern, R; Ekelf, T; Lofnes, T; Ziemann, V; Goryashko, V; Ruber, R

    2013-01-01T23:59:59.000Z

    The European Spallation Source (ESS) is one of the worlds most powerful neutron source. The ESS linac will accelerate 50mA pulse current of protons to 2.5GeV in 2.86 ms long pulses at a repetition rate of 14 Hz. It produces a beam with 5MW average power and 125MW peak power. ESS Spoke Linac consist of 28 superconducting spoke cavities, which will be developed by IPN Orsay, France. These Spoke Cavities will be tested at low power at IPN Orsay and high power testing will be performed in a high power test stand at Uppsala University. The test stand consists of tetrode based RF amplifier chain (352MHz, 350 kW) power and related RF distribution. Outputs of two tetrodes shall be combined with the hybrid coupler to produce 350 kW power. Preamplifier for a tetrode shall be solid state amplifier. As the spoke cavities are superconducting, the test stand also includes horizontal cryostat, Helium liquefier, test bunker etc. The paper describes features of the test stand in details.

  14. E-beam high voltage switching power supply

    DOE Patents [OSTI]

    Shimer, Daniel W. (Danville, CA); Lange, Arnold C. (Livermore, CA)

    1997-01-01T23:59:59.000Z

    A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360.degree./n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load.

  15. E-beam high voltage switching power supply

    DOE Patents [OSTI]

    Shimer, D.W.; Lange, A.C.

    1997-03-11T23:59:59.000Z

    A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360{degree}/n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load. 7 figs.

  16. Phosphate glass useful in high power lasers

    DOE Patents [OSTI]

    Hayden, J.S.; Sapak, D.L.; Ward, J.M.

    1990-05-29T23:59:59.000Z

    A low- or no-silica phosphate glass useful as a laser medium and having a high thermal conductivity, K[sub 90 C] > 0.8 W/mK, and a low coefficient of thermal expansion, [alpha][sub 20--40 C] < 80[times]10[sup [minus]7]/C, consists essentially of (on a batch composition basis Mole %): P[sub 2]O[sub 5], 45-70; Li[sub 2]O, 15-35; Na[sub 2]O, 0-10; Al[sub 2]O[sub 3], 10-15; Nd[sub 2]O[sub 3], 0.01-6; La[sub 2]O[sub 3], 0-6; SiO[sub 2], 0-8; B[sub 2]O[sub 3], 0-8; MgO, 0-18; CaO, 0-15; SrO, 0-9; BaO, 0-9; ZnO, 0-15; the amounts of Li[sub 2]O and Na[sub 2]O providing an average alkali metal ionic radius sufficiently low whereby said glass has K[sub 90 C] > 0.8 W/mK and [alpha][sub 20--40 C] < 80[times]10[sup [minus]7]/C, and wherein, when the batch composition is melted in contact with a silica-containing surface, the final glass composition contains at most about 3.5 mole % of additional silica derived from such contact during melting. The Nd[sub 2]O[sub 3] can be replaced by other lasing species. 3 figs.

  17. Advanced, High Power, Next Scale, Wave Energy Conversion Device

    SciTech Connect (OSTI)

    Mekhiche, Mike [Principal Investigator] [Principal Investigator; Dufera, Hiz [Project Manager] [Project Manager; Montagna, Deb [Business Point of Contact] [Business Point of Contact

    2012-10-29T23:59:59.000Z

    The project conducted under DOE contract DE?EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven?stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy? technology to deliver a device with much increased power delivery. Scaling?up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressed cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke? unlimited Power Take?Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.

  18. Vehicle Technologies Office Merit Review 2014: High Energy High Power Battery Exceeding PHEV-40 Requirements

    Broader source: Energy.gov [DOE]

    Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy high power battery...

  19. DIII-D ICRF high voltage power supply regulator upgrade

    SciTech Connect (OSTI)

    Cary, W.P.; Burley, B.L.; Grosnickle, W.H.

    1997-11-01T23:59:59.000Z

    For reliable operation and component protection, of the 2 MW 30--120 MHz ICRF Amplifier System on DIII-D, it is desirable for the amplifier to respond to high VSWR conditions as rapidly as possible. This requires a rapid change in power which also means a rapid change in the high voltage power supply current demands. An analysis of the power supply`s regulator dynamics was needed to verify its expected operation during such conditions. Based on this information it was found that a new regulator with a larger dynamic range and some anticipation capability would be required. This paper will discuss the system requirements, the as-delivered regulator performance, and the improved performance after installation of the new regulator system. It will also be shown how this improvement has made the amplifier perform at higher power levels more reliably.

  20. RF Input Power Couplers for High Current SRF Applications

    SciTech Connect (OSTI)

    Khan, V. F. [Helmholtz Zentrum Berlin, Germany; Anders, W. [Helmholtz Zentrum Berlin, Germany; Burrill, Andrew [Helmholtz Zentrum Berlin, Germany; Knobloch, Jens [Helmholtz Zentrum Berlin, Germany; Kugeler, Oliver [Helmholtz Zentrum Berlin, Germany; Neumann, Axel [Helmholtz Zentrum Berlin, Germany; Wang, Haipeng [JLAB

    2014-12-01T23:59:59.000Z

    High current SRF technology is being explored in present day accelerator science. The bERLinPro project is presently being built at HZB to address the challenges involved in high current SRF machines with the goal of generating and accelerating a 100 mA electron beam to 50 MeV in continuous wave (cw) mode at 1.3 GHz. One of the main challenges in this project is that of handling the high input RF power required for the photo-injector as well as booster cavities where there is no energy recovery process. A high power co-axial input power coupler is being developed to be used for the photo-injector and booster cavities at the nominal beam current. The coupler is based on the KEKcERL design and has been modified to minimise the penetration of the coupler tip in the beam pipe without compromising on beam-power coupling (Qext ~105). Herein we report on the RF design of the high power (115 kW per coupler, dual couplers per cavity) bERLinPro (BP) coupler along with initial results on thermal calculations. We summarise the RF conditioning of the TTF-III couplers (modified for cw operation) performed in the past at BESSY/HZB. A similar conditioning is envisaged in the near future for the low current SRF photo-injector and the bERLinPro main linac cryomodule.

  1. High efficiency carbonate fuel cell/turbine hybrid power cycle

    SciTech Connect (OSTI)

    Steinfeld, G.; Maru, H.C. [Energy Research Corp., Danbury, CT (United States); Sanderson, R.A. [Sanderson (Robert) and Associates, Wethersfield, CT (United States)

    1996-07-01T23:59:59.000Z

    The hybrid power cycle studies were conducted to identify a high efficiency, economically competitive system. A hybrid power cycle which generates power at an LHV efficiency > 70% was identified that includes an atmospheric pressure direct carbonate fuel cell, a gas turbine, and a steam cycle. In this cycle, natural gas fuel is mixed with recycled fuel cell anode exhaust, providing water for reforming fuel. The mixed gas then flows to a direct carbonate fuel cell which generates about 70% of the power. The portion of the anode exhaust which is not recycled is burned and heat transferred through a heat exchanger (HX) to the compressed air from a gas turbine. The heated compressed air is then heated further in the gas turbine burner and expands through the turbine generating 15% of the power. Half the exhaust from the turbine provides air for the anode exhaust burner. All of the turbine exhaust eventually flows through the fuel cell cathodes providing the O2 and CO2 needed in the electrochemical reaction. Exhaust from the cathodes flows to a steam system (heat recovery steam generator, staged steam turbine generating 15% of the cycle power). Simulation of a 200 MW plant with a hybrid power cycle had an LHV efficiency of 72.6%. Power output and efficiency are insensitive to ambient temperature, compared to a gas turbine combined cycle; NOx emissions are 75% lower. Estimated cost of electricity for 200 MW is 46 mills/kWh, which is competitive with combined cycle where fuel cost is > $5.8/MMBTU. Key requirement is HX; in the 200 MW plant studies, a HX operating at 1094 C using high temperature HX technology currently under development by METC for coal gassifiers was assumed. A study of a near term (20 MW) high efficiency direct carbonate fuel cell/turbine hybrid power cycle has also been completed.

  2. Performance Optimization of Battery-Super Capacitor Hybrid System Electrochemical capacitors (ultracapacitors) offer high power density when compared to battery

    E-Print Network [OSTI]

    Popov, Branko N.

    Performance Optimization of Battery-Super Capacitor Hybrid System Electrochemical capacitors a decreased value of power and energy densities for the hybrid system. Figure 1shows the fractional capacity (ultracapacitors) offer high power density when compared to battery systems and also have a relatively large energy

  3. High power RF systems for the BNL ERL project

    SciTech Connect (OSTI)

    Zaltsman, A.; Lambiase, R.

    2011-03-28T23:59:59.000Z

    The Energy Recovery Linac (ERL) project, now under construction at Brookhaven National Laboratory, requires two high power RF systems. The first RF system is for the 703.75 MHz superconducting electron gun. The RF power from this system is used to drive nearly half an Ampere of beam current to 2 MeV. There is no provision to recover any of this energy so the minimum amplifier power is 1 MW. It consists of 1 MW CW klystron, transmitter and power supplies, 1 MW circulator, 1 MW dummy load and a two-way power splitter. The second RF system is for the 703.75 MHz superconducting cavity. The system accelerates the beam to 54.7 MeV and recovers this energy. It will provide up to 50 kW of CW RF power to the cavity. It consists of 50 kW transmitter, circulator, and dummy load. This paper describes the two high power RF systems and presents the test data for both.

  4. R&D ERL: High power RF systems

    SciTech Connect (OSTI)

    Zaltsman, A.

    2010-01-15T23:59:59.000Z

    The Energy Recovery Linac (ERL) project, now under construction at Brookhaven National Laboratory, requires two high power RF systems. The first RF system is for the 703.75 MHz superconducting electron gun. The RF power from this system is used to drive nearly half an Ampere of beam current to 2.5 MeV. There is no provision to recover any of this energy so the minimum amplifier power is 1 MW. It consists of 1 MW CW klystron, transmitter and power supplies, 1 MW circulator, 1 MW dummy load and a two-way power splitter. The second RF system is for the 703.75 MHz superconducting cavity. The system accelerates the beam to 54.7 MeV and recovers this energy. It will provide up to 50 kW of CW RF power to the cavity. It consists of 50 kW transmitter, circulator, and dummy load. This paper describes the two high power RF systems and presents the test data for both.

  5. High-Power Microwave Switch Employing Electron Beam Triggering

    SciTech Connect (OSTI)

    Jay L. Hirshfield

    2012-09-19T23:59:59.000Z

    A high-power active microwave pulse compressor is described that modulates the quality factor Q of the energy storage cavity by a new means involving mode conversion controlled by a triggered electron-beam discharge through a switch cavity. The electron beam is emitted from a diamond-coated molybdenum cathode. This report describes the principle of operation, the design of the switch, the configuration used for the test, and the experimental results. The pulse compressor produced output pulses with 140 - ??165 MW peak power, power gain of 16 - 20, and pulse duration of 16 - 20 ns at a frequency of 11.43 GHz.

  6. Dynamic Response of Large Wind Power Plant Affected by Diverse Conditions at Individual Turbines

    SciTech Connect (OSTI)

    Elizondo, Marcelo A.; Lu, Shuai; Lin, Guang; Wang, Shaobu

    2014-07-31T23:59:59.000Z

    Diverse operating conditions at individual wind turbine generators (WTG) within wind power plants (WPPs) can affect the WPP dynamic response to system faults. For example, individual WTGs can experience diverse terminal voltage and power output caused by different wind direction and speed, affecting the response of protection and control limiters. In this paper, we present a study to investigate the dynamic response of a detailed WPP model under diverse power outputs of its individual WTGs. Wake effect is considered as the reason for diverse power outputs. The diverse WTG power output is evaluated in a test system where a large 168-machine test WPP is connected to the IEEE-39-bus system. The power output from each WTG is derived from a wake effect model that uses realistic statistical data for incoming wind speed and direction. The results show that diverse WTG output due to wake effect can affect the WPP dynamic response activating specialized control in some turbines. In addition, transient stability is affected by exhibiting uncertainty in critical clearing time calculation.

  7. Study on eddy current losses and shielding measures in large power transformers

    SciTech Connect (OSTI)

    Chen Yongbin; Yu Hainian [Shenyang Transformer Research Inst. (China)] [Shenyang Transformer Research Inst. (China); Yang Junyou; Tang Renyuan [Shenyang Polytechnic Univ. (China)] [Shenyang Polytechnic Univ. (China)

    1994-09-01T23:59:59.000Z

    The improved T-{Omega} method is applied to the computation of the three dimensional eddy current field in a 360MVA/500kV large power transformer, the structure of which is complicated. The different cases of tank wall with magnetic shunt, aluminum screen or without any shield are analyzed. The relations between eddy current losses and the materials, structure and size of the tank shield are presented. Compared with a parallel magnetic shunt arrangement, the vertical magnetic shunt reduces stray losses by 63.8%. The optimal thickness or the vertical magnetic shunt Is 10mm. The magnetic shunt should be spread over 0.5mm at both ends of windings in the 360MVA/500kV large power transformer.

  8. Air Cooling for High Temperature Power Electronics (Presentation)

    SciTech Connect (OSTI)

    Waye, S.; Musselman, M.; King, C.

    2014-09-01T23:59:59.000Z

    Current emphasis on developing high-temperature power electronics, including wide-bandgap materials such as silicon carbide and gallium nitride, increases the opportunity for a completely air-cooled inverter at higher powers. This removes the liquid cooling system for the inverter, saving weight and volume on the liquid-to-air heat exchanger, coolant lines, pumps, and coolant, replacing them with just a fan and air supply ducting. We investigate the potential for an air-cooled heat exchanger from a component and systems-level approach to meet specific power and power density targets. A proposed baseline air-cooled heat exchanger design that does not meet those targets was optimized using a parametric computational fluid dynamics analysis, examining the effects of heat exchanger geometry and device location, fixing the device heat dissipation and maximum junction temperature. The CFD results were extrapolated to a full inverter, including casing, capacitor, bus bar, gate driver, and control board component weights and volumes. Surrogate ducting was tested to understand the pressure drop and subsequent system parasitic load. Geometries that met targets with acceptable loads on the system were down-selected for experimentation. Nine baseline configuration modules dissipated the target heat dissipation, but fell below specific power and power density targets. Six optimized configuration modules dissipated the target heat load, exceeding the specific power and power density targets. By maintaining the same 175 degrees C maximum junction temperature, an optimized heat exchanger design and higher device heat fluxes allowed a reduction in the number of modules required, increasing specific power and power density while still maintaining the inverter power.

  9. Thermal Properties of Graphene and Applications for Thermal Management of High-Power Density Electronics

    E-Print Network [OSTI]

    Yan, Zhong

    2013-01-01T23:59:59.000Z

    the development of high-power density semiconductor devices.Management of High-Power Density Electronics A DissertationManagement of High-Power Density Electronics by Zhong Yan

  10. High Reliability, High TemperatureThermoelectric Power Generation Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TOTechnologyHighLouisianaDepartmentHighand

  11. Large Scale Computing and Storage Requirements for High Energy Physics

    SciTech Connect (OSTI)

    Gerber, Richard A.; Wasserman, Harvey

    2010-11-24T23:59:59.000Z

    The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility for the Department of Energy's Office of Science, providing high-performance computing (HPC) resources to more than 3,000 researchers working on about 400 projects. NERSC provides large-scale computing resources and, crucially, the support and expertise needed for scientists to make effective use of them. In November 2009, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR), and DOE's Office of High Energy Physics (HEP) held a workshop to characterize the HPC resources needed at NERSC to support HEP research through the next three to five years. The effort is part of NERSC's legacy of anticipating users needs and deploying resources to meet those demands. The workshop revealed several key points, in addition to achieving its goal of collecting and characterizing computing requirements. The chief findings: (1) Science teams need access to a significant increase in computational resources to meet their research goals; (2) Research teams need to be able to read, write, transfer, store online, archive, analyze, and share huge volumes of data; (3) Science teams need guidance and support to implement their codes on future architectures; and (4) Projects need predictable, rapid turnaround of their computational jobs to meet mission-critical time constraints. This report expands upon these key points and includes others. It also presents a number of case studies as representative of the research conducted within HEP. Workshop participants were asked to codify their requirements in this case study format, summarizing their science goals, methods of solution, current and three-to-five year computing requirements, and software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, multi-core environment that is expected to dominate HPC architectures over the next few years. The report includes a section that describes efforts already underway or planned at NERSC that address requirements collected at the workshop. NERSC has many initiatives in progress that address key workshop findings and are aligned with NERSC's strategic plans.

  12. Science opportunities at high power accelerators like APT

    SciTech Connect (OSTI)

    Browne, J.C.

    1996-12-31T23:59:59.000Z

    This paper presents applications of high power RF proton linear accelerators to several fields. Radioisotope production is an area in which linacs have already provided new isotopes for use in medical and industrial applications. A new type of spallation neutron source, called a long-pulse spallation source (LPSS), is discussed for application to neutron scattering and to the production and use of ultra-cold neutrons (UCN). The concept of an accelerator-driven, transmutation of nuclear waste system, based on high power RF linac technology, is presented along with its impact on spent nuclear fuels.

  13. High power light emitting diode based setup for photobleaching fluorescent impurities

    E-Print Network [OSTI]

    Kaufman, Laura

    High power light emitting diode based setup for photobleaching fluorescent impurities Tobias K be photobleached before final sample preparation. The instrument consists of high power light emitting diodes

  14. High-Power Electrochemical Storage Devices and Plug-in Hybrid...

    Energy Savers [EERE]

    High-Power Electrochemical Storage Devices and Plug-in Hybrid Electric Vehicle Battery Development High-Power Electrochemical Storage Devices and Plug-in Hybrid Electric Vehicle...

  15. High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power Generation High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power Generation 2005 Diesel Engine...

  16. 2 Large CO2 reductions via offshore wind power matched to inherent 3 storage in energy end-uses

    E-Print Network [OSTI]

    Firestone, Jeremy

    2 Large CO2 reductions via offshore wind power matched to inherent 3 storage in energy end-uses 4] We develop methods for assessing offshore wind 9 resources, using a model of the vertical structure. Dhanju, R. W. 26 Garvine, and M. Z. Jacobson (2007), Large CO2 reductions via 27 offshore wind power

  17. High Power RF Test Facility at the SNS

    SciTech Connect (OSTI)

    Y.W. Kang; D.E. Anderson; I.E. Campisi; M. Champion; M.T. Crofford; R.E. Fuja; P.A. Gurd; S. Hasan; K.-U. Kasemir; M.P. McCarthy; D. Stout; J.Y. Tang; A.V. Vassioutchenko; M. Wezensky; G.K. Davis; M. A. Drury; T. Powers; M. Stirbet

    2005-05-16T23:59:59.000Z

    RF Test Facility has been completed in the SNS project at ORNL to support test and conditioning operation of RF subsystems and components. The system consists of two transmitters for two klystrons powered by a common high voltage pulsed converter modulator that can provide power to two independent RF systems. The waveguides are configured with WR2100 and WR1150 sizes for presently used frequencies: 402.5 MHz and 805 MHz. Both 402.5 MHz and 805 MHz systems have circulator protected klystrons that can be powered by the modulator capable of delivering 11 MW peak and 1 MW average power. The facility has been equipped with computer control for various RF processing and complete dual frequency operation. More than forty 805 MHz fundamental power couplers for the SNS superconducting linac (SCL) cavities have been RF conditioned in this facility. The facility provides more than 1000 ft2 floor area for various test setups. The facility also has a shielded cave area that can support high power tests of normal conducting and superconducting accelerating cavities and components.

  18. Programmatic status of NASA`s CSTI high capacity power Stirling Space Power Converter Program

    SciTech Connect (OSTI)

    Dudenhoefer, J.E.

    1994-09-01T23:59:59.000Z

    An overview is presented of the NASA Lewis Research Center Free-Piston Stirling Space Power Converter Technology Development Program. This work is being conducted under NASA`s Civil Space Technology Initiative (CSTI). The goal of the CSTI High Capacity Power element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system thermal and electric energy conversion efficiency at least fivefold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. This paper will discuss the status of test activities with the Space Power Research Engine (SPRE). Design deficiencies are gradually being corrected and the power converter is now outputting 11.5 kWe at a temperature ratio of 2 (design output is 12.5 kWe). Detail designs have been completed for the 1050 K Component Test Power Converter (CTPC). The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, gas bearings, superalloy joining technologies and high efficiency alternators. This paper also provides an update of progress in these technologies.

  19. Fuel Cell/Turbine Ultra High Efficiency Power System

    SciTech Connect (OSTI)

    Hossein, Ghezel-Ayagh

    2001-11-06T23:59:59.000Z

    FuelCell Energy, INC. (FCE) is currently involved in the design of ultra high efficiency power plants under a cooperative agreement (DE-FC26-00NT40) managed by the National Energy Technology Laboratory (NETL) as part of the DOE's Vision 21 program. Under this project, FCE is developing a fuel cell/turbine hybrid system that integrates the atmospheric pressure Direct FuelCell{reg_sign} (DFC{reg_sign}) with an unfired Brayton cycle utilizing indirect heat recovery from the power plant. Features of the DFC/T{trademark} system include: high efficiency, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, no pressurization of the fuel cell, independent operating pressure of the fuel cell and turbine, and potential cost competitiveness with existing combined cycle power plants at much smaller sizes. Objectives of the Vision 21 Program include developing power plants that will generate electricity with net efficiencies approaching 75 percent (with natural gas), while producing sulfur and nitrogen oxide emissions of less than 0.01 lb/million BTU. These goals are significant improvements over conventional power plants, which are 35-60 percent efficient and produce emissions of 0.07 to 0.3 lb/million BTU of sulfur and nitrogen oxides. The nitrogen oxide and sulfur emissions from the DFC/T system are anticipated to be better than the Vision 21 goals due to the non-combustion features of the DFC/T power plant. The expected high efficiency of the DFC/T will also result in a 40-50 percent reduction in carbon dioxide emissions compared to conventional power plants. To date, the R&D efforts have resulted in significant progress including proof-of-concept tests of a sub-scale power plant built around a state-of-the-art DFC stack integrated with a modified Capstone Model 330 Microturbine. The objectives of this effort are to investigate the integration aspects of the fuel cell and turbine and to obtain design information and operational data that will be utilized in the design of a 40-MW high efficiency Vision 21 power plant. Additionally, these tests are providing the valuable insight for DFC/Turbine power plant potential for load following, increased reliability, and enhanced operability.

  20. Plasma Switch for High-Power Active Pulse Compressor

    SciTech Connect (OSTI)

    Hirshfield, Jay L. [Omega-P, Inc.] [Omega-P, Inc.

    2013-11-04T23:59:59.000Z

    Results are presented from experiments carried out at the Naval Research Laboratory X-band magnicon facility on a two-channel X-band active RF pulse compressor that employed plasma switches. Experimental evidence is shown to validate the basic goals of the project, which include: simultaneous firing of plasma switches in both channels of the RF circuit, operation of quasi-optical 3-dB hybrid directional coupler coherent superposition of RF compressed pulses from both channels, and operation of the X-band magnicon directly in the RF pulse compressor. For incident 1.2 ?s pulses in the range 0.63 ? 1.35 MW, compressed pulses of peak powers 5.7 ? 11.3 MW were obtained, corresponding to peak power gain ratios of 8.3 ? 9.3. Insufficient bakeout and conditioning of the high-power RF circuit prevented experiments from being conducted at higher RF input power levels.

  1. IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 29, NO. 1, JANUARY 2014 489 Large-Scale Integration of Deferrable

    E-Print Network [OSTI]

    Oren, Shmuel S.

    scheduling, wind power generation. I. INTRODUCTION THE key disadvantage of renewable resources relative and demand response integration on power system operations it is necessary to represent the balancing operIEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 29, NO. 1, JANUARY 2014 489 Large-Scale Integration

  2. Abstract--The security of modern large interconnected power systems suffers from the absence of a unique security coordinator

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    1 Abstract-- The security of modern large interconnected power systems suffers from the absence interconnected power systems. In the absence of a full information exchange, the operators' alternative solution contingencies screening , control areas data exchange, multi-area electric power system security assessment. I

  3. Designing high power targets with computational fluid dynamics (CFD)

    SciTech Connect (OSTI)

    Covrig, S. D. [Thomas Jefferson National Laboratory, Newport News, VA 23606 (United States)

    2013-11-07T23:59:59.000Z

    High power liquid hydrogen (LH2) targets, up to 850 W, have been widely used at Jefferson Lab for the 6 GeV physics program. The typical luminosity loss of a 20 cm long LH2 target was 20% for a beam current of 100 ?A rastered on a square of side 2 mm on the target. The 35 cm long, 2500 W LH2 target for the Qweak experiment had a luminosity loss of 0.8% at 180 ?A beam rastered on a square of side 4 mm at the target. The Qweak target was the highest power liquid hydrogen target in the world and with the lowest noise figure. The Qweak target was the first one designed with CFD at Jefferson Lab. A CFD facility is being established at Jefferson Lab to design, build and test a new generation of low noise high power targets.

  4. Coherent beam combiner for a high power laser

    DOE Patents [OSTI]

    Dane, C. Brent (Livermore, CA); Hackel, Lloyd A. (Livermore, CA)

    2002-01-01T23:59:59.000Z

    A phase conjugate laser mirror employing Brillouin-enhanced four wave mixing allows multiple independent laser apertures to be phase locked producing an array of diffraction-limited beams with no piston phase errors. The beam combiner has application in laser and optical systems requiring high average power, high pulse energy, and low beam divergence. A broad range of applications exist in laser systems for industrial processing, especially in the field of metal surface treatment and laser shot peening.

  5. High Resolution PV Power Modeling for Distribution Circuit Analysis

    SciTech Connect (OSTI)

    Norris, B. L.; Dise, J. H.

    2013-09-01T23:59:59.000Z

    NREL has contracted with Clean Power Research to provide 1-minute simulation datasets of PV systems located at three high penetration distribution feeders in the service territory of Southern California Edison (SCE): Porterville, Palmdale, and Fontana, California. The resulting PV simulations will be used to separately model the electrical circuits to determine the impacts of PV on circuit operations.

  6. Cooling System for the MERIT High-Power Target Experiment

    E-Print Network [OSTI]

    McDonald, Kirk

    and a remote PVSS supervision station connected via Ethernet. Operation Modes: Cooling of proximity cryogenicsCooling System for the MERIT High-Power Target Experiment Haug F., Pereira H., Silva P., Pezzetti M a free mercury jet inside a normal conducting pulsed 15 T capture solenoid magnet cooled with liquid

  7. High-Power Density Target Design and Analyses for Accelerator

    E-Print Network [OSTI]

    McDonald, Kirk

    management ­ Lithium · Excellent conductivity, but low heat capacity compared to other coolants ­ Sodium · Better heat capacity than lithium ­ Mercury · Power generation in coolant limits applicability ­ Lithiumcooled Tungsten Plate Liquid Target Concepts ­ Lead Bismuth Eutectic Workshop on Applications of High

  8. POWER-TO-GAS PROCESS WITH HIGH TEMPERATURE ELECTROLYSIS

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Transportation of energy from production areas to consumption areas Substitute Natural Gas (methane) Myriam DeP Use of existing natural gas network Mid or long term storage Transportation Production. Energy background 2. Power-to-Substitute Natural Gas process with high temperature steam electrolysis

  9. Device for wavefront correction in an ultra high power laser

    DOE Patents [OSTI]

    Ault, Earl R. (Livermore, CA); Comaskey, Brian J. (Walnut Creek, CA); Kuklo, Thomas C. (Oakdale, CA)

    2002-01-01T23:59:59.000Z

    A system for wavefront correction in an ultra high power laser. As the laser medium flows past the optical excitation source and the fluid warms its index of refraction changes creating an optical wedge. A system is provided for correcting the thermally induced optical phase errors.

  10. Iterative Learning Control Applications to High Power Microwave Tubes

    E-Print Network [OSTI]

    highpeak power microwave (HPM) sources typically operate in the single shot regime because commercial HPM systems that operate at modest repetition rates, two examples of which include a system based is then to implement the control algorithms on a physical tube in order to build a ``smart tube'' HPM source. By smart

  11. Iterative Learning Control Applications to High Power Microwave Tubes

    E-Print Network [OSTI]

    high-peak power microwave (HPM) sources typically operate in the single shot regime because commercial HPM systems that operate at modest repetition rates, two examples of which include a system based is then to implement the control algorithms on a physical tube in order to build a "smart tube" HPM source. By smart

  12. Iterative Learning Control Applications to High Power Microwave Tubes

    E-Print Network [OSTI]

    . Introduction Present day high-peak power microwave (HPM) sources typically operate in the * *single shot], [2]. There are however commercial HPM systems that operate at modest repetition rates, two examples repetition* * rate is attractive for practical implementation of an HPM system. The physics

  13. Iterative Learning Control Applications to High Power Microwave Tubes

    E-Print Network [OSTI]

    Present day highpeak power microwave (HPM) sources typically operate in the single shot regime because commercial HPM systems that operate at modest repetition rates, two examples of which include a system based implementation of an HPM system. The physics of the interaction between a relativistic electron beam and various

  14. Iterative Learning Control Applications to High Power Microwave Tubes

    E-Print Network [OSTI]

    day high-peak power microwave (HPM) sources typically operate in the * *single shot regime because commercial HPM systems that operate at modest repetition rates, two examples of* * which include a system the control algorithms on a * *physical tube in order to build a "smart tube" HPM source. By smart tube we

  15. PowerGrid - A Computation Engine for Large-Scale Electric Networks

    SciTech Connect (OSTI)

    Chika Nwankpa

    2011-01-31T23:59:59.000Z

    This Final Report discusses work on an approach for analog emulation of large scale power systems using Analog Behavioral Models (ABMs) and analog devices in PSpice design environment. ABMs are models based on sets of mathematical equations or transfer functions describing the behavior of a circuit element or an analog building block. The ABM concept provides an efficient strategy for feasibility analysis, quick insight of developing top-down design methodology of large systems and model verification prior to full structural design and implementation. Analog emulation in this report uses an electric circuit equivalent of mathematical equations and scaled relationships that describe the states and behavior of a real power system to create its solution trajectory. The speed of analog solutions is as quick as the responses of the circuit itself. Emulation therefore is the representation of desired physical characteristics of a real life object using an electric circuit equivalent. The circuit equivalent has within it, the model of a real system as well as the method of solution. This report presents a methodology of the core computation through development of ABMs for generators, transmission lines and loads. Results of ABMs used for the case of 3, 6, and 14 bus power systems are presented and compared with industrial grade numerical simulators for validation.

  16. Isocurvature and curvaton perturbations with red power spectrum and large hemispherical asymmetry

    SciTech Connect (OSTI)

    McDonald, John, E-mail: j.mcdonald@lancaster.ac.uk [Lancaster-Manchester-Sheffield Consortium for Fundamental Physics, Cosmology and Astroparticle Physics Group, Dept. of Physics, University of Lancaster, Lancaster LA1 4YB (United Kingdom)

    2013-07-01T23:59:59.000Z

    We calculate the power spectrum and hemispherical asymmetry of isocurvature and curvaton perturbations due to a complex field ? which is evolving along the tachyonic part of its potential. Using a semi-classical evolution of initially sub-horizon quantum fluctuations, we compute the power spectrum, mean field and hemispherical asymmetry as a function of the number of e-foldings of tachyonic growth ?N and the tachyonic mass term cH{sup 2}. We find that a large hemispherical asymmetry due to the modulation of |?| can easily be generated via the spatial modulation of |?| across the horizon, with ?|?|/|?| > 0.5 when the observed Universe exits the horizon within 10-40 e-foldings of the beginning of tachyonic evolution and c is in the range 0.1-1. The spectral index of the isocurvature and curvaton perturbations is generally negative, corresponding to a red power spectrum. Dark matter isocurvature perturbations due to an axion-like curvaton with a large hemispherical asymmetry may be able to explain the hemispherical asymmetry observed by WMAP and Planck. In this case, the red spectrum can additionally suppress the hemispherical asymmetry at small scales, which should make it easier to satisfy scale-dependence requirements on the asymmetry from quasar number counts.

  17. Coal-fired high performance power generating system. Final report

    SciTech Connect (OSTI)

    NONE

    1995-08-31T23:59:59.000Z

    As a result of the investigations carried out during Phase 1 of the Engineering Development of Coal-Fired High-Performance Power Generation Systems (Combustion 2000), the UTRC-led Combustion 2000 Team is recommending the development of an advanced high performance power generation system (HIPPS) whose high efficiency and minimal pollutant emissions will enable the US to use its abundant coal resources to satisfy current and future demand for electric power. The high efficiency of the power plant, which is the key to minimizing the environmental impact of coal, can only be achieved using a modern gas turbine system. Minimization of emissions can be achieved by combustor design, and advanced air pollution control devices. The commercial plant design described herein is a combined cycle using either a frame-type gas turbine or an intercooled aeroderivative with clean air as the working fluid. The air is heated by a coal-fired high temperature advanced furnace (HITAF). The best performance from the cycle is achieved by using a modern aeroderivative gas turbine, such as the intercooled FT4000. A simplified schematic is shown. In the UTRC HIPPS, the conversion efficiency for the heavy frame gas turbine version will be 47.4% (HHV) compared to the approximately 35% that is achieved in conventional coal-fired plants. This cycle is based on a gas turbine operating at turbine inlet temperatures approaching 2,500 F. Using an aeroderivative type gas turbine, efficiencies of over 49% could be realized in advanced cycle configuration (Humid Air Turbine, or HAT). Performance of these power plants is given in a table.

  18. High Efficiency Broadband Envelope-Tracking Power Amplifiers

    E-Print Network [OSTI]

    Yan, Jonmei Johana

    of the combiner, power losses, and amplifier switchingand the power ). The power loss in the modulator can besuch that The dynamic power loss of the dynamic modulator

  19. Electron beam diagnostic for profiling high power beams

    DOE Patents [OSTI]

    Elmer, John W. (Danville, CA); Palmer, Todd A. (Livermore, CA); Teruya, Alan T. (Livermore, CA)

    2008-03-25T23:59:59.000Z

    A system for characterizing high power electron beams at power levels of 10 kW and above is described. This system is comprised of a slit disk assembly having a multitude of radial slits, a conducting disk with the same number of radial slits located below the slit disk assembly, a Faraday cup assembly located below the conducting disk, and a start-stop target located proximate the slit disk assembly. In order to keep the system from over-heating during use, a heat sink is placed in close proximity to the components discussed above, and an active cooling system, using water, for example, can be integrated into the heat sink. During use, the high power beam is initially directed onto a start-stop target and after reaching its full power is translated around the slit disk assembly, wherein the beam enters the radial slits and the conducting disk radial slits and is detected at the Faraday cup assembly. A trigger probe assembly can also be integrated into the system in order to aid in the determination of the proper orientation of the beam during reconstruction. After passing over each of the slits, the beam is then rapidly translated back to the start-stop target to minimize the amount of time that the high power beam comes in contact with the slit disk assembly. The data obtained by the system is then transferred into a computer system, where a computer tomography algorithm is used to reconstruct the power density distribution of the beam.

  20. Conversion Tower for Dispatchable Solar Power: High-Efficiency Solar-Electric Conversion Power Tower

    SciTech Connect (OSTI)

    None

    2012-01-11T23:59:59.000Z

    HEATS Project: Abengoa Solar is developing a high-efficiency solar-electric conversion tower to enable low-cost, fully dispatchable solar energy generation. Abengoas conversion tower utilizes new system architecture and a two-phase thermal energy storage media with an efficient supercritical carbon dioxide (CO2) power cycle. The company is using a high-temperature heat-transfer fluid with a phase change in between its hot and cold operating temperature. The fluid serves as a heat storage material and is cheaper and more efficient than conventional heat-storage materials, like molten salt. It also allows the use of a high heat flux solar receiver, advanced high thermal energy density storage, and more efficient power cycles.

  1. New developments for high power electron beam equipment

    SciTech Connect (OSTI)

    Melde, C.; Jaesch, G.; Maedler, E. [Von Ardenne Anlagentechnnik GmbH, Dresden (Germany)

    1994-12-31T23:59:59.000Z

    High power electron guns for industrial use work in the range of power of more than 10 kW up to 1200 kW. The only suitable principle for this purpose is that used in axial guns. Elements necessary for these EB guns and their design are described. The outstanding properties required for applications in production and R & D can only be achieved if the equipment is supplemented by a high voltage supply, beam guidance supply, vacuum generator and the various devices for observation, measurement and control. Standard rules for both the technical demands in application and dimensioning of some of the necessary components are explained. Special developments, such as high speed deflection, observation by BSE-camera and arc-free electron beam systems are also presented.

  2. Capacitive charging system for high power battery charging

    SciTech Connect (OSTI)

    NONE

    1998-12-31T23:59:59.000Z

    This document describes a project to design, build, demonstrate, and document a Level 3 capacitive charging system, and it will be based on the existing PEZIC prototype capacitive coupler. The capacitive coupler will be designed to transfer power at a maximum of 600 kW, and it will transfer power by electric fields. The power electronics will transfer power at 100 kW. The coupler will be designed to function with future increases in the power electronics output power and increases in the amp/hours capacity of sealed batteries. Battery charging algorithms will be programmed into the control electronics. The finished product will be a programmable battery charging system capable of transferring 100 kW via a capacitive coupler. The coupler will have a low power loss of less than 25 watts when transferring 240 kW (400 amps). This system will increase the energy efficiency of high power battery charging, and it will enhance mobility by reducing coupler failures. The system will be completely documented. An important deliverable of this project is information. The information will be distributed to the Army`s TACOM-TARDEC`s Advanced Concept Group, and it will be distributed to commercial organizations by the Society of Automotive Engineers. The information will be valuable for product research, development, and specification. The capacitive charging system produced in this project will be of commercial value for future electric vehicles. The coupler will be designed to rapid charge batteries that have a capacity of several thousand amp/hours at hundreds of volts. The charging system built here will rapid charge batteries with several hundred amp/hours capacity, depending on the charging voltage.

  3. COMPARATIVE STUDIES OF PROTON ACCELERATORS FOR HIGH POWER APPLICATIONS.

    SciTech Connect (OSTI)

    WENG, W.T.

    2006-05-29T23:59:59.000Z

    There are many applications requiring high power proton accelerators of various kinds. However, each type of proton accelerator can only provide beam with certain characteristics, hence the match of accelerators and their applications need careful evaluation. In this talk, the beam parameters and performance limitations of linac, cyclotron, synchrotron, and FFAG accelerators are studied and their relative merits for application in neutron, muon, neutrino, and ADS will be assessed in terms of beam energy, intensity, bunch length, repetition rate, and beam power requirements. A possible match between the applications and the accelerator of choice is presented in a matrix form. The accelerator physics and technology issues and challenges involved will also be discussed.

  4. Hazards to nuclear power plants from large liquefied natural gas (LNG) spills on water

    SciTech Connect (OSTI)

    Kot, C.A.; Eichler, T.V.; Wiedermann, A.H.; Pape, R.; Srinivasan, M.G.

    1981-11-01T23:59:59.000Z

    The hazards to nuclear power plants arising from large spills of liquefied natural gas (LNG) on water transportation routes are treated by deterministic analytical procedures. Global models, which address the salient features of the LNG spill phenomena are used in the analysis. A coupled computational model for the combined LNG spill, spreading, and fire scenario is developed. To predict the air blast environment in the vicinity of vapor clouds with pancake-like geometries, a scalable procedure using both analytical methods and hydrocode calculations is synthesized. Simple response criteria from the fire and weapons effects literature are used to characterize the susceptibility of safety-related power plant systems. The vulnerability of these systems is established either by direct comparison between the LNG threat and the susceptibility criteria or through simple response calculations. Results are analyzed.

  5. Advanced High Energy and High Power Battery Systems for Automotive Applications Khalil Amine

    E-Print Network [OSTI]

    Levi, Anthony F. J.

    -dependent Industry 41% Oil-dependent 17% Oil-dependent 72% 22% 1% 5% U.S. Oil Consumption by End-use Sector 199.30am Advanced High Energy and High Power Battery Systems for Automotive Applications Khalil Amine Argonne National Laboratory Abstract To meet the high-energy requirem ent that can enab le the 40-miles

  6. Fast neutron thermionic-converters for high-power space nuclear power systems. [Na; K

    SciTech Connect (OSTI)

    Pupko, V.Y.; Vizgalov, A.V.; Raskach, F.P.; Shestjorkin, A.G.; Almambetov, A.K. (Obninsk, Kaluga region, USSR (SU)); Bystrov, P.I.; Yuditsky, V.D.; Sobolev, Y.A.; Sinyavsky, V.V.; Bakanov, Y.A.; Lipovy, N.M. (SIA Energiya'', Kaliningrad, Moscow (USSR)); Gryaznov, G.M.; Serbin, V.I.; Trykhanov, Y.L. (SIA Krasnaya Zvezda'', Moscow (USSR))

    1991-01-05T23:59:59.000Z

    The results of tests with a thermionic reactor-converter utilizing fast neutrons and a high temperature cooling system are described. The reactor can be useful for a wide range of applications with a specific mass of about 20 kg/kW and power level of 2500 kW. (AIP)

  7. The powerful high-voltage glow discharge electron gun and power unit on its base

    SciTech Connect (OSTI)

    Chernov, V.A. [All-Russian Electrotechnical Institute, Moscow (Russian Federation)

    1994-12-31T23:59:59.000Z

    The technical and operational characteristics and features of powerful electron gun with cold cathodes on the basis of high-voltage glow discharge (HGD) are submitted. The systems, ensuring their work are described. Some results of operation and applications of these non-traditional electron guns are presented.

  8. Development of a perfluorocarbon liquid immersed prototype large power transformer with compressed SF sub 6 insulation

    SciTech Connect (OSTI)

    Mukaryama, Y.; Nonaka, F.; Takagi, I. (Chubu Electric Power Co. Inc., Nagoya (Japan)); Higaki, M.; Endoo, K.; Sakamoto, T.; Hiraishi, K.; Kawashima, K. (Hitachi Ltd., Hitachi (JP))

    1991-07-01T23:59:59.000Z

    This paper reports on a prototype of three phase non-flammable, large power transformer that has been developed. It uses non-flammable perfluorocarbon liquid as both a coolant and an insulating material for windings, and compressed SF{sub 6} gas as the insulation from the outer windings to the tank. Using cooling and insulation models, the cooling and insulation characteristics of the disc windings were clarified. Stress analyses and the pressure tests of the transformer tank were carried out, to evaluate its mechanical characteristics. Finally, a prototype of 275kV 100MVA three phase transformer was developed, and its excellent performance was confirmed.

  9. High power semiconductor laser sources. Annual report, 12 March 1985-11 March 1986

    SciTech Connect (OSTI)

    Lang, R.; Salzman, J.; Yariv

    1986-06-10T23:59:59.000Z

    Unstable semiconductor lasers were fabricated, and their potential as high power laser sources was analyzed.

  10. Parametric Study of Emerging High Power Accelerator Applications Using Accelerator Systems Model (ASM)

    E-Print Network [OSTI]

    Berwald, D H; Myers, T J; Paulson, C C; Peacock, M A; Piaszczyk, C M; Rathke, J W; Piechowiak, E M

    1996-01-01T23:59:59.000Z

    Parametric Study of Emerging High Power Accelerator Applications Using Accelerator Systems Model (ASM)

  11. Technology Survey and Performance Scaling for the Design of High Power Nuclear Electric Power and Propulsion Systems

    E-Print Network [OSTI]

    , use of electric primary propulsion in flight systems has been limited to low-power, solar electric thruster output power are identified. Design evolutions are presented for three thrusters that would1 Technology Survey and Performance Scaling for the Design of High Power Nuclear Electric Power

  12. Results of a preliminary, high power RF thruster test

    SciTech Connect (OSTI)

    Brewer, L.; Karras, T.; Frind, G.; Holmes, D.G.

    1989-01-01T23:59:59.000Z

    The objective of this program was to demonstrate a high power electrodeless, RF electric propulsion concept. This was successfully accomplished. No attempt was made to optimize the design of the thruster with regard to physical dimensions, mass flow, nozzle shape, operational frequency, or power level. Measurements made were chamber pressure, total and static pressures at the nozzle exit plane and exhaust tank pressure. Mass flows range from about 0.4 to 1 gm/sec and, assuming perfect gas relationships, specific impulses up to 580 sec were obtained. Typical chamber pressure was 300 torr exhausting to a tank pressure of about 10 torr. Working fluids used were argon, helium and mixtures of the two. No degration of the device was detected after 12 start/stop cycles, about three hours of total run time, and a maximum input power of 70 kW. 10 refs.

  13. SLAC Next-Generation High Availability Power Supply

    SciTech Connect (OSTI)

    Bellomo, P.; MacNair, D.; /SLAC; ,

    2010-06-11T23:59:59.000Z

    SLAC recently commissioned forty high availability (HA) magnet power supplies for Japan's ATF2 project. SLAC is now developing a next-generation N+1 modular power supply with even better availability and versatility. The goal is to have unipolar and bipolar output capability. It has novel topology and components to achieve very low output voltage to drive superconducting magnets. A redundant, embedded, digital controller in each module provides increased bandwidth for use in beam-based alignment, and orbit correction systems. The controllers have independent inputs for connection to two external control nodes. Under fault conditions, they sense failures and isolate the modules. Power supply speed mitigates the effects of fault transients and obviates subsequent magnet standardization. Hot swap capability promises higher availability and other exciting benefits for future, more complex, accelerators, and eventually the International Linear Collider project.

  14. Current and Future High Power Operation of Fermilab Main Injector

    SciTech Connect (OSTI)

    Kourbanis, I.; Adamson, P.; Brown, B.; Capista, D.; Chou, W.; Morris, D.; Seyia, K.; Wu, G.; Yang, M.J.; /Fermilab

    2009-04-01T23:59:59.000Z

    Fermilab's Main Injector on acceleration cycles to 120 GeV has been running a mixed mode operation delivering beam to both the antiproton source for pbar production and to the NuMI[1] target for neutrino production since 2005. On January 2008 the slip stacking process used to increase the beam to the pbar target was expanded to include the beam to the NuMI target increasing the MI beam power at 120 GeV to 400KW. The current high power MI operation will be described along with the plans to increase the power to 700KW for NOvA and to 2.1 MW for project X.

  15. Power/energy use cases for high performance computing.

    SciTech Connect (OSTI)

    Laros, James H.,; Kelly, Suzanne M; Hammond, Steven [National Renewable Energy Laboratory] [National Renewable Energy Laboratory; Elmore, Ryan; Munch, Kristin

    2013-12-01T23:59:59.000Z

    Power and Energy have been identified as a first order challenge for future extreme scale high performance computing (HPC) systems. In practice the breakthroughs will need to be provided by the hardware vendors. But to make the best use of the solutions in an HPC environment, it will likely require periodic tuning by facility operators and software components. This document describes the actions and interactions needed to maximize power resources. It strives to cover the entire operational space in which an HPC system occupies. The descriptions are presented as formal use cases, as documented in the Unified Modeling Language Specification [1]. The document is intended to provide a common understanding to the HPC community of the necessary management and control capabilities. Assuming a common understanding can be achieved, the next step will be to develop a set of Application Programing Interfaces (APIs) to which hardware vendors and software developers could utilize to steer power consumption.

  16. High power battery test methods for hybrid vehicle applications

    SciTech Connect (OSTI)

    Hunt, G.L.; Haskins, H.; Heinrich, B.; Sutula, R.

    1997-11-01T23:59:59.000Z

    Commonly used EV battery tests are not very suitable for testing hybrid vehicle batteries, which may be primarily intended to supply vehicle acceleration power. The capacity of hybrid vehicle batteries will be relatively small, they will typically operate over a restricted range of states-of-charge, and they may seldom if ever be fully recharged. Further, hybrid propulsion system designs will commonly impose a higher regeneration content than is typical for electric vehicles. New test methods have been developed for use in characterizing battery performance and life for hybrid vehicle use. The procedures described in this paper were developed from the requirements of the government-industry cooperative Partnership for A New Generation of Vehicles (PNGV) program; however, they are expected to have broad application to the testing of energy storage devices for hybrid vehicles. The most important performance measure for a high power battery is its pulse power capability as a function of state-of-charge for both discharge and regeneration pulses. It is also important to characterize cycle life, although the {open_quote}cycles{close_quote} involved are quite different from the conventional full-discharge, full-recharge cycle commonly used for EV batteries, This paper illustrates in detail several test profiles which have been selected for PNGV battery testing, along with some sample results and lessons learned to date from the use of these test profiles. The relationship between the PNGV energy storage requirements and these tests is described so that application of the test methods can be made to other hybrid vehicle performance requirements as well. The resulting test procedures can be used to characterize the pulse power capability of high power energy storage devices including batteries and ultracapacitors, as well as the life expectancy of such devices, for either power assist or dual mode hybrid propulsion system designs.

  17. EWEC 2007 conference, 7-10 May 2007, Milan, Italy State-of-the-art of Design and Operation of Power Systems with Large Amounts of

    E-Print Network [OSTI]

    Systems with Large Amounts of Wind Power, Summary of IEA Wind collaboration Hannele Holttinen1 , Peter for exchange of knowledge of power system impacts of wind power has been formed under the IEA Implementing Agreement on Wind Energy. The task "Design and Operation of Power Systems with Large Amounts of Wind Power

  18. Plasma relaxation mechanics of pulsed high power microwave surface flashover

    SciTech Connect (OSTI)

    Beeson, S.; Dickens, J.; Neuber, A. [Center for Pulsed Power and Power Electronics, Department of Electrical and Computer Engineering and Department of Physics, Texas Tech University, Lubbock, Texas 79409 (United States)] [Center for Pulsed Power and Power Electronics, Department of Electrical and Computer Engineering and Department of Physics, Texas Tech University, Lubbock, Texas 79409 (United States)

    2013-09-15T23:59:59.000Z

    Microwave transmission and reflection characteristics of pulsed radio frequency field generated plasmas are elucidated for air, N{sub 2}, and He environments under pressure conditions ranging from 10 to 600 torr. The pulsed, low temperature plasma is generated along the atmospheric side of the dielectric boundary between the source (under vacuum) and the radiating environment with a thickness on the order of 5 mm and a cross sectional area just smaller than that of the waveguide. Utilizing custom multi-standard waveguide couplers and a continuous low power probing source, the scattering parameters were measured before, during, and after the high power microwave pulse with emphasis on the latter. From these scattering parameters, temporal electron density estimations (specifically the longitudinal integral of the density) were calculated using a 1D plane wave-excited model for analysis of the relaxation processes associated. These relaxation characteristics ultimately determine the maximum repetition rate for many pulsed electric field applications and thus are applicable to a much larger scope in the plasma community than just those related to high power microwaves. This manuscript discusses the diagnostic setup for acquiring the power measurements along with a detailed description of the kinematic and chemical behavior of the plasma as it decays down to its undisturbed state under various gas type and pressure conditions.

  19. High average power magnetic modulator for copper lasers

    SciTech Connect (OSTI)

    Cook, E.G.; Ball, D.G.; Birx, D.L.; Branum, J.D.; Peluso, S.E.; Langford, M.D.; Speer, R.D.; Sullivan, J.R.; Woods, P.G.

    1991-06-14T23:59:59.000Z

    Magnetic compression circuits show the promise of long life for operation at high average powers and high repetition rates. When the Atomic Vapor Laser Isotope Separation (AVLIS) Program at Lawrence Livermore National Laboratory needed new modulators to drive their higher power copper lasers in the Laser Demonstration Facility (LDF), existing technology using thyratron switched capacitor inversion circuits did not meet the goal for long lifetimes at the required power levels. We have demonstrated that magnetic compression circuits can achieve this goal. Improving thyratron lifetime is achieved by increasing the thyratron conduction time, thereby reducing the effect of cathode depletion. This paper describes a three stage magnetic modulator designed to provide a 60 kV pulse to a copper laser at a 4. 5 kHz repetition rate. This modulator operates at 34 kW input power and has exhibited MTBF of {approx}1000 hours when using thyratrons and even longer MTBFs with a series of stack of SCRs for the main switch. Within this paper, the electrical and mechanical designs for the magnetic compression circuits are discussed as are the important performance parameters of lifetime and jitter. Ancillary circuits such as the charge circuit and reset circuit are shown. 8 refs., 5 figs., 1 tab.

  20. A Tutorial on Detection and Characterization of Special Behavior in Large Electric Power Systems

    SciTech Connect (OSTI)

    Hauer, John F.; DeSteese, John G.

    2004-08-20T23:59:59.000Z

    The objective of this document is to report results in the detection and characterization of special behavior in large electric power systems. Such behavior is usually dynamic in nature, but not always. This is also true for the underlying sources of special behavior. At the device level, a source of special behavior might be an automatic control system, a dynamic load, or even a manual control system that is operated according to some sharply defined policy. Other possible sources include passive system conditions, such as the state of a switched device or the amount of power carried on some critical line. Detection and characterization are based upon signature information that is extracted from the behavior observed. Characterization elements include the signature information itself, the nature of the behavior and its likely causes, and the associated implications for the system or for the public at large. With sufficient data and processing, this characterization may directly identify a particular condition or device at a specific location. Such conclusive results cannot always be done from just one observation, however. Information environments that are very sparse may require multiple observations, comparative model studies, and even direct testing of the system.

  1. Graphene oxide hole transport layers for large area, high efficiency organic solar cells

    SciTech Connect (OSTI)

    Smith, Chris T. G.; Rhodes, Rhys W.; Beliatis, Michail J.; Imalka Jayawardena, K. D. G.; Rozanski, Lynn J.; Mills, Christopher A.; Silva, S. Ravi P., E-mail: s.silva@surrey.ac.uk [Advanced Technology Institute, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2014-08-18T23:59:59.000Z

    Graphene oxide (GO) is becoming increasingly popular for organic electronic applications. We present large active area (0.64?cm{sup 2}), solution processable, poly[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1, 3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl]:[6,6]-Phenyl C{sub 71} butyric acid methyl ester (PCDTBT:PC{sub 70}BM) organic photovoltaic (OPV) solar cells, incorporating GO hole transport layers (HTL). The power conversion efficiency (PCE) of ?5% is the highest reported for OPV using this architecture. A comparative study of solution-processable devices has been undertaken to benchmark GO OPV performance with poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) HTL devices, confirming the viability of GO devices, with comparable PCEs, suitable as high chemical and thermal stability replacements for PEDOT:PSS in OPV.

  2. High average power magnetic modulator for metal vapor lasers

    DOE Patents [OSTI]

    Ball, Don G. (Livermore, CA); Birx, Daniel L. (Oakley, CA); Cook, Edward G. (Livermore, CA); Miller, John L. (Livermore, CA)

    1994-01-01T23:59:59.000Z

    A three-stage magnetic modulator utilizing magnetic pulse compression designed to provide a 60 kV pulse to a copper vapor laser at a 4.5 kHz repetition rate is disclosed. This modulator operates at 34 kW input power. The circuit includes a step up auto transformer and utilizes a rod and plate stack construction technique to achieve a high packing factor.

  3. Collective Thomson scattering of a high power electron cyclotron resonance heating beam in LHD (invited)

    SciTech Connect (OSTI)

    Kubo, S.; Nishiura, M.; Tanaka, K.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Takahash, H.; Mutoh, T. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, 509-5292 Gifu (Japan); Tamura, N. [Department of Energy Science and Technology, Nagoya University, Nagoya 464-8463 (Japan); Tatematsu, Y.; Saito, T. [Research Center for Development of FIR Region, University of Fukui, Fukui 910-8507 (Japan); Notake, T. [Tera-Photonics Lab., RIKEN, Sendai 980-0845 (Japan); Korsholm, S. B.; Meo, F.; Nielsen, S. K.; Salewski, M.; Stejner, M. [Association EURATOM-Risoe DTU, P.O. Box 49, DK-4000 Roskilde (Denmark)

    2010-10-15T23:59:59.000Z

    Collective Thomson scattering (CTS) system has been constructed at LHD making use of the high power electron cyclotron resonance heating (ECRH) system in Large Helical Device (LHD). The necessary features for CTS, high power probing beams and receiving beams, both with well defined Gaussian profile and with the fine controllability, are endowed in the ECRH system. The 32 channel radiometer with sharp notch filter at the front end is attached to the ECRH system transmission line as a CTS receiver. The validation of the CTS signal is performed by scanning the scattering volume. A new method to separate the CTS signal from background electron cyclotron emission is developed and applied to derive the bulk and high energy ion components for several combinations of neutral beam heated plasmas.

  4. Technology survey and performance scaling for the design of high power nuclear electric power and propulsion systems

    E-Print Network [OSTI]

    White, Daniel B., Jr

    2011-01-01T23:59:59.000Z

    High power nuclear electric propulsion systems have the capability to enable many next-generation space exploration applications. To date, use of electric primary propulsion in flight systems has been limited to low-power, ...

  5. KT McDonald 4th High-Power Targetry Workshop May 2, 2011 1 The High-Power Target System

    E-Print Network [OSTI]

    McDonald, Kirk

    in system! Targets for 2-4 MW Proton Beams No such thing as "solid-target-only" at this power level. #12;KT that will be limited to less than 2 MW, static solid targets continue to be appealing. #12;KT McDonald 4th High-PowerKT McDonald 4th High-Power Targetry Workshop May 2, 2011 1 The High-Power Target System for a Muon

  6. A High Performance Computing Network and System Simulator for the Power Grid: NGNS^2

    SciTech Connect (OSTI)

    Villa, Oreste; Tumeo, Antonino; Ciraci, Selim; Daily, Jeffrey A.; Fuller, Jason C.

    2012-11-11T23:59:59.000Z

    Designing and planing next generation power grid sys- tems composed of large power distribution networks, monitoring and control networks, autonomous generators and consumers of power requires advanced simulation infrastructures. The objective is to predict and analyze in time the behavior of networks of systems for unexpected events such as loss of connectivity, malicious attacks and power loss scenarios. This ultimately allows one to answer questions such as: What could happen to the power grid if .... We want to be able to answer as many questions as possible in the shortest possible time for the largest possible systems. In this paper we present a new High Performance Computing (HPC) oriented simulation infrastructure named Next Generation Network and System Simulator (NGNS2 ). NGNS2 allows for the distribution of a single simulation among multiple computing elements by using MPI and OpenMP threads. NGNS2 provides extensive configuration, fault tolerant and load balancing capabilities needed to simulate large and dynamic systems for long periods of time. We show the preliminary results of the simulator running approximately two million simulated entities both on a 64-node commodity Infiniband cluster and a 48-core SMP workstation.

  7. Studies on the switching speed effect of the phase shift keying in SLED for generating high power microwave

    E-Print Network [OSTI]

    Zhengfeng, Xiong; Jian, Yu; Huaibi, Chen; Hui, Ning

    2015-01-01T23:59:59.000Z

    SLAC energy doubler (SLED) type radio-frequency pulse compressors are widely used in large-scale particle accelerators for converting long-duration moderate-power input pulse into short-duration high-power output pulse. The phase shift keying (PSK) is one of the key components in SLED pulse compression systems. Performance of the PSK will influence the output characteristics of SLED, such as rise-time of the output pulse, the maximal peak power gain, and the energy efficiency. In this paper, high power microwave source based on power combining and pulse compression of conventional klystrons was introduced, the nonideal PSK with slow switching speed and without power output during the switching process were investigated, the experimental results with nonideal PSK agreed well with the analytical results.

  8. Dense, low-power sensor network for three-dimensional thermal characterization of large-scale atria spaces

    E-Print Network [OSTI]

    Gong, Nan-Wei

    We describe the design and implementation of a dense, low-power wireless sensor network for fine-grained three-dimensional thermal characterization of a large open indoor space. To better understand the airflow dynamics ...

  9. Optimization Studies for ISOL Type High-Powered Targets

    SciTech Connect (OSTI)

    Remec, Igor [Oak Ridge National Laboratory] [Oak Ridge National Laboratory; Ronningen, Reginald Martin [Michigan State University] [Michigan State University

    2013-09-24T23:59:59.000Z

    The research studied one-step and two-step Isotope Separation on Line (ISOL) targets for future radioactive beam facilities with high driver-beam power through advanced computer simulations. As a target material uranium carbide in the form of foils was used because of increasing demand for actinide targets in rare-isotope beam facilities and because such material was under development in ISAC at TRIUMF when this project started. Simulations of effusion were performed for one-step and two step targets and the effects of target dimensions and foil matrix were studied. Diffusion simulations were limited by availability of diffusion parameters for UCx material at reduced density; however, the viability of the combined diffusion?effusion simulation methodology was demonstrated and could be used to extract physical parameters such as diffusion coefficients and effusion delay times from experimental isotope release curves. Dissipation of the heat from the isotope-producing targets is the limiting factor for high-power beam operation both for the direct and two-step targets. Detailed target models were used to simulate proton beam interactions with the targets to obtain the fission rates and power deposition distributions, which were then applied in the heat transfer calculations to study the performance of the targets. Results indicate that a direct target, with specification matching ISAC TRIUMF target, could operate in 500-MeV proton beam at beam powers up to ~40 kW, producing ~8 1013 fission/s with maximum temperature in UCx below 2200 C. Targets with larger radius allow higher beam powers and fission rates. For the target radius in the range 9-mm to 30-mm the achievable fission rate increases almost linearly with target radius, however, the effusion delay time also increases linearly with target radius.

  10. Highly Conductive and Porous Activated Reduced Graphene Oxide Films for High-Power Supercapacitors

    E-Print Network [OSTI]

    Highly Conductive and Porous Activated Reduced Graphene Oxide Films for High-Power Supercapacitors for a free-standing carbon film reported to date. A two-electrode supercapacitor using these carbon films. KEYWORDS: Graphene, flexible film, chemical activation, supercapacitors Free-standing thin film materials

  11. High-Throughput Dry Processes for Large-Area Devices

    SciTech Connect (OSTI)

    BUSS,RICHARD J.; HEBNER,GREGORY A.; RUBY,DOUGLAS S.; YANG,PIN

    1999-11-01T23:59:59.000Z

    In October 1996, an interdisciplinary team began a three-year LDRD project to study the plasma processes of reactive ion etching and plasma-enhanced chemical vapor deposition on large-area silicon devices. The goal was to develop numerical models that could be used in a variety of applications for surface cleaning, selective etching, and thin-film deposition. Silicon solar cells were chosen as the experimental vehicle for this project because an innovative device design was identified that would benefit from immediate performance improvement using a combination of plasma etching and deposition processes. This report presents a summary of the technical accomplishments and conclusions of the team.

  12. Plasma Physics Challenges of MMPlasma Physics Challenges of MM--toto--THz and High Power MicrowaveTHz and High Power Microwave

    E-Print Network [OSTI]

    Solid StateSolid State Microwave Power ElectronicsMicrowave Power Electronics Both convert kinetic Devices (Avg) Vacuum HPM (Peak) Solid State Lasers (Peak) Solid State Devices (Avg) Power(W) (Single ...BUT ... For f > 100 GHz VEDs frontier 1/f2P High power limit for Solid State 1/f 2 and HPM Frontier

  13. Plasma physics and related challenges of millimeter-wave-to-terahertz and high power microwave generationa...

    E-Print Network [OSTI]

    Smith, James E.

    confronting "classic" high power microwave HPM generators including long-life bright electron beam sources, high power mmw-to-THz sources are compared and contrasted to those of HPM generation, and future assume long pulse or average power, with exceptions be- tween 1 and 10 GHz for high power microwave HPM

  14. Variability of Power from Large-Scale Solar Photovoltaic Scenarios in the State of Gujarat: Preprint

    SciTech Connect (OSTI)

    Parsons, B.; Hummon, M.; Cochran, J.; Stoltenberg, B.; Batra, P.; Mehta, B.; Patel, D.

    2014-04-01T23:59:59.000Z

    India has ambitious goals for high utilization of variable renewable power from wind and solar, and deployment has been proceeding at a rapid pace. The western state of Gujarat currently has the largest amount of solar generation of any Indian state, with over 855 Megawatts direct current (MWDC). Combined with over 3,240 MW of wind, variable generation renewables comprise nearly 18% of the electric-generating capacity in the state. A new historic 10-kilometer (km) gridded solar radiation data set capturing hourly insolation values for 2002-2011 is available for India. We apply an established method for downscaling hourly irradiance data to one-minute irradiance data at potential PV power production locations for one year, 2006. The objective of this report is to characterize the intra-hour variability of existing and planned photovoltaic solar power generation in the state of Gujarat (a total of 1.9 gigawatts direct current (GWDC)), and of five possible expansion scenarios of solar generation that reflect a range of geographic diversity (each scenario totals 500-1,000 MW of additional solar capacity). The report statistically analyzes one year's worth of power variability data, applied to both the baseline and expansion scenarios, to evaluate diurnal and seasonal power fluctuations, different timescales of variability (e.g., from one to 15 minutes), the magnitude of variability (both total megawatts and relative to installed solar capacity), and the extent to which the variability can be anticipated in advance. The paper also examines how Gujarat Energy Transmission Corporation (GETCO) and the Gujarat State Load Dispatch Centre (SLDC) could make use of the solar variability profiles in grid operations and planning.

  15. Variability of Power from Large-Scale Solar Photovoltaic Scenarios in the State of Gujarat (Presentation)

    SciTech Connect (OSTI)

    Parsons, B.; Hummon, M.; Cochran, J.; Stoltenberg, B.; Batra, P.; Mehta, B.; Patel, D.

    2014-04-01T23:59:59.000Z

    India has ambitious goals for high utilization of variable renewable power from wind and solar, and deployment has been proceeding at a rapid pace. The western state of Gujarat currently has the largest amount of solar generation of any Indian state, with over 855 Megawatts direct current (MWDC). Combined with over 3,240 MW of wind, variable generation renewables comprise nearly 18% of the electric-generating capacity in the state. A new historic 10-kilometer (km) gridded solar radiation data set capturing hourly insolation values for 2002-2011 is available for India. We apply an established method for downscaling hourly irradiance data to one-minute irradiance data at potential PV power production locations for one year, 2006. The objective of this report is to characterize the intra-hour variability of existing and planned photovoltaic solar power generation in the state of Gujarat (a total of 1.9 gigawatts direct current (GWDC)), and of five possible expansion scenarios of solar generation that reflect a range of geographic diversity (each scenario totals 500-1,000 MW of additional solar capacity). The report statistically analyzes one year's worth of power variability data, applied to both the baseline and expansion scenarios, to evaluate diurnal and seasonal power fluctuations, different timescales of variability (e.g., from one to 15 minutes), the magnitude of variability (both total megawatts and relative to installed solar capacity), and the extent to which the variability can be anticipated in advance. The paper also examines how Gujarat Energy Transmission Corporation (GETCO) and the Gujarat State Load Dispatch Centre (SLDC) could make use of the solar variability profiles in grid operations and planning.

  16. A High Efficiency PSOFC/ATS-Gas Turbine Power System

    SciTech Connect (OSTI)

    W.L. Lundberg; G.A. Israelson; M.D. Moeckel; S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann

    2001-02-01T23:59:59.000Z

    A study is described in which the conceptual design of a hybrid power system integrating a pressurized Siemens Westinghouse solid oxide fuel cell generator and the Mercury{trademark} 50 gas turbine was developed. The Mercury{trademark} 50 was designed by Solar Turbines as part of the US. Department of Energy Advanced Turbine Systems program. The focus of the study was to develop the hybrid power system concept that principally would exhibit an attractively-low cost of electricity (COE). The inherently-high efficiency of the hybrid cycle contributes directly to achieving this objective, and by employing the efficient, power-intensive Mercury{trademark} 50, with its relatively-low installed cost, the higher-cost SOFC generator can be optimally sized such that the minimum-COE objective is achieved. The system cycle is described, major system components are specified, the system installed cost and COE are estimated, and the physical arrangement of the major system components is discussed. Estimates of system power output, efficiency, and emissions at the system design point are also presented. In addition, two bottoming cycle options are described, and estimates of their effects on overall-system performance, cost, and COE are provided.

  17. Understanding the Impact of Large-Scale Penetration of Micro Combined Heat & Power Technologies within Energy Systems

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Catlica de Chile)

    of Micro Combined Heat & Power Technologies within Energy Systems by Karen de los ngeles Tapia-based electricity generation technologies are considered, by energy experts and also policymakers, to be essentialUnderstanding the Impact of Large-Scale Penetration of Micro Combined Heat & Power Technologies

  18. Fourth International Workshop on Large-Scale Integration of Wind Power and Transmission Networks for Offshore Wind Farms,

    E-Print Network [OSTI]

    for Offshore Wind Farms, 20-21 October 2003, Billund, Denmark C. S. Nielsen, Hans F. Ravn, Camilla Schaumburg1 Fourth International Workshop on Large-Scale Integration of Wind Power and Transmission Networks of Denmark, B. 321, DK-2800 Lyngby, Denmark, csm@imm.dtu.dk Two wind power prognosis criteria and regulating

  19. Large CO2 reductions via offshore wind power matched to inherent storage in energy end-uses

    E-Print Network [OSTI]

    Jacobson, Mark

    Large CO2 reductions via offshore wind power matched to inherent storage in energy end-uses Willett develop methods for assessing offshore wind resources, using a model of the vertical structure offshore wind power matched to inherent storage in energy end- uses, Geophys. Res. Lett., 34, L02817, doi

  20. Factorized power expansion for high-pT heavy quarkonium production

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ma, Yan-Qing; Qiu, Jian-Wei; Sterman, George; Zhang, Hong

    2014-10-01T23:59:59.000Z

    We show that when the factorized cross section for heavy quarkonium production includes next-to-leading power contributions associated with the production of the heavy quark pair at short distances, it naturally reproduces all high pT results calculated in nonrelativistic QCD (NRQCD) factorization. This extended formalism requires fragmentation functions for heavy quark pairs, as well as for light partons. When these fragmentation functions are themselves calculated using NRQCD, we find that two of the four leading NRQCD production channels, S[1]1 and S[8]0, are dominated by the next-to-leading power contributions for a very wide pT range. The large next-to-leading order corrections of NRQCDmoreare absorbed into the leading order of the first power correction. The impact of this finding on heavy quarkonium production and its polarization is discussed.less

  1. Factorized power expansion for high-pT heavy quarkonium production

    SciTech Connect (OSTI)

    Ma, Yan-Qing [Brookhaven National Laboratory, Physics Department, Upton, NY (United States); Qiu, Jian-Wei [Brookhaven National Laboratory, Physics Department, Upton, NY (United States); Stony Brook University, C.N. Yang Institute for Theoretical Physics, Department of Physics and Astronomy, Stony Brook, NY (United States); Sterman, George [Stony Brook University, C.N. Yang Institute for Theoretical Physics, Department of Physics and Astronomy, Stony Brook, NY (United States); Zhang, Hong [Stony Brook University, Department of Physics and Astronomy, Stony Brook, NY (United States)

    2014-10-01T23:59:59.000Z

    We show that when the factorized cross section for heavy quarkonium production includes next-to-leading power contributions associated with the production of the heavy quark pair at short distances, it naturally reproduces all high pT results calculated in nonrelativistic QCD (NRQCD) factorization. This extended formalism requires fragmentation functions for heavy quark pairs, as well as for light partons. When these fragmentation functions are themselves calculated using NRQCD, we find that two of the four leading NRQCD production channels, S[1]1 and S[8]0, are dominated by the next-to-leading power contributions for a very wide pT range. The large next-to-leading order corrections of NRQCD are absorbed into the leading order of the first power correction. The impact of this finding on heavy quarkonium production and its polarization is discussed.

  2. Factorized power expansion for high-pT heavy quarkonium production

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ma, Yan-Qing [Brookhaven National Laboratory, Physics Department, Upton, NY (United States); Qiu, Jian-Wei [Brookhaven National Laboratory, Physics Department, Upton, NY (United States); Stony Brook University, C.N. Yang Institute for Theoretical Physics, Department of Physics and Astronomy, Stony Brook, NY (United States); Sterman, George [Stony Brook University, C.N. Yang Institute for Theoretical Physics, Department of Physics and Astronomy, Stony Brook, NY (United States); Zhang, Hong [Stony Brook University, Department of Physics and Astronomy, Stony Brook, NY (United States)

    2014-10-01T23:59:59.000Z

    We show that when the factorized cross section for heavy quarkonium production includes next-to-leading power contributions associated with the production of the heavy quark pair at short distances, it naturally reproduces all high pT results calculated in nonrelativistic QCD (NRQCD) factorization. This extended formalism requires fragmentation functions for heavy quark pairs, as well as for light partons. When these fragmentation functions are themselves calculated using NRQCD, we find that two of the four leading NRQCD production channels, S[1]1 and S[8]0, are dominated by the next-to-leading power contributions for a very wide pT range. The large next-to-leading order corrections of NRQCD are absorbed into the leading order of the first power correction. The impact of this finding on heavy quarkonium production and its polarization is discussed.

  3. High thermal power density heat transfer apparatus providing electrical isolation at high temperature using heat pipes

    SciTech Connect (OSTI)

    Morris, J. F.

    1985-03-19T23:59:59.000Z

    This invention is directed to transferring heat from an extremely high temperature source to an electrically isolated lower temperature receiver. The invention is particularly concerned with supplying thermal power to a thermionic converter from a nuclear reactor with electric isolation. Heat from a high temperature heat pipe is transferred through a vacuum or a gap filled with electrically nonconducting gas to a cooler heat pipe. The heat pipe is used to cool the nuclear reactor while the heat pipe is connected thermally and electrically to a thermionic converter. If the receiver requires greater thermal power density, geometries are used with larger heat pipe areas for transmitting and receiving energy than the area for conducting the heat to the thermionic converter. In this way the heat pipe capability for increasing thermal power densities compensates for the comparatively low thermal power densities through the electrically nonconducting gap between the two heat pipes.

  4. Commissioning the new high power rf system for the AGS with high intensity beam

    SciTech Connect (OSTI)

    Brennan, J.M.; Ciardullo, D.J.; Deng, D.P; Hayes, T.; Onillon, E.; Otis, A.; Sanders, R.T.; Zaltsman, A.

    1994-08-01T23:59:59.000Z

    A new high power rf system has been installed in the AGS in order to raise the beam loading limit to beyond 6 {times} 10{sup 13} protons per pulse. The old system was limited to 2.2 {times} 10{sup l3} ppp by: available real power, multi-loop instability, and transient beam loading during batch filling from the Booster. The key components of the new system are: new power amplifiers in the tunnel using the Thomson-CSF TH573 300kW tetrode, rf feedback around the power stage, and reduction of the 10 cavities` R/Q by 1.8 by additional gap capacitors. Commissioning of the new rf system with high intensity beam is described. The intensity goal for the 1994 running period is 4 {times} 10{sup 13} ppp. To date, 3.7 {times} 10{sup 13} ppp has been achieved.

  5. IN-VEHICLE, HIGH-POWER ENERGY STORAGE SYSTEMS

    Broader source: Energy.gov (indexed) [DOE]

    (BATTERY) Power Electronics Laboratory (PEL) Power Electronics Laboratory (PEL) Battery Energy Storage Technology (BEST) Center Battery Energy Storage Technology (BEST)...

  6. High Performance Computing - Power Application Programming Interface Specification.

    SciTech Connect (OSTI)

    Laros, James H.,; Kelly, Suzanne M.; Pedretti, Kevin; Grant, Ryan; Olivier, Stephen Lecler; Levenhagen, Michael J.; DeBonis, David

    2014-08-01T23:59:59.000Z

    Measuring and controlling the power and energy consumption of high performance computing systems by various components in the software stack is an active research area [13, 3, 5, 10, 4, 21, 19, 16, 7, 17, 20, 18, 11, 1, 6, 14, 12]. Implementations in lower level software layers are beginning to emerge in some production systems, which is very welcome. To be most effective, a portable interface to measurement and control features would significantly facilitate participation by all levels of the software stack. We present a proposal for a standard power Application Programming Interface (API) that endeavors to cover the entire software space, from generic hardware interfaces to the input from the computer facility manager.

  7. Experimental astrophysics with high power lasers and Z pinches

    SciTech Connect (OSTI)

    Remington, B A; Drake, R P; Ryutov, D D

    2004-12-10T23:59:59.000Z

    With the advent of high energy density (HED) experimental facilities, such as high-energy lasers and fast Z-pinch, pulsed-power facilities, mm-scale quantities of matter can be placed in extreme states of density, temperature, and/or velocity. This has enabled the emergence of a new class of experimental science, HED laboratory astrophysics, wherein the properties of matter and the processes that occur under extreme astrophysical conditions can be examined in the laboratory. Areas particularly suitable to this class of experimental astrophysics include the study of opacities relevant to stellar interiors; equations of state relevant to planetary interiors; strong shock driven nonlinear hydrodynamics and radiative dynamics, relevant to supernova explosions and subsequent evolution; protostellar jets and high Mach-number flows; radiatively driven molecular clouds and nonlinear photoevaporation front dynamics; and photoionized plasmas relevant to accretion disks around compact objects, such as black holes and neutron stars.

  8. Resultant magnetic fields due to both windings and heavy current leads in large power transformers

    SciTech Connect (OSTI)

    Tang Renyuan; Li Yan; Lin Feng; Tian Lijian [Shenyang Polytechnic Univ. (China)] [Shenyang Polytechnic Univ. (China)

    1996-05-01T23:59:59.000Z

    The eddy current field due to both windings and heavy current leads (HCL) in large power transformers is analyzed by using the improved T-{Omega} method, in which the T and {Omega} can be solved separately in different subregions. Thus, the storage capacity and CPU time can be saved to a great extent. In addition, the local overheating on the tank wall near the magnetic shield gap is calculated and analyzed, and the improving measures are proposed. On the basis of these work, a composite shield is analyzed and optimized. The numerical results show that the eddy current losses have been reduced and the local overheating has been removed by using this composite shield.

  9. The study on flow electrification of oil-cellulose insulating system in large power transformer

    SciTech Connect (OSTI)

    Zhang, J.; Cao, L.J. [Nanyang Technological Univ., Singapore (Singapore). School of Electrical and Electronic Engineering

    1995-12-31T23:59:59.000Z

    Electrical breakdown due to charge accumulation from transformer oil flow has caused many failures of large power transformers world wide. The problem is due to the entrainment of diffused electrical double layer charges into circulating transformer oil. As the charges accumulate on the surface of solid insulating materials and in volume oil, static potential builds up. If the rate of charge accumulation is greater than the rate of charge relaxation, harmful spark discharge may occur. By employing a pressboard pipe model, the present study carried out revealed the influence of higher oil flow rate and upstream charge on flow electrification. By simulating an actual transformer internal structure, it is noticed that there is a probability of partial discharge inception under higher oil circulation velocity. However, the upstream charge and dry zone can lead to a great increase of electric field strength, which may become important potential causes of partial discharge inception under the condition of relative low oil velocity.

  10. 752 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 24, NO. 2, MAY 2009 Large-Scale Distribution Planning--Part

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Catlica de Chile)

    methodology for low-voltage distribution network planning. Combined optimization of transformers, "Large-scale distribution planning--Part I: Simultaneous network and transformer optimization" [1752 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 24, NO. 2, MAY 2009 Large-Scale Distribution Planning

  11. Diagnostic evaluation of power fade phenomena and calendar life reduction in high-power lithium-ion batteries

    E-Print Network [OSTI]

    Kostecki, Robert; McLarnon, Frank

    2004-01-01T23:59:59.000Z

    LIFE REDUCTION IN HIGH-POWER LITHIUM-ION BATTERIES RobertRaman, AFM Introduction Lithium-ion batteries are being

  12. Supercontinuum Generation in Photonic Crystal Fibers Possessing High Birefringence and Large Optical Nonlinearity

    E-Print Network [OSTI]

    Sharma, Mohit; Konar, S

    2015-01-01T23:59:59.000Z

    This paper presents the design of an index guided highly birefringent photonic crystal fiber which promises to yield very large birefringence ~3.33 X 10^(-2) at 1550 nm and ~1.75 X 10^(-2) at 1064 nm as well as large effective nonlinearity ~80 W^(-1)km^(-1). Optical supercontinuum generation in the proposed fiber using a 1064 nm pump source with peak power of 1kW has been also presented. Finite difference time domain method (FDTD) has been employed to examine the optical properties such as fiber birefringence, mode field, V-parameter, walk-off and optical nonlinearity, while the Split-step Fourier method is used to solve the nonlinear Schrodinger equation felicitating the study of supercontinuum generation. Simulation results indicate that horizontal input pulse yields superior continuum in comparison to that of the vertically polarized input. However, the broadening of the continuum is about 1450 nm in case of horizontally polarized input light whereas it is approximately 2350 nm for vertically polarized.

  13. Investigating the effective range of vacuum ultraviolet-mediated breakdown in high-power microwave metamaterials

    SciTech Connect (OSTI)

    Liu, Chien-Hao, E-mail: cliu82@wisc.edu; Neher, Joel D., E-mail: jdneher@wisc.edu; Booske, John H., E-mail: booske@engr.wisc.edu; Behdad, Nader, E-mail: behdad@wisc.edu [Department of Electrical and Computer Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706 (United States)

    2014-10-14T23:59:59.000Z

    Metamaterials and periodic structures operating under high-power excitations are susceptible to breakdown. It was recently demonstrated that a localized breakdown created in a given region of a periodic structure can facilitate breakdown in other regions of the structure where the intensity of the incident electromagnetic fields may not be high enough to cause breakdown under normal circumstances. It was also demonstrated that this phenomenon is due to the generation of vacuum ultraviolet radiation at the location of the initial discharge, which propagates to the neighboring regions (e.g., other unit cells in a periodic structure) and facilitates the generation of a discharge at a lower incident power level. In this paper, we present the results of an experimental study conducted to determine the effective range of this physical phenomenon for periodic structures that operate in air and in pure nitrogen gas at atmospheric pressure levels. It is demonstrated that when breakdown is induced in a periodic structure using a high-power pulse with a frequency of 9.382 GHz, duration of 0.8 ?s, and peak power level of 25 kW, this phenomenon is highly likely to happen in radii of approximately 1617 mm from the location of the initial discharge under these test conditions. The results of this study are significant in designing metamaterials and periodic structures for high-power microwave applications as they suggest that a localized discharge created in such a periodic structure with a periodicity less than 1617 mm can spread over a large surface and result in a distributed discharge.

  14. Conductor requirements for high-temperature superconducting utility power transformers

    SciTech Connect (OSTI)

    Pleva, E. F. [Waukesha Electric Systems, Waukesha, WI; Mehrotra, V. [Waukesha Electric Systems, Waukesha, WI; Schwenterly, S W [ORNL

    2010-01-01T23:59:59.000Z

    High-temperature superconducting (HTS) coated conductors in utility power transformers must satisfy a set of operating requirements that are driven by two major considerations-HTS transformers must be economically competitive with conventional units, and the conductor must be robust enough to be used in a commercial manufacturing environment. The transformer design and manufacturing process will be described in order to highlight the various requirements that it imposes on the HTS conductor. Spreadsheet estimates of HTS transformer costs allow estimates of the conductor cost required for an HTS transformer to be competitive with a similarly performing conventional unit.

  15. High-power radio-frequency attenuation device

    DOE Patents [OSTI]

    Kerns, Q.A.; Miller, H.W.

    1981-12-30T23:59:59.000Z

    A resistor device for attenuating radio frequency power includes a radio frequency conductor connected to a series of fins formed of high relative magnetic permeability material. The fins are dimensional to accommodate the skin depth of the current conduction therethrough, as well as an inner heat conducting portion where current does not travel. Thermal connections for air or water cooling are provided for the inner heat conducting portions of each fin. Also disclosed is a resistor device to selectively alternate unwanted radio frequency energy in a resonant cavity.

  16. High-Power Batteries | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbet WhenHiggsmiddleware High-PerformancePower

  17. Laser Seeding Yields High-Power Coherent Terahertz Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,sandLaserLaser Seeding Yields

  18. Laser Seeding Yields High-Power Coherent Terahertz Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,sandLaserLaser Seeding YieldsLaser

  19. Laser Seeding Yields High-Power Coherent Terahertz Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,sandLaserLaser Seeding YieldsLaserLaser

  20. Laser Seeding Yields High-Power Coherent Terahertz Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,sandLaserLaser Seeding

  1. High Power Performance Lithium Ion Battery - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cn SunnybankD.jpgHanfordDepartmentInnovationHigh FluxPerformancng DavidEnergy

  2. Large-Scale Molecular Dynamics Simulations for Highly Parallel Infrastructures

    E-Print Network [OSTI]

    Pazrikov, Jana

    2014-01-01T23:59:59.000Z

    Computational chemistry allows researchers to experiment in sillico: by running a computer simulations of a biological or chemical processes of interest. Molecular dynamics with molecular mechanics model of interactions simulates N-body problem of atoms$-$it computes movements of atoms according to Newtonian physics and empirical descriptions of atomic electrostatic interactions. These simulations require high performance computing resources, as evaluations within each step are computationally demanding and billions of steps are needed to reach interesting timescales. Current methods decompose the spatial domain of the problem and calculate on parallel/distributed infrastructures. Even the methods with the highest strong scaling hit the limit at half a million cores: they are not able to cut the time to result if provided with more processors. At the dawn of exascale computing with massively parallel computational resources, we want to increase the level of parallelism by incorporating parallel-in-time comput...

  3. Large-scale preparation of graphene by high temperature insertion of hydrogen into graphite

    E-Print Network [OSTI]

    Kamali, Ali Reza; Fray, Derek J.

    2015-05-14T23:59:59.000Z

    Experimental evidence for high temperature diffusion of hydrogen into the interlayer space of graphite is provided. This process is discussed as a possible method for the rapid production of high-quality, inexpensive graphene in large quantities...

  4. Equivalencing the Collector System of a Large Wind Power Plant: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Butterfield, C. P.; Ellis, A.; Mechenbier, J.; Hochheimer, J.; Young, R.; Miller, N.; Delmerico, R.; Zavadil, R.; Smith, J. C.

    2006-01-01T23:59:59.000Z

    This paper focuses on our effort to develop an equivalent representation of a wind power plant collector system for power system planning studies.

  5. Method of Equivalencing for a Large Wind Power Plant with Multiple Turbine Representation: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Pasupulati, S.; Ellis, A.; Kosterov, D.

    2008-07-01T23:59:59.000Z

    This paper focuses on our effort to develop an equivalent representation of a Wind Power Plant collector system for power system planning studies.

  6. Power Limitation Control for a PMSG-Based Marine Current Turbine at High Tidal Speed and

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Power Limitation Control for a PMSG-Based Marine Current Turbine at High Tidal Speed and Strong Sea the generator power at rated value. In this paper, two power limitation strategies with flux-weakening control by the power limitation and the rotor speed; this method enables to control the generator power at the limited

  7. Alternate applications of fusion power: development of a high-temperature blanket for synthetic-fuel production

    SciTech Connect (OSTI)

    Howard, P.A.; Mattas, R.F.; Krajcinovic, D.; DePaz, J.; Gohar, Y.

    1981-11-01T23:59:59.000Z

    This study has shown that utilization of the unique features of a fusion reactor can result in a novel and potentially economical method of decomposing steam into hydrogen and oxygen. Most of the power of fusion reactors is in the form of energetic neutrons. If this power could be used to produce high temperature uncontaminated steam, a large fraction of the energy needed to decomposee the steam could be supplied as thermal energy by the fusion reaction. Proposed high temperature electrolysis processes require steam temperature in excess of 1000/sup 0/C for high efficiency. The design put forth in this study details a system that can accomplish that end.

  8. Creating high-stability high-precision bipolar trim power supply

    SciTech Connect (OSTI)

    Chen, Zhe [JLAB; Merz, William A. [JLAB

    2012-07-01T23:59:59.000Z

    Thomas Jefferson National Accelerator Facility (TJNAF) is founded by the US Department of Energy (DOE) office of science for the technology advancement and physics research in electron beam accelerator. This facility has the state of the art technology to carry out world-class cutting-edge experiments for the nucleus composition and atomic characteristics identification and exploration for the nature of the matter in the universe. A continuous wave electron beam is featured for such experiments, thus precise and stable trim power supply is required to meet such purpose. This paper demonstrates the challenges and solutions to design, assemble, fabrication and test such high-precision high-stability power supplies. This paper presents the novel design and first article test of the 20A 75V bipolar, 100ppm stability level current-regulated high-power trim power supplies for the beam manipulation. This special design can provide valuable documentation and reference values for future designs and special applications in particle accelerator power supply creation.

  9. High-Level Power Estimation with Interconnect Effects Kavel M. Buyuksahin

    E-Print Network [OSTI]

    Najm, Farid N.

    the predicted (at RTL) power against that measured using SPICE. An average er- ror of 14.4% is obtainedHigh-Level Power Estimation with Interconnect Effects Kavel M. B¨uy¨uks¸ahin ECE Dept.najm@toronto.edu ABSTRACT We extend earlier work on high-level average power esti- mation to include the power due

  10. Materials integration issues for high performance fusion power systems.

    SciTech Connect (OSTI)

    Smith, D. L.

    1998-01-14T23:59:59.000Z

    One of the primary requirements for the development of fusion as an energy source is the qualification of materials for the frost wall/blanket system that will provide high performance and exhibit favorable safety and environmental features. Both economic competitiveness and the environmental attractiveness of fusion will be strongly influenced by the materials constraints. A key aspect is the development of a compatible combination of materials for the various functions of structure, tritium breeding, coolant, neutron multiplication and other special requirements for a specific system. This paper presents an overview of key materials integration issues for high performance fusion power systems. Issues such as: chemical compatibility of structure and coolant, hydrogen/tritium interactions with the plasma facing/structure/breeder materials, thermomechanical constraints associated with coolant/structure, thermal-hydraulic requirements, and safety/environmental considerations from a systems viewpoint are presented. The major materials interactions for leading blanket concepts are discussed.

  11. Very low pressure high power impulse triggered magnetron sputtering

    DOE Patents [OSTI]

    Anders, Andre; Andersson, Joakim

    2013-10-29T23:59:59.000Z

    A method and apparatus are described for very low pressure high powered magnetron sputtering of a coating onto a substrate. By the method of this invention, both substrate and coating target material are placed into an evacuable chamber, and the chamber pumped to vacuum. Thereafter a series of high impulse voltage pulses are applied to the target. Nearly simultaneously with each pulse, in one embodiment, a small cathodic arc source of the same material as the target is pulsed, triggering a plasma plume proximate to the surface of the target to thereby initiate the magnetron sputtering process. In another embodiment the plasma plume is generated using a pulsed laser aimed to strike an ablation target material positioned near the magnetron target surface.

  12. Fusion energy Fusion powers the Sun, and all stars, in which light nuclei fuse together at high temperatures

    E-Print Network [OSTI]

    Fusion energy Fusion powers the Sun, and all stars, in which light nuclei fuse together at high temperatures (15 million degrees) releasing a large amount of energy. The aim of fusion research is to use of hydrogen). In the plasma the deuterium and tritium fuse to produce energy. Fusion is a very efficient

  13. High voltage power supply with modular series resonant inverters

    DOE Patents [OSTI]

    Dreifuerst, G.R.; Merritt, B.T.

    1995-07-18T23:59:59.000Z

    A relatively small and compact high voltage, high current power supply for a laser utilizes a plurality of modules containing series resonant half bridge inverters. A pair of reverse conducting thyristors are incorporated in each series resonant inverter module such that the series resonant inverter modules are sequentially activated in phases 360{degree}/n apart, where n=number of modules for n>2. Selective activation of the modules allows precise output control reducing ripple and improving efficiency. Each series resonant half bridge inverter module includes a transformer which has a cooling manifold for actively circulating a coolant such as water, to cool the transformer core as well as selected circuit elements. Conductors connecting and forming various circuit components comprise hollow, electrically conductive tubes such as copper. Coolant circulates through the tubes to remove heat. The conductive tubes act as electrically conductive lines for connecting various components of the power supply. Where it is desired to make electrical isolation breaks, tubes comprised of insulating material such as nylon are used to provide insulation and continue the fluid circuit. 11 figs.

  14. High voltage power supply with modular series resonant inverters

    DOE Patents [OSTI]

    Dreifuerst, Gary R. (Livermore, CA); Merritt, Bernard T. (Livermore, CA)

    1995-01-01T23:59:59.000Z

    A relatively small and compact high voltage, high current power supply for a laser utilizes a plurality of modules containing series resonant half bridge inverters. A pair of reverse conducting thyristors are incorporated in each series resonant inverter module such that the series resonant inverter modules are sequentially activated in phases 360.degree./n apart, where n=number of modules for n>2. Selective activation of the modules allows precise output control reducing ripple and improving efficiency. Each series resonant half bridge inverter module includes a transformer which has a cooling manifold for actively circulating a coolant such as water, to cool the transformer core as well as selected circuit elements. Conductors connecting and forming various circuit components comprise hollow, electrically conductive tubes such as copper. Coolant circulates through the tubes to remove heat. The conductive tubes act as electrically conductive lines for connecting various components of the power supply. Where it is desired to make electrical isolation breaks, tubes comprised of insulating material such as nylon are used to provide insulation and continue the fluid circuit.

  15. High Power, High Voltage FETs in Linear Applications: A User's Perspective

    SciTech Connect (OSTI)

    N. Greenough, E. Fredd, S. DePasquale

    2009-09-21T23:59:59.000Z

    The specifications of the current crop of highpower, high-voltage field-effect transistors (FETs) can lure a designer into employing them in high-voltage DC equipment. Devices with extremely low on-resistance and very high power ratings are available from several manufacturers. However, our experience shows that high-voltage, linear operation of these devices at near-continuous duty can present difficult reliability challenges at stress levels well-below their published specifications. This paper chronicles the design evolution of a 600 volt, 8 ampere shunt regulator for use with megawatt-class radio transmitters, and presents a final design that has met its reliability criteria.

  16. Laser Pointer System Intuitive Interaction for Large High-Res Displays

    E-Print Network [OSTI]

    Reiterer, Harald

    Laser Pointer System Intuitive Interaction for Large High-Res Displays LEDs Accelerometer Vibration Buttons Laser & LEDs Unlike conventional input devices like mouse and keyboard, laser pointers do that are displayed on large high-resolution screens. The laser pointer technology was developed in cooperation

  17. Free Boundary, High Beta Equilibrium in a Large Aspect Ratio Tokamak with Nearly

    E-Print Network [OSTI]

    Free Boundary, High Beta Equilibrium in a Large Aspect Ratio Tokamak with Nearly Circular Plasmaboundary, highbeta equi libria in large aspect ratio tokamaks with a nearly circular plasma boundary in tokamaks for the purpose of developing an economic fusion reactor. It has long been recognized

  18. Dynamic Power Management of High Performance Network on Chip

    E-Print Network [OSTI]

    Mandal, Suman Kalyan

    2012-02-14T23:59:59.000Z

    . The addition of intelligent networking on the chip adds to the chips power consumption thus making management of communication power an interesting and challenging research problem. While VLSI techniques have evolved over time to enable power reduction...

  19. High frequency AC power converter for low voltage circuits

    E-Print Network [OSTI]

    Salazar, Nathaniel Jay Tobias

    2012-01-01T23:59:59.000Z

    This thesis presents a novel AC power delivery architecture that is suitable for VHF frequency (50-100MHz) polyphase AC/DC power conversion in low voltage integrated circuits. A complete AC power delivery architecture was ...

  20. High Luminosity Large Hadron Collider A description for the European Strategy Preparatory Group

    E-Print Network [OSTI]

    Rossi, L

    2012-01-01T23:59:59.000Z

    The Large Hadron Collider (LHC) is the largest scientific instrument ever built. It has been exploring the new energy frontier since 2009, gathering a global user community of 7,000 scientists. It will remain the most powerful accelerator in the world for at least two decades, and its full exploitation is the highest priority in the European Strategy for Particle Physics, adopted by the CERN Council and integrated into the ESFRI Roadmap. To extend its discovery potential, the LHC will need a major upgrade around 2020 to increase its luminosity (rate of collisions) by a factor of 10 beyond its design value. As a highly complex and optimized machine, such an upgrade of the LHC must be carefully studied and requires about 10 years to implement. The novel machine configuration, called High Luminosity LHC (HL-LHC), will rely on a number of key innovative technologies, representing exceptional technological challenges, such as cutting-edge 13 tesla superconducting magnets, very compact and ultra-precise superconduc...

  1. Failure modes in high-power lithium-ion batteries for use in hybrid electric vehicles

    E-Print Network [OSTI]

    2001-01-01T23:59:59.000Z

    for ATD 18650 GEN 1 lithium ion cells, Revision 4, DecemberFAILURE MODES IN HIGH-POWER LITHIUM-ION BATTERIES FOR USE INdevelopment of high-power lithium-ion batteries for hybrid

  2. High-Powered Dark Energy Camera Can See Billions of Light Years...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High-Powered Dark Energy Camera Can See Billions of Light Years Away High-Powered Dark Energy Camera Can See Billions of Light Years Away August 21, 2014 - 10:19am Addthis Stars...

  3. Microsoft PowerPoint - 15.1130_Jeff Baker_Final Ultra-High Efficiency...

    Energy Savers [EERE]

    130Jeff BakerFinal Ultra-High Efficiency Commercial Buildings Microsoft PowerPoint - 15.1130Jeff BakerFinal Ultra-High Efficiency Commercial Buildings Microsoft PowerPoint -...

  4. Boosted HCCI for High Power without Engine Knock, and with Ultra...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boosted HCCI for High Power without Engine Knock, and with Ultra-Low NOX Emissions Boosted HCCI for High Power without Engine Knock, and with Ultra-Low NOX Emissions Advanced...

  5. OPTIMIZATION OF THE PARAMETERS OF A STORAGE RING FOR A HIGH POWER XUV FREE ELECTRON LASER

    E-Print Network [OSTI]

    Jackson, A.

    2010-01-01T23:59:59.000Z

    A.M. Sessler. 'free Electron Laser . LBL -l 8905 (JanuaryFOR A HIGH POWER XUV FREE ELECTRON LASER. A. Jackson, J.for a High Power XUV Free Electron Laser," (LBL'19771, June,

  6. High-power single mode solid state laser with short wide unstable cavity: Misprints

    E-Print Network [OSTI]

    Kouznetsov, Dmitrii

    1 High-power single mode solid state laser with short wide unstable cavity: Misprints D. Kouznetsov. Kouznetsov, J.-F. Bisson, K. Takaichi K. Ueda. High-power single mode solid state laser with short wide

  7. Failure modes in high-power lithium-ion batteries for use in hybrid electric vehicles

    E-Print Network [OSTI]

    2001-01-01T23:59:59.000Z

    MODES IN HIGH-POWER LITHIUM-ION BATTERIES FOR USE IN HYBRIDof high-power lithium-ion batteries for hybrid electricthe development of lithium-ion batteries for hybrid electric

  8. IN-VEHICLE, HIGH-POWER ENERGY STORAGE SYSTEMS

    Broader source: Energy.gov (indexed) [DOE]

    Laboratory (DCEL) Power Electronics Laboratory (PEL) Power Electronics Laboratory (PEL) Battery Energy Storage Technology (BEST) Center Battery Energy Storage Technology (BEST)...

  9. IN-VEHICLE, HIGH-POWER ENERGY STORAGE SYSTEMS

    Broader source: Energy.gov (indexed) [DOE]

    Energy Research Lab Power Electronics Laboratory (PEL) Power Electronics Laboratory (PEL) Battery Energy Storage Technology (BEST) Center Battery Energy Storage Technology (BEST)...

  10. average power high: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simultaneous Power Fluctuation and Average Power Minimization during Nano-CMOS Behavioral Synthesis Computer Technologies and Information Sciences Websites Summary: conversion 6....

  11. The Neutrino Factory and Muon Collider Collaboration High-Power Targets and Particle Collection

    E-Print Network [OSTI]

    McDonald, Kirk

    Collaboration High-Power Targets Essential for Many Future Facilties ESS IFMIF ISOL/ Beams PSI APT ATW Kirk T

  12. High-Temperature Air-Cooled Power Electronics Thermal Design (Presentation)

    SciTech Connect (OSTI)

    Waye, S.

    2014-06-01T23:59:59.000Z

    This presentation discusses the status of research at NREL on high temperature air-cooled power electronics thermal design.

  13. Interaction of a High-Power Laser Beam with Metal Sheets

    SciTech Connect (OSTI)

    Boley, C D; Cutter, K P; Fochs, S N; Pax, P H; Rotter, M D; Rubenchik, A M; Yamamoto, R M

    2009-06-24T23:59:59.000Z

    Experiments with a high-power laser beam directed onto thin aluminum sheets, with a large spot size, demonstrate that airflow produces a strong enhancement of the interaction. The enhancement is explained in terms of aerodynamic effects. As laser heating softens the material, the airflow-induced pressure difference between front and rear faces causes the metal to bulge into the beam. The resulting shear stresses rupture the material and remove it at temperatures well below the melting point. The material heating is shown to conform to an elementary model. We present an analytic model of elastic bulging. Scaling with respect to spot size, wind speed, and material parameters is determined.

  14. Amplitude Noise and Timing Jitter Characterization of a High-Power

    E-Print Network [OSTI]

    Keller, Ursula

    Amplitude Noise and Timing Jitter Characterization of a High-Power Mode-Locked Integrated External and Timing Jitter Characterization of a High-Power Mode-Locked Integrated External-Cavity Surface Emitting present a timing jitter and amplitude noise characterization of a high-power mode-locked integrated

  15. High-Temperature High-Power Packaging Techniques for HEV Traction Applications

    SciTech Connect (OSTI)

    Barlow, F.D.; Elshabini, A.

    2006-11-30T23:59:59.000Z

    A key issue associated with the wider adoption of hybrid-electric vehicles (HEV) and plug in hybrid-electric vehicles (PHEV) is the implementation of the power electronic systems that are required in these products [1]. To date, many consumers find the adoption of these technologies problematic based on a financial analysis of the initial cost versus the savings available from reduced fuel consumption. Therefore, one of the primary industry goals is the reduction in the price of these vehicles relative to the cost of traditional gasoline powered vehicles. Part of this cost reduction must come through optimization of the power electronics required by these vehicles. In addition, the efficiency of the systems must be optimized in order to provide the greatest range possible. For some drivers, any reduction in the range associated with a potential HEV or PHEV solution in comparison to a gasoline powered vehicle represents a significant barrier to adoption and the efficiency of the power electronics plays an important role in this range. Likewise, high efficiencies are also important since lost power further complicates the thermal management of these systems. Reliability is also an important concern since most drivers have a high level of comfort with gasoline powered vehicles and are somewhat reluctant to switch to a less proven technology. Reliability problems in the power electronics or associated components could not only cause a high warranty cost to the manufacturer, but may also taint these technologies in the consumer's eyes. A larger vehicle offering in HEVs is another important consideration from a power electronics point of view. A larger vehicle will need more horsepower, or a larger rated drive. In some ways this will be more difficult to implement from a cost and size point of view. Both the packaging of these modules and the thermal management of these systems at competitive price points create significant challenges. One way in which significant cost reduction of these systems could be achieved is through the use of a single coolant loop for both the power electronics as well as the internal combustion engine (ICE) [2]. This change would reduce the complexity of the cooling system which currently relies on two loops to a single loop [3]. However, the current nominal coolant temperature entering these inverters is 65 C [3], whereas a normal ICE coolant temperature would be much higher at approximately 100 C. This change in coolant temperature significantly increases the junction temperatures of the devices and creates a number of challenges for both device fabrication and the assembly of these devices into inverters and converters for HEV and PHEV applications. With this change in mind, significant progress has been made on the use of SiC devices for inverters that can withstand much higher junction temperatures than traditional Si based inverters [4,5,6]. However, a key problem which the single coolant loop and high temperature devices is the effective packaging of these devices and related components into a high temperature inverter. The elevated junction temperatures that exist in these modules are not compatible with reliable inverters based on existing packaging technology. This report seeks to provide a literature survey of high temperature packaging and to highlight the issues related to the implementation of high temperature power electronic modules for HEV and PHEV applications. For purposes of discussion, it will be assumed in this report that 200 C is the targeted maximum junction temperature.

  16. LARGE SCALE SIMULATIONS OF THE MECHANCIAL PROPERTIES OF LAYERED TRANSITION METAL TERNARY COMPOUNDS FOR FOSSIL ENERGY POWER SYSTEM APPLICATIONS

    SciTech Connect (OSTI)

    Ching, Wai-Yim

    2014-12-31T23:59:59.000Z

    Advanced materials with applications in extreme conditions such as high temperature, high pressure, and corrosive environments play a critical role in the development of new technologies to significantly improve the performance of different types of power plants. Materials that are currently employed in fossil energy conversion systems are typically the Ni-based alloys and stainless steels that have already reached their ultimate performance limits. Incremental improvements are unlikely to meet the more stringent requirements aimed at increased efficiency and reduce risks while addressing environmental concerns and keeping costs low. Computational studies can lead the way in the search for novel materials or for significant improvements in existing materials that can meet such requirements. Detailed computational studies with sufficient predictive power can provide an atomistic level understanding of the key characteristics that lead to desirable properties. This project focuses on the comprehensive study of a new class of materials called MAX phases, or Mn+1AXn (M = a transition metal, A = Al or other group III, IV, and V elements, X = C or N). The MAX phases are layered transition metal carbides or nitrides with a rare combination of metallic and ceramic properties. Due to their unique structural arrangements and special types of bonding, these thermodynamically stable alloys possess some of the most outstanding properties. We used a genomic approach in screening a large number of potential MAX phases and established a database for 665 viable MAX compounds on the structure, mechanical and electronic properties and investigated the correlations between them. This database if then used as a tool for materials informatics for further exploration of this class of intermetallic compounds.

  17. Large-dimension, high-ZT Thermoelectric Nanocomposites for High-Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLEDControlDepartment of

  18. Development of a large-capacity superconducting cable for 100 kVA-class power transformers

    SciTech Connect (OSTI)

    Funaki, K.; Iwakuma, M.; Satoh, S.; Hiramatsu, M.; Takeo, M.; Yamafuji, K.; Nonaka, S. (Kyushu Univ., Fukuoka (Japan). Faculty of Engineering); Hoshino, M.; Simada, M.; Yoneda, E.S. (Toshiba Corp., Yokohama (JP))

    1992-01-01T23:59:59.000Z

    This paper reports that the authors have designed and fabricated a large-capacity superconducting cable for 1000k VA-class power transformers. The cable is a triply-stacked multi-strand (6 {times} 6 {times} 6) type. The elementary strand has 19,050 NbTi filaments of 0.63 mm thick in CuNi matrix. The test cable is installed as the secondary winding in a superconducting transformer with iron core in a room-temperature space. The primary winding is the second-level subcable of the secondary one and the turn ratio is nearly 14. The designed capacity of the test cable is 4.545 kA at the secondary voltage of 220V. The peak value of the current, 6.43kA (peak), is 78% of the critical current on the load line. The maximum current of the cable at 60Hz operation was 3.78kA (peak). The attained level of the secondary winding is 47% of the critical current. In the 60Hz operation of a small coil wound by the test cable, premature quench was initiated from the terminals of the cable connected with copper plates. It is suggested from the experimental results that the degradation in maximum current of the test cable is related to current transfer between the cable and the copper terminal plates.

  19. Power efficiency for very high temperature solar thermal cavity receivers

    DOE Patents [OSTI]

    McDougal, Allan R. (LaCanada-Flintridge, CA); Hale, Robert R. (Upland, CA)

    1984-01-01T23:59:59.000Z

    This invention is an improved solar energy cavity receiver for exposing materials and components to high temperatures. The receiver includes a housing having an internal reflective surface defining a cavity and having an inlet for admitting solar radiation thereto. A photothermal absorber is positioned in the cavity to receive radiation from the inlet. A reflective baffle is positioned between the absorber and the inlet to severely restrict the re-radiation of energy through the inlet. The front surface of the baffle defines a narrow annulus with the internal reflective surface of the housing. The front surface of the baffle is contoured to reflect incoming radiation onto the internal surface of the housing, from which it is reflected through the annulus and onto the front surface of the absorber. The back surface of the baffle intercepts infrared radiation from the front of the absorber. With this arrangement, a high percentage of the solar power input is retained in the cavity; thus, high internal temperatures are attained.

  20. A High Power-Density Mediator-Free Microfluidic Biophotovoltaic Device for Cyanobacterial Cells

    E-Print Network [OSTI]

    Bombelli, Paolo; Herling, Therese W; Howe, Christopher J; Knowles, Tuomas P J

    2014-01-01T23:59:59.000Z

    Biophotovoltaics has emerged as a promising technology for generating renewable energy since it relies on living organisms as inexpensive, self-repairing and readily available catalysts to produce electricity from an abundant resource - sunlight. The efficiency of biophotovoltaic cells, however, has remained significantly lower than that achievable through synthetic materials. Here, we devise a platform to harness the large power densities afforded by miniaturised geometries. To this effect, we have developed a soft-lithography approach for the fabrication of microfluidic biophotovoltaic devices that do not require membranes or mediators. Synechocystis sp. PCC 6803 cells were injected and allowed to settle on the anode, permitting the physical proximity between cells and electrode required for mediator-free operation. We demonstrate power densities of above 100 mW/m2 for a chlorophyll concentration of 100 {\\mu}M under white light, a high value for biophotovoltaic devices without extrinsic supply of additional...

  1. Energy Storage and Reactive Power Compensator in a Large Wind Farm: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Butterfield, C. P.; Yinger, R.; Romanowitz, H.

    2003-10-01T23:59:59.000Z

    The size of wind farm power systems is increasing, and so is the number of wind farms contributing to the power systems network. The size of wind turbines is also increasing--from less than 1 MW a few years ago to the 2- to 3-MW machines being installed today and the 5-MW machines under development. The interaction of the wind farm, energy storage, reactive power compensation, and the power system network is being investigated. Because the loads and the wind farms' output fluctuate during the day, the use of energy storage and reactive power compensation is ideal for the power system network. Energy storage and reactive power compensation can minimize real/reactive power imbalances that can affect the surrounding power system. In this paper, we will show how the contribution of wind farms affects the power distribution network and how the power distribution network, energy storage, and reactive power compensation interact when the wind changes. We will also investigate the size of the components in relation to each other and to the power system.

  2. Total Cost Per MwH for all common large scale power generation...

    Open Energy Info (EERE)

    power generation soruces ? I am talking about the cost of mountain top removal for coal mined that way, the trip to the power plant, the sludge pond or ash heap, the cost of...

  3. High-Power Zinc-Air Energy Storage: Enhanced Metal-Air Energy Storage System with Advanced Grid-Interoperable Power Electronics Enabling Scalability and Ultra-Low Cost

    SciTech Connect (OSTI)

    None

    2010-10-01T23:59:59.000Z

    GRIDS Project: Fluidic is developing a low-cost, rechargeable, high-power module for Zinc-air batteries that will be used to store renewable energy. Zinc-air batteries are traditionally found in small, non-rechargeable devices like hearing aids because they are well-suited to delivering low levels of power for long periods of time. Historically, Zinc-air batteries have not been as useful for applications which require periodic bursts of power, like on the electrical grid. Fluidic hopes to fill this need by combining the high energy, low cost, and long run-time of a Zinc-air battery with new chemistry providing high power, high efficiency, and fast response. The battery module could allow large grid-storage batteries to provide much more power on very short demandthe most costly kind of power for utilitiesand with much more versatile performance.

  4. The exceptionally powerful TeV gamma-ray emitters in the Large Magellanic Cloud

    E-Print Network [OSTI]

    :,; Aharonian, F; Benkhali, F Ait; Akhperjanian, A G; Angner, E O; Backes, M; Balenderan, S; Balzer, A; Barnacka, A; Becherini, Y; Becker-Tjus, J; Berge, D; Bernhard, S; Bernlhr, K; Birsin, E; Biteau, J; Bttcher, M; Boisson, C; Bolmont, J; Bordas, P; Bregeon, J; Brun, F; Brun, P; Bryan, M; Bulik, T; Carrigan, S; Casanova, S; Chadwick, P M; Chakraborty, N; Chalme-Calvet, R; Chaves, R C G; Chrtien, M; Colafrancesco, S; Cologna, G; Conrad, J; Couturier, C; Cui, Y; Dalton, M; Davids, I D; Degrange, B; Deil, C; de Wilt, P; Djannati-Ata, A; Domainko, W; Donath, A; Drury, L O'C; Dubus, G; Dutson, K; Dyks, J; Dyrda, M; Edwards, T; Egberts, K; Eger, P; Espigat, P; Farnier, C; Fegan, S; Feinstein, F; Fernandes, M V; Fernandez, D; Fiasson, A; Fontaine, G; Frster, A; ling, M F; Gabici, S; Gajdus, M; Gallant, Y A; Garrigoux, T; Giavitto, G; Giebels, B; Glicenstein, J F; Gottschall, D; Grondin, M -H; Grudzi?ska, M; Hadasch, D; Hffner, S; Hahn, J; Harris, J; Heinzelmann, G; Henri, G; Hermann, G; Hervet, O; Hillert, A; Hinton, J A; Hofmann, W; Hofverberg, P; Holler, M; Horns, D; Ivascenko, A; Jacholkowska, A; Jahn, C; Jamrozy, M; Janiak, M; Jankowsky, F; Jung, I; Kastendieck, M A; Katarzy?ski, K; Katz, U; Kaufmann, S; Khlifi, B; Kieffer, M; Klepser, S; Klochkov, D; Klu?niak, W; Kolitzus, D; Komin, Nu; Kosack, K; Krakau, S; Krayzel, F; Krger, P P; Laffon, H; Lamanna, G; Lefaucheur, J; Lefranc, V; Lemire, A; Lemoine-Goumard, M; Lenain, J -P; Lohse, T; Lopatin, A; Lu, C -C; Marandon, V; Marcowith, A; Marx, R; Maurin, G; Maxted, N; Mayer, M; McComb, T J L; Mhault, J; Meintjes, P J; Menzler, U; Meyer, M; Mitchell, A M W; Moderski, R; Mohamed, M; Mor, K; Moulin, E; Murach, T; de Naurois, M; Niemiec, J; Nolan, S J; Oakes, L; Odaka, H; Ohm, S; Opitz, B; Ostrowski, M; Oya, I; Panter, M; Parsons, R D; Arribas, M Paz; Pekeur, N W; Pelletier, G; Perez, J; Petrucci, P -O; Peyaud, B; Pita, S; Poon, H; Phlhofer, G; Punch, M; Quirrenbach, A; Raab, S; Reichardt, I; Reimer, A; Reimer, O; Renaud, M; Reyes, R de los; Rieger, F; Rob, L; Romoli, C; Rosier-Lees, S; Rowell, G; Rudak, B; Sahakian, C B Rulten V; Salek, D; Sanchez, D A; Santangelo, A; Schlickeiser, R; Schssler, F; Schulz, A; Schwanke, U; Schwarzburg, S; Schwemmer, S; Sol, H; Spanier, F; Spengler, G; Spies, F; Stawarz, ?; Steenkamp, R; Stegmann, C; Stinzing, F; Stycz, K; Sushch, I; Tavernet, J -P; Tavernier, T; Taylor, A M; Terrier, R; Tluczykont, M; Trichard, C; Valerius, K; van Eldik, C; van Soelen, B; Vasileiadis, G; Veh, J; Venter, C; Viana, A; Vincent, P; Vink, J; Vlk, H J; Volpe, F; Vorster, M; Vuillaume, T; Wagner, S J; Wagner, P; Wagner, R M; Ward, M; Weidinger, M; Weitzel, Q; White, R; Wierzcholska, A; Willmann, P; Wrnlein, A; Wouters, D; Yang, R; Zabalza, V; Zaborov, D; Zacharias, M; Zdziarski, A A; Zech, A; Zechlin, H -S

    2015-01-01T23:59:59.000Z

    The Large Magellanic Cloud, a satellite galaxy of the Milky Way, has been observed with the High Energy Stereoscopic System (H.E.S.S.) above an energy of 100 billion electron volts for a deep exposure of 210 hours. Three sources of different types were detected: the pulsar wind nebula of the most energetic pulsar known N 157B, the radio-loud supernova remnant N 132D and the largest non-thermal X-ray shell - the superbubble 30 Dor C. The unique object SN 1987A is, surprisingly, not detected, which constrains the theoretical framework of particle acceleration in very young supernova remnants. These detections reveal the most energetic tip of a gamma-ray source population in an external galaxy, and provide via 30 Dor C the unambiguous detection of gamma-ray emission from a superbubble.

  5. Digital System Clocking:Digital System Clocking:Digital System Clocking: HighHigh--Performance and LowPerformance and Low--Power AspectsPower Aspects

    E-Print Network [OSTI]

    California at Davis, University of

    in a digital systemTiming in a digital system using a single clock andusing a single clock and flipflipDigital System Clocking:Digital System Clocking:Digital System Clocking: HighHigh--Performance and LowPerformance and Low--Power AspectsPower Aspects Vojin G. Oklobdzija, Vladimir M. Stojanovic, Dejan

  6. WIRELESS HELIOSTAT AND CONTROL SYSTEM FOR LARGE SELF-POWERED HELIOSTAT FIELDS

    E-Print Network [OSTI]

    Turau, Volker

    Nodes, are deployed in the DLR Solar Tower Demonstration Plant heliostat field, controlled by a base station located individual heliostats, represent about 40% of the investment into the solar power plant. Furthermore, commercial solar power plants utilize dedicated wired links and bus systems to power and control heliostats

  7. Large Plastic Deformation in High-Capacity Lithium-Ion Batteries Caused by Charge and Discharge

    E-Print Network [OSTI]

    Suo, Zhigang

    Large Plastic Deformation in High-Capacity Lithium-Ion Batteries Caused by Charge and Discharge, Massachusetts 02138 Evidence has accumulated recently that a high-capacity elec- trode of a lithium-ion battery in the particle is high, possibly leading to fracture and cavitation. I. Introduction LITHIUM-ION batteries

  8. A LARGE-AREA SURVEY FOR RADIO PULSARS AT HIGH GALACTIC LATITUDES

    SciTech Connect (OSTI)

    Jacoby, B. A.; Kulkarni, S. R. [Department of Astronomy, California Institute of Technology, MS 249-17, Pasadena, CA 91125 (United States); Bailes, M.; Ord, S. M. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, P.O. Box 218, Hawthorn, VIC 31122 (Australia); Edwards, R. T. [Australia Telescope National Facility, CSIRO, P.O. Box 76, Epping, NSW 1710 (Australia)], E-mail: baj@astro.caltech.edu, E-mail: srk@astro.caltech.edu, E-mail: mbailes@swin.edu.au, E-mail: ord@physics.usyd.edu.au, E-mail: Russell.Edwards@csiro.au

    2009-07-10T23:59:59.000Z

    We have completed a survey for pulsars at high Galactic latitudes with the 64 m Parkes radio telescope. Observing with the 13 beam multibeam receiver at a frequency of 1374 MHz, we covered {approx}4150 square degrees in the region -100 deg. {<=} l {<=} 50 deg., 15 deg. {<=} |b| {<=} 30 deg. with 7232 pointings of 265 s each, thus extending the Swinburne Intermediate Latitude Pulsar Survey a further 15 deg. on either side of the Galactic plane. The signal from each beam was processed by a 96 channel x 3 MHz x 2 polarization filterbank, with the detected power in the two polarizations of each frequency channel summed and digitized with 1 bit sampling every 125 {mu}s, giving good sensitivity to millisecond pulsars with low or moderate dispersion measure. The resulting 2.4 TB data set was processed using standard pulsar search techniques with the workstation cluster at the Swinburne Centre for Astrophysics and Supercomputing. This survey resulted in the discovery of 26 new pulsars including seven binary and/or millisecond pulsars, and redetected 36 previously known pulsars. We describe the survey methodology and results, and present timing solutions for the 19 newly discovered slow pulsars, as well as for nine slow pulsars discovered the Swinburne Intermediate Latitude Pulsar Survey that had no previous timing solutions. Even with a small sampling interval, 1374 MHz center frequency, and a large mid-latitude survey volume we failed to detect any very rapidly spinning pulsars. Evidently, such 'submillisecond' pulsars are rare.

  9. IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 5, NO. 4, DECEMBER 1997 473 Gate-Level Power and Current Simulation of

    E-Print Network [OSTI]

    Bogliolo, Alessandro

    for design evaluation. A large number of power estimation techniques has been proposed [1]­[4] based, the large number of simulations needed to reach a significant estimate of average power dissipation further and valida- tion. When optimizing for power, several transformations are applied to a circuit to reduce its

  10. High power linear pulsed beam annealer. [Patent application

    DOE Patents [OSTI]

    Strathman, M.D.; Sadana, D.K.; True, R.B.

    1980-11-26T23:59:59.000Z

    A high power pulsed electron beam system for annealing semiconductors is comprised of an electron gun having a heated cathode, control grid and focus ring for confining the pulsed beam of electrons to a predetermined area, and a curved drift tube. The drift tube and an annular Faraday shield between the focus ring and the drift tube are maintained at a high positive voltage with respect to the cathode to accelerate electrons passing through the focus ring, thereby eliminating space charge limitations on the emission of electrons from said gun. A coil surrounding the curved drift tube provides a magnetic field which maintains the electron beam focused about the axis of the tube. The magnetic field produced by the coil around the curved tube imparts motion to electrons in a spiral path for shallow penetration of the electrons into a target. It also produces a scalloped profile of the electron beam. A second drift tube spaced a predetermined distance from the curved tube is positioned with its axis aligned with the axis of the first drift tube. The second drift tube and the target holder are maintained at a reference voltage between the cathode voltage and the curved tube voltage to decelerate the electrons. A second coil surrounding the second drift tube, maintains the electron beam focused about the axis of the second drift tube. The magnetic field of the second coil comprises the electron beam to the area of the semiconductor on the target holder.

  11. Public Opinions of Building Additional High-Voltage Electric Power Lines

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    Public Opinions of Building Additional High-Voltage Electric Power Lines A Report to the National-Voltage Electric Power Lines: A Report to the National Science Foundation and the Electric Power Research Center to build new power lines. Residents living in counties with planned routes for new transmission lines

  12. Controlling the occurrence of power overshoot by adapting microbial fuel cells to high anode potentials

    E-Print Network [OSTI]

    Controlling the occurrence of power overshoot by adapting microbial fuel cells to high anode 2012 Accepted 11 October 2012 Available online 6 November 2012 Keywords: Microbial fuel cell Power overshoot Polarization Anode potential Power density curves for microbial fuel cells (MFCs) often show power

  13. PowerPack: Energy Profiling and Analysis of High-Performance Systems and Applications

    E-Print Network [OSTI]

    PowerPack: Energy Profiling and Analysis of High-Performance Systems and Applications Rong Ge of power and energy on the computer systems community, few studies provide insight to where and how power of these systems. These analyses include the impacts of chip multiprocessing on power and energy efficiency

  14. High-Efficiency X-Band MMIC GaN Power Amplifiers Operating as Rectifiers

    E-Print Network [OSTI]

    Popovic, Zoya

    High-Efficiency X-Band MMIC GaN Power Amplifiers Operating as Rectifiers Michael Litchfield, Scott two 10 x 100j.Lm power combined devices. The MMICs exhibit 67% and 56% power added efficiency at VDD a RF-to-DC efficiency of 64%. The output powers of the two MMIC PAs are around 3.2W. In rectifier mode

  15. Manufacturing capabilities of high power electron beam furnaces for melting ignots to 40 tons in weight

    SciTech Connect (OSTI)

    Boiko, Ju.P.; Braim, V.P.; Kormitch, A.T.; Zorin, G.V.; Kostenuk, Ju.V.; Nikitin, V.S.; Pokrovsky, S.V.

    1994-12-31T23:59:59.000Z

    A tendency to using special technologies of melting steels and alloys to get large ingots free of macrodefects and shrinking shells used to provide defectless products, ensuring an increase of ingot-to-product yield is well known. The electron beam furnace process improves the economical efficiency of production of large ingots, slabs for rolling mills, where high quality of special purpose steels and alloys is required. Metals, made by means of electron beam melting can be used for power, nuclear and chemical machine-buildings, aircraft and automotive, instrument and bearing productions, injection moulds and moulds for cold rollings, magnetic and titanium alloys, ship shafts, propellers and high speed power turbine parts. Melting technologies, which is one of the most important stages in production of steels and alloys, predetermines a required quality of metals and alloys to get the following characteristics of remelted metals: impact strength; isotropy of properties in central and surface zones of ingots; fatigue strength and resistance under mechanical and heat loads; corrosion resistance to attack by aggressive media; and polishing properties. The furnace is equipped with five electron beam guns, type EH-1200/50 and pumps for pumping out cavities of technological equipments: melting and ingot chambers, charging devices.

  16. High Power Targetry Workshop May 3rd , 2011

    E-Print Network [OSTI]

    McDonald, Kirk

    in beam direction ~25 mm Beam Target thickness mm for 30 % of range Number of slices 1 mm thick Power loss/slice [kW] Number of slices 0.2 mm thick Power loss/slice [kW] Number of slices 0.1 mm thick Power loss

  17. Runtime Power Estimator Calibration for High-Performance Microprocessors

    E-Print Network [OSTI]

    Tan, Sheldon X.-D.

    optimization, dynamic thermal/power management [1], [2], [3], [4] and chip reliability analysis [5], [6 to assist the global power/thermal managements such as fan speed control and dynamic voltage and frequency numbers of various performance actions for each functional block in a time frame and calculate the power

  18. Virtually distortion-free imaging system for large field, high resolution lithography

    DOE Patents [OSTI]

    Hawryluk, A.M.; Ceglio, N.M.

    1993-01-05T23:59:59.000Z

    Virtually distortion free large field high resolution imaging is performed using an imaging system which contains large field distortion or field curvature. A reticle is imaged in one direction through the optical system to form an encoded mask. The encoded mask is then imaged back through the imaging system onto a wafer positioned at the reticle position.

  19. Stability of highly shifted equilibria in a large-aspect-ratio tokamak

    E-Print Network [OSTI]

    Gourdain, P A

    2006-01-01T23:59:59.000Z

    in a large aspect ratio tokamak P. -A. Gourdain, S. C.High beta poloidal tokamaks can confine plasma pressures ansymmetric configuration called tokamak, where a plasma (i.e.

  20. 744 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 24, NO. 2, MAY 2009 Large-Scale Distribution Planning--Part I

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Catlica de Chile)

    744 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 24, NO. 2, MAY 2009 Large-Scale Distribution Planning--Part I: Simultaneous Network and Transformer Optimization Alejandro Navarro, Member, IEEE, and Hugh-voltage distribution networks. Combined optimization of transformers and associated networks is per- formed

  1. Design and component specifications for high average power laser optical systems

    SciTech Connect (OSTI)

    O'Neil, R.W.; Sawicki, R.H.; Johnson, S.A.; Sweatt, W.C.

    1987-01-01T23:59:59.000Z

    Laser imaging and transport systems are considered in the regime where laser-induced damage and/or thermal distortion have significant design implications. System design and component specifications are discussed and quantified in terms of the net system transport efficiency and phase budget. Optical substrate materials, figure, surface roughness, coatings, and sizing are considered in the context of visible and near-ir optical systems that have been developed at Lawrence Livermore National Laboratory for laser isotope separation applications. In specific examples of general applicability, details of the bulk and/or surface absorption, peak and/or average power damage threshold, coating characteristics and function, substrate properties, or environmental factors will be shown to drive the component size, placement, and shape in high-power systems. To avoid overstressing commercial fabrication capabilities or component design specifications, procedures will be discussed for compensating for aberration buildup, using a few carefully placed adjustable mirrors. By coupling an aggressive measurements program on substrates and coatings to the design effort, an effective technique has been established to project high-power system performance realistically and, in the process, drive technology developments to improve performance or lower cost in large-scale laser optical systems. 13 refs.

  2. Novel Large Area High Resolution Neutron Detector for the Spallation Neutron Source

    SciTech Connect (OSTI)

    Lacy, Jeffrey L

    2009-05-22T23:59:59.000Z

    Neutron scattering is a powerful technique that is critically important for materials science and structural biology applications. The knowledge gained from past developments has resulted in far-reaching advances in engineering, pharmaceutical and biotechnology industries, to name a few. New facilities for neutron generation at much higher flux, such as the SNS at Oak Ridge, TN, will greatly enhance the capabilities of neutron scattering, with benefits that extend to many fields and include, for example, development of improved drug therapies and materials that are stronger, longer-lasting, and more impact-resistant. In order to fully realize this enhanced potential, however, higher neutron rates must be met with improved detection capabilities, particularly higher count rate capability in large size detectors, while maintaining practicality. We have developed a neutron detector with the technical and economic advantages to accomplish this goal. This new detector has a large sensitive area, offers 3D spatial resolution, high sensitivity and high count rate capability, and it is economical and practical to produce. The proposed detector technology is based on B-10 thin film conversion of neutrons in long straw-like gas detectors. A stack of many such detectors, each 1 meter in length, and 4 mm in diameter, has a stopping power that exceeds that of He-3 gas, contained at practical pressures within an area detector. With simple electronic readout methods, straw detector arrays can provide spatial resolution of 4 mm FWHM or better, and since an array detector of such form consists of several thousand individual elements per square meter, count rates in a 1 m^2 detector can reach 2?10^7 cps. Moreover, each individual event can be timetagged with a time resolution of less than 0.1 ?sec, allowing accurate identification of neutron energy by time of flight. Considering basic elemental cost, this novel neutron imaging detector can be commercially produced economically, probably at a small fraction of the cost of He-3 detectors. In addition to neutron scattering science, the fully developed base technology can be used as a rugged, low-cost neutron detector in area monitoring and surveying. Radiation monitors are used in a number of other settings for occupational and environmental radiation safety. Such a detector can also be used in environmental monitoring and remote nuclear power plant monitoring. For example, the Department of Energy could use it to characterize nuclear waste dumps, coordinate clean-up efforts, and assess the radioactive contaminants in the air and water. Radiation monitors can be used to monitor the age and component breakdown of nuclear warheads and to distinguish between weapons and reactor grade plutonium. The UN's International Atomic Energy Agency (IAEA) uses radiation monitors for treaty verification, remote monitoring, and enforcing the non-proliferation of nuclear weapons. As part of treaty verification, monitors can be used to certify the contents of containers during inspections. They could be used for portal monitoring to secure border checkpoints, sea ports, air cargo centers, public parks, sporting venues, and key government buildings. Currently, only 2% of all sea cargo shipped is inspected for radiation sources. In addition, merely the presence of radiation is detected and nothing is known about the radioactive source until further testing. The utilization of radiation monitors with neutron sensitivity and capability of operation in hostile port environments would increase the capacity and effectiveness of the radioactive scanning processes.

  3. Design of a High Temperature Small Particle Solar Receiver for Powering a Gas Turbine Engine

    E-Print Network [OSTI]

    Ponce, V. Miguel

    Design of a High Temperature Small Particle Solar Receiver for Powering a Gas Turbine Engine Dr will describe the design of a high temperature solar receiver capable of driving a gas turbine for power conclusions regarding the best way to operate a solar powered gas turbine have been obtained

  4. Bulk CMOS Device Optimization for High-Speed and Ultra-Low Power Operations

    E-Print Network [OSTI]

    Nyathi, Jabulani

    Bulk CMOS Device Optimization for High-Speed and Ultra-Low Power Operations Brent Bero and Jabulani- Interest in subthreshold design has increased due to the emergence of systems that require ultra-low power creating a clear divide between designing for high speed and ultra-low power. It might be beneficial

  5. Online Strategies for High-Performance Power-Aware Thread Execution on Emerging Multiprocessors

    E-Print Network [OSTI]

    Freeh, Vincent

    and component density of emerging su- percomputers pose a hard requirement for power-aware sys- tem design PowerEdge 6650 with Intel Xeon HT processors. The high- lighted area indicates opportunitiesOnline Strategies for High-Performance Power-Aware Thread Execution on Emerging Multiprocessors

  6. Power System Probabilistic and Security Analysis on Commodity High Performance Computing Systems

    E-Print Network [OSTI]

    Franchetti, Franz

    power system infrastructures also requires merging of offline security analyses into on- line operationPower System Probabilistic and Security Analysis on Commodity High Performance Computing Systems tools for power system probabilistic and security analysis: 1) a high performance Monte Carlo simulation

  7. Thermionic power generation at high temperatures using SiGe/Si superlattices

    E-Print Network [OSTI]

    Thermionic power generation at high temperatures using SiGe/Si superlattices Daryoosh Vashaeea of SiGe/Si superlattices for power generation at high temperatures. A detailed theory based on Boltzmann provides only a modest improvement in the power factor. This is due to the fact that SiGe is a multivalley

  8. THE SCALE-UP OF LARGE PRESSURIZED FLUIDIZED BEDS FOR ADVANCED COAL-FIRED POWER PROCESSES

    SciTech Connect (OSTI)

    Leon R. Glicksman; Michael Louge; Hesham F. Younis; Richard Tan; Mathew Hyre; Mark Torpey

    2003-11-24T23:59:59.000Z

    This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor an agency thereof, nor any of the their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, A combined-cycle High Performance Power System (HIPPS) capable of overall cycle efficiencies approaching 50% has been proposed and designed by Foster Wheeler Development Corporation (FWDC). A pyrolyzer in the first stage of the HIPPS process converts a coal feedstock into fuel gas and char at an elevated pressure of 1.4 Map. (206 psia) and elevated temperature of 930 C (1700 F). The generated char serves as the feedstock for a Pulverized Coal (PC) boiler operating at atmospheric pressure, and the fuel gas is directly fired in a gas turbine. The hydrodynamic behavior of the pyrolyzer strongly influences the quality of both the fuel gas and the generated char, the energy split between the gas turbine and the steam turbine, and hence the overall efficiency of the system. By utilizing a simplified set of scaling parameters (Glicksman et al.,1993), a 4/7th labscale cold model of the pyrolyzer operating at ambient temperature and pressure was constructed and tested. The scaling parameters matched include solid to gas density ratio, Froude number, length to diameter ratio; dimensionless superficial gas velocity and solid recycle rate, particle sphericity and particle size distribution (PSD).

  9. Magnet Technology for Power Converters: Nanocomposite Magnet Technology for High Frequency MW-Scale Power Converters

    SciTech Connect (OSTI)

    None

    2012-02-27T23:59:59.000Z

    Solar ADEPT Project: CMU is developing a new nanoscale magnetic material that will reduce the size, weight, and cost of utility-scale PV solar power conversion systems that connect directly to the grid. Power converters are required to turn the energy that solar power systems create into useable energy for the grid. The power conversion systems made with CMUs nanoscale magnetic material have the potential to be 150 times lighter and significantly smaller than conventional power conversion systems that produce similar amounts of power.

  10. Stochastic Methods for Planning and Operating Power Systems with Large Amounts of Wind and Solar Power: Preprint

    SciTech Connect (OSTI)

    Milligan, M.; Donohoo, P.; O'Malley, M.

    2012-09-01T23:59:59.000Z

    Wind and solar generators differ in their generation characteristics than conventional generators. The variable output and imperfect predictability of these generators face a stochastic approach to plan and operate the power system without fundamentally changing the operation and planning problems. This paper overviews stochastic modeling challenges in operations, generation planning, and transmission planning, with references to current industry and academic work. Different stochastic problem formulations, including approximations, are also discussed.

  11. A Novel High Frequency, High-Efficiency, Differential Class-E Power Amplifier in 0.18m CMOS

    E-Print Network [OSTI]

    Heydari, Payam

    -- This paper presents the design of a high efficiency, low THD, 5.7GHz fully differential power amplifier integration, the design of an on-chip front- end power amplifier with a low total-harmonic distortion (THD-Frequency Integrated Circuits, Class-E Power Amplifier, Injection-Locked, Oscillator, Phase Noise, Jitter. 1

  12. Diagnostic evaluation of power fade phenomena and calendar life reduction in high-power lithium-ion batteries

    E-Print Network [OSTI]

    Kostecki, Robert; McLarnon, Frank

    2004-01-01T23:59:59.000Z

    HIGH-POWER LITHIUM-ION BATTERIES Robert Kostecki and FrankAFM Introduction Lithium-ion batteries are being seriously1.2 M LiPF 6 /graphite batteries for hybrid electric vehicle

  13. High-Power Converters and AC Drives IEEE PESC2005 Tutorial

    E-Print Network [OSTI]

    Wu, Bin

    @ee.ryerson.ca http://www.ee.ryerson.ca/~bwu/ 2 High-Power Converters and AC Drives 1. Introduction 2. Cascaded H-Bridge Drives High-Power Semiconductor Devices High-Power Converters and AC Drives Bin Wu 4High Multilevel Voltage Source Inverters N dC Cascaded H-bridge (CHB) Inverter dC Two Level Inverter dC Flying

  14. System using a megawatt class millimeter wave source and a high-power rectenna to beam power to a suspended platform

    DOE Patents [OSTI]

    Caplan, Malcolm; Friedman, Herbert W.

    2005-07-19T23:59:59.000Z

    A system for beaming power to a high altitude platform is based upon a high power millimeter gyrotron source, optical transmission components, and a high-power receiving antenna (i.e., a rectenna) capable of rectifying received millimeter energy and converting such energy into useable electrical power.

  15. ANALYSIS OF A HIGH TEMPERATURE GAS-COOLED REACTOR POWERED HIGH TEMPERATURE ELECTROLYSIS HYDROGEN PLANT

    SciTech Connect (OSTI)

    M. G. McKellar; E. A. Harvego; A. M. Gandrik

    2010-11-01T23:59:59.000Z

    An updated reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322C and 750C, respectively. The reactor heat is used to produce heat and electric power to the HTE plant. A Rankine steam cycle with a power conversion efficiency of 44.4% was used to provide the electric power. The electrolysis unit used to produce hydrogen includes 1.1 million cells with a per-cell active area of 225 cm2. The reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 42.8% at a hydrogen production rate of 1.85 kg/s (66 million SCFD) and an oxygen production rate of 14.6 kg/s (33 million SCFD). An economic analysis of this plant was performed with realistic financial and cost estimating The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.03/kg of hydrogen was calculated assuming an internal rate of return of 10% and a debt to equity ratio of 80%/20% for a reactor cost of $2000/kWt and $2.41/kg of hydrogen for a reactor cost of $1400/kWt.

  16. Researchers at the National Renewable Energy Laboratory (NREL) develop a high-fidelity large-eddy simulation model

    E-Print Network [OSTI]

    to simulate events such as frontal passages through a wind plant and their effect on turbine power production-eddy simulation model designed to predict the performance of large wind plants with a higher degree of accuracy larger, but the power production of these large plants has, in some cases, been lower than initially

  17. The constraints on power spectrum of relic gravitational waves from current observations of large-scale structure of the Universe

    E-Print Network [OSTI]

    B. Novosyadlyj; S. Apunevych

    2004-12-02T23:59:59.000Z

    We carry out the determination of the amplitude of relic gravitational waves power spectrum. Indirect best-fit technique was applied to compare observational data and theory predictions. As observations we have used data on large-scale structure (LSS) of the Universe and anisotropy of cosmic microwave background (CMB) temperature. The conventional inflationary model with 11 parameters has been investigated, all of them evaluated jointly. This approach gave us a possibility to find parameters of power spectrum of gravitational waves along with statistical errors. The main result consists in following: WMAP data on power spectrum of CMB temperature fluctuations along with LSS data prefer model with small amplitude of tensor mode power spectrum, close to zero. The upper limit for its amplitude at quadupole harmonics T/S=0.6 at 95% C.L.

  18. High Temperature Fuel Cell Tri-Generation of Power, Heat & H2...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Temperature Fuel Cell Tri-Generation of Power, Heat & H2 from Biogas High Temperature Fuel Cell Tri-Generation of Power, Heat & H2 from Biogas Success story about using waste water...

  19. Soft-Switching High-Frequency AC-Link Universal Power Converters with Galvanic Isolation

    E-Print Network [OSTI]

    Amirabadi, Mahshid

    2013-08-07T23:59:59.000Z

    be used in a variety of applications, including photovoltaic power generation, wind power generation, and electric vehicles. In these converters the link current and voltage are both alternating and their frequency can be high, which leads...

  20. TheHighCostofNuclearPower Why America Should Choose a Clean Energy Future

    E-Print Network [OSTI]

    Laughlin, Robert B.

    TheHighCostofNuclearPower Why America Should Choose a Clean Energy Future Over New Nuclear Reactors, Clean Energy Can Deliver More Energy than Nuclear Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 America Has Enormous Clean Energy Potential . . . . . . . . . . . . . . . . 22

  1. Probing Neutrino Oscillation Parameters using High Power Superbeam from ESS

    E-Print Network [OSTI]

    Agarwalla, Sanjib Kumar; Prakash, Suprabh

    2014-01-01T23:59:59.000Z

    A high-power neutrino superbeam experiment at the ESS facility has been proposed such that the source-detector distance falls at the second oscillation maximum, giving very good sensitivity to the measurement of CP violation. In this work, we explore the comparative physics reach of the experiment in terms of leptonic CP-violation, precision on atmospheric parameters, non-maximal theta23, and its octant for a variety of choices for the baselines. We also vary the neutrino vs. the anti-neutrino running time for the beam, and study its impact on the physics goals of the experiment. We find that for the determination of CP violation, 540 km baseline with 7 years of neutrino and 3 years of anti-neutrino (7nu+3nubar) run-plan performs the best and one expects a 4sigma sensitivity to CP violation for 59% of true values of deltaCP. The projected reach for the 200 km baseline with 7nu+3nubar run-plan is somewhat worse with 4sigma sensitivity for 51% of true values of deltaCP. On the other hand, for the discovery of a...

  2. Plasma potential mapping of high power impulse magnetron sputtering discharges

    SciTech Connect (OSTI)

    Rauch, Albert; Mendelsberg, Rueben J.; Sanders, Jason M.; Anders, Andre

    2011-12-20T23:59:59.000Z

    Pulsed emissive probe techniques have been used to determine the plasma potential distribution of high power impulse magnetron sputtering (HiPIMS) discharges. An unbalanced magnetron with a niobium target in argon was investigated for pulse length of 100 ?s at a pulse repetition rate of 100 Hz, giving a peak current of 170 A. The probe data were taken with a time resolution of 20 ns and a spatial resolution of 1 mm. It is shown that the local plasma potential varies greatly in space and time. The lowest potential was found over the targets racetrack, gradually reaching anode potential (ground) several centimeters away from the target. The magnetic pre-sheath exhibits a funnel-shaped plasma potential resulting in an electric field which accelerates ions toward the racetrack. In certain regions and times, the potential exhibits weak local maxima which allow for ion acceleration to the substrate. Knowledge of the local E and static B fields lets us derive the electrons EB drift velocity, which is about 105 m/s and shows structures in space and time.

  3. Microprocessor control of power sharing and solar array peak power tracking for high power (2. 5 kW) switching power converters

    SciTech Connect (OSTI)

    Speer, J.H. Jr.

    1981-01-01T23:59:59.000Z

    A prototype system of twin power converters for solar array supplement of spacecraft power buses is described. Analog circuits are used for inner control loops and a microprocessor directs power sharing and peak power tracking. 3 refs.

  4. HighLevel Power Estimation with Interconnect Effects # Kavel M. B

    E-Print Network [OSTI]

    Najm, Farid N.

    ) power against that measured using SPICE. An average er­ ror of 14.4% is obtained for the averageHigh­Level Power Estimation with Interconnect Effects # Kavel M. B ? uy ? uks?ahin ECE Dept.najm@toronto.edu ABSTRACT We extend earlier work on high­level average power esti­ mation to include the power due

  5. The power of event-driven analytics in Large Scale Data Processing

    ScienceCinema (OSTI)

    None

    2011-04-25T23:59:59.000Z

    FeedZai is a software company specialized in creating high--throughput low--latency data processing solutions. FeedZai develops a product called "FeedZai Pulse" for continuous event--driven analytics that makes application development easier for end users. It automatically calculates key performance indicators and baselines, showing how current performance differ from previous history, creating timely business intelligence updated to the second. The tool does predictive analytics and trend analysis, displaying data on real--time web--based graphics. In 2010 FeedZai won the European EBN Smart Entrepreneurship Competition, in the Digital Models category, being considered one of the "top--20 smart companies in Europe". The main objective of this seminar/workshop is to explore the topic for large--scale data processing using Complex Event Processing and, in particular, the possible uses of Pulse in the scope of the data processing needs of CERN. Pulse is available as open--source and can be licensed both for non--commercial and commercial applications. FeedZai is interested in exploring possible synergies with CERN in high--volume low--latency data processing applications. Theseminar will be structured in two sessions, the first one being aimed to expose the general scope of FeedZai's activities, and the second focused on Pulse itself: 10:00-11:00 FeedZai and Large Scale Data Processing Introduction to FeedZai FeedZai Pulse and Complex Event Processing Demonstration Use-Cases and Applications Conclusion and Q&A 11:00-11:15 Coffee break 11:15-12:30 FeedZai Pulse Under the Hood A First FeedZai Pulse Application PulseQL overview Defining KPIs and Baselines Conclusion and Q&A About the speakers Nuno Sebastio is the CEO of FeedZai. Having worked for many years for the European Space Agency (ESA), he was responsible the overall design and development of Satellite Simulation Infrastructure of the agency. Having left ESA to found FeedZai, Nuno is currently responsible for the whole operations of the company. Nuno holds an M.Eng. in Informatics Engineering for the University of Coimbra, and an MBA from the London Business School. Paulo Marques is the CTO of FeedZai, being responsible for product development. Paulo is an Assistant Professor at the University of Coimbra, in the area of Distributed Data Processing, and an Adjunct Associated Professor at Carnegie Mellon, in the US. In the past Paulo lead a large number of projects for institutions like the ESA, Microsoft Research, SciSys, Siemens, among others, being now fully dedicated to FeedZai. Paulo holds a Ph.D. in Distributed Systems from the University of Coimbra.

  6. High power bipolar battery/cells with enhanced overcharge tolerance

    DOE Patents [OSTI]

    Kaun, Thomas D. (New Lenox, IL)

    1998-01-01T23:59:59.000Z

    A cell or battery of cells having improved overcharge tolerance and increased power capability, and methods for the construction of such cells or batteries, via electrolyte modification.

  7. High power 325 MHz vector modulators for the Fermilab High Intensity Neutrino Source (HINS)

    SciTech Connect (OSTI)

    Madrak, Robyn Leigh; Wildman, David; /Fermilab

    2008-10-01T23:59:59.000Z

    One of the goals of the low energy 60 MeV section of the HINS H{sup -} linac [1] is to demonstrate that a total of {approx}40 RF cavities can be powered by a single 2.5 MW, 325 MHz klystron. This requires individual vector modulators at the input of each RF cavity to independently adjust the amplitude and phase of the RF input signal during the 3.5 ms RF pulse. Two versions of vector modulators have been developed; a 500 kW device for the radiofrequency quadrupole (RFQ) and a 75 kW modulator for the RF cavities. High power tests showing the vector modulator phase and amplitude responses will be presented.

  8. Improved high temperature solar absorbers for use in Concentrating Solar Power central receiver applications.

    SciTech Connect (OSTI)

    Stechel, Ellen Beth; Ambrosini, Andrea; Hall, Aaron Christopher; Lambert, Timothy L.; Staiger, Chad Lynn; Bencomo, Marlene

    2010-09-01T23:59:59.000Z

    Concentrating solar power (CSP) systems use solar absorbers to convert the heat from sunlight to electric power. Increased operating temperatures are necessary to lower the cost of solar-generated electricity by improving efficiencies and reducing thermal energy storage costs. Durable new materials are needed to cope with operating temperatures >600 C. The current coating technology (Pyromark High Temperature paint) has a solar absorptance in excess of 0.95 but a thermal emittance greater than 0.8, which results in large thermal losses at high temperatures. In addition, because solar receivers operate in air, these coatings have long term stability issues that add to the operating costs of CSP facilities. Ideal absorbers must have high solar absorptance (>0.95) and low thermal emittance (<0.05) in the IR region, be stable in air, and be low-cost and readily manufacturable. We propose to utilize solution-based synthesis techniques to prepare intrinsic absorbers for use in central receiver applications.

  9. Pulsed laser deposition with a high average power free electron laser: Benefits of subpicosecond pulses with high repetition rate

    E-Print Network [OSTI]

    Reilly, Anne

    Pulsed laser deposition with a high average power free electron laser: Benefits of subpicosecond average power Thomas Jefferson National Accelerator Facility Free Electron Laser. The combination of the free electron laser leads to very different plasma emission and produces films with high quality

  10. NREL Confirms Large Potential for Grid Integration of Wind, Solar Power (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    To fully harvest the nation's bountiful wind and solar resources, it is critical to know how much electrical power from these renewable resources could be integrated reliably into the grid. To inform the discussion about the potential of such variable sources, the National Renewable Energy Laboratory (NREL) launched two key regional studies, examining the east and west sections of the U.S. power grid. The studies show that it is technically possible for U.S. power systems to integrate 20%-35% renewable electricity if infrastructure and operational improvements can be made.

  11. Optimal Design of Macrocells for Low Power and High Speed

    E-Print Network [OSTI]

    Sapatnekar, Sachin

    the power dissipation so as to avoid additional costs for cooling down electronic systems. In this context, controlling the power dissipation of integrated circuits is gaining increased importance. While progress for nonportable applications, as the system complexity increases, it is becoming more and more important to limit

  12. HIGH-TEMPERATURE ELECTROLYSIS FOR LARGE-SCALE HYDROGEN AND SYNGAS PRODUCTION FROM NUCLEAR ENERGY SYSTEM SIMULATION AND ECONOMICS

    SciTech Connect (OSTI)

    J. E. O'Brien; M. G. McKellar; E. A. Harvego; C. M. Stoots

    2009-05-01T23:59:59.000Z

    A research and development program is under way at the Idaho National Laboratory (INL) to assess the technological and scale-up issues associated with the implementation of solid-oxide electrolysis cell technology for efficient high-temperature hydrogen production from steam. This work is supported by the US Department of Energy, Office of Nuclear Energy, under the Nuclear Hydrogen Initiative. This paper will provide an overview of large-scale system modeling results and economic analyses that have been completed to date. System analysis results have been obtained using the commercial code UniSim, augmented with a custom high-temperature electrolyzer module. Economic analysis results were based on the DOE H2A analysis methodology. The process flow diagrams for the system simulations include an advanced nuclear reactor as a source of high-temperature process heat, a power cycle and a coupled steam electrolysis loop. Several reactor types and power cycles have been considered, over a range of reactor outlet temperatures. Pure steam electrolysis for hydrogen production as well as coelectrolysis for syngas production from steam/carbon dioxide mixtures have both been considered. In addition, the feasibility of coupling the high-temperature electrolysis process to biomass and coal-based synthetic fuels production has been considered. These simulations demonstrate that the addition of supplementary nuclear hydrogen to synthetic fuels production from any carbon source minimizes emissions of carbon dioxide during the production process.

  13. An earth-isolated optically coupled wideband high voltage probe powered by ambient light

    E-Print Network [OSTI]

    Bellan, Paul M.

    An earth-isolated optically coupled wideband high voltage probe powered by ambient light Xiang Zhai) An earth-isolated optically coupled wideband high voltage probe powered by ambient light Xiang Zhaia online 9 October 2012) An earth-isolated optically-coupled wideband high voltage probe has been developed

  14. Magic mode switching in Yb:CaGdAlO4 laser under high pump power

    E-Print Network [OSTI]

    and interesting properties for high- power and ultra-short-pulse lasers. In fact, by combining both broad emission bandwidth and good thermal prop- erties, it permits us to demonstrate ultra-short pulses [1,2] and highMagic mode switching in Yb:CaGdAlO4 laser under high pump power Frdric Druon,1, * Mickal Olivier

  15. Demonstration of a Highly Efficient Solid Oxide Fuel Cell Power System Using Adiabatic Steam Reforming and Anode Gas Recirculation

    SciTech Connect (OSTI)

    Powell, Michael R.; Meinhardt, Kerry D.; Sprenkle, Vincent L.; Chick, Lawrence A.; Mcvay, Gary L.

    2012-05-01T23:59:59.000Z

    Solid oxide fuel cells (SOFC) are currently being developed for a wide variety of applications because of their high efficiency at multiple power levels. Applications for SOFCs encompass a large range of power levels including 1-2 kW residential combined heat and power applications, 100-250 kW sized systems for distributed generation and grid extension, and MW-scale power plants utilizing coal. This paper reports on the development of a highly efficient, small-scale SOFC power system operating on methane. The system uses adiabatic steam reforming of methane and anode gas recirculation to achieve high net electrical efficiency. The anode exit gas is recirculated and all of the heat and water required for the endothermic reforming reaction are provided by the anode gas emerging from the SOFC stack. Although the single-pass fuel utilization is only about 55%, because of the anode gas recirculation the overall fuel utilization is up to 93%. The demonstrated system achieved gross power output of 1650 to 2150 watts with a maximum net LHV efficiency of 56.7% at 1720 watts. Overall system efficiency could be further improved to over 60% with use of properly sized blowers.

  16. Impacts of large quantities of wind energy on the electric power system

    E-Print Network [OSTI]

    Yao, Yuan, S.M. Massachusetts Institute of Technology

    2011-01-01T23:59:59.000Z

    Wind energy has been surging on a global scale. Significant penetration of wind energy is expected to take place in the power system, bringing new challenges because of the variability and uncertainty of this renewable ...

  17. Probing Neutrino Oscillation Parameters using High Power Superbeam from ESS

    E-Print Network [OSTI]

    Sanjib Kumar Agarwalla; Sandhya Choubey; Suprabh Prakash

    2015-01-04T23:59:59.000Z

    A high-power neutrino superbeam experiment at the ESS facility has been proposed such that the source-detector distance falls at the second oscillation maximum, giving very good sensitivity towards establishing CP violation. In this work, we explore the comparative physics reach of the experiment in terms of leptonic CP-violation, precision on atmospheric parameters, non-maximal theta23, and its octant for a variety of choices for the baselines. We also vary the neutrino vs. the anti-neutrino running time for the beam, and study its impact on the physics goals of the experiment. We find that for the determination of CP violation, 540 km baseline with 7 years of neutrino and 3 years of anti-neutrino (7nu+3nubar) run-plan performs the best and one expects a 5sigma sensitivity to CP violation for 48% of true values of deltaCP. The projected reach for the 200 km baseline with 7nu+3nubar run-plan is somewhat worse with 5sigma sensitivity for 34% of true values of deltaCP. On the other hand, for the discovery of a non-maximal theta23 and its octant, the 200 km baseline option with 7nu+3nubar run-plan performs significantly better than the other baselines. A 5sigma determination of a non-maximal theta23 can be made if the true value of sin^2theta23 lesssim 0.45 or sin^2theta23 gtrsim 0.57. The octant of theta23 could be resolved at 5sigma if the true value of sin^2theta23 lesssim 0.43 or gtrsim 0.59, irrespective of deltaCP.

  18. High-average-power, diode-pumped solid state lasers for energy and industrial applications

    SciTech Connect (OSTI)

    Krupke, W.F.

    1994-03-02T23:59:59.000Z

    Progress at LLNL in the development high-average-power diode-pumped solid state lasers is summarized, including the development of enabling technologies.

  19. Loops and Power Counting in the High Density Effective Field Theory

    E-Print Network [OSTI]

    Thomas Schaefer

    2003-10-15T23:59:59.000Z

    We introduce the high density effective theory of QCD. We discuss, in particular, the problem of developing a consistent power counting scheme.

  20. Small-Particle Solar Receiver for High-Temperature Brayton Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Receiver for High-Temperature Brayton Power Cycles This fact sheet describes a scattering solar thermal concentrators project awarded under the DOE's 2012 SunShot Concentrating...

  1. A New Paradigm in Sources and Physics of High-Power Ionospheric

    E-Print Network [OSTI]

    Anlage, Steven

    materials operated at high power microwave (HPM) devices to replace the current , ionospheric modificaHPM to re-examine the coupling typical university HPM laboratory condi

  2. Large motion high cycle high speed optical fibers for space based applications.

    SciTech Connect (OSTI)

    Stromberg, Peter G.; Tandon, Rajan; Gibson, Cory S; Reedlunn, Benjamin; Rasberry, Roger David; Rohr, Garth David

    2014-10-01T23:59:59.000Z

    Future remote sensing applications will require higher resolution and therefore higher data rates (up to perhaps 100 gigabits per second) while achieving lower mass and cost. A current limitation to the design space is high speed high bandwidth data does not cross movable gimbals because of cabling issues. This requires the detectors to be off gimbal. The ability to get data across the gimbal would open up efficiencies in designs where the detectors and the electronics can be placed anywhere on the system. Fiber optic cables provide light weight high speed high bandwidth connections. Current options are limited to 20,000 cycles as opposed to the 1,000,000 cycles needed for future space based applications. To extend this to the million+ regime, requires a thorough understanding of the failure mechanisms and the materials, proper selection of materials (e.g., glass and jacket material) allowable geometry changes to the cable, radiation hardness, etc.

  3. Detection of nanosecond-scale, high power THz pulses with a field effect transistor

    SciTech Connect (OSTI)

    Preu, S. [Physics Department and Institute for Terahertz Science and Technology, University of California, Santa Barbara, California 93106 (United States); Materials Department, University of California, Santa Barbara, California 93106 (United States); Chair for Applied Physics, University of Erlangen-Nuremberg, 91058 Erlangen (Germany); Lu, H.; Gossard, A. C. [Materials Department, University of California, Santa Barbara, California 93106 (United States); Sherwin, M. S. [Physics Department and Institute for Terahertz Science and Technology, University of California, Santa Barbara, California 93106 (United States)

    2012-05-15T23:59:59.000Z

    We demonstrate detection and resolution of high power, 34 ns free electron laser pulses using a rectifying field effect transistor. The detector remains linear up to an input power of 11 {+-} 0.5 W at a pulse energy of 20 {+-} 1 {mu}J at 240 GHz. We compare its performance to a protected Schottky diode, finding a shorter intrinsic time constant. The damage threshold is estimated to be a few 100 W. The detector is, therefore, well-suited for characterizing high power THz pulses. We further demonstrate that the same detector can be used to detect low power continuous-wave THz signals with a post detection limited noise floor of 3.1 {mu}W/{radical}(Hz). Such ultrafast, high power detectors are important tools for high power and high energy THz facilities such as free electron lasers.

  4. High power bipolar battery/cells with enhanced overcharge tolerance

    DOE Patents [OSTI]

    Kaun, T.D.

    1998-04-07T23:59:59.000Z

    A cell or battery of cells having improved overcharge tolerance and increased power capability, and methods for the construction of such cells or batteries, via electrolyte modification, are described. 5 figs.

  5. Techniques for low-power high-performance ADCs

    E-Print Network [OSTI]

    Lee, Sunghyuk

    2014-01-01T23:59:59.000Z

    Analog-to-digital converters (ADCs) are essential building blocks in many electronic systems which require digital signal processing and storage of analog signals. Traditionally, ADCs are considered a power hungry circuit. ...

  6. Development of a high power density motor for aircraft propulsion

    E-Print Network [OSTI]

    Dibua, Imoukhuede Tim Odion

    2007-04-25T23:59:59.000Z

    are currently powered by heavy gas turbine engines that require fueling. The development of electric motors to replace gas turbines would be a big step towards accomplishing more efficient aircraft propulsion. The primary objective of this research extends...

  7. Opportunities and challenges in Very High Frequency power conversion

    E-Print Network [OSTI]

    Perreault, David J.

    This paper explores opportunities and challenges in power conversion in the VHF frequency range of 30-300 MHz. The scaling of magnetic component size with frequency is investigated, and it is shown that substantial ...

  8. The design of high power density annular fuel for LWRs

    E-Print Network [OSTI]

    Yuan, Yi, 1975-

    2004-01-01T23:59:59.000Z

    Fuel performance models have been developed to assess the performance of internally and externally cooled LWR annular fuel. Such fuel may be operated at 30-50% higher core power density than the current operating LWRs, and ...

  9. Evaluation of Magnetic Materials for Very High Frequency Power Applications

    E-Print Network [OSTI]

    Han, Yehui

    This paper investigates the loss characteristics of RF magnetic materials for power conversion applications in the 10 to 100 MHz range. A measurement method is proposed that provides a direct measurement of an inductor ...

  10. Comparison of large central and small decentralized power generation in India

    SciTech Connect (OSTI)

    none,

    1997-05-01T23:59:59.000Z

    This reports evaluates two options for providing reliable power to rural areas in India. The benefits and costs are compared for biomass based distributed generation (DG) systems versus a 1200-MW central grid coal-fired power plant. The biomass based DG systems are examined both as alternatives to grid extension and as supplements to central grid power. The benefits are divided into three categories: those associated with providing reliable power from any source, those associated specifically with biomass based DG technology, and benefits of a central grid coal plant. The report compares the estimated delivered costs of electricity from the DG systems to those of the central plant. The analysis includes estimates for a central grid coal plant and four potential DG system technologies: Stirling engines, direct-fired combustion turbines, fuel cells, and biomass integrated gasification combined cycles. The report also discusses issues affecting India`s rural electricity demand, including economic development, power reliability, and environmental concerns. The results of the costs of electricity comparison between the biomass DG systems and the coal-fired central grid station demonstrated that the DG technologies may be able to produce very competitively priced electricity by the start of the next century. The use of DG technology may provide a practical means of addressing many rural electricity issues that India will face in the future. Biomass DG technologies in particular offer unique advantages for the environment and for economic development that will make them especially attractive. 58 refs., 31 figs.

  11. A Mixed-SignalASIC Power-Factor-Correction(PFC) Controller for High Frequency Switching Rectifiers

    E-Print Network [OSTI]

    A Mixed-SignalASIC Power-Factor-Correction(PFC) Controller for High Frequency Switching Rectifiers,but control of other power stages could be derived in the same manner. The final controller is proposedas harmonic content [11-[4]. These controllers generally add complexity and cost to power systems

  12. Stable Distributed Power Control with High SIR Target for Cellular Wireless Communication Systems Jiayuan Chen1

    E-Print Network [OSTI]

    Haddadi, Hamed

    Stable Distributed Power Control with High SIR Target for Cellular Wireless Communication Systems power control (DPC) and propose an improved algorithm to overcome the weakness of DPC. The DPC algorithm of DPCH is slightly slower than that of DPC in the low SIR environment. Keywords - Power control, SIR

  13. 3-Dimensional, Solder-Free Interconnect Technology for High-Performance Power Modules

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    , published in "Conference on Integrated Power Systems (CIPS), Nuremberg : Germany (2012)" #12;dimensional (3D) packaging of power modules in a compact stacked layer structure [3], [4], [5]. The proposed technologies can3-Dimensional, Solder-Free Interconnect Technology for High- Performance Power Modules Bassem

  14. Theoretical analysis of the trade-off between efficiency and linearity of the High Power Amplifier

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Theoretical analysis of the trade-off between efficiency and linearity of the High Power Amplifier], the methodology of PA design focuses on a trade-off between linearity and power efficiency represented 47601 F-35576 Cesson-Sevigne cedex, France Email: {Abel.Gouba, Yves.Louet}@supelec.fr Abstract--Power

  15. High-Speed and Low-Power PID Structures for Embedded Applications

    E-Print Network [OSTI]

    Boyer, Edmond

    High-Speed and Low-Power PID Structures for Embedded Applications Abdelkrim K. Oudjida1 , Nicolas-power finite-word-length PID controllers based on a new recursive multiplication algorithm. Compared scalable PID structures that can be tailored to the desired performance and power budget. All PIDs

  16. Investigation of CandidateTechniquesfor High-Frequency AC Distributed Power Systems'

    E-Print Network [OSTI]

    Wu, Shin-Tson

    Investigation of CandidateTechniquesfor High-Frequency AC Distributed Power Systems' Shiguo Luo power systems PPSs) have been used extensively and a considerable amount of information is availableon and outlined in this paper. I. INTRODUCTION Power conversion system design issues are becoming increasingly

  17. X-ray photoelectron spectroscopy of negative electrodes from high-power lithium-ion cells showing various levels of power fade

    E-Print Network [OSTI]

    Herstedt, Marie; Abraham, Daniel P.; Kerr, John B.

    2004-01-01T23:59:59.000Z

    Electrodes from High-Power Lithium-Ion Cells Showing VariousAbstract High-power lithium-ion cells for transportationknown electrolytes during lithium ion intercalation this SEI

  18. A Service Oriented Architecture for Exploring High Performance Distributed Power Models

    SciTech Connect (OSTI)

    Liu, Yan; Chase, Jared M.; Gorton, Ian

    2012-11-12T23:59:59.000Z

    Power grids are increasingly incorporating high quality, high throughput sensor devices inside power distribution networks. These devices are driving an unprecedented increase in the volume and rate of available information. The real-time requirements for handling this data are beyond the capacity of conventional power models running in central utilities. Hence, we are exploring distributed power models deployed at the regional scale. The connection of these models for a larger geographic region is supported by a distributed system architecture. This architecture is built in a service oriented style, whereby distributed power models running on high performance clusters are exposed as services. Each service is semantically annotated and therefore can be discovered through a service catalog and composed into workflows. The overall architecture has been implemented as an integrated workflow environment useful for power researchers to explore newly developed distributed power models.

  19. Application of high powered lasers to drilling and completing deep walls.

    SciTech Connect (OSTI)

    Reed, C. B.; Xu, Z.; Parker, R. A.; Gahan, B. C.; Batarseh, S.; Graves, R. M.; Figueroa, H.; Deeg, W.

    2003-07-30T23:59:59.000Z

    High powered laser rock drilling was studied as a revolutionary method for drilling and completing deep gas and oil wells. The objectives of this 2002 to 2003 fiscal year research were to study the concept that large diameter holes can be created by multiple overlapping small beam spots, to determine the ability of lasers to drill rock submerged to some depth in water, to demonstrate the possibilities of lasers for perforating application, and to determine the wavelength effects on rock removal. Laser technology applied to well drilling and completion operations is attractive because it has the potential to reduce drilling time, create a ceramic lining that may eliminate the need for steel casing, provide additional monitor-on-drilling laser sensors and improve well performance through improved perforation. The results from this research will help engineering design on a laser-based well drilling system.

  20. High Efficiency Generation of Hydrogen Fuels using Nuclear Power Annual Report August, 2000 - July 2001

    SciTech Connect (OSTI)

    Brown, L.C.

    2002-11-01T23:59:59.000Z

    OAK B188 High Efficiency Generation of Hydrogen Fuels using Nuclear Power Annual Report August 2000 - July 2001. Currently no large scale, cost-effective, environmentally attractive hydrogen production process is available for commercialization nor has such a process been identified. Hydrogen is a promising energy carrier, which potentially could replace the fossil fuels used in the transportation sector of our economy. Carbon dioxide emissions from fossil fuel combustion are thought to be responsible for global warming. The purpose of this work is to determine the potential for efficient, cost-effective, large-scale production of hydrogen utilizing high temperature heat from an advanced nuclear power station. The benefits of this work will include the generation of a low-polluting transportable energy feedstock in an efficient method that has little or no implication for greenhouse gas emissions from a primary energy source whose availability and sources are domestically controlled. This will help to ensure energy for a future transportation/energy infrastructure that is not influenced/controlled by foreign governments. This report describes work accomplished during the second year (Phase 2) of a three year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first year (Phase 1) was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water, in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most, three) for further detailed consideration. Phase 1 met its goals and did select one process, the sulfur-iodine process, for investigation in Phases 2 and 3. The combined goals of Phases 2 and 3 were to select the advanced nuclear reactor best suited to driving the selected thermochemical process and to define the selected reactor and process to the point that capital costs, operating costs and the resultant cost of hydrogen can be estimated. During original contract negotiation, it was necessary to reduce work scope to meet funding limits. As a result, the reactor interface and process will not be iterated to the point that only hydrogen is produced. Rather, hydrogen and electricity will be co-generated and the hydrogen cost will be stated as a function of the electricity sales price.

  1. High-Temperature High-Power Packaging Techniques for HEV Traction Applications

    SciTech Connect (OSTI)

    Elshabini, Aicha [University of Idaho; Barlow, Fred D. [University of Idaho

    2006-11-01T23:59:59.000Z

    A key issue associated with the wider adoption of hybrid-electric vehicles (HEV) and plug in hybrid-electric vehicles (PHEV) is the implementation of the power electronic systems that are required in these products. One of the primary industry goals is the reduction in the price of these vehicles relative to the cost of traditional gasoline powered vehicles. Today these systems, such as the Prius, utilize one coolant loop for the engine at approximately 100 C coolant temperatures, and a second coolant loop for the inverter at 65 C. One way in which significant cost reduction of these systems could be achieved is through the use of a single coolant loop for both the power electronics as well as the internal combustion engine (ICE). This change in coolant temperature significantly increases the junction temperatures of the devices and creates a number of challenges for both device fabrication and the assembly of these devices into inverters and converters for HEV and PHEV applications. Traditional power modules and the state-of-the-art inverters in the current HEV products, are based on chip and wire assembly and direct bond copper (DBC) on ceramic substrates. While a shift to silicon carbide (SiC) devices from silicon (Si) devices would allow the higher operating temperatures required for a single coolant loop, it also creates a number of challenges for the assembly of these devices into power inverters. While this traditional packaging technology can be extended to higher temperatures, the key issues are the substrate material and conductor stability, die bonding material, wire bonds, and bond metallurgy reliability as well as encapsulation materials that are stable at high operating temperatures. The larger temperature differential during power cycling, which would be created by higher coolant temperatures, places tremendous stress on traditional aluminum wire bonds that are used to interconnect power devices. Selection of the bond metallurgy and wire bond geometry can play a key role in mitigating this stress. An alternative solution would be to eliminate the wire bonds completely through a fundamentally different method of forming a reliable top side interconnect. Similarly, the solders used in most power modules exhibit too low of a liquidus to be viable solutions for maximum junction temperatures of 200 C. Commonly used encapsulation materials, such as silicone gels, also suffer from an inability to operate at 200 C for extended periods of time. Possible solutions to these problems exist in most cases but require changes to the traditional manufacturing process used in these modules. In addition, a number of emerging technologies such as Si nitride, flip-chip assembly methods, and the elimination of base-plates would allow reliable module development for operation of HEV and PHEV inverters at elevated junction temperatures.

  2. Large area, high spatial resolution tracker for new generation of high luminosity experiments in Hall A at Jefferson Lab

    SciTech Connect (OSTI)

    Bellini, V; Castelluccio, D; Colilli, S; Cisbani, E; De Leo, R; Fratoni, R; Frullani, S; Garibaldi, F; Guiliani, F; Guisa, A; Gricia, M; Lucentini, M; Meddi, F; Minutoli, S; Musico, P; Noto, F; De Oliveira, R; Santavenere, F; Sutera, M C

    2011-06-01T23:59:59.000Z

    In 2014 the CEBAF electron accelerator at Jefferson Lab (JLab) will deliver a longitudinally polarized (up to 85%), high intensity (up to 100 ?A) beam with maximum energy of 12 GeV, twice the present value. To exploit the new opportunities that the energy upgrade will offer, a new spectrometer (Super BigBite - SBS) is under development, featuring very forward angle, large acceptance and ability to operate in high luminosity environment. The tracking system of SBS will consist of large area (40150 cm2 and 50200 cm2), high spatial resolution (better than 100 ?m) chambers based on the GEM technology and 2 small (1020 cm) Silicon Strip Detector planes. The design of the GEM chambers and its sub-components such as the readout electronics is resented here.

  3. Large amplitude oscillatory shear flow of gluten dough: A model power-law gel

    E-Print Network [OSTI]

    Ng, Trevor S. K.

    In a previous paper [T. S. K. Ng and G. H. McKinley, J. Rheol.52(2), 417449 (2008)], we demonstrated that gluten gels can best be understood as a polymericnetwork with a power-law frequency response that reflects the ...

  4. Partition Based Cascaded Generator Scheduling with Constraints for Large Power Networks

    E-Print Network [OSTI]

    Kundur, Deepa

    must be revisited. In this paper, we focus on the generator scheduling problem in smart grid comprehensive view for planning in the smart grid. Given the mammoth size of the power networks, we propose]. In addition, the smart grid vision in- corporates consumer-driven and regulator-driven policies

  5. 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. HIGH-ACCURACY LASER POWER AND ENERGY METER CALIBRATION SYSTEM . . . . . . . . 2

    E-Print Network [OSTI]

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. HIGH-ACCURACY LASER POWER AND ENERGY METER CALIBRATION SYSTEM . . . . . . . . 2 2.1 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.1 High-Accuracy Calibration System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2.1 Basic cryogenic radiometer operating principal

  6. This thesis applies model order reduction (MOR) techniques to large modern power systems that preserve particular dynamic characteristics of the original system. Depending upon the nature of the

    E-Print Network [OSTI]

    Kumar, M. Jagadesh

    in power systems have been explored and compared Balanced truncation (BT) and Krylov subspace between the wind velocity/system frequency and the power output. These linear models, validated using DigABSTRACT This thesis applies model order reduction (MOR) techniques to large modern power systems

  7. LARGE-SCALE HYDROGEN PRODUCTION FROM NUCLEAR ENERGY USING HIGH TEMPERATURE ELECTROLYSIS

    SciTech Connect (OSTI)

    James E. O'Brien

    2010-08-01T23:59:59.000Z

    Hydrogen can be produced from water splitting with relatively high efficiency using high-temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high-temperature process heat. When coupled to an advanced high temperature nuclear reactor, the overall thermal-to-hydrogen efficiency for high-temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. Demand for hydrogen is increasing rapidly for refining of increasingly low-grade petroleum resources, such as the Athabasca oil sands and for ammonia-based fertilizer production. Large quantities of hydrogen are also required for carbon-efficient conversion of biomass to liquid fuels. With supplemental nuclear hydrogen, almost all of the carbon in the biomass can be converted to liquid fuels in a nearly carbon-neutral fashion. Ultimately, hydrogen may be employed as a direct transportation fuel in a hydrogen economy. The large quantity of hydrogen that would be required for this concept should be produced without consuming fossil fuels or emitting greenhouse gases. An overview of the high-temperature electrolysis technology will be presented, including basic theory, modeling, and experimental activities. Modeling activities include both computational fluid dynamics and large-scale systems analysis. We have also demonstrated high-temperature electrolysis in our laboratory at the 15 kW scale, achieving a hydrogen production rate in excess of 5500 L/hr.

  8. Control of high power pulse extracted from the maximally compressed pulse in a nonlinear optical fiber

    E-Print Network [OSTI]

    Yang, Guangye; Jia, Suotang; Mihalache, Dumitru

    2013-01-01T23:59:59.000Z

    We address the possibility to control high power pulses extracted from the maximally compressed pulse in a nonlinear optical fiber by adjusting the initial excitation parameters. The numerical results show that the power, location and splitting order number of the maximally compressed pulse and the transmission features of high power pulses extracted from the maximally compressed pulse can be manipulated through adjusting the modulation amplitude, width, and phase of the initial Gaussian-type perturbation pulse on a continuous wave background.

  9. DESY, February 2001, TESLA Report 2001-04 Concept of the High Power e

    E-Print Network [OSTI]

    DESY, February 2001, TESLA Report 2001-04 Concept of the High Power e± Beam Dumps for TESLA W. Bialowons, M. Maslov, M. Schmitz, V. Sytchev #12;1 Concept of the High Power e± Beam Dumps for TESLA W............................................................................................................... 19 #12;2 1 Introduction The TESLA accelerator is equipped with quite a number of extraction lines

  10. High-power laser beam control by PTR Bragg gratings Igor Ciapurin(1)

    E-Print Network [OSTI]

    Glebov, Leon

    High-power laser beam control by PTR Bragg gratings Igor Ciapurin(1) , Vadim Smirnov(1,2) , George is a photo-thermo-refractive (PTR) glass, and used for high-power laser beam control. Exceptionally narrow. The computer controlled recording setup allowed controlling input angles with accuracy better then 0.25 mrad

  11. Coherence and Linewidth Studies of a 4-nm High Power FEL

    E-Print Network [OSTI]

    Fawley, W.M.

    2008-01-01T23:59:59.000Z

    bandwidth for a single-pass FEL amplifier initiated by SASE.Studies of a 4-nm High Power FEL W.M. Fawley, A.M. Sessler,Studies of a 4-nm High Power FEL W. M. Fawley and A. M.

  12. High efficiency photovoltaic power conditioning system Hosam Sharabash, DVMM Krishna, Norbert Frhleke and Joachim Bcker

    E-Print Network [OSTI]

    Paderborn, Universitt

    High efficiency photovoltaic power conditioning system Hosam Sharabash, DVMM Krishna, Norbert) with high efficiency under wide input voltage range of the photovoltaic array is introduced. In fact, Germany sharabash@lea.upb.de Abstract A new topology for photovoltaic Power Conditioning System (PCS

  13. Thermal Effects on Inverted Pendulum Thrust Stands for Steady-state High-power Plasma Thrusters

    E-Print Network [OSTI]

    Choueiri, Edgar

    Thermal Effects on Inverted Pendulum Thrust Stands for Steady-state High-power Plasma Thrusters A, 2003 Abstract Thermal effects on direct measurements of the thrust produced by steady-state, high-power. Associate Fellow, AIAA. Presented at the 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 20-23rd

  14. High-Temperature Heat Treatment Study on a Large-Grain Nb Cavity

    SciTech Connect (OSTI)

    G. Ciovati, P. Dhakal, R. Myneni, P. Maheshwari, F.A. Stevie

    2011-07-01T23:59:59.000Z

    Improvement of the cavity performance by a high-temperature heat-treatment without subsequent chemical etching have been reported for large-grain Nb cavities treated by buffered chemical polishing, as well as for a fine-grain cavity treated by vertical electropolishing. Changes in the quality factor, Q{sub 0}, and maximum peak surface magnetic field achieved in a large-grain Nb single-cell cavity have been determined as a function of the heat treatment temperature, between 600 C and 1200 C. The highest Q{sub 0} improvement of about 30% was obtained after heat-treatment at 800 C-1000 C. Measurements by secondary ion mass spectrometry on large-grain samples heat-treated with the cavity showed large reduction of hydrogen concentration after heat treatment.

  15. Coal-fired high performance power generating system. Draft quarterly progress report, January 1--March 31, 1995

    SciTech Connect (OSTI)

    NONE

    1995-10-01T23:59:59.000Z

    This report covers work carried out under Task 3, Preliminary R and D, under contract DE-AC22-92PC91155, ``Engineering Development of a Coal-Fired High Performance Power Generation System`` between DOE Pittsburgh Energy Technology Center and United Technologies Research Center. The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) by the year 2000 that is capable of >47% thermal efficiency; NO{sub x}, SO{sub x} and particulates {le} 25% NSPS; cost {ge}65% of heat input; all solid wastes benign. A crucial aspect of the authors design is the integration of the gas turbine requirements with the HITAF output and steam cycle requirements. In order to take full advantage of modern highly efficient aeroderivative gas turbines they have carried out a large number of cycle calculations to optimize their commercial plant designs for both greenfield and repowering applications.

  16. Large Eddy Simulation Analysis of Flow Field Inside a High-g Combustor

    E-Print Network [OSTI]

    Raman, Venkat

    Large Eddy Simulation Analysis of Flow Field Inside a High-g Combustor C. Heye , C. Lietz , J-compact combustors (UCC) are a technology for reducing the size of combustors. In these combustors the fuel and air results exhibit significant entrainment of fuel into recirculation zones inside the combustor, however

  17. High temperature furnaces for small and large angle neutron scattering of disordered materials

    E-Print Network [OSTI]

    Boyer, Edmond

    725 High temperature furnaces for small and large angle neutron scattering of disordered materials and small angle neutron scattering (SANS) experiments respectively. They are vacuum furnaces with a thin maintained in a tantalum box. In a neutron beam, the furnaces produce a very low scattering level (without

  18. Peristaltic pumping of a viscoelastic fluid at high occlusion ratios and large Weissenberg numbers

    E-Print Network [OSTI]

    Bigelow, Stephen

    Peristaltic pumping of a viscoelastic fluid at high occlusion ratios and large Weissenberg numbers pumping is a mechanism for transporting fluid or immersed par- ticles in a channel by waves of contraction- vestigate numerically the peristaltic pumping of an incompressible viscoelas- tic fluid using the simple

  19. Design of a high-power, high-gain, 2nd harmonic, 22.848 GHz gyroklystron

    SciTech Connect (OSTI)

    Veale, M. [University of California, Berkeley, CA, 24720 (United States)] [University of California, Berkeley, CA, 24720 (United States); Purohit, P. [Qualcomm Technologies, Inc. USA (United States)] [Qualcomm Technologies, Inc. USA (United States); Lawson, W. [University of Maryland, College Park, MD 20742 (United States)] [University of Maryland, College Park, MD 20742 (United States)

    2013-08-15T23:59:59.000Z

    In this paper we consider the design of a four-cavity, high-gain K-band gyroklystron experiment for high gradient structure testing. The frequency doubling gyroklystron utilizes a beam voltage of 500 kV and a beam current of 200 A from a magnetron injection gun (MIG) originally designed for a lower-frequency device. The microwave circuit features input and gain cavities in the circular TE{sub 011} mode and penultimate and output cavities that operate at the second harmonic in the TE{sub 021} mode. We investigate the MIG performance and study the behavior of the circuit for different values of perpendicular to parallel velocity ratio (?= V{sub ?}/ V{sub z}). This microwave tube is expected to be able to produce at least 20 MW of power in 1?s pulses at a repetition rate of at least 120 Hz. A maximum efficiency of 26% and a large signal gain of 58 dB under zero-drive stable conditions were simulated for a velocity ratio equal to 1.35.

  20. HIGH AVERAGE POWER UV FREE ELECTRON LASER EXPERIMENTS AT JLAB

    SciTech Connect (OSTI)

    Douglas, David; Evtushenko, Pavel; Gubeli, Joseph; Hernandez-Garcia, Carlos; Legg, Robert; Neil, George; Powers, Thomas; Shinn, Michelle D; Tennant, Christopher

    2012-07-01T23:59:59.000Z

    Having produced 14 kW of average power at {approx}2 microns, JLAB has shifted its focus to the ultraviolet portion of the spectrum. This presentation will describe the JLab UV Demo FEL, present specifics of its driver ERL, and discuss the latest experimental results from FEL experiments and machine operations.

  1. Microsoft PowerPoint - High Gradient Inverse Free Electron Laser...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hi h G di t Hi h i High Gradient High energy gain Inverse Free Electron Laser at BNL P. Musumeci UCLA Department of Physics and Astronomy ATF user meeting April 2-3 2009 Outline...

  2. High-voltage crowbar protection for the large CDF axial drift chamber

    SciTech Connect (OSTI)

    Binkley, M.; Mukherjee, A.; Stuermer, W.; Wagner, R.L.; /Fermilab

    2004-01-01T23:59:59.000Z

    The Central Outer Tracker (COT) is a big cylindrical drift chamber that provides charged particle tracking for the Collider Detector at Fermilab experiment. To protect the COT, the large stored energy in the high voltage system needs to be removed quickly when a problem is sensed. For the high voltage switch, a special-order silicon-controlled-rectifier was chosen over more readily available integrated gate bipolar transistors because of layout and reliability questions. The considerations concerning the high voltage switch, the prototype performance, and the experience of more than two years of running are described.

  3. High peak power test of S-band waveguide switches

    SciTech Connect (OSTI)

    Nassiri, A.; Grelick, A.; Kustom, R.L.; White, M.

    1997-08-01T23:59:59.000Z

    The injector and source of particles for the Advanced Photon Source (APS) is a 2856-MHz S-band electron-positron linear accelerator (linac) which produces electrons with energies up to 650 MeV or positrons with energies up to 450 MeV. To improve the linac rf system availability, an additional modulator-klystron subsystem is being constructed to provide a switchable hot spare unit for each of the five existing S-band transmitters. The switching of the transmitters will require the use of SF6-pressurized waveguide switches at a peak operating power of 35 MW. A test stand was set up at the Stanford Linear Accelerator Center (SLAC) Klystron-Microwave laboratory to conduct tests characterizing the power handling capability of these waveguide switches. Test results are presented.

  4. Non-intrusive beam power monitor for high power pulsed or continuous wave lasers

    DOE Patents [OSTI]

    Hawsey, Robert A. (Oak Ridge, TN); Scudiere, Matthew B. (Oak Ridge, TN)

    1993-01-01T23:59:59.000Z

    A system and method for monitoring the output of a laser is provided in which the output of a photodiode disposed in the cavity of the laser is used to provide a correlated indication of the laser power. The photodiode is disposed out of the laser beam to view the extraneous light generated in the laser cavity whose intensity has been found to be a direct correlation of the laser beam output power level. Further, the system provides means for monitoring the phase of the laser output beam relative to a modulated control signal through the photodiode monitor.

  5. Large-scale optimal power flow: Effects of initialization, decoupling and discretization

    SciTech Connect (OSTI)

    Papalexopoulos, A.D.; Imparato, C.F.; Wu, F.F.

    1989-08-01T23:59:59.000Z

    The optimal power flow has entered a new era since the introduction of second-order methods. These methods have renewed hopes for its on-line application in Energy Management Systems. This paper reports on some of the results of tests of a second-order OPF method. The testing was conducted using a 1500 bus network, under a variety of loading conditions. Three issues were studied: Sensitivity of OPF solutions with respect to the starting points used in the solution; Accuracy of the active/reactive decoupled approach to OPF solution; Effects of discretization of transformer taps on the OPF solutions.

  6. Designing Large High-Resolution Display Workspaces Alex Endert, Lauren Bradel, Jessica Zeitz, Christopher Andrews, Chris North

    E-Print Network [OSTI]

    Designing Large High-Resolution Display Workspaces Alex Endert, Lauren Bradel, Jessica Zeitz Large, high-resolution displays have enormous potential to aid in scenarios beyond their current usage seemingly small large-display design decisions can have significant impacts on users' perceptions

  7. Phosphate single mode large mode area all-solid photonic crystal fiber with multi-watt output power

    SciTech Connect (OSTI)

    Wang, Longfei; He, Dongbing; Yu, Chunlei; Hu, Lili; Chen, Danping, E-mail: dpchen2008@aliyun.com [Key Laboratory of High Power Laser Materials, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Liu, Hui [Navigation Staff Room, Anhui Bengbu Petty Officer Academy of Navy, Bengbu 233000 (China); Qiu, Jianrong [Institute of Optical Communication Materials, South China University of Technology, Guangzhou 510641 (China)

    2014-03-31T23:59:59.000Z

    An index-depressed active core, single-mode phosphate all-solid large-mode-area photonic crystal fiber (PCF) is theoretically investigated using full-vectorial finite difference approach and experimentally realized. The PCF has a maximum output power of 5.4?W and 31% slope efficiency. Single-mode operation is realized through PCFs with core diameters of 30, 35, and 40??m, respectively. The beam quality is not degraded even at maximum output power. Our simulations and experiments reveal that the laser performance is significantly affected by the center-to-center distance between the two nearest rods ?, the rod diameter d, and their ratio d/?, implying that much attention should be given in employing optimal parameters to achieve excellent laser performance.

  8. Large-x connections of nuclear and high-energy physics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Accardi, Alberto [Hampton U., JLAB

    2013-11-01T23:59:59.000Z

    I discuss how global QCD fits of parton distribution functions can make the somewhat separated fields of high-energy particle physics and lower energy hadronic and nuclear physics interact to the benefit of both. I review specific examples of this interplay from recent works of the CTEQ-Jefferson Lab collaboration, including hadron structure at large parton momentum and gauge boson production at colliders. I devote particular attention to quantifying theoretical uncertainties arising in the treatment of large partonic momentum contributions to deep inelastic scattering observables, and to discussing the experimental progress needed to reduce these.

  9. Measurement of limiter heating due to fusion product losses during high fusion power deuterium-tritium operation of TFTR

    SciTech Connect (OSTI)

    Janos, A.; Owens, D.K.; Darrow, D.; Redi, M.; Zarnstorff, M.; Zweben, S.

    1995-03-01T23:59:59.000Z

    Preliminary analysis has been completed on measurements of limiter heating during high fusion power deuterium-tritium (D-T) operation of TFTR, in an attempt to identify heating from alpha particle losses. Recent operation of TFTR with a 50-50 mix of D-T has resulted in fusion power output ({approx} 6.2 MW) orders of magnitude above what was previously achieved on TFTR. A significantly larger absolute number of particles and energy from fusion products compared to D-D operation is expected to be lost to the limiters. Measurements were made in the vicinity of the midplane ({plus_minus} 30{degree}) with thermocouples mounted on the tiles of an outboard limiter. Comparisons were made -between discharges which were similar except for the mix of deuterium and tritium beam sources. Power and energy estimates of predicted alpha losses were as high as 0.13 MW and 64 kJ. Depending on what portion of the limiters absorbed this energy, temperature rises of up to 42 {degrees}C could be expected, corresponding to a heat load of 0.69 MJ/m{sup 2} over a 0.5 sec period, or a power load of 1.4 MW/m{sup 2}. There was a measurable increase in the limiter tile temperature as the fusion power yield increased with a more reactive mixture of D and T at constant beam power during high power D-T operation. Analysis of the data is being conducted to see if the alpha heating component can be extracted. Measured temperature increases were no greater than 1 {degree}C, indicating that there was probably neither an unexpectedly large fraction of lost particles nor unexpected localization of the losses. Limits on the stochastic ripple loss contribution from alphas can be deduced.

  10. Online Monitoring Technical Basis and Analysis Framework for Large Power Transformers; Interim Report for FY 2012

    SciTech Connect (OSTI)

    Nancy J. Lybeck; Vivek Agarwal; Binh T. Pham; Heather D. Medema; Kirk Fitzgerald

    2012-09-01T23:59:59.000Z

    The Light Water Reactor Sustainability program at Idaho National Laboratory (INL) is actively conducting research to develop and demonstrate online monitoring (OLM) capabilities for active components in existing Nuclear Power Plants. A pilot project is currently underway to apply OLM to Generator Step-Up Transformers (GSUs) and Emergency Diesel Generators (EDGs). INL and the Electric Power Research Institute (EPRI) are working jointly to implement the pilot project. The EPRI Fleet-Wide Prognostic and Health Management (FW-PHM) Software Suite will be used to implement monitoring in conjunction with utility partners: the Shearon Harris Nuclear Generating Station (owned by Duke Energy for GSUs, and Braidwood Generating Station (owned by Exelon Corporation) for EDGs. This report presents monitoring techniques, fault signatures, and diagnostic and prognostic models for GSUs. GSUs are main transformers that are directly connected to generators, stepping up the voltage from the generator output voltage to the highest transmission voltages for supplying electricity to the transmission grid. Technical experts from Shearon Harris are assisting INL and EPRI in identifying critical faults and defining fault signatures associated with each fault. The resulting diagnostic models will be implemented in the FW-PHM Software Suite and tested using data from Shearon-Harris. Parallel research on EDGs is being conducted, and will be reported in an interim report during the first quarter of fiscal year 2013.

  11. Generation of uniform large-area very high frequency plasmas by launching two specific standing waves simultaneously

    SciTech Connect (OSTI)

    Chen, Hsin-Liang, E-mail: hlchen@iner.gov.tw; Tu, Yen-Cheng; Hsieh, Cheng-Chang; Lin, Deng-Lain [Physics Division, Institute of Nuclear Energy Research (INER), Longtan, Taoyuan County 32546, Taiwan (China); Leou, Keh-Chyang [Department of Engineering and System Science, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China)

    2014-09-14T23:59:59.000Z

    With the characteristics of higher electron density and lower ion bombardment energy, large-area VHF (very high frequency) plasma enhanced chemical vapor deposition has become an essential manufacturing equipment to improve the production throughput and efficiency of thin film silicon solar cell. However, the combination of high frequency and large electrodes leads to the so-called standing wave effect causing a serious problem for the deposition uniformity of silicon thin film. In order to address this issue, a technique based on the idea of simultaneously launching two standing waves that possess similar amplitudes and are out of phase by 90 in time and space is proposed in this study. A linear plasma reactor with discharge length of 54 cm is tested with two different frequencies including 60 and 80 MHz. The experimental results show that the proposed technique could effectively improve the non-uniformity of VHF plasmas from >60% when only one standing wave is applied to <10% once two specific standing waves are launched at the same time. Moreover, in terms of the reactor configuration adopted in this study, in which the standing wave effect along the much shorter dimension can be ignored, the proposed technique is applicable to different frequencies without the need to alter the number and arrangement of power feeding points.

  12. A methodology for understanding the impacts of large-scale penetration of micro-combined heat and power

    SciTech Connect (OSTI)

    Tapia-Ahumada, K. [MIT Energy Initiative, Massachusetts Institute of Technology, Cambridge, MA (United States); Prez-Arriaga, I. J. [Institute for Research in Technology, Comillas Pontifical University (Spain); Moniz, Ernest J. [MIT Energy Initiative, Massachusetts Institute of Technology, Cambridge, MA (United States)

    2013-10-01T23:59:59.000Z

    Co-generation at small kW-e scale has been stimulated in recent years by governments and energy regulators as one way to increasing energy efficiency and reducing CO2emissions. If a widespread adoption should be realized, their effects from a system's point of view are crucial to understand the contributions of this technology. Based on a methodology that uses long-term capacity planning expansion, this paper explores some of the implications for an electric power system of having a large number of micro-CHPs. Results show that fuel cells-based micro-CHPs have the best and most consistent performance for different residential demands from the customer and system's perspectives. As the penetration increases at important levels, gas-based technologies - particularly combined cycle units - are displaced in capacity and production, which impacts the operation of the electric system during summer peak hours. Other results suggest that the tariff design impacts the economic efficiency of the system and the operation of micro-CHPs under a price-based strategy. Finally, policies aimed at micro-CHPs should consider the suitability of the technology (in size and heat-to-power ratio) to meet individual demands, the operational complexities of a large penetration, and the adequacy of the economic signals to incentivize an efficient and sustainable operation. Highlights: Capacity displacements and daily operation of an electric power system are explored; Benefits depend on energy mix, prices, and micro-CHP technology and control scheme; Benefits are observed mostly in winter when micro-CHP heat and power are fully used; Micro-CHPs mostly displace installed capacity from natural gas combined cycle units; and, Tariff design impacts economic efficiency of the system and operation of micro-CHPs.

  13. Method and system for advancement of a borehole using a high power laser

    DOE Patents [OSTI]

    Moxley, Joel F.; Land, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Zediker, Mark S.

    2014-09-09T23:59:59.000Z

    There is provided a system, apparatus and methods for the laser drilling of a borehole in the earth. There is further provided with in the systems a means for delivering high power laser energy down a deep borehole, while maintaining the high power to advance such boreholes deep into the earth and at highly efficient advancement rates, a laser bottom hole assembly, and fluid directing techniques and assemblies for removing the displaced material from the borehole.

  14. Method and apparatus for delivering high power laser energy over long distances

    DOE Patents [OSTI]

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2013-08-20T23:59:59.000Z

    Systems, devices and methods for the transmission of 1 kW or more of laser energy deep into the earth and for the suppression of associated nonlinear phenomena. Systems, devices and methods for the laser drilling of a borehole in the earth. These systems can deliver high power laser energy down a deep borehole, while maintaining the high power to advance such boreholes deep into the earth and at highly efficient advancement rates.

  15. An assessment of the economic, regulatory and technical implications of large-scale solar power deployment

    E-Print Network [OSTI]

    Merrick, James Hubert

    2010-01-01T23:59:59.000Z

    Electricity from solar energy has many favorable attributes. Despite its current high cost relative to other technology options, a combination of cost reductions and policy support measures could lead to increasing deployment ...

  16. Cryogenics Vision Workshop for High-Temperature Superconducting Electric Power Systems Proceedings

    SciTech Connect (OSTI)

    Energetics, Inc.

    2000-01-01T23:59:59.000Z

    The US Department of Energy's Superconductivity Program for Electric Systems sponsored the Cryogenics Vision Workshop, which was held on July 27, 1999 in Washington, D.C. This workshop was held in conjunction with the Program's Annual Peer Review meeting. Of the 175 people attending the peer review meeting, 31 were selected in advance to participate in the Cryogenics Vision Workshops discussions. The participants represented cryogenic equipment manufactures, industrial gas manufacturers and distributors, component suppliers, electric power equipment manufacturers (Superconductivity Partnership Initiative participants), electric utilities, federal agencies, national laboratories, and consulting firms. Critical factors were discussed that need to be considered in describing the successful future commercialization of cryogenic systems. Such systems will enable the widespread deployment of high-temperature superconducting (HTS) electric power equipment. Potential research, development, and demonstration (RD and D) activities and partnership opportunities for advancing suitable cryogenic systems were also discussed. The workshop agenda can be found in the following section of this report. Facilitated sessions were held to discuss the following specific focus topics: identifying Critical Factors that need to be included in a Cryogenics Vision for HTS Electric Power Systems (From the HTS equipment end-user perspective) identifying R and D Needs and Partnership Roles (From the cryogenic industry perspective) The findings of the facilitated Cryogenics Vision Workshop were then presented in a plenary session of the Annual Peer Review Meeting. Approximately 120 attendees participated in the afternoon plenary session. This large group heard summary reports from the workshop session leaders and then held a wrap-up session to discuss the findings, cross-cutting themes, and next steps. These summary reports are presented in this document. The ideas and suggestions raised during the Workshop will be used by the DOE Superconductivity Program for Electric Systems in preparing subsequent planning and strategy documents such as a Cryogenic Technology Development Roadmap.

  17. Radio-frequency powered glow discharge device and method with high voltage interface

    DOE Patents [OSTI]

    Duckworth, Douglas C. (Knoxville, TN); Marcus, R. Kenneth (Clemson, SC); Donohue, David L. (Vienna, AT); Lewis, Trousdale A. (Oak Ridge, TN)

    1994-01-01T23:59:59.000Z

    A high voltage accelerating potential, which is supplied by a high voltage direct current power supply, is applied to the electrically conducting interior wall of an RF powered glow discharge cell. The RF power supply desirably is electrically grounded, and the conductor carrying the RF power to the sample held by the probe is desirably shielded completely excepting only the conductor's terminal point of contact with the sample. The high voltage DC accelerating potential is not supplied to the sample. A high voltage capacitance is electrically connected in series between the sample on the one hand and the RF power supply and an impedance matching network on the other hand. The high voltage capacitance isolates the high DC voltage from the RF electronics, while the RF potential is passed across the high voltage capacitance to the plasma. An inductor protects at least the RF power supply, and desirably the impedance matching network as well, from a short that might occur across the high voltage capacitance. The discharge cell and the probe which holds the sample are configured and disposed to prevent the probe's components, which are maintained at ground potential, from bridging between the relatively low vacuum region in communication with the glow discharge maintained within the cell on the one hand, and the relatively high vacuum region surrounding the probe and cell on the other hand. The probe and cell also are configured and disposed to prevent the probe's components from electrically shorting the cell's components.

  18. Radio-frequency powered glow discharge device and method with high voltage interface

    DOE Patents [OSTI]

    Duckworth, D.C.; Marcus, R.K.; Donohue, D.L.; Lewis, T.A.

    1994-06-28T23:59:59.000Z

    A high voltage accelerating potential, which is supplied by a high voltage direct current power supply, is applied to the electrically conducting interior wall of an RF powered glow discharge cell. The RF power supply desirably is electrically grounded, and the conductor carrying the RF power to the sample held by the probe is desirably shielded completely excepting only the conductor's terminal point of contact with the sample. The high voltage DC accelerating potential is not supplied to the sample. A high voltage capacitance is electrically connected in series between the sample on the one hand and the RF power supply and an impedance matching network on the other hand. The high voltage capacitance isolates the high DC voltage from the RF electronics, while the RF potential is passed across the high voltage capacitance to the plasma. An inductor protects at least the RF power supply, and desirably the impedance matching network as well, from a short that might occur across the high voltage capacitance. The discharge cell and the probe which holds the sample are configured and disposed to prevent the probe's components, which are maintained at ground potential, from bridging between the relatively low vacuum region in communication with the glow discharge maintained within the cell on the one hand, and the relatively high vacuum region surrounding the probe and cell on the other hand. The probe and cell also are configured and disposed to prevent the probe's components from electrically shorting the cell's components. 11 figures.

  19. Research and Development of High-Power and High-Energy Electrochemical Storage Devices

    SciTech Connect (OSTI)

    No, author

    2014-04-30T23:59:59.000Z

    The accomplishments and technology progressmade during the U.S. Department of Energy (DOE) Cooperative Agreement No. DE-FC26- 05NT42403 (duration: July 11, 2005 through April 30, 2014, funded for $125 million in cost- shared research) are summarized in this Final Technical Report for a total of thirty-seven (37) collaborative programs organized by the United States Advanced Battery Consortium, LLC (USABC). The USABC is a partnership, formed in 1991, between the three U.S. domestic automakers Chrysler, Ford, and General Motors, to sponsor development of advanced high-performance batteries for electric and hybrid electric vehicle applications. The USABC provides a unique opportunity for developers to leverage their resources in combination with those of the automotive industry and the Federal government. This type of pre-competitive cooperation minimizes duplication of effort and risk of failure, and maximizes the benefits to the public of the government funds. A major goal of this program is to promote advanced battery development that can lead to commercialization within the domestic, and as appropriate, the foreign battery industry. A further goal of this program is to maintain a consortium that engages the battery manufacturers with the automobile manufacturers and other key stakeholders, universities, the National Laboratories, and manufacturers and developers that supply critical materials and components to the battery industry. Typically, the USABC defines and establishes consensus goals, conducts pre-competitive, vehicle-related research and development (R&D) in advanced battery technology. The R&D carried out by the USABC is an integral part of the DOEs effort to develop advanced transportation technologies that will significantly improve fuel economy, comply with projected emissions and safety regulations, and use domestically produced fuels. The USABC advanced battery development plan has the following three focus areas: 1. Existing technology validation, implementation, and cost reduction. 2. Identification of the next viable technology with emphasis on the potential to meet USABC cost and operating temperature range goals. 3. Support high-risk, high-reward battery technology R&D. Specific to the Cooperative Agreement DE- FC26-05NT42403, addressing High-Energy and High Power Energy Storage Technologies, the USABC focus was on understanding and addressing the following factors (listed in priority of effort): Cost: Reducing the current cost of lithium- ion batteries (currently about 2-3 times the FreedomCAR target ($20/kW). Low Temperature Performance: Improving the discharge power and removing lithium plating during regenerative braking. Calendar Life: Achieving 15-year life and getting accurate life prediction. Abuse Tolerance: Developing a system level tolerance to overcharge, crush, and high temperature exposure. This Final Technical Report compilation is submitted in fulfillment of the subject Cooperative Agreement, and is intended to serve as a ready-reference for the outcomes of following eight categories of projects conducted by the USABC under award from the DOEs Energy Efficiency and Renewable Energy ) Vehicle Technologies Program: USABC DoE Final Report DoE Cooperative Agreement DE-FC26-95EE50425 8 Protected Information 1. Electric Vehicle (EV) (Section A of this report) 2. Hybrid Electric Vehicle (HEV) (Section B 3. Plug-In Hybrid Electric Vehicle (PHEV) (Section C) 4. Low-Energy Energy Storage Systems (LEESS) (Section D) 5. Technology Assessment Program (TAP) (Section E) 6. Ultracapacitors (Section F) 7. 12 Volt Start-Stop (Section G) 8. Separators (Section H) The report summarizes the main areas of activity undertaken in collaboration with the supplier community and the National Laboratories. Copies of the individual supplier final reports are available upon request. Using project gap analysis versus defined USABC goals in each area, the report documents known technology limits and provides direction on future areas of technology and performance needs for vehicle applicatio

  20. A High Efficiency DC-DC Converter Topology Suitable for Distributed Large Commercial and Utility Scale PV Systems

    SciTech Connect (OSTI)

    Mohammed S. Agamy; Maja Harfman-Todorovic; Ahmed Elasser; Robert L. Steigerwald; Juan A. Sabate; Song Chi; Adam J. McCann; Li Zhang; Frank Mueller

    2012-09-01T23:59:59.000Z

    In this paper a DC-DC power converter for distributed photovoltaic plant architectures is presented. The proposed converter has the advantages of simplicity, high efficiency, and low cost. High efficiency is achieved by having a portion of the input PV power directly fed forward to the output without being processed by the converter. The operation of this converter also allows for a simplified maximum power point tracker design using fewer measurements