Powered by Deep Web Technologies
Note: This page contains sample records for the topic "large power high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

The Use of Large Transparent Ceramics in a High Powered, Diode Pumped Solid State Laser  

SciTech Connect

The advent of large transparent ceramics is one of the key enabling technological advances that have shown that the development of very high average power compact solid state lasers is achievable. Large ceramic neodymium doped yttrium aluminum garnet (Nd:YAG) amplifier slabs are used in Lawrence Livermore National Laboratory's (LLNL) Solid State Heat Capacity Laser (SSHCL), which has achieved world record average output powers in excess of 67 kilowatts. We will describe the attributes of using large transparent ceramics, our present system architecture and corresponding performance; as well as describe our near term future plans.

Yamamoto, R; Bhachu, B; Cutter, K; Fochs, S; Letts, S; Parks, C; Rotter, M; Soules, T

2007-09-24T23:59:59.000Z

2

A new VME based high voltage power supply for large experiments  

SciTech Connect

A new VME based high voltage power supply has been developed for the D{O} experiment at Fermilab. There are three types of supplies delivering up to {plus_minus}5.6 kV at 1.0 mA or +2.0 kV at 3.0 mA with a set accuracy of 1.5 V and extremely low voltage ripples. Complete computer control has allowed many special features to be developed for the supply, including user-defined control land monitor groups, variable ramp rates, and advanced histogram and graphic functions. 3 refs.

Ahn, S.C.; Angstadt, R.D.; Droege, T.F.; Johnson, M.E.; MacKinnon, B.A.; McNulty, S.E.; Shea, M.F.; Thompson, R.N.; Watson, M.M. [Fermi National Accelerator Lab., Batavia, IL (United States); Franzini, P. [Columbia Univ., New York, NY (United States); Jones, A.A. [Superconducting Super Collider Lab., Dallas, TX (United States); Lopez, M.L. [La Plata Univ. Nacional (Argentina); Wimpenny, S.J.; Yang, M.J. [California Univ., Riverside, CA (United States)

1991-11-01T23:59:59.000Z

3

A new VME based high voltage power supply for large experiments  

Science Conference Proceedings (OSTI)

A new VME based high voltage power supply has been developed for the D{O} experiment at Fermilab. There are three types of supplies delivering up to {plus minus}5.6 kV at 1.0 mA or +2.0 kV at 3.0 mA with a set accuracy of 1.5 V and extremely low voltage ripples. Complete computer control has allowed many special features to be developed for the supply, including user-defined control land monitor groups, variable ramp rates, and advanced histogram and graphic functions. 3 refs.

Ahn, S.C.; Angstadt, R.D.; Droege, T.F.; Johnson, M.E.; MacKinnon, B.A.; McNulty, S.E.; Shea, M.F.; Thompson, R.N.; Watson, M.M. (Fermi National Accelerator Lab., Batavia, IL (United States)); Franzini, P. (Columbia Univ., New York, NY (United States)); Jones, A.A. (Superconducting Super Collider Lab., Dallas, TX (United States)); Lopez, M.L. (La Plata Univ. Nacional (Argentina)); Wimpenny, S.J.; Yang, M.J

1991-11-01T23:59:59.000Z

4

Modeling of large aperture third harmonic frequency conversion of high power Nd:glass laser systems  

SciTech Connect

To provide high-energy, high-power beams at short wavelengths for inertial-confinement-fusion experiments, we routinely convert the 1.053-{mu}m output of the Nova, Nd:phosphate-glass, laser system to its third-harmonic wavelength. We describe performance and conversion efficiency modeling of the 3 {times} 3 arrays potassium-dihydrogen-phosphate crystal plates used for type II/type II phase-matched harmonic conversion of Nova 0.74-m diameter beams, and an alternate type I/type II phase-matching configuration that improves the third-harmonic conversion efficiency. These arrays provide energy conversion of up to 65% and intensity conversion to 70%. 19 refs., 11 figs.

Henesian, M.A.; Wegner, P.J.; Speck, D.R.; Bibeau, C.; Ehrlich, R.B.; Laumann, C.W.; Lawson, J.K.; Weiland, T.L.

1991-03-13T23:59:59.000Z

5

Large-Scale Testing and High-Fidelity Simulation Capabilities at Sandia National Laboratories to Support Space Power and Propulsion  

SciTech Connect

Sandia National Laboratories, as a Department of Energy, National Nuclear Security Agency, has major responsibility to ensure the safety and security needs of nuclear weapons. As such, with an experienced research staff, Sandia maintains a spectrum of modeling and simulation capabilities integrated with experimental and large-scale test capabilities. This expertise and these capabilities offer considerable resources for addressing issues of interest to the space power and propulsion communities. This paper presents Sandia's capability to perform thermal qualification (analysis, test, modeling and simulation) using a representative weapon system as an example demonstrating the potential to support NASA's Lunar Reactor System.

Dobranich, Dean [Thermal and Reactive Processes Department, Sandia National Laboratories Albuquerque, NM 87185 (United States); Blanchat, Thomas K. [Fire Science and Technology Department, Sandia National Laboratories Albuquerque, NM 87185 (United States)

2008-01-21T23:59:59.000Z

6

Large-Scale Offshore Wind Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Large-Scale Offshore Wind Power in the United States EXECUTIVE SUMMARY September 2010 NOTICE This report was prepared as an account of work sponsored by an agency of the United...

7

The analysis and specification of large high-pressure, high-temperature valves for combustion turbine protection in second-generation PFB power plants: Topical report  

SciTech Connect

The purpose of this study was to provide a specification for the high-pressure/high-temperature valves for turbine overspeed protection in a commercial-scale second-generation pressurized fluidized bed combustion (PFBC) power plant. In the event of a loss of external (generator) load, the gas turbine rapidly accelerates from its normal operating speed. Protection from excessive overspeed can be maintained by actuation of fuel isolation and air bypass valves. A design specification for these valves was developed by analyses of the turbine/compressor interaction during a loss of load and analyses of pressure and flow transients during operation of the overspeed protection valves. The basis for these analyses was the Phase 1 plant conceptual design prepared in 1987.

1994-08-01T23:59:59.000Z

8

Intelligent Power Management Over Large Clusters  

Science Conference Proceedings (OSTI)

There is a growing tension within large organisations such as universities between the desire to perform vast amounts of computational processing and the desire to reduce power consumption by switching off computers. This situation will only worsen as ... Keywords: power management, condor, green computing

A. Stephen McGough; Clive Gerrard; Paul Haldane; Dave Sharples; Dan Swan; Paul Robinson; Sindre Hamlander; Stuart Wheater

2010-12-01T23:59:59.000Z

9

Soft Magnetic Materials for High Power and High Frequency Power ...  

Science Conference Proceedings (OSTI)

Symposium, Advanced Materials for Power Electronics, Power Conditioning, and ... are in high demand for the next generation of miniaturized power electronics.

10

High power microwave generator  

DOE Patents (OSTI)

A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

Ekdahl, C.A.

1983-12-29T23:59:59.000Z

11

High power microwave generator  

DOE Patents (OSTI)

A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

Ekdahl, Carl A. (Albuquerque, NM)

1986-01-01T23:59:59.000Z

12

High Plains Power Inc | Open Energy Information  

Open Energy Info (EERE)

High Plains Power Inc High Plains Power Inc Place Wyoming Utility Id 8566 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png IRRIGATION Industrial LARGE POWER 500kW OR GREATER TIME OF USE Industrial LARGE POWER DISTRIBUTION SUBSTATION GREATER THAN 500kW LEVEL SERVICE Industrial LARGE POWER DISTRIBUTION SUBSTATION LESS THAN 500kW LEVEL SERVICE Industrial LARGE POWER THREE PHASE DISTRIBUTION PRIMARY LEVEL SERVICE Industrial LARGE POWER THREE PHASE DISTRIBUTION PRIMARY LEVEL SERVICE V2 Industrial

13

Large-Scale Data Challenges in Future Power Grids  

Science Conference Proceedings (OSTI)

This paper describes technical challenges in supporting large-scale real-time data analysis for future power grid systems and discusses various design options to address these challenges. Even though the existing U.S. power grid has served the nation remarkably well over the last 120 years, big changes are in the horizon. The widespread deployment of renewable generation, smart grid controls, energy storage, plug-in hybrids, and new conducting materials will require fundamental changes in the operational concepts and principal components. The whole system becomes highly dynamic and needs constant adjustments based on real time data. Even though millions of sensors such as phase measurement units (PMUs) and smart meters are being widely deployed, a data layer that can support this amount of data in real time is needed. Unlike the data fabric in cloud services, the data layer for smart grids must address some unique challenges. This layer must be scalable to support millions of sensors and a large number of diverse applications and still provide real time guarantees. Moreover, the system needs to be highly reliable and highly secure because the power grid is a critical piece of infrastructure. No existing systems can satisfy all the requirements at the same time. We examine various design options. In particular, we explore the special characteristics of power grid data to meet both scalability and quality of service requirements. Our initial prototype can improve performance by orders of magnitude over existing general-purpose systems. The prototype was demonstrated with several use cases from PNNL’s FPGI and was shown to be able to integrate huge amount of data from a large number of sensors and a diverse set of applications.

Yin, Jian; Sharma, Poorva; Gorton, Ian; Akyol, Bora A.

2013-03-25T23:59:59.000Z

14

TRANSISTOR HIGH VOLTAGE POWER SUPPLY  

DOE Patents (OSTI)

High voltage, direct current power supplies are described for use with battery powered nuclear detection equipment. The particular advantages of the power supply described, are increased efficiency and reduced size and welght brought about by the use of transistors in the circuit. An important feature resides tn the employment of a pair of transistors in an alternatefiring oscillator circuit having a coupling transformer and other circuit components which are used for interconnecting the various electrodes of the transistors.

Driver, G.E.

1958-07-15T23:59:59.000Z

15

Large-Scale Eucalyptus Energy Farms and Power Cogeneration1  

E-Print Network (OSTI)

Large-Scale Eucalyptus Energy Farms and Power Cogeneration1 Robert C. Noronla2 The initiation of a large-scale cogeneration project, especially one that combines construction of the power generation supplemental fuel source must be sought if the cogeneration facility will consume more fuel than

Standiford, Richard B.

16

High average power pockels cell  

DOE Patents (OSTI)

A high average power pockels cell is disclosed which reduces the effect of thermally induced strains in high average power laser technology. The pockels cell includes an elongated, substantially rectangular crystalline structure formed from a KDP-type material to eliminate shear strains. The X- and Y-axes are oriented substantially perpendicular to the edges of the crystal cross-section and to the C-axis direction of propagation to eliminate shear strains.

Daly, Thomas P. (Pleasanton, CA)

1991-01-01T23:59:59.000Z

17

High Frequency Power Modulation - TRIMET Smelters Provide ...  

Science Conference Proceedings (OSTI)

Presentation Title, High Frequency Power Modulation - TRIMET Smelters Provide Primary Control Power for Stabilizing the Frequency in the Electricity Grid.

18

Mandatory Green Power Option for Large Municipal Utilities | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green Power Option for Large Municipal Utilities Green Power Option for Large Municipal Utilities Mandatory Green Power Option for Large Municipal Utilities < Back Eligibility Municipal Utility Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Wind Program Info State Colorado Program Type Mandatory Utility Green Power Option Provider Colorado Public Utilities Commission Municipal electric utilities serving more than 40,000 customers in Colorado must offer an optional green-power program that allows retail customers the choice of supporting emerging renewable technologies. This policy complements Colorado's renewable portfolio standard (RPS), which requires municipal utilities serving more than 40,000 customers to use renewable energy and energy recycling to account for 10% of retail sales by 2020.

19

High-Average Power Facilities  

SciTech Connect

There has been significant progress in the development of high-power facilities in recent years yet major challenges remain. The task of WG4 was to identify which facilities were capable of addressing the outstanding R&D issues presently preventing high-power operation. To this end, information from each of the facilities represented at the workshop was tabulated and the results are presented herein. A brief description of the major challenges is given, but the detailed elaboration can be found in the other three working group summaries.

Dowell, David H.; /SLAC; Power, John G.; /Argonne

2012-09-05T23:59:59.000Z

20

Online Monitoring Technical Basis and Analysis Framework for Large Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for Large for Large Power Transformers; Interim Report for FY 2012 Online Monitoring Technical Basis and Analysis Framework for Large Power Transformers; Interim Report for FY 2012 The Light Water Reactor Sustainability Program is a research, development, and deployment program sponsored by the U.S. Department of Energy Office of Nuclear Energy. The program is operated in collaboration with the Electric Power Research Institute's (EPRI's) research and development efforts in the Long-Term Operations (LTO) Program. The LTO Program is managed as a separate technical program operating in the Plant Technology Department of the EPRI Nuclear Power Sector with the guidance of an industry advisory Integration Committee. Because both the Department of Energy Office of Nuclear Energy and EPRI conduct research and development in technologies

Note: This page contains sample records for the topic "large power high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

High power fast ramping power supplies  

Science Conference Proceedings (OSTI)

Hundred megawatt level fast ramping power converters to drive proton and heavy ion machines are under research and development at accelerator facilities in the world. This is a leading edge technology. There are several topologies to achieve this power level. Their advantages and related issues will be discussed.

Marneris,I.; Bajon, E.; Bonati, R.; Sandberg, J.; Roser, T.; Tsoupas, N.

2009-05-04T23:59:59.000Z

22

Model Abstraction Techniques for Large-Scale Power Systems  

E-Print Network (OSTI)

Report on System Simulation using High Performance Computing Prepared by New Mexico Tech New Mexico: Application of High Performance Computing to Electric Power System Modeling, Simulation and Analysis Task Two

23

Ferroelectric opening switches for large-scale pulsed power drivers.  

DOE Green Energy (OSTI)

Fast electrical energy storage or Voltage-Driven Technology (VDT) has dominated fast, high-voltage pulsed power systems for the past six decades. Fast magnetic energy storage or Current-Driven Technology (CDT) is characterized by 10,000 X higher energy density than VDT and has a great number of other substantial advantages, but it has all but been neglected for all of these decades. The uniform explanation for neglect of CDT technology is invariably that the industry has never been able to make an effective opening switch, which is essential for the use of CDT. Most approaches to opening switches have involved plasma of one sort or another. On a large scale, gaseous plasmas have been used as a conductor to bridge the switch electrodes that provides an opening function when the current wave front propagates through to the output end of the plasma and fully magnetizes the plasma - this is called a Plasma Opening Switch (POS). Opening can be triggered in a POS using a magnetic field to push the plasma out of the A-K gap - this is called a Magnetically Controlled Plasma Opening Switch (MCPOS). On a small scale, depletion of electron plasmas in semiconductor devices is used to affect opening switch behavior, but these devices are relatively low voltage and low current compared to the hundreds of kilo-volts and tens of kilo-amperes of interest to pulsed power. This work is an investigation into an entirely new approach to opening switch technology that utilizes new materials in new ways. The new materials are Ferroelectrics and using them as an opening switch is a stark contrast to their traditional applications in optics and transducer applications. Emphasis is on use of high performance ferroelectrics with the objective of developing an opening switch that would be suitable for large scale pulsed power applications. Over the course of exploring this new ground, we have discovered new behaviors and properties of these materials that were here to fore unknown. Some of these unexpected discoveries have lead to new research directions to address challenges.

Brennecka, Geoffrey L.; Rudys, Joseph Matthew; Reed, Kim Warren; Pena, Gary Edward; Tuttle, Bruce Andrew; Glover, Steven Frank

2009-11-01T23:59:59.000Z

24

Large Power Transformers and the U.S. Electric Grid  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Infrastructure Security and Energy Restoration Infrastructure Security and Energy Restoration Office of Electricity Delivery and Energy Reliability U.S. Department of Energy LARGE POWER TRANSFORMERS AND THE U.S. ELECTRIC GRID Large Power Transformers and the U.S. Electric Grid i This page intentionally left blank. Large Power Transformers and the U.S. Electric Grid DOE / OE / ISER June 2012 ii FOR FURTHER INFORMATION This report was prepared by the Office of Electricity Delivery and Energy Reliability under the direction of Patricia Hoffman, Assistant Secretary, and William Bryan, Deputy Assistant Secretary. Specific questions about information in this report may be directed to Dr. Kenneth Friedman, Senior Policy Advisor (kenneth.friedman@hq.doe.gov). Tiffany Y. Choi of ICF International contributed to this report.

25

Limits to the power density of very large wind farms  

E-Print Network (OSTI)

A simple analysis is presented concerning an upper limit of the power density (power per unit land area) of a very large wind farm located at the bottom of a fully developed boundary layer. The analysis suggests that the limit of the power density is about 0.38 times $\\tau_{w0}U_{F0}$, where $\\tau_{w0}$ is the natural shear stress on the ground (that is observed before constructing the wind farm) and $U_{F0}$ is the natural or undisturbed wind speed averaged across the height of the farm to be constructed. Importantly, this implies that the maximum extractable power from such a very large wind farm will not be proportional to the cubic of the wind speed at the farm height, or even the farm height itself, but be proportional to $U_{F0}$.

Nishino, Takafumi

2013-01-01T23:59:59.000Z

26

High power, high beam quality regenerative amplifier  

DOE Patents (OSTI)

A regenerative laser amplifier system generates high peak power and high energy per pulse output beams enabling generation of X-rays used in X-ray lithography for manufacturing integrated circuits. The laser amplifier includes a ring shaped optical path with a limited number of components including a polarizer, a passive 90 degree phase rotator, a plurality of mirrors, a relay telescope, and a gain medium, the components being placed close to the image plane of the relay telescope to reduce diffraction or phase perturbations in order to limit high peak intensity spiking. In the ring, the beam makes two passes through the gain medium for each transit of the optical path to increase the amplifier gain to loss ratio. A beam input into the ring makes two passes around the ring, is diverted into an SBS phase conjugator and proceeds out of the SBS phase conjugator back through the ring in an equal but opposite direction for two passes, further reducing phase perturbations. A master oscillator inputs the beam through an isolation cell (Faraday or Pockels) which transmits the beam into the ring without polarization rotation. The isolation cell rotates polarization only in beams proceeding out of the ring to direct the beams out of the amplifier. The diffraction limited quality of the input beam is preserved in the amplifier so that a high power output beam having nearly the same diffraction limited quality is produced.

Hackel, Lloyd A. (Livermore, CA); Dane, Clifford B. (Livermore, CA)

1993-01-01T23:59:59.000Z

27

High power, high beam quality regenerative amplifier  

DOE Patents (OSTI)

A regenerative laser amplifier system generates high peak power and high energy per pulse output beams enabling generation of X-rays used in X-ray lithography for manufacturing integrated circuits. The laser amplifier includes a ring shaped optical path with a limited number of components including a polarizer, a passive 90 degree phase rotator, a plurality of mirrors, a relay telescope, and a gain medium, the components being placed close to the image plane of the relay telescope to reduce diffraction or phase perturbations in order to limit high peak intensity spiking. In the ring, the beam makes two passes through the gain medium for each transit of the optical path to increase the amplifier gain to loss ratio. A beam input into the ring makes two passes around the ring, is diverted into an SBS phase conjugator and proceeds out of the SBS phase conjugator back through the ring in an equal but opposite direction for two passes, further reducing phase perturbations. A master oscillator inputs the beam through an isolation cell (Faraday or Pockels) which transmits the beam into the ring without polarization rotation. The isolation cell rotates polarization only in beams proceeding out of the ring to direct the beams out of the amplifier. The diffraction limited quality of the input beam is preserved in the amplifier so that a high power output beam having nearly the same diffraction limited quality is produced.

Hackel, L.A.; Dane, C.B.

1993-08-24T23:59:59.000Z

28

High-Power Rf Load  

DOE Patents (OSTI)

A compact high-power RF load comprises a series of very low Q resonators, or chokes [16], in a circular waveguide [10]. The sequence of chokes absorb the RF power gradually in a short distance while keeping the bandwidth relatively wide. A polarizer [12] at the input end of the load is provided to convert incoming TE.sub.10 mode signals to circularly polarized TE.sub.11 mode signals. Because the load operates in the circularly polarized mode, the energy is uniformly and efficiently absorbed and the load is more compact than a rectangular load. Using these techniques, a load having a bandwidth of 500 MHz can be produced with an average power dissipation level of 1.5 kW at X-band, and a peak power dissipation of 100 MW. The load can be made from common lossy materials, such as stainless steel, and is less than 15 cm in length. These techniques can also produce loads for use as an alternative to ordinary waveguide loads in small and medium RF accelerators, in radar systems, and in other microwave applications. The design is easily scalable to other RF frequencies and adaptable to the use of other lossy materials.

Tantawi, Sami G. (San Mateo, CA); Vlieks, Arnold E. (Livermore, CA)

1998-09-01T23:59:59.000Z

29

High power, high frequency, vacuum flange  

DOE Patents (OSTI)

This invention is comprised of an improved waveguide flange is disclosed for high power operation that helps prevent arcs from being initiated at the junctions between waveguide sections. The flanges at the end of the waveguide sections have counterbores surrounding the waveguide tubes. When the sections are bolted together the counterbores form a groove that holds a fully annealed copper gasket. Each counterbore has a beveled step that is specially configured to insure the gasket forms a metal-to-metal vacuum seal without gaps or sharp edges. The resultant inner surface of the waveguide is smooth across the junctions between waveguide sections, and arcing is prevented.

Felker, B.; McDaniel, M.

1991-12-31T23:59:59.000Z

30

High voltage DC power supply  

DOE Patents (OSTI)

A high voltage DC power supply having a first series resistor at the output for limiting current in the event of a short-circuited output, a second series resistor for sensing the magnitude of output current, and a voltage divider circuit for providing a source of feedback voltage for use in voltage regulation is disclosed. The voltage divider circuit is coupled to the second series resistor so as to compensate the feedback voltage for a voltage drop across the first series resistor. The power supply also includes a pulse-width modulated control circuit, having dual clock signals, which is responsive to both the feedback voltage and a command voltage, and also includes voltage and current measuring circuits responsive to the feedback voltage and the voltage developed across the second series resistor respectively. 7 figs.

Droege, T.F.

1989-12-19T23:59:59.000Z

31

High Power UV LED Industrial Curing Systems  

Science Conference Proceedings (OSTI)

UV curing is a green technology that is largely underutilized because UV radiation sources like Hg Lamps are unreliable and difficult to use. High Power UV LEDs are now efficient enough to replace Hg Lamps, and offer significantly improved performance relative to Hg Lamps. In this study, a modular, scalable high power UV LED curing system was designed and tested, performing well in industrial coating evaluations. In order to achieve mechanical form factors similar to commercial Hg Lamp systems, a new patent pending design was employed enabling high irradiance at long working distances. While high power UV LEDs are currently only available at longer UVA wavelengths, rapid progress on UVC LEDs and the development of new formulations designed specifically for use with UV LED sources will converge to drive more rapid adoption of UV curing technology. An assessment of the environmental impact of replacing Hg Lamp systems with UV LED systems was performed. Since UV curing is used in only a small portion of the industrial printing, painting and coating markets, the ease of use of UV LED systems should increase the use of UV curing technology. Even a small penetration of the significant number of industrial applications still using oven curing and drying will lead to significant reductions in energy consumption and reductions in the emission of green house gases and solvent emissions.

Karlicek, Robert, F., Jr; Sargent, Robert

2012-05-14T23:59:59.000Z

32

PEP-II Large Power Supplies Rebuild Program at SLAC  

SciTech Connect

Seven large power supplies (LGPS) with output ratings from 72kW to 270kW power PEP-II quad magnets in the electron-positron collider region. These supplies have posed serious maintenance and reliability problems since they were installed in 1997, resulting in loss of accelerator availability. A redesign/rebuild program was undertaken by the SLAC Power Conversion Department. During the 2004 summer shutdown all the control circuits in these supplies were redesigned and replaced. A new PWM control board, programmable logic controller, and touch panel have been installed to improve LGPS reliability, and to make troubleshooting easier. In this paper we present the details of this rebuilding program and results.

Bellomo, P.; Lipari, J.J.; de Lira, A.C.; Rafael, F.S.; /SLAC

2005-05-17T23:59:59.000Z

33

Idaho Power - Large Commercial Custom Efficiency Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large Commercial Custom Efficiency Program Large Commercial Custom Efficiency Program Idaho Power - Large Commercial Custom Efficiency Program < Back Eligibility Agricultural Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Commercial and Industrial: 70% of project cost Custom Incentive for Existing Irrigation System Replacement: up to 75% of the total project cost Custom Incentive for a New Irrigation System: up to 10% of the total project cost Program Info Funding Source Conservation Program Funding Charge State Idaho Program Type Utility Rebate Program Rebate Amount Commercial and Industrial: $0.12/kWh saved Agricultural Irrigation Efficiency: $0.25/annual kWh saved or $450/kW

34

Use of superconductive technology for energy storage and power transmission for large power systems: power parks  

DOE Green Energy (OSTI)

A general review and technology assessment of superconducting magnets for energy storage and superconducting cables for power transmission are presented. It is concluded that the technology is now available for applying superconductivity in the power industry. (TFD)

Keller, W.E.

1977-01-01T23:59:59.000Z

35

Low power, scalable multichannel high voltage controller  

DOE Patents (OSTI)

A low voltage control circuit is provided for individually controlling high voltage power provided over bus lines to a multitude of interconnected loads. An example of a load is a drive for capillary channels in a microfluidic system. Control is distributed from a central high voltage circuit, rather than using a number of large expensive central high voltage circuits to enable reducing circuit size and cost. Voltage is distributed to each individual load and controlled using a number of high voltage controller channel switches connected to high voltage bus lines. The channel switches each include complementary pull up and pull down photo isolator relays with photo isolator switching controlled from the central high voltage circuit to provide a desired bus line voltage. Switching of the photo isolator relays is further controlled in each channel switch using feedback from a resistor divider circuit to maintain the bus voltage swing within desired limits. Current sensing is provided using a switched resistive load in each channel switch, with switching of the resistive loads controlled from the central high voltage circuit.

Stamps, James Frederick (Livermore, CA); Crocker, Robert Ward (Fremont, CA); Yee, Daniel Dadwa (Dublin, CA); Dils, David Wright (Fort Worth, TX)

2006-03-14T23:59:59.000Z

36

Low power, scalable multichannel high voltage controller  

DOE Patents (OSTI)

A low voltage control circuit is provided for individually controlling high voltage power provided over bus lines to a multitude of interconnected loads. An example of a load is a drive for capillary channels in a microfluidic system. Control is distributed from a central high voltage circuit, rather than using a number of large expensive central high voltage circuits to enable reducing circuit size and cost. Voltage is distributed to each individual load and controlled using a number of high voltage controller channel switches connected to high voltage bus lines. The channel switches each include complementary pull up and pull down photo isolator relays with photo isolator switching controlled from the central high voltage circuit to provide a desired bus line voltage. Switching of the photo isolator relays is further controlled in each channel switch using feedback from a resistor divider circuit to maintain the bus voltage swing within desired limits. Current sensing is provided using a switched resistive load in each channel switch, with switching of the resistive loads controlled from the central high voltage circuit.

Stamps, James Frederick (Livermore, CA); Crocker, Robert Ward (Fremont, CA); Yee, Daniel Dadwa (Dublin, CA); Dils, David Wright (Fort Worth, TX)

2008-03-25T23:59:59.000Z

37

Plant Support Engineering: Guidance for Planned Replacement of Large Power Transformers at Nuclear Power Plants  

Science Conference Proceedings (OSTI)

Utilities continue to pursue license renewal applications and power uprates, and these initiatives are being undertaken on an aging fleet of nuclear plants. Many plants are facing the necessity of replacing large power transformers to support these initiatives. However, industry expertise to support such activities has diminished since the days of plant construction8212there are fewer qualified vendors and equipment manufacturers, materials and standards might have changed, and licensees are typically no...

2007-11-02T23:59:59.000Z

38

Aging assessment of large electric motors in nuclear power plants  

Science Conference Proceedings (OSTI)

Large electric motors serve as the prime movers to drive high capacity pumps, fans, compressors, and generators in a variety of nuclear plant systems. This study examined the stressors that cause degradation and aging in large electric motors operating in various plant locations and environments. The operating history of these machines in nuclear plant service was studied by review and analysis of failure reports in the NPRDS and LER databases. This was supplemented by a review of motor designs, and their nuclear and balance of plant applications, in order to characterize the failure mechanisms that cause degradation, aging, and failure in large electric motors. A generic failure modes and effects analysis for large squirrel cage induction motors was performed to identify the degradation and aging mechanisms affecting various components of these large motors, the failure modes that result, and their effects upon the function of the motor. The effects of large motor failures upon the systems in which they are operating, and on the plant as a whole, were analyzed from failure reports in the databases. The effectiveness of the industry`s large motor maintenance programs was assessed based upon the failure reports in the databases and reviews of plant maintenance procedures and programs.

Villaran, M.; Subudhi, M. [Brookhaven National Lab., Upton, NY (United States)

1996-03-01T23:59:59.000Z

39

High power gas transport laser  

SciTech Connect

Continuous wave output power from a gas transport laser is substantially increased by disposing a plurality of parallel cylindrically tubular cathodes in the main stream transversely of the direction of gas flow and spaced above a coextensive segmented anode in the opposite wall of the channel. Ballast resistors are connected between the cathodes, respectively, and the power supply to optimize the uniform arcless distribution of current passing between each cathode and the anode. Continuous output power greater than 3 kW is achieved with this electrode configuration.

Fahlen, T.S.; Kirk, R.F.

1978-02-28T23:59:59.000Z

40

Nanocomposite Alloy Design for High Frequency Power Conversion ...  

Science Conference Proceedings (OSTI)

Presentation Title, Nanocomposite Alloy Design for High Frequency Power ... of power electronic components and systems for power conditioning and grid ...

Note: This page contains sample records for the topic "large power high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

High Frequency High Power RF Generation using a Relativistic...  

NLE Websites -- All DOE Office Websites (Extended Search)

FREQUENCY HIGH POWER RF GENERATION USING A RELATIVISTIC ELECTRON BEAM C. Jing , S. Antipov, P. Schoessow, and A. Kanareykin, Euclid Techlabs LLC, Solon, OH-44139 J.G. Power, M....

42

A LARGE-SCALE SHOCK SURROUNDING A POWERFUL RADIO GALAXY?  

Science Conference Proceedings (OSTI)

We report Chandra evidence for a 200 kpc scale shock in the cluster surrounding the powerful radio galaxy 3C 444. Our 20 ks observation allows us to identify a clear surface brightness drop around the outer edge of the radio galaxy, which is likely to correspond to a spheroidal shock propagating into the intracluster medium. We measure a temperature jump across this drop of a factor {approx}1.7, which corresponds to a Mach number of {approx}1.7. This is likely to be an underestimate due to the need to average over fairly large regions. We also detect clear cavities corresponding to the positions of the radio lobes, which is only the second such detection associated with an FRII radio galaxy. We estimate that the total energy transferred to the environment is >8.2 x 10{sup 60} erg, corresponding to a jet power >2.9 x 10{sup 45} erg s{sup -1}. Our results suggest that energy input from FRII radio galaxies is likely to exceed substantially estimates based on cluster cavity scaling relations.

Croston, J. H. [School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Hardcastle, M. J.; Mingo, B. [School of Physics, Astronomy and Mathematics, University of Hertfordshire, Hatfield, Hertfordshire, AL10 9AB (United Kingdom); Evans, D. A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Dicken, D. [Department of Physics and Astronomy, Rochester Institute of Technology, 84 Lomb Memorial Drive, Rochester, NY 14623 (United States); Morganti, R. [Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA, Dwingeloo (Netherlands); Tadhunter, C. N., E-mail: J.Croston@soton.ac.uk [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom)

2011-06-20T23:59:59.000Z

43

Large heavy-duty gas turbines for base-load power generation and heat cogeneration  

SciTech Connect

The predominant role of large gas turbines has shifted from peaking-load duty to midrange and base-load electric power generation, especially within combined-cycle plants. Such applications require heavy-duty industrial gas turbines to ensure the same high reliability and availability for continuous service as the associated steam turbines. It is also important that the gas turbines be designed for low maintenance to minimize the necessary outage times and costs for component repair and replacement. The basic design principles and applications of Model V94 gas turbines are discussed with special reference to highly reliable and economic bulk power generation.

Joyce, J.S.

1985-01-01T23:59:59.000Z

44

Large Lenses of Highly Saline Mediterranean Water  

Science Conference Proceedings (OSTI)

Isolated compact anticyclonic eddies or salt lenses were found in the Canary Basin. Hydrographic surveys of three such lenses show large anomalies of salinity and temperature (0.8, 2.5°C). They are centered at 1100 m, have a vertical extent of ...

Laurence Armi; Walter Zenk

1984-10-01T23:59:59.000Z

45

Loss Mechanisms and High Power Piezoelectric Components - TMS  

Science Conference Proceedings (OSTI)

Oct 15, 2006 ... Loss Mechanisms and High Power Piezoelectric Components ... we demonstrated high power multilayer piezoelectric transformers with Cu or ...

46

A Prototype of Wireless Power and Data Acquisition System for Large Detectors  

E-Print Network (OSTI)

A new prototype wireless data acquisition system has been developed with the intended application to read-out instrumentation systems having a large number of channels. In addition such system could be deployed in smaller detectors requiring increased mobility. The data acquisition and control system is based on 802.11n compliant hardware and protocols. In this paper we describe our case study with a single readout channel performed for a potential large detector containing photomultiplier tubes. The front-end circuitry, including a high-voltage power supply is powered wirelessly thus creating an all-wireless detector readout. The benchmarked performance of the prototype system and how a large scale implementation of the system might be realized are discussed.

P. De Lurgio; Z. Djurcic; G. Drake; R. Hashemian; A. Kreps; M. Oberling; T. Pearson; H. Sahoo

2013-10-03T23:59:59.000Z

47

Functionalized High Voltage Spinel Composite for High Power ...  

Science Conference Proceedings (OSTI)

Recently, spinel LiNi0.5Mn1.5O4 with high working voltage and long cycle life makes it become the one of most promising cathode for high power delivery.

48

High voltage photovoltaic power converter  

DOE Patents (OSTI)

An array of independently connected photovoltaic cells on a semi-insulating substrate contains reflective coatings between the cells to enhance efficiency. A uniform, flat top laser beam profile is illuminated upon the array to produce electrical current having high voltage. An essentially wireless system includes a laser energy source being fed through optic fiber and cast upon the photovoltaic cell array to prevent stray electrical signals prior to use of the current from the array. Direct bandgap, single crystal semiconductor materials, such as GaAs, are commonly used in the array. Useful applications of the system include locations where high voltages are provided to confined spaces such as in explosive detonation, accelerators, photo cathodes and medical appliances.

Haigh, Ronald E. (Arvada, CO); Wojtczuk, Steve (Cambridge, MA); Jacobson, Gerard F. (Livermore, CA); Hagans, Karla G. (Livermore, CA)

2001-01-01T23:59:59.000Z

49

Designing Electricity Markets with Large Shares of Wind Power  

E-Print Network (OSTI)

-time (RT) prices in Iowa (MEC interface), May 11­17, 2009. MISO NYISO PJM ERCOT CAISO Wind Power Capacity) and PJM have already introduced rules for mandatory real-time bidding and control of wind power

Kemner, Ken

50

Robust, Multifunctional Joint for Large Scale Power Production ...  

Solar Photovoltaic; ... optimizing each function can be chosen without sacrificing space. ... supports and edge current collection to ensure efficient power ...

51

A high average power pockels cell  

DOE Patents (OSTI)

A high average power pockels cell is disclosed which reduced the effect of thermally induced strains in high average power laser technology. The pockels cell includes an elongated, substantially rectangular crystalline structure formed from a KDP-type material to eliminate shear strains. The X- and Y-axes are oriented substantially perpendicular to the edges of the crystal cross-section and to the C-axis direction of propagation to eliminate shear strains.

Daly, T.P.

1986-02-10T23:59:59.000Z

52

Large Thermoelectric Power Factor in TiS2 Crystal with Nearly Stoichiometric Composition  

E-Print Network (OSTI)

A TiS2 crystal with a layered structure was found to have a large thermoelectric power factor. The in-plane power factor S2 /? at 300 K is 37.1 µW/K2cm with resistivity (?) of 1.7 m?cm and thermopower (S) of-251 µV/K, and this value is comparable to that of the best thermoelectric material, Bi2Te3 alloy. The electrical resistivity shows both metallic and highly anisotropic behaviors, suggesting that the electronic structure of this TiS2 crystal has a quasi-twodimensional nature. The large thermoelectric response can be ascribed to the large density of state just above the Fermi energy and inter-valley scattering. In spite of the large power factor, the figure of merit, ZT of TiS2 is 0.16 at 300 K, because of relatively large thermal conductivity, 68 mW/Kcm. However, most of this value comes from reducible lattice contribution. Thus, ZT can be improved by reducing lattice thermal conductivity, e.g., by introducing a rattling unit into the inter-layer sites.

H. Imai; Y. Shimakawa; Y. Kubo

2008-01-01T23:59:59.000Z

53

High-availability power for MX  

Science Conference Proceedings (OSTI)

With modern computer-based analyses it was possible to optimize an extensive power transmission and distribution network for supplying power to MX missile shelter sites. This network would serve some 4600 of these sites, located in suitable contiguous areas, with the shelter sites spaced one mile apart. With a dedicated transmission network and underground distribution cables we were able to predict an average commercial power availability of 0.99993 at the shelters. However, standby diesel generator sets are required at distribution centers because power is required after an electromagnetic pulse from a high-altitude weapon burst. With this strengthened distribution network, the authors were able to predict a suitable power availability of 0.999 at each missile site with incoming power supplied to each of our distribution centers at a 0.99 availability or better by local public utilities.

Oman, H.; Bannon, C.F.

1982-08-01T23:59:59.000Z

54

High power regenerative laser amplifier  

DOE Patents (OSTI)

A regenerative amplifier design capable of operating at high energy per pulse, for instance, from 20-100 Joules, at moderate repetition rates, for instance from 5-20 Hertz is provided. The laser amplifier comprises a gain medium and source of pump energy coupled with the gain medium; a Pockels cell, which rotates an incident beam in response to application of a control signal; an optical relay system defining a first relay plane near the gain medium and a second relay plane near the rotator; and a plurality of reflectors configured to define an optical path through the gain medium, optical relay and Pockels cell, such that each transit of the optical path includes at least one pass through the gain medium and only one pass through the Pockels cell. An input coupler, and an output coupler are provided, implemented by a single polarizer. A control circuit coupled to the Pockels cell generates the control signal in timed relationship with the input pulse so that the input pulse is captured by the input coupler and proceeds through at least one transit of the optical path, and then the control signal is applied to cause rotation of the pulse to a polarization reflected by the polarizer, after which the captured pulse passes through the gain medium at least once more and is reflected out of the optical path by the polarizer before passing through the rotator again to provide an amplified pulse.

Miller, John L. (Livermore, CA); Hackel, Lloyd A. (Livermore, CA); Dane, Clifford B. (Dublin, CA); Zapata, Luis E. (Livermore, CA)

1994-01-01T23:59:59.000Z

55

High power regenerative laser amplifier  

DOE Patents (OSTI)

A regenerative amplifier design capable of operating at high energy per pulse, for instance, from 20-100 Joules, at moderate repetition rates, for instance from 5-20 Hertz is provided. The laser amplifier comprises a gain medium and source of pump energy coupled with the gain medium; a Pockels cell, which rotates an incident beam in response to application of a control signal; an optical relay system defining a first relay plane near the gain medium and a second relay plane near the rotator; and a plurality of reflectors configured to define an optical path through the gain medium, optical relay and Pockels cell, such that each transit of the optical path includes at least one pass through the gain medium and only one pass through the Pockels cell. An input coupler, and an output coupler are provided, implemented by a single polarizer. A control circuit coupled to the Pockels cell generates the control signal in timed relationship with the input pulse so that the input pulse is captured by the input coupler and proceeds through at least one transit of the optical path, and then the control signal is applied to cause rotation of the pulse to a polarization reflected by the polarizer, after which the captured pulse passes through the gain medium at least once more and is reflected out of the optical path by the polarizer before passing through the rotator again to provide an amplified pulse. 7 figures.

Miller, J.L.; Hackel, L.A.; Dane, C.B.; Zapata, L.E.

1994-02-08T23:59:59.000Z

56

Advanced Materials for High Power, High Temperature, and High ...  

Science Conference Proceedings (OSTI)

Mar 5, 2013 ... Advanced magnetic materials are required for enhanced performance of electrical and thermal power generation, distribution, and conversion ...

57

High-power accelerator technology and requirements  

SciTech Connect

Designs of high-power proton linear accelerators (linacs) for accelerator transmutation of waste (ATW) are being actively studied at Los Alamos National Laboratory and at several other laboratories worldwide. Beam parameters cover the 100- to 300-mA range in average current and 800 to 1600 MeV in energy. While ideas for such accelerators have been discussed for decades, the technology base has recently advanced to the point that the feasibility of machines in the ATW power class is now generally conceded. Factors contributing to this advance have been the following: experience gained with medium-power research accelerators, especially the LAMPF linac at Los Alamos; major improvements in the theory and technology of high-intensity high-brightness accelerators fostered by the SDIO Neutral Particle Beam program; and development of high-power continuous-wave (cw) radio-frequency (rf) generators for high-energy colliding-beam rings. The reference ATW accelerator concept described in this paper is based on room-temperature copper accelerating cavities. Advances in superconducting niobium cavity technology have opened the possibility of application to ATW-type linacs. Useful efficiency gains could be realized, especially for lower current systems, and there may be technical advantages as well. Technology issues that need to be addressed for superconducting rf linac designs include the development of high-power rf couplers, appropriate cavity designs, and superconducting focusing elements, as well as concerns about beam damage of niobium structures and dynamic rf control with high beam currents.

Lawrence, G.P. (Los Alamos National Lab., NM (United States))

1993-01-01T23:59:59.000Z

58

The NASA CSTI High Capacity Power Project  

SciTech Connect

The SP-100 Space Nuclear Power Program was established in 1983 by DOD, DOE, and NASA as a joint program to develop technology for military and civil applications. Starting in 1986, NASA has funded a technology program to maintain the momentum of promising aerospace technology advancement started during Phase I of SP-100 and to strengthen, in key areas, the changes for successful development and growth capability of space nuclear reactor power systems for a wide range of future space applications. The elements of the CSTI High Capacity Power Project include Systems Analysis, Stirling Power Conversion, Thermoelectric Power Conversion, Thermal Management, Power Management, Systems Diagnostics, Environmental Interactions, and Material/Structural Development. Technology advancement in all elements is required to provide the growth capability, high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall project with develop and demonstrate the technology base required to provide a wide range of modular power systems compatible with the SP-100 reactor which facilitates operation during lunar and planetary day/night cycles as well as allowing spacecraft operation at any attitude or distance from the sun. Significant accomplishments in all of the project elements will be presented, along with revised goals and project timelines recently developed.

Winter, J.; Dudenhoefer, J.; Juhasz, A.; Schwarze, G.; Patterson, R.; Ferguson, D.; Titran, R. [National Aeronautics and Space Administration, Cleveland, OH (United States). Lewis Research Center; Schmitz, P. [Sverdrup Technology, Inc., Brook Park, OH (United States). Lewis Research Center Group; Vandersande, J. [Jet Propulsion Lab., Pasadena, CA (United States)

1994-09-01T23:59:59.000Z

59

Magnetic Materials for High Frequency Power Electronics  

Science Conference Proceedings (OSTI)

Mar 7, 2013 ... Advanced Materials for Power Electronics, Power Conditioning, and Power ... in power conditioning, conversion, and generation applications.

60

Environmental Impacts From the Installation and Operation of Large-scale Solar Power Plants  

Science Conference Proceedings (OSTI)

Large-scale solar power plants are being developed at a rapid rate, and are setting up to use thousands or millions of acres of land globally. The environmental issues related to the installation and operation phases of such facilities have not, so far, been addressed comprehensively in the literature. Here we identify and appraise 32 impacts from these phases, under the themes of land use intensity, human health and well-being, plant and animal life, geohydrological resources, and climate change. Our appraisals assume that electricity generated by new solar power facilities will displace electricity from traditional U.S. generation technologies. Altogether we find 22 of the considered 32 impacts to be beneficial. Of the remaining 10 impacts, 4 are neutral, and 6 require further research before they can be appraised. None of the impacts are negative relative to traditional power generation. We rank the impacts in terms of priority, and find all the high-priority impacts to be beneficial. In quantitative terms, large-scale solar power plants occupy the same or less land per kW h than coal power plant life cycles. Removal of forests to make space for solar power causes CO{sub 2} emissions as high as 36 g CO{sub 2} kW h{sup -1}, which is a significant contribution to the life cycle CO{sub 2} emissions of solar power, but is still low compared to CO{sub 2} emissions from coal-based electricity that are about 1100 g CO{sub 2} kW h{sup -1}.

Fthenakis, V.; Turney, Damon

2011-04-23T23:59:59.000Z

Note: This page contains sample records for the topic "large power high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

HIGH AVERAGE POWER OPTICAL FEL AMPLIFIERS.  

SciTech Connect

Historically, the first demonstration of the optical FEL was in an amplifier configuration at Stanford University [l]. There were other notable instances of amplifying a seed laser, such as the LLNL PALADIN amplifier [2] and the BNL ATF High-Gain Harmonic Generation FEL [3]. However, for the most part FELs are operated as oscillators or self amplified spontaneous emission devices. Yet, in wavelength regimes where a conventional laser seed can be used, the FEL can be used as an amplifier. One promising application is for very high average power generation, for instance FEL's with average power of 100 kW or more. The high electron beam power, high brightness and high efficiency that can be achieved with photoinjectors and superconducting Energy Recovery Linacs (ERL) combine well with the high-gain FEL amplifier to produce unprecedented average power FELs. This combination has a number of advantages. In particular, we show that for a given FEL power, an FEL amplifier can introduce lower energy spread in the beam as compared to a traditional oscillator. This properly gives the ERL based FEL amplifier a great wall-plug to optical power efficiency advantage. The optics for an amplifier is simple and compact. In addition to the general features of the high average power FEL amplifier, we will look at a 100 kW class FEL amplifier is being designed to operate on the 0.5 ampere Energy Recovery Linac which is under construction at Brookhaven National Laboratory's Collider-Accelerator Department.

BEN-ZVI, ILAN, DAYRAN, D.; LITVINENKO, V.

2005-08-21T23:59:59.000Z

62

Ultra high vacuum broad band high power microwave window  

DOE Patents (OSTI)

An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost.

Nguyen-Tuong, Viet (Seaford, VA); Dylla, III, Henry Frederick (Yorktown, VA)

1997-01-01T23:59:59.000Z

63

Ultra high vacuum broad band high power microwave window  

DOE Patents (OSTI)

An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost. 5 figs.

Nguyen-Tuong, V.; Dylla, H.F. III

1997-11-04T23:59:59.000Z

64

High Power RF Sources for Accelerators  

SciTech Connect

This presentation describes RF sources developed and under development at Calabazas Creek Research, Inc. for driving high power accelerators and colliders. The RF sources range from L-Band to W-Band and power levels from 10s of kilowatts CW to 200 MW pulsed. The configurations include standard klystrons, multiple beam klystrons, sheet beam devices, and gyroklystrons. The basic parameters are presented with a basic description of operation and applications.

Ives, Lawrence; Read, Michael; Neilson, Jeff; Borchard, Philipp; Mizuhara, Max [Calabazas Creek Research, Inc., 690 Port Drive, San Mateo, CA 94404 (United States); Lawson, Wesley [Insitute for Research in Applied Physics, University of Maryland, College Park, MD 20742 (United States)

2006-11-27T23:59:59.000Z

65

Theoretical and experimental power from large horizontal-axis wind turbines  

SciTech Connect

A method for calculating the output power from large horizontal-axis wind turbines is presented. Modifications to the airfoil characteristics and the momentum portion of classical blade element-momentum theory are given that improve correlation with measured data. Improvement is particularly evident at low tip speed ratios where aerodynamic stall can occur as the blade experiences high angles of attack. Output power calculated using the modified theory is compared with measured data for several large wind turbines. These wind turbines range in size from the DOE/NASA 100 kW Mod-O (38 m rotor diameter) to the 2000 kW Mod-1 (61 m rotor diameter). The calculated results are in good agreement with measured data from these machines.

Viterna, L A; Janetzke, D C

1982-09-01T23:59:59.000Z

66

CLIC RF High Power Production Testing Program  

SciTech Connect

The CLIC Power Extraction and Transfer Structure (PETS) is a passive microwave device in which bunches of the drive beam interact with the impedance of the periodically loaded waveguide and generate RF power for the main linac accelerating structure. The demands on the high power production ({approx} 150 MW) and the needs to transport the 100 A drive beam for about 1 km without losses, makes the PETS design rather unique and the operation very challenging. In the coming year, an intense PETS testing program will be implemented. The target is to demonstrate the full performance of the PETS operation. The testing program overview and test results available to date are presented.

Syratchev, I.; Riddone, G.; /CERN; Tantawi, S.G.; /SLAC

2011-11-02T23:59:59.000Z

67

ATF2 High Availability Power Supplies  

SciTech Connect

ATF2 is an accelerator test facility modeled after the final focus beamline envisioned for the ILC. By the end of 2008, KEK plans to commission the ATF2 [1]. SLAC and OCEM collaborated on the design of 38 power systems for beamline magnets. The systems range in output power from 1.5 kW to 6 kW. Since high availability is essential for the success of the ILC, Collaborators employed an N+1 modular approach, allowing for redundancy and the use of a single power module rating. This approach increases the availability of the power systems. Common power modules reduces inventory and eases maintenance. Current stability requirements are as tight as 10 ppm. A novel, SLAC designed 20-bit Ethernet Power Supply Controller provides the required precision current regulation. In this paper, Collaborators present the power system design, the expected reliability, fault immunity features, and the methods for satisfying the control and monitoring challenges. Presented are test results and the status of the power systems.

Bellomo, A; Lira, C.de; Lam, B.; MacNair, D.; White, G.; /SLAC

2008-06-27T23:59:59.000Z

68

Short-Term Power Fluctuations of Large Wind Power Plants: Preprint  

DOE Green Energy (OSTI)

With electric utilities and other power providers showing increased interest in wind power and with growing penetration of wind capacity into the market, questions about how wind power fluctuations affect power system operations and about wind power's ancillary services requirements are receiving lots of attention. The project's purpose is to acquire actual, long-term wind power output data for analyzing wind power fluctuations, frequency distribution of the changes, the effects of spatial diversity, and wind power ancillary services.

Wan, Y.; Bucaneg, D.

2002-01-01T23:59:59.000Z

69

Towards reactive scheduling for large-scale virtual power plants  

Science Conference Proceedings (OSTI)

Concerning distributed energy management, virtual power plants are a frequently discussed topic. Although there are several different approaches to the coordination of distributed energy resources in this context, the inherent dynamics of this complex ...

Martin Tröschel; Hans-Jürgen Appelrath

2009-09-01T23:59:59.000Z

70

On-Line Monitoring Diagnostic Analysis for Large Power Transformers  

Science Conference Proceedings (OSTI)

Through its Light Water Reactor Sustainability Program, Idaho National Laboratory (INL) is conducting research to develop and demonstrate the on-line monitoring capabilities of active components in existing nuclear power plants. A pilot project is currently underway to apply these capabilities to generator step-up transformers (GSUs) and emergency diesel generators (EDGs). INL and the Electric Power Research Institute (EPRI) are working together to implement the pilot project. The EPRI Fleetwide ...

2013-05-24T23:59:59.000Z

71

Technology development for high power induction accelerators  

SciTech Connect

The marriage of Induction Linac technology with Nonlinear Magnetic Modulators has produced some unique capabilities. It appears possible to produce electron beams with average currents measured in amperes, at gradients exceeding 1 MeV/meter, and with power efficiencies approaching 50%. A 2 MeV, 5 kA electron accelerator has been constructed at the Lawrence Livermore National Laboratory (LLNL) to demonstrate these concepts and to provide a test facility for high brightness sources. The pulse drive for the accelerator is based on state-of-the-art magnetic pulse compressors with very high peak power capability, repetition rates exceeding a kilohertz and excellent reliability.

Birx, D.L.; Reginato, L.L.

1985-06-11T23:59:59.000Z

72

Pulsed power drivers for ICF and high energy density physics  

SciTech Connect

Nanosecond Pulsed Power Science and Technology has its origins in the 1960s and over the past decade has matured into a flexible and robust discipline capable of addressing key physics issues of importance to ICF and high Energy Density Physics. The major leverage provided by pulsed power is its ability to generate and deliver high energy and high power at low cost and high efficiency. A low-cost, high-efficiency driver is important because of the very large capital investment required for multi-megajoule ignition-class systems. High efficiency is of additional importance for a commercially viable inertial fusion energy option. Nanosecond pulsed power has been aggressively and successfully developed at Sandia over the past twenty years. This effort has led to the development of unique multi-purpose facilities supported by highly capable diagnostic, calculational and analytic capabilities. The Sandia Particle-beam Fusion Program has evolved as part of an integrated national ICF Program. It applies the low-cost, high-efficiency leverage provided by nanosecond pulsed power systems to the longer-term goals of the national program, i.e., the Laboratory Microfusion Facility and Inertial Fusion Energy. A separate effort has led to the application of nanosecond pulsed power to the generation of intense, high-energy laboratory x-ray sources for application to x-ray laser and radiation effects science research. Saturn is the most powerful of these sources to date. It generates {approximately}500 kilojoules of x-rays from a magnetically driven implosion (Z-pinch). This paper describes results of x-ray physics experiments performed on Saturn, plans for a new Z-pinch drive capability for PBFA-II, and a design concept for the proposed {approximately}15 MJ Jupiter facility. The opportunities for ICF-relevant research using these facilities will also be discussed.

Ramirez, J.J.; Matzen, M.K.; McDaniel, D.H.

1995-12-31T23:59:59.000Z

73

High-performance verification of large concurrent systems  

E-Print Network (OSTI)

High-performance verification of large concurrent systems Elbie taKrpska Ph.D. Thesis VU University Systems Ph.D. Thesis Elzbieta Krepska VU University Amsterdam, 2012 #12;This research was funded by the VU. #12;VRIJE UNIVERSITEIT TOWARDS BIG BIOLOGY: HIGH-PERFORMANCE VERIFICATION OF LARGE CONCURRENT SYSTEMS

Bal, Henri E.

74

New Class of High Strength Nanostructured Steel for Large Scale ...  

Science Conference Proceedings (OSTI)

... from automotive and aerospace applications to power tools and household ... Consolidation of Blended Magnesium and Ceramic Powders by Microwave Heating ... High Energy Ball Milling of A356 Aluminium Casting Alloy Machining Chips.

75

The Jefferson Lab High Power Light Source  

Science Conference Proceedings (OSTI)

Jefferson Lab has designed, built and operated two high average power free-electron lasers (FEL) using superconducting RF (SRF) technology and energy recovery techniques. Between 1999-2001 Jefferson Lab operated the IR Demo FEL. This device produced over 2 kW in the mid-infrared, in addition to producing world record average powers in the visible (50 W), ultraviolet (10 W) and terahertz range (50 W) for tunable, short-pulse (power demonstration of an accelerator configuration that is being exploited for a number of new accelerator-driven light source facilities that are currently under design or construction. The driver accelerator for the IR Demo FEL uses an Energy Recovered Linac (ERL) configuration that improves the energy efficiency and lowers both the capital and operating cost of such devices by recovering most of the power in the spent electron beam after optical power is extracted from the beam. The IR Demo FEL was de-commissioned in late 2001 for an upgraded FEL for extending the IR power to over 10 kW and the ultraviolet power to over 1 kW. The FEL Upgrade achieved 10 kW of average power in the mid-IR (6 microns) in July of 2004, and its IR operation currently is being extended down to 1 micron. In addition, we have demonstrated the capability of on/off cycling and recovering over a megawatt of electron beam power without diminishing machine performance. A complementary UV FEL will come on-line within the next year. This paper presents a summary of the FEL characteristics, user community accomplishments with the IR Demo, and planned user experiments.

James R. Boyce

2006-01-01T23:59:59.000Z

76

2013 completions of large solar thermal power plants mark ...  

U.S. Energy Information Administration (EIA)

Several large, new solar thermal power plants are expected to begin commercial operation by the end of 2013, more than doubling the solar thermal ...

77

System aspects of large scale implementation of a photovoltaic power plant.  

E-Print Network (OSTI)

?? In this thesis the static and dynamic behavior of large scale grid connected PV power plants are analyzed. A model of a 15 MW… (more)

Ruiz, Álvaro

2011-01-01T23:59:59.000Z

78

Multi-band high efficiency power amplifier  

E-Print Network (OSTI)

Baseline) Output Power (Transformer) Drain Efficiency (Performance Frequency (GHz) Output Power (Transformer) DrainEfficiency (Transformer) Output Power (Baseline) Drain

Besprozvanny, Randy-Alexander Randolph

2011-01-01T23:59:59.000Z

79

Glendale Water and Power - Large Business Energy Efficiency Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

its medium and large business customers with electric bills of more than 3000 per month (electric usage of 250,000 kWh annually 36,000 per year) to encourage energy efficiency...

80

CHALLENGES FACING HIGH POWER PROTON ACCELERATORS  

Science Conference Proceedings (OSTI)

This presentation will provide an overview of the challenges of high power proton accelerators such as SNS, J-PARC, etc., and what we have learned from recent experiences. Beam loss mechanisms and methods to mitigate beam loss will also be discussed.

Plum, Michael A [ORNL

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "large power high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Variability of Load and Net Load in Case of Large Scale Distributed Wind Power  

Science Conference Proceedings (OSTI)

Large scale wind power production and its variability is one of the major inputs to wind integration studies. This paper analyses measured data from large scale wind power production. Comparisons of variability are made across several variables: time scale (10-60 minute ramp rates), number of wind farms, and simulated vs. modeled data. Ramp rates for Wind power production, Load (total system load) and Net load (load minus wind power production) demonstrate how wind power increases the net load variability. Wind power will also change the timing of daily ramps.

Holttinen, H.; Kiviluoma, J.; Estanqueiro, A.; Gomez-Lazaro, E.; Rawn, B.; Dobschinski, J.; Meibom, P.; Lannoye, E.; Aigner, T.; Wan, Y. H.; Milligan, M.

2011-01-01T23:59:59.000Z

82

Low Cost High Concentration PV Systems for Utility Power Generation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Low Cost High Concentration PV Systems for Utility Power Generation Low Cost High Concentration PV Systems for Utility Power Generation An...

83

Low Cost High Concentration PV Systems for Utility Power Generation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Low Cost High Concentration PV Systems for Utility Power Generation Amonix, Inc. Low Cost High Concentration PV Systems for Utility Power...

84

Lessons Learned: Planning and Operating Power Systems with Large  

E-Print Network (OSTI)

2007 2008 2009 Year kW 0 50 100 150 200 250 300 350 No. Installed kW No. Systems #12;2 Most to their systems powered by as-available renewable energy sources (primarily wind and solar). The Big Island also and controlled to the extent as combustion turbines, diesels or steam generators. The geothermal units on the Big

85

Transient Stability Assessment of Power System with Large Amount of Wind Power Penetration: the  

E-Print Network (OSTI)

: a danish study case," Int. Journal of Eletrical Power and Energy Systems, vol. 28, no. 1, pp 48-57, Oct on the transient fault behavior of the Nordic power system," Int. Journal of Eletrical Power and Energy Systems

Chen, Zhe

86

New Concepts For High Power ICRF Antennas  

Science Conference Proceedings (OSTI)

This paper presents new concepts for Ion Cyclotron Heating antennas based on cascaded sequences of tuned radiating structures. It is shown that, in large arrays, such as the ones proposed for fusion reactors applications, these schemes offer, in principle, a number of desirable features, such as operation at power density significantly higher than currently adopted systems, at equal maximum voltage and array geometry, simple mechanical layout, suitable for water cooling, a compact impedance tuning system, passive decoupling of the array elements, single ended or balanced feed from two power sources. The antenna layout also allows the remote, real time measurement of the complex impedance of the radiating elements and the detection, location, and measurement of the complex admittance of arcs occurring anywhere in the structure, as discussed in [1].

Bosia, G. [Department of Physics University of Turin (Italy)

2011-12-23T23:59:59.000Z

87

POWER BALANCING CONTROL WITH LARGE SCALE WIND POWER INTEGRATION IN DENMARK  

E-Print Network (OSTI)

kV transmission system with the HVDC connections to Nordel systems (Norway and Sweden) in the north power exchange. Earlier studies in [4] have shown that the power exchange through the HVDC links plants and the power exchange via the HVDC connections. The overall model includes the power gradient

Bak-Jensen, Birgitte

88

innovati nNREL Confirms Large Potential for Grid Integration of Wind, Solar Power  

E-Print Network (OSTI)

innovati nNREL Confirms Large Potential for Grid Integration of Wind, Solar Power To fully harvest the nation's bountiful wind and solar resources, it is critical to know how much electrical power from at adding enough wind and solar power capacity to the grid to produce 35% of the WestConnect's electricity

89

high impact Designing a human-powered  

E-Print Network (OSTI)

to the local mill and pay to have it ground into flour, or grind it themselves by hand with a mortar and pestleLow tech, high impact Designing a human-powered grain mill for Africa Ten-year-old Solomoni Mafuta) to a diesel-pow- ered mill to be ground. The time-consuming task has pulled him away from his studies

Endres. William J.

90

Production of high power femtosecond terahertz radiation  

SciTech Connect

The terahertz (THz) region of the electromagnetic spectrum is attracting interest for a broad range of applications ranging from diagnosing electron beams to biological imaging. Most sources of short pulse THz radiation utilize excitation of biased semiconductors or electro-optic crystals by high peak power lasers. For example, this was done by using an un-doped InAs wafer irradiated by a femtosecond free-electron laser (FEL) at the Thomas Jefferson National Accelerator Facility. Microwatt levels of THz radiation were detected when excited with FEL pulses at 1.06 mm wavelength and 10W average power. Recently substantially higher powers of femtosecond THz pulses produced by synchrotron emission were extracted from the electron beamline. Calculations and measurements confirm the production of coherent broadband THz radiation from relativistic electrons with an average power of nearly 20W, a world record in this wavelength range by a factor of 10,000. We describe the source, presenting theoretical calculations and their experimental verification. Potential applications of this exciting new source include driving new non-linear phenomena, performing pump-probe studies of dynamical properties of novel materials, and studying molecular vibrations and rotations, low frequency protein motions, phonons, superconductor band gaps, electronic scattering, collective electronic excitations (e.g., charge density waves), and spintronics.

Neil, George R.; Carr, G.L.; Gubeli III, Joseph F.; Jordan, K.; Martin, Michael C.; McKinney, Wayne R.; Shinn, Michelle; Tani, Masahiko; Williams, G.P.; Zhang, X.-C.

2003-07-11T23:59:59.000Z

91

Transient Stability Assessment of Power System with Large Amount of Wind Power Penetration: the  

E-Print Network (OSTI)

of HVDC connection to manage the imbalance at the system interconnections with the increased wind power. 2 is based on a 400 kV and 150 kV transmission system with HVDC connections to Nordel systems, Norway at the planned power exchange. Earlier studies in [4] and [5] have shown that the power exchange through the HVDC

Chen, Zhe

92

High Performance Wide Bandgap Power Electronics  

Science Conference Proceedings (OSTI)

Symposium, Advanced Materials for Power Electronics, Power Conditioning, and ... therefore, designers unknowingly navigate the design space with a lack of ...

93

Digitally Controlled High Availability Power Supply  

SciTech Connect

This paper reports the design and test results on novel topology, high-efficiency, and low operating temperature, 1,320-watt power modules for high availability power supplies. The modules permit parallel operation for N+1 redundancy with hot swap capability. An embedded DSP provides intelligent start-up and shutdown, output regulation, general control and fault detection. PWM modules in the DSP drive the FET switches at 20 to 100 kHz. The DSP also ensures current sharing between modules, synchronized switching, and soft start up for hot swapping. The module voltage and current have dedicated ADCs (>200 kS/sec) to provide pulse-by-pulse output control. A Dual CAN bus interface provides for low cost redundant control paths. Over-rated module components provide high reliability and high efficiency at full load. Low on-resistance FETs replace conventional diodes in the buck regulator. Saturable inductors limit the FET reverse diode current during switching. The modules operate in a two-quadrant mode, allowing bipolar output from complimentary module groups. Controllable, low resistance FETs at the input and output provide fault isolation and allow module hot swapping.

MacNair, David; /SLAC

2008-09-25T23:59:59.000Z

94

The JLab high power ERL light source  

DOE Green Energy (OSTI)

A new THz/IR/UV photon source at Jefferson Lab is the first of a new generation of light sources based on an Energy-Recovered, (superconducting) Linac (ERL). The machine has a 160 MeV electron beam and an average current of 10 mA in 75 MHz repetition rate hundred femtosecond bunches. These electron bunches pass through a magnetic chicane and therefore emit synchrotron radiation. For wavelengths longer than the electron bunch the electrons radiate coherently a broadband THz {approx} half cycle pulse whose average brightness is > 5 orders of magnitude higher than synchrotron IR sources. Previous measurements showed 20 W of average power extracted[1]. The new facility offers simultaneous synchrotron light from the visible through the FIR along with broadband THz production of 100 fs pulses with >200 W of average power. The FELs also provide record-breaking laser power [2]: up to 10 kW of average power in the IR from 1 to 14 microns in 400 fs pulses at up to 74.85 MHz repetition rates and soon will produce similar pulses of 300-1000 nm light at up to 3 kW of average power from the UV FEL. These ultrashort pulses are ideal for maximizing the interaction with material surfaces. The optical beams are Gaussian with nearly perfect beam quality. See www.jlab.org/FEL for details of the operating characteristics; a wide variety of pulse train configurations are feasible from 10 microseconds long at high repetition rates to continuous operation. The THz and IR system has been commissioned. The UV system is to follow in 2005. The light is transported to user laboratories for basic and applied research. Additional lasers synchronized to the FEL are also available. Past activities have included production of carbon nanotubes, studies of vibrational relaxation of interstitial hydrogen in silicon, pulsed laser deposition and ablation, nitriding of metals, and energy flow in proteins. This paper will present the status of the system and discuss some of the discoveries we have made concerning the physics performance, design optimization, and operational limitations of such a first generation high power ERL light source.

G.R. Neil; C. Behre; S.V. Benson; M. Bevins; G. Biallas; J. Boyce; J. Coleman; L.A. Dillon-Townes; D. Douglas; H.F. Dylla; R. Evans; A. Grippo; D. Gruber; J. Gubeli; D. Hardy; C. Hernandez-Garcia; K. Jordan; M.J. Kelley; L. Merminga; J. Mammosser; W. Moore; N. Nishimori; E. Pozdeyev; J. Preble; R. Rimmer; Michelle D. Shinn; T. Siggins; C. Tennant; R. Walker; G.P. Williams and S. Zhang

2005-03-19T23:59:59.000Z

95

Laser Seeding Yields High-Power Coherent Terahertz Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Coherent Terahertz Radiation Laser Seeding Yields High-Power Coherent Terahertz Radiation Print Wednesday, 25 April 2007 00:00 Researchers at Berkeley Lab have been exploring...

96

Design and operation of power systems with large amounts of wind power  

E-Print Network (OSTI)

Production”has been formed in IEA Wind. The R&D task will collect and share information on the experience gained and the studies made on power system impacts of wind power, and review methodologies, tools and data used. This paper outlines the power system impacts of wind power, the national studies published and ongoing and describes the goals of the international collaboration. There are dozens of studies made and ongoing related to cost of wind integration, however, the results are not easy to compare. An indepth review of the studies is needed to draw conclusions on the range of integration costs for wind power. Stateofthe art review process will seek for reasons behind the wide range of results for costs of wind integration –definitions for wind penetration, reserves and costs; different power system and load characteristics and operational rules; underlying assumptions on variability of wind etc. 1

Hannele Holttinen; Peter Meibom; Cornel Ensslin; Lutz Hofmann; John Mccann; Jan Pierik; John Olav T

2009-01-01T23:59:59.000Z

97

High frequency inductive lamp and power oscillator  

DOE Patents (OSTI)

A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and I or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to adjust the driving frequency of the oscillator.

MacLennan, Donald A. (Gaithersburg, MD); Dymond, Jr., Lauren E. (North Potomac, MD); Gitsevich, Aleksandr (Montgomery Village, MD); Grimm, William G. (Silver Spring, MD); Kipling, Kent (Gaithersburg, MD); Kirkpatrick, Douglas A. (Great Falls, VA); Ola, Samuel A. (Silver Spring, MD); Simpson, James E. (Gaithersburg, MD); Trimble, William C. (Columbia, MD); Tsai, Peter (Olney, MD); Turner, Brian P. (Damascus, MD)

2001-01-01T23:59:59.000Z

98

High frequency inductive lamp and power oscillator  

DOE Patents (OSTI)

A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and/or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to match the driving frequency of the oscillator to a plurality of tuning states of the lamp.

MacLennan, Donald A. (Gaithersburg, MD); Turner, Brian P. (Damascus, MD); Dolan, James T. (Frederick, MD); Kirkpatrick, Douglas A. (Great Falls, VA); Leng, Yongzhang (Damascus, MD)

2000-01-01T23:59:59.000Z

99

High-density thermoelectric power generation and nanoscale thermal metrology  

E-Print Network (OSTI)

Thermoelectric power generation has been around for over 50 years but has seen very little large scale implementation due to the inherently low efficiencies and powers available from known materials. Recent material advances ...

Mayer, Peter (Peter Matthew), 1978-

2007-01-01T23:59:59.000Z

100

Measuring and tuning energy efficiency on large scale high performance computing platforms.  

Science Conference Proceedings (OSTI)

Recognition of the importance of power in the field of High Performance Computing, whether it be as an obstacle, expense or design consideration, has never been greater and more pervasive. While research has been conducted on many related aspects, there is a stark absence of work focused on large scale High Performance Computing. Part of the reason is the lack of measurement capability currently available on small or large platforms. Typically, research is conducted using coarse methods of measurement such as inserting a power meter between the power source and the platform, or fine grained measurements using custom instrumented boards (with obvious limitations in scale). To collect the measurements necessary to analyze real scientific computing applications at large scale, an in-situ measurement capability must exist on a large scale capability class platform. In response to this challenge, we exploit the unique power measurement capabilities of the Cray XT architecture to gain an understanding of power use and the effects of tuning. We apply these capabilities at the operating system level by deterministically halting cores when idle. At the application level, we gain an understanding of the power requirements of a range of important DOE/NNSA production scientific computing applications running at large scale (thousands of nodes), while simultaneously collecting current and voltage measurements on the hosting nodes. We examine the effects of both CPU and network bandwidth tuning and demonstrate energy savings opportunities of up to 39% with little or no impact on run-time performance. Capturing scale effects in our experimental results was key. Our results provide strong evidence that next generation large-scale platforms should not only approach CPU frequency scaling differently, but could also benefit from the capability to tune other platform components, such as the network, to achieve energy efficient performance.

Laros, James H., III

2011-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "large power high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

High power radio frequency attenuation device  

DOE Patents (OSTI)

A resistor device for attenuating radio frequency power includes a radio frequency conductor connected to a series of fins formed of high relative magnetic permeability material. The fins are dimensional to accommodate the skin depth of the current conduction therethrough, as well as an inner heat conducting portion where current does not travel. Thermal connections for air or water cooling are provided for the inner heat conducting portions of each fin. Also disclosed is a resistor device to selectively alternate unwanted radio frequency energy in a resonant cavity.

Kerns, Quentin A. (Bloomingdale, IL); Miller, Harold W. (Winfield, IL)

1984-01-01T23:59:59.000Z

102

Wind energy and power system interconnection, control, and operation for high penetration of wind power .  

E-Print Network (OSTI)

??High penetration of wind energy requires innovations in different areas of power engineering. Methods for improving wind energy and power system interconnection, control, and operation… (more)

Liang, Jiaqi

2012-01-01T23:59:59.000Z

103

Stability of high. beta. large aspect ratio tokamaks  

SciTech Connect

High {beta}({beta}{much gt} {epsilon}/q{sup 2}) large aspect ratio ({epsilon} {much gt} 1) tokamak equilibria are shown to be always stable to ideal M.H.D. modes that are localized about a flux surface. Both the ballooning and interchange modes are shown to be stable. This work uses the analytic high {beta} large aspect ratio tokamak equilibria developed by Cowley et.al., which are valid for arbitrary pressure and safety factor profiles. The stability results make no assumption about these profiles or the shape of the boundary. 14 refs., 4 figs.

Cowley, S.C.

1991-10-01T23:59:59.000Z

104

High-Power Options for LANSCE  

SciTech Connect

The LANSCE linear accelerator at Los Alamos National Laboratory has a long history of successful beam operations at 800 kW. We have recently studied options for restoration of high-power operations including approaches for increasing the performance to multi-MW levels. In this paper we will discuss the results of this study including the present limitations of the existing accelerating structures at LANSCE, and the high-voltage and RF systems that drive them. Several options will be discussed and a preferred option will be presented that will enable the first in a new generation of scientific facilities for the materials community. The emphasis of this new facility is 'Matter-Radiation Interactions in Extremes' (MaRIE) which will be used to discover and design the advanced materials needed to meet 21st century national security and energy security challenges.

Garnett, Robert W. [Los Alamos National Laboratory

2011-01-01T23:59:59.000Z

105

High-temperature alloys for high-power thermionic systems  

DOE Green Energy (OSTI)

The need for structural materials with useful strength above 1600 k has stimulated interest in refractory-metal alloys. Tungsten possesses an extreme high modulus of elasticity as well as the highest melting temperature among metals, and hence is being considered as one of the most promising candidate materials for high temperature structural applications such as space nuclear power systems. This report is divided into three chapters covering the following: (1) the processing of tungsten base alloys; (2) the tensile properties of tungsten base alloys; and (3) creep behavior of tungsten base alloys. Separate abstracts were prepared for each chapter. (SC)

Shin, Kwang S.; Jacobson, D.L.; D'cruz, L.; Luo, Anhua; Chen, Bor-Ling.

1990-08-01T23:59:59.000Z

106

Effect of the shutdown of a large coal-fired power plant on ambient...  

NLE Websites -- All DOE Office Websites (Extended Search)

Effect of the shutdown of a large coal-fired power plant on ambient mercury species Yungang Wang 1 , Jiaoyan Huang 2,a , Philip K. Hopke 3,* , Oliver V. Rattigan 4 , David C....

107

Power excursion analysis for high burnup cores  

SciTech Connect

A study was undertaken of power excursions in high burnup cores. There were three objectives in this study. One was to identify boiling water reactor (BWR) and pressurized water reactor (PWR) transients in which there is significant energy deposition in the fuel. Another was to analyze the response of BWRs to the rod drop accident (RDA) and other transients in which there is a power excursion. The last objective was to investigate the sources of uncertainty in the RDA analysis. In a boiling water reactor, the events identified as having significant energy deposition in the fuel were a rod drop accident, a recirculation flow control failure, and the overpressure events; in a pressurized water reactor, they were a rod ejection accident and boron dilution events. The RDA analysis was done with RAMONA-4B, a computer code that models the space- dependent neutron kinetics throughout the core along with the thermal hydraulics in the core, vessel, and steamline. The results showed that the calculated maximum fuel enthalpy in high burnup fuel will be affected by core design, initial conditions, and modeling assumptions. The important uncertainties in each of these categories are discussed in the report.

Diamond, D.J.; Neymotin, L.; Kohut, P. [Brookhaven National Lab., Upton, NY (United States)

1996-02-01T23:59:59.000Z

108

Digitally Controlled High Availability Power Supply  

SciTech Connect

This paper will report on the test results of a prototype 1320 watt power module for a high availability power supply. The module will allow parallel operation for N+1 redundancy with hot swap capability. The two quadrant output of each module allows pairs of modules to provide a 4 quadrant (bipolar) operation. Each module employs a novel 4 FET buck regulator arranged in a bridge configuration. Each side of the bridge alternately conducts through a small saturable ferrite that limits the reverse current in the FET body diode during turn off. This allows hard switching of the FETs with low switching losses. The module is designed with over-rated components to provide high reliability and better then 97% efficiency at full load. The modules use a Microchip DSP for control, monitoring, and fault detection. The switching FETS are driven by PWM modules in the DSP at 60 KHz. A Dual CAN bus interface provides for low cost redundant control paths. The DSP will also provide current sharing between modules, synchronized switching, and soft start up for hot swapping. The input and output of each module have low resistance FETs to allow hot swapping and isolation of faulted units.

MacNair, David; /SLAC

2009-05-07T23:59:59.000Z

109

Ultra high energy cosmic rays and the large scale structure of the galactic magnetic field  

E-Print Network (OSTI)

We study the deflection of ultra high energy cosmic ray protons in different models of the regular galactic magnetic field. Such particles have gyroradii well in excess of 1 kpc and their propagation in the galaxy reflects only the large scale structure of the galactic magnetic field. A future large experimental statistics of cosmic rays of energy above 10$^{19}$ eV could be used for a study of the large scale structure of the galactic magnetic field if such cosmic rays are indeed charged nuclei accelerated at powerful astrophysical objects and if the distribution of their sources is not fully isotropic.

Todor Stanev

1996-07-17T23:59:59.000Z

110

Impacts of Large Amounts of Wind Power on Design and Operation of Power Systems, Results of IEA Collaboration  

SciTech Connect

There are a multitude of studies completed and ongoing related to the cost of wind integration. However, the results are not easy to compare. An international forum for exchange of knowledge of power system impacts of wind power has been formed under the IEA Implementing Agreement on Wind Energy. IEA WIND R and D Task 25 on 'Design and Operation of Power Systems with Large Amounts of Wind Power' produced a state-of-the-art report in October 2007, where the most relevant wind-power grid integration studies were analyzed, especially regarding methodologies and input data. This paper summarizes the results from 18 case studies, with discussion on differences in methodology as well as issues that have been identified to impact the cost of wind integration.

Holttinen, H.; Meibom, P.; Orths, A.; O'Malley, M.; Ummels, B. C.; Tande, J. O.; Estanqueiro, A.; Gomez, E.; Smith, J. C.; Ela, E.

2008-01-01T23:59:59.000Z

111

Laser Seeding Yields High-Power Coherent Terahertz Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Laser Seeding Yields High-Power Coherent Terahertz Radiation Print Laser Seeding Yields High-Power Coherent Terahertz Radiation Print Researchers at Berkeley Lab have been exploring the ways coherent synchrotron radiation (CSR) is generated in electron storage rings when femtosecond lasers are used to carve out ultrafast x-ray pulses by femtoslicing (see "Tailored Terahertz Pulses from a Laser-Modulated Electron Beam"). In their most recent work, the researchers reported the first observation of seeding an instability of the electron beam by the laser, and they presented a physical model that shows how this occurs under the proper conditions. Such a mechanism makes it possible to control the instability onset and to exploit its gain for the generation of pulses of terahertz CSR of unprecedented power. Terahertz radiation with a wavelength from about 1 cm to about 100 microns between the microwave and the infrared would provide access to a large number of fundamental phenomena. To mention only some of them: excited electrons orbit, small molecules rotate, proteins vibrate, superconducting energy gaps resonate, and gaseous and solid-state plasmas oscillate at terahertz frequencies. But generating terahertz radiation is ordinarily a challenging task for any kind of source, including storage-ring-based synchrotron light sources. The new findings by the ALS group could represent a significant step toward satisfying the need for powerful terahertz sources.

112

Laser Seeding Yields High-Power Coherent Terahertz Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Laser Seeding Yields High-Power Coherent Terahertz Radiation Print Laser Seeding Yields High-Power Coherent Terahertz Radiation Print Researchers at Berkeley Lab have been exploring the ways coherent synchrotron radiation (CSR) is generated in electron storage rings when femtosecond lasers are used to carve out ultrafast x-ray pulses by femtoslicing (see "Tailored Terahertz Pulses from a Laser-Modulated Electron Beam"). In their most recent work, the researchers reported the first observation of seeding an instability of the electron beam by the laser, and they presented a physical model that shows how this occurs under the proper conditions. Such a mechanism makes it possible to control the instability onset and to exploit its gain for the generation of pulses of terahertz CSR of unprecedented power. Terahertz radiation with a wavelength from about 1 cm to about 100 microns between the microwave and the infrared would provide access to a large number of fundamental phenomena. To mention only some of them: excited electrons orbit, small molecules rotate, proteins vibrate, superconducting energy gaps resonate, and gaseous and solid-state plasmas oscillate at terahertz frequencies. But generating terahertz radiation is ordinarily a challenging task for any kind of source, including storage-ring-based synchrotron light sources. The new findings by the ALS group could represent a significant step toward satisfying the need for powerful terahertz sources.

113

Water Cooling of High Power Light Emitting Diode Henrik Srensen  

E-Print Network (OSTI)

Water Cooling of High Power Light Emitting Diode Henrik Sørensen Department of Energy Technology and product lifetime. The high power Light Emitting Diodes (LED) belongs to the group of electronics

Sørensen, Henrik

114

Improved Collectors for High Power Gyrotrons  

Science Conference Proceedings (OSTI)

High power gyrotrons are used for electron cyclotron heating, current drive and parasitic mode suppression in tokamaks for fusion energy research. These devices are crucial for successful operation of many research programs around the world, including the ITER program currently being constructed in France. Recent gyrotron failures resulted from cyclic fatigue of the copper material used to fabricated the collectors. The techniques used to collect the spent beam power is common in many gyrotrons produced around the world. There is serious concern that these tubes may also be at risk from cyclic fatigue. This program addresses the cause of the collector failure. The Phase I program successfully demonstrated feasibility of a mode of operation that eliminates the cyclic operation that caused the failure. It also demonstrated that new material can provide increased lifetime under cyclic operation that could increase the lifetime by more than on order of magnitude. The Phase II program will complete that research and develop a collector that eliminates the fatigue failures. Such a design would find application around the world.

R. Lawrence Ives, Amarjit Singh, Michael Read, Philipp Borchard, Jeff Neilson

2009-05-20T23:59:59.000Z

115

Organic nonlinear crystals and high power frequency conversion  

SciTech Connect

We are searching for a new second- and third-harmonic generators among the salts of chiral organic acids and bases. We discuss the relevant properties of crystals from this group of compounds, including their nonlinear and phasematching characteristics, linear absorption, damage threshold and crystal growth. In addition, we summarize what is known concerning other nonlinear optical properties of these crystals, such as two-photon absorption, nonlinear refractive index, and stimulated Raman thresholds. A preliminary assessment is made of the potential of these materials for use in future high power, large aperture lasers such as those used for inertial confinement fusion experiments. 14 refs., 1 fig., 3 tabs.

Velsko, S.P.; Davis, L.; Wang, F.; Monaco, S.; Eimerl, D.

1987-12-01T23:59:59.000Z

116

2008 High-Megawatt Power Converter Technology R&D ...  

Science Conference Proceedings (OSTI)

... 2008 High-Megawatt Power Converter Technology R&D Roadmap Workshop. NIST, Gaithersburg, MD. April 8, 2008. On ...

2013-05-30T23:59:59.000Z

117

Total Cost Per MwH for all common large scale power generation sources |  

Open Energy Info (EERE)

Total Cost Per MwH for all common large scale power generation sources Total Cost Per MwH for all common large scale power generation sources Home > Groups > DOE Wind Vision Community In the US DOEnergy, are there calcuations for real cost of energy considering the negative, socialized costs of all commercial large scale power generation soruces ? I am talking about the cost of mountain top removal for coal mined that way, the trip to the power plant, the sludge pond or ash heap, the cost of the gas out of the stack, toxificaiton of the lakes and streams, plant decommision costs. For nuclear yiou are talking about managing the waste in perpetuity. The plant decomission costs and so on. What I am tring to get at is the 'real cost' per MWh or KWh for the various sources ? I suspect that the costs commonly quoted for fossil fuels and nucelar are

118

Prediction of Power Requirements for High-Speed Circuits  

E-Print Network (OSTI)

. Modern VLSI design methodologies and manufacturing technologies are making circuits increasingly fast. The quest for higher circuit performance and integration density stems from fields such as the telecommunication one where high speed and capability of dealing with large data sets is mandatory. The design of high-speed circuits is a challenging task, and can be carried out only if designers can exploit suitable CAD tools. Among the several aspects of high-speed circuit design, controlling power consumption is today a major issue for ensuring that circuits can operate at full speed without damages. In particular, tools for fast and accurate estimation of power consumption of highspeed circuits are required. In this paper we focus on the problem of predicting the maximum power consumption of sequential circuits. We formulate the problem as a constrained optimization problem, and solve it resorting to an evolutionary algorithm. Moreover, we empirically assess the effectiveness of our problem formulation with respect to the classical unconstrained formulation. Finally, we report experimental results assessing the effectiveness of the prototypical tool we implemented. 1.

Corno Rebaudengo Sonza; F. Corno; M. Rebaudengo; M. Sonza Reorda; G. Squillero; M. Violante

2000-01-01T23:59:59.000Z

119

Solar Power in the Desert: Are the current large-scale solar developments really improving California’s environment?  

E-Print Network (OSTI)

from large-scale solar steam generator systems Persistenceof water as steam power generators. The largest of these

Allen, Michael F.; McHughen, Alan

2011-01-01T23:59:59.000Z

120

Piezoelectric based high voltage power simulator for implantation  

Science Conference Proceedings (OSTI)

It is based on resonant method that allows the piezoelectric transformer to generate a ... The device is small and with high power density and high efficiency

Note: This page contains sample records for the topic "large power high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Solar Power in the Desert: Are the current large-scale solar developments really improving California’s environment?  

E-Print Network (OSTI)

D EVELOPMENT I SSUES Solar Power in the Desert: Are the2 Most of the large-scale solar power projects utilize largethat will be affected by solar power facilities. There are

Allen, Michael F.; McHughen, Alan

2011-01-01T23:59:59.000Z

122

High power linear pulsed beam annealer  

DOE Patents (OSTI)

A high power pulsed electron beam is produced in a system comprised of an electron gun having a heated cathode, control grid, focus ring, and a curved drift tube. The drift tube is maintained at a high positive voltage with respect to the cathode to accelerate electrons passing through the focus ring and to thereby eliminate space charge. A coil surrounding the curved drift tube provides a magnetic field which maintains the electron beam focused about the axis of the tube and imparts motion on electrons in a spiral path for shallow penetration of the electrons into a target. The curvature of the tube is selected so there is no line of sight between the cathode and a target holder positioned within a second drift tube spaced coaxially from the curved tube. The second tube and the target holder are maintained at a reference voltage that decelerates the electrons. A second coil surrounding the second drift tube maintains the electron beam focused about the axis of the second drift tube and compresses the electron beam to the area of the target. The target holder can be adjusted to position the target where the cross section of the beam matches the area of the target.

Strathman, Michael D. (Concord, CA); Sadana, Devendra K. (Berkeley, CA); True, Richard B. (Sunnyvale, CA)

1983-01-01T23:59:59.000Z

123

High energy physics - The large and the small  

Science Conference Proceedings (OSTI)

In this Sixth International School on Field Theory and Gravitation, I was invited to give this talk to the students and researchers of Field Theory mainly about LHC - The Large Hadron Collider and results. I will try to summarize the main daily life of the high energy physics and give an idea about the experiments and the expectations for the near future. I will comment the present results and the prospects to LHC/CMS.

Santoro, Alberto [Universidade do Estado do Rio de Janeiro (Brazil)

2012-09-24T23:59:59.000Z

124

Optically powered firing system for the Procyon high explosive pulse power system  

DOE Green Energy (OSTI)

An optically powered fireset has been developed for the Procyon high explosive pulsed-power generator at Los Alamos National Laboratory. The fireset was located inside this flux compression experiment where large magnetic fields are generated. No energy sources were allowed inside the experiment and no wire connections can penetrate through the wall, of the experiment because of the high magnetic fields. The flux compression was achieved with high explosives in the experiment. The fireset was used to remotely charge a 1.2 {micro}f capacitor to 6,500V and to provide a readout of the voltage on the capacitor at the control room. The capacitor was charged by using two 7W fiber coupled GaAlAs laser diodes to illuminate two fiber coupled 12V solar cells. The solar cell outputs were connected in parallel to the input of a DC-DC converter which step up a 12V to 6,500V. A voltmeter, powered by illuminating a third 12V solar cell with 1W laser diode, was used to monitor the charge on the capacitor. The voltage was measured with a divider circuit, then converted to frequency in a V-F converter and transmitted to the control room over a fiber optic link. A fiducial circuit measured the capacitor firing current and provided an optical output timing pulse.

Earley, L.; Paul, J.; Rohlev, L.; Goforth, J.; Hall, C.R.

1995-10-01T23:59:59.000Z

125

A high average power electro-optic switch using KTP  

SciTech Connect

High damage threshold, high thermal conductivity, and small thermo-optic coefficients make KTiOPO{sub 4} (KTP) an attractive material for use in a high average power Q-switch. However, electro-chromic damage and refractive index homogeneity have prevented the utilization of KTP in such a device in the past. This work shows that electro-chromic damage is effectively suppressed using capacitive coupling, and a KTP crystal can be Q-switched for 1.5 {times} 10{sup 9} shots without any detectable electro-chromic damage. In addition, KTP with the high uniformity and large aperture size needed for a KTP electro-optic Q-switch can be obtained from flux crystals grown at constant temperature. A thermally compensated, dual crystal KTP Q-switch, which successfully produced 50 mJ pulses with a pulse width of 8 ns (FWHM), has been constructed. In addition, in off-line testing the Q-switch showed less than 7% depolarization at an average power loading of 3.2 kW/cm{sup 2}.

Ebbers, C.A.; Cook, W.M.; Velsko, S.P.

1994-04-01T23:59:59.000Z

126

High voltage VLF testing of power cables  

SciTech Connect

This publication describes a laboratory test program conducted with the objective to develop a test that would replace the existing dc withstand test. The article describes the methodology used to establish the voltage duration and magnitude of VLF (0.1 Hz) high voltage field tests suitable for crosslinked polyethylene (XLPE) insulated power cable. The results show that the voltage breakdown of laboratory aged XLPE cable at 0.1 Hz is approximately equal to that at 60 Hz, that proof tests at 0.1 Hz is approximately equal to that at 60 Hz, that proof tests at 0.1 Hz cause very little damage to the cable, and that 0.1 Hz testing appears to be a satisfactory alternate to dc testing. Preliminary values are suggested for voltage magnitude and time duration of cable acceptance, maintenance and proof tests at 0.1 Hz for XLPE cable rated up to 35 kV. A program is underway to similarly evaluate samples of service-aged XLPE cable; as well as to demonstrate the use of the preliminary test values at typical utility installations.

Eager, G.S.; Katz, C.; Fryszczyn, B. [Cable Technology Labs., Inc., New Brunswick, NJ (United States); Densley, J. [Ontario Hydro, Toronto, Ontario (Canada); Bernstein, B.S. [EPRI, Washington, DC (United States)

1997-04-01T23:59:59.000Z

127

Nuclear power high technology colloquium: proceedings  

Science Conference Proceedings (OSTI)

Reports presenting information on technology advancements in the nuclear industry and nuclear power plant functions have been abstracted and are available on the energy data base.

Not Available

1984-12-10T23:59:59.000Z

128

Research on Control System of High Power DFIG Wind Power System  

Science Conference Proceedings (OSTI)

Compared with constant speed constant frequency wind turbine, variable speed constant frequency wind turbine has many advantages: higher efficiency of wind energy converting to electric power, absorbing gust energy, smoothly cutting into the network ... Keywords: wind power, DFIG, high power, LQR, variable speed constant frequency, constant power control

Li Jianlin; Xu Honghua

2008-12-01T23:59:59.000Z

129

High-power semiconductor separate-confinement double heterostructure lasers  

Science Conference Proceedings (OSTI)

The review is devoted to high-power semiconductor lasers. Historical reference is presented, physical and technological foundations are considered, and the concept of high-power semiconductor lasers is formulated. Fundamental and technological reasons limiting the optical power of a semiconductor laser are determined. The results of investigations of cw and pulsed high-power semiconductor lasers are presented. Main attention is paid to inspection of the results of experimental studies of single high-power semiconductor lasers. The review is mainly based on the data obtained in the laboratory of semiconductor luminescence and injection emitters at the A.F. Ioffe Physicotechnical Institute. (review)

Tarasov, I S [A.F. Ioffe Physical-Technical Institute, Russian Academy of Sciences, St. Petersburg (Russian Federation)

2010-10-15T23:59:59.000Z

130

High power densities from high-temperature material interactions  

DOE Green Energy (OSTI)

Thermionic energy conversion (TEC) and metallic-fluid heat pipes (MFHPs) offer important and unique advantages in terrestrial and space energy processing. And they are well suited to serve together synergistically. TEC and MFHPs operate through working-fluid vaporization, condensation cycles that accept great thermal power densities at high temperatures. TEC and MFHPs have apparently simple, isolated performance mechanisms that are somewhat similar. And they also have obviously difficult, complected material problems that again are somewhat similar. Intensive investigation reveals that aspects of their operating cycles and material problems tend to merge: high-temperature material effects determine the level and lifetime of performance. Simplified equations verify the preceding statement for TEC and MFHPs. Material properties and interactions exert primary influences on operational effectiveness. And thermophysicochemical stabilities dictate operating temperatures which regulate the thermoemissive currents of TEC and the vaporization flow rates of MFHPs. Major high-temperature material problems of TEC and MFHPs have been solved. These solutions lead to productive, cost-effective applications of current TEC and MFHPs - and point to significant improvements with anticipated technological gains.

Morris, J.F.

1981-01-01T23:59:59.000Z

131

Techniques for high-efficiency outphasing power amplifiers  

E-Print Network (OSTI)

A trade-off between linearity and efficiency exists in conventional power amplifiers (PAs). The outphase amplifying concept overcomes this trade-off by enabling the use of high efficiency, non-linear power amplifiers for ...

Godoy, Philip (Philip Andrew)

2011-01-01T23:59:59.000Z

132

Quasi-optical mode converter for high power gyrotron  

Science Conference Proceedings (OSTI)

Gyrotrons are microwave / millimeter wave devices capable to deliver megawatt level continuous power at a frequency range up to 170GHz. The critical design issues for a high power gyrotrons are: (1) Magnetron injection Gun (2) Cavity with proper mode ...

B. K. Shukla; Dhiraj Bora

2011-02-01T23:59:59.000Z

133

Innovative fuel designs for high power density pressurized water reactor  

E-Print Network (OSTI)

One of the ways to lower the cost of nuclear energy is to increase the power density of the reactor core. Features of fuel design that enhance the potential for high power density are derived based on characteristics of ...

Feng, Dandong, Ph. D. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

134

Design of annular fuel for high power density BWRs  

E-Print Network (OSTI)

Enabling high power density in the core of Boiling Water Reactors (BWRs) is economically profitable for existing or new reactors. In this work, we examine the potential for increasing the power density in BWR plants by ...

Morra, Paolo

2005-01-01T23:59:59.000Z

135

Thermalization in collisions of large nuclei at high energies  

E-Print Network (OSTI)

Hydrodynamical analysis of experimental data of ultrarelativistic heavy ion collisions seems to indicate that the hot QCD matter created in the collisions thermalizes very quickly. Theoretically, we have no idea why this should be true. In this proceeding, I will describe how the thermalization takes place in the most theoretically clean limit -- that of large nuclei at asymptotically high energy per nucleon, where the system is described by weak-coupling QCD. In this limit, plasma instabilities dominate the dynamics from immediately after the collision until well after the plasma becomes nearly in equilibrium at time t \\alpha^(-5/2)Q^(-1).

Kurkela, Aleksi

2013-01-01T23:59:59.000Z

136

Measurement and modeling of mirror distortion in a high power FEL  

Science Conference Proceedings (OSTI)

Mirror heating in a high power FEL can alter the optical mode and affect the gain of the laser. This can lead to a large reduction of the laser power from ideal values. Measurements of the power and mode size in the Jefferson Lab IR Demo laser have shown clear evidence of mirror distortion at high average power leading (up to 17 kW incident on the mirrors and over 40 W absorbed per mirror). The measurements and comparisons with modeling will be presented. Both steady state and transient analyses and measurements are considered.

Benson, S.; Neil, G.; Michelle D. Shinn

2000-01-01T23:59:59.000Z

137

An evolutionary fuel assembly design for high power density BWRs  

E-Print Network (OSTI)

An evolutionary BWR fuel assembly design was studied as a means to increase the power density of current and future BWR cores. The new assembly concept is based on replacing four traditional assemblies and large water gap ...

Karahan, Aydin

2007-01-01T23:59:59.000Z

138

Electromagnetic field of the large power cables and impact on the human health  

Science Conference Proceedings (OSTI)

In this work we survey our research on domain decomposition and related algorithms for large power electric cables and the impact on the human health. The equations that describe the behaviour of the fields in electromagnetic devices are coupled because ... Keywords: bioheat equation, coupled fields, electrical cables, finite element method

Daniela Cârstea

2012-01-01T23:59:59.000Z

139

Electromagnetic field of the large power cables and interaction with the human body  

Science Conference Proceedings (OSTI)

In this work we survey our research on domain decomposition and related algorithms for large power electric cables and the impact on the human health. The equations that describe the behaviour of the fields in electromagnetic devices are coupled because ... Keywords: bioheat equation, coupled fields, electrical cables, finite element method

Daniela Cârstea

2010-07-01T23:59:59.000Z

140

Large-scale Ocean-based or Geothermal Power Plants by Thermoelectric Effects  

E-Print Network (OSTI)

Heat resources of small temperature difference are easily accessible, free and unlimited on earth. Thermoelectric effects provide the technology for converting these heat resources directly into electricity. We present designs of electricity generators based on thermoelectric effects and using heat resources of small temperature difference, e.g., ocean water at different depths and geothermal sources, and conclude that large-scale power plants based on thermoelectric effects are feasible and economically competitive. The key observation is that the power factor of thermoelectric materials, unlike the figure of merit, can be improved by orders of magnitude upon laminating good conductors and good thermoelectric materials. The predicted large-scale power plants based on thermoelectric effects, if validated, will have a global economic and social impact for its scalability, and the renewability, free and unlimited supply of heat resources of small temperature difference on earth.

Liu, Liping

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "large power high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Large Hybrid Energy Systems for Making Low CO2 Load-Following Power and Synthetic Fuel  

SciTech Connect

Hybrid energy systems using nuclear heat sources can economically produce load-following electrical power by exploiting the surplus generation capacity available at night or seasonally to make synthetic fuel. Vehicle fuel is the only current energy use large enough to absorb all the energy capacity that might be diverted from the power industry, and its ease of storage obviates problems with discontinuous synfuel production. The potential benefits and challenges of synfuels integration are illustrated by the production of methanol from natural gas (as a source of carbon) using steam from a light water nuclear power reactor which is assumed to be available in accord with a year's worth of power demand data. Methanol's synthesis process is easily adapted to using 300 C heat from a light water reactor and this simple compound can be further processed into gasoline, biodiesel, or dimethyl ether, fuels which can be used with the current vehicle fleet. A supplemental feed to the methanol process of natural gas (for energy) allows operation at constant full rate when the nuclear heat is being used to produce electrical power. The higher capital costs of such a system are offset by a lower cost of heat and power production from a large base load type of plant and by reduced costs associated with much lower CO2 emissions. Other less tangible economic benefits of this and similar hybrid systems include better use of natural resource for fuels and greater energy services security from the domestic production of vehicle fuel.

Robert S. Cherry; Richard D. Boardman; Steven Aumeier

2012-02-01T23:59:59.000Z

142

Low Loss, High Power Density Magnetics in Inductor/Transformer ...  

Science Conference Proceedings (OSTI)

The former power requirements motivate high efficiency materials for use in bulk scale inductors and transformers. The magnetic material requirements include ...

143

High Temperature Modules and Materials for Thermoelectric Power ...  

Science Conference Proceedings (OSTI)

We fabricated oxide-based thermoelectric modules for high temperature electrical-power generation. Potentials for a development of a thermoelectric generation ...

144

High Power Performance Lithium Ion Battery - Energy Innovation Portal  

... “Optimization of Acetylene Black Conductive Additive and Polyvinylidene Fluoride Composition for high Power Rechargeable Lithium-Ion Cells,” The 211th ...

145

Available Technologies: High Power Performance Lithium Ion Battery  

Cell 1, which has the highest binder (PVDF) to acetylene black ratio, displays the most favorable discharge ASI. Lithium ion batteries with high power ...

146

Laser Seeding Yields High-Power Coherent Terahertz Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Laser Seeding Yields High-Power Coherent Terahertz Radiation Print Researchers at Berkeley Lab have been exploring the ways coherent synchrotron radiation (CSR) is generated in...

147

Device Fabrication Method for High Power Density Capacitors  

Device Fabrication Method for High Power Density Capacitors Note: The technology described above is an early stage opportunity. Licensing rights to this intellectual ...

148

Diagnostics and steady-state high power operation  

Science Conference Proceedings (OSTI)

TORE SUPRA has now been upgraded to handle high power plasmas for very long duration. It came back into operation in 2001

Clément Laviron; and the Tore Supra Team

2003-01-01T23:59:59.000Z

149

High power semiconductor laser diode arrays  

SciTech Connect

The cw optical power obtainable from semiconductor laser diodes has been extended to unprecedented levels in recent years through the use of multistripe arrays. By spreading out the optical power with more than 100 stripes, single-facet, cw output in exces of 5 Watts has been demonstrated, and 500 mW cw is now commercially available. Recent improvements to array performance include: arrays up to 1 cm wide that generates quasi-cw (150 usec pulse) output in excesss of 11 Watts, and a novel device structure which produces up to 215 mW cw in a single diffraction limited lobe.

Cross, P.S.

1986-08-15T23:59:59.000Z

150

Simulating the power consumption of large-scale sensor network applications  

E-Print Network (OSTI)

Developing sensor network applications demands a new set of tools to aid programmers. A number of simulation environments have been developed that provide varying degrees of scalability, realism, and detail for understanding the behavior of sensor networks. To date, however, none of these tools have addressed one of the most important aspects of sensor application design: that of power consumption. While simple approximations of overall power usage can be derived from estimates of node duty cycle and communication rates, these techniques often fail to capture the detailed, low-level energy requirements of the CPU, radio, sensors, and other peripherals. In this paper, we present PowerTOSSIM, a scalable simulation environment for wireless sensor networks that provides an accurate, per-node estimate of power consumption. PowerTOSSIM is an extension to TOSSIM, an event-driven simulation environment for TinyOS applications. In PowerTOSSIM, TinyOS components corresponding to specific hardware peripherals (such as the radio, EEPROM, LEDs, and so forth) are instrumented to obtain a trace of each device’s activity during the simulation run. PowerTOSSIM employs a novel code-transformation technique to estimate the number of CPU cycles executed by each node, eliminating the need for expensive instruction-level simulation of sensor nodes. PowerTOSSIM includes a detailed model of hardware energy consumption based on the Mica2 sensor node platform. Through instrumentation of actual sensor nodes, we demonstrate that PowerTOSSIM provides accurate estimation of power consumption for a range of applications and scales to support very large simulations.

Victor Shnayder; Mark Hempstead; Bor-rong Chen; Geoff Werner Allen; Matt Welsh

2004-01-01T23:59:59.000Z

151

E-beam high voltage switching power supply  

DOE Patents (OSTI)

A high-power power supply produces a controllable, constant high voltage put under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules.

Shimer, Daniel W. (Danville, CA); Lange, Arnold C. (Livermore, CA)

1996-01-01T23:59:59.000Z

152

E-beam high voltage switching power supply  

DOE Patents (OSTI)

A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules. 5 figs.

Shimer, D.W.; Lange, A.C.

1996-10-15T23:59:59.000Z

153

High Performance Multivariate Visual Data Exploration for Extremely Large Data  

SciTech Connect

One of the central challenges in modern science is the need to quickly derive knowledge and understanding from large, complex collections of data. We present a new approach that deals with this challenge by combining and extending techniques from high performance visual data analysis and scientific data management. This approach is demonstrated within the context of gaining insight from complex, time-varying datasets produced by a laser wakefield accelerator simulation. Our approach leverages histogram-based parallel coordinates for both visual information display as well as a vehicle for guiding a data mining operation. Data extraction and subsetting are implemented with state-of-the-art index/query technology. This approach, while applied here to accelerator science, is generally applicable to a broad set of science applications, and is implemented in a production-quality visual data analysis infrastructure. We conduct a detailed performance analysis and demonstrate good scalability on a distributed memory Cray XT4 system.

Rubel, Oliver; Wu, Kesheng; Childs, Hank; Meredith, Jeremy; Geddes, Cameron G.R.; Cormier-Michel, Estelle; Ahern, Sean; Weber, Gunther H.; Messmer, Peter; Hagen, Hans; Hamann, Bernd; Bethel, E. Wes; Prabhat,

2008-08-22T23:59:59.000Z

154

Interaction of high power microwave with plasma  

Science Conference Proceedings (OSTI)

An experimental proposal to investigate the physics of interaction of extremely intense (eEem/m?c ? 1) microwave in an overdense plasma is discussed. The output from a VIRCATOR (2 -- 10 GHz, ? 1 -- 3 GW) based pulse (?30 ns) powered ...

V. P. Anitha; Amita Das; Y. C. Saxena; Anurag Shyam; P. K. Kaw

2011-02-01T23:59:59.000Z

155

High Power Lasers... Another approach to  

E-Print Network (OSTI)

Research Laboratory Washington, DC #12;2 Main points of the talk Fusion Energy based on lasers and direct employees, (900 PhDs + 400 MSc) · $800 M /year budget ·Field sites: · Washington DC (Main site) · Stennis (Hibachi) Amplifier Window Electron Beam Cathode Pulsed Power System Energy + ( Kr+ F2) ( KrF)* + F Kr

156

High-power LED driver with power-efficient LED-current-sensing technique.  

E-Print Network (OSTI)

??x, 73 leaves : ill. ; 30 cm HKUST Call Number: Thesis ECED 2007 LeungW To provide enough light output for various lighting applications, high-power… (more)

Leung, Wing Yan

2007-01-01T23:59:59.000Z

157

High performance low power CMOS dynamic logic for arithmetic circuits  

Science Conference Proceedings (OSTI)

This paper presents the design of high performance and low power arithmetic circuits using a new CMOS dynamic logic family, and analyzes its sensitivity against technology parameters for practical applications. The proposed dynamic logic family allows ... Keywords: CMOS digital integrated circuits, CMOS logic circuits, Dynamic logic, High speed arithmetic circuits, Low power arithmetic circuits

Victor Navarro-Botello; Juan A. Montiel-Nelson; Saeid Nooshabadi

2007-04-01T23:59:59.000Z

158

Large Scale Computing and Storage Requirements for High Energy Physics  

E-Print Network (OSTI)

Director Editors Richard Gerber Harvey Wasserman NERSC UserServices Group NERSC User Services Group Large ScaleNERSC

Gerber, Richard A.

2011-01-01T23:59:59.000Z

159

HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER  

SciTech Connect

OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil fuels has trace contaminants (primarily carbon monoxide) that are detrimental to precious metal catalyzed fuel cells, as is now recognized by many of the world's largest automobile companies. Thermochemical hydrogen will not contain carbon monoxide as an impurity at any level. Electrolysis, the alternative process for producing hydrogen using nuclear energy, suffers from thermodynamic inefficiencies in both the production of electricity and in electrolytic parts of the process. The efficiency of electrolysis (electricity to hydrogen) is currently about 80%. Electric power generation efficiency would have to exceed 65% (thermal to electrical) for the combined efficiency to exceed the 52% (thermal to hydrogen) calculated for one thermochemical cycle. Thermochemical water-splitting cycles have been studied, at various levels of effort, for the past 35 years. They were extensively studied in the late 70s and early 80s but have received little attention in the past 10 years, particularly in the U.S. While there is no question about the technical feasibility and the potential for high efficiency, cycles with proven low cost and high efficiency have yet to be developed commercially. Over 100 cycles have been proposed, but substantial research has been executed on only a few. This report describes work accomplished during a three-year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first phase was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most three) for further detailed consideration. During Phase 1, an exhaustive literature search was performed to locate all cycles previously proposed. The cycles located were screened using objective criteria to determine which could

BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

2003-06-01T23:59:59.000Z

160

HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER  

DOE Green Energy (OSTI)

OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil fuels has trace contaminants (primarily carbon monoxide) that are detrimental to precious metal catalyzed fuel cells, as is now recognized by many of the world's largest automobile companies. Thermochemical hydrogen will not contain carbon monoxide as an impurity at any level. Electrolysis, the alternative process for producing hydrogen using nuclear energy, suffers from thermodynamic inefficiencies in both the production of electricity and in electrolytic parts of the process. The efficiency of electrolysis (electricity to hydrogen) is currently about 80%. Electric power generation efficiency would have to exceed 65% (thermal to electrical) for the combined efficiency to exceed the 52% (thermal to hydrogen) calculated for one thermochemical cycle. Thermochemical water-splitting cycles have been studied, at various levels of effort, for the past 35 years. They were extensively studied in the late 70s and early 80s but have received little attention in the past 10 years, particularly in the U.S. While there is no question about the technical feasibility and the potential for high efficiency, cycles with proven low cost and high efficiency have yet to be developed commercially. Over 100 cycles have been proposed, but substantial research has been executed on only a few. This report describes work accomplished during a three-year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first phase was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most three) for further detailed consideration. During Phase 1, an exhaustive literature search was performed to locate all cycles previously proposed. The cycles located were screened using objective criteria to determine which could benefit, in terms of efficien

BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

2003-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "large power high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

"Large Power Transformers and the U.S. Electric Grid" Report (June 2012) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

"Large Power Transformers and the U.S. Electric Grid" Report (June "Large Power Transformers and the U.S. Electric Grid" Report (June 2012) "Large Power Transformers and the U.S. Electric Grid" Report (June 2012) The Office of Electricity Delivery and Energy Reliability has released the "Large Power Transformers and the U.S. Electric Grid" report, an assessment of the procurement and supply environment of large power transformers (LPTs). The report examines the characteristics and procurement of LPTs, including key raw materials and transportation; historical trends and future demands; global and domestic LPT suppliers; and potential issues in the global sourcing of LPTs. LPTs have long been a major concern for the U.S. electric power sector. Key industry sources - including the Energy Sector Specific Plan, the

162

"Large Power Transformers and the U.S. Electric Grid" Report (June 2012) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

"Large Power Transformers and the U.S. Electric Grid" Report (June "Large Power Transformers and the U.S. Electric Grid" Report (June 2012) "Large Power Transformers and the U.S. Electric Grid" Report (June 2012) The Office of Electricity Delivery and Energy Reliability has released the "Large Power Transformers and the U.S. Electric Grid" report, an assessment of the procurement and supply environment of large power transformers (LPTs). The report examines the characteristics and procurement of LPTs, including key raw materials and transportation; historical trends and future demands; global and domestic LPT suppliers; and potential issues in the global sourcing of LPTs. LPTs have long been a major concern for the U.S. electric power sector. Key industry sources - including the Energy Sector Specific Plan, the

163

BPA curtails wind power generators during high hydropower ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA ... The hydro capacity in the Pacific Northwest generates large amounts of electricity when river flows are high, ...

164

SOLAR POWERING OF HIGH EFFICIENCY ABSORPTION CHILLER  

SciTech Connect

This is the Final Report for two solar cooling projects under this Cooperative Agreement. The first solar cooling project is a roof-integrated solar cooling and heating system, called the Power Roof{trademark}, which began operation in Raleigh, North Carolina in late July 2002. This system provides 176 kW (50 ton) of solar-driven space cooling using a unique nonimaging concentrating solar collector. The measured performance of the system during its first months of operation is reported here, along with a description of the design and operation of this system. The second solar cooling system, with a 20-ton capacity, is being retrofit to a commercial office building in Charleston, South Carolina but has not yet been completed.

Randy C. Gee

2004-11-15T23:59:59.000Z

165

Large Scale Computing and Storage Requirements for High Energy Physics  

E-Print Network (OSTI)

Computing and Storage Requirements for High Energy Physics [for High Energy Physics Computational  and  Storage  for High Energy Physics Computational  and  Storage  

Gerber, Richard A.

2011-01-01T23:59:59.000Z

166

Large Scale Computing and Storage Requirements for High Energy Physics  

E-Print Network (OSTI)

the application of high performance computing (HPC) to theacceleration and high performance computing. He was thelibraries, and high performance computing. Lee is an active

Gerber, Richard A.

2011-01-01T23:59:59.000Z

167

Modular high voltage power supply for chemical analysis  

DOE Patents (OSTI)

A high voltage power supply for use in a system such as a microfluidics system, uses a DC--DC converter in parallel with a voltage-controlled resistor. A feedback circuit provides a control signal for the DC--DC converter and voltage-controlled resistor so as to regulate the output voltage of the high voltage power supply, as well as, to sink or source current from the high voltage supply.

Stamps, James F. (Livermore, CA); Yee, Daniel D. (Dublin, CA)

2007-01-09T23:59:59.000Z

168

Modular high voltage power supply for chemical analysis  

DOE Patents (OSTI)

A high voltage power supply for use in a system such as a microfluidics system, uses a DC-DC converter in parallel with a voltage-controlled resistor. A feedback circuit provides a control signal for the DC-DC converter and voltage-controlled resistor so as to regulate the output voltage of the high voltage power supply, as well as, to sink or source current from the high voltage supply.

Stamps, James F. (Livermore, CA); Yee, Daniel D. (Dublin, CA)

2008-07-15T23:59:59.000Z

169

Large Scale Computing and Storage Requirements for High Energy Physics  

Science Conference Proceedings (OSTI)

The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility for the Department of Energy's Office of Science, providing high-performance computing (HPC) resources to more than 3,000 researchers working on about 400 projects. NERSC provides large-scale computing resources and, crucially, the support and expertise needed for scientists to make effective use of them. In November 2009, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR), and DOE's Office of High Energy Physics (HEP) held a workshop to characterize the HPC resources needed at NERSC to support HEP research through the next three to five years. The effort is part of NERSC's legacy of anticipating users needs and deploying resources to meet those demands. The workshop revealed several key points, in addition to achieving its goal of collecting and characterizing computing requirements. The chief findings: (1) Science teams need access to a significant increase in computational resources to meet their research goals; (2) Research teams need to be able to read, write, transfer, store online, archive, analyze, and share huge volumes of data; (3) Science teams need guidance and support to implement their codes on future architectures; and (4) Projects need predictable, rapid turnaround of their computational jobs to meet mission-critical time constraints. This report expands upon these key points and includes others. It also presents a number of case studies as representative of the research conducted within HEP. Workshop participants were asked to codify their requirements in this case study format, summarizing their science goals, methods of solution, current and three-to-five year computing requirements, and software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, multi-core environment that is expected to dominate HPC architectures over the next few years. The report includes a section that describes efforts already underway or planned at NERSC that address requirements collected at the workshop. NERSC has many initiatives in progress that address key workshop findings and are aligned with NERSC's strategic plans.

Gerber, Richard A.; Wasserman, Harvey

2010-11-24T23:59:59.000Z

170

Improved Spatial Filter for high power Lasers  

DOE Patents (OSTI)

A new pinhole architecture incorporates features intended to reduce the rate of plasma generation in a spatial filter for high-energy laser pulse beams. An elongated pinhole aperture is provided in an apertured body for rejecting off-axis rays of the laser pulse beam. The internal surface of the elongated aperture has a diameter which progressively tapers from a larger entrance cross-sectional area at an inlet to a smaller output cross-sectional area at an outlet. The tapered internal surface causes off-axis rays to be refracted in a low density plasma layer that forms on the internal surface or specularly reflected at grazing incidence from the internal surface. Off-axis rays of the high-energy pulse beam are rejected by this design. The external surface of the apertured body adjacent to the larger entrance cross-sectional area at the inlet to the elongated aperture is angled obliquely with respect to the to direction of the path of the high-energy laser pulse beam to backscatter off-axis rays away from the high-energy pulse beam. The aperture is formed as a truncated cone or alternatively with a tapered square cross-section. The internal surface of the aperture is coated with an ablative material, preferably high-density material which can be deposited with an exploding wire.

Estabrook, Kent G.; Celliers, Peter M.; Murray, James E.; DaSilva, Luiz; MacGowan, Brian J.; Rubenchik, Alexander M.; Manes, Kenneth R.; Drake, Robert P.; Afeyan, Bedros

1998-06-01T23:59:59.000Z

171

Effect of the shutdown of a large coal-fired power plant on ambient mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

Effect of the shutdown of a large coal-fired power plant on ambient mercury Effect of the shutdown of a large coal-fired power plant on ambient mercury species Title Effect of the shutdown of a large coal-fired power plant on ambient mercury species Publication Type Journal Article LBNL Report Number LBNL-6097E Year of Publication 2013 Authors Wang, Yungang, Jiaoyan Huang, Philip K. Hopke, Oliver V. Rattigan, David C. Chalupa, Mark J. Utell, and Thomas M. Holsen Journal Chemosphere Volume 92 Issue 4 Pagination 360-367 Date Published 07/2013 Abstract In the spring of 2008, a 260MWe coal-fired power plant (CFPP) located in Rochester, New York was closed over a 4 month period. Using a 2-years data record, the impacts of the shutdown of the CFPP on nearby ambient concentrations of three Hg species were quantified. The arithmetic average ambient concentrations of gaseous elemental mercury (GEM), gaseous oxidized mercury (GOM), and particulate mercury (PBM) during December 2007-November 2009 were 1.6ng/m3, 5.1pg/m3, and 8.9pg/m3, respectively. The median concentrations of GEM, GOM, and PBM significantly decreased by 12%, 73%, and 50% after the CFPP closed (Mann-Whitney test, p<0.001). Positive Matrix Factorization (EPA PMF v4.1) identified six factors including O3-rich, traffic, gas phase oxidation, wood combustion, nucleation, and CFPP. When the CFPP was closed, median concentrations of GEM, GOM, and PBM apportioned to the CFPP factor significantly decreased by 25%, 74%, and 67%, respectively, compared to those measured when the CFPP was still in operation (Mann-Whitney test, p<0.001). Conditional probability function (CPF) analysis showed the greatest reduction in all three Hg species was associated with northwesterly winds pointing toward the CFPP. These changes were clearly attributable to the closure of the CFPP.

172

Method and apparatus for tuning high power lasers  

DOE Patents (OSTI)

This invention relates to high power gas lasers that are adapted to be tuned to a desired lasing wavelength through the use of a gas cell to lower the gain at a natural lasing wavelength and "seeding" the laser with a beam from a low power laser which is lasing at the desired wavelength. This tuning is accomplished with no loss of power and produces a pulse with an altered pulse shape. It is potentially applicable to all gas lasers.

Hutchinson, Donald P. (Knoxville, TN); Vandersluis, Kenneth L. (Oak Ridge, TN)

1977-04-19T23:59:59.000Z

173

GaN High Power Devices  

SciTech Connect

A brief review is given of recent progress in fabrication of high voltage GaN and AlGaN rectifiers, GaN/AlGaN heterojunction bipolar transistors, GaN heterostructure and metal-oxide semiconductor field effect transistors. Improvements in epitaxial layer quality and in fabrication techniques have led to significant advances in device performance.

PEARTON,S.J.; REN,F.; ZHANG,A.P.; DANG,G.; CAO,X.A.; LEE,K.P.; CHO,H.; GILA,B.P.; JOHNSON,J.W.; MONIER,C.; ABERNATHY,C.R.; HAN,JUNG; BACA,ALBERT G.; CHYI,J.-I.; LEE,C.-M.; NEE,T.-E.; CHUO,C.-C.; CHI,G.C.; CHU,S.N.G.

2000-07-17T23:59:59.000Z

174

Angle Instability Detection in Power Systems with High Wind Penetration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Angle Instability Detection in Power Angle Instability Detection in Power Systems with High Wind Penetration Using PMUs YC Zhang National Renewable Energy Laboratory Yingchen.zhang@nrel.gov 27/28 June 2013 Washington, DC DOE/OE Transmission Reliability Program Angle Instability Detection in Power Systems with High Wind Penetration Using Synchrophasor Measurements  Project Objective * Utilize synchrophasor measurements to estimate the equivalent inertia of a power source such as synchronous generators or wind turbine generators * Develop angle instability detection method for a system with high wind penetration using the synchrophasor measurements 2 3 Background Submitted to IEEE Journal of Emerging and Selected Topics in Power Electronics * In case of angular instability, some machines will have

175

Symbolic Reduction for High-Speed Power System Simulation  

Science Conference Proceedings (OSTI)

High-speed simulations of power transmission systems, which often rely on solving nonlinear systems of equations, are an increasingly important tool for training, testing equipment, on-line control and situational awareness. Such simulations, however, ... Keywords: Code generation, power system simulation, real-time systems, sparse systems, symbolic and algebraic manipulation

William M. Siever; Daniel R. Tauritz; Ann Miller; Mariesa Crow; Bruce M. Mcmillin; Stanley Atcitty

2008-06-01T23:59:59.000Z

176

Energy-Efficient Power Control in Multipath CDMA Channels via Large System Analysis  

E-Print Network (OSTI)

This paper is focused on the design and analysis of power control procedures for the uplink of multipath code-division-multiple-access (CDMA) channels based on the large system analysis (LSA). Using the tools of LSA, a new decentralized power control algorithm aimed at energy efficiency maximization and requiring very little prior information on the interference background is proposed; moreover, it is also shown that LSA can be used to predict with good accuracy the performance and operational conditions of a large network operating at the equilibrium over a multipath channel, i.e. the power, signal-to-interference-plus-noise ratio (SINR) and utility profiles across users, wherein the utility is defined as the number of bits reliably delivered to the receiver for each energy-unit used for transmission. Additionally, an LSA-based performance comparison among linear receivers is carried out in terms of achieved energy efficiency at the equilibrium. Finally, the problem of the choice of the utility-maximizing tr...

Buzzi, Stefano; Poor, H Vincent

2008-01-01T23:59:59.000Z

177

PowerGrid - A Computation Engine for Large-Scale Electric Networks  

Science Conference Proceedings (OSTI)

This Final Report discusses work on an approach for analog emulation of large scale power systems using Analog Behavioral Models (ABMs) and analog devices in PSpice design environment. ABMs are models based on sets of mathematical equations or transfer functions describing the behavior of a circuit element or an analog building block. The ABM concept provides an efficient strategy for feasibility analysis, quick insight of developing top-down design methodology of large systems and model verification prior to full structural design and implementation. Analog emulation in this report uses an electric circuit equivalent of mathematical equations and scaled relationships that describe the states and behavior of a real power system to create its solution trajectory. The speed of analog solutions is as quick as the responses of the circuit itself. Emulation therefore is the representation of desired physical characteristics of a real life object using an electric circuit equivalent. The circuit equivalent has within it, the model of a real system as well as the method of solution. This report presents a methodology of the core computation through development of ABMs for generators, transmission lines and loads. Results of ABMs used for the case of 3, 6, and 14 bus power systems are presented and compared with industrial grade numerical simulators for validation.

Chika Nwankpa

2011-01-31T23:59:59.000Z

178

High Plains Ranch Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

High Plains Ranch Solar Power Plant High Plains Ranch Solar Power Plant Jump to: navigation, search Name High Plains Ranch Solar Power Plant Facility High Plains Ranch Sector Solar Facility Type Photovoltaic Developer Sun Power Location Carizzo Plain, California Coordinates 35.1913858°, -119.7260983° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.1913858,"lon":-119.7260983,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

179

High-voltage DC transmission: a power electronics workhorse  

Science Conference Proceedings (OSTI)

Thyristor-based HVDC converter technology is used for highly reliable power transfer across natural or national boundaries or between AC systems designed for different frequencies or incompatible frequency controls. The author discusses the benefits ...

N. G. Hingorani

1996-04-01T23:59:59.000Z

180

High Power Superconducting Continuous Wave Linacs for Protons...  

Office of Science (SC) Website

(ANL) Developed in: Current Result of NP research: Spin-off of high power driver linac R&D for the FRIB project Application currently being supported by: DOE Office of Nuclear...

Note: This page contains sample records for the topic "large power high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

High Specific Power, Direct Methanol Fuel Cell Stack  

NLE Websites -- All DOE Office Websites (Extended Search)

High Specific Power, Direct Methanol Fuel Cell Stack High Specific Power, Direct Methanol Fuel Cell Stack High Specific Power, Direct Methanol Fuel Cell Stack The present invention is a fuel cell stack including at least one direct methanol fuel cell. Available for thumbnail of Feynman Center (505) 665-9090 Email High Specific Power, Direct Methanol Fuel Cell Stack The present invention is a fuel cell stack including at least one direct methanol fuel cell. A cathode manifold is used to convey ambient air to each fuel cell, and an anode manifold is used to convey liquid methanol fuel to each fuel cell. Tie-bolt penetrations and tie-bolts are spaced evenly around the perimeter to hold the fuel cell stack together. Each fuel cell uses two graphite-based plates. One plate includes a cathode active area that is defined by serpentine channels connecting the inlet manifold

182

High power variable couplers for ladder and spoke type resonators  

Science Conference Proceedings (OSTI)

Superconducting RF structures such as spoke resonators [1] have been developed which will accelerate very low velocity ions. This opens up the possibility for the use of these resonators in high power proton accelerators at energies as low as the output energies of typical RFQs. Most similar resonators have been used for the acceleration of ions requiring only low RF power input. In new applications such as for the Accelerator Transmutation of Nuclear Wastes (ATW) and Accelerator Production of Tritium (APT), higher RF power will be required because of the larger beam currents. This paper discusses some higher power variable coupler concepts that could be used with these structures.

Spalek, G. (George); Kuzminski, J. (Jozef)

2001-01-01T23:59:59.000Z

183

Improving Performance of Power Systems with Large-scale Variable Generation Additions  

Science Conference Proceedings (OSTI)

A power system with large-scale renewable resources, like wind and solar generation, creates significant challenges to system control performance and reliability characteristics because of intermittency and uncertainties associated with variable generation. It is important to quantify these uncertainties, and then incorporate this information into decision-making processes and power system operations. This paper presents three approaches to evaluate the flexibility needed from conventional generators and other resources in the presence of variable generation as well as provide this flexibility from a non-traditional resource – wide area energy storage system. These approaches provide operators with much-needed information on the likelihood and magnitude of ramping and capacity problems, and the ability to dispatch available resources in response to such problems.

Makarov, Yuri V.; Etingov, Pavel V.; Samaan, Nader A.; Lu, Ning; Ma, Jian; Subbarao, Krishnappa; Du, Pengwei; Kannberg, Landis D.

2012-07-22T23:59:59.000Z

184

Energy based performance tuning for large scale high performance computing systems  

Science Conference Proceedings (OSTI)

Recognition of the importance of power in the field of High Performance Computing, whether it be as an obstacle, expense or design consideration, has never been greater and more pervasive. In response to this challenge, we exploit the unique power measurement ... Keywords: energy efficiency, frequency scaling, high performance computing (HPC), power

James H. Laros, III; Kevin T. Pedretti; Suzanne M. Kelly; Wei Shu; Courtenay T. Vaughan

2012-03-01T23:59:59.000Z

185

Using a Balun Transformer Combiner for High Power Microwave Experiments  

Science Conference Proceedings (OSTI)

A novel coaxial power combiner design has been duplicated that has distinct advantages over other combiner geometries that can handle high power. This design is being applied to combine four 3 kW power supplies to obtain a 10 kW, 5 MHz system for an ICRF antenna on HSX. In the past, Wilkinson type combiners have had limited application to high power systems because of the lack of non-inductive, high power, 100 Omega balance loads. With this new design, standard 50 Omega dummy loads can be used instead for the balance load. The cost is considerably lower than lumped element combiner designs which are dominated by capacitor costs. At such a relatively low frequency, a 3-dB quarter-wave coupled-line coupler becomes impractically long, and a conventional branch-line hybrid requires 35 Omega-line, which is commercially unavailable. The balun combiner uses less transmission line than a ring hybrid and has good bandwidth characteristics even away from its best line impedance. Theoretical calculations and modeling were performed for line impedances from 65 Omega to 75 Omega. Measurements from a low-power test device show excellent agreement with theory, and construction of the high power system is underway.

Kaufman, Michael C [ORNL; Pesavento, Philip V [ORNL

2011-01-01T23:59:59.000Z

186

Active high-power RF switch and pulse compression system  

DOE Patents (OSTI)

A high-power RF switching device employs a semiconductor wafer positioned in the third port of a three-port RF device. A controllable source of directed energy, such as a suitable laser or electron beam, is aimed at the semiconductor material. When the source is turned on, the energy incident on the wafer induces an electron-hole plasma layer on the wafer, changing the wafer's dielectric constant, turning the third port into a termination for incident RF signals, and. causing all incident RF signals to be reflected from the surface of the wafer. The propagation constant of RF signals through port 3, therefore, can be changed by controlling the beam. By making the RF coupling to the third port as small as necessary, one can reduce the peak electric field on the unexcited silicon surface for any level of input power from port 1, thereby reducing risk of damaging the wafer by RF with high peak power. The switch is useful to the construction of an improved pulse compression system to boost the peak power of microwave tubes driving linear accelerators. In this application, the high-power RF switch is placed at the coupling iris between the charging waveguide and the resonant storage line of a pulse compression system. This optically controlled high power RF pulse compression system can handle hundreds of Megawatts of power at X-band.

Tantawi, Sami G. (San Mateo, CA); Ruth, Ronald D. (Woodside, CA); Zolotorev, Max (Mountain View, CA)

1998-01-01T23:59:59.000Z

187

High Power Co-Axial SRF Coupler  

SciTech Connect

There are over 35 coupler designs for SRF cavities ranging in frequency from 325 to 1500 MHz. Two-thirds of these designs are coaxial couplers using disk or cylindrical ceramics in various combinations and configurations. While it is well known that dielectric losses go down by several orders of magnitude at cryogenic temperatures, it not well known that the thermal conductivity also goes down, and it is the ratio of thermal conductivity to loss tangent (SRF ceramic Quality Factor) and ceramic volume which will determine the heat load of any given design. We describe a novel robust co-axial SRF coupler design which uses compressed window technology. This technology will allow the use of highly thermally conductive materials for cryogenic windows. The mechanical designs will fit into standard-sized ConFlat® flanges for ease of assembly. Two windows will be used in a coaxial line. The distance between the windows is adjusted to cancel their reflections so that the same window can be used in many different applications at various frequencies.

M.L. Neubauer, R.A. Rimmer

2009-05-01T23:59:59.000Z

188

Towards Quantitative Simulations of High Power Proton Cyclotrons  

E-Print Network (OSTI)

PSI operates a cyclotron based high intensity proton accelerator routinely at an average beam power of 1.3MW. With this power the facility is at the worldwide forefront of high intensity proton accelerators. The beam current is practically limited by losses at extraction and the resulting activation of accelerator components. Further intensity upgrades and new projects aiming at an even higher average beam power, are only possible if the relative losses can be lowered in proportion, thus keeping absolute losses at a constant level. Maintaining beam losses at levels allowing hands-on maintenance is a primary challenge in any high power proton machine design and operation. In consequence, predicting beam halo at these levels is a great challenge and will be addressed in this paper. High power hadron driver have being used in many disciplines of science and, a growing interest in the cyclotron technology for high power hadron drivers are being observed very recently. This report will briefly introduce OPAL, a tool for precise beam dynamics simulations including 3D space charge. One of OPAL's flavors (OPAL-cycl) is dedicated to high power cyclotron modeling and is explained in greater detail. We then explain how to obtain initial conditions for our PSI Ring cyclotron which still delivers the world record in beam power of 1.3 MW continuous wave (cw). Several crucial steps are explained necessary to be able to predict tails at the level of 3\\sigma ... 4\\sigma in the PSI Ring cyclotron. We compare our results at the extraction with measurements, obtained with a 1.18 MW cw production beam. Based on measurement data, we develop a simple linear model to predict beam sizes of the extracted beam as a function of intensities and confirm the model with simulations.

Y. J. Bi; A. Adelmann; R. Dölling; M. Humbel; W. Joho; M. Seidel; T. J. Zhang

2010-12-03T23:59:59.000Z

189

Large Scale Computing and Storage Requirements for High Energy Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

for High Energy Physics for High Energy Physics Accelerator Physics P. Spentzouris, Fermilab Motivation Accelerators enable many important applications, both in basic research and applied sciences Different machine attributes are emphasized for different applications * Different particle beams and operation principles * Different energies and intensities Accelerator science and technology objectives for all applications * Achieve higher energy and intensity, faster and cheaper machine design, more reliable operation a wide spectrum of requirements for very complex instruments. Assisting their design and operation requires an equally complex set of computational tools. High Energy Physics Priorities High energy frontier * Use high-energy colliders to discover new particles and

190

A Tutorial on Detection and Characterization of Special Behavior in Large Electric Power Systems  

SciTech Connect

The objective of this document is to report results in the detection and characterization of special behavior in large electric power systems. Such behavior is usually dynamic in nature, but not always. This is also true for the underlying sources of special behavior. At the device level, a source of special behavior might be an automatic control system, a dynamic load, or even a manual control system that is operated according to some sharply defined policy. Other possible sources include passive system conditions, such as the state of a switched device or the amount of power carried on some critical line. Detection and characterization are based upon “signature information” that is extracted from the behavior observed. Characterization elements include the signature information itself, the nature of the behavior and its likely causes, and the associated implications for the system or for the public at large. With sufficient data and processing, this characterization may directly identify a particular condition or device at a specific location. Such conclusive results cannot always be done from just one observation, however. Information environments that are very sparse may require multiple observations, comparative model studies, and even direct testing of the system.

Hauer, John F.; DeSteese, John G.

2004-08-20T23:59:59.000Z

191

E-beam high voltage switching power supply  

DOE Patents (OSTI)

A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360.degree./n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load.

Shimer, Daniel W. (Danville, CA); Lange, Arnold C. (Livermore, CA)

1997-01-01T23:59:59.000Z

192

E-beam high voltage switching power supply  

DOE Patents (OSTI)

A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360{degree}/n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load. 7 figs.

Shimer, D.W.; Lange, A.C.

1997-03-11T23:59:59.000Z

193

Advanced, High Power, Next Scale, Wave Energy Conversion Device  

SciTech Connect

The project conducted under DOE contract DE?EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven?stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy? technology to deliver a device with much increased power delivery. Scaling?up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressed cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke? unlimited Power Take?Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.

Mekhiche, Mike [Principal Investigator] [Principal Investigator; Dufera, Hiz [Project Manager] [Project Manager; Montagna, Deb [Business Point of Contact] [Business Point of Contact

2012-10-29T23:59:59.000Z

194

An examination of wake effects and power production for a group of large wind turbines  

DOE Green Energy (OSTI)

Data from a group of three MOD-2 wind turbines and two meteorological towers at Goodnoe Hills were analyzed to evaluate turbine power output and wake effects (losses in power production due to operation of upwind turbines), and atmospheric factors influencing them. The influences of variations in the ambient wind speed, wind direction, and turbulence intensity were the primary factors evaluated. Meteorological and turbine data collected at the Goodnoe Hills site from April 1 to October 17, 1985, were examined to select the data sets for these analyses. Wind data from the two meteorological towers were evaluated to estimate the effect of a wake from an upwind turbine on the wind flow measured at the downwind tower. Maximum velocity deficits were about 25% and 12% at downwind distances of 5.8 and 8.3 rotor diameters (D), respectively. However, the maximum deficits at 5.8 D were about 14/degree/ off the centerline orientation between the turbine and the tower, indicating significant wake curvature. Velocity deficits were found to depend on the ambient wind speed, ranging from 27% at lower speeds (15 to 25 mph) to 20% at higher speeds (30 to 35 mph). Turbulence intensity increases dramatically in the wake by factors of about 2.3 and 1.5 over ambient conditions at 5.8 D and 8.3 D, respectively. An analysis of the ambient (non-wake) power production for all three turbines showed that the MOD-2 power output depends, not only on wind speed, but also on the turbulence intensity. At wind speeds below rated, there was a dramatic difference in turbine power output between low and high turbulence intensities for the same wind speed. One of the turbines had vortex generators on the blades. This turbine produced from 10% to 13% more power than the other two turbines when speeds were from 24 to 31 mph. 11 refs., 21 figs., 2 tabs.

Elliott, D.L.; Buck, J.W.; Barnard, J.C.

1988-04-01T23:59:59.000Z

195

Thermocline Thermal Storage Test for Large-Scale Solar Thermal Power Plants  

DOE Green Energy (OSTI)

Solar thermal-to-electric power plants have been tested and investigated at Sandia National Laboratories (SNL) since the late 1970s, and thermal storage has always been an area of key study because it affords an economical method of delivering solar-electricity during non-daylight hours. This paper describes the design considerations of a new, single-tank, thermal storage system and details the benefits of employing this technology in large-scale (10MW to 100MW) solar thermal power plants. Since December 1999, solar engineers at Sandia National Laboratories' National Solar Thermal Test Facility (NSTTF) have designed and are constructing a thermal storage test called the thermocline system. This technology, which employs a single thermocline tank, has the potential to replace the traditional and more expensive two-tank storage systems. The thermocline tank approach uses a mixture of silica sand and quartzite rock to displace a significant portion of the volume in the tank. Then it is filled with the heat transfer fluid, a molten nitrate salt. A thermal gradient separates the hot and cold salt. Loading the tank with the combination of sand, rock, and molten salt instead of just molten salt dramatically reduces the system cost. The typical cost of the molten nitrate salt is $800 per ton versus the cost of the sand and rock portion at $70 per ton. Construction of the thermocline system will be completed in August 2000, and testing will run for two to three months. The testing results will be used to determine the economic viability of the single-tank (thermocline) storage technology for large-scale solar thermal power plants. Also discussed in this paper are the safety issues involving molten nitrate salts and other heat transfer fluids, such as synthetic heat transfer oils, and the impact of these issues on the system design.

ST.LAURENT,STEVEN J.

2000-08-14T23:59:59.000Z

196

HIGH EFFICIENCY FOSSIL POWER PLANT (HEFPP) CONCEPTUALIZATION PROGRAM  

SciTech Connect

This study confirms the feasibility of a natural gas fueled, 20 MW M-C Power integrated pressurized molten carbonate fuel cell combined in a topping cycle with a gas turbine generator plant. The high efficiency fossil power plant (HEFPP) concept has a 70% efficiency on a LHV basis. The study confirms the HEFPP has a cost advantage on a cost of electricity basis over the gas turbine based combined cycle plants in the 20 MW size range. The study also identifies the areas of further development required for the fuel cell, gas turbine generator, cathode blower, inverter, and power module vessel. The HEFPP concept offers an environmentally friendly power plant with minuscule emission levels when compared with the combined cycle power plant.

J.L. Justice

1999-03-25T23:59:59.000Z

197

High Power Electrodynamics (HPE): Accelerator Operations and Technology,  

NLE Websites -- All DOE Office Websites (Extended Search)

CONTACTS CONTACTS Group Leader Bruce Carlsten Deputy Group Leader Ellen Guenette Administrator Josephine (Jo) Torres High-Power Electrodynamics (HPE) The High-Power Electrodynamics (AOT-HPE) Group applies accelerator and beam technologies to national-security-directed energy missions. AOT-HPE has three programmatic thrusts: free-electron lasers (FELs), high-power microwaves (HPM), and compact radiography. To maintain a vigorous and robust technical base for addressing DOE and DoD needs, the group's project portfolio is balanced between exploratory research, infrastructure development, and programmatic deliverables for sponsors. Funding is roughly 25% from the Lab's Directed Research and Development Program, 65% from DoD, and 10% from DOE. Technology Focus Areas AOT-HPE is the Laboratory's main vehicle for applying accelerator-based technologies to directed-energy mission needs. The group recognizes that many directed-energy missions are enabled by compact high-brightness electron accelerators and mm-wave and THz technologies.

198

Low cost high power GaSB photovoltaic cells  

Science Conference Proceedings (OSTI)

High power density and high capacity factor are important attributes of a thermophotovoltaics (TPV) system and GaSb cells are enabling for TPV systems. A TPV cogeneration unit at an off grid site will compliment solar arrays producing heat and electricity on cloudy days with the solar arrays generating electricity on sunny days. Herein

Lewis M. Fraas; Han X. Huang; Shi-Zhong Ye; She Hui; James Avery; Russell Ballantyne

1997-01-01T23:59:59.000Z

199

Low cost high power GaSb thermophotovoltaic cells  

Science Conference Proceedings (OSTI)

High power density and high capacity factor are important attributes of a TPV system and GaSb cells are enabling for TPV systems. A TPV cogeneration unit at an off grid site will compliment solar arrays producing heat and electricity on cloudy days with the solar arrays generating electricity on sunny days. Herein

Lewis M. Fraas; Han X. Huang; Shi-Zhong Ye; James Avery; Russell Ballantyne

1997-01-01T23:59:59.000Z

200

High-Level Power Minimization of Analog Sensor Interface Architectures  

Science Conference Proceedings (OSTI)

A high-level analog design and optimization tool was developed for the architectural synthesis of complex analog systems towards minimal power consumption. In this paper we will illustrate the use of this tool with the high-level design of an analog ...

Stéphane Donnay; Georges Gielen; Willy Sansen

1998-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "large power high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

A high-power switch-mode dc power supply for dynamic loads  

SciTech Connect

High-voltage dc power supplies are often required to operate with highly dynamic loads, such as arcs. A switch-mode dc power supply can offer significant advantages over conventional thyristor-based dc power supplies under such conditions. It can quickly turn off the supply to extinguish the arc, and it can quickly recover after the arc. It has a relatively small output filter capacitance, which results in small stored energy available to the arc. A 400-kW, 50-kV switch-mode dc power supply for an electron-beam gun that exploits these advantages was designed and tested. It uses four 100-kW, current-source-type dc-dc converters with inputs in parallel and outputs in series. The dc-dc converters operate at 20 kHz in the voltage regulator part and 10 kHz in the inverter, transformer, and output rectifier part of the circuit. Insulated gate bipolar transistors (IGBTs) are used as the power switches. Special techniques are used to protect the power supply and load against arcs and hard shorts. The power supply has an efficiency of 93%, an output voltage ripple of 1%, and fast dynamic response. In addition, it is nearly one-third the size of conventional power supplies.

Shimer, D.W.; Lange, A.C. [Lawrence Livermore National Lab., CA (United States); Bombay, J.N. [Kaiser Engineers, Oakland, CA (United States)

1994-06-23T23:59:59.000Z

202

High Power Microwave Switch Employing Electron Beam Triggering  

Science Conference Proceedings (OSTI)

A new type of switch for modulation of the Q-factor of a multi-mode storage resonator in a high-power active microwave pulse compressor is described. The operating principle of the switch is based on a sharp increase in the TE{sub 02{yields}}TE{sub 01} coupling coefficient, when an electron beam is injected into the switch cavity. The switch was tested at low power level in a compressor operated at X-band. A power gain of 19-20 in the compressed pulse with pulse duration of 40-50 ns was achieved. The proposed switch shows good prospects for use in high-power active pulse compressors.

Ivanov, O. A.; Vikharev, A. L. [Institute of Applied Physics RAS, Nizhny Novgorod, 603600 (Russian Federation); Omega-P, Inc., New Haven, Connecticut 06510 (United States); Isaev, V. A.; Lobaev, M. A. [Institute of Applied Physics RAS, Nizhny Novgorod, 603600 (Russian Federation); Hirshfield, J. L. [Omega-P, Inc., New Haven, Connecticut 06510 (United States); Department of Physics, Yale University, New Haven, Connecticut 06511 (United States)

2010-11-04T23:59:59.000Z

203

High Power Superconducting Continuous Wave Linacs for Protons and  

Office of Science (SC) Website

Power Superconducting Continuous Power Superconducting Continuous Wave Linacs for Protons and Heavy-Ions Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Spinoff Archives High Power Superconducting Continuous Wave Linacs for Protons and Heavy-Ions Print Text Size: A A A RSS Feeds FeedbackShare Page Application/instrumentation: High Power Superconducting Continuous Wave Linacs for Protons and Heavy-Ions

204

High efficiency carbonate fuel cell/turbine hybrid power cycle  

Science Conference Proceedings (OSTI)

The hybrid power cycle studies were conducted to identify a high efficiency, economically competitive system. A hybrid power cycle which generates power at an LHV efficiency > 70% was identified that includes an atmospheric pressure direct carbonate fuel cell, a gas turbine, and a steam cycle. In this cycle, natural gas fuel is mixed with recycled fuel cell anode exhaust, providing water for reforming fuel. The mixed gas then flows to a direct carbonate fuel cell which generates about 70% of the power. The portion of the anode exhaust which is not recycled is burned and heat transferred through a heat exchanger (HX) to the compressed air from a gas turbine. The heated compressed air is then heated further in the gas turbine burner and expands through the turbine generating 15% of the power. Half the exhaust from the turbine provides air for the anode exhaust burner. All of the turbine exhaust eventually flows through the fuel cell cathodes providing the O2 and CO2 needed in the electrochemical reaction. Exhaust from the cathodes flows to a steam system (heat recovery steam generator, staged steam turbine generating 15% of the cycle power). Simulation of a 200 MW plant with a hybrid power cycle had an LHV efficiency of 72.6%. Power output and efficiency are insensitive to ambient temperature, compared to a gas turbine combined cycle; NOx emissions are 75% lower. Estimated cost of electricity for 200 MW is 46 mills/kWh, which is competitive with combined cycle where fuel cost is > $5.8/MMBTU. Key requirement is HX; in the 200 MW plant studies, a HX operating at 1094 C using high temperature HX technology currently under development by METC for coal gassifiers was assumed. A study of a near term (20 MW) high efficiency direct carbonate fuel cell/turbine hybrid power cycle has also been completed.

Steinfeld, G.; Maru, H.C. [Energy Research Corp., Danbury, CT (United States); Sanderson, R.A. [Sanderson (Robert) and Associates, Wethersfield, CT (United States)

1996-07-01T23:59:59.000Z

205

High-Power Microwave Switch Employing Electron Beam Triggering  

Science Conference Proceedings (OSTI)

A high-power active microwave pulse compressor is described that modulates the quality factor Q of the energy storage cavity by a new means involving mode conversion controlled by a triggered electron-beam discharge through a switch cavity. The electron beam is emitted from a diamond-coated molybdenum cathode. This report describes the principle of operation, the design of the switch, the configuration used for the test, and the experimental results. The pulse compressor produced output pulses with 140 - Ã?Â?165 MW peak power, power gain of 16 - 20, and pulse duration of 16 - 20 ns at a frequency of 11.43 GHz.

Jay L. Hirshfield

2012-09-19T23:59:59.000Z

206

High-Throughput Dry Processes for Large-Area Devices  

DOE Green Energy (OSTI)

In October 1996, an interdisciplinary team began a three-year LDRD project to study the plasma processes of reactive ion etching and plasma-enhanced chemical vapor deposition on large-area silicon devices. The goal was to develop numerical models that could be used in a variety of applications for surface cleaning, selective etching, and thin-film deposition. Silicon solar cells were chosen as the experimental vehicle for this project because an innovative device design was identified that would benefit from immediate performance improvement using a combination of plasma etching and deposition processes. This report presents a summary of the technical accomplishments and conclusions of the team.

BUSS,RICHARD J.; HEBNER,GREGORY A.; RUBY,DOUGLAS S.; YANG,PIN

1999-11-01T23:59:59.000Z

207

Measuring and tuning energy efficiency on large scale high performance computing platforms.  

E-Print Network (OSTI)

??Recognition of the importance of power in the field of High Performance Computing, whether it be as an obstacle, expense or design consideration, has never… (more)

Laros, James Howard III

2012-01-01T23:59:59.000Z

208

Advanced Power Supply Demonstration: High Frequency Power Supplies for Electrostatic Precipitator (ESP) Applications  

Science Conference Proceedings (OSTI)

New, high frequency supplies to power electrostatic precipitators (ESPs) are being introduced to the utility industry. These power supplies are smaller, lighter, and more versatile than the 60-Hz supplies they replace. As with so many new technologies, a number of problems have been encountered in some of the early applications. This report describes the principles of operation, the advantages and disadvantages, and the state of development of the new technology.

2004-03-23T23:59:59.000Z

209

752 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 24, NO. 2, MAY 2009 Large-Scale Distribution Planning--Part  

E-Print Network (OSTI)

752 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 24, NO. 2, MAY 2009 Large-Scale Distribution Planning methodology for low-voltage distribution network planning. Combined optimization of transformers and approximately 1 300 000 customers. Index Terms--Low voltage, network planning, power distribu- tion planning

Rudnick, Hugh

210

Abstract--The issue of controlled and reliable integration of distributed energy resources into microgrids and large power  

E-Print Network (OSTI)

into microgrids and large power grids has recently gained considerable attention. The microgrid concept, which capabilities. In order to provide uninterruptible power supply to the loads, microgrids are expected to operate. The problem of optimal management of the resources in a microgrid is being widely investigated and recent

Cañizares, Claudio A.

211

Application of EPRI's Transmission Reliability Evaluation for Large-Scale Systems (TRELSS) Program to Bonneville Power Administration System  

Science Conference Proceedings (OSTI)

Delivering power at the lowest cost while maintaining an acceptable level of reliability requires careful transmission planning. EPRI's Transmission Reliability Evaluation for Large-Scale Systems (TRELSS) can be used to analyze and quantify the reliability of bulk power systems to help determine the need for new transmission facilities. This report presents the results of reliability analyses for Bonneville Power Administration (BPA) using the TRELSS program.

1997-11-11T23:59:59.000Z

212

Programmatic status of NASA`s CSTI high capacity power Stirling Space Power Converter Program  

DOE Green Energy (OSTI)

An overview is presented of the NASA Lewis Research Center Free-Piston Stirling Space Power Converter Technology Development Program. This work is being conducted under NASA`s Civil Space Technology Initiative (CSTI). The goal of the CSTI High Capacity Power element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system thermal and electric energy conversion efficiency at least fivefold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. This paper will discuss the status of test activities with the Space Power Research Engine (SPRE). Design deficiencies are gradually being corrected and the power converter is now outputting 11.5 kWe at a temperature ratio of 2 (design output is 12.5 kWe). Detail designs have been completed for the 1050 K Component Test Power Converter (CTPC). The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, gas bearings, superalloy joining technologies and high efficiency alternators. This paper also provides an update of progress in these technologies.

Dudenhoefer, J.E.

1994-09-01T23:59:59.000Z

213

High power windows for WR650 waveguide couplers  

Science Conference Proceedings (OSTI)

Based on the robust, pre-stressed planar window concept successfully tested for PEP II and LEDA, a new design for planar ceramic windows to be used with WR650 waveguide fundamental power couplers at 1300 MHz or 1500 MHz has been developed. These windows should operate in pulsed or CW mode and sustain at least 100 kW average power levels. This paper describes an overview of the simulations performed to match the ceramics in WR650 waveguides, design details, as well as the RF measurements and performance assessed by RF power tests on several high power windows manufactured at JLAB. Funding Agency: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177, and by The Office of Naval Research under contract to the Dept. of Energy.

Mircea Stirbet; Robert Rimmer; Thomas Elliott; Edward Daly; Katherine Wilson; Lynn Vogel; Haipeng Wang; Brian Carpenter; Karl Smith; Thomas Powers; Michael Drury; Robert Nichols; G. Davis

2007-06-01T23:59:59.000Z

214

High Power SiC Modules for HEVs and PHEVs  

DOE Green Energy (OSTI)

With efforts to reduce the cost, size, and thermal management systems for the power electronics drivetrain in hybrid electric vehicles (HEVs) and plug-in hybrid electric vehicles (PHEVs), wide band gap semiconductors including silicon carbide (SiC) have been identified as possibly being a partial solution. Research on SiC power electronics has shown their higher efficiency compared to Si power electronics due to significantly lower conduction and switching losses. This paper focuses on the development of a high power module based on SiC JFETs and Schottky diodes. Characterization of a single device, a module developed using the same device, and finally an inverter built using the modules is presented. When tested at moderate load levels compared to the inverter rating, an efficiency of 98.2% was achieved by the initial prototype.

Chinthavali, Madhu Sudhan [ORNL; Tolbert, Leon M [ORNL; Zhang, Hui [ORNL; Han, Jung H [ORNL; Barlow, Fred D. [University of Idaho; Ozpineci, Burak [ORNL

2010-01-01T23:59:59.000Z

215

Fuel Cell/Turbine Ultra High Efficiency Power System  

DOE Green Energy (OSTI)

FuelCell Energy, INC. (FCE) is currently involved in the design of ultra high efficiency power plants under a cooperative agreement (DE-FC26-00NT40) managed by the National Energy Technology Laboratory (NETL) as part of the DOE's Vision 21 program. Under this project, FCE is developing a fuel cell/turbine hybrid system that integrates the atmospheric pressure Direct FuelCell{reg_sign} (DFC{reg_sign}) with an unfired Brayton cycle utilizing indirect heat recovery from the power plant. Features of the DFC/T{trademark} system include: high efficiency, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, no pressurization of the fuel cell, independent operating pressure of the fuel cell and turbine, and potential cost competitiveness with existing combined cycle power plants at much smaller sizes. Objectives of the Vision 21 Program include developing power plants that will generate electricity with net efficiencies approaching 75 percent (with natural gas), while producing sulfur and nitrogen oxide emissions of less than 0.01 lb/million BTU. These goals are significant improvements over conventional power plants, which are 35-60 percent efficient and produce emissions of 0.07 to 0.3 lb/million BTU of sulfur and nitrogen oxides. The nitrogen oxide and sulfur emissions from the DFC/T system are anticipated to be better than the Vision 21 goals due to the non-combustion features of the DFC/T power plant. The expected high efficiency of the DFC/T will also result in a 40-50 percent reduction in carbon dioxide emissions compared to conventional power plants. To date, the R&D efforts have resulted in significant progress including proof-of-concept tests of a sub-scale power plant built around a state-of-the-art DFC stack integrated with a modified Capstone Model 330 Microturbine. The objectives of this effort are to investigate the integration aspects of the fuel cell and turbine and to obtain design information and operational data that will be utilized in the design of a 40-MW high efficiency Vision 21 power plant. Additionally, these tests are providing the valuable insight for DFC/Turbine power plant potential for load following, increased reliability, and enhanced operability.

Hossein, Ghezel-Ayagh

2001-11-06T23:59:59.000Z

216

Spacecraft Power Beaming Using High-Energy Lasers, Experimental Validation  

SciTech Connect

The lifetime of many spacecrafts are often limited by degradation of their electrical power subsystem, e.g. radiation-damaged solar arrays or failed batteries. Being able to beam power from terrestrial sites using high energy lasers, could alleviate this limitation, extending the lifetime of billions of dollars of satellite assets, as well as providing additional energy for electric propulsion that can be used for stationkeeping and orbital changes. In addition, extensive research at the Naval Postgraduate School (NPS) has shown the potential for annealing damaged solar cells using lasers. This paper describes that research and a proposed experiment to demonstrate the relevant concepts of high energy laser power beaming to an NPS-built and operated satellite. Preliminary results of ground experiment of laser illuminations of some of the solar panels of one of the spacecrafts are also presented.

Michael, Sherif [Naval Postgraduate School ECE Dep./Space Systems Academic Group, Monterey, CA 93943 (United States)

2008-04-28T23:59:59.000Z

217

Method of Equivalencing for a Large Wind Power Plant with Multiple Turbine Representation: Preprint  

DOE Green Energy (OSTI)

This paper focuses on our effort to develop an equivalent representation of a Wind Power Plant collector system for power system planning studies.

Muljadi, E.; Pasupulati, S.; Ellis, A.; Kosterov, D.

2008-07-01T23:59:59.000Z

218

Equivalencing the Collector System of a Large Wind Power Plant: Preprint  

DOE Green Energy (OSTI)

This paper focuses on our effort to develop an equivalent representation of a wind power plant collector system for power system planning studies.

Muljadi, E.; Butterfield, C. P.; Ellis, A.; Mechenbier, J.; Hochheimer, J.; Young, R.; Miller, N.; Delmerico, R.; Zavadil, R.; Smith, J. C.

2006-01-01T23:59:59.000Z

219

Living and Working Safely Around High-Voltage Power Lines.  

Science Conference Proceedings (OSTI)

High-voltage transmission lines can be just as safe as the electrical wiring in the homes--or just as dangerous. The crucial factor is ourselves: they must learn to behave safely around them. This booklet is a basic safety guide for those who live and work around power lines. It deals primarily with nuisance shocks due to induced voltages, and with potential electric shock hazards from contact with high-voltage lines. References on possible long-term biological effects of transmission lines are shown. In preparing this booklet, the Bonneville Power Administration has drawn on more than 50 years of experience with high-voltage transmission. BPA operates one of the world`s largest networks of long-distance, high-voltage lines. This system has more than 400 substations and about 15,000 miles of transmission lines, almost 4,400 miles of which are operated at 500,000 volts.

United States. Bonneville Power Administration.

2001-06-01T23:59:59.000Z

220

Thin liquid lithium targets for high power density  

E-Print Network (OSTI)

Thin liquid lithium targets for high power density applications: heavy ion beam strippers and beta Hilton Malmö City #12;Outline Liquid Lithium Stripper idea for FRIB Brief theory of film stability Thickness measurement results Next Steps Beta-beams 2 #12;Liquid Lithium Stripper for FRIB: Advantages

McDonald, Kirk

Note: This page contains sample records for the topic "large power high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Transmutation and energy-production with high power accelerators  

SciTech Connect

Accelerator-driven transmutation offers attractive new solutions to complex nuclear problems. This paper outlines the basics of the technology, summarizes the key application areas, and discusses designs of and performance issues for the high-power proton accelerators that are required.

Lawrence, G.P.

1995-07-01T23:59:59.000Z

222

A high-power L-band RF window  

E-Print Network (OSTI)

June. 2001. [3] "700 MHz Window R&D at LBNL", R. Rimmer et.Testing of PEP-II RF Cavity Windows", M. Neubauer et. al. ,A HIGH-POWER L-BAND RF WINDOW* R.A. Rimmer † , G. Koehler,

2001-01-01T23:59:59.000Z

223

High Resolution PV Power Modeling for Distribution Circuit Analysis  

DOE Green Energy (OSTI)

NREL has contracted with Clean Power Research to provide 1-minute simulation datasets of PV systems located at three high penetration distribution feeders in the service territory of Southern California Edison (SCE): Porterville, Palmdale, and Fontana, California. The resulting PV simulations will be used to separately model the electrical circuits to determine the impacts of PV on circuit operations.

Norris, B. L.; Dise, J. H.

2013-09-01T23:59:59.000Z

224

First observations of power MOSFET burnout with high energy neutrons  

SciTech Connect

Single event burnout was seen in power MOSFETs exposed to high energy neutrons. Devices with rated voltage {ge}400 volts exhibited burnout at substantially less than the rated voltage. Tests with high energy protons gave similar results. Burnout was also seen in limited tests with lower energy protons and neutrons. Correlations with heavy-ion data are discussed. Accelerator proton data gave favorable comparisons with burnout rates measured on the APEX spacecraft. Implications for burnout at lower altitudes are also discussed.

Oberg, D.L.; Wert, J.L.; Normand, E.; Majewski, P.P. [Boeing Defense and Space Group, Seattle, WA (United States)] [Boeing Defense and Space Group, Seattle, WA (United States); Wender, S.A. [Los Alamos National Lab., NM (United States)] [Los Alamos National Lab., NM (United States)

1996-12-01T23:59:59.000Z

225

High power light emitting diode based setup for photobleaching fluorescent impurities  

E-Print Network (OSTI)

High power light emitting diode based setup for photobleaching fluorescent impurities Tobias K be photobleached before final sample preparation. The instrument consists of high power light emitting diodes

Kaufman, Laura

226

Analysis and design of high frequency link power conversion systems for fuel cell power conditioning  

E-Print Network (OSTI)

In this dissertation, new high frequency link power conversion systems for the fuel cell power conditioning are proposed to improve the performance and optimize the cost, size, and weight of the power conversion systems. The first study proposes a new soft switching technique for the phase-shift controlled bi-directional dc-dc converter. The described dc-dc converter employs a low profile high frequency transformer and two active full-bridge converters for bidirectional power flow capability. The proposed new soft switching technique guarantees soft switching over wide range from no load to full load without any additional circuit components. The load range for proposed soft switching technique is analyzed by mathematical approach with equivalent circuits and verified by experiments. The second study describes a boost converter cascaded high frequency link direct dc-ac converter suitable for fuel cell power sources. A new multi-loop control for a boost converter to reduce the low frequency input current harmonics drawn from the fuel cell is proposed, and a new PWM technique for the cycloconverter at the secondary to reject the low order harmonics in the output voltages is presented. The performance of the proposed scheme is verified by the various simulations and experiments, and their trade-offs are described in detail using mathematical evaluation approach. The third study proposes a current-fed high frequency link direct dc-ac converter suitable for residential fuel cell power systems. The high frequency full-bridge inverter at the primary generates sinusoidally PWM modulated current pulses with zero current switching (ZCS), and the cycloconverter at the secondary which consists of only two bidirectional switches and output filter capacitors produces sinusoidally modulated 60Hz split single phase output voltage waveforms with near zero current switching. The active harmonic filter connected to the input terminal compensates the low order input current harmonics drawn from the fuel cell without long-term energy storage devices such as batteries and super capacitors.

Song, Yu Jin

2004-08-01T23:59:59.000Z

227

Coal-fired high performance power generating system. Final report  

SciTech Connect

As a result of the investigations carried out during Phase 1 of the Engineering Development of Coal-Fired High-Performance Power Generation Systems (Combustion 2000), the UTRC-led Combustion 2000 Team is recommending the development of an advanced high performance power generation system (HIPPS) whose high efficiency and minimal pollutant emissions will enable the US to use its abundant coal resources to satisfy current and future demand for electric power. The high efficiency of the power plant, which is the key to minimizing the environmental impact of coal, can only be achieved using a modern gas turbine system. Minimization of emissions can be achieved by combustor design, and advanced air pollution control devices. The commercial plant design described herein is a combined cycle using either a frame-type gas turbine or an intercooled aeroderivative with clean air as the working fluid. The air is heated by a coal-fired high temperature advanced furnace (HITAF). The best performance from the cycle is achieved by using a modern aeroderivative gas turbine, such as the intercooled FT4000. A simplified schematic is shown. In the UTRC HIPPS, the conversion efficiency for the heavy frame gas turbine version will be 47.4% (HHV) compared to the approximately 35% that is achieved in conventional coal-fired plants. This cycle is based on a gas turbine operating at turbine inlet temperatures approaching 2,500 F. Using an aeroderivative type gas turbine, efficiencies of over 49% could be realized in advanced cycle configuration (Humid Air Turbine, or HAT). Performance of these power plants is given in a table.

1995-08-31T23:59:59.000Z

228

Capacitive charging system for high power battery charging  

DOE Green Energy (OSTI)

This document describes a project to design, build, demonstrate, and document a Level 3 capacitive charging system, and it will be based on the existing PEZIC prototype capacitive coupler. The capacitive coupler will be designed to transfer power at a maximum of 600 kW, and it will transfer power by electric fields. The power electronics will transfer power at 100 kW. The coupler will be designed to function with future increases in the power electronics output power and increases in the amp/hours capacity of sealed batteries. Battery charging algorithms will be programmed into the control electronics. The finished product will be a programmable battery charging system capable of transferring 100 kW via a capacitive coupler. The coupler will have a low power loss of less than 25 watts when transferring 240 kW (400 amps). This system will increase the energy efficiency of high power battery charging, and it will enhance mobility by reducing coupler failures. The system will be completely documented. An important deliverable of this project is information. The information will be distributed to the Army`s TACOM-TARDEC`s Advanced Concept Group, and it will be distributed to commercial organizations by the Society of Automotive Engineers. The information will be valuable for product research, development, and specification. The capacitive charging system produced in this project will be of commercial value for future electric vehicles. The coupler will be designed to rapid charge batteries that have a capacity of several thousand amp/hours at hundreds of volts. The charging system built here will rapid charge batteries with several hundred amp/hours capacity, depending on the charging voltage.

NONE

1998-12-31T23:59:59.000Z

229

ELECTRIC VEHICLE BASED BATTERY STORAGES FOR LARGE SCALE WIND POWER INTEGRATION  

E-Print Network (OSTI)

Coherent Energy and Environment System Analysis CHP Combined Heat and Power CPP Condensing Power Plant DPL system and the thermal based power systems of Europe through Germany. The Western part of Denmark includes 6500MW of wind power plants (4000MW from distributed onshore wind farms and 2500MW from offshore

Pillai, Jayakrishnan Radhakrishna

230

Conversion Tower for Dispatchable Solar Power: High-Efficiency Solar-Electric Conversion Power Tower  

Science Conference Proceedings (OSTI)

HEATS Project: Abengoa Solar is developing a high-efficiency solar-electric conversion tower to enable low-cost, fully dispatchable solar energy generation. Abengoa’s conversion tower utilizes new system architecture and a two-phase thermal energy storage media with an efficient supercritical carbon dioxide (CO2) power cycle. The company is using a high-temperature heat-transfer fluid with a phase change in between its hot and cold operating temperature. The fluid serves as a heat storage material and is cheaper and more efficient than conventional heat-storage materials, like molten salt. It also allows the use of a high heat flux solar receiver, advanced high thermal energy density storage, and more efficient power cycles.

None

2012-01-11T23:59:59.000Z

231

The effect of high penetration of wind power on primary frequency control of power systems.  

E-Print Network (OSTI)

??In this work, a power system with wind power units and hydro power units are considered. The hydro power unit and variable speed wind turbine… (more)

Motamed, Bardia

2013-01-01T23:59:59.000Z

232

Implications of high efficiency power cycles for fusion reactor design  

SciTech Connect

The implications of the High Efficiency Power Cycle for fusion reactors are examined. The proposed cycle converts most all of the high grade CTR heat input to electricity. A low grade thermal input (T approximately 100$sup 0$C) is also required, and this can be supplied at low cost geothermal energy at many locations in the U. S. Approximately 3 KW of low grade heat is required per KW of electrical output. The thermodynamics and process features of the proposed cycle are discussed. Its advantages for CTR's are that low Q machines (e.g. driven Tokamaks, mirrors) can operate with a high (approximately 80 percent) conversion of CTR fusion energy to electricity, where with conventional power cycles no plant output could be achieved with such low Q operation. (auth)

Powell, J.R.; Usher, J.; Salzano, F.J.

1975-01-01T23:59:59.000Z

233

A High Power Liquid Hydrogen Target for Parity Violation Experiments  

DOE Green Energy (OSTI)

Parity-violating electron scattering measurements on hydrogen and deuterium, such as those underway at the Bates and CEBAF laboratories, require luminosities exceeding 10{sup 38} cm{sup -2} s{sup -1}, resulting in large beam power deposition into cryogenic liquid. Such targets must be able to absorb 500 watts or more with minimal change in target density. A 40 cm long liquid hydrogen target, designed to absorb 500 watts of beam power without boiling, has been developed for the SAMPLE experiment at Bates. In recent tests with 40 {micro}A of incident beam, no evidence was seen for density fluctuations in the target, at a sensitivity level of better than 1%. A summary of the target design and operational experience will be presented.

Mark, John W.

2003-06-06T23:59:59.000Z

234

SLAC Next-Generation High Availability Power Supply  

SciTech Connect

SLAC recently commissioned forty high availability (HA) magnet power supplies for Japan's ATF2 project. SLAC is now developing a next-generation N+1 modular power supply with even better availability and versatility. The goal is to have unipolar and bipolar output capability. It has novel topology and components to achieve very low output voltage to drive superconducting magnets. A redundant, embedded, digital controller in each module provides increased bandwidth for use in beam-based alignment, and orbit correction systems. The controllers have independent inputs for connection to two external control nodes. Under fault conditions, they sense failures and isolate the modules. Power supply speed mitigates the effects of fault transients and obviates subsequent magnet standardization. Hot swap capability promises higher availability and other exciting benefits for future, more complex, accelerators, and eventually the International Linear Collider project.

Bellomo, P.; MacNair, D.; /SLAC; ,

2010-06-11T23:59:59.000Z

235

High power battery test methods for hybrid vehicle applications  

DOE Green Energy (OSTI)

Commonly used EV battery tests are not very suitable for testing hybrid vehicle batteries, which may be primarily intended to supply vehicle acceleration power. The capacity of hybrid vehicle batteries will be relatively small, they will typically operate over a restricted range of states-of-charge, and they may seldom if ever be fully recharged. Further, hybrid propulsion system designs will commonly impose a higher regeneration content than is typical for electric vehicles. New test methods have been developed for use in characterizing battery performance and life for hybrid vehicle use. The procedures described in this paper were developed from the requirements of the government-industry cooperative Partnership for A New Generation of Vehicles (PNGV) program; however, they are expected to have broad application to the testing of energy storage devices for hybrid vehicles. The most important performance measure for a high power battery is its pulse power capability as a function of state-of-charge for both discharge and regeneration pulses. It is also important to characterize cycle life, although the {open_quote}cycles{close_quote} involved are quite different from the conventional full-discharge, full-recharge cycle commonly used for EV batteries, This paper illustrates in detail several test profiles which have been selected for PNGV battery testing, along with some sample results and lessons learned to date from the use of these test profiles. The relationship between the PNGV energy storage requirements and these tests is described so that application of the test methods can be made to other hybrid vehicle performance requirements as well. The resulting test procedures can be used to characterize the pulse power capability of high power energy storage devices including batteries and ultracapacitors, as well as the life expectancy of such devices, for either power assist or dual mode hybrid propulsion system designs.

Hunt, G.L.; Haskins, H.; Heinrich, B.; Sutula, R.

1997-11-01T23:59:59.000Z

236

Energy Storage and Reactive Power Compensator in a Large Wind Farm: Preprint  

Science Conference Proceedings (OSTI)

The size of wind farm power systems is increasing, and so is the number of wind farms contributing to the power systems network. The size of wind turbines is also increasing--from less than 1 MW a few years ago to the 2- to 3-MW machines being installed today and the 5-MW machines under development. The interaction of the wind farm, energy storage, reactive power compensation, and the power system network is being investigated. Because the loads and the wind farms' output fluctuate during the day, the use of energy storage and reactive power compensation is ideal for the power system network. Energy storage and reactive power compensation can minimize real/reactive power imbalances that can affect the surrounding power system. In this paper, we will show how the contribution of wind farms affects the power distribution network and how the power distribution network, energy storage, and reactive power compensation interact when the wind changes. We will also investigate the size of the components in relation to each other and to the power system.

Muljadi, E.; Butterfield, C. P.; Yinger, R.; Romanowitz, H.

2003-10-01T23:59:59.000Z

237

Understanding High-Power Fiber-Optic Laser Beam Delivery  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Power Fiber-Optic Laser Beam Delivery High-Power Fiber-Optic Laser Beam Delivery The submitted manuscript has been authored by a contractor of the U.S. Government under contract No. W- 31-109-ENG-38. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. Boyd V. Hunter and Keng H. Leong Argonne National Laboratory Technology Development Division Laser Applications Laboratory 9700 South Cass Avenue, Building 207 Argonne, Illinois 60439 Carl B. Miller, James F. Golden, Robert D. Glesias and Patrick J. Laverty U. S. Laser Corporation 825 Windham Court North P. O. Box 609 Wyckoff, New Jersey 07481 March 25, 1996 Manuscript to be submitted to Journal of Laser Applications

238

High average power magnetic modulator for metal vapor lasers  

DOE Patents (OSTI)

A three-stage magnetic modulator utilizing magnetic pulse compression designed to provide a 60 kV pulse to a copper vapor laser at a 4.5 kHz repetition rate is disclosed. This modulator operates at 34 kW input power. The circuit includes a step up auto transformer and utilizes a rod and plate stack construction technique to achieve a high packing factor.

Ball, Don G. (Livermore, CA); Birx, Daniel L. (Oakley, CA); Cook, Edward G. (Livermore, CA); Miller, John L. (Livermore, CA)

1994-01-01T23:59:59.000Z

239

High-power regenerative Nd-phosphate glass amplifier  

Science Conference Proceedings (OSTI)

A compact high-power regenerative Nd-phosphate glass amplifier is described which incorporates spatial filtering and full image relay techniques. Output energies up to 1.2 J at a pulse duration of 140 +- 10 psec (FWHM) and 3 J at 900 +- 70 psec (FWHM) are achieved in a smooth nearly flattop beam intensity profile. Even with present-day technology, this system could be scaled into a terawatt regime.

Roschger, E.W.; Balmer, J.E.

1985-09-15T23:59:59.000Z

240

Energy Storage Application Brief -- Case History for Large Flywheel System: Piller -- Flywheel Energy Storage Systems for Premium Power  

Science Conference Proceedings (OSTI)

Piller of Middleton, New York produces premium power systems for power quality and uninterruptible power supply (UPS) applications. An entire family of products is commercially available in a variety of system and circuit configurations for industrial use. These products are beneficial because they are highly reliable and protect from voltage sags. The energy storage components of these systems uses mature, conventional flywheel technology. This technology review describes the various applications of the...

1999-11-23T23:59:59.000Z

Note: This page contains sample records for the topic "large power high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

High average power diode pumped solid state lasers for CALIOPE  

Science Conference Proceedings (OSTI)

Diode pumping of solid state media offers the opportunity for very low maintenance, high efficiency, and compact laser systems. For remote sensing, such lasers may be used to pump tunable non-linear sources, or if tunable themselves, act directly or through harmonic crystals as the probe. The needs of long range remote sensing missions require laser performance in the several watts to kilowatts range. At these power performance levels, more advanced thermal management technologies are required for the diode pumps. The solid state laser design must now address a variety of issues arising from the thermal loads, including fracture limits, induced lensing and aberrations, induced birefringence, and laser cavity optical component performance degradation with average power loading. In order to highlight the design trade-offs involved in addressing the above issues, a variety of existing average power laser systems are briefly described. Included are two systems based on Spectra Diode Laboratory`s water impingement cooled diode packages: a two times diffraction limited, 200 watt average power, 200 Hz multi-rod laser/amplifier by Fibertek, and TRW`s 100 watt, 100 Hz, phase conjugated amplifier. The authors also present two laser systems built at Lawrence Livermore National Laboratory (LLNL) based on their more aggressive diode bar cooling package, which uses microchannel cooler technology capable of 100% duty factor operation. They then present the design of LLNL`s first generation OPO pump laser for remote sensing. This system is specified to run at 100 Hz, 20 nsec pulses each with 300 mJ, less than two times diffraction limited, and with a stable single longitudinal mode. The performance of the first testbed version will be presented. The authors conclude with directions their group is pursuing to advance average power lasers. This includes average power electro-optics, low heat load lasing media, and heat capacity lasers.

Comaskey, B.; Halpin, J.; Moran, B.

1994-07-01T23:59:59.000Z

242

Remote visualization of large scale data for ultra-high resolution display environments  

Science Conference Proceedings (OSTI)

ParaView is one of the most widely used scientific tools that support parallel visualization of large scale data. The Scalable Adaptive Graphics Environment (SAGE) is a graphics middleware that enables real-time streaming of ultra-high resolution visual ... Keywords: ParaView, SAGE, large-scale data, remote visualization, ultra-high resolution visualization

Sungwon Nam; Byungil Jeong; Luc Renambot; Andrew Johnson; Kelly Gaither; Jason Leigh

2009-11-01T23:59:59.000Z

243

Optimization Studies for ISOL Type High-Powered Targets  

Science Conference Proceedings (OSTI)

The research studied one-step and two-step Isotope Separation on Line (ISOL) targets for future radioactive beam facilities with high driver-beam power through advanced computer simulations. As a target material uranium carbide in the form of foils was used because of increasing demand for actinide targets in rare-isotope beam facilities and because such material was under development in ISAC at TRIUMF when this project started. Simulations of effusion were performed for one-step and two step targets and the effects of target dimensions and foil matrix were studied. Diffusion simulations were limited by availability of diffusion parameters for UCx material at reduced density; however, the viability of the combined diffusion?effusion simulation methodology was demonstrated and could be used to extract physical parameters such as diffusion coefficients and effusion delay times from experimental isotope release curves. Dissipation of the heat from the isotope-producing targets is the limiting factor for high-power beam operation both for the direct and two-step targets. Detailed target models were used to simulate proton beam interactions with the targets to obtain the fission rates and power deposition distributions, which were then applied in the heat transfer calculations to study the performance of the targets. Results indicate that a direct target, with specification matching ISAC TRIUMF target, could operate in 500-MeV proton beam at beam powers up to ~40 kW, producing ~8 1013 fission/s with maximum temperature in UCx below 2200 C. Targets with larger radius allow higher beam powers and fission rates. For the target radius in the range 9-mm to 30-mm the achievable fission rate increases almost linearly with target radius, however, the effusion delay time also increases linearly with target radius.

Remec, Igor [Oak Ridge National Laboratory] [Oak Ridge National Laboratory; Ronningen, Reginald Martin [Michigan State University] [Michigan State University

2013-09-24T23:59:59.000Z

244

Technology survey and performance scaling for the design of high power nuclear electric power and propulsion systems  

E-Print Network (OSTI)

High power nuclear electric propulsion systems have the capability to enable many next-generation space exploration applications. To date, use of electric primary propulsion in flight systems has been limited to low-power, ...

White, Daniel B., Jr

2011-01-01T23:59:59.000Z

245

A High Performance Computing Network and System Simulator for the Power Grid: NGNS^2  

SciTech Connect

Designing and planing next generation power grid sys- tems composed of large power distribution networks, monitoring and control networks, autonomous generators and consumers of power requires advanced simulation infrastructures. The objective is to predict and analyze in time the behavior of networks of systems for unexpected events such as loss of connectivity, malicious attacks and power loss scenarios. This ultimately allows one to answer questions such as: “What could happen to the power grid if ...”. We want to be able to answer as many questions as possible in the shortest possible time for the largest possible systems. In this paper we present a new High Performance Computing (HPC) oriented simulation infrastructure named Next Generation Network and System Simulator (NGNS2 ). NGNS2 allows for the distribution of a single simulation among multiple computing elements by using MPI and OpenMP threads. NGNS2 provides extensive configuration, fault tolerant and load balancing capabilities needed to simulate large and dynamic systems for long periods of time. We show the preliminary results of the simulator running approximately two million simulated entities both on a 64-node commodity Infiniband cluster and a 48-core SMP workstation.

Villa, Oreste; Tumeo, Antonino; Ciraci, Selim; Daily, Jeffrey A.; Fuller, Jason C.

2012-11-11T23:59:59.000Z

246

IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 23, NO. 2, APRIL 2008 657 Overvoltage Protection of Large Power  

E-Print Network (OSTI)

distance from each other. These are of the type Elpress, each consisting of a 6-m-long steel pipe and a 95) protection studies for 245-kV power transformers for the aluminium industry as well as short-kV and 0.4-kV electrical installation systems for residential and industrial areas. Einar Andresson

Bak, Claus Leth

247

Discharge Physics of High Power Impulse Magnetron Sputtering  

SciTech Connect

High power impulse magnetron sputtering (HIPIMS) is pulsed sputtering where the peak power exceeds the time-averaged power by typically two orders of magnitude. The peak power density, averaged over the target area, can reach or exceed 107 W/m2, leading to plasma conditions that make ionization of the sputtered atoms very likely. A brief review of HIPIMS operation is given in a tutorial manner, illustrated by some original data related to the self-sputtering of niobium in argon and krypton. Emphasis is put on the current-voltage-time relationships near the threshold of self-sputtering runaway. The great variety of current pulse shapes delivers clues on the very strong gas rarefaction, self-sputtering runaway conditions, and the stopping of runaway due to the evolution of atom ionization and ion return probabilities as the gas plasma is replaced by metal plasma. The discussions are completed by considering instabilities and the special case of ?gasless? self-sputtering.

Anders, Andre

2010-10-13T23:59:59.000Z

248

A High Efficiency PSOFC/ATS-Gas Turbine Power System  

DOE Green Energy (OSTI)

A study is described in which the conceptual design of a hybrid power system integrating a pressurized Siemens Westinghouse solid oxide fuel cell generator and the Mercury{trademark} 50 gas turbine was developed. The Mercury{trademark} 50 was designed by Solar Turbines as part of the US. Department of Energy Advanced Turbine Systems program. The focus of the study was to develop the hybrid power system concept that principally would exhibit an attractively-low cost of electricity (COE). The inherently-high efficiency of the hybrid cycle contributes directly to achieving this objective, and by employing the efficient, power-intensive Mercury{trademark} 50, with its relatively-low installed cost, the higher-cost SOFC generator can be optimally sized such that the minimum-COE objective is achieved. The system cycle is described, major system components are specified, the system installed cost and COE are estimated, and the physical arrangement of the major system components is discussed. Estimates of system power output, efficiency, and emissions at the system design point are also presented. In addition, two bottoming cycle options are described, and estimates of their effects on overall-system performance, cost, and COE are provided.

W.L. Lundberg; G.A. Israelson; M.D. Moeckel; S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann

2001-02-01T23:59:59.000Z

249

Thulium heat source for high-endurance and high-energy density power systems  

DOE Green Energy (OSTI)

We are studying the performance characteristics of radioisotope heat source designs for high-endurance and high-energy-density power systems that use thulium-170. Heat sources in the power range of 5--50 kW{sub th} coupled with a power conversion efficiency of {approximately}30%, can easily satisfy current missions for autonomous underwater vehicles. New naval missions will be possible because thulium isotope power systems have a factor of one-to-two hundred higher endurance and energy density than chemical and electrochemical systems. Thulium-170 also has several other attractive features, including the fact that it decays to stable ytterbium-170 with a half-life of four months. For terrestrial applications, refueling on that time scale should be acceptable in view of the advantage of its benign decay. The heat source designs we are studying account for the requirements of isotope production, shielding, and integration with power conversion components. These requirements are driven by environmental and safety considerations. Thulium is present in the form of thin refractory thulia disks that allow power conversion at high peak temperature. We give estimates of power system state points, performance, mass, and volume characteristics. Monte Carlo radiation analysis provides a detailed assessment of shield requirements and heat transfer under normal and distressed conditions is also considered. 11 refs., 7 figs., 4 tabs.

Walter, C.E.; Kammeraad, J.E.; Van Konynenburg, R.; VanSant, J.H.

1991-05-01T23:59:59.000Z

250

THE SCALE-UP OF LARGE PRESSURIZED FLUIDIZED BEDS FOR ADVANCED COAL-FIRED POWER PROCESSES  

SciTech Connect

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor an agency thereof, nor any of the their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, A combined-cycle High Performance Power System (HIPPS) capable of overall cycle efficiencies approaching 50% has been proposed and designed by Foster Wheeler Development Corporation (FWDC). A pyrolyzer in the first stage of the HIPPS process converts a coal feedstock into fuel gas and char at an elevated pressure of 1.4 Map. (206 psia) and elevated temperature of 930 C (1700 F). The generated char serves as the feedstock for a Pulverized Coal (PC) boiler operating at atmospheric pressure, and the fuel gas is directly fired in a gas turbine. The hydrodynamic behavior of the pyrolyzer strongly influences the quality of both the fuel gas and the generated char, the energy split between the gas turbine and the steam turbine, and hence the overall efficiency of the system. By utilizing a simplified set of scaling parameters (Glicksman et al.,1993), a 4/7th labscale cold model of the pyrolyzer operating at ambient temperature and pressure was constructed and tested. The scaling parameters matched include solid to gas density ratio, Froude number, length to diameter ratio; dimensionless superficial gas velocity and solid recycle rate, particle sphericity and particle size distribution (PSD).

Leon R. Glicksman; Michael Louge; Hesham F. Younis; Richard Tan; Mathew Hyre; Mark Torpey

2003-11-24T23:59:59.000Z

251

Highly Conductive and Porous Activated Reduced Graphene Oxide Films for High-Power Supercapacitors  

E-Print Network (OSTI)

Highly Conductive and Porous Activated Reduced Graphene Oxide Films for High-Power Supercapacitors for a free-standing carbon film reported to date. A two-electrode supercapacitor using these carbon films. KEYWORDS: Graphene, flexible film, chemical activation, supercapacitors Free-standing thin film materials

252

Zero-switching-loss inverters for high-power applications  

SciTech Connect

The development of zero-switching-loss inverters has attracted much interest for industrial applications. The resonant dc link inverter (RDCLI) provides a simple and robust approach for realizing switching frequencies >20 kHz in multi-kilowatt systems but impresses substantial voltage stress (-- 2.5 supply voltage) across the devices. Two alternate topologies for realizing zero switching losses in high-power converters are proposed. The actively clamped resonant dc-link inverter (ACRLI) uses the concept of a lossless active clamp to restrict voltage stresses to only 1.3-1.5 supply voltage (V/sub s/) while maintaining a mode of operation similar to the RDCLI. For applications demanding substantially superior spectral performance, the resonant pole inverter (RPI), also called the quasi-resonant current mode inverter (QRCMI), is proposed as a viable topology. Detailed analysis, simulation, and experimental results are presented to verify operation principles of both power converters.

Divan, D.M.; Skibinski, G. (Wisconsin Univ., Madison, WI (USA). Dept. of Electrical and Computer Engineering)

1989-07-01T23:59:59.000Z

253

Stochastic Methods for Planning and Operating Power Systems with Large Amounts of Wind and Solar Power: Preprint  

DOE Green Energy (OSTI)

Wind and solar generators differ in their generation characteristics than conventional generators. The variable output and imperfect predictability of these generators face a stochastic approach to plan and operate the power system without fundamentally changing the operation and planning problems. This paper overviews stochastic modeling challenges in operations, generation planning, and transmission planning, with references to current industry and academic work. Different stochastic problem formulations, including approximations, are also discussed.

Milligan, M.; Donohoo, P.; O'Malley, M.

2012-09-01T23:59:59.000Z

254

Applications of high power millimeter waves in the DIII-D fusion program  

SciTech Connect

First operation of a new generation of MW level, 110 GHz generator (gyrotron) on the DIII-D fusion experimental device has been achieved. The desire for high power, cw millimeter (mm) wave sources to support fusion research and development is just now beginning to be realized. Plasma heating and current drive with directed mm waves rely on the strong absorption achieved when the wave frequency matches the natural ``cyclotron`` frequency of electrons in a magnetic field, or its harmonics. Recent progress in fusion experiments highlights the need for control of the interior details of the hot plasma, and nun wave systems are ideally suited for this role. A brief status of fusion research is given, and the importance of mm waves in the future directions for fusion research is described. The vacuum transmission components necessary for transmitting, monitoring, and launching high power 1 10 GHz waves into a plasma have been developed at General Atomics (GA) and will be described. High power mm waves have a number of attractive technological features for fusion applications compared with other candidate plasma heating and current drive technologies. Millimeter waves can be transmitted with high power density over large distances with low losses by utilizing corrugated waveguides, so the generators can be sited remotely, facilitating maintenance and saving valuable space near the fusion device.

Freeman, R.L.

1996-08-01T23:59:59.000Z

255

744 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 24, NO. 2, MAY 2009 Large-Scale Distribution Planning--Part I  

E-Print Network (OSTI)

744 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 24, NO. 2, MAY 2009 Large-Scale Distribution Planning--Part I: Simultaneous Network and Transformer Optimization Alejandro Navarro, Member, IEEE, and Hugh-voltage distribution networks. Combined optimization of transformers and associated networks is per- formed

Rudnick, Hugh

256

Experimental astrophysics with high power lasers and Z pinches  

SciTech Connect

With the advent of high energy density (HED) experimental facilities, such as high-energy lasers and fast Z-pinch, pulsed-power facilities, mm-scale quantities of matter can be placed in extreme states of density, temperature, and/or velocity. This has enabled the emergence of a new class of experimental science, HED laboratory astrophysics, wherein the properties of matter and the processes that occur under extreme astrophysical conditions can be examined in the laboratory. Areas particularly suitable to this class of experimental astrophysics include the study of opacities relevant to stellar interiors; equations of state relevant to planetary interiors; strong shock driven nonlinear hydrodynamics and radiative dynamics, relevant to supernova explosions and subsequent evolution; protostellar jets and high Mach-number flows; radiatively driven molecular clouds and nonlinear photoevaporation front dynamics; and photoionized plasmas relevant to accretion disks around compact objects, such as black holes and neutron stars.

Remington, B A; Drake, R P; Ryutov, D D

2004-12-10T23:59:59.000Z

257

Impacts of Large-Scale Wind Generators Penetration on the Voltage Stability of Power Systems  

E-Print Network (OSTI)

by 2020 and 300 GW of installed wind power capacity in Europe by 2030. An overview of the historical to make energy available economically with reduced carbon emission using renewable energy sources-limiting factor. FACTS controllers have been used for solving various power system steady-state control problems

Pota, Himanshu Roy

258

Analysis of High Power IGBT Short Circuit Failures  

SciTech Connect

The Next Linear Collider (NLC) accelerator proposal at SLAC requires a highly efficient and reliable, low cost, pulsed-power modulator to drive the klystrons. A solid-state induction modulator has been developed at SLAC to power the klystrons; this modulator uses commercial high voltage and high current Insulated Gate Bipolar Transistor (IGBT) modules. Testing of these IGBT modules under pulsed conditions was very successful; however, the IGBTs failed when tests were performed into a low inductance short circuit. The internal electrical connections of a commercial IGBT module have been analyzed to extract self and mutual partial inductances for the main current paths as well as for the gate structure. The IGBT module, together with the partial inductances, has been modeled using PSpice. Predictions for electrical paths that carry the highest current correlate with the sites of failed die under short circuit tests. A similar analysis has been carried out for a SLAC proposal for an IGBT module layout. This paper discusses the mathematical model of the IGBT module geometry and presents simulation results.

Pappas, G.

2005-02-11T23:59:59.000Z

259

Technology survey and performance scaling for the design of high power nuclear electric power and propulsion systems.  

E-Print Network (OSTI)

??High power nuclear electric propulsion systems have the capability to enable many next-generation space exploration applications. To date, use of electric primary propulsion in flight… (more)

White, Daniel B., Jr

2011-01-01T23:59:59.000Z

260

Conductor requirements for high-temperature superconducting utility power transformers  

Science Conference Proceedings (OSTI)

High-temperature superconducting (HTS) coated conductors in utility power transformers must satisfy a set of operating requirements that are driven by two major considerations-HTS transformers must be economically competitive with conventional units, and the conductor must be robust enough to be used in a commercial manufacturing environment. The transformer design and manufacturing process will be described in order to highlight the various requirements that it imposes on the HTS conductor. Spreadsheet estimates of HTS transformer costs allow estimates of the conductor cost required for an HTS transformer to be competitive with a similarly performing conventional unit.

Pleva, E. F. [Waukesha Electric Systems, Waukesha, WI; Mehrotra, V. [Waukesha Electric Systems, Waukesha, WI; Schwenterly, S W [ORNL

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "large power high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

High-Voltage Power Supply System for Laser Isotope Separation  

SciTech Connect

This report presents several concepts for Laser High-Voltage Power Supply (HVPS) Systems for a Laser Isotope Separation facility. Selection of equipments and their arrangement into operational systems is based on proven designs and on application concepts now being developed. This report has identified a number of alternative system arrangements and has provided preliminary cost estimates for each. The report includes a recommendation for follow-on studies that will further define the optimum Laser HVPS Systems. Brief descriptions are given of Modulator/Regulator circuit trade-offs, system control interfaces, and their impact on costs.

Ketaily, E.C.; Buckner, R.P.; Uhrik, R.L.

1979-06-26T23:59:59.000Z

262

High-power radio-frequency attenuation device  

DOE Patents (OSTI)

A resistor device for attenuating radio frequency power includes a radio frequency conductor connected to a series of fins formed of high relative magnetic permeability material. The fins are dimensional to accommodate the skin depth of the current conduction therethrough, as well as an inner heat conducting portion where current does not travel. Thermal connections for air or water cooling are provided for the inner heat conducting portions of each fin. Also disclosed is a resistor device to selectively alternate unwanted radio frequency energy in a resonant cavity.

Kerns, Q.A.; Miller, H.W.

1981-12-30T23:59:59.000Z

263

High-power pulse modulator with ignitron discharger  

SciTech Connect

The high-power pulse modulator described here is used to produce spatial gaseous discharges and has an improved, controllable charging circuit, which permits a type ITR-4 ignitron discharger to be employed in a frequency mode as the basic commutator. The modulator is utilized in two modes: at a pulse repetition frequency of 50 Hz pulses are formed that have a duration of 25 usec and energies up to 3.5 kJ and at a frequency of 200 Hz, the pulses have a duration of -2 usec and energies up to 600 J. In all conditions the modulator operated stably with a wide range of load changes.

Anisimova, T.E.; Akkuratov, E.V.; Artemov, V.A.; Gromovenko, V.M.; Kalinin, V.P.; Nikonov, V.P.

1985-10-01T23:59:59.000Z

264

NREL Confirms Large Potential for Grid Integration of Wind, Solar Power (Fact Sheet)  

DOE Green Energy (OSTI)

To fully harvest the nation's bountiful wind and solar resources, it is critical to know how much electrical power from these renewable resources could be integrated reliably into the grid. To inform the discussion about the potential of such variable sources, the National Renewable Energy Laboratory (NREL) launched two key regional studies, examining the east and west sections of the U.S. power grid. The studies show that it is technically possible for U.S. power systems to integrate 20%-35% renewable electricity if infrastructure and operational improvements can be made.

Not Available

2011-10-01T23:59:59.000Z

265

Large Plastic Deformation in High-Capacity Lithium-Ion Batteries Caused by Charge and Discharge  

E-Print Network (OSTI)

Large Plastic Deformation in High-Capacity Lithium-Ion Batteries Caused by Charge and Discharge, Massachusetts 02138 Evidence has accumulated recently that a high-capacity elec- trode of a lithium-ion battery in the particle is high, possibly leading to fracture and cavitation. I. Introduction LITHIUM-ION batteries

Suo, Zhigang

266

Novel Large Area High Resolution Neutron Detector for the Spallation Neutron Source  

Science Conference Proceedings (OSTI)

Neutron scattering is a powerful technique that is critically important for materials science and structural biology applications. The knowledge gained from past developments has resulted in far-reaching advances in engineering, pharmaceutical and biotechnology industries, to name a few. New facilities for neutron generation at much higher flux, such as the SNS at Oak Ridge, TN, will greatly enhance the capabilities of neutron scattering, with benefits that extend to many fields and include, for example, development of improved drug therapies and materials that are stronger, longer-lasting, and more impact-resistant. In order to fully realize this enhanced potential, however, higher neutron rates must be met with improved detection capabilities, particularly higher count rate capability in large size detectors, while maintaining practicality. We have developed a neutron detector with the technical and economic advantages to accomplish this goal. This new detector has a large sensitive area, offers 3D spatial resolution, high sensitivity and high count rate capability, and it is economical and practical to produce. The proposed detector technology is based on B-10 thin film conversion of neutrons in long straw-like gas detectors. A stack of many such detectors, each 1 meter in length, and 4 mm in diameter, has a stopping power that exceeds that of He-3 gas, contained at practical pressures within an area detector. With simple electronic readout methods, straw detector arrays can provide spatial resolution of 4 mm FWHM or better, and since an array detector of such form consists of several thousand individual elements per square meter, count rates in a 1 m^2 detector can reach 2?10^7 cps. Moreover, each individual event can be timetagged with a time resolution of less than 0.1 ?sec, allowing accurate identification of neutron energy by time of flight. Considering basic elemental cost, this novel neutron imaging detector can be commercially produced economically, probably at a small fraction of the cost of He-3 detectors. In addition to neutron scattering science, the fully developed base technology can be used as a rugged, low-cost neutron detector in area monitoring and surveying. Radiation monitors are used in a number of other settings for occupational and environmental radiation safety. Such a detector can also be used in environmental monitoring and remote nuclear power plant monitoring. For example, the Department of Energy could use it to characterize nuclear waste dumps, coordinate clean-up efforts, and assess the radioactive contaminants in the air and water. Radiation monitors can be used to monitor the age and component breakdown of nuclear warheads and to distinguish between weapons and reactor grade plutonium. The UN's International Atomic Energy Agency (IAEA) uses radiation monitors for treaty verification, remote monitoring, and enforcing the non-proliferation of nuclear weapons. As part of treaty verification, monitors can be used to certify the contents of containers during inspections. They could be used for portal monitoring to secure border checkpoints, sea ports, air cargo centers, public parks, sporting venues, and key government buildings. Currently, only 2% of all sea cargo shipped is inspected for radiation sources. In addition, merely the presence of radiation is detected and nothing is known about the radioactive source until further testing. The utilization of radiation monitors with neutron sensitivity and capability of operation in hostile port environments would increase the capacity and effectiveness of the radioactive scanning processes.

Lacy, Jeffrey L

2009-05-22T23:59:59.000Z

267

NETL: News Release - Florida Demo Tames High Sulfur Coal: Delivers Power at  

NLE Websites -- All DOE Office Websites (Extended Search)

March 11, 2005 March 11, 2005 Florida Demo Tames High Sulfur Coal: Delivers Power at Very Low Emissions Shows that New Technology Cuts Pollutants to Fractions of Federal Clean Air Limits JACKSONVILLE, FL - Recent tests with one of the nation's mid- to high-sulfur coals have further verified that a new electric generation technology in its first large-scale utility demonstration here is one of the world's cleanest coal-based power plants. This city's municipal utility JEA logged the achievement at its Northside Generating Station using Illinois No. 6 coal in a 300 megawatt demonstration of circulating fluidized bed (CFB) combustion, which is the largest application yet of the new form in the United States. It almost triples the size of a previous demonstration and scales up the technology to the sizes preferred for adding new plants and replacing old ones, also called repowering.

268

Virtually distortion-free imaging system for large field, high resolution lithography  

DOE Patents (OSTI)

Virtually distortion free large field high resolution imaging is performed using an imaging system which contains large field distortion or field curvature. A reticle is imaged in one direction through the optical system to form an encoded mask. The encoded mask is then imaged back through the imaging system onto a wafer positioned at the reticle position.

Hawryluk, Andrew M. (Modesto, CA); Ceglio, Natale M. (Livermore, CA)

1993-01-01T23:59:59.000Z

269

Epfast: a model for simulating uncontrolled islanding in large power systems  

Science Conference Proceedings (OSTI)

This paper describes the capabilities, calculation logic, and foundational assumptions of EPfast, a new simulation and impact analysis tool developed by Argonne National Laboratory. The purpose of the model is to explore the tendency of power ...

Edgar C. Portante; Brian A. Craig; Leah Talaber Malone; James Kavicky; Stephen F. Folga; Stewart Cedres

2011-12-01T23:59:59.000Z

270

Impacts of large quantities of wind energy on the electric power system  

E-Print Network (OSTI)

Wind energy has been surging on a global scale. Significant penetration of wind energy is expected to take place in the power system, bringing new challenges because of the variability and uncertainty of this renewable ...

Yao, Yuan, S.M. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

271

Inferring the dark matter power spectrum from the Lyman-alpha forest in high-resolution QSO absorption spectra  

E-Print Network (OSTI)

We use the LUQAS sample (Kim et al. 2004), a set of 27 high-resolution and high signal-to-noise QSO absorption spectra at a median redshift of z=2.25, and the data from Croft et al. (2002) at a median redshift of z=2.72, together with a large suite of high-resolution large box-size hydro-dynamical simulations, to estimate the linear dark matter power spectrum on scales 0.003 s/km power spectrum at z=2.72 also agrees with that inferred from LUQAS at lower redshift if we assume that the increase of the amplitude is due to gravitational growth between these redshifts. We further argue that the smaller mean optical depth measured from high-resolution spectra is more accurate than the larger value obtained from low-resolution spectra by Press et al. (1993) which Croft et al. used. For the smaller optical depth we obtain a ~ 20% higher value for the rms fluctuation amplitude of the matter density. By combining the amplitude of the matter power spectrum inferred from the Lyman-alpha forest with the amplitude on large scales inferred from measurements of the CMB we obtain constraints on the primordial spectral index n and the normalisation sigma_8. For values of the mean optical depth favoured by high-resolution spectra, the inferred linear power spectrum is consistent with a LambdaCDM model with a scale-free (n=1) primordial power spectrum.

Matteo Viel; Martin G. Haehnelt; Volker Springel

2004-04-30T23:59:59.000Z

272

Computer Study of Isotope Production in High Power Accelerators  

E-Print Network (OSTI)

Methods for radionuclide production calculation in a high power proton accelerator have been developed and applied to study production of 22 isotopes by high-energy protons and neutrons. These methods are readily applicable to accelerator, and reactor, environments other than the particular model we considered and to the production of other radioactive and stable isotopes. We have also developed methods for evaluating cross sections from a wide variety of sources into a single cross section set and have produced an evaluated library covering about a third of all natural elements. These methods also are applicable to an expanded set of reactions. A 684 page detailed report on this study, with 37 tables and 264 color figures is available on the Web at http://t2.lanl.gov/publications/publications.html, or, if not accessible, in hard copy from the authors.

Van Riper, K A; Wilson, W B

1999-01-01T23:59:59.000Z

273

Computer Study of Isotope Production in High Power Accelerators  

E-Print Network (OSTI)

Methods for radionuclide production calculation in a high power proton accelerator have been developed and applied to study production of 22 isotopes by high-energy protons and neutrons. These methods are readily applicable to accelerator, and reactor, environments other than the particular model we considered and to the production of other radioactive and stable isotopes. We have also developed methods for evaluating cross sections from a wide variety of sources into a single cross section set and have produced an evaluated library covering about a third of all natural elements. These methods also are applicable to an expanded set of reactions. A 684 page detailed report on this study, with 37 tables and 264 color figures is available on the Web at http://t2.lanl.gov/publications/publications.html, or, if not accessible, in hard copy from the authors.

K. A. Van Riper; S. G. Mashnik; W. B. Wilson

1999-01-25T23:59:59.000Z

274

High voltage power supply with modular series resonant inverters  

DOE Patents (OSTI)

A relatively small and compact high voltage, high current power supply for a laser utilizes a plurality of modules containing series resonant half bridge inverters. A pair of reverse conducting thyristors are incorporated in each series resonant inverter module such that the series resonant inverter modules are sequentially activated in phases 360.degree./n apart, where n=number of modules for n>2. Selective activation of the modules allows precise output control reducing ripple and improving efficiency. Each series resonant half bridge inverter module includes a transformer which has a cooling manifold for actively circulating a coolant such as water, to cool the transformer core as well as selected circuit elements. Conductors connecting and forming various circuit components comprise hollow, electrically conductive tubes such as copper. Coolant circulates through the tubes to remove heat. The conductive tubes act as electrically conductive lines for connecting various components of the power supply. Where it is desired to make electrical isolation breaks, tubes comprised of insulating material such as nylon are used to provide insulation and continue the fluid circuit.

Dreifuerst, Gary R. (Livermore, CA); Merritt, Bernard T. (Livermore, CA)

1995-01-01T23:59:59.000Z

275

High voltage power supply with modular series resonant inverters  

DOE Patents (OSTI)

A relatively small and compact high voltage, high current power supply for a laser utilizes a plurality of modules containing series resonant half bridge inverters. A pair of reverse conducting thyristors are incorporated in each series resonant inverter module such that the series resonant inverter modules are sequentially activated in phases 360{degree}/n apart, where n=number of modules for n>2. Selective activation of the modules allows precise output control reducing ripple and improving efficiency. Each series resonant half bridge inverter module includes a transformer which has a cooling manifold for actively circulating a coolant such as water, to cool the transformer core as well as selected circuit elements. Conductors connecting and forming various circuit components comprise hollow, electrically conductive tubes such as copper. Coolant circulates through the tubes to remove heat. The conductive tubes act as electrically conductive lines for connecting various components of the power supply. Where it is desired to make electrical isolation breaks, tubes comprised of insulating material such as nylon are used to provide insulation and continue the fluid circuit. 11 figs.

Dreifuerst, G.R.; Merritt, B.T.

1995-07-18T23:59:59.000Z

276

RF coupler for high-power CW FEL photoinjector  

SciTech Connect

A high-current emittance-compensated RF photoinjector is a key enabling technology for a high-power CW FEL. The design presently under way is a 100-mA 2.5-cell {pi}-mode, 700-MHz, normal conducting demonstration CW RF photoinjector. This photoinjector will be capable of accelerating 3 nC per bunch with an emittance at the wiggler less than 10 mm-mrad. The paper presents results for the RF coupling from ridged wave guides to hte photoinjector RF cavity. The LEDA and SNS couplers inspired this 'dog-bone' design. Electromagnetic modeling of the coupler-cavity system has been performed using both 2-D and 3-D frequency-domain calculations, and a novel time-domain approach with MicroWave Studio. These simulations were used to adjust the coupling coefficient and calculate the power-loss distribution on the coupling slot. The cooling of this slot is a rather challenging thermal management project.

Kurennoy, S. (Sergey); Young, L. M. (Lloyd M.)

2003-01-01T23:59:59.000Z

277

A Scheduling Algorithm for Consistent Monitoring Results with Solar Powered High-Performance Wireless Embedded Systems  

E-Print Network (OSTI)

A Scheduling Algorithm for Consistent Monitoring Results with Solar Powered High but critical task for solar powered wireless high power embedded systems. Our algorithm relies on an energy Few bytes per second Up to 2MB per second Peak power (mW) 198 2200 Solar harvesting is one of the most

Simunic, Tajana

278

Comparison of large central and small decentralized power generation in India  

DOE Green Energy (OSTI)

This reports evaluates two options for providing reliable power to rural areas in India. The benefits and costs are compared for biomass based distributed generation (DG) systems versus a 1200-MW central grid coal-fired power plant. The biomass based DG systems are examined both as alternatives to grid extension and as supplements to central grid power. The benefits are divided into three categories: those associated with providing reliable power from any source, those associated specifically with biomass based DG technology, and benefits of a central grid coal plant. The report compares the estimated delivered costs of electricity from the DG systems to those of the central plant. The analysis includes estimates for a central grid coal plant and four potential DG system technologies: Stirling engines, direct-fired combustion turbines, fuel cells, and biomass integrated gasification combined cycles. The report also discusses issues affecting India`s rural electricity demand, including economic development, power reliability, and environmental concerns. The results of the costs of electricity comparison between the biomass DG systems and the coal-fired central grid station demonstrated that the DG technologies may be able to produce very competitively priced electricity by the start of the next century. The use of DG technology may provide a practical means of addressing many rural electricity issues that India will face in the future. Biomass DG technologies in particular offer unique advantages for the environment and for economic development that will make them especially attractive. 58 refs., 31 figs.

NONE

1997-05-01T23:59:59.000Z

279

Impact of High Wind Power Penetration on Hydroelectric Unit Operations  

SciTech Connect

The Western Wind and Solar Integration Study (WWSIS) investigated the operational impacts of very high levels of variable generation penetration rates (up to 35% by energy) in the western United States. This work examines the impact of this large amount of wind penetration on hydroelectric unit operations. Changes in hydroelectric unit operating unit patterns are examined for an aggregation of all hydro generators. The cost impacts of maintaining hydro unit flexibility are assessed and compared for a number of different modes of system operation.

Hodge, B. M.; Lew, D.; Milligan, M.

2011-01-01T23:59:59.000Z

280

Look-ahead voltage and load margin contingency selection functions for large-scale power systems  

SciTech Connect

Given the current operating condition (obtained from the real-time data), the near-term load demand at each bus (obtained from short-term load forecast), and the generation dispatch (say, based on economic dispatch), the authors present in this paper a load margin measure (MW and/or MVAR) to assess the system`s ability to withstand the forecasted load and generation variations. The authors also present a method to predict near-term system voltage profiles. The proposed look-ahead measure and the proposed voltage prediction are then applied to contingency selections for the near-term power system in terms of load margins to collapse and of the bus voltage magnitudes. They evaluate the proposed load-ahead measure and the voltage profile prediction on several power systems including a 1169-bus power system with 53 contingencies with promising results.

Chiang, H.D.; Wang, C.S.; Flueck, A.J. [Cornell Univ., Ithaca, NY (United States). School of Electrical Engineering

1997-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "large power high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

High Power, High Voltage FETs in Linear Applications: A User's Perspective  

SciTech Connect

The specifications of the current crop of highpower, high-voltage field-effect transistors (FETs) can lure a designer into employing them in high-voltage DC equipment. Devices with extremely low on-resistance and very high power ratings are available from several manufacturers. However, our experience shows that high-voltage, linear operation of these devices at near-continuous duty can present difficult reliability challenges at stress levels well-below their published specifications. This paper chronicles the design evolution of a 600 volt, 8 ampere shunt regulator for use with megawatt-class radio transmitters, and presents a final design that has met its reliability criteria.

N. Greenough, E. Fredd, S. DePasquale

2009-09-21T23:59:59.000Z

282

Development of high-power gyrotrons with gradually tapered cavity  

Science Conference Proceedings (OSTI)

In high power gyrotrons, the parasitic modes coupled with the operating mode cannot be avoided in the beam-wave interaction. These parasitic modes will decrease the efficiency of the gyrotrons. The purity of the operating mode affected by different tapers should be carefully studied. The steady-state self-consistent nonlinear theory for gyrotron with gradually tapered cavity is developed in this paper. A steady-state calculation code including 'cold cavity' and 'hot cavity' is designed. By comparison, a time-domain model analysis of gyrotron operation is also studied by particle-in-cell (PIC). It is found that the tapers of gyrotron have different influences on the modes coupling between the operating mode and the parasitic modes. During the study, an example of 94 GHz gyrotron with pure operating mode TE{sub 03} has been designed. The purity of the operating mode in the optimized cavity is up to -77 dB, and in output waveguide of the cavity is up to -76 dB. At the same time, the beam-wave interaction in the designed cavity has been simulated, too. An output power of 120 kW, corresponding to 41.6% efficiency and an oscillation frequency of 94.099 GHz have been achieved with a 50 kV, 6 A helical electron beam at a guiding magnetic field of 3.5485 T. The results show that the power in spurious modes of the optimized cavity may be kept far below than that of the traditional tapered cavity.

Lei Chaojun [Terahertz Science and Technology Research Center, University of Electronics Science and Technology of China, Chengdu 610054 (China); The Chinese People's Armed Police Force Academy, Langfang 065000 (China); Yu Sheng; Niu Xinjian; Liu Yinghui; Li Hongfu; Li Xiang [Terahertz Science and Technology Research Center, University of Electronics Science and Technology of China, Chengdu 610054 (China)

2012-12-15T23:59:59.000Z

283

The Development of low cost LiFePO4-based high power lithium...  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of low cost LiFePO4-based high power lithium-ion batteries Title The Development of low cost LiFePO4-based high power lithium-ion batteries Publication Type Journal...

284

High Power Testing of X-Band Dielectric-Loaded Accelerating Structures  

NLE Websites -- All DOE Office Websites (Extended Search)

m-to-metal-to-dielectric in a region of high electric field that is expected to cause breakdown problems; and (2) high power density in the dielectric, since all the power passes...

285

Development of a high-power lithium-ion battery.  

DOE Green Energy (OSTI)

Safety is a key concern for a high-power energy storage system such as will be required in a hybrid vehicle. Present lithium-ion technology, which uses a carbon/graphite negative electrode, lacks inherent safety for two main reasons: (1) carbon/graphite intercalates lithium at near lithium potential, and (2) there is no end-of-charge indicator in the voltage profile that can signal the onset of catastrophic oxygen evolution from the cathode (LiCoO{sub 2}). Our approach to solving these safety/life problems is to replace the graphite/carbon negative electrode with an electrode that exhibits stronger two-phase behavior further away from lithium potential, such as Li{sub 4}Ti{sub 5}O{sub 12}. Cycle-life and pulse-power capability data are presented in accordance with the Partnership for a New Generation of Vehicles (PNGV) test procedures, as well as a full-scale design based on a spreadsheet model.

Jansen, A. N.

1998-09-02T23:59:59.000Z

286

HIGH FREQUENCY POWER TRANSMISSION LINE FOR CYCLOTRONS AND THE LIKE  

DOE Patents (OSTI)

High-frequency power transmission systems, particularly a stacked capacitance alternating power current transmission line wherein maximum utilization of the effective conductios skin of the line conductors is achieved while enabling a low impedance to be obtained are reported. The transmission line consists of a number of flat metal strips with interleaved dielectric strips. The metal dielectric strips are coiled spirally with the axis of the spiral extending along the length of the strips, and the alternating metal strips at the output end have outwardly extending aligned lugs which are directly strapped together and connected to the respective terminals on the load. At the input end of the transmission line, similarly, the alternate metal strips are directly strapped together and connected to an altereating current source. With the arrangement described each metal strip conducts on both sides, so that the metal strips are designed to have a thickness corresponding to twice the depth of the "skin effect" conducting lamina of each conductor at the source frequency.

Armstrong, W.J.

1954-04-20T23:59:59.000Z

287

A model for simulating impacts of seismic events on large power systems  

Science Conference Proceedings (OSTI)

This paper describes the capabilities and calculation logic of EPfast, a new simulation and impact analysis tool developed by Argonne National Laboratory. The tool represents an emerging set of simulation models focusing on evaluating the vulnerability ... Keywords: multi-component disruptions, power network seismic performance, seismic system vulnerability, system collapse, uncontrolled islanding

Edgar C. Portante; Brian A. Craig; Leah E. Talaber Malone; James A. Kavicky; Stephen F. Folga; Stewart Cedres

2011-04-01T23:59:59.000Z

288

A Dynamic Information Manager for Networked Monitoring of Large Power Systems  

Science Conference Proceedings (OSTI)

The Wide Area Measurement Systems (WAMS) project, a broad-based, multi-phase effort, has been focused on enhancing the reliability of interconnected power systems. This report documents the third phase of that effort, which addresses the management of the data and information that WAMS-related technologies provide.

1999-05-18T23:59:59.000Z

289

S30-A2-02 PROPOSAL OF UNIQUE PV SYSTEM FOR LARGE-SCALE PHOTOVOLTAIC POWER GENERATION SYSTEM  

E-Print Network (OSTI)

In order to make a PV power generation system survive as an economically viable option against other renewable energy sources, drastic reduction of energy cost is inevitable. The authors have been working on the development of a unique PV system to reduce total system cost including solar panel, power conversion unit and installation work [I]. In the proposed concept, AC photovoltaic device and adhesive mounting method were introduced for the dedicated use in power station. By introducing this concept, it is feasible that the system cost will be reduced to 113 compared to the conventional system. The authors believe that the concept is suitable for very large-scale PV systems in desert areas. 1.

Kimitoshi Fukae; Akiharu Takabayashi; Shigenori Itoyama; Ichiro Kataoka; Hidehisa Makita; Masaaki Matsushita; Takaaki Mukai; Nobuyoshi Takehara; Masaki Konishi

2003-01-01T23:59:59.000Z

290

Application of High Powered Lasers to Perforated Completions  

NLE Websites -- All DOE Office Websites (Extended Search)

Congress on Applications of Laser & Electro-Optics Congress on Applications of Laser & Electro-Optics October 13 - 16, 2003, Jacksonville, Florida Application of High Powered Lasers to Perforated Completions Zhiyue Xu, Claude B. Reed and Keng H. Leong Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 R. A. Parker Parker Geoscience Consulting, LLC, 6346 Secrest Street, Arvada, CO 80403 R. M. Graves, Petroleum Engineering Department, Colorado School of Mines, Golden, CO 80401 ABSTRACT As part of the process of drilling an oil or gas well, a steel production casing is often inserted to the bottom of the well and sealed with cement against the productive formation. Openings must be made through the steel casing wall and cement and into the rock formation to allow formation fluid to enter the well. Conventionally, a perforator is

291

CENTER FOR PULSED POWER DRIVEN HIGH ENERGY DENSITY PLASMA STUDIES  

SciTech Connect

This annual report summarizes the activities of the Cornell Center for Pulsed-Power-Driven High-Energy-Density Plasma Studies, for the 12-month period October 1, 2005-September 30, 2006. This period corresponds to the first year of the two-year extension (awarded in October, 2005) to the original 3-year NNSA/DOE Cooperative Agreement with Cornell, DE-FC03-02NA00057. As such, the period covered in this report also corresponds to the fourth year of the (now) 5-year term of the Cooperative Agreement. The participants, in addition to Cornell University, include Imperial College, London (IC), the University of Nevada, Reno (UNR), the University of Rochester (UR), the Weizmann Institute of Science (WSI), and the P.N. Lebedev Physical Institute (LPI), Moscow. A listing of all faculty, technical staff and students, both graduate and undergraduate, who participated in Center research activities during the year in question is given in Appendix A.

Professor Bruce R. Kusse; Professor David A. Hammer

2007-04-18T23:59:59.000Z

292

Power efficiency for very high temperature solar thermal cavity receivers  

DOE Patents (OSTI)

This invention is an improved solar energy cavity receiver for exposing materials and components to high temperatures. The receiver includes a housing having an internal reflective surface defining a cavity and having an inlet for admitting solar radiation thereto. A photothermal absorber is positioned in the cavity to receive radiation from the inlet. A reflective baffle is positioned between the absorber and the inlet to severely restrict the re-radiation of energy through the inlet. The front surface of the baffle defines a narrow annulus with the internal reflective surface of the housing. The front surface of the baffle is contoured to reflect incoming radiation onto the internal surface of the housing, from which it is reflected through the annulus and onto the front surface of the absorber. The back surface of the baffle intercepts infrared radiation from the front of the absorber. With this arrangement, a high percentage of the solar power input is retained in the cavity; thus, high internal temperatures are attained.

McDougal, Allan R. (LaCanada-Flintridge, CA); Hale, Robert R. (Upland, CA)

1984-01-01T23:59:59.000Z

293

Hefei Guoxuan High tech Power Energy Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Guoxuan High tech Power Energy Co Ltd Guoxuan High tech Power Energy Co Ltd Jump to: navigation, search Name Hefei Guoxuan High-tech Power Energy Co, Ltd Place China Sector Solar Product Anhui Province - based researcher and manufacturer focused on cathode material production for lithium batteries, production of the batteries themselves and of products such as solar powered lights and e-bikes. References Hefei Guoxuan High-tech Power Energy Co, Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Hefei Guoxuan High-tech Power Energy Co, Ltd is a company located in China . References ↑ "Hefei Guoxuan High-tech Power Energy Co, Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Hefei_Guoxuan_High_tech_Power_Energy_Co_Ltd&oldid=346428

294

High power RF test of an 805 MHz RF cavity for a muon cooling channel  

SciTech Connect

We present recent high power RF test results on an 805 MHz cavity for a muon cooling experiment at Lab G in Fermilab. In order to achieve high accelerating gradient for large transverse emittance muon beams, the cavity design has adopted a pillbox like shape with 16 cm diameter beam iris covered by thin Be windows, which are demountable to allow for RF tests of different windows. The cavity body is made from copper with stiff stainless steel rings brazed to the cavity body for window attachments. View ports and RF probes are available for visual inspections of the surface of windows and cavity and measurement of the field gradient. Maximum of three thermo-couples can be attached to the windows for monitoring the temperature gradient on the windows caused by RF heating. The cavity was measured to have Q{sub 0} of about 15,000 with copper windows and coupling constant of 1.3 before final assembling. A 12 MW peak power klystron is available at Lab G in Fermilab for the high power test. The cavity and coupler designs were performed using the MAFIA code in the frequency and the time domain. Numerical simulation results and cold test measurements on the cavity and coupler will be presented for comparisons.

Li, Derun; Corlett, J.; MacGill, R.; Rimmer, R.; Wallig, J.; Zisman, M.; Moretti, A.; Qian, Z.; Wu, V.; Summers, D.; Norem, J.

2002-05-30T23:59:59.000Z

295

Timing driven power gating in high-level synthesis  

Science Conference Proceedings (OSTI)

The power gating technique is useful in reducing standby leakage current, but it increases the gate delay. For a functional unit, its maximum allowable delay (for a target clock period) limits the smallest standby leakage current its power gating can ...

Shih-Hsu Huang; Chun-Hua Cheng

2009-01-01T23:59:59.000Z

296

Design and implementation of low power multistage amplifiers and high frequency distributed amplifiers  

E-Print Network (OSTI)

The advancement in integrated circuit (IC) technology has resulted in scaling down of device sizes and supply voltages without proportionally scaling down the threshold voltage of the MOS transistor. This, coupled with the increasing demand for low power, portable, battery-operated electronic devices, like mobile phones, and laptops provides the impetus for further research towards achieving higher integration on chip and low power consumption. High gain, wide bandwidth amplifiers driving large capacitive loads serve as error amplifiers in low-voltage low drop out regulators in portable devices. This demands low power, low area, and frequency-compensated multistage amplifiers capable of driving large capacitive loads. The first part of the research proposes two power and area efficient frequency compensation schemes: Single Miller Capacitor Compensation (SMC) and Single Miller Capacitor Feedforward Compensation (SMFFC), for multistage amplifiers driving large capacitive loads. The designs have been implemented in a 0.5??m CMOS process. Experimental results show that the SMC and SMFFC amplifiers achieve gain-bandwidth products of 4.6MHz and 9MHz, respectively, when driving a load of 25K?/120pF. Each amplifier operates from a ??1V supply, dissipates less than 0.42mW of power and occupies less than 0.02mm2 of silicon area. The inception of the latest IEEE standard like IEEE 802.16 wireless metropolitan area network (WMAN) for 10 -66 GHz range demands wide band amplifiers operating at high frequencies to serve as front-end circuits (e.g. low noise amplifier) in such receiver architectures. Devices used in cascade (multistage amplifiers) can be used to increase the gain but it is achieved at an expense of bandwidth. Distributing the capacitance associated with the input and the output of the device over a ladder structure (which is periodic), rather than considering it to be lumped can achieve an extension of bandwidth without sacrificing gain. This concept which is also known as distributed amplification has been explored in the second part of the research. This work proposes certain guidelines for the design of distributed low noise amplifiers operating at very high frequencies. Noise analysis of the distributed amplifier with real transmission lines is introduced. The analysis for gain and noise figure is verified with simulation results from a 5-stage distributed amplifier implemented in a 0.18??m CMOS process.

Mishra, Chinmaya

2004-08-01T23:59:59.000Z

297

Investigation of Catastrophic Failures in High-Power MOSFET ...  

Science Conference Proceedings (OSTI)

Tube Failure in Coal and Gas Fired Power Plant · Understanding Failure of Titanium Alloys Using Fractography and Other Characterization Methods.

298

High power linear pulsed beam annealer. [Patent application  

DOE Patents (OSTI)

A high power pulsed electron beam system for annealing semiconductors is comprised of an electron gun having a heated cathode, control grid and focus ring for confining the pulsed beam of electrons to a predetermined area, and a curved drift tube. The drift tube and an annular Faraday shield between the focus ring and the drift tube are maintained at a high positive voltage with respect to the cathode to accelerate electrons passing through the focus ring, thereby eliminating space charge limitations on the emission of electrons from said gun. A coil surrounding the curved drift tube provides a magnetic field which maintains the electron beam focused about the axis of the tube. The magnetic field produced by the coil around the curved tube imparts motion to electrons in a spiral path for shallow penetration of the electrons into a target. It also produces a scalloped profile of the electron beam. A second drift tube spaced a predetermined distance from the curved tube is positioned with its axis aligned with the axis of the first drift tube. The second drift tube and the target holder are maintained at a reference voltage between the cathode voltage and the curved tube voltage to decelerate the electrons. A second coil surrounding the second drift tube, maintains the electron beam focused about the axis of the second drift tube. The magnetic field of the second coil comprises the electron beam to the area of the semiconductor on the target holder.

Strathman, M.D.; Sadana, D.K.; True, R.B.

1980-11-26T23:59:59.000Z

299

HIGH-TEMPERATURE ELECTROLYSIS FOR LARGE-SCALE HYDROGEN AND SYNGAS PRODUCTION FROM NUCLEAR ENERGY – SYSTEM SIMULATION AND ECONOMICS  

DOE Green Energy (OSTI)

A research and development program is under way at the Idaho National Laboratory (INL) to assess the technological and scale-up issues associated with the implementation of solid-oxide electrolysis cell technology for efficient high-temperature hydrogen production from steam. This work is supported by the US Department of Energy, Office of Nuclear Energy, under the Nuclear Hydrogen Initiative. This paper will provide an overview of large-scale system modeling results and economic analyses that have been completed to date. System analysis results have been obtained using the commercial code UniSim, augmented with a custom high-temperature electrolyzer module. Economic analysis results were based on the DOE H2A analysis methodology. The process flow diagrams for the system simulations include an advanced nuclear reactor as a source of high-temperature process heat, a power cycle and a coupled steam electrolysis loop. Several reactor types and power cycles have been considered, over a range of reactor outlet temperatures. Pure steam electrolysis for hydrogen production as well as coelectrolysis for syngas production from steam/carbon dioxide mixtures have both been considered. In addition, the feasibility of coupling the high-temperature electrolysis process to biomass and coal-based synthetic fuels production has been considered. These simulations demonstrate that the addition of supplementary nuclear hydrogen to synthetic fuels production from any carbon source minimizes emissions of carbon dioxide during the production process.

J. E. O'Brien; M. G. McKellar; E. A. Harvego; C. M. Stoots

2009-05-01T23:59:59.000Z

300

Uniform irradiation of adjustable target spots in high-power laser driver  

Science Conference Proceedings (OSTI)

For smoothing and shaping the on-target laser patterns flexibly in high-power laser drivers, a scheme has been developed that includes a zoom lens array and two-dimensional smoothing by spectral dispersion (SSD). The size of the target pattern can be controlled handily by adjusting the focal length of the zoom lens array, while the profile of the pattern can be shaped by fine tuning the distance between the target and the focal plane of the principal focusing lens. High-frequency stripes inside the pattern caused by beamlet interference are wiped off by spectral dispersion. Detailed simulations indicate that SSD works somewhat differently for spots of different sizes. For small spots, SSD mainly smooths the intensity modulation of low-to-middle spatial frequency, while for large spots, SSD sweeps the fine speckle structure to reduce nonuniformity of middle-to-high frequency. Spatial spectra of the target patterns are given and their uniformity is evaluated.

Jiang Xiujuan; Li Jinghui; Li Huagang; Li Yang; Lin Zunqi

2011-09-20T23:59:59.000Z

Note: This page contains sample records for the topic "large power high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Magnet Technology for Power Converters: Nanocomposite Magnet Technology for High Frequency MW-Scale Power Converters  

Science Conference Proceedings (OSTI)

Solar ADEPT Project: CMU is developing a new nanoscale magnetic material that will reduce the size, weight, and cost of utility-scale PV solar power conversion systems that connect directly to the grid. Power converters are required to turn the energy that solar power systems create into useable energy for the grid. The power conversion systems made with CMU’s nanoscale magnetic material have the potential to be 150 times lighter and significantly smaller than conventional power conversion systems that produce similar amounts of power.

None

2012-02-27T23:59:59.000Z

302

Inferring the dark matter power spectrum from the Lyman-alpha forest in high-resolution QSO absorption spectra  

E-Print Network (OSTI)

We use the LUQAS sample (Kim et al. 2004), a set of 27 high-resolution and high signal-to-noise QSO absorption spectra at a median redshift of z=2.25, and the data from Croft et al. (2002) at a median redshift of z=2.72, together with a large suite of high-resolution large box-size hydro-dynamical simulations, to estimate the linear dark matter power spectrum on scales 0.003 s/km power spectrum at z=2.72 also agrees with that inferred from LUQAS at lower redshift if we assume that the increase of the amplitude is due to gravitational growth between these redshifts. We further argue that the smaller mean optical depth measured from high-resolution spectra is more accurate than the larger value obtained from low-resolution spectra by Press et al. (1993) which Croft et al. used. For the smaller optical depth we...

Viel, M; Springel, V

2004-01-01T23:59:59.000Z

303

Space reactor/Stirling cycle systems for high power Lunar applications  

DOE Green Energy (OSTI)

NASA`s Space Exploration Initiative (SEI) has proposed the use of high power nuclear power systems on the lunar surface as a necessary alternative to solar power. Because of the long lunar night ({approximately} 14 earth days) solar powered systems with the requisite energy storage in the form of regenerative fuel cells or batteries becomes prohibitively heavy at high power levels ({approximately} 100 kWe). At these high power levels nuclear power systems become an enabling technology for variety of missions. One way of producing power on the lunar surface is with an SP-100 class reactor coupled with Stirling power converters. In this study, analysis and characterization of the SP-100 class reactor coupled with Free Piston Stirling Power Conversion (FPSPC) system will be performed. Comparison of results with previous studies of other systems, particularly Brayton and Thermionic, are made.

Schmitz, P.D. [Sverdrup Technology, Inc., Brook Park, OH (United States). Lewis Research Center Group; Mason, L.S. [National Aeronautics and Space Administration, Cleveland, OH (United States). Lewis Research Center

1994-09-01T23:59:59.000Z

304

An assessment of the economic, regulatory and technical implications of large-scale solar power deployment.  

E-Print Network (OSTI)

??Electricity from solar energy has many favorable attributes. Despite its current high cost relative to other technology options, a combination of cost reductions and policy… (more)

Merrick, James Hubert

2010-01-01T23:59:59.000Z

305

Plant Support Engineering: Guidance for the Replacement of Large Electric Motors at Nuclear Power Plants  

Science Conference Proceedings (OSTI)

The purpose of this report is to prepare a primary source of guidance for a project manager who is coordinating a team of plant personnel tasked with replacing a large electric motor. The report provides a generic process that describes interfaces and key steps necessary to ensure that the motor is evaluated and replaced in the most cost-effective and efficient means possible. The report also provides guidance regarding the typical composition of the project team and demonstrates how performance of their...

2010-03-15T23:59:59.000Z

306

Screening report on cell materials for high-power Li-Ion HEV batteries.  

DOE Green Energy (OSTI)

The Battery Technology Department at Argonne National Laboratory is a major participant in the U.S. Department of Energy's Advanced Technology Development (ATD) program. This multi-national laboratory program is dedicated to improving lithium-ion batteries for high-power HEV and FCEV applications. As part of the FreedomCAR Partnership, this program is addressing the three key barriers for high-power lithium-ion batteries: calendar life, abuse tolerance, and cost. All three of these barriers can be addressed by the choice of materials used in the cell chemistry. To date, the ATD program has developed two high-power cell chemistries, denoted our Gen 1 and Gen 2 cell chemistries. The selection of materials for use in the Gen 2 cell chemistry was based largely on reducing material cost and extending cell calendar life, relative to our Gen 1 cell chemistry. Table 1 provides a list of the materials used in our Gen 2 cell chemistry and their projected costs, when produced in large-scale quantities. In evaluating advanced materials, we have focused our efforts on materials that are lower cost than those listed in Table 1, while simultaneously offering enhanced chemical, structural, and thermal stability. Therefore, we have focused on natural graphite anode materials (having round-edge particle morphologies), cathode materials that contain more Mn and less Co and Ni (which can be produced via low-cost processes), lower cost electrode binders and/or binders that possess superior bonding properties at lower concentrations, and lower cost salts and solvents (with superior thermal and oxidation/reduction stability) for use in the electrolyte. The purpose of this report is to document the results of screening tests that were performed on a large number of advanced low-cost materials. These materials were screened for their potential to impact positively on the calendar life, safety, and/or cost of high-power lithium-ion cell chemistries, relative to our Gen 2 cell chemistry. As part of this effort, we developed and employed a set of standard test protocols to evaluate all of the materials. After brief descriptions of the screening test methodologies and equipment, relevant data on each material are summarized in the body of this report. We have evaluated five categories of materials, and the report is organized accordingly. Results will be presented on advanced carbons for anodes, improved cathode materials, new salts and solvent systems, alternative binders, and novel separators.

Liu, J.; Kahaian, A.; Belharouak, I.; Kang, S.; Oliver, S.; Henriksen, S.; Amine, K.

2003-04-24T23:59:59.000Z

307

High-power testing of PEP-II RF cavity windows  

SciTech Connect

We describe the high power testing of RF cavity windows for the PEP-II B factory. The window is designed for continuous operation at 476 MHz with up to 500 kW throughput and has been tested to full power using a modified PEP Klystron. The windows use an anti-multipactor coating on the vacuum side and the application and processing of this layer is discussed. The high power test configuration, RF processing history and high power performance are described.

Neubauer, M.; Allen, M.; Fant, K.; Hill, A.; Hoyt, M.; Judkins, J.; Schwarz, H. [Stanford Linear Accelerator Center, CA (United States); Rimmer, R.A. [Lawrence Berkeley National Lab., CA (United States)

1996-06-01T23:59:59.000Z

308

Coal-fired high performance power generating system  

SciTech Connect

The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) by the year 2000 that is capable of > 47% thermal efficiency; NO[sub x] SO [sub x] and Particulates < 25% NSPS; Cost of electricity 10% lower; coal > 65% of heat input and all solid wastes benign. In order to achieve these goals our team has outlined a research plan based on an optimized analysis of a 250 MW[sub e] combined cycle system applicable to both frame type and aeroderivative gas turbines. Under the constraints of the cycle analysis we have designed a high temperature advanced furnace (HITAF) which integrates several combustor and air heater designs with appropriate ash management procedures. Most of this report discusses the details of work on these components, and the R D Plan for future work. The discussion of the combustor designs illustrates how detailed modeling can be an effective tool to estimate NO[sub x] production, minimum burnout lengths, combustion temperatures and even particulate impact on the combustor walls. When our model is applied to the long flame concept it indicates that fuel bound nitrogen will limit the range of coals that can use this approach. For high nitrogen coals a rapid mixing, rich-lean, deep staging combustor will be necessary. The air heater design has evolved into two segments: a convective heat exchanger downstream of the combustion process; a radiant panel heat exchanger, located in the combustor walls; The relative amount of heat transferred either radiatively or convectively will depend on the combustor type and the ash properties.

1992-07-01T23:59:59.000Z

309

Study of highly-excited string states at the Large Hadron Collider  

E-Print Network (OSTI)

In TeV-scale gravity scenarios with large extra dimensions, black holes may be produced at future colliders. Good arguments have been made for why general relativistic black holes may be just out of reach of the Large Hadron Collider (LHC). However, in weakly-coupled string theory, highly excited string states - string balls - could be produced at the LHC with high rates and decay thermally, not unlike general relativistic black holes. In this paper, we simulate and study string ball production and decay at the LHC. We specifically emphasize the experimentally-detectable similarities and differences between string balls and general relativistic black holes at a TeV scale.

Douglas M. Gingrich; Kevin Martell

2008-08-19T23:59:59.000Z

310

Effect of high-energy neutral particles on extreme ultraviolet spectroscopy in large helical device  

Science Conference Proceedings (OSTI)

Spectra measured by an extreme ultraviolet (EUV) spectrometer frequently suffer large spike noise when Large Helical Device is operated in low-density range ({order to examine the effect of NBI, a carbon filter with thickness of 150 nm was installed in the EUV spectrometer. As a result, the spike noise was reduced by an order of magnitude. It is experimentally verified that the spike noise is caused by escaping high-energy neutral particles resulting from the circulating high-energy hydrogen ions borne from NBI.

Dong Chunfeng; Sakaue, Hiroyuki [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Morita, Shigeru; Tokitani, Masayuki; Goto, Motoshi [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Department of Fusion Science, Graduate University for Advanced Studies, Toki 509-5292, Gifu (Japan); Wang, Erhui [Department of Fusion Science, Graduate University for Advanced Studies, Toki 509-5292, Gifu (Japan); Zushi, Hideki [RIAM, Kyushu University, Kasuga 816-8580, Fukuoka (Japan)

2012-10-15T23:59:59.000Z

311

Online Monitoring Technical Basis and Analysis Framework for Large Power Transformers; Interim Report for FY 2012  

SciTech Connect

The Light Water Reactor Sustainability program at Idaho National Laboratory (INL) is actively conducting research to develop and demonstrate online monitoring (OLM) capabilities for active components in existing Nuclear Power Plants. A pilot project is currently underway to apply OLM to Generator Step-Up Transformers (GSUs) and Emergency Diesel Generators (EDGs). INL and the Electric Power Research Institute (EPRI) are working jointly to implement the pilot project. The EPRI Fleet-Wide Prognostic and Health Management (FW-PHM) Software Suite will be used to implement monitoring in conjunction with utility partners: the Shearon Harris Nuclear Generating Station (owned by Duke Energy for GSUs, and Braidwood Generating Station (owned by Exelon Corporation) for EDGs. This report presents monitoring techniques, fault signatures, and diagnostic and prognostic models for GSUs. GSUs are main transformers that are directly connected to generators, stepping up the voltage from the generator output voltage to the highest transmission voltages for supplying electricity to the transmission grid. Technical experts from Shearon Harris are assisting INL and EPRI in identifying critical faults and defining fault signatures associated with each fault. The resulting diagnostic models will be implemented in the FW-PHM Software Suite and tested using data from Shearon-Harris. Parallel research on EDGs is being conducted, and will be reported in an interim report during the first quarter of fiscal year 2013.

Nancy J. Lybeck; Vivek Agarwal; Binh T. Pham; Heather D. Medema; Kirk Fitzgerald

2012-09-01T23:59:59.000Z

312

High resolution mass spectrometry method and system for analysis of whole proteins and other large molecules  

DOE Patents (OSTI)

A matrix assisted laser desorption/ionization (MALDI) method and related system for analyzing high molecular weight analytes includes the steps of providing at least one matrix-containing particle inside an ion trap, wherein at least one high molecular weight analyte molecule is provided within the matrix-containing particle, and MALDI on the high molecular weight particle while within the ion trap. A laser power used for ionization is sufficient to completely vaporize the particle and form at least one high molecular weight analyte ion, but is low enough to avoid fragmenting the high molecular weight analyte ion. The high molecular weight analyte ion is extracted out from the ion trap, and is then analyzed using a detector. The detector is preferably a pyrolyzing and ionizing detector.

Reilly, Peter T. A. (Knoxville, TN); Harris, William A. (Naperville, IL)

2010-03-02T23:59:59.000Z

313

Analysis, design, and experiments of a high-power-factor electronic ballast  

SciTech Connect

A charge pump power-factor-correction (CPPFC) converter is first derived, and its unity power factor condition is then reviewed. A single-stage power-factor-correction electronic ballast using the charge pump concept is analyzed. The design criteria are derived to optimize the electronic ballast based on the steady-state analysis. Constant lamp power operations associated with its control are also discussed. Large signal simulation and experimental results verify the theoretical analysis. It is shown that the designed electronic ballast has 0.995 power factor and 5% total harmonic distortion (THD) with lamp power variation within {+-}15% when the line input voltage changes {+-}10%.

Qian, J.; Lee, F.C. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States); Yamauchi, T. [Matsushita Electric Works, Inc., Woburn, MA (United States)

1998-05-01T23:59:59.000Z

314

An assessment of the economic, regulatory and technical implications of large-scale solar power deployment  

E-Print Network (OSTI)

Electricity from solar energy has many favorable attributes. Despite its current high cost relative to other technology options, a combination of cost reductions and policy support measures could lead to increasing deployment ...

Merrick, James Hubert

2010-01-01T23:59:59.000Z

315

High Temperature, Large Sample Volume, Constant Flow Magic Angle Spinning NMR Probe for a 11  

NLE Websites -- All DOE Office Websites (Extended Search)

High Temperature, Large Sample Volume, Constant Flow Magic Angle Spinning NMR Probe for a High Temperature, Large Sample Volume, Constant Flow Magic Angle Spinning NMR Probe for a 11.7 T Magnetic Field for In Situ Catalytic Reaction Characterization Project start date: April 1, 2007 EMSL Lead Investigator: Joseph Ford, EMSL High Field Magnetic Resonance Facility Co-investigators: Jian Zhi Hu, Macromolecular Structure and Dynamics, Biological Science Division, FCSD Jesse Sears and David W. Hoyt, EMSL High Field Magnetic Resonance Facility Detailed understanding of the mechanisms involved in a catalytic reaction requires identification of the nature of the active sites and the temporal evolution of reaction intermediates. Although optical methods such as UV-visible and infrared (IR) spectroscopies can be used for some types of reactions, these do not

316

A thermal analysis model for high power density beam stops  

SciTech Connect

The Lawrence Berkeley National Laboratory (LBNL) is presently designing and building the 2.5 MeV injector for the Spallation Neutron Source (SNS). The design includes various beam intercepting devices such as beam stops and slits. The target power densities can be as high as 500 kW/cm{sup 2} with a beam stopping range of 25 to 30 microns, producing stresses well above yield in most materials. In order to analyze the induced temperatures and stresses, a finite element model has been developed. The model has been written parametrically to allow the beam characteristics, target material, dimensions, angle of incidence and mesh densities to be easily adjusted. The heat load is applied to the model through the use of a 3-dimensional table containing the calculated volumetric heat rates. The load is based on a bi-gaussian beam shape which is absorbed by the target according to a Bragg peak distribution. The results of several analyses using the SNS Front End beam are presented.

Virostek, S.; Oshatz, D.; Staples, J.

2001-06-08T23:59:59.000Z

317

Future High Voltage Silicon Carbide Power Devices Future ...  

Science Conference Proceedings (OSTI)

... PFC) in Switch Mode Power Supplies (SMPS) • Anti-Parallel rectifier in Motor Control • Boost Converter and Inverter Section for solar conversion ...

2013-04-20T23:59:59.000Z

318

Experiment Insertion in a High Power Test Reactor: Debra Utterbeck ...  

Science Conference Proceedings (OSTI)

Feb 27, 2012 ... Heat Generation Rate. • Fuel fission power density. – Thermal/Hydraulic. • Min. and max. temperatures as a function of gas gap/gas mixture.

319

High efficiency fuel cell/advanced turbine power cycles  

Science Conference Proceedings (OSTI)

The following figures are included: Westinghouse (W.) SOFC pilot manufacturing facility; cell scale-up plan; W. 25 kW SOFC unit at the utility`s facility on Rokko Island; pressure effect on SOFC power and efficiency; SureCELL{trademark} vs conventional gas turbine plants; SureCELL{trademark} product line for distributed power applications; 20 MW pressurized SOFC/gas turbine power plant; 10 MW SOFT/CT power plant; SureCELL{trademark} plant concept design requirements; and W. SOFC market entry.

Morehead, H.

1996-12-31T23:59:59.000Z

320

(USC) Power Plant Development and High Temperature Materials ...  

Science Conference Proceedings (OSTI)

For further improvement of thermal efficiency and decreasing CO2 emission China intents to develop the advanced USC power plant with the ...

Note: This page contains sample records for the topic "large power high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Nonlinearity Measurements of High-Power Laser Detectors at ...  

Science Conference Proceedings (OSTI)

... We have developed a system [3] for measuring the nonlinearity of the detectors over the 1 W to multi- kilowatt power range. ...

2011-10-03T23:59:59.000Z

322

High power bipolar battery/cells with enhanced overcharge tolerance  

SciTech Connect

A cell or battery of cells having improved overcharge tolerance and increased power capability, and methods for the construction of such cells or batteries, via electrolyte modification.

Kaun, Thomas D. (New Lenox, IL)

1998-01-01T23:59:59.000Z

323

Design of a High Temperature Small Particle Solar Receiver for Powering a Gas Turbine Engine  

E-Print Network (OSTI)

Design of a High Temperature Small Particle Solar Receiver for Powering a Gas Turbine Engine Dr. Fletcher Miller SDSU Department of Mechanical Engineering Abstract Solar thermal power for electricity will describe the design of a high temperature solar receiver capable of driving a gas turbine for power

Ponce, V. Miguel

324

LARGE-SCALE HYDROGEN PRODUCTION FROM NUCLEAR ENERGY USING HIGH TEMPERATURE ELECTROLYSIS  

DOE Green Energy (OSTI)

Hydrogen can be produced from water splitting with relatively high efficiency using high-temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high-temperature process heat. When coupled to an advanced high temperature nuclear reactor, the overall thermal-to-hydrogen efficiency for high-temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. Demand for hydrogen is increasing rapidly for refining of increasingly low-grade petroleum resources, such as the Athabasca oil sands and for ammonia-based fertilizer production. Large quantities of hydrogen are also required for carbon-efficient conversion of biomass to liquid fuels. With supplemental nuclear hydrogen, almost all of the carbon in the biomass can be converted to liquid fuels in a nearly carbon-neutral fashion. Ultimately, hydrogen may be employed as a direct transportation fuel in a “hydrogen economy.” The large quantity of hydrogen that would be required for this concept should be produced without consuming fossil fuels or emitting greenhouse gases. An overview of the high-temperature electrolysis technology will be presented, including basic theory, modeling, and experimental activities. Modeling activities include both computational fluid dynamics and large-scale systems analysis. We have also demonstrated high-temperature electrolysis in our laboratory at the 15 kW scale, achieving a hydrogen production rate in excess of 5500 L/hr.

James E. O'Brien

2010-08-01T23:59:59.000Z

325

Distant Freehand Pointing and Clicking on Very Large, High Resolution Displays  

E-Print Network (OSTI)

Distant Freehand Pointing and Clicking on Very Large, High Resolution Displays Daniel Vogel, Ravin" selection with finger or thumb. ABSTRACT We explore the design space of freehand pointing and clicking interfaces. Although alternatives like gesture-based interfaces have been explored, the self-revealing nature

Toronto, University of

326

Free Boundary, High Beta Equilibrium in a Large Aspect Ratio Tokamak with Nearly  

E-Print Network (OSTI)

Free Boundary, High Beta Equilibrium in a Large Aspect Ratio Tokamak with Nearly Circular Plasma Boundary H. Qin A. Reiman September 25, 1996 Abstract An analytic solution is obtained for free. In the absence of surface currents at the plasma-vacuum in- terface, the free-boundary equilibrium solution

327

Free Boundary, High Beta Equilibrium in a Large Aspect Ratio Tokamak with Nearly  

E-Print Network (OSTI)

Free Boundary, High Beta Equilibrium in a Large Aspect Ratio Tokamak with Nearly Circular Plasma Boundary H. Qin A. Reiman September 25, 1996 Abstract An analytic solution is obtained for free. In the absence of surface currents at the plasma­vacuum in­ terface, the free­boundary equilibrium solution

328

ANALYSIS OF A HIGH TEMPERATURE GAS-COOLED REACTOR POWERED HIGH TEMPERATURE ELECTROLYSIS HYDROGEN PLANT  

DOE Green Energy (OSTI)

An updated reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322°C and 750°C, respectively. The reactor heat is used to produce heat and electric power to the HTE plant. A Rankine steam cycle with a power conversion efficiency of 44.4% was used to provide the electric power. The electrolysis unit used to produce hydrogen includes 1.1 million cells with a per-cell active area of 225 cm2. The reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 42.8% at a hydrogen production rate of 1.85 kg/s (66 million SCFD) and an oxygen production rate of 14.6 kg/s (33 million SCFD). An economic analysis of this plant was performed with realistic financial and cost estimating The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.03/kg of hydrogen was calculated assuming an internal rate of return of 10% and a debt to equity ratio of 80%/20% for a reactor cost of $2000/kWt and $2.41/kg of hydrogen for a reactor cost of $1400/kWt.

M. G. McKellar; E. A. Harvego; A. M. Gandrik

2010-11-01T23:59:59.000Z

329

Large area, high spatial resolution tracker for new generation of high luminosity experiments in Hall A at Jefferson Lab  

Science Conference Proceedings (OSTI)

In 2014 the CEBAF electron accelerator at Jefferson Lab (JLab) will deliver a longitudinally polarized (up to 85%), high intensity (up to 100 ?A) beam with maximum energy of 12 GeV, twice the present value. To exploit the new opportunities that the energy upgrade will offer, a new spectrometer (Super BigBite - SBS) is under development, featuring very forward angle, large acceptance and ability to operate in high luminosity environment. The tracking system of SBS will consist of large area (40×150 cm2 and 50×200 cm2), high spatial resolution (better than 100 ?m) chambers based on the GEM technology and 2 small (10×20 cm) Silicon Strip Detector planes. The design of the GEM chambers and its sub-components such as the readout electronics is resented here.

Bellini, V; Castelluccio, D; Colilli, S; Cisbani, E; De Leo, R; Fratoni, R; Frullani, S; Garibaldi, F; Guiliani, F; Guisa, A; Gricia, M; Lucentini, M; Meddi, F; Minutoli, S; Musico, P; Noto, F; De Oliveira, R; Santavenere, F; Sutera, M C

2011-06-01T23:59:59.000Z

330

High-power copper vapour lasers and applications  

Science Conference Proceedings (OSTI)

Expanded applications of copper vapor lasers has prompted increased demand for higher power and better beam quality. This paper reports recent progress in laser power scaling, MOPA operation, beam quality improvement, and applications in precision laser machining. Issues such as gas heating, radial delay, discharge instability, and window heating will also be discussed.

Chang, J.J.; Warner, B.E.; Boley, C.D.; Dragon, E.P.

1995-08-01T23:59:59.000Z

331

Selective word reading for high performance and low power processor  

Science Conference Proceedings (OSTI)

In this paper, we propose Selective Word Reading (SWR) technique for a low power processor without a loss of performance. The development of this technique was motivated by the differences between store unit sizes per storage level. In typical cases, ... Keywords: cache architecture, cache controller, cache memory, low power, selective word, word-interleaved cache

Yun Kyo Cho; Seong Tae Jhang; Chu Shik Jhon

2011-11-01T23:59:59.000Z

332

Power Efficiency in High Performance Computing Shoaib Kamil  

E-Print Network (OSTI)

of 192 cores per cabinet. The power feed to each cabinet is 208 VAC 3-phase and is capable of handling 25 KW per rack. Each cabinet has a single 92 percent efficient power supply at the bottom of the rack system performance (ssp) metric. LBNL Tech Report 58868, 2005. [13] L. Oliker, A. Canning, J. Carter, J

333

A high level power model for Network-on-Chip (NoC) router  

Science Conference Proceedings (OSTI)

This paper presents a high level power estimation methodology for a Network-on-Chip (NoC) router, that is capable of providing cycle accurate power profile to enable power exploration at system level. Our power macro model is based on the number of flits ... Keywords: Interconnection network, Multi-processor System-on-Chip (MPSoC), Network-on-Chip (NoC), Power model

Seung Eun Lee; Nader Bagherzadeh

2009-11-01T23:59:59.000Z

334

C-Band High Power RF Generation and Extraction Using a Dielectric...  

NLE Websites -- All DOE Office Websites (Extended Search)

C-BAND HIGH POWER RF GENERATION AND EXTRACTION USING A DIELECTRIC LOADED WAVEGUIDE* F. Gao , M. Conde, W. Gai, R. Konecny, W. Liu, J. Power, Z. Yusof ANL, Argonne, IL 60439,...

335

The importance of combined cycle generating plants in integrating large levels of wind power generation  

Science Conference Proceedings (OSTI)

Integration of high wind penetration levels will require fast-ramping combined cycle and steam cycles that, due to higher operating costs, will require proper pricing of ancillary services or other forms of compensation to remain viable. Several technical and policy recommendations are presented to help realign the generation mix to properly integrate the wind. (author)

Puga, J. Nicolas

2010-08-15T23:59:59.000Z

336

Reliable data delivery in large-scale low-power sensor networks  

Science Conference Proceedings (OSTI)

In data collection applications of low-end sensor networks, a major challenge is ensuring reliability without a significant goodput degradation. Short hops over high-quality links minimize per-hop transmissions, but long routes may cause congestion and ... Keywords: Wireless sensor networks, congestion control, load balancing, routing

Daniele Puccinelli; Martin Haenggi

2010-07-01T23:59:59.000Z

337

Generator module architecture for a large solid oxide fuel cell power plant  

DOE Patents (OSTI)

A solid oxide fuel cell module contains a plurality of integral bundle assemblies, the module containing a top portion with an inlet fuel plenum and a bottom portion receiving air inlet feed and containing a base support, the base supports dense, ceramic exhaust manifolds which are below and connect to air feed tubes located in a recuperator zone, the air feed tubes passing into the center of inverted, tubular, elongated, hollow electrically connected solid oxide fuel cells having an open end above a combustion zone into which the air feed tubes pass and a closed end near the inlet fuel plenum, where the fuel cells comprise a fuel cell stack bundle all surrounded within an outer module enclosure having top power leads to provide electrical output from the stack bundle, where the fuel cells operate in the fuel cell mode and where the base support and bottom ceramic air exhaust manifolds carry from 85% to all 100% of the weight of the stack, and each bundle assembly has its own control for vertical and horizontal thermal expansion control.

Gillett, James E.; Zafred, Paolo R.; Riggle, Matthew W.; Litzinger, Kevin P.

2013-06-11T23:59:59.000Z

338

Improved high temperature solar absorbers for use in Concentrating Solar Power central receiver applications.  

DOE Green Energy (OSTI)

Concentrating solar power (CSP) systems use solar absorbers to convert the heat from sunlight to electric power. Increased operating temperatures are necessary to lower the cost of solar-generated electricity by improving efficiencies and reducing thermal energy storage costs. Durable new materials are needed to cope with operating temperatures >600 C. The current coating technology (Pyromark High Temperature paint) has a solar absorptance in excess of 0.95 but a thermal emittance greater than 0.8, which results in large thermal losses at high temperatures. In addition, because solar receivers operate in air, these coatings have long term stability issues that add to the operating costs of CSP facilities. Ideal absorbers must have high solar absorptance (>0.95) and low thermal emittance (<0.05) in the IR region, be stable in air, and be low-cost and readily manufacturable. We propose to utilize solution-based synthesis techniques to prepare intrinsic absorbers for use in central receiver applications.

Stechel, Ellen Beth; Ambrosini, Andrea; Hall, Aaron Christopher; Lambert, Timothy L.; Staiger, Chad Lynn; Bencomo, Marlene

2010-09-01T23:59:59.000Z

339

Z: A Fast Pulsed Power Generator for Ultra-High Magnetic Field Generation  

SciTech Connect

Advances in fast, pulsed-power technologies have resulted in the development of very high current drivers that have current rise times - 100 ns. The largest such pulsed power drive r today is the new Z accelerator located at Sandia National Laboratories in Albuquerque, New Mexico. Z is capable of delivering more than 20 MA with a time-to-peak of 105 ns to low inductance (- 1 nH)loads. Such large drivers are capable of directly generating magnetic fields approaching 3 kT in small, 1 -cm3, volumes. In addition to direct field generation, Z can be used to compress an applied, axial seed field with a plasma. Flux compression scheme~: are not new and are, in fact, the basis of all explosive flux-compression generators but we propose the use of plasma armatures rather than solid, conducting armatures. We will present experimental results from the Z accelerator in which magnetic fields - 2 kT are generated and measured with several diagnostics. Issues such as energy loss in solid conductors and dynamic response of current-carrying conductors to very large magnetic fields will be reviewed in context with Z experiments. We will describe planned flux-compression experiments that are expected to create the highest-magnitude uniform-field volumes yet attained in the laboratory.

Asay, J.R.; Bailey, J.E.; Bernard, M.A.; Hall, C.A.; McDaniel, D.H.; Spielman, R.B.; Struve, K.W.; Stygar, W.A.

1998-11-04T23:59:59.000Z

340

High power density supercapacitors using locally aligned carbon nanotube electrodes  

E-Print Network (OSTI)

B E 1999 Electrochemical Supercapacitor ( New York: Kluwer–power density of a supercapacitor is its most remarkablepower density of a supercapacitor is given by P max = V i

Du, C S; Yeh, J; Pan, Ning

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "large power high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Lower bound estimation for low power high-level synthesis  

Science Conference Proceedings (OSTI)

This paper addresses the problem of estimating lower bounds on the power consumption in scheduled data flow graphs with a fixed number of allocated resources prior to binding. The estimated bound takes into account the effects of resource sharing. It ...

Lars Kruse; Eike Schmidt; Gerd Jochens; Ansgar Stammermann; Wolfgang Nebel

2000-09-01T23:59:59.000Z

342

The design of high power density annular fuel for LWRs  

E-Print Network (OSTI)

Fuel performance models have been developed to assess the performance of internally and externally cooled LWR annular fuel. Such fuel may be operated at 30-50% higher core power density than the current operating LWRs, and ...

Yuan, Yi, 1975-

2004-01-01T23:59:59.000Z

343

Recent progress in large grain/single crystal high RRR niobium  

DOE Green Energy (OSTI)

High RRR bulk niobium Superconducting Radio Frequency (SRF) cavity technology is chosen for the International Linear Collider (ILC). The SRF community was convinced until now that fine grain polycrystalline RRR niobium sheets obtained via forging and cross rolling are essential for forming the SRF Cavities. However, it was recently discovered under a joint Reference Metals Company, Inc., - JLAB CRADA that large grain/single crystal RRR niobium sliced directly from ingots is highly ductile reaching 100 percent elongation. This discovery led to the successful fabrication of several SRF single and/or multi cell structures, formed with sliced RRR discs from the ingots, operating at 2.3, 1.5 and 1.3 GHz. This new exciting development is expected to offer high performance accelerator structures not only at reduced costs but also with simpler fabrication and processing conditions. As a result there is a renewed interest in the evaluation and understanding of the large grain and single crystal niobium with respect to their mechanical & physical properties as well as the oxidation behavior and the influence of impurities such as hydrogen and Ta. In this paper the results of many collaborative studies on large grain and single crystal high RRR niobium between JLAB, Universities and Industry are presented.

Ganapati Rao Myneni; Peter Kneisel; Tadeu Carneiro; S.R. Agnew; F. Stevie

2005-11-07T23:59:59.000Z

344

High power operation of the university of Maryland coaxial gyroklystron experiment  

SciTech Connect

We report the experimental studies of high power amplification in a coaxial three-cavity X-band gyroklystron. A single-anode magnetron injection gun (MIG) is used to produce a 520 A beam of 470 keV electrons with an average ratio of perpendicular-to-parallel velocity of about one. The voltage flat top is nearly 2 {mu}s. All cavities are designed to operate in the TE{sub 011} coaxial mode near 8.6 GHz. The input cavity is driven by a 150 kW, 3 {mu}s coaxial magnetron through a single slot in the radial wall. Peak powers of 75{endash}85 MW are measured with a conversion efficiency of nearly 32{percent} and a large signal gain of about 30 dB. This performance is in good agreement with simulations and represents approximately a tri-fold increase in the peak power capability of pulsed X-band gyroklystrons. We also report on the design of a three cavity second harmonic gyroklystron which is expected to produce 100 MW at 17.14 GHz. We close with a general discussion of scaling our designs to higher frequencies. {copyright} {ital 1999 American Institute of Physics.}

Lawson, W.; Arjona, M.; Castle, M.; Hogan, B.; Granatstein, V.; Reiser, M. [Institute for Plasma Research and Electrical Engineering Department, University of Maryland, College Park, Maryland 20742 (United States)

1999-07-01T23:59:59.000Z

345

High power operation of the university of Maryland coaxial gyroklystron experiment  

SciTech Connect

We report the experimental studies of high power amplification in a coaxial three-cavity X-band gyroklystron. A single-anode magnetron injection gun (MIG) is used to produce a 520 A beam of 470 keV electrons with an average ratio of perpendicular-to-parallel velocity of about one. The voltage flat top is nearly 2 {mu}s. All cavities are designed to operate in the TE{sub 011} coaxial mode near 8.6 GHz. The input cavity is driven by a 150 kW, 3 {mu}s coaxial magnetron through a single slot in the radial wall. Peak powers of 75-85 MW are measured with a conversion efficiency of nearly 32% and a large signal gain of about 30 dB. This performance is in good agreement with simulations and represents approximately a tri-fold increase in the peak power capability of pulsed X-band gyroklystrons. We also report on the design of a three cavity second harmonic gyroklystron which is expected to produce 100 MW at 17.14 GHz. We close with a general discussion of scaling our designs to higher frequencies.

Lawson, W.; Arjona, M.; Castle, M.; Hogan, B.; Granatstein, V.; Reiser, M. [Institute for Plasma Research and Electrical Engineering Department, University of Maryland, College Park, Maryland 20742 (United States)

1999-07-12T23:59:59.000Z

346

A low-power, high-bandwidth LDO voltage regulator with no external capacitor  

E-Print Network (OSTI)

A low-dropout (LDO) voltage regulator for low-power applications is designed without an external capacitor for compensation. The regulator has two stages, the first a folded cascode amplifier and the second a large pass ...

Ha, Miranda J. (Miranda Joy)

2008-01-01T23:59:59.000Z

347

High-Frequency Variability in Hurricane Power Dissipation and Its Relationship to Global Temperature  

Science Conference Proceedings (OSTI)

The power dissipation of Atlantic tropical cyclones has risen dramatically during the last decades and the increase is correlated with an increase in the underlying sea surface temperature (SST) at low (decadal) frequencies. Because of the large ...

James B. Elsner; Anastasios A. Tsonis; Thomas H. Jagger

2006-06-01T23:59:59.000Z

348

Demonstration of a Highly Efficient Solid Oxide Fuel Cell Power System Using Adiabatic Steam Reforming and Anode Gas Recirculation  

SciTech Connect

Solid oxide fuel cells (SOFC) are currently being developed for a wide variety of applications because of their high efficiency at multiple power levels. Applications for SOFCs encompass a large range of power levels including 1-2 kW residential combined heat and power applications, 100-250 kW sized systems for distributed generation and grid extension, and MW-scale power plants utilizing coal. This paper reports on the development of a highly efficient, small-scale SOFC power system operating on methane. The system uses adiabatic steam reforming of methane and anode gas recirculation to achieve high net electrical efficiency. The anode exit gas is recirculated and all of the heat and water required for the endothermic reforming reaction are provided by the anode gas emerging from the SOFC stack. Although the single-pass fuel utilization is only about 55%, because of the anode gas recirculation the overall fuel utilization is up to 93%. The demonstrated system achieved gross power output of 1650 to 2150 watts with a maximum net LHV efficiency of 56.7% at 1720 watts. Overall system efficiency could be further improved to over 60% with use of properly sized blowers.

Powell, Michael R.; Meinhardt, Kerry D.; Sprenkle, Vincent L.; Chick, Lawrence A.; Mcvay, Gary L.

2012-05-01T23:59:59.000Z

349

Large High Resolution Displays for Co-Located Collaborative Sensemaking: Display Usage and Territoriality  

SciTech Connect

Large, high-resolution vertical displays carry the potential to increase the accuracy of collaborative sensemaking, given correctly designed visual analytics tools. From an exploratory user study using a fictional textual intelligence analysis task, we investigated how users interact with the display to construct spatial schemas and externalize information, as well as how they establish shared and private territories. We investigated the space management strategies of users partitioned by type of tool philosophy followed (visualization- or text-centric). We classified the types of territorial behavior exhibited in terms of how the users interacted with information on the display (integrated or independent workspaces). Next, we examined how territorial behavior impacted the common ground between the pairs of users. Finally, we offer design suggestions for building future co-located collaborative visual analytics tools specifically for use on large, high-resolution vertical displays.

Bradel, Lauren; Endert, Alexander; Koch, Kristen; Andrews, Christopher; North, Chris

2013-08-01T23:59:59.000Z

350

Initial Screening of Thermochemical Water-Splitting Cycles for High Efficiency Generation of Hydrogen Fuels Using Nuclear Power  

DOE Green Energy (OSTI)

OAK B188 Initial Screening of Thermochemical Water-Splitting Cycles for High Efficiency Generation of Hydrogen Fuels Using Nuclear Power There is currently no large scale, cost-effective, environmentally attractive hydrogen production process, nor is such a process available for commercialization. Hydrogen is a promising energy carrier, which potentially could replace the fossil fuels used in the transportation sector of our economy. Fossil fuels are polluting and carbon dioxide emissions from their combustion are thought to be responsible for global warming. The purpose of this work is to determine the potential for efficient, cost-effective, large-scale production of hydrogen utilizing high temperature heat from an advanced nuclear power station. Almost 800 literature references were located which pertain to thermochemical production of hydrogen from water and over 100 thermochemical watersplitting cycles were examined. Using defined criteria and quantifiable metrics, 25 cycles have been selected for more detailed study.

Brown, L.C.; Funk, J.F.; Showalter, S.K.

1999-12-15T23:59:59.000Z

351

High Performance Biomorphic Image Processing Under Tight Space and Power Constraints  

Science Conference Proceedings (OSTI)

Image processing for space systems must be performed under tight space and power constraints while not compromising performance. Traditional computer vision approaches are not ideal because they are notoriously power hungry and physically large. We present ... Keywords: centroid localization chip, computational sensing, focal-plane processing, image process chip, motion detection chip, spatiotemporal convolution chip, vision chip

Ralph Etienne-Cummings; Viktor Gruev; Mathew Clapp

2001-11-01T23:59:59.000Z

352

OXIDATION OF DRY HYDROCARBONS AT HIGH-POWER DENSITY ANODES  

DOE Green Energy (OSTI)

This work builds upon discoveries by the University of Pennsylvania and others pertaining to the oxidation of dry hydrocarbon fuels in high temperature solid oxide fuel cells. The work reported here was restricted primarily to dry methane and confirms that YSZ-based cells, having ceria in the anode as a catalyst and copper in the anode as a current collector, can operate on dry methane for extended periods. Thirty-three lab-scale cells of various designs were fabricated and operated under a variety of conditions. The longest-lived cell gave stable performance on dry methane at 800 C for over 305 hours. Only slight carbon deposition was noted at the completion of the test. A corresponding nickel/YSZ-based anode would have lasted for less than an hour under these test conditions (which included open circuit potential measurements) before carbon fouling essentially destroyed the cell. The best performing cell achieved 112 mW/cm{sub 2} on dry methane at 800 C. Several problems were encountered with carbon fouling and declining open circuit voltages in many of the test cells after switching from operation on hydrogen to dry methane. Although not rigorously confirmed by experimentation, the results suggested that air infiltration through less than perfect perimeter seals or pinholes in the electrolytes, or both gave rise to conditions that caused the carbon fouling and OCV decline. Small amounts of air reacting with methane in a partial oxidation reaction could produce carbon monoxide that, in turn, would deposit the carbon. If this mechanism is confirmed, it implies that near perfect hardware is required for extended operation. Some evidence was also found for the formation of electrical shorts, probably from carbon deposits bridging the electrolyte. Work with odorized methane and with methane containing 100-ppm hydrogen sulfide confirmed that copper is stable at 800 C in dry hydrocarbon fuels in the presence of sulfur. In a number of cases, but not exclusively, the performance life on dry methane with sulfur compounds was much longer than with dry methane alone. The effect of sulfur compounds in these cases appeared to correlate with inhibition of carbon deposition. Mixed results were obtained for the effect of the sulfur compounds on power density. Progress also was made in understanding the mechanisms involved in direct utilization of dry natural gas. Evidence was developed for three possible mechanisms for dry methane utilization in addition to the usually cited mechanism--direct oxidation of methane by oxygen anions. Further work is required at a fundamental level before the knowledge gained here can be translated into higher levels of performance.

K.Krist; O. Spaldon-Stewart; R. Remick

2004-03-01T23:59:59.000Z

353

Generation of high peak power pulse using 2 stage erbium-doped fiber amplifier  

E-Print Network (OSTI)

This thesis presents the results obtained from generation of high repetition rate, high power output pulse using an erbium-doped fiber amplifier (EDFA). Two stage amplification was employed. The first stage setup used 980nm pump laser to pump erbium-doped fiber. For the second stage, two 1480nm pump lasers were used to pump erbium-doped fiber in both forward and backward propagating direction. The signal laser was modulated to produce pulses with high repetition rate high peak power. The first stage produced pulse peak power of 2.52W. The overall output peak power, which is produced by the first and second stage, is 16W.

Lee, Kyung-Woo

2000-01-01T23:59:59.000Z

354

Low-Cost, High-Power Laser for Analytical and Other ...  

Search PNNL. PNNL Home; About; Research; Publications; Jobs; News; Contacts; Low-Cost, High-Power Laser for Analytical and Other Applications. ...

355

A conceptual scheme for focusing of high power microwaves in SYMPLE  

Science Conference Proceedings (OSTI)

The conceptual Scheme of Focusing the High pulsed microwave power generated by "VIRCATOR" on plasma produced in "SYMPLE", using Plasma Lens, is discussed.

Renu Bahl; K. Sathyanarayna; V. P. Anitha; Priyavandna J. Rathod; Y. C. Saxena

2011-02-01T23:59:59.000Z

356

Operating Water Cherenkov Detectors in high altitude sites for the Large Aperture GRB Observatory  

E-Print Network (OSTI)

Water Cherenkov Detectors (WCD) are efficient detectors for detecting GRBs in the 10 GeV - 1 TeV energy range using the single particle technique, given their sensitivity to low energy secondary photons produced by high energy photons when cascading in the atmosphere. The Large Aperture GRB Observatory (LAGO) operates arrays of WCD in high altitude sites (above 4500 m a.s.l.) in Bolivia, Mexico and Venezuela, with planned extension to Peru. Details on the operation and stability of these WCD in remote sites with high background rates of particles will be detailed, and compared to simulations. Specific issues due to operation at high altitude, atmospheric effects and solar activity, as well as possible hardware enhancements will also be presented.

Allard, D; Asorey, H; Barros, H; Bertou, X; Castillo, M; Chirinos, J M; De Castro, A; Flores, S; González, J; Berisso, M Gomez; Grajales, J; Guada, C; Day, W R Guevara; Ishitsuka, J; López, J A; Martínez, O; Melfo, A; Meza, E; Loza, P Miranda; Barbosa, E Moreno; Murrugarra, C; Núñez, L A; Ormachea, L J Otiniano; Pérez, G; Perez, Y; Ponce, E; Quispe, J; Quintero, C; Rivera, H; Rosales, M; Rovero, A C; Saavedra, O; Salazar, H; Tello, J C; Peralda, R Ticona; Varela, E; Velarde, A; Villaseñor, L; Wahl, D; Zamalloa, M A

2009-01-01T23:59:59.000Z

357

Detection of nanosecond-scale, high power THz pulses with a field effect transistor  

Science Conference Proceedings (OSTI)

We demonstrate detection and resolution of high power, 34 ns free electron laser pulses using a rectifying field effect transistor. The detector remains linear up to an input power of 11 {+-} 0.5 W at a pulse energy of 20 {+-} 1 {mu}J at 240 GHz. We compare its performance to a protected Schottky diode, finding a shorter intrinsic time constant. The damage threshold is estimated to be a few 100 W. The detector is, therefore, well-suited for characterizing high power THz pulses. We further demonstrate that the same detector can be used to detect low power continuous-wave THz signals with a post detection limited noise floor of 3.1 {mu}W/{radical}(Hz). Such ultrafast, high power detectors are important tools for high power and high energy THz facilities such as free electron lasers.

Preu, S. [Physics Department and Institute for Terahertz Science and Technology, University of California, Santa Barbara, California 93106 (United States); Materials Department, University of California, Santa Barbara, California 93106 (United States); Chair for Applied Physics, University of Erlangen-Nuremberg, 91058 Erlangen (Germany); Lu, H.; Gossard, A. C. [Materials Department, University of California, Santa Barbara, California 93106 (United States); Sherwin, M. S. [Physics Department and Institute for Terahertz Science and Technology, University of California, Santa Barbara, California 93106 (United States)

2012-05-15T23:59:59.000Z

358

High-Temperature High-Power Packaging Techniques for HEV Traction Applications  

DOE Green Energy (OSTI)

A key issue associated with the wider adoption of hybrid-electric vehicles (HEV) and plug in hybrid-electric vehicles (PHEV) is the implementation of the power electronic systems that are required in these products. One of the primary industry goals is the reduction in the price of these vehicles relative to the cost of traditional gasoline powered vehicles. Today these systems, such as the Prius, utilize one coolant loop for the engine at approximately 100 C coolant temperatures, and a second coolant loop for the inverter at 65 C. One way in which significant cost reduction of these systems could be achieved is through the use of a single coolant loop for both the power electronics as well as the internal combustion engine (ICE). This change in coolant temperature significantly increases the junction temperatures of the devices and creates a number of challenges for both device fabrication and the assembly of these devices into inverters and converters for HEV and PHEV applications. Traditional power modules and the state-of-the-art inverters in the current HEV products, are based on chip and wire assembly and direct bond copper (DBC) on ceramic substrates. While a shift to silicon carbide (SiC) devices from silicon (Si) devices would allow the higher operating temperatures required for a single coolant loop, it also creates a number of challenges for the assembly of these devices into power inverters. While this traditional packaging technology can be extended to higher temperatures, the key issues are the substrate material and conductor stability, die bonding material, wire bonds, and bond metallurgy reliability as well as encapsulation materials that are stable at high operating temperatures. The larger temperature differential during power cycling, which would be created by higher coolant temperatures, places tremendous stress on traditional aluminum wire bonds that are used to interconnect power devices. Selection of the bond metallurgy and wire bond geometry can play a key role in mitigating this stress. An alternative solution would be to eliminate the wire bonds completely through a fundamentally different method of forming a reliable top side interconnect. Similarly, the solders used in most power modules exhibit too low of a liquidus to be viable solutions for maximum junction temperatures of 200 C. Commonly used encapsulation materials, such as silicone gels, also suffer from an inability to operate at 200 C for extended periods of time. Possible solutions to these problems exist in most cases but require changes to the traditional manufacturing process used in these modules. In addition, a number of emerging technologies such as Si nitride, flip-chip assembly methods, and the elimination of base-plates would allow reliable module development for operation of HEV and PHEV inverters at elevated junction temperatures.

Elshabini, Aicha [University of Idaho; Barlow, Fred D. [University of Idaho

2006-11-01T23:59:59.000Z

359

Application of high powered lasers to drilling and completing deep walls.  

SciTech Connect

High powered laser rock drilling was studied as a revolutionary method for drilling and completing deep gas and oil wells. The objectives of this 2002 to 2003 fiscal year research were to study the concept that large diameter holes can be created by multiple overlapping small beam spots, to determine the ability of lasers to drill rock submerged to some depth in water, to demonstrate the possibilities of lasers for perforating application, and to determine the wavelength effects on rock removal. Laser technology applied to well drilling and completion operations is attractive because it has the potential to reduce drilling time, create a ceramic lining that may eliminate the need for steel casing, provide additional monitor-on-drilling laser sensors and improve well performance through improved perforation. The results from this research will help engineering design on a laser-based well drilling system.

Reed, C. B.; Xu, Z.; Parker, R. A.; Gahan, B. C.; Batarseh, S.; Graves, R. M.; Figueroa, H.; Deeg, W.

2003-07-30T23:59:59.000Z

360

HIGH AVERAGE POWER UV FREE ELECTRON LASER EXPERIMENTS AT JLAB  

Science Conference Proceedings (OSTI)

Having produced 14 kW of average power at {approx}2 microns, JLAB has shifted its focus to the ultraviolet portion of the spectrum. This presentation will describe the JLab UV Demo FEL, present specifics of its driver ERL, and discuss the latest experimental results from FEL experiments and machine operations.

Douglas, David; Evtushenko, Pavel; Gubeli, Joseph; Hernandez-Garcia, Carlos; Legg, Robert; Neil, George; Powers, Thomas; Shinn, Michelle D; Tennant, Christopher

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "large power high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

FUTURE POWER GRID INITIATIVE Real-time High-Performance  

E-Print Network (OSTI)

mathematical models, next-generation simulation and analytics capabilities for the power November 2012 PNNL-SA-90011 Peter Hui Pacific Northwest National Laboratory (509) 372-6414 peter.hui@pnnl.gov ABOUT FPGI Infrastructure Operations Center (EIOC), the Pacific Northwest National Laboratory's (PNNL) national electric

362

Versatile 0. 5 TW electron beam facility for power conditioning studies of large rare-gas/halide lasers  

Science Conference Proceedings (OSTI)

Rare-gas/halide lasers which are being developed for Inertial Confinement Fusion will require large area, low impedance electron beam drivers. A wide range of electron beam parameters are being considered for future systems in an effort to optimize the overall system design. A number of power conditioning issues must be investigated in order to obtain a better understanding of the various trade-offs involved in making such optimizations. The RAYITO electron beam accelerator is being designed and built at Sandia National Laboratories and will be used for such investigations. It will be capable of operating in either a 2 or 4 ohm configuration at 1 MV, 50 ns or 0.8 MV, 200 ns. Design details for RAYITO are presented in this paper. Experiments planned for this facility are also discussed.

Ramirez, J. J.

1980-01-01T23:59:59.000Z

363

High Efficiency Generation of Hydrogen Fuels using Nuclear Power Annual Report August, 2000 - July 2001  

DOE Green Energy (OSTI)

OAK B188 High Efficiency Generation of Hydrogen Fuels using Nuclear Power Annual Report August 2000 - July 2001. Currently no large scale, cost-effective, environmentally attractive hydrogen production process is available for commercialization nor has such a process been identified. Hydrogen is a promising energy carrier, which potentially could replace the fossil fuels used in the transportation sector of our economy. Carbon dioxide emissions from fossil fuel combustion are thought to be responsible for global warming. The purpose of this work is to determine the potential for efficient, cost-effective, large-scale production of hydrogen utilizing high temperature heat from an advanced nuclear power station. The benefits of this work will include the generation of a low-polluting transportable energy feedstock in an efficient method that has little or no implication for greenhouse gas emissions from a primary energy source whose availability and sources are domestically controlled. This will help to ensure energy for a future transportation/energy infrastructure that is not influenced/controlled by foreign governments. This report describes work accomplished during the second year (Phase 2) of a three year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first year (Phase 1) was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water, in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most, three) for further detailed consideration. Phase 1 met its goals and did select one process, the sulfur-iodine process, for investigation in Phases 2 and 3. The combined goals of Phases 2 and 3 were to select the advanced nuclear reactor best suited to driving the selected thermochemical process and to define the selected reactor and process to the point that capital costs, operating costs and the resultant cost of hydrogen can be estimated. During original contract negotiation, it was necessary to reduce work scope to meet funding limits. As a result, the reactor interface and process will not be iterated to the point that only hydrogen is produced. Rather, hydrogen and electricity will be co-generated and the hydrogen cost will be stated as a function of the electricity sales price.

Brown, L.C.

2002-11-01T23:59:59.000Z

364

High Efficiency Generation of Hydrogen Fuels using Nuclear Power Annual Report August, 2000 - July 2001  

SciTech Connect

OAK B188 High Efficiency Generation of Hydrogen Fuels using Nuclear Power Annual Report August 2000 - July 2001. Currently no large scale, cost-effective, environmentally attractive hydrogen production process is available for commercialization nor has such a process been identified. Hydrogen is a promising energy carrier, which potentially could replace the fossil fuels used in the transportation sector of our economy. Carbon dioxide emissions from fossil fuel combustion are thought to be responsible for global warming. The purpose of this work is to determine the potential for efficient, cost-effective, large-scale production of hydrogen utilizing high temperature heat from an advanced nuclear power station. The benefits of this work will include the generation of a low-polluting transportable energy feedstock in an efficient method that has little or no implication for greenhouse gas emissions from a primary energy source whose availability and sources are domestically controlled. This will help to ensure energy for a future transportation/energy infrastructure that is not influenced/controlled by foreign governments. This report describes work accomplished during the second year (Phase 2) of a three year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first year (Phase 1) was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water, in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most, three) for further detailed consideration. Phase 1 met its goals and did select one process, the sulfur-iodine process, for investigation in Phases 2 and 3. The combined goals of Phases 2 and 3 were to select the advanced nuclear reactor best suited to driving the selected thermochemical process and to define the selected reactor and process to the point that capital costs, operating costs and the resultant cost of hydrogen can be estimated. During original contract negotiation, it was necessary to reduce work scope to meet funding limits. As a result, the reactor interface and process will not be iterated to the point that only hydrogen is produced. Rather, hydrogen and electricity will be co-generated and the hydrogen cost will be stated as a function of the electricity sales price.

Brown, L.C.

2002-11-01T23:59:59.000Z

365

High efficiency carbonate fuel cell/turbine hybrid power cycles  

SciTech Connect

Carbonate fuel cells developed in commercial 2.85 MW size, have an efficiency of 57.9%. Studies of higher efficiency hybrid power cycles were conducted to identify an economically competitive system and an efficiency over 65%. A hybrid power cycle was identified that includes a direct carbonate fuel cell, a gas turbine, and a steam cycle, which generates power at a LHV efficiency over 70%; it is called a Tandem Technology Cycle (TTC). In a TTC operating on natural gas fuel, 95% of the fuel is mixed with recycled fuel cell anode exhaust, providing water for reforming the fuel, and flows to a direct carbonate fuel cell system which generates 72% of the power. The portion of fuel cell anode exhaust not recycled, is burned and heat is transferred to compressed air from a gas turbine, heating it to 1800 F. The stream is then heated to 2000 F in gas turbine burner and expands through the turbine generating 13% of the power. Half the gas turbine exhaust flows to anode exhaust burner and the rest flows to the fuel cell cathodes providing the O2 and CO2 needed in the electrochemical reaction. Studies of the TTC for 200 and 20 MW size plants quantified performance, emissions and cost-of-electricity, and compared the TTC to gas turbine combined cycles. A 200-MW TTC plant has an efficiency of 72.6%; estimated cost of electricity is 45.8 mills/kWhr. A 20-MW TTC plant has an efficiency of 65.2% and a cost of electricity of 50 mills/kWhr.

Steinfeld, G.

1996-12-31T23:59:59.000Z

366

Power Flow Management in a High Penetration Wind-Diesel Hybrid Power System with Short-Term Energy Storage  

Science Conference Proceedings (OSTI)

This paper is intended as an introduction to some of the control challenges faced by developers of high penetration wind-diesel systems, with a focus on the management of power flows in order to achieve precise regulation of frequency and voltage in the face of rapidly varying wind power input and load conditions. The control algorithms presented herein are being implemented in the National Renewable Energy Laboratory (NREL) high penetration wind-diesel system controller that will be installed in the village of Wales, Alaska, in early 2000.

Drouilhet, S. M.

1999-07-29T23:59:59.000Z

367

A non-intrusive beam power monitor for high power pulsed or continuous wave lasers  

DOE Patents (OSTI)

A system and method for monitoring the output of a laser is provided in which the output of a photodiode disposed in the cavity of the laser is used to provide a correlated indication of the laser power. The photodiode is disposed out of the laser beam to view the extraneous light generated in the laser cavity whose intensity has been found to be a direct correlation of the laser beam output power level. Further, the system provides means for monitoring the phase of the laser output beam relative to a modulated control signal through the photodiode monitor.

Hawsey, R.A.; Scudiere, M.B.

1991-05-29T23:59:59.000Z

368

A non-intrusive beam power monitor for high power pulsed or continuous wave lasers  

DOE Patents (OSTI)

A system for monitoring the output of a laser is provided in which the output of a photodiode disposed in the cavity of the laser is used to provide a correlated indication of the laser power. The photodiode is disposed out of the laser beam to view the extraneous light generated in the laser cavity whose intensity has been found to be a direct correlation of the laser beam output power level. Further, the system provides means for monitoring the phase of the laser output beam relative to a modulated control signal through the photodiode monitor. 4 figs.

Hawsey, R.A.; Scudiere, M.B.

1989-09-26T23:59:59.000Z

369

Report on High Power rf Testing of Quartz Based DLA Structure  

NLE Websites -- All DOE Office Websites (Extended Search)

2 March, 2006 Report on High Power rf Testing of Quartz Based DLA Structure at NRL C. Jing, and R. Konecny Abstract: In this article, we report the experimental results of high...

370

Guidelines and Specifications for High-Reliability Fossil Power Plants  

Science Conference Proceedings (OSTI)

The steel alloy known as Grade 91 has achieved broad acceptance within the modern power industry for use in fabricating a variety of critical pressure part components, including tubing, piping, and headers. As is true for all of the creep-strength-enhanced ferritic (CSEF) steels, designers favor Grade 91 because, within a specific temperature range and when properly processed, it provides superior elevated temperature strength at substantially lower cost than the austenitic stainless steels, while mainta...

2011-11-09T23:59:59.000Z

371

High Power Modulator/regulators for neutral beam sources  

SciTech Connect

PPPL has recently completed two new Modulator/Regulators for neutral injection sources used on the ATC machine and is constructing four new ones for use with sources on the PLT machine. The ATC modulator uses the well proven 4CX35,000C tetrode as the main switch tube, while the PLT modulators will be using the new but significantly higher powered X-2170 tetrodes. Some interesting circuit and manufacturing techniques are discussed. (MOW)

Lawson, J.Q.; Deitz, A.

1975-01-01T23:59:59.000Z

372

Large-scale HI in nearby radio galaxies (II): the nature of classical low-power radio sources  

E-Print Network (OSTI)

An important aspect of solving the long-standing question as to what triggers various types of Active Galactic Nuclei involves a thorough understanding of the overall properties and formation history of their host galaxies. This is the second in a series of papers that systematically study the large-scale properties of cold neutral hydrogen (HI) gas in nearby radio galaxies. The main goal is to investigate the importance of gas-rich galaxy mergers and interactions among radio-loud AGN. In this paper we present results of a complete sample of classical low-power radio galaxies. We find that extended Fanaroff & Riley type-I radio sources are generally not associated with gas-rich galaxy mergers or ongoing violent interactions, but occur in early-type galaxies without large (> 10^8 M_sun) amounts of extended neutral hydrogen gas. In contrast, enormous discs/rings of HI gas (with sizes up to 190 kpc and masses up to 2 x 10^10 M_sun) are detected around the host galaxies of a significant fraction of the compac...

Emonts, B H C; Struve, C; Oosterloo, T A; van Moorsel, G; Tadhunter, C N; van der Hulst, J M; Brogt, E; Holt, J; Mirabal, N

2010-01-01T23:59:59.000Z

373

DESY, February 2001, TESLA Report 2001-04 Concept of the High Power e  

E-Print Network (OSTI)

DESY, February 2001, TESLA Report 2001-04 Concept of the High Power e± Beam Dumps for TESLA W. Bialowons, M. Maslov, M. Schmitz, V. Sytchev #12;1 Concept of the High Power e± Beam Dumps for TESLA W............................................................................................................... 19 #12;2 1 Introduction The TESLA accelerator is equipped with quite a number of extraction lines

374

A high-voltage low-power DC-DC buck regulator for automotive applications  

Science Conference Proceedings (OSTI)

This work presents a High-Voltage Low-Power CMOS DC-DC buck regulator for automotive applications. The overall system, including the high and low voltage analog devices, the power MOS and the low voltage digital devices, was realized in the Austriamicrosystems ... Keywords: DC-DC regulator, buck converter, current control, low quiscent current, pulse frequency modulation

G. Pasetti; L. Fanucci; R. Serventi

2010-03-01T23:59:59.000Z

375

High power light emitting diode based setup for photobleaching fluorescent impurities  

E-Print Network (OSTI)

High power light emitting diode based setup for photobleaching fluorescent impurities Tobias K be photobleached before final sample preparation. The instrument consists of high power light emitting diodes for simple photobleaching pur- poses, we designed a simple but efficient lighting system using light emitting

Kaufman, Laura

376

Analysis of the mode composition of an X-band overmoded O-type Cerenkov high-power microwave oscillator  

SciTech Connect

Overmoded slow wave structures (SWSs) with large diameter are utilized in O-type Cerenkov high-power microwave (HPM) sources for their high power capacity. However, multi-modes may be output simultaneously in the overmoded O-type Cerenkov HPM sources. In order to achieve high mode purity, the mode composition of the output power should be analyzed quantitatively when the structure of this type of device is being optimized. Two accurate numerical methods of making quantitative analysis of the mode composition in particle-in-cell model are introduced in this paper. And then, the mode composition of an X-band O-type Cerenkov oscillator with overmoded SWSs (D/{lambda} Almost-Equal-To 2.7) is analyzed. The analysis indicates that appropriate selection of the parameters of overmoded SWSs and electron beam is important, as mentioned in previous reports, for realizing mode selection in beam-wave interaction. Besides, designing of the mode conversion effect, which is rarely discussed, can also affect the mode purity of output power. After adjustment of the dimensions of the tapered waveguide, which converts the combination of 'surface wave' and 'volume wave' to the 'volume wave' in the output waveguide, the percentage of total output microwave power carried by the TM{sub 01} mode is higher than 95% in the X-band overmoded Cerenkov oscillator at the diode voltage ranging from 570 kV to 750 kV.

Zhang Dian; Zhang Jun; Zhong Huihuang; Jin Zhenxing [College of Optoelectric Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

2012-10-15T23:59:59.000Z

377

Cryogenic loading of large volume presses for high-pressure experimentation and synthesis of novel materials  

Science Conference Proceedings (OSTI)

We present an efficient easily implemented method for loading cryogenic fluids in a large volume press. We specifically apply this method to the high-pressure synthesis of an extended solid derived from CO using a Paris-Edinburgh cell. This method employs cryogenic cooling of Bridgman type WC anvils well insulated from other press components, condensation of the load gas within a brass annulus surrounding the gasket between the Bridgman anvils. We demonstrate the viability of the described approach by synthesizing macroscopic amounts (several milligrams) of polymeric CO-derived material, which were recovered to ambient conditions after compression of pure CO to 5 GPa or above.

Lipp, M J; Evans, W J; Yoo, C S

2005-01-21T23:59:59.000Z

378

Coal-fired high performance power generating system. Draft quarterly progress report, January 1--March 31, 1995  

SciTech Connect

This report covers work carried out under Task 3, Preliminary R and D, under contract DE-AC22-92PC91155, ``Engineering Development of a Coal-Fired High Performance Power Generation System`` between DOE Pittsburgh Energy Technology Center and United Technologies Research Center. The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) by the year 2000 that is capable of >47% thermal efficiency; NO{sub x}, SO{sub x} and particulates {le} 25% NSPS; cost {ge}65% of heat input; all solid wastes benign. A crucial aspect of the authors design is the integration of the gas turbine requirements with the HITAF output and steam cycle requirements. In order to take full advantage of modern highly efficient aeroderivative gas turbines they have carried out a large number of cycle calculations to optimize their commercial plant designs for both greenfield and repowering applications.

1995-10-01T23:59:59.000Z

379

High accuracy power spectra including baryonic physics in dynamical Dark Energy models  

E-Print Network (OSTI)

The next generation mass probes will obtain information on non--linear power spectra P(k,z) and their evolution, allowing us to investigate the nature of Dark Energy. To exploit such data we need high precision simulations, extending at least up to scales of k\\simeq 10 h^-1 Mpc, where the effects of baryons can no longer be neglected. In this paper, we present a series of large scale hydrodynamical simulations for LCDM and dynamical Dark Energy (dDE) models, in which the equation of state parameter is z-dependent. The simulations include gas cooling, star formation and Supernovae feedback. They closely approximate the observed star formation rate and the observationally derived star/Dark Matter mass ratio in collapsed systems. Baryon dynamics cause spectral shifts exceeding 1% at k > 2-3 hMpc^-1 compared to pure n-body simulations in the LCDM simulations. This agrees with previous studies, although we find a smaller effect (~50%) on the power spectrum amplitude at higher k's. dDE exhibits similar behavior, ev...

Casarini, Luciano; Bonometto, Silvio A; Stinson, Greg S

2010-01-01T23:59:59.000Z

380

Analysis of Power Quality Concerns at a County High School  

Science Conference Proceedings (OSTI)

This case study describes the findings from the site survey at a county high school and outlines recommended procedures for dealing with the new computer loads.

2003-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "large power high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Lower power prices and high repair costs drive nuclear retirements ...  

U.S. Energy Information Administration (EIA)

However, concerns over the length of the review process and the high costs associated with steam generator repairs led SCE to retire both reactors.

382

Microsoft PowerPoint - High Temperature Thermoelectric_Ohuchi  

NLE Websites -- All DOE Office Websites (Extended Search)

High T Seebeck tester *Nano-Micro Composites * Reduction in grain size adversely affects electron mobility * Research into nano-micro composites to scatter phonons and preserve...

383

Development of High Average Power Lasers for the Photon Collider  

SciTech Connect

The laser and optics system for the photon collider seeks to minimize the required laser power by using an optical stacking cavity to recirculate the laser light. An enhancement of between 300 to 400 is desired. In order to achieve this the laser pulses which drive the cavity must precisely match the phase of the pulse circulating within the cavity. We report on simulations of the performance of a stacking cavity to various variations of the drive laser in order to specify the required tolerances of the laser system.

Gronberg, Jeff; /LLNL, Livermore; Stuart, Brent; /LLNL, Livermore; Seryi, Andrei; /SLAC

2012-07-05T23:59:59.000Z

384

Visual observation of boiling in high power liquid target  

Science Conference Proceedings (OSTI)

A top pressurized, batch style, 3.15 mL total volume (2.5 mL fill volume) water target with transparent viewing windows was operated on an IBA 18/9 cyclotron at 18 MeV proton energy and beam power up to 1.1 kW. Video recordings documented bubble formation and transport, and blue light from de-excitation of water molecules produced images of proton beam stopping geometry including location of the Bragg peak.

Peeples, J. L.; Stokely, M. H.; Poorman, M. C.; Magerl, M.; Wieland, B. W. [Bruce Technologies Inc., 1939 Evans Rd. Cary, NC 27513 (United States); IBA Molecular, 801 Forestwood Dr. Romeoville, IL 60446 (United States); Bruce Technologies Inc., 1939 Evans Rd. Cary, NC 27513 (United States)

2012-12-19T23:59:59.000Z

385

Develop high energy high power Li-ion battery cathode materials : a first principles computational study  

E-Print Network (OSTI)

electric vehicle (PEV), performance requirements are raised especially from the aspects of energy/power density, cycling life and safety

Xu, Bo; Xu, Bo

2012-01-01T23:59:59.000Z

386

Swept measurement of high power I-V curves  

SciTech Connect

Performance evaluation of photovoltaic (PV) arrays under a variety of conditions provides important information for the design and maintenance of PV systems. One of the principal methods for assessing an array's performance is to plot its current, I, versus voltage, V, curve. Following a brief review of techniques for measuring the I-V curve, a new capacitive-based approach is presented. It uses a rapid sweep of the I-V curve which substantially reduces the average power transfer between array and load, and in turn, substantially reduces the size and weight of the curve tracer. Both theoretical and practical aspects of the approach are presented for a 10-kW unit. Performance is verified by comparison with I-V curves obtained by using a conventional load. The agreement is found to be excellent. Approximately an order of magnitude reduction in size, weight and power consumption over conventional units was realized with the experimental I-V curve tracer.

Cox, C.H.; Warner, T.H.

1982-09-01T23:59:59.000Z

387

Swept measurement of high-power I-V curves  

SciTech Connect

Performance evaluation of photovoltaic (PV) arrays under a variety of conditions provides important information for the design and maintenance of PV systems. One of the principal methods for assessing an arrays's performance is to plot its current, I, versus voltage, V, curve. Following a brief review of techniques for measuring the I-V curve, a new capacitive-based approach is presented. It uses a rapid sweep of the I-V curve which substantially reduces the average power transfer between array and load, and in turn, substantially reduces the size and weight of the curve tracer. Both theoretical and practical aspects of the approach are presented for a 10-kW unit. Performance is verified by comparison with I-V curves obtained by using a conventional load. The agreement is found to be excellent. Approximately an order of magnitude reduction in size, weight and power consumption over conventional units was realized with the experimental I-V curve tracer.

Cox, C.H. III; Warner, T.H.

1982-01-01T23:59:59.000Z

388

Research on stable, high-efficiency, large-area amorphous silicon based modules -- Task B  

DOE Green Energy (OSTI)

This report documents progress in developing a stable, high- efficiency, four-terminal hybrid tandem module. The module consists of a semi-transparent, thin-film silicon:hydrogen alloy (TFS) top circuit and a copper indium diselenide (CuInSe{sub 2}) bottom circuit. Film deposition and patterning processes were successfully extended to 0.4-m{sup 2} substrates. A 33.2-W (8.4% efficient) module with a 3970-cm{sup 2} aperture area and a white back reflector was demonstrated; without the back reflector, the module produced 30.2 W (7.6% efficient). Placing a laminated, 31.6-W, 8.1%-efficient CuInSe{sub 2} module underneath this TFS module, with an air gap between the two, produces 11.2 W (2.9% efficient) over a 3883-cm{sup 2} aperture area. Therefore, the four-terminal tandem power output is 41.4 W, translating to a 10.5% aperture-area efficiency. Subsequently, a 37.8-W (9.7% aperture-area efficiency) CuInSe{sub 2} module was demonstrated with a 3905-cm{sup 2} aperture area. Future performances of single-junction and tandem modules of this size were modeled, and predicted power outputs exceed 50 W (13% efficient) for CuInSe{sub 2} and 65 W (17% efficient) for TFS/CuInSe{sub 2} tandem modules.

Mitchell, K.W.; Willet, D.R. (Siemens Solar Industries, Camarillo, CA (USA))

1990-10-01T23:59:59.000Z

389

P.: Quick simulation methods for estimating the unreliability of regenerative models of large highly reliable systems  

E-Print Network (OSTI)

We investigate fast simulation techniques for estimating the unreliability in large Markovian models of highly reliable systems for which analytical0numerical techniques are difficult to apply+ We first show mathematically that for “small ” time horizons, the relative simulation error, when using the importance sampling techniques of failure biasing and forcing, remains bounded as component failure rates tend to zero+ This is in contrast to naive simulation where the relative error tends to infinity+ For “large ” time horizons where these techniques are not efficient, we use the approach of first bounding the unreliability in terms of regenerative-cycle-based measures and then estimating the regenerative-cycle-based measures using importance sampling; the latter can be done very efficiently+ We first use bounds developed in the literature for the asymptotic distribution of the time to hitting a rare set in regenerative systems+ However, these bounds are “close ” to the unreliability only for a certain range of time horizons+ We develop new bounds that make use of the special structure of the systems that we consider and are “close ” to the unreliability for a much wider range of time horizons+ These techniques extend to non-Markovian, highly reliable systems as long as the regenerative structure is preserved+ © 2004 Cambridge University Press 0269-9648004 $16+00 339340 M. K. Nakayama and P. Shahabuddin 1.

Marvin K. Nakayama; Perwez Shahabuddin

2004-01-01T23:59:59.000Z

390

High-Energy, Low-Frequency Risk to the North American Bulk Power System  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High-Energy, Low-Frequency Risk to the North American Bulk Power High-Energy, Low-Frequency Risk to the North American Bulk Power System (June 2010) High-Energy, Low-Frequency Risk to the North American Bulk Power System (June 2010) A Jointly-Commissioned Summary Report of the North American Electric Reliability Corporation and the U.S. Department of Energy's November 2009 Workshop. The North American Electric Reliability Corporation (NERC) and the U.S. Department of Energy (DOE) partnered in July of 2009 on an effort to address High-Impact, Low-Frequency risks to the North American bulk power system. In August, NERC formed a steering committee made up of industry and risk experts to lead the development of an initial workshop on the subject, chaired by Scott Moore, VP Transmission System & Region Operations for American Electric Power, and Robert Stephan, Former Assistant Secretary for

391

Superconducting Power Cables  

Science Conference Proceedings (OSTI)

Power cables constructed from superconducting materials are being realized in utility demonstrations within the United States. Cooled by liquid nitrogen, high temperature superconducting power cables can transfer large amounts of power through relatively small cross sections. The key to their high power capacity is the high current density inherent with superconductors; a superconducting wire can conduct several times as much current as copper or aluminum conductors of the same cross section. For the pas...

2006-11-30T23:59:59.000Z

392

AN ASSESSMENT OF FLYWHEEL HIGH POWER ENERGY STORAGE TECHNOLOGY FOR HYBRID VEHICLES  

Science Conference Proceedings (OSTI)

An assessment has been conducted for the DOE Vehicle Technologies Program to determine the state of the art of advanced flywheel high power energy storage systems to meet hybrid vehicle needs for high power energy storage and energy/power management. Flywheel systems can be implemented with either an electrical or a mechanical powertrain. The assessment elaborates upon flywheel rotor design issues of stress, materials and aspect ratio. Twelve organizations that produce flywheel systems submitted specifications for flywheel energy storage systems to meet minimum energy and power requirements for both light-duty and heavy-duty hybrid applications of interest to DOE. The most extensive experience operating flywheel high power energy storage systems in heavy-duty and light-duty hybrid vehicles is in Europe. Recent advances in Europe in a number of vehicle racing venues and also in road car advanced evaluations are discussed. As a frame of reference, nominal weight and specific power for non-energy storage components of Toyota hybrid electric vehicles are summarized. The most effective utilization of flywheels is in providing high power while providing just enough energy storage to accomplish the power assist mission effectively. Flywheels are shown to meet or exceed the USABC power related goals (discharge power, regenerative power, specific power, power density, weight and volume) for HEV and EV batteries and ultracapacitors. The greatest technical challenge facing the developer of vehicular flywheel systems remains the issue of safety and containment. Flywheel safety issues must be addressed during the design and testing phases to ensure that production flywheel systems can be operated with adequately low risk.

Hansen, James Gerald [ORNL

2012-02-01T23:59:59.000Z

393

Application of High Power DC Arc Plasma for  

Science Conference Proceedings (OSTI)

Recent results in the R&D of thin diamond film coated WC-Co drills and end ... of High Quality Freestanding Diamond Films and Diamond Film Coated Cutting ...

394

High Efficiency Solar Power via Separated Photo and Voltaic Pathways  

DOE Green Energy (OSTI)

This project demonstrates a novel nanostructured solar cell architecture capable of achieving high efficiency levels that is relatively simple and inexpensive to manufacture. The high efficiency will be achieved by the novel structure that separates the path of the photons from the path of the generated charge carriers. In this way, the photon path can be long for maximum light absorption, while the path for carriers can be short for maximum electronic energy harvesting. The combination of maximum light absorption coupled with maximum carrier harvesting is the basis for the expected high efficiency. The project will develop high efficiency solar cell prototypes utilizing this unique nanostructured architecture. The project addresses the fundamental limitation inherent in all current solar cell designs, and which opens a pathway to development for high efficiency solar cells at low cost. Realizing this goal will result in a levelized cost of electricity in the range of 10¢/kWh, which would achieve the long-sought goal of making photovoltaic electricity cost competitive with fossil-fuel generated electricity without any governmental subsidies. This breakthrough would spur the already rapid growth in the photovoltaic industry to an explosive pace, with significant, widespread benefit to the national economy and the nation’s energy security. The initial target of the program is to develop single-junction solar cells using ultrathin amorphous silicon with the performance approaching that of single crystal silicon cells.

Michael J. Naughton

2009-02-17T23:59:59.000Z

395

High power pulsed plasma MHD experiments. Annual report 1 Jan 81-30 Sep 82  

SciTech Connect

Results of high power pulsed plasma MHD experiments are reported. An explosively driven plasma source is used to drive a Faraday mode MHD generator with an externally applied B-field of several tesla. The highest power achieved was 6 gigawatts in a 140 kJ electrical pulse delivered to a resistive load. The experimentally observed scaling relationships of power with applied B-field and electrode area are also presented.

Baum, D.W.; Gill, S.P.; Shimmin, W.L.; Watson, J.D.

1982-09-30T23:59:59.000Z

396

Large-Eddy Simulation Study of Wake Propagation and Power Production in an Array of Tidal-Current Turbines: Preprint  

DOE Green Energy (OSTI)

This paper presents our initial work in performing large-eddy simulations of tidal turbine array flows. First, a horizontally-periodic precursor simulation is performed to create turbulent flow data. Then that data is used as inflow into a tidal turbine array two rows deep and infinitely wide. The turbines are modeled using rotating actuator lines, and the finite-volume method is used to solve the governing equations. In studying the wakes created by the turbines, we observed that the vertical shear of the inflow combined with wake rotation causes lateral wake asymmetry. Also, various turbine configurations are simulated, and the total power production relative to isolated turbines is examined. Staggering consecutive rows of turbines in the simulated configurations allows the greatest efficiency using the least downstream row spacing. Counter-rotating consecutive downstream turbines in a non-staggered array shows a small benefit. This work has identified areas for improvement, such as the use of a larger precursor domain to better capture elongated turbulent structures, the inclusion of salinity and temperature equations to account for density stratification and its effect on turbulence, improved wall shear stress modelling, and the examination of more array configurations.

Churchfield, M. J.; Li, Y.; Moriarty, P. J.

2012-07-01T23:59:59.000Z

397

Large-Eddy Simulation Study of Wake Propagation and Power Production in an Array of Tidal-Current Turbines: Preprint  

DOE Green Energy (OSTI)

This paper presents our initial work in performing large-eddy simulations of tidal turbine array flows. First, a horizontally-periodic precursor simulation is performed to create turbulent flow data. Then that data is used to determine the inflow into a tidal turbine array two rows deep and infinitely wide. The turbines are modeled using rotating actuator lines, and the finite-volume method is used to solve the governing equations. In studying the wakes created by the turbines, we observed that the vertical shear of the inflow combined with wake rotation causes lateral wake asymmetry. Also, various turbine configurations are simulated, and the total power production relative to isolated turbines is examined. Staggering consecutive rows of turbines in the simulated configurations allows the greatest efficiency using the least downstream row spacing. Counter-rotating consecutive downstream turbines in a non-staggered array shows a small benefit. This work has identified areas for improvement, such as the use of a larger precursor domain to better capture elongated turbulent structures, the inclusion of salinity and temperature equations to account for density stratification and its effect on turbulence, improved wall shear stress modeling, and the examination of more array configurations.

Churchfield, M. J.; Li, Y.; Moriarty, P. J.

2011-07-01T23:59:59.000Z

398

High-Power Plasma Switch for 11.4 GHz Microwave Pulse Compressor  

SciTech Connect

Results obtained in several experiments on active RF pulse compression at X-band using a magnicon as the high-power RF source are presented. In these experiments, microwave energy was stored in high-Q TE01 and TE02 modes of two parallel-fed resonators, and then discharged using switches activated with rapidly fired plasma discharge tubes. Designs and high-power tests of several versions of the compressor are described. In these experiments, coherent pulse superposition was demonstrated at a 5–9 MW level of incident power. The compressed pulses observed had powers of 50–70 MW and durations of 40–70 ns. Peak power gains were measured to be in the range of 7:1–11:1 with efficiency in the range of 50–63%.

Jay L. Hirshfield

2010-03-04T23:59:59.000Z

399

New high power 200 MHz RF system for the LANSCE drift tube linac  

SciTech Connect

The Los Alamos Neutron Science Center (LANSCE) linac provides an 800 MeV direct H{sup +} proton beam, and injects H{sup {minus}} to the upgraded proton storage ring for charge accumulation for the Short Pulse Spallation Source. Accelerating these interlaced beams requires high average power from the 201.25 MHz drift tube linac (DTL) RF system. Three power amplifiers have operated at up to three Megawatts with 12% duty factor. The total number of electron power tubes in the RF amplifiers and their modulators has been reduced from fifty-two to twenty-four. The plant continues to utilize the original design of a tetrode driving a super power triode. Further increases in the linac duty factor are limited, in part, by the maximum dissipation ratings of the triodes. A description of the system modifications proposed to overcome these limitations includes new power amplifiers using low-level RF modulation for tank field control. The first high power Diacrode{reg_sign} is being delivered and a new amplifier cavity is being designed. With only eight power tubes, the new system will deliver both peak power and high duty factor, with lower mains power and cooling requirements. The remaining components needed for the new RF system will be discussed.

Lyles, J.; Friedrichs, C.; Lynch, M.

1998-12-31T23:59:59.000Z

400

Analysis of system wide distortion in an integrated power system utilizing a high voltage DC bus and silicon carbide power devices  

E-Print Network (OSTI)

This research investigates the distortion on the electrical distribution system for a high voltage DC Integrated Power System (IPS). The analysis was concentrated on the power supplied to a propulsion motor driven by an ...

Fallier, William F. (William Frederick)

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "large power high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Synthesis of hybrid nanowire arrays and their application as high power supercapacitor electrodesw  

E-Print Network (OSTI)

Synthesis of hybrid nanowire arrays and their application as high power supercapacitor electrodesw- plies.2­7 For such applications, it is extremely important to develop supercapacitors with higher power and they have been used as electrodes for supercapacitors.11­14 In spite of having ideal properties, CNT based

Ajayan, Pulickel M.

402

Electrical characterization and modelling of round spiral supercapacitors for high power applications  

E-Print Network (OSTI)

Electrical characterization and modelling of round spiral supercapacitors for high power of supercapacitors under railway and electrical traction constraints. Electrical model parameters according of supercapacitors and give precious information on its state of health. These kinds of studies need a powerful

Paris-Sud XI, Université de

403

Nano-structured anode material for high-power battery system in electric vehicles.  

SciTech Connect

A new MSNP-LTO anode is developed to enable a high-power battery system that provides three times more power than any existing battery system. It shows excellent cycle life and low-temperature performance, and exhibits unmatched safety characteristics.

Amine, K.; Belharouak, I.; Chen, Z.; Taison, T.; Yumoto, H.; Ota, N.; Myung, S.-T.; Sun, Y.-K. (Chemical Sciences and Engineering Division); (Enerdel Lithium Power Systems); (Iwate Univ.); (Hanyang Univ.)

2010-07-27T23:59:59.000Z

404

Interface microstructure engineering by high power impulse magnetron sputtering for the enhancement of adhesion  

SciTech Connect

An excellent adhesion of hard coatings to steel substrates is paramount in practically all application areas. Conventional methods utilize Ar glow etching or cathodic arc discharge pretreatments that have the disadvantage of producing weak interfaces or adding droplets, respectively. One tool for interface engineering is high power impulse magnetron sputtering (HIPIMS). HIPIMS is based on conventional sputtering with extremely high peak power densities reaching 3 kW cm{sup -2} at current densities of >2 A cm{sup -2}. HIPIMS of Cr and Nb was used to prepare interfaces on 304 stainless steel and M2 high speed steel (HSS). During the pretreatment, the substrates were biased to U{sub bias}=-600 V and U{sub bias}=-1000 V in the environment of a HIPIMS of Cr and Nb plasma. The bombarding flux density reached peak values of 300 mA cm{sup -2} and consisted of highly ionized metal plasma containing a high proportion of Cr{sup 1+} and Nb{sup 1+}. Pretreatments were also carried out with Ar glow discharge and filtered cathodic arc as comparison. The adhesion was evaluated for coatings consisting of a 0.3 {mu}m thick CrN base layer and a 4 {mu}m thick nanolayer stack of CrN/NbN with a period of 3.4 nm, hardness of HK{sub 0.025}=3100, and residual stress of -1.8 GPa. For HIPIMS of Cr pretreatment, the adhesion values on M2 HSS reached scratch test critical load values of L{sub C}=70 N, thus comparing well to L{sub C}=51 N for interfaces pretreated by arc discharge plasmas and to L{sub C}=25 N for Ar etching. Cross sectional transmission electron microscopy studies revealed a clean interface and large areas of epitaxial growth in the case of HIPIMS pretreatment. The HIPIMS pretreatment promoted strong registry between the orientation of the coating and polycrystalline substrate grains due to the incorporation of metal ions and the preservation of crystallinity of the substrate. Evidence and conditions for the formation of cube-on-cube epitaxy and axiotaxy on steel and {gamma}-TiAl substrates are presented.

Ehiasarian, A. P.; Wen, J. G.; Petrov, I. [Materials and Engineering Research Institute, Sheffield Hallam University, Howard Street, Sheffield S1 1WB (United Kingdom); Frederick Seitz Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801 and Materials Science Department, University of Illinois, Urbana, Illinois 61801 (United States)

2007-03-01T23:59:59.000Z

405

Demonstration of High Efficiency Elastocaloric Cooling with Large Delta- T Using NiTi Wires  

Science Conference Proceedings (OSTI)

Vapor compression (VC) is by far the most dominant technology for meeting all cooling and refrigeration needs around the world. It is a mature technology with the efficiency of modern compressors approaching the theoretical limit, but its envi-ronmental footprint remains a global problem. VC refrigerants such as hydrochlo-roflurocarbons (HCFCs) and hydrofluorocarbons (HFCs) are a significant source of green house gas (GHG) emissions, and their global warming potential (GWP) is as high as 1000 times that of CO2. It is expected that building space cooling and re-frigeration alone will amount to {approx} 5% of primary energy consumption and {approx}5% of all CO2 emission in U.S. in 2030 . As such, there is an urgent need to develop an al-ternative high-efficiency cooling technology that is affordable and environmentally friendly. Among the proposed candidates, magnetocaloric cooling (MC) is currently received a lot of attention because of its high efficiency. However, MC is inherently expensive because of the requirement of large magnetic field and rare earth materi-als. Here, we demonstrate an entirely new type of solid-state cooling mechanism based on the latent heat of reversible martensitic transformation. We call it elasto-caloric cooling (EC) after the superelastic transformation of austenite it utilizes. The solid-state refrigerant of EC is cost-effective, and it completely eliminates the use of any refrigerants including HCFCs/HFCs. We show that the COP (coefficient of per-formance) of a jugular EC with optimized materials can be as high as > 10 with measured {Delta}T of 17 C.

Cui, Jun; Wu, Yiming; Muehlbauer, Jan; Hwang, Yunho; Radermacher, Reinhard; Fackler, Sean; Wuttig, Manfred; Takeuchi, Ichiro

2012-08-01T23:59:59.000Z

406

Development of fluorides for high power laser optics  

Science Conference Proceedings (OSTI)

The laser-assisted thermonuclear fusion program has significant needs for improved optical materials with high transmission in the ultraviolet, and with low values of nonlinear index of refraction. Lithium fluoride (LiF) possesses a combination of optical properties which are of potential use. Single-crystalline LiF is limited by low mechanical strength. In this program, we investigated the technique of press-forging to increase the mechanical strength. LiF single crystals were press-forged over the temperature range 300 to 600/sup 0/C to produce fine-grained polycrystalline material.

Ready, J.F.; Vora, H.

1980-07-01T23:59:59.000Z

407

High Temperature Dynamic Hohlraums on the Pulsed Power Driver Z  

SciTech Connect

In the concept of the dynamic hohlraum an imploding z-pinch is optically thick to its own radiation. Radiation may be trapped inside the pinch to give a radiation temperature inside the pinch greater than that outside the pinch. The radiation is typically produced by colliding an outer Z-pinch liner onto an inner liner. The collision generates a strongly radiating shock, and the radiation is trapped by the outer liner. As the implosion continues after the collision the radiation temperature may continue to increase due to ongoing PdV (pressure times change in volume) work done by the implosion. In principal the radiation temperature may increase to the point at which the outer liner burns through, becomes optically thin, and no longer traps the radiation. One application of the dynamic hohlraum is to drive an ICF (inertial confinement fusion) pellet with the trapped radiation field. Members of the dynamic hohlraum team at Sandia National Labs have used the pulsed power driver Z (20 LMA, 100 ns) to create a dynamic hohlraum with temperature linearly ramping from 100 to 180 eV over 5 ns. On this shot zp214 a nested tungsten wire array of 4 and 2 cm diameters with masses of 2 and 1 mg imploded onto a 2.5 mg plastic annulus at 5 mm diameter. The current return can on this shot was slotted. It is likely the radiation temperature may be increased to over 200 CV by stabilizing the pinch with a solid current return can. A current return can with 9 slots imprints 9 filaments onto the imploding pinch. This degrades the optical trapping and the quality of the liner collision. A 1.6 mm diameter capsule situated inside this dynamic hohlraum of zp214 would see 15 kJ of radiation impinging on its surface before the pinch itself collapses to a 1.6 mm diameter. Dynamic hohlraum shots including pellets are scheduled to take place on Z in September of 1998.

Armijo, J.; Chandler, G.A.; Cooper, G.; Derzon, M.S.; Fehl, D.; Gilliland, T.; Hawn, R.; Hebron, D.; Hurst, M.; Jobe, D.; Lash, J.; Lazier, S.; Leeper, R.; McGurn, J.; McKenney, J.; Mock, R.; Nash, T.J.; Nielsen, D.; Ruiz, C.; Ryan, P.; Seaman, J.F.; Torres, J.

1999-01-04T23:59:59.000Z

408

Generation of high power single-cycle and multiple-cycle terahertz pulses  

E-Print Network (OSTI)

In this thesis, we present experimental methods and results of tabletop generation of high power single-cycle and frequency-tunable multiple-cycle terahertz (THz) pulses pumped with near-infrared ultrashort optical pulses ...

Chen, Zhao, S.M. Massachusetts Institute of Technology. Department of Chemistry

2013-01-01T23:59:59.000Z

409

High efficiency resonant dc/dc converter for solar power applications  

E-Print Network (OSTI)

This thesis presents a new topology for a high efficiency dc/dc resonant power converter that utilizes a resistance compression network to provide simultaneous zero voltage switching and near zero current switching across ...

Inam, Wardah

2013-01-01T23:59:59.000Z

410

NEUTRONIC AND THERMAL HYDRAULIC DESIGNS OF ANNULAR FUEL FOR HIGH POWER DENSITY BWRS  

E-Print Network (OSTI)

As a promising new fuel for high power density light water reactors, the feasibility of using annular fuel for BWR services is explored from both thermal hydraulic and neutronic points of view. Keeping the bundle size ...

Morra, P.

411

Development and Analysis of Advanced High-Temperature Technology for Nuclear Heat Transport and Power Conversion  

DOE Green Energy (OSTI)

This project by the Thermal Hydraulics Research Laboratory at U.C. Berkeley Studied advanced high-temperature heat transport and power conversion technology, in support of the Nuclear Hydrogen Initiative and Generation IV.

Per F. Peterson

2010-03-01T23:59:59.000Z

412

Power System Planning: Emerging Practices Suitable for Evaluating the Impact of High-Penetration Photovoltaics  

DOE Green Energy (OSTI)

This report explores the impact of high-penetration renewable generation on electric power system planning methodologies and outlines how these methodologies are evolving to enable effective integration of variable-output renewable generation sources.

Bebic, J.

2008-02-01T23:59:59.000Z

413

Bright High Average Power Table-top Soft X-Ray Lasers  

Science Conference Proceedings (OSTI)

We have demonstrated the generation of bright soft x-ray laser pulses with record-high average power from compact plasma amplifiers excited by ultrafast solid state lasers. These lasers have numerous applications in nanoscience and nanotechnology.

Rocca, Jorge [Colorado State University, Fort Collins; Reagan, Brendon [Colorado State University, Fort Collins; Wernsing, Keith [Colorado State University, Fort Collins; Luther, Brad [Colorado State University, Fort Collins; Curtis, Alden [Colorado State University, Fort Collins; Nichols,, Anthony [Colorado State University, Fort Collins; Wang, Yong [Colorado State University, Fort Collins; Alessi, David [Colorado State University, Fort Collins; Martz, Dale [Colorado State University, Fort Collins; Yin, Liang [Colorado State University, Fort Collins; Wang, Shoujun [Colorado State University, Fort Collins; Berrill, Mark A [ORNL; Furch, Federico [Colorado State University, Fort Collins; Woolston, Mark [Colorado State University, Fort Collins; Patel, Dinesh [Colorado State University, Fort Collins; Marconi, Mario [Colorado State University, Fort Collins; Menoni, Carmen [Colorado State University, Fort Collins

2012-01-01T23:59:59.000Z

414

Low Cost High-H2 Syngas Production for Power and Liquid Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Low Cost High-H2 Syngas Production for Power and Liquid Fuels Gas Technology Institute (GTI) Project Number: FE0011958 Project Description Proof-of-concept of a metal-polymeric...

415

High Altitude Wind Power Systems: A Survey on Flexible Power Kites Mariam Ahmed*  

E-Print Network (OSTI)

(G2ELab) 38402 Saint-Martin d'Heres, France Abstract-- High altitude wind energy (HAWE) is a new interest in sustainable development, renewable energy systems, such as solar photo-voltaic, wind and tidal systems, are heavily explored. One ideal source of renewable energy is the wind. Tradi- tionally, wind

416

Improvements in power quality and efficiency with a new AC/DC high current converter  

Science Conference Proceedings (OSTI)

A very flexible AC/DC converter featuring high-output current, reduced voltage ripple and highly adjustable current control is described. The whole system consists of four stages and uses a proper switching technique in conjunction with a feedback control ... Keywords: AC/DC converter, FFT, electrical distribution systems, high direct-current, power quality

Francesco Muzi; Luigi Passacantando

2008-05-01T23:59:59.000Z

417

1st International Workshop on High Performance Computing, Networking and Analytics for the Power Grid  

E-Print Network (OSTI)

1st International Workshop on High Performance Computing, Networking and Analytics for the Power Transient Stability" #12;1st International Workshop on High Performance Computing, Networking and Analytics (University of Vermont). "Developing a Dynamic Model of Cascading Failure for High Performance Computing using

418

HIGH-POWER PRECISION CURRENT SUPPLY IST2-1000M FOR ELEMENTS OF MAGNETIC SYSTEMS OF ACCELERATORS AND  

E-Print Network (OSTI)

BF), a detached supply transformer and power switch. Power box PB comprises the following: - a threeHIGH-POWER PRECISION CURRENT SUPPLY IST2-1000M FOR ELEMENTS OF MAGNETIC SYSTEMS OF ACCELERATORS. These supplies are intended to power magnetic systems of accelerators, requiring high stability and low ripples

Kozak, Victor R.

419

Charged electret deposition for the manipulation of high power microwave flashover delay times  

Science Conference Proceedings (OSTI)

A quasi-permanent charged electret is embedded into the radiation window of a high power microwave system. It was experimentally observed that the additional electrostatic field introduced by the electret alters the delay times associated with the development of plasma at the window surface, resulting from high power microwave excitation. The magnitudes of both the statistical and formative delay times are investigated in detail for different pressures. Experimental observations are related to calculated discharge parameters using known E/p dependent properties.

Stephens, J.; Beeson, S.; Dickens, J.; Neuber, A. [Center for Pulsed Power and Power Electronics, Texas Tech University, Lubbock, Texas 79409 (United States)

2012-11-15T23:59:59.000Z

420

Power Beamed Photon Sails: New Capabilities Resulting From Recent Maturation Of Key Solar Sail And High Power Laser Technologies  

SciTech Connect

This paper revisits some content in the First International Symposium on Beamed Energy Propulsion in 2002 related to the concept of propellantless in-space propulsion utilizing an external high energy laser to provide momentum to an ultralightweight (gossamer) spacecraft. The design and construction of the NanoSail-D solar sail demonstration spacecraft has demonstrated in space flight hardware the concept of small, very light--yet capable--spacecraft. The results of the Joint High Power Solid State Laser (JHPSSL) have also increased the effectiveness and reduced the cost of an entry level laser source. This paper identifies the impact from improved system parameters on current mission applications.

Montgomery, Edward E. IV [United States Army Space and Missile Defense Command, Huntsville, Alabama (United States)

2010-05-06T23:59:59.000Z

Note: This page contains sample records for the topic "large power high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Microsoft PowerPoint - High Temperature Thermoelectric_Ohuchi  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermoelectric Oxides Engineered Thermoelectric Oxides Engineered at Multiple Length Scales for Energy Harvesting Program Manager: Patricia Rawls Fumio S. Ohuchi (PI) and Rajendra K. Bordia(Co-PI) Department of Materials Science and Engineering University of Washington Box 352120 Seattle, WA 98195 Grant No. DE-FE0007272 (June 1, 2012-May 31, 2013) Graduate Students: Christopher Dandeneau and YiHsun Yang June 10, 2013 The UCR Contractors Review Conference Introduction/Motivation for Research * Thermoelectric (TE) oxides for waste heat recovery  Good high-temperature stability  Stable in hostile environments  Low cost/toxicity * Oxides with complex structure:  Low thermal conductivity,   Tailor stoichiometry to maximize S

422

Fabrication and Evaluation of a High Performance SiC Inverter for Wireless Power Transfer Applications  

SciTech Connect

In this study, a high power density SiC high efficiency wireless power transfer converter system via inductive coupling has been designed and developed. The detailed power module design, cooling system design and power stage development are presented. The successful operation of rated power converter system demonstrates the feasible wireless charging plan. One of the most important part of this study is the wind bandgap devices packaged at the Oak Ridge National Laboratory (ORNL) using the in-house packaging technologies by employing the bare SiC dies acquired from CREE, which are rated at 50 A / 1200 V each. These packaged devices are also inhouse tested and characterized using ORNL s Device Characterization Facility. The successful operation of the proposed inverter is experimentally verified and the efficiency and operational characteristics of the inverter are also revealed.

Onar, Omer C [ORNL] [ORNL; Campbell, Steven L [ORNL] [ORNL; Ning, Puqi [ORNL] [ORNL; Miller, John M [ORNL] [ORNL; Liang, Zhenxian [ORNL] [ORNL

2013-01-01T23:59:59.000Z

423

Parametric Study Of Large-Scale Production Of Syngas Via High Temperature Co-Electrolysis  

DOE Green Energy (OSTI)

A process model has been developed to evaluate the potential performance of a largescale high-temperature co-electrolysis plant for the production of syngas from steam and carbon dioxide. The co-electrolysis process allows for direct electrochemical reduction of the steam – carbon dioxide gas mixture, yielding hydrogen and carbon monoxide, or syngas. The process model has been developed using the Honeywell UniSim systems analysis code. Using this code, a detailed process flow sheet has been defined that includes all the components that would be present in an actual plant such as pumps, compressors, heat exchangers, turbines, and the electrolyzer. Since the electrolyzer is not a standard UniSim component, a custom one-dimensional co-electrolysis model was developed for incorporation into the overall UniSim process flow sheet. The one dimensional co-electrolysis model assumes local chemical equilibrium among the four process-gas species via the gas shift reaction. The electrolyzer model allows for the determination of co-electrolysis outlet temperature, composition (anode and cathode sides); mean Nernst potential, operating voltage and electrolyzer power based on specified inlet gas flow rates, heat loss or gain, current density, and cell area-specific resistance. The one-dimensional electrolyzer model was validated by comparison with results obtained from a fully three dimensional computational fluid dynamics model developed using FLUENT, and by comparison to experimental data. This paper provides representative results obtained from the UniSim flow sheet model for a 300 MW co-electrolysis plant, coupled to a high-temperature gas-cooled nuclear reactor. The coelectrolysis process, coupled to a nuclear reactor, provides a means of recycling carbon dioxide back into a useful liquid fuel. If the carbon dioxide source is based on biomass, the overall process, from production through utilization, would be climate neutral.

J. E. O'Brien; M. G. McKellar; C. M. Stoots; J. S. Herring; G. L. Hawkes

2007-11-01T23:59:59.000Z

424

High power X-ray welding of metal-matrix composites  

DOE Patents (OSTI)

A method for joining metal-matrix composites (MMCs) by using high power x-rays as a volumetric heat source is provided. The method involves directing an x-ray to the weld line between two adjacent MMCs materials to create an irradiated region or melt zone. The x-rays have a power density greater than about 10{sup 4} watts/cm{sup 2} and provide the volumetric heat required to join the MMC materials. Importantly, the reinforcing material of the metal-matrix composites remains uniformly distributed in the melt zone, and the strength of the MMCs are not diminished. In an alternate embodiment, high power x-rays are used to provide the volumetric heat required to weld metal elements, including metal elements comprised of metal alloys. In an alternate embodiment, high power x-rays are used to provide the volumetric heat required to weld metal elements, including metal elements comprised of metal alloys.

Rosenberg, Richard A.; Goeppner, George A.; Noonan, John R.; Farrell, William J.; Ma, Qing

1997-12-01T23:59:59.000Z

425

High power x-ray welding of metal-matrix composites  

DOE Patents (OSTI)

A method for joining metal-matrix composites (MMCs) by using high power x-rays as a volumetric heat source is provided. The method involves directing an x-ray to the weld line between two adjacent MMCs materials to create an irradiated region or melt zone. The x-rays have a power density greater than about 10.sup.4 watts/cm.sup.2 and provide the volumetric heat required to join the MMC materials. Importantly, the reinforcing material of the metal-matrix composites remains uniformly distributed in the melt zone, and the strength of the MMCs are not diminished. In an alternate embodiment, high power x-rays are used to provide the volumetric heat required to weld metal elements, including metal elements comprised of metal alloys. In an alternate embodiment, high power x-rays are used to provide the volumetric heat required to weld metal elements, including metal elements comprised of metal alloys.

Rosenberg, Richard A. (Naperville, IL); Goeppner, George A. (Orland Park, IL); Noonan, John R. (Naperville, IL); Farrell, William J. (Flossmoor, IL); Ma, Qing (Westmont, IL)

1999-01-01T23:59:59.000Z

426

Low Cost High Concentration PV Systems for Utility Power Generation Amonix,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Amonix, Inc. Amonix, Inc. Low Cost High Concentration PV Systems for Utility Power Generation Amonix, Inc. A series of brief fact sheet on various topics including:Low Cost High Concentration PV Systems for Utility Power Generation,High Efficiency Concentrating Photovoltaic Power System,Reaching Grid Parity Using BP Solar Crystalline Silicon Technology, Fully Integrated Building Science Solutions for Residential and Commercial Photovoltaic Energy Generation,A Value Chain Partnership to Accelerate U.S. Photovoltaic Industry Growth,AC Module PV System,Flexible Organic Polymer-Based PV For Building Integrated Commercial Applications,Flexable Integrated PV System,Delivering Grid-Parity Solar Electricity On Flat Commercial Rooftops,Fully Automated Systems Technology, Concentrating Solar Panels: Bringing the Highest Power and Lowest Cost to

427

Thermal plant outages in a large hydro-thermal power supply system a method in probabilistic simulation  

Science Conference Proceedings (OSTI)

The advent of large computers has made a significant impact upon decision theory with their ability to generate a large number of simulations within a relatively short period of time. Better estimates of a system's capabilities and parameters can be ...

Charles W. Eastwood

1980-01-01T23:59:59.000Z

428

ANTARES proposal: Towards a large scale high energy cosmic neutrino undersea detector  

E-Print Network (OSTI)

The ANTARES collaboration propose to observe High Energy Cosmic Neutrinos using a Deep Sea Cherenkov detector. The sky survey with high energy neutrinos is complementary to the observations with photons. It is expected that this will shed a new light on the understanding of the origin of cosmics rays, on galactic and extra galactic sources. In this document, we will elaborate on the potential interest of such a study for Astrophysicists and Particle Physicists. For Oceanologists participating in the collaboration, the main goal is a long term measurement of environmental parameters in the deep sea. We propose to explore the possibility of a km-scale detector to be installed in a deep site in the Mediterranean sea, for which a broad collaboration will be needed. A variety of technical problems have to be solved. Strong constraints coming from the deep sea environment and the lack of accessibility, require sea science engineering expertise. For items such as detector deployment in deep water, data transmission through optical cables, corrosion, bio-fouling of optical modules, positioning, we have found technical support from collaborators and partners which have experience in this field (COM, CSTN, CTME, IFREMER, France Telecom Cables, INSU-CNRS...). We will test the sea engineering part of a detector including test deployments close to the Toulon coast (France) where technical support is available and where several sites at depths down to 2500 m are easily accessible. During the same time, issues connected to the accomplishment of a large scale detector and the selection of an optimum site will be addressed. We propose to build and install a demonstrator (a fully equipped 3-dimensional test array) the design of which can be extended to a km^3 scale detector. We plan to reach this goal within the next 2 years.

ANTARES collaboration

1997-07-11T23:59:59.000Z

429

Towards Real-Time High Performance Computing For Power Grid Analysis  

SciTech Connect

Real-time computing has traditionally been considered largely in the context of single-processor and embedded systems, and indeed, the terms real-time computing, embedded systems, and control systems are often mentioned in closely related contexts. However, real-time computing in the context of multinode systems, specifically high-performance, cluster-computing systems, remains relatively unexplored. Imposing real-time constraints on a parallel (cluster) computing environment introduces a variety of challenges with respect to the formal verification of the system's timing properties. In this paper, we give a motivating example to demonstrate the need for such a system--- an application to estimate the electromechanical states of the power grid--- and we introduce a formal method for performing verification of certain temporal properties within a system of parallel processes. We describe our work towards a full real-time implementation of the target application--- namely, our progress towards extracting a key mathematical kernel from the application, the formal process by which we analyze the intricate timing behavior of the processes on the cluster, as well as timing measurements taken on our test cluster to demonstrate use of these concepts.

Hui, Peter SY; Lee, Barry; Chikkagoudar, Satish

2012-11-16T23:59:59.000Z

430

COLLECTIVE EVIDENCE FOR INVERSE COMPTON EMISSION FROM EXTERNAL PHOTONS IN HIGH-POWER BLAZARS  

Science Conference Proceedings (OSTI)

We present the first collective evidence that Fermi-detected jets of high kinetic power (L{sub kin}) are dominated by inverse Compton emission from upscattered external photons. Using a sample with a broad range in orientation angle, including radio galaxies and blazars, we find that very high power sources (L{sub kin} > 10{sup 45.5} erg s{sup -1}) show a significant increase in the ratio of inverse Compton to synchrotron power (Compton dominance) with decreasing orientation angle, as measured by the radio core dominance and confirmed by the distribution of superluminal speeds. This increase is consistent with beaming expectations for external Compton (EC) emission, but not for synchrotron self-Compton (SSC) emission. For the lowest power jets (L{sub kin} < 10{sup 43.5} erg s{sup -1}), no trend between Compton and radio core dominance is found, consistent with SSC. Importantly, the EC trend is not seen for moderately high power flat spectrum radio quasars with strong external photon fields. Coupled with the evidence that jet power is linked to the jet speed, this finding suggests that external photon fields become the dominant source of seed photons in the jet comoving frame only for the faster and therefore more powerful jets.

Meyer, Eileen T.; Fossati, Giovanni [Department of Physics and Astronomy, Rice University, Houston, TX 77005 (United States); Georganopoulos, Markos [Department of Physics, Joint Center for Astrophysics, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 (United States); Lister, Matthew L. [Department of Physics, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907 (United States)

2012-06-10T23:59:59.000Z

431

Radio-frequency powered glow discharge device and method with high voltage interface  

DOE Patents (OSTI)

A high voltage accelerating potential, which is supplied by a high voltage direct current power supply, is applied to the electrically conducting interior wall of an RF powered glow discharge cell. The RF power supply desirably is electrically grounded, and the conductor carrying the RF power to the sample held by the probe is desirably shielded completely excepting only the conductor's terminal point of contact with the sample. The high voltage DC accelerating potential is not supplied to the sample. A high voltage capacitance is electrically connected in series between the sample on the one hand and the RF power supply and an impedance matching network on the other hand. The high voltage capacitance isolates the high DC voltage from the RF electronics, while the RF potential is passed across the high voltage capacitance to the plasma. An inductor protects at least the RF power supply, and desirably the impedance matching network as well, from a short that might occur across the high voltage capacitance. The discharge cell and the probe which holds the sample are configured and disposed to prevent the probe's components, which are maintained at ground potential, from bridging between the relatively low vacuum region in communication with the glow discharge maintained within the cell on the one hand, and the relatively high vacuum region surrounding the probe and cell on the other hand. The probe and cell also are configured and disposed to prevent the probe's components from electrically shorting the cell's components. 11 figures.

Duckworth, D.C.; Marcus, R.K.; Donohue, D.L.; Lewis, T.A.

1994-06-28T23:59:59.000Z

432

Radio-frequency powered glow discharge device and method with high voltage interface  

DOE Patents (OSTI)

A high voltage accelerating potential, which is supplied by a high voltage direct current power supply, is applied to the electrically conducting interior wall of an RF powered glow discharge cell. The RF power supply desirably is electrically grounded, and the conductor carrying the RF power to the sample held by the probe is desirably shielded completely excepting only the conductor's terminal point of contact with the sample. The high voltage DC accelerating potential is not supplied to the sample. A high voltage capacitance is electrically connected in series between the sample on the one hand and the RF power supply and an impedance matching network on the other hand. The high voltage capacitance isolates the high DC voltage from the RF electronics, while the RF potential is passed across the high voltage capacitance to the plasma. An inductor protects at least the RF power supply, and desirably the impedance matching network as well, from a short that might occur across the high voltage capacitance. The discharge cell and the probe which holds the sample are configured and disposed to prevent the probe's components, which are maintained at ground potential, from bridging between the relatively low vacuum region in communication with the glow discharge maintained within the cell on the one hand, and the relatively high vacuum region surrounding the probe and cell on the other hand. The probe and cell also are configured and disposed to prevent the probe's components from electrically shorting the cell's components.

Duckworth, Douglas C. (Knoxville, TN); Marcus, R. Kenneth (Clemson, SC); Donohue, David L. (Vienna, AT); Lewis, Trousdale A. (Oak Ridge, TN)

1994-01-01T23:59:59.000Z

433

Electrical heating of soils using high efficiency electrode patterns and power phases  

DOE Patents (OSTI)

Powerline-frequency electrical (joule) heating of soils using a high efficiency electrode configuration and power phase arrangement. The electrode configuration consists of several heating or current injection electrodes around the periphery of a volume of soil to be heated, all electrodes being connected to one phase of a multi-phase or a single-phase power system, and a return or extraction electrode or electrodes located inside the volume to be heated being connected to the remaining phases of the multi-phase power system or to the neutral side of the single-phase power source. This electrode configuration and power phase arrangement can be utilized anywhere where powerline frequency soil heating is applicable and thus has many potential uses including removal of volatile organic compounds such as gasoline and tricholorethylene (TCE) from contaminated areas.

Buettner, Harley M. (Livermore, CA)

1999-01-01T23:59:59.000Z

434

Very High Efficiency Reactor (VHER) Concepts for Electrical Power Generation and Hydrogen Production  

DOE Green Energy (OSTI)

The goal of the Very High Efficiency Reactor study was to develop and analyze concepts for the next generation of nuclear power reactors. The next generation power reactor should be cost effective compared to current power generation plant, passively safe, and proliferation-resistant. High-temperature reactor systems allow higher electrical generating efficiencies and high-temperature process heat applications, such as thermo-chemical hydrogen production. The study focused on three concepts; one using molten salt coolant with a prismatic fuel-element geometry, the other two using high-pressure helium coolant with a prismatic fuel-element geometry and a fuel-pebble element design. Peak operating temperatures, passive-safety, decay heat removal, criticality, burnup, reactivity coefficients, and material issues were analyzed to determine the technical feasibility of each concept.

PARMA JR.,EDWARD J.; PICKARD,PAUL S.; SUO-ANTTILA,AHTI JORMA

2003-06-01T23:59:59.000Z

435

A thread partitioning algorithm in low power high-level synthesis  

Science Conference Proceedings (OSTI)

This paper proposes a thread partitioning algorithm in low power high-level synthesis. The algorithm is applied to high-level synthesis systems. In the systems, we can describe parallel behaving circuit blocks(threads) explicitly. First it focuses on ...

Jumpei Uchida; Nozomu Togawa; Masao Yanagisawa; Tatsuo Ohtsuki

2004-01-01T23:59:59.000Z

436

Recovery Act: High-Efficiency, Wideband Three-Phase Rectifiers and Adaptive Rectifier Management for Telecomm Central Office and Large Data Center Applications  

Science Conference Proceedings (OSTI)

Lineage Power and Verizon teamed up to address a DOE funding opportunity focused on improving the power conversion chain in telecommunications facilities and data centers. The project had three significant elements: the design and development of high efficiency and high power three-phase rectifiers by Lineage Power, design and development of software to optimize overall plant energy efficiency by Lineage Power, and a field trial in active Verizon telecommunications facilities where energy consumption was measured before and after efficiency upgrades.

Mark A. Johnson

2012-06-29T23:59:59.000Z

437

High Temperature Superconductivity -- A Joint Feasibility Study for a Power Application with High-Temperature Superconducting Cable by Peco Energy  

Science Conference Proceedings (OSTI)

Practical realization of high temperature superconductivity (HTS) technology is within the electric power industry's reach. This report documents a feasibility study co-sponsored by PECO Energy Company (PECO) to assess a real-world underground transmission application of this technology.

1998-11-17T23:59:59.000Z

438

High Temperature Superconductivity -- A Joint Feasibility Study for a Power Application with High-Temperature Superconducting Cable by South Carolina  

Science Conference Proceedings (OSTI)

Practical realization of high temperature superconductivity (HTS) technology is within the reach of the electric power industry. This report documents a feasibility study co-sponsored by South Carolina Electric and Gas Company (SCE&G) to assess a real-world underground transmission application of this technology.

1998-11-17T23:59:59.000Z

439

An active-optic x-ray fluorescence analyzer with high energy resolution, large solid angle coverage, and a large tuning range  

SciTech Connect

A crystal-optic x-ray fluorescence energy analyzer has been designed and tested, which combines the features of electron-volt energy resolution, large solid angle coverage, and tunability over several kilo-electron-volts. The design is based upon the principle of active optics, with ten actuators available to optimally adjust the shape of a silicon crystal used in the Bragg geometry. In most applications the shape is that of a logarithmic spiral for high energy resolution with a spatially nonresolving detector, but a wide range of other shapes is also possible for applications such as imaging or single-shot spectroscopy in a spectral range of the operator's choosing.

Adams, Bernhard W.; Attenkofer, Klaus [Argonne National Laboratory, Argonne, Illinois 60439 (United States)

2008-02-15T23:59:59.000Z

440

Power frequency communication on long feeders and high levels of harmonic distortion  

SciTech Connect

TWACS is a unique Power Frequency Communication (PFC) technology. The power voltage is modulated at the substation bus for outbound communication and inbound communication from a remote transponder is accomplished by drawing precisely controlled current pulses which are detectable at the distribution substation. The propagation characteristics of the TWACS signal and the frequency characteristics of the signal detector make it possible to communicate over very long distribution feeders and provide a high degree of immunity against harmonic distortions of the power system voltage and current.

Mak, S.T.; Maginnis, R.L. [Distribution Control Systems, Inc., Hazelwood, MO (United States)

1995-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "large power high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Analysis of the Madaras Rotor Power Plant: an alternate method for extracting large amounts of power from the wind. Executive summary  

DOE Green Energy (OSTI)

The purpose of the program was to analyze and up-date the design of the Madaras Rotor Power Plant concept that had been developed in the 1930's to determine the technical and economic feasibility of this system to be competitive with conventional horizontal axis wind turbines. The Madaras concept uses rotating cylinders, vertically mounted on flat cars, to react with the wind like a sail and propel an endless train of connected cars around a closed track at constant speed. Electricity is generated by alternators on each car that are geared to the wheels. Electrical power is transmitted from each car to the power house by a trolley system. A four-task program consisting of a series of wind tunnel tests, an electro-mechanical analysis, a performance analysis, and a cost analysis was conducted.

Whitford, D.H.; Minardi, J.E.; West, B.S.; Dominic, R.J.

1978-06-01T23:59:59.000Z

442

Improved performance of high average power semiconductor arrays for applications in diode pumped solid state lasers  

Science Conference Proceedings (OSTI)

The average power performance capability of semiconductor diode laser arrays has improved dramatically over the past several years. These performance improvements, combined with cost reductions pursued by LLNL and others in the fabrication and packaging of diode lasers, have continued to reduce the price per average watt of laser diode radiation. Presently, we are at the point where the manufacturers of commercial high average power solid state laser systems used in material processing applications can now seriously consider the replacement of their flashlamp pumps with laser diode pump sources. Additionally, a low cost technique developed and demonstrated at LLNL for optically conditioning the output radiation of diode laser arrays has enabled a new and scalable average power diode-end-pumping architecture that can be simply implemented in diode pumped solid state laser systems (DPSSL`s). This development allows the high average power DPSSL designer to look beyond the Nd ion for the first time. Along with high average power DPSSL`s which are appropriate for material processing applications, low and intermediate average power DPSSL`s are now realizable at low enough costs to be attractive for use in many medical, electronic, and lithographic applications.

Beach, R.; Emanuel, M.; Benett, W.; Freitas, B.; Ciarlo, D.; Carlson, N.; Sutton, S.; Skidmore, J.; Solarz, R.

1994-01-01T23:59:59.000Z

443

RF Distribution System for High Power Test of the SNS Cryomodule  

Science Conference Proceedings (OSTI)

A four-way waveguide RF power distribution system for testing the Spallation Neutron Source (SNS) multi-cavity cryomodule to investigate the collective behavior has been developed. A single klystron operating at 805MHz for 1.3 msec at 60Hz powers the 4-way waveguide splitter to deliver up to 400 kW to individual cavities. Each cavity is fed through a combination of waveguide splitters and vector modulators (VM) to provide independent magnitude and phase controls. The waveguide vector modulator consists of two quadrature hybrids and two motorized waveguide phase shifters. The phase shifters and the assembled waveguide vector modulators were individually tested and characterized for low power and high RF power in the SNS RF test facility. Precise calibrations of magnitude and phase were performed to generate the look up tables (LUTs) to provide operational references during the cryomodule test. An I-Q demodulator module was developed and utilized to measure relative phases in pulsed high RF power operation. PLC units were developed for mechanical control of the phase shifters. Initial low/high power measurements were made using LabVIEW. An operation algorithm has been implemented into EPICS control for the cryomodule test stand.

Lee, Sung-Woo [ORNL; Kang, Yoon W [ORNL; Broyles, Michael R [ORNL; Crofford, Mark T [ORNL; Geng, Xiaosong [ORNL; Kim, Sang-Ho [ORNL; Phibbs, Curtis L [ORNL; Strong, William Herb [ORNL; Peglow, Robert C [ORNL; Vassioutchenko, Alexandre V [ORNL

2012-01-01T23:59:59.000Z

444

Numerical Study of Local/Regional Atmospheric Changes Caused by a Large Solar Central Receiver Power Plant  

Science Conference Proceedings (OSTI)

A two-dimensional, vertical cross section, numerical atmospheric mesoscale model has been applied to study the potential local/regional atmospheric effects of the installation of a 100 MWe solar thermal central receiver power plant at Barstow, ...

Chandrakant M. Bhumralkar; Arthur J. Slemmons; Kenneth C. Nitz

1981-06-01T23:59:59.000Z

445

Electrical power generation: comparative risks and benefits. Final report, August 6, 1973--August 10, 1973. A one-week workshop for high school science teachers  

SciTech Connect

A live-in type workshop available for academic credit covering basic nuclear power generation and the tradeoffs and problems that exist between nuclear power and alternative means to generate electricity was held for 37 high- school teachers at the Madison campus for the University of Wisconsin. Significant improvements over last year's program included the distribution of a large amount of information and the distribution of two minicourse outlines on the subject of power and the environment entitled: The Environmental Impact of Electrical Power Generation: Nuclear and Fossil'' prepared by the Pennsylvania State Dept. of Education, and Science II Matter-Energy Interactions in Natural Systems'' prepared by Carl Pfeiffer of Monona Grove High School, Monona, Wisconsin. (MCW)

Carbon, M.W.; Hartwig, K.T.

1973-08-16T23:59:59.000Z

446

High speed, very large (8 megabyte) first in/first out buffer memory (FIFO)  

DOE Patents (OSTI)

A fast FIFO (First In First Out) memory buffer capable of storing data at rates of 100 megabytes per second. The invention includes a data packer which concatenates small bit data words into large bit data words, a memory array having individual data storage addresses adapted to store the large bit data words, a data unpacker into which large bit data words from the array can be read and reconstructed into small bit data words, and a controller to control and keep track of the individual data storage addresses in the memory array into which data from the packer is being written and data to the unpacker is being read.

Baumbaugh, Alan E. (Batavia, IL); Knickerbocker, Kelly L. (Aurora, IL)

1989-01-01T23:59:59.000Z

447

FY2001 Highlights Report for the Vehicle High-Power Energy Storage Program  

NLE Websites -- All DOE Office Websites (Extended Search)

HIGH-POWER HIGH-POWER ENERGY STORAGE 2 0 0 1 A N N U A L P R O G R E S S R E P O R T U.S. Department of Energy Energy Efficiency and Renewable Energy Office of Transportation Technologies A C K N O W L E D G E M E N T We would like to express our sincere appreciation to Argonne National Laboratory and to Sentech, Inc., for their artistic and technical contributions in preparing and publishing this report. In addition, we would like to thank all our program participants for their contributions to the programs and all the authors who prepared the project abstracts that comprise this report. U.S. Department of Energy Office of Advanced Automotive Technologies 1000 Independence Ave., S.W. Washington, DC 20585-0121 FY 2001 Highlights Report for the Vehicle High-Power Energy Storage Program Energy Efficiency and Renewable Energy

448

High-Power Electrodes for Lithium-Ion Batteries | U.S. DOE Office of  

Office of Science (SC) Website

High-Power Electrodes for Lithium-Ion High-Power Electrodes for Lithium-Ion Batteries Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights Highlight Archives News & Events Publications Contact BES Home 04.27.12 High-Power Electrodes for Lithium-Ion Batteries Print Text Size: A A A RSS Feeds FeedbackShare Page Scientific Achievement For novel 3-D anodes made of sheets of carbon (graphene) and silicon nanoparticles, transport studies found much shorter lithium diffusion paths throughout the electrode and fast lithiation/delithiation of the nanoparticles. Significance and Impact This anode design holds a greater charge than conventional lithium-ion anodes and charges/discharges more rapidly while maintaining mechanical stabi