Powered by Deep Web Technologies
Note: This page contains sample records for the topic "large hospital buildings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

2007 CBECS Large Hospital Building FAQs  

Gasoline and Diesel Fuel Update (EIA)

FAQs Main Report | Methodology | FAQ | FAQs Main Report | Methodology | FAQ | List of Tables CBECS 2007 - Release date: August 17, 2012 How were the data collected for this study? These data were collected with the 2007 Commercial Building Energy Consumption Survey (CBECS). See the 2007 CBECS Large Hospital Building Methodology Report for details. Why are you publishing estimates only for large hospitals and not the rest of the commercial building population? A majority of the 2007 CBECS buildings were sampled from a frame that used a less expensive experimental method to update the 2003 frame for new construction. After careful analysis, EIA determined that the buildings sampled from this experimental frame were not representative of the commercial building population and therefore the 2007 CBECS sample as a

2

2007 CBECS Large Hospital Building Methodology Report  

Gasoline and Diesel Fuel Update (EIA)

Methodology Report Main Report | Methodology Report Main Report | Methodology | FAQ | List of Tables CBECS 2007 - Release date: August 17, 2012 Data Collection The data in the Energy Characteristics and Energy Consumed in Large Hospital Buildings in the United States in 2007 report and accompanying tables were collected in the 2007 round of the Commercial Buildings Energy Consumption Survey (CBECS). CBECS is a quadrennial survey is conducted by the Energy Information Administration (EIA) to provide basic statistical information about energy consumption and expenditures in United States commercial buildings and information about energy-related characteristics of these buildings. The survey was conducted in two phases, the Building Characteristics Survey and the Energy Supplier Survey. The Building Characteristics Survey collects information about selected

3

Energy Characteristics and Energy Consumed in Large Hospital Buildings in  

Gasoline and Diesel Fuel Update (EIA)

Energy Characteristics and Energy Consumed in Large Hospital Buildings in Energy Characteristics and Energy Consumed in Large Hospital Buildings in the United States in 2007 Main Report | Methodology | FAQ | List of Tables CBECS 2007 - Release date: August 17, 2012 Hospitals consume large amounts of energy because of how they are run and the many people that use them. They are open 24 hours a day; thousands of employees, patients, and visitors occupy the buildings daily; and sophisticated heating, ventilation, and air conditioning (HVAC) systems control the temperatures and air flow. In addition, many energy intensive activities occur in these buildings: laundry, medical and lab equipment use, sterilization, computer and server use, food service, and refrigeration. The 2003 Commercial Building Energy Consumption Survey (CBECS) data showed

4

2007 CBECS Large Hospital Building List of Tables  

Annual Energy Outlook 2012 (EIA)

End Uses in Large Hospitals Table H3: End Use Equipment in Large Hospitals Table H4: Lighting and Window Features in Large Hospitals Table H5: Major Fuels Usage for Large...

5

2007 CBECS Large Hospital Building FAQs: 2003-2007 Comparison Graphs  

Gasoline and Diesel Fuel Update (EIA)

FAQs: 2003-2007 Comparison Graphs Main FAQs: 2003-2007 Comparison Graphs Main Report | Methodology | FAQ | List of Tables CBECS 2007 - Release date: August 17, 2012 Jump to: Figure 1 | Figure 2 | Figure 3 | Figure 4 | Figure 5 Figure 1 Number of Large Hospital Buildings and 95% Confidence Intervals by Census Region, 2003 and 2007 Figure 2 Total Floorspace and 95% Confidence Intervals in Large Hospital Buildings by Census Region, 2003 and 2007 Figure 3 Major Fuel Intensity and 95% Confidence Intervals by Census Region, 2003 and 2007 Figure 4 Electricity Intensity and 95% Confidence Intervals in Large Hospital Buildings by Census Region, 2003 and 2007 Figure 5 Natural Gas Intensity and 95% Confidence Intervals in Large Hospital Buildings by Census Region, 2003 and 2007 Specific questions on this product may be directed to:

6

Table 8: Water Consumption Information for Large Hospitals  

U.S. Energy Information Administration (EIA)

Water Consumption Information for Large Hospitals, 2007 Table H8. RSEs for Water Consumption Information for Large Hospitals, 2007 Number of Large Hospital Buildings

7

Archive Reference Buildings by Building Type: Hospital | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hospital Hospital Archive Reference Buildings by Building Type: Hospital Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available. You can download ZIP files that contain the following: An EnergyPlus software input file (.idf) An html file showing the results from the EnergyPlus simulation (.html) A spreadsheet that summarizes the inputs and results for each location (.xls) The EnergyPlus TMY2 weather file (.epw). benchmark-v1.0_3.0-hospital.zip benchmark-v1.1_3.1-hospital.zip benchmark-new-v1.2_4.0-hospital.zip More Documents & Publications Archive Reference Buildings by Building Type: Large office

8

Building Technologies Office: Hospital Energy Alliance Videos  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Buildings Commercial Buildings Printable Version Share this resource Send a link to Building Technologies Office: Hospital Energy Alliance Videos to someone by E-mail Share Building Technologies Office: Hospital Energy Alliance Videos on Facebook Tweet about Building Technologies Office: Hospital Energy Alliance Videos on Twitter Bookmark Building Technologies Office: Hospital Energy Alliance Videos on Google Bookmark Building Technologies Office: Hospital Energy Alliance Videos on Delicious Rank Building Technologies Office: Hospital Energy Alliance Videos on Digg Find More places to share Building Technologies Office: Hospital Energy Alliance Videos on AddThis.com... About Take Action to Save Energy Activities Partner with DOE Better Buildings Challenge Better Buildings Alliance

9

Jackson Park Hospital Green Building Medical Center  

Science Conference Proceedings (OSTI)

Jackson Park Hospital completed the construction of a new Medical Office Building on its campus this spring. The new building construction has adopted the City of Chicago�s recent focus on protecting the environment, and conserving energy and resources, with the introduction of green building codes. Located in a poor, inner city neighborhood on the South side of Chicago, Jackson Park Hospital has chosen green building strategies to help make the area a better place to live and work.

William Dorsey; Nelson Vasquez

2010-03-01T23:59:59.000Z

10

CALIFORNIA ENERGY Large HVAC Building  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION Large HVAC Building Survey Information Database of Buildings over 100 Design of Large Commercial HVAC Systems research project, one of six research elements in the Integrated Design of Large Commercial HVAC Systems Integrated Design of Small Commercial HVAC Systems Integrated

11

Commercial Reference Building: Hospital | OpenEI  

Open Energy Info (EERE)

09 09 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142278309 Varnish cache server Commercial Reference Building: Hospital Dataset Summary Description Commercial reference buildings provide complete descriptions for whole building energy analysis using EnergyPlus simulation software. Included here is data pertaining to the reference building type Hospital for each of the 16 climate zones, and each of three construction categories: new construction, post-1980 construction existing buildings, pre-1980 construction existing buildings.The dataset includes four key components: building summary, zone summary, location summary and a picture. Building summary includes details about: form, fabric, and HVAC. Zone summary includes details such as: area, volume, lighting, and occupants for all types of zones in the building. Location summary includes key building information as it pertains to each climate zone, including: fabric and HVAC details, utility costs, energy end use, and peak energy demand.In total, DOE developed 16 reference building types that represent approximately 70% of commercial buildings in the U.S.; for each type, building models are available for each of the three construction categories. The commercial reference buildings (formerly known as commercial building benchmark models) were developed by the U.S. Department of Energy (DOE), in conjunction with three of its national laboratories.Additional data is available directly from DOE's Energy Efficiency & Renewable Energy (EERE) Website, including EnergyPlus software input files (.idf) and results of the EnergyPlus simulations (.html).

12

Jackson Park Hospital Green Building Medical Center  

SciTech Connect

Jackson Park Hospital completed the construction of a new Medical Office Building on its campus this spring. The new building construction has adopted the City of Chicago's recent focus on protecting the environment, and conserving energy and resources, with the introduction of green building codes. Located in a poor, inner city neighborhood on the South side of Chicago, Jackson Park Hospital has chosen green building strategies to help make the area a better place to live and work. The new green building houses the hospital's Family Medicine Residency Program and Specialty Medical Offices. The residency program has been vital in attracting new, young physicians to this medically underserved area. The new outpatient center will also help to allure needed medical providers to the community. The facility also has areas designated to women's health and community education. The Community Education Conference Room will provide learning opportunities to area residents. Emphasis will be placed on conserving resources and protecting our environment, as well as providing information on healthcare access and preventive medicine. The new Medical Office Building was constructed with numerous energy saving features. The exterior cladding of the building is an innovative, locally-manufactured precast concrete panel system with integral insulation that achieves an R-value in excess of building code requirements. The roof is a 'green roof' covered by native plantings, lessening the impact solar heat gain on the building, and reducing air conditioning requirements. The windows are low-E, tinted, and insulated to reduce cooling requirements in summer and heating requirements in winter. The main entrance has an air lock to prevent unconditioned air from entering the building and impacting interior air temperatures. Since much of the traffic in and out of the office building comes from the adjacent Jackson Park Hospital, a pedestrian bridge connects the two buildings, further decreasing the amount of unconditioned air that enters the office building. The HVAC system has an Energy Efficiency Rating 29% greater than required. No CFC based refrigerants were used in the HVAC system, thus reducing the emission of compounds that contribute to ozone depletion and global warming. In addition, interior light fixtures employ the latest energy-efficient lamp and ballast technology. Interior lighting throughout the building is operated by sensors that will automatically turn off lights inside a room when the room is unoccupied. The electrical traction elevators use less energy than typical elevators, and they are made of 95% recycled material. Further, locally manufactured products were used throughout, minimizing the amount of energy required to construct this building. The primary objective was to construct a 30,000 square foot medical office building on the Jackson Park Hospital campus that would comply with newly adopted City of Chicago green building codes focusing on protecting the environment and conserving energy and resources. The energy saving systems demonstrate a state of the-art whole-building approach to energy efficient design and construction. The energy efficiency and green aspects of the building contribute to the community by emphasizing the environmental and economic benefits of conserving resources. The building highlights the integration of Chicago's new green building codes into a poor, inner city neighborhood project and it is designed to attract medical providers and physicians to a medically underserved area.

William Dorsey; Nelson Vasquez

2010-03-31T23:59:59.000Z

13

Jackson Park Hospital Green Building Medical Center  

SciTech Connect

Jackson Park Hospital completed the construction of a new Medical Office Building on its campus this spring. The new building construction has adopted the City of Chicago's recent focus on protecting the environment, and conserving energy and resources, with the introduction of green building codes. Located in a poor, inner city neighborhood on the South side of Chicago, Jackson Park Hospital has chosen green building strategies to help make the area a better place to live and work. The new green building houses the hospital's Family Medicine Residency Program and Specialty Medical Offices. The residency program has been vital in attracting new, young physicians to this medically underserved area. The new outpatient center will also help to allure needed medical providers to the community. The facility also has areas designated to women's health and community education. The Community Education Conference Room will provide learning opportunities to area residents. Emphasis will be placed on conserving resources and protecting our environment, as well as providing information on healthcare access and preventive medicine. The new Medical Office Building was constructed with numerous energy saving features. The exterior cladding of the building is an innovative, locally-manufactured precast concrete panel system with integral insulation that achieves an R-value in excess of building code requirements. The roof is a 'green roof' covered by native plantings, lessening the impact solar heat gain on the building, and reducing air conditioning requirements. The windows are low-E, tinted, and insulated to reduce cooling requirements in summer and heating requirements in winter. The main entrance has an air lock to prevent unconditioned air from entering the building and impacting interior air temperatures. Since much of the traffic in and out of the office building comes from the adjacent Jackson Park Hospital, a pedestrian bridge connects the two buildings, further decreasing the amount of unconditioned air that enters the office building. The HVAC system has an Energy Efficiency Rating 29% greater than required. No CFC based refrigerants were used in the HVAC system, thus reducing the emission of compounds that contribute to ozone depletion and global warming. In addition, interior light fixtures employ the latest energy-efficient lamp and ballast technology. Interior lighting throughout the building is operated by sensors that will automatically turn off lights inside a room when the room is unoccupied. The electrical traction elevators use less energy than typical elevators, and they are made of 95% recycled material. Further, locally manufactured products were used throughout, minimizing the amount of energy required to construct this building. The primary objective was to construct a 30,000 square foot medical office building on the Jackson Park Hospital campus that would comply with newly adopted City of Chicago green building codes focusing on protecting the environment and conserving energy and resources. The energy saving systems demonstrate a state of the-art whole-building approach to energy efficient design and construction. The energy efficiency and green aspects of the building contribute to the community by emphasizing the environmental and economic benefits of conserving resources. The building highlights the integration of Chicago's new green building codes into a poor, inner city neighborhood project and it is designed to attract medical providers and physicians to a medically underserved area.

William Dorsey; Nelson Vasquez

2010-03-31T23:59:59.000Z

14

Building Technologies Office: Researching Energy Use in Hospitals  

NLE Websites -- All DOE Office Websites (Extended Search)

Researching Energy Use Researching Energy Use in Hospitals to someone by E-mail Share Building Technologies Office: Researching Energy Use in Hospitals on Facebook Tweet about Building Technologies Office: Researching Energy Use in Hospitals on Twitter Bookmark Building Technologies Office: Researching Energy Use in Hospitals on Google Bookmark Building Technologies Office: Researching Energy Use in Hospitals on Delicious Rank Building Technologies Office: Researching Energy Use in Hospitals on Digg Find More places to share Building Technologies Office: Researching Energy Use in Hospitals on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database

15

Archive Reference Buildings by Building Type: Large office | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large office Large office Archive Reference Buildings by Building Type: Large office Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available. You can download ZIP files that contain the following: An EnergyPlus software input file (.idf) An html file showing the results from the EnergyPlus simulation (.html) A spreadsheet that summarizes the inputs and results for each location (.xls) The EnergyPlus TMY2 weather file (.epw). benchmark-v1.0_3.0-large_office.zip benchmark-v1.1_3.1-large_office.zip benchmark-new-v1.2_4.0-large_office.zip More Documents & Publications Archive Reference Buildings by Building Type: Large Hotel

16

Archive Reference Buildings by Building Type: Large Hotel | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large Hotel Large Hotel Archive Reference Buildings by Building Type: Large Hotel Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available. You can download ZIP files that contain the following: An EnergyPlus software input file (.idf) An html file showing the results from the EnergyPlus simulation (.html) A spreadsheet that summarizes the inputs and results for each location (.xls) The EnergyPlus TMY2 weather file (.epw). benchmark-v1.0_3.0-large_hotel.zip benchmark-v1.1_3.1-large_hotel.zip benchmark-new-v1.2_4.0-large_hotel.zip More Documents & Publications Archive Reference Buildings by Building Type: Small Hotel

17

Reference Buildings by Building Type: Large Hotel  

Energy.gov (U.S. Department of Energy (DOE))

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

18

Building Green in Greensburg: Kiowa County Memorial Hospital  

Energy.gov (U.S. Department of Energy (DOE))

This poster highlights energy efficiency, renewable energy, and sustainable features of the high-performing Kiowa County Memorial Hospital building in Greensburg, Kansas.

19

NREL Technical Reports Guide the Way to 50% Energy Savings in Hospitals, Office Buildings (Fact Sheet)  

SciTech Connect

Researchers at the National Renewable Energy Laboratory (NREL) have developed two technical reports that provide recommendations to help designers and operators of large office buildings and hospitals achieve at least a 50% energy savings using existing technology.

2011-02-01T23:59:59.000Z

20

Technical Support Document: Development of the Advanced Energy Design Guide for Large Hospitals - 50% Energy Savings  

SciTech Connect

This Technical Support Document describes the process and methodology for the development of the Advanced Energy Design Guide for Large Hospitals: Achieving 50% Energy Savings Toward a Net Zero Energy Building (AEDG-LH) ASHRAE et al. (2011b). The AEDG-LH is intended to provide recommendations for achieving 50% whole-building energy savings in large hospitals over levels achieved by following Standard 90.1-2004. The AEDG-LH was created for a 'standard' mid- to large-size hospital, typically at least 100,000 ft2, but the strategies apply to all sizes and classifications of new construction hospital buildings. Its primary focus is new construction, but recommendations may be applicable to facilities undergoing total renovation, and in part to many other hospital renovation, addition, remodeling, and modernization projects (including changes to one or more systems in existing buildings).

Bonnema, E.; Leach, M.; Pless, S.

2013-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "large hospital buildings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Large Hospital 50% Energy Savings: Technical Support Document  

SciTech Connect

This Technical Support Document documents the technical analysis and design guidance for large hospitals to achieve whole-building energy savings of at least 50% over ANSI/ASHRAE/IESNA Standard 90.1-2004 and represents a step toward determining how to provide design guidance for aggressive energy savings targets. This report documents the modeling methods used to demonstrate that the design recommendations meet or exceed the 50% goal. EnergyPlus was used to model the predicted energy performance of the baseline and low-energy buildings to verify that 50% energy savings are achievable. Percent energy savings are based on a nominal minimally code-compliant building and whole-building, net site energy use intensity. The report defines architectural-program characteristics for typical large hospitals, thereby defining a prototype model; creates baseline energy models for each climate zone that are elaborations of the prototype models and are minimally compliant with Standard 90.1-2004; creates a list of energy design measures that can be applied to the prototype model to create low-energy models; uses industry feedback to strengthen inputs for baseline energy models and energy design measures; and simulates low-energy models for each climate zone to show that when the energy design measures are applied to the prototype model, 50% energy savings (or more) are achieved.

Bonnema, E.; Studer, D.; Parker, A.; Pless, S.; Torcellini, P.

2010-09-01T23:59:59.000Z

22

Building Green in Greensburg: Kiowa County Memorial Hospital  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Memorial Hospital The original Kiowa County Hospital was destroyed in the May 2007 tornado. The new hospital's design team took one of the most energy- intensive building types and designed a first-of-its kind energy-efficient hospital, while still meeting functional and safety requirements. Completed in March 2010, the hospital is built to achieve the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED ® ) Platinum designation. The 50,000-square-foot building includes 15 acute-care beds, rural health and specialty clinics, an emergency department with two trauma rooms, physical/occupational therapy and radiology departments, a laboratory, and other support areas. The new hospital is projected to be 32% more energy efficient

23

90.1 Prototype Building Models Hospital | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Hospital Hospital The ASHRAE Standard 90.1 prototype building models were developed by Pacific Northwest National Laboratory in support of the U.S. Department of Energy's (DOE's) Building Energy Codes Program. These prototype buildings were derived from DOE's Commercial Reference Building Models. This suite of ASHRAE Standard 90.1 prototype buildings covers all the Reference Building types except supermarket, and also adds a new building prototype representing high-rise apartment buildings.The prototype models include 16 building types in 17 climate locations for ASHRAE Standards 90.1-2004, 90.1-2007 and 90.1-2010. This combination leads to a set of 816 building models (in EnergyPlus Version 6.0). Also included is a scorecard for each prototype building. The scorecard is a spreadsheet that summarizes the

24

Duct systems in large commercial buildings: physical characterization...  

NLE Websites -- All DOE Office Websites (Extended Search)

Duct systems in large commercial buildings: physical characterization, air leakage and heat conduction gains Title Duct systems in large commercial buildings: physical...

25

Using existing technologies, designers and operators of large buildings could slash national energy use across a broad  

E-Print Network (OSTI)

Using existing technologies, designers and operators of large buildings could slash national energy of large office buildings and hospitals achieve at least a 50% energy savings using existing technology. Strategies for 50% Energy Savings in Large Office Buildings found that a 50% energy savings can be realized

26

Duct Systems in Large Commercial Buildings: Physical  

NLE Websites -- All DOE Office Websites (Extended Search)

Duct Systems in Large Commercial Buildings: Physical Characterization, Air Leakage, and Heat Conduction Gains William 1. Fisk, Woody Delp, Rick Diamond, Darryl Dickerhoff, Ronnen Levinson, Mark Modera, Matty Nematollahi, Duo Wang Environmental Energy Technologies Division Indoor Environment Department Lawrence Berkeley National Laboratory Berkeley CA 94720 March 30, 1999 This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology and Community Systems, of the US Department of Energy under Contract No. DE-AC03-76SF00098 and by the California Institute For Energy Efficiency. LBNL-42339

27

Web-based energy information systems for large commercial buildings  

E-Print Network (OSTI)

and benchmark energy use among a portfolio of buildings bybenchmark Motegi et al: Web-based Energy Information Systems For Large Commercial Buildings

Motegi, Naoya; Piette, Mary Ann

2003-01-01T23:59:59.000Z

28

Ventilation measurements in large office buildings  

SciTech Connect

Ventilation rates were measured in nine office buildings using an automated tracer gas measuring system. The buildings range in size from a two-story federal building with a floor area of about 20,000 ft/sup 2/ (1900 m/sup 2/) to a 26-story office building with a floor area of 700,000 ft/sup 2/ (65,000 m/sup 2/). The ventilation rates were measured for about 100 hours in each building over a range of weather conditions. The results are presented and examined for variation with time and weather. In most cases, the ventilation rate of a building is similar for hot and cold weather. In mild weather, outdoor air is used to cool the building and the ventilation rate increases. In the buildings where infiltration is a significant portion of the total ventilation rate, this total rate exhibits a dependence on weather conditions. The measured ventilation rates are discussed in relation to the outdoor air intake strategy in each building. The ventilation rates are also compared to the design rates in the buildings and ventilation rates based on the ASHRAE Standard 62-81. Some of the buildings are at times operated at lower ventilation rates than recommended in Standard 62-81.

Persily, A.K.; Grot, R.A.

1985-01-01T23:59:59.000Z

29

NREL Technical Reports Guide the Way to 50% Energy Savings in Hospitals, Office Buildings (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

existing technologies, designers and operators of large existing technologies, designers and operators of large buildings could slash national energy use across a broad range of climates. Researchers at the National Renewable Energy Laboratory (NREL) have developed two technical reports that provide recommendations to help designers and opera- tors of large office buildings and hospitals achieve at least a 50% energy savings using existing technology. Strategies for 50% Energy Savings in Large Office Buildings found that a 50% energy savings can be realized in both low- and high-rise office buildings in a broad range of U.S. climates. Large Hospital 50% Energy Savings details how energy savings from 50.6% to 61.3% can be attained in large hospitals across all eight U.S. climate zones. To reach these energy efficiency

30

Intelligent Buildings Series, Volume 1: Large Commercial Buildings  

Science Conference Proceedings (OSTI)

As utilities seek the means to manage supply and demand of electricity, they increasingly look to the demand-side for opportunities. Commercial and institutional buildings represent substantial electrical loads that account for approximately 30% of all electric power consumed in the United States. Given the right circumstances, these energy consumers can act as demand-side resources by reducing their electrical demand in response to conditions on the supply-side. While demand response applications in com...

2011-12-01T23:59:59.000Z

31

Commercial Reference Building: Large Office | OpenEI  

Open Energy Info (EERE)

Office Office Dataset Summary Description Commercial reference buildings provide complete descriptions for whole building energy analysis using EnergyPlus simulation software. Included here is data pertaining to the reference building type Large office for each of the 16 climate zones, and each of three construction categories: new construction, post-1980 construction existing buildings, pre-1980 construction existing buildings.The dataset includes four key components: building summary, zone summary, location summary and a picture. Building summary includes details about: form, fabric, and HVAC. Zone summary includes details such as: area, volume, lighting, and occupants for all types of zones in the building. Location summary includes key building information as it pertains to each climate zone, including: fabric and HVAC details, utility costs, energy end use, and peak energy demand.In total, DOE developed 16 reference building types that represent approximately 70% of commercial buildings in the U.S.; for each type, building models are available for each of the three categories. The commercial reference buildings (formerly known as commercial building benchmark models) were developed by the U.S. Department of Energy (DOE), in conjunction with three of its national laboratories.Additional data is available directly from DOE's Energy Efficiency & Renewable Energy (EERE) Website, including EnergyPlus software input files (.idf) and results of the EnergyPlus simulations (.html).

32

Commercial Reference Building: Large Hotel | OpenEI  

Open Energy Info (EERE)

Hotel Hotel Dataset Summary Description Commercial reference buildings provide complete descriptions for whole building energy analysis using EnergyPlus simulation software. Included here is data pertaining to the reference building type Large Hotel for each of the 16 climate zones, and each of three construction categories: new construction, post-1980 construction existing buildings, pre-1980 construction existing buildings.The dataset includes four key components: building summary, zone summary, location summary and a picture. Building summary includes details about: form, fabric, and HVAC. Zone summary includes details such as: area, volume, lighting, and occupants for all types of zones in the building. Location summary includes key building information as it pertains to each climate zone, including: fabric and HVAC details, utility costs, energy end use, and peak energy demand.In total, DOE developed 16 reference building types that represent approximately 70% of commercial buildings in the U.S.; for each type, building models are available for each of the three construction categories. The commercial reference buildings (formerly known as commercial building benchmark models) were developed by the U.S. Department of Energy (DOE), in conjunction with three of its national laboratories.Additional data is available directly from DOE's Energy Efficiency & Renewable Energy (EERE) Website, including EnergyPlus software input files (.idf) and results of the EnergyPlus simulations (.html).

33

Large Hospital 50% Energy Savings: Technical Support Document  

NLE Websites -- All DOE Office Websites (Extended Search)

867 867 September 2010 Large Hospital 50% Energy Savings: Technical Support Document Eric Bonnema, Daniel Studer, Andrew Parker, Shanti Pless, and Paul Torcellini National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-550-47867 September 2010 Large Hospital 50% Energy Savings: Technical Support Document Eric Bonnema, Daniel Studer, Andrew Parker, Shanti Pless, and Paul Torcellini Prepared under Task No. BEC7.1309 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

34

Building Technologies Office: Advanced Energy Design Guides  

NLE Websites -- All DOE Office Websites (Extended Search)

K-12 School Buildings Medium to Big Box Retail Buildings Large Hospitals The Advanced Energy Design Guides (AEDGs) accelerate the construction of energy efficient buildings by...

35

Demand Shifting With Thermal Mass in Large Commercial Buildings: Case  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Shifting With Thermal Mass in Large Commercial Buildings: Case Demand Shifting With Thermal Mass in Large Commercial Buildings: Case Studies and Tools Speaker(s): Peng Xu Date: March 9, 2007 - 12:00pm Location: 90-3122 The idea of pre-cooling and demand limiting is to pre-cool buildings at night or in the morning during off-peak hours, storing cooling energy in the building thermal mass and thereby reducing cooling loads during the peak periods. Savings are achieved by reducing on-peak energy and demand charges. The potential for utilizing building thermal mass for load shifting and peak demand reduction has been demonstrated in a number of simulation, laboratory, and field studies. Case studies in a number of office buildings in California has found that a simple demand limiting strategy reduced the chiller power by 20-100% (0.5-2.3W/ft2) during six

36

Duct thermal performance models for large commercial buildings  

SciTech Connect

Despite the potential for significant energy savings by reducing duct leakage or other thermal losses from duct systems in large commercial buildings, California Title 24 has no provisions to credit energy-efficient duct systems in these buildings. A substantial reason is the lack of readily available simulation tools to demonstrate the energy-saving benefits associated with efficient duct systems in large commercial buildings. The overall goal of the Efficient Distribution Systems (EDS) project within the PIER High Performance Commercial Building Systems Program is to bridge the gaps in current duct thermal performance modeling capabilities, and to expand our understanding of duct thermal performance in California large commercial buildings. As steps toward this goal, our strategy in the EDS project involves two parts: (1) developing a whole-building energy simulation approach for analyzing duct thermal performance in large commercial buildings, and (2) using the tool to identify the energy impacts of duct leakage in California large commercial buildings, in support of future recommendations to address duct performance in the Title 24 Energy Efficiency Standards for Nonresidential Buildings. The specific technical objectives for the EDS project were to: (1) Identify a near-term whole-building energy simulation approach that can be used in the impacts analysis task of this project (see Objective 3), with little or no modification. A secondary objective is to recommend how to proceed with long-term development of an improved compliance tool for Title 24 that addresses duct thermal performance. (2) Develop an Alternative Calculation Method (ACM) change proposal to include a new metric for thermal distribution system efficiency in the reporting requirements for the 2005 Title 24 Standards. The metric will facilitate future comparisons of different system types using a common ''yardstick''. (3) Using the selected near-term simulation approach, assess the impacts of duct system improvements in California large commercial buildings, over a range of building vintages and climates. This assessment will provide a solid foundation for future efforts that address the energy efficiency of large commercial duct systems in Title 24. This report describes our work to address Objective 1, which includes a review of past modeling efforts related to duct thermal performance, and recommends near- and long-term modeling approaches for analyzing duct thermal performance in large commercial buildings.

Wray, Craig P.

2003-10-01T23:59:59.000Z

37

Web-based Energy Information Systems for Large Commercial Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Web-based Energy Information Systems for Large Commercial Buildings Speaker(s): Naoya Motegi Date: May 2, 2002 - 12:00pm Location: Bldg. 90 Energy Information Systems (EIS), which...

38

Demand Shifting With Thermal Mass in Large Commercial Buildings...  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Shifting With Thermal Mass in Large Commercial Buildings: Case Studies and Tools Speaker(s): Peng Xu Date: March 9, 2007 - 12:00pm Location: 90-3122 The idea of pre-cooling...

39

Gas cooling for large commercial buildings  

SciTech Connect

Energy costs typically account for 10% to 20% of the operating costs for commercial buildings. These costs have continued to rise over the past several years notwithstanding the implementation of energy conservation programs. Increasing electric demand charges have been a major cause of the problem, and as capital-intensive nuclear and coal plants under construction are rolled into the rate base, these demand penalties are likely to become more severe. Electric cooling is the major contributor to seasonal and daily electric peaks. The use of natural gas for cooling can provide relief from high peak period electric prices either directly through absorption systems and engine-driven chillers or indirectly via cogeneration and recovered heat-driven absorption cooling. Although a window of opportunity exists for gas cooling in some parts of the country today, technological advancement and cost reduction are required in order for gas cooling to realize widespread applicability. The Gas Research Institute has implemented a comprehensive development program in cooperation with industry to evolve engine-driven chiller systems in the 100-ton and larger size range with gas coefficients of performance of 2.4, first-cost premiums of less than $100/ton, and service intervals of 4000 hours. Maintenance records of several engine-driven systems installed in the early 1970's were studied. System reliability was found to be in-line with HVAC market requirements.

Davidson, K.; Brattin, H.D.

1986-01-01T23:59:59.000Z

40

Energy Conservation of Air Conditioning Systems in Large Public Buildings  

E-Print Network (OSTI)

Analyzing the actuality of the large-scale public buildings' energy consumption, we know that most of them run not only in low efficiency, but also in high energy consumption. According to the characteristics of the building, we should proceed with the heating characteristics of the exterior -protected construction, the set value of the temperature of the air-conditioning, the lectotype of the Central air-conditioning system, the regulation and the modification of the transmission and distribution system, the use of the new energy and the daily management or the method of adjustment and control, and so on , so we can make the air-conditioning system run efficiently. Analyzing and comparing the large-scale public buildings' energy consumption with each other, some pointed improvement measures are proposed further. According to the study and analysis, even though large-scale public buildings consume a great of energy, there exists a huge potential for energy conservation.

Liu, P.; Li, D.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "large hospital buildings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Impact of Continuous Commissioning® on the Energy Star® Rating of Hospitals and Office Buildings  

E-Print Network (OSTI)

Re-commissioning, retro-commissioning, Continuous Commissioning® (CC®) are examples of successful systematic processes implemented in buildings to reduce overall building energy consumption, and improve efficiency of systems and their operations and control. The impact of the Continuous Commissioning® Process on the Energy Star® Rating (ESR) of office buildings and hospitals is examined in this thesis. The improvement in performance of a building, and subsequently its ESR, is found to be influenced by its initial ESR, while its location has no impact on improvement. The improvement in ESR is observed to be almost linearly proportional to the percentage of energy saved. For 10% - 20% reductions in energy use typical of the CC® process, the ESR is increased by 10-19 ESR ranks for office buildings and by 13 - 26 ESR ranks for hospitals. The CC® process is found to potentially enable an office building of average initial ESR of 62 and a hospital of average initial ESR of 55, located anywhere in the US, to be eligible to achieve ESR of 75 and consequently the Energy Star recognition. The improvement of ESR is a function of the initial ESR and the building type; hence it is observed to be different for hospitals and office buildings in the study. For hospital and office building models occupying 100,000 ft² of floor area each, a difference of about 30% in the ESR improvement (greater for hospitals) is observed. The energy intensities may be different for buildings with same ESRs that have different location and/or type. An averaged maximum difference of energy intensity of approximately 10% is observed to exist for identical buildings and of the same type but located at different locations. Hospitals are observed to be more than twice as energy intensive as office buildings for the same location and equal ESRs. ESR plotted against % energy savings at site reveals the stepped nature of ESR system. At specific initial ESR and corresponding % savings a reduction of up to approximately 1% for office buildings and up to 1.5% for hospitals does not change the respective ESRs for the model set of buildings in the study.

Kulkarni, Aditya Arun

2011-12-01T23:59:59.000Z

42

Commercial Reference Building: Hospital

Open Energy Info (EERE)

descriptions for whole building energy analysis using 

43

Energy Market Profiles: Hospital Buildings, Equipment, and Energy Use  

Science Conference Proceedings (OSTI)

This report profiles the U.S. healthcare market on size and energy-related characteristics and provides energy benchmarking data that can be used to make meaningful comparisons between healthcare facilities. The intent of the report is to provide both utility and hospital managers with a better understanding of the key characteristics of the healthcare market and enhance their abilities to assess how well their facilities are performing relative to hospitals with similar energy equipment.

1999-12-22T23:59:59.000Z

44

SPP sales flyer for hospitality and hotels | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

hospitality and hotels hospitality and hotels Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder Technical documentation

45

Sealing Ducts in Large Commercial Buildings with Aerosolized Sealant  

NLE Websites -- All DOE Office Websites (Extended Search)

Sealing Ducts in Large Commercial Buildings with Aerosolized Sealant Sealing Ducts in Large Commercial Buildings with Aerosolized Sealant Particles Title Sealing Ducts in Large Commercial Buildings with Aerosolized Sealant Particles Publication Type Journal Article LBNL Report Number LBNL-42414 Year of Publication 2001 Authors Modera, Mark P., Olivier Brzozowski, François Rémi Carrié, Darryl J. Dickerhoff, William W. Delp, William J. Fisk, Ronnen M. Levinson, and Duo Wang Journal Energy & Buildings Volume 34 Start Page Chapter Pagination 705-714 Abstract Electricity energy savings potential by eliminating air leakage from ducts in large commercial buildings is on the order of 10 kWh/m2 per year (1 kWh/ft2). We have tested, in two large commercial buildings, a new technology that simultaneously seals duct leaks and measures effective leakage area of ducts. The technology is based upon injecting a fog of aerosolized sealant particles into a pressurized duct system. In brief, this process involves blocking all of the intentional openings in a duct system (e.g., diffusers). Therefore, when the system is pressurized, the only place for the air carrying the aerosol particles to exit the system is through the leaks. The key to the technology is to keep the particles suspended within the airstream until they reach the leaks, and then to have them leave the airstream and deposit on the leak sites. The principal finding from this field study was that the aerosol technology is capable of sealing the leaks in a large commercial building duct system within a reasonable time frame. In the first building, 66% of the leakage area was sealed within 2.5 hours of injection, and in the second building 86% of the leakage area was sealed within 5 hours. We also found that the aerosol could be blown through the VAV boxes in the second building without impacting their calibrations or performance. Some remaining questions are (1) how to achieve sealing rates comparable to those experienced in smaller residential systems; and (2) what tightness level these ducts systems can be brought to by means of aerosol sealing.

46

Sealing Ducts in Large Commercial Buildings with Aerosolized Sealant Particles  

NLE Websites -- All DOE Office Websites (Extended Search)

2414 2414 1 Sealing Ducts in Large Commercial Buildings with Aerosolized Sealant Particles M. P. Modera, O. Brzozowski ** , F. R. Carrié * , D. J. Dickerhoff, W. W. Delp, W. J. Fisk, R. Levinson, D. Wang Abstract Electricity energy savings potential by eliminating air leakage from ducts in large commercial buildings is on the order of 10 kWh/m 2 per year (1 kWh/ft 2 ). We have tested, in two large commercial buildings, a new technology that simultaneously seals duct leaks and measures effective leakage area of ducts. The technology is based upon injecting a fog of aerosolized sealant particles into a pressurized duct system. In brief, this process involves blocking all of the intentional openings in a duct system (e.g., diffusers). Therefore, when the system is pressurized, the only place for the air carrying the aerosol

47

Performance of thermal distribution systems in large commercial buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance of thermal distribution systems in large commercial buildings Performance of thermal distribution systems in large commercial buildings Title Performance of thermal distribution systems in large commercial buildings Publication Type Journal Article LBNL Report Number LBNL-44331 Year of Publication 2002 Authors Xu, Tengfang T., François Rémi Carrié, Darryl J. Dickerhoff, William J. Fisk, Jennifer A. McWilliams, Duo Wang, and Mark P. Modera Journal Energy and Buildings Volume 34 Start Page Chapter Pagination 215-226 Abstract This paper presents major findings of a field study on the performance of five thermal distribution systems in four large commercial buildings. The five systems studied are typical single-duct or dual-duct constant air volume (CAV) systems and variable air volume (VAV) systems, each of which serves an office building or a retail building with floor area over 2,000 m2. The air leakage from ducts are reported in terms of effective leakage area (ELA) at 25 Pa reference pressure, the ASHRAE-defined duct leakage class, and air leakage ratios. The specific ELAs ranged from 0.7 to 12.9 cm2 per m2 of duct surface area, and from 0.1 to 7.7 cm2 per square meter of floor area served. The leakage classes ranged from 34 to 757 for the five systems and systems sections tested. The air leakage ratios are estimated to be up to one-third of the fan- supplied airflow in the constant-air-volume systems. The specific ELAs and leakage classes indicate that air leakage in large commercial duct systems varies significantly from system to system, and from system section to system section even within the same thermal distribution system. The duct systems measured are much leakier than the ductwork specified as "unsealed ducts" by ASHRAE. Energy losses from supply ducts by conduction (including convection and radiation) are found to be significant, on the scale similar to the losses induced by air leakage in the duct systems. The energy losses induced by leakage and conduction suggest that there are significant energy-savings potentials from duct-sealing and insulation practice in large commercial buildings

48

Property:Building/SPBreakdownOfElctrcityUseKwhM2LargeKitchens | Open Energy  

Open Energy Info (EERE)

LargeKitchens LargeKitchens Jump to: navigation, search This is a property of type String. Large kitchens Pages using the property "Building/SPBreakdownOfElctrcityUseKwhM2LargeKitchens" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.763086941039 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.409356725146 + Sweden Building 05K0005 + 2.13953488372 + Sweden Building 05K0006 + 0.383200490497 + Sweden Building 05K0007 + 3.38701556508 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.294507436313 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.177556818182 + Sweden Building 05K0012 + 0.0953379731147 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 +

49

Property:Building/SPElectrtyUsePercLargeKitchens | Open Energy Information  

Open Energy Info (EERE)

SPElectrtyUsePercLargeKitchens SPElectrtyUsePercLargeKitchens Jump to: navigation, search This is a property of type String. Large kitchens Pages using the property "Building/SPElectrtyUsePercLargeKitchens" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 1.06788610412 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.620003623604 + Sweden Building 05K0005 + 3.89960107186 + Sweden Building 05K0006 + 0.586902877434 + Sweden Building 05K0007 + 5.16783391945 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.520871109218 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.645617768363 + Sweden Building 05K0012 + 0.25093035055 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 +

50

Energy Savings Modeling of Standard Commercial Building Re-tuning Measures: Large Office Buildings  

SciTech Connect

Today, many large commercial buildings use sophisticated building automation systems (BASs) to manage a wide range of building equipment. While the capabilities of BASs have increased over time, many buildings still do not fully use the BAS's capabilities and are not properly commissioned, operated or maintained, which leads to inefficient operation, increased energy use, and reduced lifetimes of the equipment. This report investigates the energy savings potential of several common HVAC system retuning measures on a typical large office building prototype model, using the Department of Energy's building energy modeling software, EnergyPlus. The baseline prototype model uses roughly as much energy as an average large office building in existing building stock, but does not utilize any re-tuning measures. Individual re-tuning measures simulated against this baseline include automatic schedule adjustments, damper minimum flow adjustments, thermostat adjustments, as well as dynamic resets (set points that change continuously with building and/or outdoor conditions) to static pressure, supply air temperature, condenser water temperature, chilled and hot water temperature, and chilled and hot water differential pressure set points. Six combinations of these individual measures have been formulated - each designed to conform to limitations to implementation of certain individual measures that might exist in typical buildings. All of these measures and combinations were simulated in 16 cities representative of specific U.S. climate zones. The modeling results suggest that the most effective energy savings measures are those that affect the demand-side of the building (air-systems and schedules). Many of the demand-side individual measures were capable of reducing annual HVAC system energy consumption by over 20% in most cities that were modeled. Supply side measures affecting HVAC plant conditions were only modestly successful (less than 5% annual HVAC energy savings for most cities for all measures). Combining many of the retuning measures revealed deep savings potential. Some of the more aggressive combinations revealed 35-75% reductions in annual HVAC energy consumption, depending on climate and building vintage.

Fernandez, Nicholas; Katipamula, Srinivas; Wang, Weimin; Huang, Yunzhi; Liu, Guopeng

2012-06-01T23:59:59.000Z

51

Property:Building/SPBreakdownOfElctrcityUseKwhM2LargeComputersServers |  

Open Energy Info (EERE)

LargeComputersServers LargeComputersServers Jump to: navigation, search This is a property of type String. Large computers / servers Pages using the property "Building/SPBreakdownOfElctrcityUseKwhM2LargeComputersServers" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 2.88701226026 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 3.90838206628 + Sweden Building 05K0005 + 0.697674418605 + Sweden Building 05K0006 + 1.18332311465 + Sweden Building 05K0007 + 11.4098804421 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.556088941246 + Sweden Building 05K0010 + 10.0228832952 + Sweden Building 05K0011 + 0.471022727273 + Sweden Building 05K0012 + 0.774049003718 + Sweden Building 05K0013 + 0.0 +

52

Property:Building/SPElectrtyUsePercLargeComputersServers | Open Energy  

Open Energy Info (EERE)

SPElectrtyUsePercLargeComputersServers SPElectrtyUsePercLargeComputersServers Jump to: navigation, search This is a property of type String. Large computers / servers Pages using the property "Building/SPElectrtyUsePercLargeComputersServers" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 4.04016909393 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 5.91955840631 + Sweden Building 05K0005 + 1.27160904517 + Sweden Building 05K0006 + 1.81235608552 + Sweden Building 05K0007 + 17.4089448462 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.983508828426 + Sweden Building 05K0010 + 6.66995976895 + Sweden Building 05K0011 + 1.71269481591 + Sweden Building 05K0012 + 2.03730351612 + Sweden Building 05K0013 + 0.0 +

53

Building Energy Software Tools Directory: ID-Spec Large  

NLE Websites -- All DOE Office Websites (Extended Search)

ID-Spec Large ID-Spec Large ID-Spec Large is software for the electrical installation design of industrial and tertiary buildings. It helps to design a green electrical installation by enabling the user to: - Assess the impact of selecting energy efficiency solutions like power factor correction and low losses transformers in terms of cost savings - Reduce power losses and consequently carbon emissions in the electrical installation by optimizing equipment locations - Reduce investment cost while using less raw materials by optimizing length and cross-section of cables - Assess the percentage of recyclable materials for cables and busbar trunking systems. Screen Shots Keywords Electrical installation design, power losses assessment, CO2 emissions, quantity of conductors

54

Hungary-Employment Impacts of a Large-Scale Deep Building Retrofit  

Open Energy Info (EERE)

Hungary-Employment Impacts of a Large-Scale Deep Building Retrofit Hungary-Employment Impacts of a Large-Scale Deep Building Retrofit Programme Jump to: navigation, search Name Hungary-Employment Impacts of a Large-Scale Deep Building Retrofit Programme Agency/Company /Organization European Climate Foundation Sector Energy Focus Area Energy Efficiency, Buildings, - Building Energy Efficiency Topics Co-benefits assessment, Background analysis Resource Type Publications Website http://3csep.ceu.hu/sites/defa Country Hungary UN Region Eastern Europe References Hungary-Employment Impacts of a Large-Scale Deep Building Retrofit Programme[1] Hungary-Employment Impacts of a Large-Scale Deep Building Retrofit Programme Screenshot "The goal of the present research was to gauge the net employment impacts of a largescale deep building energy-efficiency renovation programme in

55

90.1 Prototype Building Models Large Hotel | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Hotel Hotel The ASHRAE Standard 90.1 prototype building models were developed by Pacific Northwest National Laboratory in support of the U.S. Department of Energy's (DOE's) Building Energy Codes Program. These prototype buildings were derived from DOE's Commercial Reference Building Models. This suite of ASHRAE Standard 90.1 prototype buildings covers all the Reference Building types except supermarket, and also adds a new building prototype representing high-rise apartment buildings.The prototype models include 16 building types in 17 climate locations for ASHRAE Standards 90.1-2004, 90.1-2007 and 90.1-2010. This combination leads to a set of 816 building models (in EnergyPlus Version 6.0). Also included is a scorecard for each prototype building. The scorecard is a spreadsheet that summarizes the

56

90.1 Prototype Building Models Large Office | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Office Office The ASHRAE Standard 90.1 prototype building models were developed by Pacific Northwest National Laboratory in support of the U.S. Department of Energy's (DOE's) Building Energy Codes Program. These prototype buildings were derived from DOE's Commercial Reference Building Models. This suite of ASHRAE Standard 90.1 prototype buildings covers all the Reference Building types except supermarket, and also adds a new building prototype representing high-rise apartment buildings.The prototype models include 16 building types in 17 climate locations for ASHRAE Standards 90.1-2004, 90.1-2007 and 90.1-2010. This combination leads to a set of 816 building models (in EnergyPlus Version 6.0). Also included is a scorecard for each prototype building. The scorecard is a spreadsheet that summarizes the

57

Commercial Reference Building: Large Hotel

Open Energy Info (EERE)

descriptions for whole building energy analysis using 

58

Buildings Energy Data Book: 3.8 Hospitals and Medical Facilities  

Buildings Energy Data Book (EERE)

4 4 Energy Benchmarks for Newly Constructed Hospitals, by Selected City and End-Use (thousand Btu per square foot) Miami 1A Houston 2A Phoenix 2B Atlanta 3A Los Angeles 3B Las Vegas 3B San Francisco 3C Baltimore 4A Albuquerque 4B Seattle 4C Chicago 5A Boulder 5B Minneapolis 6A Helena 6B Duluth 7 Fairbanks 8 Note(s): Source(s): 89.1 25.2 3.9 13.5 Commercial building energy benchmarks are based off of the current stock of commercial buildings and reflect 2004 ASHRAE 90.1 Climate Zones. They are designed to provide a consistent baseline to compare building performance in energy-use simulations. The benchmark building had 241,263 square feet and 5 floors. Benchmark interior lighting energy = 16.36 thousand Btu/SF. Interior equipment energy consumption = 15.15 thousand Btu/SF. Ventilation includes energy used by fans and heat rejection systems.

59

Primary and secondary emissions from green building materials : large chamber experiments.  

E-Print Network (OSTI)

??Indoor sources of air pollution generate a large fraction of overall human exposure to airborne pollutants. Materials used in buildings have been shown to be… (more)

Gall, Elliott Tyler

2010-01-01T23:59:59.000Z

60

An Operational Energy Consumption Evaluation Index System for Large Public Buildings  

E-Print Network (OSTI)

Large public buildings have been the emphasis of energy conservation in China. In this paper, the design and operational energy consumption evaluation indices for large public buildings are generalized, their differences and deficiencies are analyzed, and the evaluation indices of each kind of key equipment and the whole heating and air-conditioning system are put forward from the point of view of usage efficiency of energy. The energy consumption evaluation index system for large public buildings is primarily established. The calculation method of each kind of energy consumption evaluation index is given, which provides the foundation for further studies on energy consumption for large public buildings.

Li, Y.; Zhang, J.; Sun, D.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "large hospital buildings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Evaluation of retrocommissioning persistence in large commercial buildings  

E-Print Network (OSTI)

interactions Time Req. High BAS maint. Contract All of theit a PM plan). Office 6 hired a BAS expert with the task ofSMUD provided LBNL with 12 BAS (Building Automation Systems)

Bourassa, Norman J.; Piette, Mary Ann; Motegi, Naoya

2004-01-01T23:59:59.000Z

62

Smart energy monitoring and management in large multi-office building environments  

Science Conference Proceedings (OSTI)

Buildings are among the largest consumers of electricity with a significant portion of this energy use is wasted in unoccupied areas or improperly installed devices. Identifying such power leaks is hard especially in large office and enterprise buildings. ... Keywords: WSN, building automation, deployment, energy management, internet of things, smart meters, zigbee

Akribopoulos Orestis, Amaxilatis Dimitrios, Dimakopolos Dimitrios, Chatzigiannakis Ioannis

2013-09-01T23:59:59.000Z

63

Data Analysis and Modeling of Lighting Energy Use in Large Office Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Data Analysis and Modeling of Lighting Energy Use in Large Office Buildings Data Analysis and Modeling of Lighting Energy Use in Large Office Buildings Title Data Analysis and Modeling of Lighting Energy Use in Large Office Buildings Publication Type Conference Paper Year of Publication 2013 Authors Zhou, Xin, Da Yan, Xiaoxin Ren, and Tianzhen Hong Keywords building simulation, energy use, lighting, modeling, occupant beh building, occupant beh building simulation, occupant behbuilding simulation Abstract Lighting consumes about 20 to 40% of total electricity use in large office buildings in the U.S. and China. In order to develop better lighting simulation models it is crucial to understand the characteristics of lighting energy use. This paper analyzes the main characteristics of lighting energy use over various time scales, based on the statistical analysis of measured lighting energy use of 17 large office buildings in Beijing and Hong Kong. It was found that the daily 24-hour variations of lighting energy use were mainly driven by the schedule of the building occupants. Outdoor illumination levels have little impact on lighting energy use in large office buildings due to the lack of automatic daylighting controls and relatively small perimeter areas. A stochastic lighting energy use model was developed based on different occupant activities during six time periods throughout a day, and the annual distribution of lighting power across those periods. The model was verified using measured lighting energy use of one selected building. This study demonstrates how statistical analysis and stochastic modeling can be applied to lighting energy use. The developed lighting model can be adopted by building energy modeling programs to improve the simulation accuracy of lighting energy use.

64

Web-based energy information systems for large commercial buildings  

SciTech Connect

Energy Information Systems (EIS), which monitor and organize building energy consumption and related trend data over the Internet, have been evolving over the past decade. This technology helps perform key energy management functions such as organizing energy use data, identifying energy consumption anomalies, managing energy costs, and automating demand response strategies. During recent years numerous developers and vendors of EIS have been deploying these products in a highly competitive market. EIS offer various software applications and services for a variety of purposes. Costs for such system vary greatly depending on the system's capabilities and how they are marketed. Some products are marketed directly to end users while others are made available as part of electric utility programs. EIS can be a useful tool in building commissioning and retro-commissioning. This paper reviews more than a dozen EIS. We have developed an analytical framework to characterize the main features of these products, which are developed for a variety of utility programs and end-use markets. The purpose of this research is to evaluate EIS capabilities and limitations, plus examine longer-term opportunities for utilizing such technology to improve building energy efficiency and load management.

Motegi, Naoya; Piette, Mary Ann

2003-03-29T23:59:59.000Z

65

Beyond blue and red arrows : optimizing natural ventilation in large buildings  

E-Print Network (OSTI)

Our growing understanding of technology and environment has expanded the complexities of producing large naturally ventilated buildings. While it may be argued that designing for natural ventilation is a straightforward, ...

Meguro, Wendy (Wendy Kei)

2005-01-01T23:59:59.000Z

66

Demand relief and weather sensitivity in large California commercial office buildings  

SciTech Connect

A great deal of research has examined the weather sensitivity of energy consumption in commercial buildings; however, the recent power crisis in California has given greater importance to peak demand. Several new load-shedding programs have been implemented or are under consideration. Historically, the target customers have been large industrial users who can reduce the equivalent load of several large office buildings. While the individual load reduction from an individual office building may be less significant, there is ample opportunity for load reduction in this area. The load reduction programs and incentives for industrial customers may not be suitable for commercial building owners. In particular, industrial customers are likely to have little variation in load from day to day. Thus a robust baseline accounting for weather variability is required to provide building owners with realistic targets that will encourage them to participate in load shedding programs.

Kinney, Satkartar; Piette, Mary Ann; Gu, Lixing; Haves, Philip

2001-05-01T23:59:59.000Z

67

DATA ANALYSIS AND MODELING OF LIGHTING ENERGY USE IN LARGE OFFICE BUILDINGS  

NLE Websites -- All DOE Office Websites (Extended Search)

DATA ANALYSIS AND MODELING OF LIGHTING ENERGY USE IN DATA ANALYSIS AND MODELING OF LIGHTING ENERGY USE IN LARGE OFFICE BUILDINGS Xin Zhou 1 , Da Yan 1, , Xiaoxin Ren 1 , Tianzhen Hong 2 1 Department of Building Science, School of Architecture, Tsinghua University, Beijing, China 2 Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA ABSTRACT Lighting consumes about 20 to 40% of total electricity use in large office buildings in the U.S. and China. In order to develop better lighting simulation models it is crucial to understand the characteristics of lighting energy use. This paper analyzes the main characteristics of lighting energy use over various time scales, based on the statistical analysis of measured lighting energy use of 17 large office buildings in Beijing and Hong Kong. It was found that the daily 24-hour

68

Development of Energy Consumption Database Management System of Existing Large Public Buildings  

E-Print Network (OSTI)

The statistic data of energy consumption are the base of analyzing energy consumption. The scientific management method of energy consumption data and the development of database management system plays an important role in building energy conservation. At present, the large public buildings have been the emphasis of building energy conservation in China. The functions and the basic construction of energy consumption database management system (ECDBMS) for large public buildings are introduced. The ECDBMS is developed by using SQL Server 2000 as the database and PowerBuilder10.0 as the developing tool. It includes five parts such as the basic information of public buildings, the designing parameters of energy-consuming equipments, the operational parameters of energy-consuming equipments, the electric and fuel consumption of buildings, the evaluation of energy efficiency for equipments. The energy consumption database can be accumulated and some functions can be realized by using this database such as the management of building designing parameters and energy consumption data, the evaluation and analysis of building energy consumption.

Li, Y.; Zhang, J.; Sun, D.

2006-01-01T23:59:59.000Z

69

Energy and Cost Savings of Retro-Commissioning and Retrofit Measures for Large Office Buildings  

Science Conference Proceedings (OSTI)

This paper evaluates the energy and cost savings of seven retro-commissioning measures and 29 retrofit measures applicable to most large office buildings. The baseline model is for a hypothetical building with characteristics of large office buildings constructed before 1980. Each retro-commissioning measure is evaluated against the original baseline in terms of its potential of energy and cost savings while each retrofit measure is evaluated against the commissioned building. All measures are evaluated in five locations (Miami, Las Vegas, Seattle, Chicago and Duluth) to understand the impact of weather conditions on energy and cost savings. The results show that implementation of the seven operation and maintenance measures as part of a retro-commissioning process can yield an average of about 22% of energy use reduction and 14% of energy cost reduction. Widening zone temperature deadband, lowering VAV terminal minimum air flow set points and lighting upgrades are effective retrofit measures to be considered.

Wang, Weimin; Zhang, Jian; Moser, Dave; Liu, Guopeng; Athalye, Rahul A.; Liu, Bing

2012-08-03T23:59:59.000Z

70

Using an Energy Performance Based Design-Build Process to Procure a Large Scale Low-Energy Building: Preprint  

Science Conference Proceedings (OSTI)

This paper will review a procurement, acquisition, and contract process of a large-scale replicable net zero energy (ZEB) office building. The owners developed and implemented an energy performance based design-build process to procure a 220,000 ft2 office building with contractual requirements to meet demand side energy and LEED goals. We will outline the key procurement steps needed to ensure achievement of our energy efficiency and ZEB goals. The development of a clear and comprehensive Request for Proposals (RFP) that includes specific and measurable energy use intensity goals is critical to ensure energy goals are met in a cost effective manner. The RFP includes a contractual requirement to meet an absolute demand side energy use requirement of 25 kBtu/ft2, with specific calculation methods on what loads are included, how to normalize the energy goal based on increased space efficiency and data center allocation, specific plug loads and schedules, and calculation details on how to account for energy used from the campus hot and chilled water supply. Additional advantages of integrating energy requirements into this procurement process include leveraging the voluntary incentive program, which is a financial incentive based on how well the owner feels the design-build team is meeting the RFP goals.

Pless, S.; Torcellini, P.; Shelton, D.

2011-05-01T23:59:59.000Z

71

EMCS and time-series energy data analysis in a large government office building  

SciTech Connect

Energy Management Control System (EMCS) data are an underutilized source of information on the performance of commercial buildings. Newer EMCS's have the ability and storage capacity to trend large amounts of data and perform preliminary analyses; however, these features often receive little or no use, as operators are generally not trained in data management, visualization, and analysis. Whole-building hourly electric-utility data are another readily available and underutilized source of information. This paper outlines the use of EMCS and utility data to evaluate the performance of the Ronald V. Dellums Federal Building in Oakland, California, a large office building operated by the Federal General Services Administration (GSA). The project began as an exploratory effort at Lawrence Berkeley National Laboratory (LBNL) to examine the procedures operators were using to obtain information and operate their buildings. Trending capabilities were available, but in limited use by the operators. LBNL worked with the building operators to use EMCS to trend one-minute data for over one-hundred points. Hourly electricity-use data were also used to understand usage patterns and peak demand. The paper describes LBNL's key findings in the following areas: Characterization of cooling plant operations; Characterization of economizer performance; Analysis of annual energy use and peak demand operations; Techniques, strengths, and shortcomings of EMCS data analysis; Future plans at the building for web-based remote monitoring and diagnostics. These findings have helped GSA develop strategies for peak demand reduction in this and other GSA buildings. Such activities are of great interest in California and elsewhere, where electricity reliability and demand are currently problematic. Overall, though the building's energy use is fairly low, significant energy savings are available by improving the existing EMCS control strategies.

Piette, Mary Ann; Kinney, Satkartar; Friedman, Hannah

2001-04-01T23:59:59.000Z

72

Energy Efficient Ventilation for Maintaining Indoor Air Quality in Large Buildings  

E-Print Network (OSTI)

this paper was presented at the 3rd International Conference on Cold Climate Heating, Ventilating and Air-conditioning, Sapporo, Japan, November 2000 C. Y. Shaw Rsum Institute for Research in Construction, National Research Council Canada Achieving good indoor air quality in large residential and commercial buildings continues to be a top priority for owners, designers, building managers and occupants alike. Large buildings present a greater challenge in this regard than do smaller buildings and houses. The challenge is greater today because there are many new materials, furnishings, products and processes used in these buildings that are potential sources of air contaminants. There are three strategies for achieving acceptable indoor air quality: ventilation (dilution), source control and air cleaning/filtration. Of the three, the most frequently used strategy, and in most cases the only one available to building operators, is ventilation. Ventilation is the process of supplying outdoor air to an enclosed space and removing stale air from this space. It can control the indoor air quality by both diluting the indoor air with less contaminated outdoor air and removing the indoor contaminants with the exhaust air. Ventilation costs money because the outdoor air needs to be heated in winter and cooled in summer. To conserve energy, care must be taken to maximize the efficiency of the ventilation system. In this regard, a number of factors come into play

C. Y. Shaw; C. Y. Shaw Résumé

2000-01-01T23:59:59.000Z

73

Demand Shifting with Thermal Mass in Large Commercial Buildings in a  

NLE Websites -- All DOE Office Websites (Extended Search)

Shifting with Thermal Mass in Large Commercial Buildings in a Shifting with Thermal Mass in Large Commercial Buildings in a California Hot Climate Zone Title Demand Shifting with Thermal Mass in Large Commercial Buildings in a California Hot Climate Zone Publication Type Report LBNL Report Number LBNL-3898e Year of Publication 2009 Authors Xu, Peng, Rongxin Yin, Carrie Brown, and DongEun Kim Date Published June 2009 Publisher CEC/LBNL Keywords demand response, demand shifting (pre-cooling), DRQAT, hot climates, market sectors, office buildings, pre-cooling, technologies, testbed tools and guides, thermal mass Abstract The potential for using building thermal mass for load shifting and peak energy demand reduction has been demonstrated in a number of simulation, laboratory, and field studies. Previous Lawrence Berkeley National Laboratory research has demonstrated that the approach is very effective in cool and moderately warm climate conditions (California Climate Zones 2-4). However, this method had not been tested in hotter climate zones.This project studied the potential of pre-cooling the building early in the morning and increasing temperature setpoints during peak hours to reduce cooling-related demand in two typical office buildings in hotter California climates - one in Visalia (CEC Climate Zone 13) and the other in San Bernardino (CEC Climate Zone 10). The conclusion of the work to date is that pre-cooling in hotter climates has similar potential to that seen previously in cool and moderate climates. All other factors being equal, results to date indicate that pre-cooling increases the depth (kW) and duration (kWh) of the possible demand shed of a given building. The effectiveness of night pre-cooling in typical office building under hot weather conditions is very limited. However, night pre-cooling is helpful for office buildings with an undersized HVAC system. Further work is required to duplicate the tests in other typical buildings and in other hot climate zones and prove that pre-cooling is truly effective.

74

Flow around a Complex Building: Experimental and Large-Eddy Simulation Comparisons  

Science Conference Proceedings (OSTI)

A field program to study atmospheric releases around a complex building was performed in the summers of 1999 and 2000. The focus of this paper is to compare field data with a large-eddy simulation (LES) code to assess the ability of the LES ...

Ronald Calhoun; Frank Gouveia; Joseph Shinn; Stevens Chan; Dave Stevens; Robert Lee; John Leone

2005-05-01T23:59:59.000Z

75

Buildings Energy Data Book: 3.8 Hospitals and Medical Facilities  

Buildings Energy Data Book (EERE)

6 6 Energy Benchmarks for Newly Constructed Outpatient Buildings, by Selected City and End-Use (thousand Btu per square foot) Miami 1A Houston 2A Phoenix 2B Atlanta 3A Los Angeles 3B Las Vegas 3B San Francisco 3C Baltimore 4A Albuquerque 4B Seattle 4C Chicago 5A Boulder 5B Minneapolis 6A Helena 6B Duluth 7 Fairbanks 8 Note(s): Source(s): 99.7 8.8 1.4 17.7 Commercial building energy benchmarks are based off of the current stock of commercial buildings and are designed to provide a consistent baseline to compare building performance in energy-use simulations. The benchmark building had 40,932 square feet and 3 floors. Benchmark interior lighting energy = 13.02 thousand Btu/SF. Interior equipment energy consumption = 46.01 thousand Btu/SF. DOE/EERE/BT, Commercial Building Benchmark Models, Version 1.3_5.0, Nov. 2010, accessed January 2012 at

76

Technical Support Document: Strategies for 50% Energy Savings in Large Office Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

9213 9213 September 2010 Technical Support Document: Strategies for 50% Energy Savings in Large Office Buildings Matthew Leach, Chad Lobato, Adam Hirsch, Shanti Pless, and Paul Torcellini National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-550-49213 September 2010 Technical Support Document: Strategies for 50% Energy Savings in Large Office Buildings Matthew Leach, Chad Lobato, Adam Hirsch, Shanti Pless, and Paul Torcellini Prepared under Task No. BEC7.1309 NOTICE

77

Demand Shifting with Thermal Mass in Large Commercial Buildings in a California Hot Climate Zone  

E-Print Network (OSTI)

of Cooling Strategies and Building Features on EnergyPerformance of Office Buildings. ”Energy and Buildings 34(2002): Braun, J. E. 1990. “Reducing

Xu, Peng

2010-01-01T23:59:59.000Z

78

Evaluation of Demand Shifting with Thermal Mass in Two Large Commercial Buildings  

E-Print Network (OSTI)

utilizing building thermal mass for cooling load shiftingUse of Building Thermal Mass to Offset Cooling Loads. ASHRAEpeak hours, storing cooling in the building thermal mass and

Xu, Peng

2010-01-01T23:59:59.000Z

79

Technical Support Document: Strategies for 50% Energy Savings in Large Office Buildings  

SciTech Connect

This Technical Support Document (TSD) documents technical analysis that informs design guidance for designing and constructing large office buildings that achieve 50% net site energy savings over baseline buildings defined by minimal compliance with respect to ANSI/ASHRAE/IESNA Standard 90.1-2004. This report also represents a step toward developing a methodology for using energy modeling in the design process to achieve aggressive energy savings targets. This report documents the modeling and analysis methods used to identify design recommendations for six climate zones that capture the range of U.S. climate variability; demonstrates how energy savings change between ASHRAE Standard 90.1-2007 and Standard 90.1-2004 to determine baseline energy use; uses a four-story 'low-rise' prototype to analyze the effect of building aspect ratio on energy use intensity; explores comparisons between baseline and low-energy building energy use for alternate energy metrics (net source energy, energy emissions, and energy cost); and examines the extent to which glass curtain construction limits achieve energy savings by using a 12-story 'high-rise' prototype.

Leach, M.; Lobato, C.; Hirsch, A.; Pless, S.; Torcellini, P.

2010-09-01T23:59:59.000Z

80

Technical Support Document: Strategies for 50% Energy Savings in Large Office Buildings  

SciTech Connect

This Technical Support Document (TSD) documents technical analysis that informs design guidance for designing and constructing large office buildings that achieve 50% net site energy savings over baseline buildings defined by minimal compliance with respect to ANSI/ASHRAE/IESNA Standard 90.1-2004. This report also represents a step toward developing a methodology for using energy modeling in the design process to achieve aggressive energy savings targets. This report documents the modeling and analysis methods used to identify design recommendations for six climate zones that capture the range of U.S. climate variability; demonstrates how energy savings change between ASHRAE Standard 90.1-2007 and Standard 90.1-2004 to determine baseline energy use; uses a four-story 'low-rise' prototype to analyze the effect of building aspect ratio on energy use intensity; explores comparisons between baseline and low-energy building energy use for alternate energy metrics (net source energy, energy emissions, and energy cost); and examines the extent to which glass curtain construction limits achieve energy savings by using a 12-story 'high-rise' prototype.

Leach, M.; Lobato, C.; Hirsch, A.; Pless, S.; Torcellini, P.

2010-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "large hospital buildings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Building ISOC Status Displays for the Large AreaTelescope aboard the Gamma Ray Large Area Space Telescope (GLAST) Observatory  

DOE Green Energy (OSTI)

In September 2007 the Gamma Ray Large Area Space Telescope (GLAST) is scheduled to launch aboard a Delta II rocket in order to put two high-energy gamma-ray detectors, the Large Area Telescope (LAT) and the GLAST Burst Monitor (GBM) into low earth orbit. The Instrument Science Operations Center (ISOC) at SLAC is responsible for the LAT operations for the duration of the mission, and will therefore build an operations center including a monitoring station at SLAC to inform operations staff and visitors of the status of the LAT instrument and GLAST. This monitoring station is to include sky maps showing the location of GLAST in its orbit as well as the LAT's projected field of view on the sky containing known gamma-ray sources. The display also requires a world map showing the locations of GLAST and three Tracking and Data Relay Satellites (TDRS) relative to the ground, their trail lines, and ''footprint'' circles indicating the range of communications for each satellite. The final display will also include a space view showing the orbiting and pointing information of GLAST and the TDRS satellites. In order to build the displays the astronomy programs Xephem, DS9, SatTrack, and STK were employed to model the position of GLAST and pointing information of the LAT instrument, and the programming utilities Python and Cron were used in Unix to obtain updated information from database and load them into the programs at regular intervals. Through these methods the indicated displays were created and combined to produce a monitoring display for the LAT and GLAST.

Ketchum, Christina; /SLAC

2006-09-01T23:59:59.000Z

82

EMCS and time-series energy data analysis in a large government office building  

E-Print Network (OSTI)

and Renewable Energy, Office of Building Technology, State andand Renewable Energy, Office of Building Technology, State and

Piette, Mary Ann; Kinney, Satkartar; Friedman, Hannah

2001-01-01T23:59:59.000Z

83

Reducing Plug and Process Loads for a Large Scale, Low Energy Office Building: NREL's Research Support Facility; Preprint  

SciTech Connect

This paper documents the design and operational plug and process load energy efficiency measures needed to allow a large scale office building to reach ultra high efficiency building goals. The appendices of this document contain a wealth of documentation pertaining to plug and process load design in the RSF, including a list of equipment was selected for use.

Lobato, C.; Pless, S.; Sheppy, M.; Torcellini, P.

2011-02-01T23:59:59.000Z

84

Investigation of the Integration of Interstitial Building Spaces on Costs and Time of Facility Maintenance for U.S. Army Hospitals  

E-Print Network (OSTI)

The U.S. Army Medical Department (AMEDD) has used the interstitial building system (IBS) as a design component for some of the hospitals in its healthcare infrastructure portfolio. Department of Defense (DoD) leadership is aware of increases in healthcare costs and understands the importance of safely reducing costs, which may be possible through design initiatives. An analysis was performed on facility maintenance metrics for ten different U.S. Army hospitals, including IBS design and conventional / non-interstitial building system (NIBS) design. Statistical analysis indicated a significant difference in cost and time data between IBS and NIBS for most of the building systems considered (HVAC, electrical, plumbing, and interior). Scheduled maintenance for the plumbing building system was not found to have a significant difference in costs; scheduled maintenance for the HVAC and plumbing building system was not found to have a significant difference in time expended. The data in this study showed that facility maintenance cost and time were generally lower for IBS than NIBS. Time spent (and associated cost) for scheduled maintenance of the electrical and plumbing building systems were slightly higher in IBS, though not significantly higher for plumbing. It may be easier to reach the plumbing and electrical building systems due to the greater accessibility afforded by IBS design. While a cost premium is estimated for integrating IBS design, the savings provided by life cycle facility maintenance is estimated to be up to three and a half times the initial cost premium.

Leveridge, Autumn Tamara

2013-05-01T23:59:59.000Z

85

A Large-Eddy Simulation Study of Thermal Effects on Turbulence Coherent Structures in and above a Building Array  

Science Conference Proceedings (OSTI)

Thermal effects on turbulent flow in and above a cubical building array are numerically investigated using the parallelized large-eddy simulation model (PALM). Two cases (no heating and bottom heating) are simulated and are compared with each ...

Seung-Bu Park; Jong-Jin Baik

2013-06-01T23:59:59.000Z

86

A simplified multi-zone model for determining the placement of bio-defense sensors in large buildings  

E-Print Network (OSTI)

The anthrax mailings of 2001 increased public and government awareness to the threat of bio-terrorism. Particularly vulnerable to a bio-terrorist event are large indoor facilities such as convention centers, office buildings, ...

Van Broekhoven, Scott B. (Scott Bennett)

2008-01-01T23:59:59.000Z

87

A Large-Eddy Simulation Study of Bottom Heating Effects on Scalar Dispersion in and above a Cubical Building Array  

Science Conference Proceedings (OSTI)

Thermal effects on scalar dispersion in and above a cubical building array are numerically investigated using the parallelized large-eddy simulation model (PALM). Two cases (no heating and bottom heating) are simulated, and scalar dispersion ...

Seung-Bu Park; Jong-Jin Baik; Young-Hee Ryu

88

Demand Shifting With Thermal Mass in Large Commercial Buildings: Field Tests, Simulation and Audits  

E-Print Network (OSTI)

The Role of Thermal Mass on the Cooling Load of Buildings.Use of Building Thermal Mass to Offset Cooling Loads. ASHRAEpeak hours, storing cooling in the building thermal mass and

Xu, Peng; Haves, Philip; Piette, Mary Ann; Zagreus, Leah

2005-01-01T23:59:59.000Z

89

Buildings  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) advances building energy performance through the development and promotion of efficient, affordable, and high impact technologies, systems, and practices. The...

90

Hungary-Employment Impacts of a Large-Scale Deep Building Retrofit...  

Open Energy Info (EERE)

European Climate Foundation Sector Energy Focus Area Energy Efficiency, Buildings, - Building Energy Efficiency Topics Co-benefits assessment, Background analysis Resource...

91

Buildings Energy Data Book: 3.8 Hospitals and Medical Facilities  

Buildings Energy Data Book (EERE)

3 3 Energy Benchmarks for Existing Hospitals, by Selected City and End-Use (thousand Btu per square foot) IECC Post Pre Post Pre Post Pre Post Pre Miami 1A 34.6 40.7 88.9 85.4 1.8 1.8 20.0 21.0 Houston 2A 42.1 48.0 89.5 86.9 2.2 2.1 19.6 20.8 Phoenix 2B 42.2 48.6 82.1 80.2 2.0 1.9 20.7 21.9 Atlanta 3A 45.8 53.9 83.7 82.1 2.5 2.5 19.0 20.6 Los Angeles 3B 45.4 46.9 75.4 71.0 2.5 2.4 18.5 18.8 Las Vegas 3B 40.9 48.0 69.5 69.0 2.2 2.2 18.5 21.2 San Francisco 3C 49.2 52.8 66.5 64.1 2.8 2.7 17.1 18.0 Baltimore 4A 49.0 60.3 79.8 79.7 2.8 2.7 18.2 19.8 Albuquerque 4B 36.2 42.6 56.1 55.4 2.8 2.7 18.7 20.1 Seattle 4C 50.5 61.2 65.4 64.6 3.0 2.9 17.5 18.6 Chicago 5A 52.5 55.9 67.3 64.0 3.1 3.0 17.8 18.0 Boulder 5B 39.1 41.1 52.6 50.1 3.0 3.0 18.1 18.2 Minneapolis 6A 55.7 60.5 59.7 56.9 3.3 3.2 17.3 17.5 Helena 6B 45.5 49.4 48.4 46.0 3.3 3.2 17.3 17.4 Duluth 7 59.8 64.0 50.6 47.2 3.6 3.5 16.9 16.5 Fairbanks 8 86.9 91.1

92

Buildings Energy Data Book: 3.8 Hospitals and Medical Facilities  

Buildings Energy Data Book (EERE)

5 5 Energy Benchmarks for Existing Outpatient Buildings, by Selected City and End-Use (thousand Btu per square foot) IECC Post Pre Post Pre Post Pre Post Pre Miami 1A 65.4 60.3 69.6 61.9 0.7 0.7 24.6 23.9 Houston 2A 73.2 76.2 54.0 52.9 0.8 0.8 22.1 24.0 Phoenix 2B 79.1 79.8 54.7 52.9 0.7 0.7 23.8 25.3 Atlanta 3A 83.1 91.1 41.8 42.1 0.9 0.9 22.1 24.6 Los Angeles 3B 87.8 86.3 37.4 35.6 0.9 0.9 22.5 23.1 Las Vegas 3B 76.6 80.5 44.1 44.0 0.8 0.8 23.2 25.5 San Francisco 3C 85.0 93.4 25.0 24.7 1.0 1.0 20.3 22.2 Baltimore 4A 85.9 97.6 34.8 35.3 1.0 1.0 21.0 23.5 Albuquerque 4B 76.5 83.6 30.4 30.9 1.0 1.0 24.1 26.4 Seattle 4C 91.7 103.1 22.8 22.6 1.1 1.0 20.9 22.9 Chicago 5A 92.4 96.0 28.1 26.4 1.1 1.1 21.2 22.1 Boulder 5B 79.9 82.9 24.7 23.3 1.1 1.1 23.4 24.4 Minneapolis 6A 97.1 102.0 24.9 23.5 1.2 1.1 21.1 22.1 Helena 6B 88.6 93.2 19.9 18.8 1.2 1.2 22.3 23.3 Duluth 7 100.6 104.6 17.0 15.5 1.3 1.3 20.8 21.2 Fairbanks

93

Duct leakage impacts on VAV system performance in California large commercial buildings  

SciTech Connect

The purpose of this study is to evaluate the variability of duct leakage impacts on air distribution system performance for typical large commercial buildings in California. Specifically, a hybrid DOE-2/TRNSYS sequential simulation approach was used to model the energy use of a low-pressure terminal-reheat variable-air-volume (VAV) HVAC system with six duct leakage configurations (tight to leaky) in nine prototypical large office buildings (representing three construction eras in three California climates where these types of buildings are common). Combined fan power for the variable-speed-controlled supply and return fans at design conditions was assumed to be 0.8 W/cfm. Based on our analyses of the 54 simulation cases, the increase in annual fan energy is estimated to be 40 to 50% for a system with a total leakage of 19% at design conditions compared to a tight system with 5% leakage. Annual cooling plant energy also increases by about 7 to 10%, but reheat energy decreases (about 3 to 10%). In combination, the increase in total annual HVAC site energy is 2 to 14%. The total HVAC site energy use includes supply and return fan electricity consumption, chiller and cooling tower electricity consumption, boiler electricity consumption, and boiler natural gas consumption. Using year 2000 average commercial sector energy prices for California ($0.0986/kWh and $7.71/Million Btu), the energy increases result in 9 to 18% ($7,400 to $9,500) increases in HVAC system annual operating costs. Normalized by duct surface area, the increases in annual operating costs are 0.14 to 0.18 $/ft{sup 2}. Using a suggested one-time duct sealing cost of $0.20 per square foot of duct surface area, these results indicate that sealing leaky ducts in VAV systems has a simple payback period of about 1.3 years. Even with total leakage rates as low as 10%, duct sealing is still cost effective. This suggests that duct sealing should be considered at least for VAV systems with 10% or more total duct leakage. The VAV system that we simulated had perfectly insulated ducts, and maintained constant static pressure in the ducts upstream of the VAV boxes and a constant supply air temperature at the airhandler. Further evaluations of duct leakage impacts should be carried out in the future after methodologies are developed to deal with duct surface heat transfer effects, to deal with airflows entering VAV boxes from ceiling return plenums (e.g., to model parallel fan-powered VAV boxes), and to deal with static pressure reset and supply air temperature reset strategies.

Wray, Craig P.; Matson, Nance E.

2003-10-01T23:59:59.000Z

94

BUILDING UNDERWATER AD-HOC NETWORKS AND SENSOR NETWORKS FOR LARGE SCALE REAL-TIME AQUATIC APPLICATIONS  

E-Print Network (OSTI)

BUILDING UNDERWATER AD-HOC NETWORKS AND SENSOR NETWORKS FOR LARGE SCALE REAL-TIME AQUATIC, CT 06269 Gainesville, FL 32611 Abstract-- Large-scale Underwater Ad-hoc Networks (UANET) and Underwater Sensor Networks (UWSN) are novel networking paradigms to explore the uninhabited oceans. How- ever

Cui, Jun-Hong

95

Demand Shifting with Thermal Mass in Large Commercial Buildings in a California Hot Climate Zone  

E-Print Network (OSTI)

of Building Thermal Mass to Offset Cooling Loads. ” ASHRAEThe Role of Thermal Mass on the Cooling Load of Buildings.Keywords: Pre-cooling, demand response, thermal mass, hot

Xu, Peng

2010-01-01T23:59:59.000Z

96

Duct leakage impacts on VAV system performance in California large commercial buildings  

E-Print Network (OSTI)

GLOSSARY 34 REFERENCES. 34 APPENDIX I: BUILDING SCHEDULES.. 37 APPENDIX II: REGRESSION EQUATIONS AND COEFFICIENTS . 40 APPENDIX III: ENERGY

Wray, Craig P.; Matson, Nance E.

2003-01-01T23:59:59.000Z

97

Parametric System Curves: Correlations Between Fan Pressure Rise and Flow for Large Commercial Buildings  

SciTech Connect

A substantial fraction of HVAC energy use in large commercial buildings is due to fan operation. Fan energy use depends in part on the relationship between system pressure drop and flow through the fan, which is commonly called a "system curve." As a step toward enabling better selections of air-handling system components and analyses of common energy efficiency measures such as duct static pressure reset and duct leakage sealing, this paper shows that a simple four-parameter physical model can be used to define system curves. Our model depends on the square of the fan flow, as is commonly considered. It also includes terms that account for linear-like flow resistances such as filters and coils, and for supply duct leakage when damper positions are fixed or are changed independently of static pressure or fan flow. Only two parameters are needed for systems with variable-position supply dampers (e.g., VAV box dampers modulating to control flow). For these systems, reducing or eliminating supply duct leakage does not change the system curve. The parametric system curve may be most useful when applied to field data. Non-linear techniques could be used to fit the curve to fan pressure rise and flow measurements over a range of operating conditions. During design, when measurements are unavailable, one could use duct design calculation tools instead to determine the coefficients.

Sherman, Max; Wray, Craig

2010-05-19T23:59:59.000Z

98

Duct leakage impacts on VAV system performance in California large commercial buildings  

E-Print Network (OSTI)

air leakage rate, then proposed buildings will be rewarded for sealingduct sealing even more cost-effective. Table 5. TRNSYS Air-

Wray, Craig P.; Matson, Nance E.

2003-01-01T23:59:59.000Z

99

Application issues for large-area electrochromic windows in commercial buildings  

E-Print Network (OSTI)

building application; energy-efficiency * Corresponding author. E-mail: ESLee@lbl.gov Introduction Electrochromics are a multi-layer coating

Lee, Eleanor S.; DiBartolomeo, D.L.

2000-01-01T23:59:59.000Z

100

EMCS and time-series energy data analysis in a large government office building  

E-Print Network (OSTI)

percent. There are four cooling tower cells, with a variableretrofit will allow the cooling towers to be used to coolhandling units and one cooling tower. The building achieved

Piette, Mary Ann; Kinney, Satkartar; Friedman, Hannah

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "large hospital buildings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

A large-scale study on predicting and contextualizing building energy usage  

E-Print Network (OSTI)

In this paper we present a data-driven approach to modeling end user energy consumption in residential and commercial buildings. Our model is based upon a data set of monthly electricity and gas bills, collected by a utility ...

Kolter, Jeremy Z.

102

Demand Shifting With Thermal Mass in Large Commercial Buildings:Field Tests, Simulation and Audits  

SciTech Connect

The principle of pre-cooling and demand limiting is to pre-cool buildings at night or in the morning during off-peak hours, storing cooling in the building thermal mass and thereby reducing cooling loads and reducing or shedding related electrical demand during the peak periods. Cost savings are achieved by reducing on-peak energy and demand charges. The potential for utilizing building thermal mass for load shifting and peak demand reduction has been demonstrated in a number of simulation, laboratory, and field studies (Braun 1990, Ruud et al. 1990, Conniff 1991, Andresen and Brandemuehl 1992, Mahajan et al. 1993, Morris et al. 1994, Keeney and Braun 1997, Becker and Paciuk 2002, Xu et al. 2003). This technology appears to have significant potential for demand reduction if applied within an overall demand response program. The primary goal associated with this research is to develop information and tools necessary to assess the viability of and, where appropriate, implement demand response programs involving building thermal mass in buildings throughout California. The project involves evaluating the technology readiness, overall demand reduction potential, and customer acceptance for different classes of buildings. This information can be used along with estimates of the impact of the strategies on energy use to design appropriate incentives for customers.

Xu, Peng; Haves, Philip; Piette, Mary Ann; Zagreus, Leah

2005-09-01T23:59:59.000Z

103

AN EXPERIMENTAL EVALUATION OF THE RADIATION PROTECTION AFFORDED BY A LARGE MODERN CONCRETE OFFICE BUILDING  

SciTech Connect

An experimental study was made to determine the effective shielding provided by a modern reinforced-concrete office building (AEC Headquarters building) from nuclear fall-out. Pocket ionization chambers were used for measurement of the radiation-field strength. Fall-out was simulated with distributed and point-source configurations of Co/sup 60/ and Ir/sup 192/ sources. Four typical sections were selected for study, and experiments were performed on each. These included an external wing with exposed basement walls and an external wing with a buried basement. Roof studies were made on an internal wing with a full basement and on the east end of wing A, which has a thin-roof construction. The thick-roof construction of 8 in. of concrete and 2 in. of rigid insulation covers all the building except the east end of wing A, which has 4 in. of concrete and 2 in. of insulation. (auth)

Batter, J.F. Jr.; Kaplan, A.L.; Clarke, E.T.

1959-05-01T23:59:59.000Z

104

EIA Energy Kids - In Commercial Buildings  

U.S. Energy Information Administration (EIA)

Using & Saving Energy In Commercial Buildings. How do commercial buildings — like offices, hospitals, schools, places of worship, warehouses, hotels, ...

105

An evaluation of savings and measure persistence fromretrocommissioning of large commercial buildings  

SciTech Connect

Commercial building retrocommissioning activity has increased in recent years. LBNL recently conducted a study of 8 participants in Sacramento Municipal Utility District's (SMUD) retrocommissioning program. We evaluated the persistence of energy savings and measure implementation, in an effort to identify and understand factors that affect the longevity of retrocommissioning benefits. The LBNL analysis looked at whole-building energy and the retrocommissioning measure implementation status, incorporating elements from previous work by Texas A&M University and Portland Energy Conservation Inc. When possible, adjustments due to newly discovered major end uses, occupancy patterns and 2001 energy crisis responses were included in the whole-building energy analysis. The measure implementation analysis categorized each recommended measure and tracked the measures to their current operational status. Results showed a 59% implementation rate of recommended measures. The whole-building energy analysis showed an aggregate electricity savings of approximately 10.5% in the second post-retrocommissioning year, diminishing to approximately 8% in the fourth year. Results also showed the 2001 energy crisis played a significant role in the post-retrocommissioning energy use at the candidate sites. When natural gas consumption was included in the analysis, savings were reduced slightly, showing the importance in considering interactive effects between cooling and heating systems. The cost effectiveness of retrocommissioning was very attractive at the sites studied. However, funding for retrocommissioning activities is still very constrained.

Bourassa, Norman J.; Piette, Mary Ann; Motegi, Naoya

2004-03-10T23:59:59.000Z

106

Indoor Conditions Study and Impact on the Energy Consumption for a Large Commercial Building  

E-Print Network (OSTI)

This study is focused on the analysis of indoor conditions for a new commercial building that will be constructed in an East-European country. Based on the initial HVAC design parameters the surface of the building was divided in thermal zones that were studied using dynamic simulations. The article provides interesting insights of the building indoor conditions (summer/winter comfort), humidity, air temperature, mean operative temperature and energy consumption using hourly climate data. A dynamic variation of the PMV (Predicted Mean Vote Index) was obtained for different thermal zones of the building (retails stores, mall circulation, corridors) and in most of the cases the acceptable values of plus/minus 0.5 are exceeded. Among the most important energy efficiency measures it is mentioned a decrease of the heating set point temperature, increase of the walls and roof thermal resistance and the use of a heat recovery on the ventilation system. In this work it is demonstrated how simple measures can enhance the indoor conditions and reduce the energy consumption for this kind of construction.

Catalina, T.

2011-01-01T23:59:59.000Z

107

An evaluation of savings and measure persistence fromretrocommissioning of large commercial buildings  

SciTech Connect

Commercial building retrocommissioning activity has increased in recent years. LBNL recently conducted a study of 8 participants in Sacramento Municipal Utility District's (SMUD) retrocommissioning program. We evaluated the persistence of energy savings and measure implementation, in an effort to identify and understand factors that affect the longevity of retrocommissioning benefits. The LBNL analysis looked at whole-building energy and the retrocommissioning measure implementation status, incorporating elements from previous work by Texas A&M University and Portland Energy Conservation Inc. When possible, adjustments due to newly discovered major end uses, occupancy patterns and 2001 energy crisis responses were included in the whole-building energy analysis. The measure implementation analysis categorized each recommended measure and tracked the measures to their current operational status. Results showed a 59% implementation rate of recommended measures. The whole-building energy analysis showed an aggregate electricity savings of approximately 10.5% in the second post-retrocommissioning year, diminishing to approximately 8% in the fourth year. Results also showed the 2001 energy crisis played a significant role in the post-retrocommissioning energy use at the candidate sites. When natural gas consumption was included in the analysis, savings were reduced slightly, showing the importance in considering interactive effects between cooling and heating systems. The cost effectiveness of retrocommissioning was very attractive at the sites studied. However, funding for retrocommissioning activities is still very constrained.

Bourassa, Norman J.; Piette, Mary Ann; Motegi, Naoya

2004-03-10T23:59:59.000Z

108

Evaluation of Demand Shifting with Thermal Mass in Two Large Commercial Buildings  

SciTech Connect

Building thermal mass can be used to reduce the peak cooling load. For example, in summer, the building mass can be pre-cooled during non-peak hours in order to reduce the cooling load in the peak hours. As a result, the cooling load is shifted in time and the peak demand is reduced. The building mass can be cooled most effectively during unoccupied hours because it is possible to relax the comfort constraints. While the benefits of demand shift are certain, different thermal mass discharge strategies result in different cooling load reduction and savings. The goal of an optimized discharge strategy is to maximize the thermal mass discharge and minimize the possibility of rebounds before the shed period ends. A series of filed tests were carefully planned and conducted in two commercial buildings in Northern California to investigate the effects of various precooling and demand shed strategies. Field tests demonstrated the potential of cooling load reduction in peak hours and importance of discharge strategies to avoid rebounds. EnergyPlus simulation models were constructed and calibrated to investigate different kind of recovery strategies. The results indicate the value of pre-cooling in maximizing the electrical shed in the on-peak period. The results also indicate that the dynamics of the shed need to be managed in order to avoid discharging the thermal capacity of the building too quickly, resulting in high cooling load and electric demand before the end of the shed period. An exponential trajectory for the zone set-point during the discharge period yielded good results and is recommended for practical implementation.

Xu, Peng

2006-08-01T23:59:59.000Z

109

Hospital Energy Benchmarking Guidance - Version 1.0  

E-Print Network (OSTI)

Region Benchmarks 1 Source & notes HOSPITAL BUILDING ENERGYbenchmarks are based on hospital energy end use estimates presented on LBNL’s EnergyIQ commercial building

Singer, Brett C.

2010-01-01T23:59:59.000Z

110

Quantification of fossil fuel CO2 emissions at the building/street scale for a large US city  

SciTech Connect

In order to advance the scientific understanding of carbon exchange with the land surface, build an effective carbon monitoring system and contribute to quantitatively-based U.S. climate change policy interests, fine spatial and temporal quantification of fossil fuel CO2 emissions, the primary greenhouse gas, is essential. Called the ‘Hestia Project’, this research effort is the first to use bottom-up methods to quantify all fossil fuel CO2 emissions down to the scale of individual buildings, road segments, and industrial/electricity production facilities on an hourly basis for an entire urban landscape. a large city (Indianapolis, Indiana USA). Here, we describe the methods used to quantify the on-site fossil fuel CO2 emissions across the city of Indianapolis, Indiana. This effort combines a series of datasets and simulation tools such as a building energy simulation model, traffic data, power production reporting and local air pollution reporting. The system is general enough to be applied to any large U.S. city and holds tremendous potential as a key component of a carbon monitoring system in addition to enabling efficient greenhouse gas mitigation and planning. We compare our estimate of fossil fuel emissions from natural gas to consumption data provided by the local gas utility. At the zip code level, we achieve a bias adjusted pearson r correlation value of 0.92 (p<0.001).

Gurney, Kevin R.; Razlivanov, I.; Song, Yang; Zhou, Yuyu; Benes, Bedrich; Abdul- Massih, Michel

2012-08-15T23:59:59.000Z

111

Building a better flat-field : an instrumental calibration projector for the Large Synoptic Survey Telescope  

E-Print Network (OSTI)

The Large Synoptic Survey Telescope (LSST) is a next-generation ground-based survey telescope whose science objectives demand photometric precision at the 1% level. Recent efforts towards 1% photometry have advocated in-situ ...

Vaz, Amali L

2011-01-01T23:59:59.000Z

112

A Large-Eddy Simulation Study of Bottom-Heating Effects on Scalar Dispersion in and above a Cubical Building Array  

Science Conference Proceedings (OSTI)

Thermal effects on scalar dispersion in and above a cubical building array are numerically investigated using the parallelized large-eddy simulation model (PALM). Two cases (no heating and bottom heating) are simulated, and scalar dispersion ...

Seung-Bu Park; Jong-Jin Baik; Young-Hee Ryu

2013-08-01T23:59:59.000Z

113

Reducing Data Center Loads for a Large-Scale, Net Zero Office Building (Brochure)  

DOE Green Energy (OSTI)

Case study highlighting the design, implementation strategies, and continuous performance monitoring of NREL's Research Support Facility data center. In constructing a new research facility for its campus, the National Renewable Energy Laboratory (NREL) project team identified the opportunity to design a world-class, energy-efficient data center to support its operations. NREL's efforts resulted in a highly efficient data center that demonstrated considerable energy savings in its first 11 months of operations. Using legacy data center performance as a baseline, the new facility cut energy use by nearly 1,450,000 kWh, delivering cost savings of approximately $82,000. The data center's average total load was 165 kW less than the legacy center's average total load, resulting in a 60% reduction in overall power. Finally, the limited use of cooling and fan energy enabled the new data center to achieve a 1.16 average power utilization effectiveness (PUE) rating, compared to the legacy data center's PUE of 2.28. The laboratory had been relying on individual servers with an energy utilization rate of less than 5%. NREL employed building best practices, innovative design techniques and energy-efficient technologies to support its energy goals for the new data center. To counteract the extensive heat generated by data center equipment, the laboratory implemented a cooling system using outdoor air and evaporative cooling to meet most of the center's needs. Inside the data center, NREL replaced much of its legacy equipment with new, energy-efficient technology. By exchanging this infrastructure for virtualized blade servers, NREL reduced its server energy footprint by 96%. Additionally, NREL replaced its 80%-efficient uninterruptible power supply (UPS) with a UPS that is 95% efficient; deployed ultra efficient power distribution units (PDU) to handle higher UPS voltages; and implemented vacancy sensors to drive down lighting loads. Using best practices and energy-efficient technology, NREL was able to successfully design an optimized data center with a minimal energy footprint. At 958,000 kWh, the annual energy use for the RSF data center is approximately 60% less than the legacy data center's annual energy use, surpassing the laboratory's project goal. As specified, the building is equipped with enough onsite renewable energy generation to offset annual energy consumption. The facility has achieved a PUE of 1.16 and ERE of 0.91 in its first 11 months of operation and is using PUE to as a metric to gauge success towards its ultimate goal. Based on the status of its RSF data center project, NREL is advising other government organizations on data center efficiency. The laboratory places great emphasis on the use of key metrics - such as PUE and ERE - to track performance. By carefully monitoring these metrics and making adjustments, NREL is able to continuously improve the performance of its data center operations.

Not Available

2011-12-01T23:59:59.000Z

114

On scale and magnitude of pressure build-up induced by large-scale geologic storage of CO2  

SciTech Connect

The scale and magnitude of pressure perturbation and brine migration induced by geologic carbon sequestration is discussed assuming a full-scale deployment scenario in which enough CO{sub 2} is captured and stored to make relevant contributions to global climate change mitigation. In this scenario, the volumetric rates and cumulative volumes of CO{sub 2} injection would be comparable to or higher than those related to existing deep-subsurface injection and extraction activities, such as oil production. Large-scale pressure build-up in response to the injection may limit the dynamic storage capacity of suitable formations, because over-pressurization may fracture the caprock, may drive CO{sub 2}/brine leakage through localized pathways, and may cause induced seismicity. On the other hand, laterally extensive sedimentary basins may be less affected by such limitations because (i) local pressure effects are moderated by pressure propagation and brine displacement into regions far away from the CO{sub 2} storage domain; and (ii) diffuse and/or localized brine migration into overlying and underlying formations allows for pressure bleed-off in the vertical direction. A quick analytical estimate of the extent of pressure build-up induced by industrial-scale CO{sub 2} storage projects is presented. Also discussed are pressure perturbation and attenuation effects simulated for two representative sedimentary basins in the USA: the laterally extensive Illinois Basin and the partially compartmentalized southern San Joaquin Basin in California. These studies show that the limiting effect of pressure build-up on dynamic storage capacity is not as significant as suggested by Ehlig-Economides and Economides, who considered closed systems without any attenuation effects.

Zhou, Q.; Birkholzer, J. T.

2011-05-01T23:59:59.000Z

115

Energy Use Intensity and its Influence on the Integrated Daylighting Design of a Large Net Zero Energy Building: Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

Use Intensity and its Use Intensity and its Influence on the Integrated Daylighting Design of a Large Net Zero Energy Building Preprint Rob Guglielmetti, Jennifer Scheib, Shanti D. Pless, and Paul Torcellini National Renewable Energy Laboratory Rachel Petro RNL Design Presented at the ASHRAE Winter Conference Las Vegas, Nevada January 29 - February 2, 2011 Conference Paper NREL/CP-5500-49103 March 2011 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes.

116

Building a Large Scale Climate Data System in Support of HPC Environment  

SciTech Connect

The Earth System Grid Federation (ESG) is a large scale, multi-institutional, interdisciplinary project that aims to provide climate scientists and impact policy makers worldwide a web-based and client-based platform to publish, disseminate, compare and analyze ever increasing climate related data. This paper describes our practical experiences on the design, development and operation of such a system. In particular, we focus on the support of the data lifecycle from a high performance computing (HPC) perspective that is critical to the end-to-end scientific discovery process. We discuss three subjects that interconnect the consumer and producer of scientific datasets: (1) the motivations, complexities and solutions of deep storage access and sharing in a tightly controlled environment; (2) the importance of scalable and flexible data publication/population; and (3) high performance indexing and search of data with geospatial properties. These perceived corner issues collectively contributed to the overall user experience and proved to be as important as any other architectural design considerations. Although the requirements and challenges are rooted and discussed from a climate science domain context, we believe the architectural problems, ideas and solutions discussed in this paper are generally useful and applicable in a larger scope.

Wang, Feiyi [ORNL; Harney, John F [ORNL; Shipman, Galen M [ORNL

2011-01-01T23:59:59.000Z

117

Reducing Data Center Loads for a Large-scale, Low Energy Office Building: NREL's Research Support Facility (Book), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Data Center Loads for a Large- Data Center Loads for a Large- scale, Low-energy Office Building: NREL's Research Support Facility The NREL Approach * December 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. 2 National Renewable Energy Laboratory Reducing Data Center Loads for a Large-Scale, Low-Energy Office Building: NREL's Research Support Facility Michael Sheppy, Chad Lobato, Otto Van Geet, Shanti Pless, Kevin Donovan, Chuck Powers National Renewable Energy Laboratory Golden, Colorado December 2011

118

Large-Eddy Simulation of Flow and Pollutant Transport in Street Canyons of Different Building-Height-to-Street-Width Ratios  

Science Conference Proceedings (OSTI)

This study employs a large-eddy simulation technique to investigate the flow, turbulence structure, and pollutant transport in street canyons of building-height-to-street-width (aspect) ratios of 0.5, 1.0, and 2.0 at a Reynolds number of 12 000 ...

Chun-Ho Liu; Mary C. Barth; Dennis Y. C. Leung

2004-10-01T23:59:59.000Z

119

Energy Use Intensity and its Influence on the Integrated Daylighting Design of a Large Net Zero Energy Building: Preprint  

SciTech Connect

Net-zero energy buildings generate as much energy as they consume and are significant in the sustainable future of building design and construction. The role of daylighting (and its simulation) in the design process becomes critical. In this paper we present the process the National Renewable Energy Laboratory embarked on in the procurement, design, and construction of its newest building, the Research Support Facility (RSF) - particularly the roles of daylighting, electric lighting, and simulation. With a rapid construction schedule, the procurement, design, and construction had to be tightly integrated; with low energy use. We outline the process and measures required to manage a building design that could expect to operate at an efficiency previously unheard of for a building of this type, size, and density. Rigorous simulation of the daylighting and the electric lighting control response was a given, but the oft-ignored disconnect between lighting simulation and whole-building energy use simulation had to be addressed. The RSF project will be thoroughly evaluated for its performance for one year; preliminary data from the postoccupancy monitoring efforts will also be presented with an eye toward the current efficacy of building energy and lighting simulation.

Guglielmetti , R.; Scheib, J.; Pless, S. D.; Torcellini , P.; Petro, R.

2011-03-01T23:59:59.000Z

120

NREL Recommends Ways to Cut Building Energy Costs in Half (Fact Sheet)  

SciTech Connect

Building designers and operators could cut energy use by 50% in large office buildings, hospitals, schools, and a variety of stores -- including groceries, general merchandise outlets, and retail outlets -- by following the recommendations of NREL researchers. The innovative energy-saving recommendations are contained in technical support documents and Advanced Energy Design Guides compiled by NREL.

Not Available

2013-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "large hospital buildings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

NREL Recommends Ways to Cut Building Energy Costs in Half (Fact Sheet)  

SciTech Connect

Building designers and operators could cut energy use by 50% in large office buildings, hospitals, schools, and a variety of stores - including groceries, general merchandise outlets, and retail outlets - by following the recommendations of researchers at the National Renewable Energy Laboratory (NREL).

Not Available

2011-07-01T23:59:59.000Z

122

1. Large Scale Climate Simulator (Building 3144) The LSCS tests roof and/or attic assemblies weighing up to  

E-Print Network (OSTI)

) The RGHB performs advanced thermal testing of full-size wall/fenestration systems. It accommodates systems content in materials, vapor pressure, temperature, heat flux, humidity, and condensation. 7. MAXLAB MAXLAB. It is adequate for testing in most residential and light commercial buildings. 12. Duct Blaster A Duct Blaster

Oak Ridge National Laboratory

123

Experiences on the Implementation of the 'Energy Balance' Methodology as a Data Quality Control Tool: Application to the Building Energy Consumption of a Large University Campus  

E-Print Network (OSTI)

As the energy costs have been increasing the more energy efficient measures have been promoted in the buildings sector, the reliability of energy consumption data has been attracting significant attention. For example, the reliability of the determination of energy savings depends on that of the energy consumption data, which has to be verified before and after any efficiency measure is applied. From other perspective, verifying energy use data on a regular basis would allow the engineers to identify and assess commissioning opportunities confidently. This paper presents the application of an innovative data screening methodology as a data quality control tool for energy consumption data. The methodology has been applied to a large university campus where the monthly energy consumption, of approximately 100 buildings, must be verified. One of the main responsibilities of the Energy Management Office of the university is to provide monthly utility consumption and cost information to accounting for utility billing of individual buildings. The methodology, which is based on the first law of thermodynamics, or energy conservation, has proved to be an effective data quality screening method for verification of metering sensors when heating, cooling and electricity consumption are separately metered in a building. The methodology is anticipated to be suitable for automated application. In some cases, the methodology could also help to rehabilitate energy use data.

Baltazar-Cervantes, J. C.; Sakurai, Y.; Masuda, H.; Feinauer, D.; Liu, J.; Ji, J.; Claridge, D. E.; Deng, S.; Bruner, H.

2007-01-01T23:59:59.000Z

124

On the Use of Integrated Daylighting and Energy Simulations To Drive the Design of a Large Net-Zero Energy Office Building: Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

522 522 August 2010 On the Use of Integrated Daylighting and Energy Simulations To Drive the Design of a Large Net-Zero Energy Office Building Preprint Rob Guglielmetti, Shanti Pless, and Paul Torcellini Presented at SimBuild 2010 New York, New York August 15-19, 2010 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government.

125

Reducing Data Center Loads for a Large-Scale, Low-Energy Office Building: NREL's Research Support Facility (Book)  

DOE Green Energy (OSTI)

This publication detailing the design, implementation strategies, and continuous performance monitoring of NREL's Research Support Facility data center. Data centers are energy-intensive spaces that facilitate the transmission, receipt, processing, and storage of digital data. These spaces require redundancies in power and storage, as well as infrastructure, to cool computing equipment and manage the resulting waste heat (Tschudi, Xu, Sartor, and Stein, 2003). Data center spaces can consume more than 100 times the energy of standard office spaces (VanGeet 2011). The U.S. Environmental Protection Agency (EPA) reported that data centers used 61 billion kilowatt-hours (kWh) in 2006, which was 1.5% of the total electricity consumption in the U.S. (U.S. EPA, 2007). Worldwide, data centers now consume more energy annually than Sweden (New York Times, 2009). Given their high energy consumption and conventional operation practices, there is a potential for huge energy savings in data centers. The National Renewable Energy Laboratory (NREL) is world renowned for its commitment to green building construction. In June 2010, the laboratory finished construction of a 220,000-square-foot (ft{sup 2}), LEED Platinum, Research Support Facility (RSF), which included a 1,900-ft{sup 2} data center. The RSF will expand to 360,000 ft{sup 2} with the opening of an additional wing December, 2011. The project's request for proposals (RFP) set a whole-building demand-side energy use requirement of a nominal 35 kBtu/ft{sup 2} per year. On-site renewable energy generation will offset the annual energy consumption. To support the RSF's energy goals, NREL's new data center was designed to minimize its energy footprint without compromising service quality. Several implementation challenges emerged during the design, construction, and first 11 months of operation of the RSF data center. This document highlights these challenges and describes in detail how NREL successfully overcame them. The IT settings and strategies outlined in this document have been used to significantly reduce data center energy requirements in the RSF; however, these can also be used in existing buildings and retrofits.

Sheppy, M.; Lobato, C.; Van Geet, O.; Pless, S.; Donovan, K.; Powers, C.

2011-12-01T23:59:59.000Z

126

1999 CBECS Principal Building Activities  

U.S. Energy Information Administration (EIA) Indexed Site

Data Reports > 2003 Building Characteristics Overview Data Reports > 2003 Building Characteristics Overview A Look at Building Activities in the 1999 Commercial Buildings Energy Consumption Survey The Commercial Buildings Energy Consumption Survey, or CBECS, covers a wide variety of building types—office buildings, shopping malls, hospitals, churches, and fire stations, to name just a few. Some of these buildings might not traditionally be considered "commercial," but the CBECS includes all buildings that are not residential, agricultural, or industrial. For an overview of definitions and examples of the CBECS building types, see Description of Building Types. Compare Activities by... Number of Buildings Building size Employees Building Age Energy Conservation Number of Computers Electricity Generation Capability

127

Beyond Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

without compromising future generations SUSTAINABLE INL Buildings Beyond Buildings Sustainability Beyond Buildings INL is taking sustainability efforts "beyond buildings" by...

128

On the Use of Integrated Daylighting and Energy Simulations to Drive the Design of a Large Net-Zero Energy Office Building: Preprint  

SciTech Connect

This paper illustrates the challenges of integrating rigorous daylight and electric lighting simulation data with whole-building energy models, and defends the need for such integration to achieve aggressive energy savings. Through a case study example, we examine the ways daylighting -- and daylighting simulation -- drove the design of a large net-zero energy project. We give a detailed review of the daylighting and electric lighting design process for the National Renewable Energy Laboratory's Research Support Facility (RSF), a 220,000 ft2 net-zero energy project the author worked on as a daylighting consultant. A review of the issues involved in simulating and validating the daylighting performance of the RSF will be detailed, including daylighting simulation, electric lighting control response, and integration of Radiance simulation data into the building energy model. Daylighting was a key strategy in reaching the contractual energy use goals for the RSF project; the building's program, layout, orientation and interior/furniture design were all influenced by the daylighting design, and simulation was critical in ensuring these many design components worked together in an integrated fashion, and would perform as required to meet a very aggressive energy performance goal, as expressed in a target energy use intensity.

Guglielmetti, R.; Pless, S.; Torcellini, P.

2010-08-01T23:59:59.000Z

129

A Look at Principal Building Activities in Commercial Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Home > Commercial Buildings Home> Special Topics > 1995 Principal Home > Commercial Buildings Home> Special Topics > 1995 Principal Building Activities Office Education Health Care Retail and Service Food Service Food Sales Lodging Religious Worship Public Assembly Public Order and Safety Warehouse and Storage Vacant Other Summary Comparison Table (All Activities) More information on the: Commercial Buildings Energy Consumption Survey A Look at ... Principal Building Activities in the Commercial Buildings Energy Consumption Survey (CBECS) When you look at a city skyline, most of the buildings you see are commercial buildings. In the CBECS, commercial buildings include office buildings, shopping malls, hospitals, churches, and many other types of buildings. Some of these buildings might not traditionally be considered "commercial," but the CBECS includes all buildings that are not residential, agricultural, or industrial.

130

Analysis of electric vehicle interconnection with commercial building microgrids  

E-Print Network (OSTI)

buildings x) in nine climate zones x) hospitals, colleges,in nine different climate zones and three major utility

Stadler, Michael

2011-01-01T23:59:59.000Z

131

Building Underwater Ad-Hoc Networks and Sensor Networks for Large Scale Real-Time Aquatic Applications  

E-Print Network (OSTI)

Large-scale Underwater Ad-hoc Networks (UANET) and Underwater Sensor Networks (UWSN) are novel networking paradigms to explore the uninhabited oceans. However, the characteristics of these new networks, such as huge propagation delay, floating node mobility, and limited acoustic link capacity, are significantly different from ground-based mobile ad-hoc networks (MANET) and wireless sensor networks (WSN). In this paper we adopt a top-down approach to explore the new research subject. We at first show a new practical application scenario that cannot be addressed by existing technology and hence demands the advent of the UANET and UWSN. Then along the layered protocol stack, we go down from the top application layer to the bottom physical layer. At each layer we show a set of new design challenges. We conclude that UANET and UWSN are challenges that must be answered by inter-disciplinary efforts of acoustic communication, signal processing and mobile acoustic network protocol design.

Jiejun Kong; Jun-hong Cui; Dapeng Wu; Mario Gerla

2005-01-01T23:59:59.000Z

132

Multi-zone modeling of Thermal Comfort and Energy Consumption of a hospital ward.  

E-Print Network (OSTI)

?? Hospital is of interest when consider its especial function. Because of the obviously different between the normal residential buildings, the requirement of hospitals’ indoor… (more)

Xie, Tian

2010-01-01T23:59:59.000Z

133

List of certified energy auditors for the Federal Grant Program for schools and hospitals and for buildings owned by units of local government and public care institutions, and the Energy Conservation Assistance Act of 1979, a state loan program. [About 1500 persons  

Science Conference Proceedings (OSTI)

A list of approximately 1500 persons who are certified energy auditors for the Federal Grant Program for schools and hospitals and for buildings owned by units of local government and public care institutions and the Energy Conservation Assistance Act of 1979, a state loan program, is presented. Information on the auditors' employer type and experience is included.

Not Available

1980-04-02T23:59:59.000Z

134

Hospital Renovations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hospital Renovations Hospital Renovations Hospital Renovations October 16, 2013 - 4:53pm Addthis Renewable Energy Options for Hospital Renovations Solar Water Heating Geothermal Heat Pumps Biomass Heating Photovoltaics (PV) Hospitals have a range of energy needs that vary from a typical building, and a number of renewable energy options may make more sense for a hospital, including process and biomass heating, photovoltaics (PV), and sustainability. Process Heating Options When a facility requires process heat, there are a number of renewable energy options. High-temperature solar water heating can provide process-level steam or heat, or a traditional solar water heating system or a geothermal heat pumps can be used to pre-heat the fluid to reduce energy requirements to reach necessary temperatures.

135

Energy Information Administration (EIA)- Commercial Buildings ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... energy management features, energy consumption, and water consumption for hospital buildings greater than 200,000 square feet.

136

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... S.; Baum, HR; CFD Simulation of a 2.5 MW Oil Pool Fire in a Nuclear Power Plant Containment Building Using Multi-Block Large Eddy Simulation. ...

137

Building Technologies Office: Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Buildings Residential Buildings to someone by E-mail Share Building Technologies Office: Residential Buildings on Facebook Tweet about Building Technologies Office: Residential Buildings on Twitter Bookmark Building Technologies Office: Residential Buildings on Google Bookmark Building Technologies Office: Residential Buildings on Delicious Rank Building Technologies Office: Residential Buildings on Digg Find More places to share Building Technologies Office: Residential Buildings on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links Success Stories Previous Next Warming Up to Pump Heat. Lighten Energy Loads with System Design. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program

138

Homepage | The Better Buildings Alliance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Better Buildings Logo Better Buildings Logo EERE Home | Programs & Offices | Consumer Information Better Buildings Logo Better Buildings Alliance Sectors Public Private Commercial Real Estate & Hospitality Healthcare Higher Education Retail, Food Service & Grocery Activities Technology Solutions Teams Lighting & Electrical Space Conditioning Plug & Process Loads Food Service Refrigeration Laboratories Energy Management Information Systems Public Sector Teams Energy Savings Performance Contracts Strategic Energy Planning Finance Strategies Data Management Approaches Market Solutions Teams Appraisals & Valuation Data Access Financing Leasing & Split Incentive Workforce Development Events 2014 Better Buildings Summit Better Buildings Webinar Series Efficiency Forum Past Webinars

139

Public Assembly Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Assembly Assembly Characteristics by Activity... Public Assembly Public assembly buildings are those in which people gather for social or recreational activities, whether in private or non-private meeting halls. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Public Assembly Buildings... Most public assembly buildings were not large convention centers or entertainment arenas; about two-fifths fell into the smallest size category. About one-fifth of public assembly buildings were government-owned, mostly by local governments; examples of these types of public assembly buildings are libraries and community recreational facilities. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

140

Hospital Energy Benchmarking Guidance - Version 1.0  

E-Print Network (OSTI)

major building energy services and systems: - Cooling (equipment and other energy-intensive services are additionalBtu) + energy to distribute service within hospital (Btu of

Singer, Brett C.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "large hospital buildings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Department of Energy Announces the Launch of the Hospital Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hospitals use 836 trillion BTUs of energy annually and have more than 2.5 times the energy intensity and carbon dioxide emissions of commercial office buildings, producing...

142

Buildings Performance Database  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Buildings Performance DOE Buildings Performance Database Paul Mathew Lawrence Berkeley National Laboratory pamathew@lbl.gov (510) 486 5116 April 3, 2013 Standard Data Spec API 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * Large-scale high-quality empirical data on building energy performance is critical to support decision- making and increase confidence in energy efficiency investments. * While there are a many potential sources for such data,

143

Building Technologies Office: Commercial Building Energy Asset...  

NLE Websites -- All DOE Office Websites (Extended Search)

TECHNOLOGIES RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE Building Technologies Office Commercial Buildings...

144

Buildings Energy Data Book: 5.9 On-Site Power  

Buildings Energy Data Book (EERE)

Building Type and Prime Mover (kW) Combustion Reciprocating Turbine Engine Fuel Cell Microturbine Multifamily Buildings CollegesUniv Restaurants HospitalsHealthcare...

145

Buildings Energy Data Book: 5.9 On-Site Power  

Buildings Energy Data Book (EERE)

Building Type and Prime Mover (MW) Combustion Reciprocating Turbine Engine Fuel Cell Microturbine Multifamily Buildings CollegesUniv Restaurants HospitalsHealthcare...

146

Commercial Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Links Commercial Building Ventilation and Indoor Environmental Quality Batteries and Fuel Cells Buildings Energy Efficiency Electricity Grid Energy Analysis Energy...

147

Building Technologies Office: Building America: Bringing Building  

NLE Websites -- All DOE Office Websites (Extended Search)

America: Bringing Building Innovations to Market America: Bringing Building Innovations to Market Building America logo The U.S. Department of Energy's (DOE) Building America program has been a source of innovations in residential building energy performance, durability, quality, affordability, and comfort for more than 15 years. This world-class research program partners with industry (including many of the top U.S. home builders) to bring cutting-edge innovations and resources to market. For example, the Solution Center provides expert building science information for building professionals looking to gain a competitive advantage by delivering high performance homes. At Building America meetings, researchers and industry partners can gather to generate new ideas for improving energy efficiency of homes. And, Building America research teams and DOE national laboratories offer the building industry specialized expertise and new insights from the latest research projects.

148

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

3.1 Commercial Sector Energy Consumption 3.1 Commercial Sector Energy Consumption 3.2 Commercial Sector Characteristics 3.3 Commercial Sector Expenditures 3.4 Commercial Environmental Emissions 3.5 Commercial Builders and Construction 3.6 Office Building Markets and Companies 3.7 Retail Markets and Companies 3.8 Hospitals and Medical Facilities 3.9 Educational Facilities 3.10 Hotels/Motels 4Federal Sector 5Envelope and Equipment 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables Chapter 3 focuses on energy use in the commercial sector. Section 3.1 covers primary and site energy consumption in commercial buildings, as well as the delivered energy intensities of various building types and end uses. Section 3.2 provides data on various characteristics of the commercial sector, including floorspace, building types, ownership, and lifetimes. Section 3.3 provides data on commercial building expenditures, including energy prices. Section 3.4 covers environmental emissions from the commercial sector. Section 3.5 briefly addresses commercial building construction and retrofits. Sections 3.6, 3.7, 3.8, 3.9, and 3.10 provide details on select commercial buildings types, specifically office and retail space, medical facilities, educational facilities, and hotels and motels.

149

Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Apartment building exterior and interior Apartment building exterior and interior Residential Buildings EETD's research in residential buildings addresses problems associated with whole-building integration involving modeling, measurement, design, and operation. Areas of research include the movement of air and associated penalties involving distribution of pollutants, energy and fresh air. Contacts Max Sherman MHSherman@lbl.gov (510) 486-4022 Iain Walker ISWalker@lbl.gov (510) 486-4692 Links Residential Building Systems Group Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends High Technology and Industrial Systems Lighting Systems Residential Buildings Simulation Tools Sustainable Federal Operations

150

Storage of heat and coolth in hollow-core concrete slabs. Swedish experience, and application to large, American-style buildings  

DOE Green Energy (OSTI)

The Folksam office building in Farsta, near Stockholm, has operated since December 1977 with an energy use for direct space heating of only 60 kWh/m/sup 2/ (19,000 Btu/ft/sup 2/), which is only half the Stockholm average for new buildings. To this 60 kWh/m/sup 2/ must be added the typical electric use of another 60 kWh/m/sup 2/ for lights, equipment, fans, etc. Even though Stockholm has 3580 deg-day (C), new Swedish buildings are so well insulated that their temperature floats upwards during most winter working days. In the Folksam building, this surplus heat from 40 full-occupied hours per week is stored in hollow-core concrete slabs, and then is used to compensate for the heat losses during the remaining 128 unoccupied hours. The energy transport/storage system necessary to keep the indoor temperature comfortable, summer and winter, is called Thermodeck, and is described in detail.

Anderson, L.O.; Bernander, K.G.; Isfaelt, E.; Rosenfeld, A.H.

1979-10-26T23:59:59.000Z

151

Building Technologies Office: Commercial Building Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

on Twitter Bookmark Building Technologies Office: Commercial Building Activities on Google Bookmark Building Technologies Office: Commercial Building Activities on Delicious...

152

Building Technologies Office: Buildings Performance Database  

NLE Websites -- All DOE Office Websites (Extended Search)

on Twitter Bookmark Building Technologies Office: Buildings Performance Database on Google Bookmark Building Technologies Office: Buildings Performance Database on Delicious...

153

Around Buildings  

E-Print Network (OSTI)

Around Buildings W h y startw i t h buildings and w o r k o u t wa r d ? For one, buildings are difficult t o a v o i d these

Treib, Marc

1987-01-01T23:59:59.000Z

154

Personal building controls  

Science Conference Proceedings (OSTI)

Buildings are some of the largest energy consumers in the world and yet occupants are regularly dissatisfied with the interior environment in large part due to thermal discomfort [7]. Studies show that given personal control over their environment, occupants ... Keywords: building, energy, hvac, lighting, personal controls

Andrew Krioukov; David Culler

2012-04-01T23:59:59.000Z

155

High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency  

E-Print Network (OSTI)

completed advanced energy design guide for small hospitals,for an advanced energy design guide for large hospitals.care. An advanced energy design guide (AEDG) for small

Singer, Brett C.

2010-01-01T23:59:59.000Z

156

BUILDING INSPECTION Building, Infrastructure, Transportation  

E-Print Network (OSTI)

BUILDING INSPECTION Building, Infrastructure, Transportation City of Redwood City 1017 Middlefield Sacramento, Ca 95814-5514 Re: Green Building Ordinance and the Building Energy Efficiency Standards Per of Redwood City enforce the current Title 24 Building Energy Efficiency Standards as part

157

Education Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Education Education Characteristics by Activity... Education Education buildings are buildings used for academic or technical classroom instruction, such as elementary, middle, or high schools, and classroom buildings on college or university campuses. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Education Buildings... Seventy percent of education buildings were part of a multibuilding campus. Education buildings in the South and West were smaller, on average, than those in the Northeast and Midwest. Almost two-thirds of education buildings were government owned, and of these, over three-fourths were owned by a local government. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

158

Lodging Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

a nursing home, assisted living center, or other residential care building a half-way house some other type of lodging Lodging Buildings by Subcategory Figure showing lodging...

159

Commercial Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Exterior glass windows of office tower Commercial Buildings Commercial building systems research explores different ways to integrate the efforts of research in windows, lighting,...

160

EERE: Buildings  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Commercial Building Initiative works with commercial builders and owners to reduce energy use and optimize building performance, comfort, and savings. Solid-State Lighting...

Note: This page contains sample records for the topic "large hospital buildings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Personalized building comfort control  

E-Print Network (OSTI)

Creating an appropriate indoor climate is essential to worker productivity and personal happiness. It is also an area of large expenditure for building owners. And, with rising fuel costs, finding ways of reducing energy ...

Feldmeier, Mark Christopher, 1974-

2009-01-01T23:59:59.000Z

162

Building Technologies Research and  

E-Print Network (OSTI)

that selectively accepts or rejects solar radiation and outdoor air, depending on the need for heating, cooling rooftop unit inside the large "outdoor" environmental chamber (Building 5800, D-103) Heat pump water

Oak Ridge National Laboratory

163

Buildings Performance Database  

NLE Websites -- All DOE Office Websites (Extended Search)

(510) 486 5116 April 3, 2013 Standard Data Spec API 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * Large-scale high-quality empirical...

164

Buildings Performance Database Helps Building Owners, Investors...  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings Performance Database Helps Building Owners, Investors Evaluate Energy Efficient Buildings Buildings Performance Database June 2013 A new database of building features and...

165

Building Technologies Office: Buildings NewsDetail  

NLE Websites -- All DOE Office Websites (Extended Search)

NewsDetail on Twitter Bookmark Building Technologies Office: Buildings NewsDetail on Google Bookmark Building Technologies Office: Buildings NewsDetail on Delicious Rank Building...

166

Building Technologies Office: Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

building sector by at least 50%. Photo of people walking around a new home. Visitors Tour Solar Decathlon Homes Featuring the Latest in Energy Efficient Building Technology...

167

Researching Energy Use in Hospitals | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Buildings » Research Projects » Researching Energy Use Commercial Buildings » Research Projects » Researching Energy Use in Hospitals Researching Energy Use in Hospitals The Building Technologies Office (BTO) is monitoring hospitals to help facility and energy managers identify ways to save energy. Hospital professionals find it challenging to identify "energy hogs" in their buildings because the industry lacks actual energy use data for mechanical systems and devices. Professionals have asked for real-world information to identify cost-effective energy saving opportunities. This research ultimately will help hospitals improve energy efficiency, freeing up funding to improve healthcare services. Photo of a radiology technician assisting a patient into a 64-slice CT Scanner for diagnostic testing.

168

Quality site seasonal report: Cherokee Indian Hospital, SFBP 4058, December 1984 through April 1985  

DOE Green Energy (OSTI)

The active solar Domestic Hot Water (DHW) and space heating system at the Cherokee Indian Hospital was designed and constructed as part of the Solar in Federal Buildings Program (SFBP). This retrofitted system is one of eight of the systems in the SFBP selected for quality monitoring. The purpose of this monitoring effort is to document the performance of quality state-of-the-art solar systems in large federal building applications. The hospital serves the Qualla Reservation of the Cherokee Indian Tribe in Cherokee, North Carolina, near the eastern entrance to the Great Smoky Mountain National Park. Solar energy is used to preheat domestic hot water (the cafeteria is the principal load) and for space heating. The hospital is expected to have a normal year-round occupancy of 200 people (patients, medical and maintenance personnel) with some 2775 expected visitors per year. The drainback solar system has 320 Owens-Illinois evacuated-tube collectors with a gross area of 5517 square feet. Solar energy is stored in a 6335-gallon storage tank. Solar energy from storage is supplied to a 700-gallon DHW preheat tank through a heat exchanger in the storage tank, and directly to heat exchangers in the heating ducts. Auxiliary energy is supplied by two large oil-fired boilers. Performance of the system at the Cherokee Indian Hospital during the period December 1984 through April 1985 are reported.

Raymond, M.G.

1987-10-15T23:59:59.000Z

169

Energy Conservation Recommendations, Implementation Costs, and Projected Paybacks for Georgia's Targeted Schools and Hospitals Conservation Program  

E-Print Network (OSTI)

During the past year the Georgia Tech Research Institute performed technical assistance studies on over 100 school and hospital buildings under a program funded by the Governor's Office of Energy Resources. This program is known as the Targeted Schools and Hospitals Program because its objective is to involve facilities which have never participated in the traditional DOE funded Institutional Conservation Program (ICP) due to economic hardships. The program was specifically directed at non-participants by providing fully funded energy surveys on qualifying facilities. The energy surveys were conducted by the Georgia Tech Research Institute under contract with the Office of Energy Resources. This paper presents results on the range of energy conservation recommendations made and the number of occurrences in the total population as well as the typical percentage energy savings. This data can be used in forecasting the expected types of recommendations and energy reduction potential for a large population of institutional buildings.

Brown, M. L.; Moore, D. M.

1988-01-01T23:59:59.000Z

170

Resources on Sustainable Buildings and Campuses | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Resources on Resources on Sustainable Buildings and Campuses Resources on Sustainable Buildings and Campuses October 4, 2013 - 5:04pm Addthis Building Technology Office Resources The Building Technology Office offers useful resources to plan and implement energy-efficiency projects. Building Energy Software Tools Directory Buildings Performance Database Energy Modeling Software Better Buildings Alliance Webinars Hospital Energy Alliance Videos Solid-State Lighting Technology Fact Sheets Many helpful resources about sustainable buildings and campuses are available. Also see Case Studies and Contacts. Federal Requirements and Programs Buildings Technologies Program: A U.S. Department of Energy (DOE) program that leads a vast network of research and industry partners to continually

171

STORAGE OF HEAT AND COOLTH IN HOLLOW-CORE CONCRETE SLABS. SWEDISH EXPERIENCE, AND APPLICATION TO LARGE, AMERICAN-STYLE BUILDINGS  

E-Print Network (OSTI)

different slabs, each with a heat capacity of 100 Wh/m2~ Thefloor slabs have a large heat capacity (100 Wh/m2K - where Krequired, but the concrete heat capacity will still handle

Andersson, L.O.

2011-01-01T23:59:59.000Z

172

Overview of Commercial Buildings, 2003 - Major Characteristics  

U.S. Energy Information Administration (EIA) Indexed Site

Major Characteristics of All Commercial Buildings in 2003 Major Characteristics of All Commercial Buildings in 2003 CBECS data are used to answer basic questions about the commercial buildings sector, such as: What types are there? How large are they? How old are they? and Where are they? Results from the 2003 CBECS show that: The commercial buildings sector is not dominated by a single building type. Office buildings, the most common type of commercial building, account for 17 percent of buildings, floorspace, and energy consumed. Commercial buildings range widely in size and smaller buildings are much more numerous than larger buildings. The smallest buildings (1,001 to 5,000 square feet) account for 53 percent of buildings, but consume only 11 percent of total energy. The largest buildings (those larger than 500,000 square feet)

173

Service Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Service Service Characteristics by Activity... Service Service buildings are those in which some type of service is provided, other than food service or retail sales of goods. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Service Buildings... Most service buildings were small, with almost ninety percent between 1,001 and 10,000 square feet. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics Number of Service Buildings by Predominant Building Size Category Figure showing number of service buildings by size. If you need assistance viewing this page, please contact 202-586-8800. Equipment Table: Buildings, Size, and Age Data by Equipment Types Predominant Heating Equipment Types in Service Buildings

174

Mercantile Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Mercantile Mercantile Characteristics by Activity... Mercantile Mercantile buildings are those used for the sale and display of goods other than food (buildings used for the sales of food are classified as food sales). This category includes enclosed malls and strip shopping centers. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Mercantile Buildings... Almost half of all mercantile buildings were less than 5,000 square feet. Roughly two-thirds of mercantile buildings housed only one establishment. Another 20 percent housed between two and five establishments, and the remaining 12 percent housed six or more establishments. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

175

Other Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Other Other Characteristics by Activity... Other Other buildings are those that do not fit into any of the specifically named categories. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Other Buildings... Other buildings include airplane hangars; laboratories; buildings that are industrial or agricultural with some retail space; buildings having several different commercial activities that, together, comprise 50 percent or more of the floorspace, but whose largest single activity is agricultural, industrial/manufacturing, or residential; and all other miscellaneous buildings that do not fit into any other CBECS category. Since these activities are so diverse, the data are probably less meaningful than for other activities; they are provided here to complete

176

Buildings*","Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

8. Primary Space-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" 8. Primary Space-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Space Heating","Primary Space-Heating Energy Source Used a" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings* ...............",4645,3982,1258,1999,282,63 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,2100,699,955,171,"Q" "5,001 to 10,000 ..............",889,782,233,409,58,"Q" "10,001 to 25,000 .............",738,659,211,372,32,"Q" "25,001 to 50,000 .............",241,225,63,140,8,9

177

Buildings*","Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

6. Space Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" 6. Space Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Space Heating","Space-Heating Energy Sources Used (more than one may apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","Propane","Other a" "All Buildings* ...............",4645,3982,1766,2165,360,65,372,113 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,2100,888,1013,196,"Q",243,72 "5,001 to 10,000 ..............",889,782,349,450,86,"Q",72,"Q" "10,001 to 25,000 .............",738,659,311,409,46,18,38,"Q"

178

Buildings*","Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

1. Water-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" 1. Water-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Water Heating","Water-Heating Energy Sources Used (more than one may apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","Propane" "All Buildings* ...............",4645,3472,1910,1445,94,27,128 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,1715,1020,617,41,"N",66 "5,001 to 10,000 ..............",889,725,386,307,"Q","Q",27 "10,001 to 25,000 .............",738,607,301,285,16,"Q",27

179

Vacant Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

of 275 thousand cubic feet per building, 29.9 cubic feet per square foot, at an average cost of 475 per thousand cubic feet. Energy Consumption in Vacant Buildings by Energy...

180

Building America  

SciTech Connect

IBACOS researched the constructability and viability issues of using high performance windows as one component of a larger approach to building houses that achieve the Building America 70% energy savings target.

Brad Oberg

2010-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "large hospital buildings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Prototype Buildings  

Science Conference Proceedings (OSTI)

... The SDC D buildings, designed for Seattle, Washington, used special moment frames (SMFs) with reduced beam section (RBS) connections. ...

2013-02-08T23:59:59.000Z

182

Warehouse and Storage Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Warehouse and Storage Warehouse and Storage Characteristics by Activity... Warehouse and Storage Warehouse and storage buildings are those used to store goods, manufactured products, merchandise, raw materials, or personal belongings. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Warehouse and Storage Buildings... While the idea of a warehouse may bring to mind a large building, in reality most warehouses were relatively small. Forty-four percent were between 1,001 and 5,000 square feet, and seventy percent were less than 10,000 square feet. Many warehouses were newer buildings. Twenty-five percent were built in the 1990s and almost fifty percent were constructed since 1980. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

183

Buildings Energy Data Book: 1.5 Generic Fuel Quad and Comparison  

Buildings Energy Data Book (EERE)

4 4 Average Annual Carbon Dioxide Emissions for Various Functions Stock Refrigerator (1) kWh - Electricity Stock Electric Water Heater kWh - Electricity Stock Gas Water Heater million Btu - Natural Gas Stock Oil Water Heater million Btu - Fuel Oil Single-Family Home million Btu Mobile Home million Btu Multi-Family Unit in Large Building million Btu Multi-Family Unit in Small Building million Btu School Building million Btu Office Building million Btu Hospital, In-Patient million Btu Stock Vehicles Passenger Car gallons - Gasoline Van, Pickup Truck, or SUV gallons - Gasoline Heavy Truck gallons - Diesel Fuel Tractor Trailer Truck gallons - Diesel Fuel Note(s): Source(s): 10,749 95.8 211,312 1) Stock refrigerator consumption is per household refrigerator consumption, not per refrigerator.

184

Better Buildings Neighborhood Program: Better Buildings Neighborhood  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Better Buildings Neighborhood Program Search Better Buildings Neighborhood Program Search Search Help Better Buildings Neighborhood Program HOME ABOUT BETTER BUILDINGS PARTNERS INNOVATIONS RUN A PROGRAM TOOLS & RESOURCES NEWS EERE » Building Technologies Office » Better Buildings Neighborhood Program Printable Version Share this resource Send a link to Better Buildings Neighborhood Program: Better Buildings Neighborhood Program to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Facebook Tweet about Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Twitter Bookmark Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Google Bookmark Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Delicious

185

Building Technologies Office: Advancing Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Codes Building Energy Codes Printable Version Share this resource Send a link to Building Technologies Office: Advancing Building Energy Codes to someone by E-mail Share Building Technologies Office: Advancing Building Energy Codes on Facebook Tweet about Building Technologies Office: Advancing Building Energy Codes on Twitter Bookmark Building Technologies Office: Advancing Building Energy Codes on Google Bookmark Building Technologies Office: Advancing Building Energy Codes on Delicious Rank Building Technologies Office: Advancing Building Energy Codes on Digg Find More places to share Building Technologies Office: Advancing Building Energy Codes on AddThis.com... Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat.

186

Building Technologies Office: Building America Meetings  

NLE Websites -- All DOE Office Websites (Extended Search)

Building America Building America Meetings to someone by E-mail Share Building Technologies Office: Building America Meetings on Facebook Tweet about Building Technologies Office: Building America Meetings on Twitter Bookmark Building Technologies Office: Building America Meetings on Google Bookmark Building Technologies Office: Building America Meetings on Delicious Rank Building Technologies Office: Building America Meetings on Digg Find More places to share Building Technologies Office: Building America Meetings on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score Home Performance with ENERGY STAR

187

Cranfield University Building 41 (Stafford Cripps Building)  

E-Print Network (OSTI)

Cranfield University Building 41 (Stafford Cripps Building) Building 41, formally known as the Stafford Cripps Building, has been transformed into a new Learning and Teaching Facility. Proposed ground

188

Building Technologies Office: Residential Building Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Building Residential Building Activities to someone by E-mail Share Building Technologies Office: Residential Building Activities on Facebook Tweet about Building Technologies Office: Residential Building Activities on Twitter Bookmark Building Technologies Office: Residential Building Activities on Google Bookmark Building Technologies Office: Residential Building Activities on Delicious Rank Building Technologies Office: Residential Building Activities on Digg Find More places to share Building Technologies Office: Residential Building Activities on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Guidelines for Home Energy Professionals

189

Better Buildings Neighborhood Program: Better Buildings Residential...  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Buildings Residential Network to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Residential Network on Facebook Tweet about Better Buildings...

190

Building Technologies Office: Better Buildings Challenge  

NLE Websites -- All DOE Office Websites (Extended Search)

on Twitter Bookmark Building Technologies Office: Better Buildings Challenge on Google Bookmark Building Technologies Office: Better Buildings Challenge on Delicious Rank...

191

Building Technologies Office: Building Energy Optimization Software  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Building Energy Optimization Software to someone by E-mail Share Building Technologies Office: Building Energy Optimization Software on Facebook Tweet about Building Technologies Office: Building Energy Optimization Software on Twitter Bookmark Building Technologies Office: Building Energy Optimization Software on Google Bookmark Building Technologies Office: Building Energy Optimization Software on Delicious Rank Building Technologies Office: Building Energy Optimization Software on Digg Find More places to share Building Technologies Office: Building Energy Optimization Software on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance

192

Large Consistent Geometric Landmark Maps  

Science Conference Proceedings (OSTI)

The autonomous operation of an intelligent service robot in practical applications requires that the robot builds up a map of the environment by itself, even for large environments like supermarkets. This paper presents a solution to the problem of building ...

Wolfgang D. Rencken; Wendelin Feiten; Martin Soika

2000-10-01T23:59:59.000Z

193

Building Science  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science Science The "Enclosure" Joseph Lstiburek, Ph.D., P.Eng, ASHRAE Fellow www.buildingscience.com * Control heat flow * Control airflow * Control water vapor flow * Control rain * Control ground water * Control light and solar radiation * Control noise and vibrations * Control contaminants, environmental hazards and odors * Control insects, rodents and vermin * Control fire * Provide strength and rigidity * Be durable * Be aesthetically pleasing * Be economical Building Science Corporation Joseph Lstiburek 2 Water Control Layer Air Control Layer Vapor Control Layer Thermal Control Layer Building Science Corporation Joseph Lstiburek 3 Building Science Corporation Joseph Lstiburek 4 Building Science Corporation Joseph Lstiburek 5 Building Science Corporation

194

Buildings Blog  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

blog Office of Energy Efficiency & blog Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en EnergyPlus Boosts Building Efficiency with Help from Autodesk http://energy.gov/eere/articles/energyplus-boosts-building-efficiency-help-autodesk building-efficiency-help-autodesk" class="title-link">EnergyPlus Boosts Building Efficiency with Help from Autodesk

195

Hospitality Committee  

NLE Websites -- All DOE Office Websites (Extended Search)

Family Safety Family Safety BNL requires that you OBEY ALL SIGNS & POSTING. Failure to do so may result in disciplinary action or dismissal. IF YOU DO NOT BELONG IN AN AREA, DO NOT ENTER, DO NOT TOUCH, KEEP OUT!! Emergency Telephone Numbers Emergency - Dial 2222 or 911 from a Laboratory telephone if someone is experiencing an emergency health concern. Emergency from pay phones or cell phones, dial 631-344-2222 BNL Information Hotline - 344-INFO (4636) check for delayed openings due to inclement weather Poison Control - 1-800-222-1222 Non-emergency: BERA/Recreation/Quality of Life Office, Ext. 5090 BNL Clinic: Ext. 3670 National Safety Council: www.nsc.org American Red Cross: www.redcross.org Proper Way to Sneeze Apartment Residents Upon sounding of the BNL site sirens, residents of the apartment area shall proceed indoors, close all windows and doors, and await further instructions from the Fire Dept or the Local Emergency Coordinator (LEC). The front entrance of the housing units displays the building manager and emergency contacts.

196

Archive Reference Buildings by Building Type: Medium office | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Medium office Medium office Archive Reference Buildings by Building Type: Medium office Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available. You can download ZIP files that contain the following: An EnergyPlus software input file (.idf) An html file showing the results from the EnergyPlus simulation (.html) A spreadsheet that summarizes the inputs and results for each location (.xls) The EnergyPlus TMY2 weather file (.epw). benchmark-v1.0_3.0-medium_office.zip benchmark-v1.1_3.1-medium_office.zip benchmark-new-v1.2_4.0-medium_office.zip More Documents & Publications Archive Reference Buildings by Building Type: Large office

197

Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Exterior and interior of apartment building Exterior and interior of apartment building Residential Buildings The study of ventilation in residential buildings is aimed at understanding the role that air leakage, infiltration, mechanical ventilation, natural ventilation and building use have on providing acceptable indoor air quality so that energy and related costs can be minimized without negatively impacting indoor air quality. Risks to human health and safety caused by inappropriate changes to ventilation and air tightness can be a major barrier to achieving high performance buildings and must be considered.This research area focuses primarily on residential and other small buildings where the interaction of the envelope is important and energy costs are dominated by space conditioning energy rather than air

198

Comparison of LEED to Non-LEED Certified Hospitals with Regards to Patient Perspective and Financial Indicators  

E-Print Network (OSTI)

As natural resources are decreasing and environmental pollution is increasing, the buildings that play an important role in this problem should be constructed sustainably so their affects are kept to a minimum. Hospitals operate 24 hours a day and 7 days a week, therefore they are one of the largest energy consumers. Hence designers have started to design healthcare facilities according to the Leadership in Energy and Environmental Design (LEED) criteria, believing that it will reduce waste production, energy consumption and increase patient satisfaction by creating brighter and less stressful facilities. To understand if the claims are correct or not, this thesis first studied the results of the patient survey, Hospital Consumer Assessment of Healthcare Providers and System (HCAHPS), undertaken at most of the hospitals in the U.S., and compares the results to LEED and non-LEED certified hospitals. To find answers for the claims related to the financial benefits, this thesis compared three financial indicators; cost of operation of plant, profitability, and inpatient revenue. In the cases where there is a large enough sample size, a t-test is used to compare two groups, however when the sample size was not large enough, two groups are compared based on their means. For the cost of operation of plant and profitability, non-LEED certified hospitals are performing better. However, the patient satisfaction and inpatient revenues are significantly higher at the LEED-certified hospitals.

Ulusoy, Eren

2012-08-01T23:59:59.000Z

199

DOE Launches EnergySmart Hospitals to Promote Improved Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

year, hospitals spent more than 5 billion on energy costs with more than 2.5 times the energy intensity and carbon dioxide emissions of commercial office buildings. Unlike many...

200

Category:Utility Rate Impacts on PV Economics By Building Type | Open  

Open Energy Info (EERE)

Rate Impacts on PV Economics By Building Type Rate Impacts on PV Economics By Building Type Jump to: navigation, search Impact of Utility Rates on PV Economics Full Service Restaurant Hospital Large Hotel Large Office Medium Office Midrise Apartment Outpatient Primary School Quick Service Restaurant Secondary School Small Hotel Small Office Stand-alone Retail Strip Mall Supermarket Warehouse Subcategories This category has the following 16 subcategories, out of 16 total. F [×] FullServiceRestaurant‎ 1 pages H [×] Hospital‎ L [×] LargeHotel‎ [×] LargeOffice‎ M [×] MediumOffice‎ [×] MidriseApartment‎ O [×] OutPatient‎ P [×] PrimarySchool‎ Q [×] QuickServiceRestaurant‎ S [×] SecondarySchool‎ [×] SmallHotel‎ [×] SmallOffice‎ S cont. [×] StandAloneRetail‎ [×] StripMall‎ [×] Supermarket‎ W [×] Warehouse‎

Note: This page contains sample records for the topic "large hospital buildings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

The potential for distributed generation in Japanese prototype buildings: A DER-CAM analysis of policy, tariff design, building energy use, and technology development (English Version)  

E-Print Network (OSTI)

Hospital Hotel Retail Sports Figure 71: Total Annual EnergyHotel Retail Figure 67: 5,000 m 2 Building Total Annual Energy$) energy cost(k$) DER with CHP Office Hospital Hotel Retail

Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

2004-01-01T23:59:59.000Z

202

Building Technologies Office: Commercial Reference Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Reference Commercial Reference Buildings to someone by E-mail Share Building Technologies Office: Commercial Reference Buildings on Facebook Tweet about Building Technologies Office: Commercial Reference Buildings on Twitter Bookmark Building Technologies Office: Commercial Reference Buildings on Google Bookmark Building Technologies Office: Commercial Reference Buildings on Delicious Rank Building Technologies Office: Commercial Reference Buildings on Digg Find More places to share Building Technologies Office: Commercial Reference Buildings on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score

203

Building Technologies Office: Buildings to Grid Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings to Grid Buildings to Grid Integration to someone by E-mail Share Building Technologies Office: Buildings to Grid Integration on Facebook Tweet about Building Technologies Office: Buildings to Grid Integration on Twitter Bookmark Building Technologies Office: Buildings to Grid Integration on Google Bookmark Building Technologies Office: Buildings to Grid Integration on Delicious Rank Building Technologies Office: Buildings to Grid Integration on Digg Find More places to share Building Technologies Office: Buildings to Grid Integration on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research Water Heating Research Lighting Research

204

Energy Information Administration (EIA)- Commercial Buildings Energy  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Characteristics and Energy Consumed in Large Hospital Buildings in the United States in 2007 › CBECS Status November 20, 2013 CBECS field data collection completed The active field data collection phase of the 2012 CBECS ended last week. In the next month, home office staff at Westat (the CBECS survey contractor) will continue to work on open cases via telephone interviews. With over 200 interviewers deployed across the U.S. starting in mid-April 2013, the 2012 CBECS was the largest field collection in the 30-year history of CBECS. Westat has been transmitting cases to EIA every few weeks since May, and the data editing phase here at EIA is making good progress. We are on track to publish the first characteristics results in late April or early May.

205

ASEAN-USAID Buildings Energy Conservation Project. Final report, Volume 3: Audits  

SciTech Connect

The auditing subproject of the ASEAN-USAID Buildings Energy Conservation Project has generated a great deal of auditing activity throughout the ASEAN region. Basic building characterisfic and energy consumption data were gathered for over 200 buildings and are presented in this volume. A large number of buildings were given more detailed audits and were modeled with either the ASEAM-2 computer program or the more complex DOE-2 program. These models were used to calculate the savings to be generated by conservabon measures. Specially audits were also conducted, including lighting and thermal comfort surveys. Many researchers in the ASEAN region were trained to perform energy audits in a series of training courses and seminars. The electricity intensifies of various types of ASEAN buildings have been calculated. A comparison to the electricity intensity of the US building stock tentatively concludes that ASEAN office buildings are comparable, first class hotels and retail stores are more ewctricity intensive than their US counterparts, and hospitals are less intensive. Philippine and Singapore lighting surveys indicate that illuminance levels in offices tend to be below the minimum accepted standard. Computer simulations of the energy use in various building types generally agree that for most ASEAN buildings, electricity consumption for air-conditioning (including fan power) consumes approximately 60% of total building electricity. A review of the many studies made during the Project to calculate the savings from energy conservation opportunities (ECOS) shows a median potential savings of approximately 10%, with some buildings saving as much as 50%. Singapore buildings, apparently as a result of previously implemented efficient energy-use practices, shows a lower potential for savings than the other ASEAN nations. Air-conditioning ECOs hold the greatest potential for savings.

Loewen, J.M.; Levine, M.D.; Busch, J.F. [eds.

1992-06-01T23:59:59.000Z

206

Special Building Renovations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Special Building Renovations Special Building Renovations Special Building Renovations October 16, 2013 - 4:58pm Addthis A number of building types have specific energy uses and needs, and as such the renewable opportunities may be different from a typical office building. This section briefly discusses the following Federal building types with specific design considerations for renewable energy: data centers, historic buildings, hospitals, laboratories, remote facilities, residential, and warehouses and service buildings. Data Centers Because data centers account for an ever-growing amount of energy consumption, designing high efficiency data centers is both a sustainable and economic option. Coupled with energy efficiency measures, renewable energy technologies can provide some opportunities for data centers. Since

207

System-Level Monitoring and Diagnosis of Building HVAC System.  

E-Print Network (OSTI)

??Heating, ventilation, and air conditioning (HVAC) is an indoor environmental technology that is extensively instrumented for large-scale buildings. Among all subsystems of buildings, the HVAC… (more)

Wu, Siyu

2013-01-01T23:59:59.000Z

208

Building energy modeling programs comparison Research on HVAC...  

NLE Websites -- All DOE Office Websites (Extended Search)

Building energy simulation programs are effective tools for the evaluation of building energy saving and optimization of design. The fact that large discrepancies exist in...

209

Office Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Since they comprised 18 percent of commercial floorspace, this means that their total energy intensity was just slightly above average. Office buildings predominantly used...

210

Better Buildings Neighborhood Program: Better Buildings Partners  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Better Buildings Partners to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Partners on Facebook Tweet about Better Buildings Neighborhood Program: Better Buildings Partners on Twitter Bookmark Better Buildings Neighborhood Program: Better Buildings Partners on Google Bookmark Better Buildings Neighborhood Program: Better Buildings Partners on Delicious Rank Better Buildings Neighborhood Program: Better Buildings Partners on Digg Find More places to share Better Buildings Neighborhood Program: Better Buildings Partners on AddThis.com... Better Buildings Residential Network Progress Stories Interviews Videos Events Quick Links to Partner Information AL | AZ | CA | CO | CT FL | GA | IL | IN | LA ME | MD | MA | MI | MO NE | NV | NH | NJ | NY

211

Building Technologies Office: National Laboratories Supporting Building  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratories National Laboratories Supporting Building America to someone by E-mail Share Building Technologies Office: National Laboratories Supporting Building America on Facebook Tweet about Building Technologies Office: National Laboratories Supporting Building America on Twitter Bookmark Building Technologies Office: National Laboratories Supporting Building America on Google Bookmark Building Technologies Office: National Laboratories Supporting Building America on Delicious Rank Building Technologies Office: National Laboratories Supporting Building America on Digg Find More places to share Building Technologies Office: National Laboratories Supporting Building America on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America

212

Building Technologies Office: Integrated Building Management System  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Building Integrated Building Management System Research Project to someone by E-mail Share Building Technologies Office: Integrated Building Management System Research Project on Facebook Tweet about Building Technologies Office: Integrated Building Management System Research Project on Twitter Bookmark Building Technologies Office: Integrated Building Management System Research Project on Google Bookmark Building Technologies Office: Integrated Building Management System Research Project on Delicious Rank Building Technologies Office: Integrated Building Management System Research Project on Digg Find More places to share Building Technologies Office: Integrated Building Management System Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE

213

Federal Opportunities to Leverage the Commercial Building Energy Alliance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

| Building Technologies Program | Building Technologies Program buildings.energy.gov Federal Opportunities to Leverage the Commercial Building Energy Alliance Brian Holuj Building Technologies Program March 15, 2012 IATF Technology Deployment Working Group - Commercial Building Energy Alliance Building owners and operators, efficiency organizations and DOE target common energy efficiency challenges and opportunities Retail and Food Commercial Real Estate Hospitals Service and Hospitality * 55 members * 2.2+ billion ft 2 * 95 members * 5.3+ billion ft 2 * 51 members * 0.5+ billion ft 2 Strength in numbers → Higher Ed sector added in 2011; new members join regularly www.commercialbuildings.energy.gov/alliances 1 | Building Technologies Program buildings.energy.gov Approx. market % from member reported ft

214

Federal Opportunities to Leverage the Commercial Building Energy Alliance  

NLE Websites -- All DOE Office Websites (Extended Search)

| Building Technologies Program | Building Technologies Program buildings.energy.gov Federal Opportunities to Leverage the Commercial Building Energy Alliance Brian Holuj Building Technologies Program March 15, 2012 IATF Technology Deployment Working Group - Commercial Building Energy Alliance Building owners and operators, efficiency organizations and DOE target common energy efficiency challenges and opportunities Retail and Food Commercial Real Estate Hospitals Service and Hospitality * 55 members * 2.2+ billion ft 2 * 95 members * 5.3+ billion ft 2 * 51 members * 0.5+ billion ft 2 Strength in numbers → Higher Ed sector added in 2011; new members join regularly www.commercialbuildings.energy.gov/alliances 1 | Building Technologies Program buildings.energy.gov Approx. market % from member reported ft

215

The economics of investing in green buildings  

E-Print Network (OSTI)

This thesis discusses economics of green buildings. The need to reduce greenhouse gases emissions became clear. Buildings account for a large part of the greenhouse gases emissions, changing the atmosphere's composition. ...

Rizk, Charbel Maroun

2010-01-01T23:59:59.000Z

216

Residential Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Residential Residential Buildings Residential buildings-such as single family homes, townhomes, condominiums, and apartment buildings-are all covered by the Residential Energy Consumption Survey (RECS). See the RECS home page for further information. However, buildings that offer multiple accomodations such as hotels, motels, inns, dormitories, fraternities, sororities, convents, monasteries, and nursing homes, residential care facilities are considered commercial buildings and are categorized in the CBECS as lodging. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: January 21, 2003 Page last modified: May 5, 2009 10:18 AM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/residential.html

217

Better Buildings Neighborhood Program: Better Buildings Residential  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Better Buildings Residential Network-Current Members to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Facebook Tweet about Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Twitter Bookmark Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Google Bookmark Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Delicious Rank Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Digg Find More places to share Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on AddThis.com...

218

Building Technologies Office: Commercial Building Partnership Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Building Commercial Building Partnership Opportunities with the Department of Energy to someone by E-mail Share Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Facebook Tweet about Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Twitter Bookmark Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Google Bookmark Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Delicious Rank Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Digg Find More places to share Building Technologies Office: Commercial

219

Building Technologies Office: About Residential Building Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

About Residential About Residential Building Programs to someone by E-mail Share Building Technologies Office: About Residential Building Programs on Facebook Tweet about Building Technologies Office: About Residential Building Programs on Twitter Bookmark Building Technologies Office: About Residential Building Programs on Google Bookmark Building Technologies Office: About Residential Building Programs on Delicious Rank Building Technologies Office: About Residential Building Programs on Digg Find More places to share Building Technologies Office: About Residential Building Programs on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links Success Stories Previous Next Warming Up to Pump Heat.

220

NREL: Buildings Research Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Artist's rendering of the courtyard view of NREL's new Research Support Facility. Artist's rendering of the courtyard view of NREL's new Research Support Facility. NREL's buildings research teams lead efforts in developing cutting-edge technical solutions to improve the energy efficiency of both residential and commercial buildings, and to accelerate the integration of renewable energy technologies with buildings. NREL's Residential Buildings researchers explore energy efficiency options for both new and existing homes, including whole-house performance and the interaction of building components. The Commercial Buildings team focuses on providing large institutional and private sector commercial building owners with tools, resources, and expertise to address energy challenges. Learn more about our state-of-the-art laboratory facilities and about how

Note: This page contains sample records for the topic "large hospital buildings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Research Article Building Thermal, Lighting,  

NLE Websites -- All DOE Office Websites (Extended Search)

Article Building Thermal, Lighting, and Acoustics Modeling E-mail: yanda@tsinghua.edu.cn A detailed loads comparison of three building energy modeling programs: EnergyPlus, DeST and DOE-2.1E Dandan Zhu 1 , Tianzhen Hong 2 , Da Yan 1 (), Chuang Wang 1 1. Department of Building Science, School of Architecture, Tsinghua University, Beijing 100084, China 2. Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA Abstract Building energy simulation is widely used to help design energy efficient building envelopes and HVAC systems, develop and demonstrate compliance of building energy codes, and implement building energy rating programs. However, large discrepancies exist between simulation results

222

Modeling and visualization of lifecycle building performance assessment  

Science Conference Proceedings (OSTI)

Lifecycle building performance assessment (LBPA) ensures that buildings perform and operate as intended during building lifecycle. Such assessment activities are typically multi-phase and multi-disciplinary, and generate large amounts of information ...

Ipek Gursel; Sevil Sariyildiz; Ömer Akin; Rudi Stouffs

2009-10-01T23:59:59.000Z

223

Building Technologies Office: Bookmark Notice  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE Building Technologies Office Commercial Buildings Printable Version...

224

Building Technologies Office: Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Contacts on Twitter Bookmark Building Technologies Office: Contacts on Google Bookmark Building Technologies Office: Contacts on Delicious Rank Building...

225

Building Technologies Office: Webmaster  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Webmaster on Twitter Bookmark Building Technologies Office: Webmaster on Google Bookmark Building Technologies Office: Webmaster on Delicious Rank Building...

226

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... high rise buildings; building collapse; disasters; fire ... adhesive strength; building codes; cohesive ... materials; thermal conductivity; thermal insulation ...

227

Building Technologies Office: Residential Buildings Energy Efficiency...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency Meeting to someone by E-mail Share Building Technologies Office: Residential Buildings Energy Efficiency Meeting on Facebook Tweet about Building Technologies...

228

Building Technologies Office: Residential Buildings Energy Efficiency...  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings Energy Efficiency Meeting The U.S. Department of Energy (DOE) Building America program held the Residential Buildings Energy Efficiency Meeting in Denver, Colorado, on...

229

Building Technologies Office: 2013 DOE Building Technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 DOE Building Technologies Office Program Review to someone by E-mail Share Building Technologies Office: 2013 DOE Building Technologies Office Program Review on Facebook Tweet...

230

Building America Building Science Education Roadmap  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building America Building America Building Science Education Roadmap April 2013 Contents Introduction ................................................................................................................................ 3 Background ................................................................................................................................. 4 Summit Participants .................................................................................................................... 5 Key Results .................................................................................................................................. 6 Problem ...................................................................................................................................... 7

231

Industrial Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Industrial Industrial / Manufacturing Buildings Industrial/manufacturing buildings are not considered commercial, but are covered by the Manufacturing Energy Consumption Survey (MECS). See the MECS home page for further information. Commercial buildings found on a manufacturing industrial complex, such as an office building for a manufacturer, are not considered to be commercial if they have the same owner and operator as the industrial complex. However, they would be counted in the CBECS if they were owned and operated independently of the manufacturing industrial complex. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: January 21, 2003 Page last modified: May 5, 2009 10:18 AM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/industrial.html

232

Building debris  

E-Print Network (OSTI)

This thesis relates architectural practices to intelligent use of resources and the reuse of derelict spaces. The initial investigation of rammed earth as a building material is followed by site-specific operations at the ...

Dahmen, Joseph (Joseph F. D.)

2006-01-01T23:59:59.000Z

233

BOSS: building operating system services  

Science Conference Proceedings (OSTI)

Commercial buildings are attractive targets for introducing innovative cyber-physical control systems, because they are already highly instrumented distributed systems which consume large quantities of energy. However, they are not currently programmable ...

Stephen Dawson-Haggerty, Andrew Krioukov, Jay Taneja, Sagar Karandikar, Gabe Fierro, Nikita Kitaev, David Culler

2013-04-01T23:59:59.000Z

234

ENERGY STAR Score for Hospitals  

NLE Websites -- All DOE Office Websites (Extended Search)

Hospitals in the United States Page 1 ENERGY STAR Score for Hospitals in the United States Technical Reference OVERVIEW The ENERGY STAR Score for Hospitals applies to general...

235

LED Surgical Task Lighting Scoping Study: A Hospital Energy Alliance Project  

SciTech Connect

Tungsten-halogen (halogen) lamps have traditionally been used to light surgical tasks in hospitals, even though they are in many respects ill-suited to the application due to the large percentage of radiant energy outside the visible spectrum and issues with color rendering/quality. Light-emitting diode (LED) technology offers potential for adjustable color and improved color rendition/quality, while simultaneously reducing side-effects from non-visible radiant energy. It also has the potential for significant energy savings, although this is a fairly narrow application in the larger commercial building energy use sector. Based on analysis of available products and Hospital Energy Alliance member interest, it is recommended that a product specification and field measurement procedure be developed for implementation in demonstration projects.

Tuenge, Jason R.

2011-01-17T23:59:59.000Z

236

Assessment of Building Energy-Saving Policies and Programs in China During the 11th Five Year Plan  

E-Print Network (OSTI)

conservation management in government office buildings and large-scale public buildingsPublic Buildings. Heat supply system measurement and energy conservation

Zhou, Nan

2011-01-01T23:59:59.000Z

237

Assessment of Building Energy-Saving Policies and Programs in China During the 11th Five Year Plan  

E-Print Network (OSTI)

conservation managementin government office buildings and large-scale public buildingsPublic Buildings. Heat supply system measurement and energy conservation

Zhou, Nan

2010-01-01T23:59:59.000Z

238

Building Technologies Office: Appliance and Equipment Standards...  

NLE Websites -- All DOE Office Websites (Extended Search)

Equipment Standards Result in Large Energy, Economic, and Environmental Benefits to someone by E-mail Share Building Technologies Office: Appliance and Equipment Standards Result...

239

Better Buildings Neighborhood Program Grant Recipient Management...  

NLE Websites -- All DOE Office Websites (Extended Search)

(Single family & Multifamily), Commercial (small and large), Agriculture Residential (SF & MF), Commercial (small food service) Leverage 5:1 target 10:1 target Building Energy...

240

Building 1 Renovation (+37.9 million)  

Science Conference Proceedings (OSTI)

... The poor condition of Building 1 causes ... be attempted, current laboratory conditions create large ... including all heating and air conditioning and other ...

2010-10-05T23:59:59.000Z

Note: This page contains sample records for the topic "large hospital buildings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Measured Performance of Building Integrated Photovoltaic Panels. Round 2. Measured Performance of Building Integrated Photovoltaic Panels. ...

242

Federal Energy Management Program: Resources on Sustainable Buildings and  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainable Buildings and Campuses Sustainable Buildings and Campuses Building Technology Office Resources The Building Technology Office offers useful resources to plan and implement energy-efficiency projects. Building Energy Software Tools Directory Buildings Performance Database Energy Modeling Software Better Buildings Alliance Webinars Hospital Energy Alliance Videos Solid-State Lighting Technology Fact Sheets Many helpful resources about sustainable buildings and campuses are available. Also see Case Studies. Federal Requirements and Programs Buildings Technologies Program: A U.S. Department of Energy (DOE) program that leads a vast network of research and industry partners to continually develop innovative, cost-effective, energy-saving solutions for buildings. Crosswalk of Sustainability Goals and Targets: A document that features a table listing sustainability goals/targets under the requirement of Executive Order (E.O.) 13514 and E.O. 13423.

243

High Performance Buildings Database  

DOE Data Explorer (OSTI)

The High Performance Buildings Database is a shared resource for the building industry. The Database, developed by the U.S. Department of Energy and the National Renewable Energy Laboratory (NREL), is a unique central repository of in-depth information and data on high-performance, green building projects across the United States and abroad. The Database includes information on the energy use, environmental performance, design process, finances, and other aspects of each project. Members of the design and construction teams are listed, as are sources for additional information. In total, up to twelve screens of detailed information are provided for each project profile. Projects range in size from small single-family homes or tenant fit-outs within buildings to large commercial and institutional buildings and even entire campuses.

The Database is a data repository as well. A series of Web-based data-entry templates allows anyone to enter information about a building project into the database. Once a project has been submitted, each of the partner organizations can review the entry and choose whether or not to publish that particular project on its own Web site. Early partners using the database include:

  • The Federal Energy Management Program
  • The U.S. Green Building Council
  • The American Institute of Architects' Committee on the Environment
  • The Massachusetts Technology Collaborative
  • Efficiency Vermont
    • Copied (then edited) from http://eere.buildinggreen.com/partnering.cfm

244

Building Technologies Office: Building America Research Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

Tools to someone by E-mail Tools to someone by E-mail Share Building Technologies Office: Building America Research Tools on Facebook Tweet about Building Technologies Office: Building America Research Tools on Twitter Bookmark Building Technologies Office: Building America Research Tools on Google Bookmark Building Technologies Office: Building America Research Tools on Delicious Rank Building Technologies Office: Building America Research Tools on Digg Find More places to share Building Technologies Office: Building America Research Tools on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score

245

Building Technologies Office: Commercial Building Research  

NLE Websites -- All DOE Office Websites (Extended Search)

to someone by E-mail to someone by E-mail Share Building Technologies Office: Commercial Building Research on Facebook Tweet about Building Technologies Office: Commercial Building Research on Twitter Bookmark Building Technologies Office: Commercial Building Research on Google Bookmark Building Technologies Office: Commercial Building Research on Delicious Rank Building Technologies Office: Commercial Building Research on Digg Find More places to share Building Technologies Office: Commercial Building Research on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score Energy Modeling Software Global Superior Energy Performance Partnership

246

Category:Hospital | Open Energy Information  

Open Energy Info (EERE)

Hospital Hospital Jump to: navigation, search Go Back to PV Economics By Building Type Media in category "Hospital" The following 77 files are in this category, out of 77 total. SVHospital Bismarck ND Montana-Dakota Utilities Co (North Dakota).png SVHospital Bismarck ND... 68 KB SVHospital International Falls MN Northern States Power Co (Minnesota) Excel Energy.png SVHospital Internation... 84 KB SVHospital LA CA City of Los Angeles California (Utility Company).png SVHospital LA CA City ... 88 KB SVHospital Memphis TN City of Memphis Tennessee (Utility Company).png SVHospital Memphis TN ... 69 KB SVHospital Minneapolis MN Northern States Power Co (Minnesota) Excel Energy.png SVHospital Minneapolis... 85 KB SVHospital Minot ND Montana-Dakota Utilities Co (North Dakota).png

247

Energy Savings in Industrial Buildings  

E-Print Network (OSTI)

The industrial sector accounts for more than one-third of total energy use in the United States and emits 28.7 percent of the country’s greenhouse gases. Energy use in the industrial sector is largely for steam and process heating systems, and electricity for equipment such as pumps, air compressors, and fans. Lesser, yet significant, amounts of energy are used for industrial buildings – heating, ventilation, and air conditioning (HVAC), lighting and facility use (such as office equipment). Due to economic growth, energy consumption in the industrial sector will continue to increase gradually, as will energy use in industrial buildings. There is a large potential for energy saving and carbon intensity reduction by improving HVAC, lighting, and other aspects of building operation and technologies. Analyses show that most of the technologies and measures to save energy in buildings would be cost-effective with attractive rates of return. First, this paper will investigate energy performance in buildings within the manufacturing sector, as classified in the North American Industry Classification System (NAICS). Energy use patterns for HVAC and lighting in industrial buildings vary dramatically across different manufacturing sectors. For example, food manufacturing uses more electricity for HVAC than does apparel manufacturing because of the different energy demand patterns. Energy saving opportunities and potential from industrial buildings will also be identified and evaluated. Lastly, barriers for deployment of energy savings technologies will be explored along with recommendations for policies to promote energy efficiency in industrial buildings.

Zhou, A.; Tutterow, V.; Harris, J.

2009-05-01T23:59:59.000Z

248

Building America Research Tools | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tools Tools Building America Research Tools Building America provides technical tools to support researchers and building industry professionals in ensuring consistent research results for new and existing homes. The following resources can be used to evaluate optimal building designs, access performance and cost data, execute field tests, and track research progress. Image is a rendering of a two-story residential building with an entrance on the front. To the right of this building is another large building shaded in gray, and to the left is a smaller structure shaded in gray. Building Energy Optimization Software (BEopt): This software provides capabilities to evaluate residential building designs and identify cost-optimal efficiency packages at various levels of whole-house energy

249

Office Buildings - Types of Office Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

PDF Office Buildings PDF Office Buildings Types of Office Buildings | Energy Consumption | End-Use Equipment Although no one building type dominates the commercial buildings sector, office buildings are the most common and account for more than 800,000 buildings or 17 percent of total commercial buildings. Offices comprised more than 12 billion square feet of floorspace, 17 percent of total commercial floorspace, the most of any building type. Types of Office Buildings The 2003 CBECS Detailed Tables present data for office buildings along with other principal building activities (see Detailed Tables B13 and B14, for example). Since office buildings comprise a wide range of office-related activities, survey respondents were presented with a follow-up list of specific office types to choose from. Although we have not presented the

250

Building Technologies Program: Building America Publications  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Program HOME ABOUT ENERGY EFFICIENT TECHNOLOGIES RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE » Building Technologies Program » Residential Buildings About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Guidelines for Home Energy Professionals Technology Research, Standards, & Codes Feature featured product thumbnail Building America Best Practices Series Volume 14 - HVAC: A Guide for Contractors to Share with Homeowners Details Bookmark &

251

Energy Star for Hospitals 2011 Update: Progression or Regression?  

E-Print Network (OSTI)

The Energy Star performance rating system for buildings has achieved widespread adoption in the building sector as a standard benchmark for energy performance. In 2011, the U.S. EPA released an updated technical methodology for its Energy Star performance rating system for hospitals, shifting how the score is calculated. The new rating system, similar to the previous rating system, is still a poor metric for benchmarking hospitals and should be used with caution. The aim of this paper is to critique the methodology used in the Energy Star for Hospitals 2011 Update. The paper reviews the changes between the 2001 methodology and 2011 methodology, how Energy Star views usage of different fuel types in its score, and lastly items that did not change in the 2011 hospital methodology update which are still causing confusion amongst Energy Star users and are causing significant error in the Energy Star score calculations.

Travis, B.

2012-01-01T23:59:59.000Z

252

Characterization of commercial building appliances. Final report  

SciTech Connect

This study focuses on ``other`` end-uses category. The purpose of this study was to determine the relative importance of energy end-use functions other than HVAC and lighting for commercial buildings, and to identify general avenues and approaches for energy use reduction. Specific energy consuming technologies addressed include non-HVAC and lighting technologies in commercial buildings with significant energy use to warrant detailed analyses. The end-uses include office equipment, refrigeration, water heating, cooking, vending machines, water coolers, laundry equipment and electronics other than office equipment. The building types include offices, retail, restaurants, schools, hospitals, hotels/motels, grocery stores, and warehouses.

Patel, R.F.; Teagan, P.W.; Dieckmann, J.T.

1993-08-01T23:59:59.000Z

253

Commercial Buildings Characteristics 1992  

U.S. Energy Information Administration (EIA) Indexed Site

Buildings Characteristics 1992 Buildings Characteristics Overview Full Report Tables National and Census region estimates of the number of commercial buildings in the U.S. and...

254

48 the building is.  

U.S. Energy Information Administration (EIA)

48 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... This certificate shows the energy rating of this building.

255

59 the building is.  

U.S. Energy Information Administration (EIA)

59 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... This certificate shows the energy rating of this building.

256

83 the building is.  

U.S. Energy Information Administration (EIA)

83 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... This certificate shows the energy rating of this building.

257

Commercial Buildings Integration Program  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov Vision Commercial buildings are constructed, operated, renovated and...

258

Building Technologies Office: News  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Office: News on Twitter Bookmark Building Technologies Office: News on Google Bookmark Building Technologies Office: News on Delicious Rank Building Technologies...

259

Building Technologies Office: Events  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Events on Twitter Bookmark Building Technologies Office: Events on Google Bookmark Building Technologies Office: Events on Delicious Rank Building Technologies...

260

Building Technologies Office: About  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Office: About on Twitter Bookmark Building Technologies Office: About on Google Bookmark Building Technologies Office: About on Delicious Rank Building Technologies...

Note: This page contains sample records for the topic "large hospital buildings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Rebuilding it Better: Greensburg, Kansas, Kiowa County Memorial Hospital (Brochure) (Revised)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kiowa County Memorial Hospital Kiowa County Memorial Hospital The original Kiowa County Hospital was destroyed in the tornado and rebuilt green. In fact, the hospital's design team took one of the most energy-intensive building types and designed a first-of-its kind energy-efficient hospital, while still meeting functional and safety requirements. The 50,000 square-foot building includes 15 acute-care beds, rural health and specialty clinics, an emergency department with two trauma rooms, physical/occu- pational therapy and radiology departments, a laboratory, and other support areas. The new hospital in Greensburg is projected to achieve more than 40% energy savings when compared to a hospital built to standard code thanks to features such as an on-site wind turbine. REBUILDING IT BETTER: GREENSBURG, KANSAS

262

Building Technologies Office: Advancing Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Advancing Building Energy Codes Advancing Building Energy Codes The Building Technologies Office (BTO) supports greater adoption of residential and commercial building energy codes through collaborative efforts with local governments and industry groups, and by providing key tools and assistance for code development, adoption, and implementation. Through advancing building codes, we aim to improve building energy efficiency by 50%, and to help states achieve 90% compliance with their energy codes. 75% of U.S. Buildings will be New or Renovated by 2035, Building Codes will Ensure They Use Energy Wisely. Learn More 75% of U.S. Buildings will be New or Renovated by 2035; Building Codes will Ensure They Use Energy Wisely Learn More Energy Codes Ensure Efficiency in Buildings We offer guidance and technical resources to policy makers, compliance verification professionals, architects, engineers, contractors, and other stakeholders who depend on building energy codes.

263

Better Buildings Neighborhood Program: Better Buildings Partners...  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Buildings Partners Gather to Plan for the Future to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Partners Gather to Plan for the Future...

264

Building Energy Codes OVERVIEW BUILDING TECHNOLOGIES PROGRAM  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Codes OVERVIEW BUILDING TECHNOLOGIES PROGRAM Buildings account for almost 40% of the energy used in the United States and, as a direct result of that use, our...

265

NREL Recommends Ways to Cut Building Energy Costs in Half (Fact Sheet), The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Recommends Ways to Cut Recommends Ways to Cut Building Energy Costs in Half Building designers and operators could cut energy use by 50% in large office buildings, hospitals, schools, and a variety of stores- including groceries, general merchandise outlets, and retail outlets-by following the recommendations of researchers at the National Renewable Energy Laboratory (NREL). The energy-saving recommendations are contained in technical support documents (TSDs) compiled by NREL with support from the U.S. Department of Energy (DOE), under the direc- tion of DOE's Building Technologies Program. The reports describe the assumptions, meth- odologies, and analyses used to achieve higher energy performance. Since 2008, NREL has published eight TSDs, all of which describe a pathway to 50% net energy savings over baseline

266

Toward a virtual building laboratory  

SciTech Connect

In order to achieve in a timely manner the large energy and dollar savings technically possible through improvements in building energy efficiency, it will be necessary to solve the problem of design failure risk. The most economical method of doing this would be to learn to calculate building performance with sufficient detail, accuracy and reliability to avoid design failure. Existing building simulation models (BSM) are a large step in this direction, but are still not capable of this level of modeling. Developments in computational fluid dynamics (CFD) techniques now allow one to construct a road map from present BSM's to a complete building physical model. The most useful first step is a building interior model (BIM) that would allow prediction of local conditions affecting occupant health and comfort. To provide reliable prediction a BIM must incorporate the correct physical boundary conditions on a building interior. Doing so raises a number of specific technical problems and research questions. The solution of these within a context useful for building research and design is not likely to result from other research on CFD, which is directed toward the solution of different types of problems. A six-step plan for incorporating the correct boundary conditions within the context of the model problem of a large atrium has been outlined. A promising strategy for constructing a BIM is the overset grid technique for representing a building space in a CFD calculation. This technique promises to adapt well to building design and allows a step-by-step approach. A state-of-the-art CFD computer code using this technique has been adapted to the problem and can form the departure point for this research.

Klems, J.H.; Finlayson, E.U.; Olsen, T.H.; Banks, D.W.; Pallis, J.M.

1999-03-01T23:59:59.000Z

267

Building Technologies Office: Better Buildings Alliance  

NLE Websites -- All DOE Office Websites (Extended Search)

to power our country's commercial buildings. Unfortunately, much of this energy and money is wasted; a typical commercial building could save 20% on its energy bills simply by...

268

Building Technologies Office: Building Energy Software Tools...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Links This directory provides information on 404 building software tools for evaluating energy efficiency, renewable energy, and sustainability in buildings. The energy tools...

269

Building Technologies Office: Commercial Building Research and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Tax Incentives for Residential Buildings Tax Incentives for Commercial Buildings News Energy Department Invests in Heating, Cooling, and Lighting August 21, 2013 Energy Department...

270

Building Technologies Office: Contact the Building Technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

Tax Incentives for Residential Buildings Tax Incentives for Commercial Buildings News Energy Department Invests in Heating, Cooling, and Lighting August 21, 2013 Energy Department...

271

Building Technologies Office: Building Science Education  

NLE Websites -- All DOE Office Websites (Extended Search)

for technical information on building products, materials, new technologies, business management, and housing systems. DOE's Residential Building Energy Codes - Resource for...

272

Building Technologies Office: Building America Market Partnerships  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Building Technologies Office Search Search Help Building Technologies Office HOME...

273

Building Technologies Office: Building America Research Planning...  

NLE Websites -- All DOE Office Websites (Extended Search)

Meeting on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science...

274

Building Technologies Office: Building Envelope Technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

energy efficiency. Research in building envelope technologies includes: Foundations Insulation Roofing and Attics Walls Foundations Photo of the concrete foundation of a building...

275

BUILDING AND  

Science Conference Proceedings (OSTI)

... the costs of construction, operation, maintenance and renovation ... tion or use or to large natural disasters ... Engineers Smoke Control Manual based on ...

2007-03-13T23:59:59.000Z

276

Trends in Commercial Buildings--Overview  

U.S. Energy Information Administration (EIA) Indexed Site

Home > Trends in Commercial Buildings > Commercial Home > Trends in Commercial Buildings > Commercial Buildings Energy Consumption Survey Survey Methodology Sampling Error, Standard Errors, and Relative Standard Errors The Commercial Buildings Energy Consumption Survey The commercial sector consists of business establishments and other organizations that provide services. The sector includes service businesses, such as retail and wholesale stores, hotels and motels, restaurants, and hospitals, as well as a wide range of buildings that would not be considered “commercial” in a traditional economic sense, such as public schools, correctional institutions, and religious and fraternal organizations. Excluded from the sector are the goods-producing industries: manufacturing, agriculture, mining, forestry and fisheries, and construction.

277

The potential for distributed generation in Japanese prototype buildings: A DER-CAM analysis of policy, tariff design, building energy use, and technology development (English Version)  

SciTech Connect

The August 2003 blackout of the northeastern U.S. and CANADA caused great economic losses and inconvenience to New York City and other affected areas. The blackout was a warning to the rest of the world that the ability of conventional power systems to meet growing electricity demand is questionable. Failure of large power systems can lead to serious emergencies. Introduction of on-site generation, renewable energy such as solar and wind power and the effective utilization of exhaust heat is needed, to meet the growing energy demands of the residential and commercial sectors. Additional benefit can be achieved by integrating these distributed technologies into distributed energy resource (DER) systems. This work demonstrates a method for choosing and designing economically optimal DER systems. An additional purpose of this research is to establish a database of energy tariffs, DER technology cost and performance characteristics, and building energy consumption for Japan. This research builds on prior DER studies at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) and with their associates in the Consortium for Electric Reliability Technology Solutions (CERTS) and operation, including the development of the microgrid concept, and the DER selection optimization program, the Distributed Energy Resources Customer Adoption Model (DER-CAM). DER-CAM is a tool designed to find the optimal combination of installed equipment and an idealized operating schedule to minimize a site's energy bills, given performance and cost data on available DER technologies, utility tariffs, and site electrical and thermal loads over a test period, usually an historic year. Since hourly electric and thermal energy data are rarely available, they are typically developed by building simulation for each of six end use loads used to model the building: electric-only loads, space heating, space cooling, refrigeration, water heating, and natural-gas-only loads. DER-CAM provides a global optimization, albeit idealized, that shows how the necessary useful energy loads can be provided for at minimum cost by selection and operation of on-site generation, heat recovery, cooling, and efficiency improvements. This study examines five prototype commercial buildings and uses DER-CAM to select the economically optimal DER system for each. The five building types are office, hospital, hotel, retail, and sports facility. Each building type was considered for both 5,000 and 10,000 square meter floor sizes. The energy consumption of these building types is based on building energy simulation and published literature. Based on the optimization results, energy conservation and the emissions reduction were also evaluated. Furthermore, a comparison study between Japan and the U.S. has been conducted covering the policy, technology and the utility tariffs effects on DER systems installations. This study begins with an examination of existing DER research. Building energy loads were then generated through simulation (DOE-2) and scaled to match available load data in the literature. Energy tariffs in Japan and the U.S. were then compared: electricity prices did not differ significantly, while commercial gas prices in Japan are much higher than in the U.S. For smaller DER systems, the installation costs in Japan are more than twice those in the U.S., but this difference becomes smaller with larger systems. In Japan, DER systems are eligible for a 1/3 rebate of installation costs, while subsidies in the U.S. vary significantly by region and application. For 10,000 m{sup 2} buildings, significant decreases in fuel consumption, carbon emissions, and energy costs were seen in the economically optimal results. This was most noticeable in the sports facility, followed the hospital and hotel. This research demonstrates that office buildings can benefit from CHP, in contrast to popular opinion. For hospitals and sports facilities, the use of waste heat is particularly effective for water and space heating. For the other building types, waste heat is most effectivel

Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

2004-10-15T23:59:59.000Z

278

The potential for distributed generation in Japanese prototype buildings: A DER-CAM analysis of policy, tariff design, building energy use, and technology development (English Version)  

DOE Green Energy (OSTI)

The August 2003 blackout of the northeastern U.S. and CANADA caused great economic losses and inconvenience to New York City and other affected areas. The blackout was a warning to the rest of the world that the ability of conventional power systems to meet growing electricity demand is questionable. Failure of large power systems can lead to serious emergencies. Introduction of on-site generation, renewable energy such as solar and wind power and the effective utilization of exhaust heat is needed, to meet the growing energy demands of the residential and commercial sectors. Additional benefit can be achieved by integrating these distributed technologies into distributed energy resource (DER) systems. This work demonstrates a method for choosing and designing economically optimal DER systems. An additional purpose of this research is to establish a database of energy tariffs, DER technology cost and performance characteristics, and building energy consumption for Japan. This research builds on prior DER studies at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) and with their associates in the Consortium for Electric Reliability Technology Solutions (CERTS) and operation, including the development of the microgrid concept, and the DER selection optimization program, the Distributed Energy Resources Customer Adoption Model (DER-CAM). DER-CAM is a tool designed to find the optimal combination of installed equipment and an idealized operating schedule to minimize a site's energy bills, given performance and cost data on available DER technologies, utility tariffs, and site electrical and thermal loads over a test period, usually an historic year. Since hourly electric and thermal energy data are rarely available, they are typically developed by building simulation for each of six end use loads used to model the building: electric-only loads, space heating, space cooling, refrigeration, water heating, and natural-gas-only loads. DER-CAM provides a global optimization, albeit idealized, that shows how the necessary useful energy loads can be provided for at minimum cost by selection and operation of on-site generation, heat recovery, cooling, and efficiency improvements. This study examines five prototype commercial buildings and uses DER-CAM to select the economically optimal DER system for each. The five building types are office, hospital, hotel, retail, and sports facility. Each building type was considered for both 5,000 and 10,000 square meter floor sizes. The energy consumption of these building types is based on building energy simulation and published literature. Based on the optimization results, energy conservation and the emissions reduction were also evaluated. Furthermore, a comparison study between Japan and the U.S. has been conducted covering the policy, technology and the utility tariffs effects on DER systems installations. This study begins with an examination of existing DER research. Building energy loads were then generated through simulation (DOE-2) and scaled to match available load data in the literature. Energy tariffs in Japan and the U.S. were then compared: electricity prices did not differ significantly, while commercial gas prices in Japan are much higher than in the U.S. For smaller DER systems, the installation costs in Japan are more than twice those in the U.S., but this difference becomes smaller with larger systems. In Japan, DER systems are eligible for a 1/3 rebate of installation costs, while subsidies in the U.S. vary significantly by region and application. For 10,000 m{sup 2} buildings, significant decreases in fuel consumption, carbon emissions, and energy costs were seen in the economically optimal results. This was most noticeable in the sports facility, followed the hospital and hotel. This research demonstrates that office buildings can benefit from CHP, in contrast to popular opinion. For hospitals and sports facilities, the use of waste heat is particularly effective for water and space heating. For the other building types, waste heat is most effectively use

Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

2004-10-15T23:59:59.000Z

279

INL High Performance Building Strategy  

SciTech Connect

High performance buildings, also known as sustainable buildings and green buildings, are resource efficient structures that minimize the impact on the environment by using less energy and water, reduce solid waste and pollutants, and limit the depletion of natural resources while also providing a thermally and visually comfortable working environment that increases productivity for building occupants. As Idaho National Laboratory (INL) becomes the nation’s premier nuclear energy research laboratory, the physical infrastructure will be established to help accomplish this mission. This infrastructure, particularly the buildings, should incorporate high performance sustainable design features in order to be environmentally responsible and reflect an image of progressiveness and innovation to the public and prospective employees. Additionally, INL is a large consumer of energy that contributes to both carbon emissions and resource inefficiency. In the current climate of rising energy prices and political pressure for carbon reduction, this guide will help new construction project teams to design facilities that are sustainable and reduce energy costs, thereby reducing carbon emissions. With these concerns in mind, the recommendations described in the INL High Performance Building Strategy (previously called the INL Green Building Strategy) are intended to form the INL foundation for high performance building standards. This revised strategy incorporates the latest federal and DOE orders (Executive Order [EO] 13514, “Federal Leadership in Environmental, Energy, and Economic Performance” [2009], EO 13423, “Strengthening Federal Environmental, Energy, and Transportation Management” [2007], and DOE Order 430.2B, “Departmental Energy, Renewable Energy, and Transportation Management” [2008]), the latest guidelines, trends, and observations in high performance building construction, and the latest changes to the Leadership in Energy and Environmental Design (LEED®) Green Building Rating System (LEED 2009). The document employs a two-level approach for high performance building at INL. The first level identifies the requirements of the Guiding Principles for Sustainable New Construction and Major Renovations, and the second level recommends which credits should be met when LEED Gold certification is required.

Jennifer D. Morton

2010-02-01T23:59:59.000Z

280

Building Technologies Office: Energy Efficient Buildings Hub  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficient Buildings Hub Efficient Buildings Hub This model of a renovated historic building-Building 661-in Philadelphia will house the Energy Efficient Buildings Hub. The facility's renovation will serve as a best practices model for commercial building design, historic adaptive re-use, and energy efficiency innovation through continuous retrofit. The U.S. Department of Energy created the Energy Efficient Buildings Hub in Philadelphia, Pennsylvania to promote regional job creation and economic growth while also improving the energy efficiency of commercial buildings. Established in 2011, the Energy Efficient Buildings Hub seeks to demonstrate how innovating technologies can help building owners and operators can save money by adopting energy efficient technologies and techniques. The goal is to enable the nation to cut energy use in the commercial buildings sector by 20% by 2020.

Note: This page contains sample records for the topic "large hospital buildings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

84 the building is.  

U.S. Energy Information Administration (EIA)

84 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... Asset Rating. Author: BRE Subject: LCEA009449 Keywords:

282

87 the building is.  

U.S. Energy Information Administration (EIA)

87 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... Asset Rating. Author: BRE Subject: STRO000469 Keywords:

283

80 the building is.  

U.S. Energy Information Administration (EIA)

80 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... Asset Rating. Author: BRE Subject: BREC500027 Keywords:

284

75 the building is.  

U.S. Energy Information Administration (EIA)

75 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... Asset Rating. Author: BRE Subject: BREC400003 Keywords:

285

75 the building is.  

U.S. Energy Information Administration (EIA)

75 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... Asset Rating. Author: BRE Subject: BREC500027 Keywords:

286

97 the building is.  

U.S. Energy Information Administration (EIA)

97 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... Asset Rating. Author: BRE Subject: BREC500027 Keywords:

287

78 the building is.  

U.S. Energy Information Administration (EIA)

78 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... Asset Rating. Author: BRE Subject: BREC200470 Keywords:

288

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Emergency Response Operations ... Safety Investigation of the World Trade Center Disaster. ... high rise buildings; building collapse; disasters; fire safety ...

289

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... of the World Trade Center Disaster. ... rise buildings; building collapse; disasters; fire safety ... structural analysis; structural damage; structural response ...

290

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... of the World Trade Center Disaster. ... high rise buildings; building collapse; disasters; fire safety ... structures; thermal response; flameproofing; radiative ...

291

Safety of Building Occupants  

Science Conference Proceedings (OSTI)

... systems have evolved in response to specific ... behavior, needs of emergency responders, or ... behavior during building emergencies, the Building ...

2013-07-17T23:59:59.000Z

292

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... systems; surface temperature; deflection; insulation; thermometers; structural ... effects of fires in buildings, for use ... the analysis of building response to ...

293

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... building materials; thermal conductivity; databases; insulation; building technology; density; fibrous glass; guarded hot plate; heat flow; insulation ...

294

Composting Large Animal Carcasses  

E-Print Network (OSTI)

Disposing of large animal carcasses can be a problem for agricultural producers. Composting is a simple, low-cost method that yields a useful product that can be used as fertilizer. In this publication you'll learn the basics of composting, how to build and maintain a compost pile, tools you will need, and how to use the finished compost.

Auvermann, Brent W.; Mukhtar, Saqib; Heflin, Kevin

2006-10-31T23:59:59.000Z

295

HumanoidHospital Sustainable  

E-Print Network (OSTI)

HHO HumanoidHospital Nanoscale Science Nano-Bio Interface Sustainable Energy Renewable Materials, students, or applicants for admission or employment on the basis of race, gender, disability, age, veteran

Beex, A. A. "Louis"

296

Building Technologies Office: Webinars  

NLE Websites -- All DOE Office Websites (Extended Search)

Webinars Webinars Printable Version Share this resource Send a link to Building Technologies Office: Webinars to someone by E-mail Share Building Technologies Office: Webinars on Facebook Tweet about Building Technologies Office: Webinars on Twitter Bookmark Building Technologies Office: Webinars on Google Bookmark Building Technologies Office: Webinars on Delicious Rank Building Technologies Office: Webinars on Digg Find More places to share Building Technologies Office: Webinars on AddThis.com... Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program Building Energy Software Tools Directory High Performance Buildings Database

297

Clinton Lab occupies many Y-12 buildings and becomes Oak Ridge...  

NLE Websites -- All DOE Office Websites (Extended Search)

they were closing down the very large Alpha calutron buildings and putting them in standby. These buildings began to be occupied by the laboratory personnel for research work....

298

Commercial Building Partners Catalyze High Performance Buildings Across the Nation  

SciTech Connect

In 2008 the US Department of Energy (DOE) launched the Commercial Buildings Partnership (CBP) project to accelerate market adoption of commercially available energy saving technologies into the design process for new and upgraded commercial buildings. The CBP represents a unique collaboration between industry leaders and DOE to develop high performance buildings as a model for future construction and renovation. CBP was implemented in two stages. This paper focuses on lessons learned at Pacific Northwest National Laboratory (PNNL) in the first stage and discusses some partner insights from the second stage. In the first stage, PNNL and the National Renewable Energy Laboratory recruited CBP partners that own large portfolios of buildings. The labs provide assistance to the partners' design teams and make a business case for energy investments.

Baechler, Michael C.; Dillon, Heather E.; Bartlett, Rosemarie

2012-08-01T23:59:59.000Z

299

California commercial building energy benchmarking  

SciTech Connect

Building energy benchmarking is the comparison of whole-building energy use relative to a set of similar buildings. It provides a useful starting point for individual energy audits and for targeting buildings for energy-saving measures in multiple-site audits. Benchmarking is of interest and practical use to a number of groups. Energy service companies and performance contractors communicate energy savings potential with ''typical'' and ''best-practice'' benchmarks while control companies and utilities can provide direct tracking of energy use and combine data from multiple buildings. Benchmarking is also useful in the design stage of a new building or retrofit to determine if a design is relatively efficient. Energy managers and building owners have an ongoing interest in comparing energy performance to others. Large corporations, schools, and government agencies with numerous facilities also use benchmarking methods to compare their buildings to each other. The primary goal of Task 2.1.1 Web-based Benchmarking was the development of a web-based benchmarking tool, dubbed Cal-Arch, for benchmarking energy use in California commercial buildings. While there were several other benchmarking tools available to California consumers prior to the development of Cal-Arch, there were none that were based solely on California data. Most available benchmarking information, including the Energy Star performance rating, were developed using DOE's Commercial Building Energy Consumption Survey (CBECS), which does not provide state-level data. Each database and tool has advantages as well as limitations, such as the number of buildings and the coverage by type, climate regions and end uses. There is considerable commercial interest in benchmarking because it provides an inexpensive method of screening buildings for tune-ups and retrofits. However, private companies who collect and manage consumption data are concerned that the identities of building owners might be revealed and hence are reluctant to share their data. The California Commercial End Use Survey (CEUS), the primary source of data for Cal-Arch, is a unique source of information on commercial buildings in California. It has not been made public; however, it was made available by CEC to LBNL for the purpose of developing a public benchmarking tool.

Kinney, Satkartar; Piette, Mary Ann

2003-07-01T23:59:59.000Z

300

Green Building- Efficient Life Cycle  

E-Print Network (OSTI)

Energy saving does not just apply to traffic, production or agriculture. Buildings are also contributing to the climate change. The focus here is on the energy they use and on their CO2 emissions. Each year, Siemens invests more than two billion euros in the appropriate research and development. For customers, this means that Siemens is already providing them with energy efficient solutions that save resources and reduce emissions. Siemens Real Estate (SRE) has taken on the task of ensuring that Siemens AG will become 20 percent more energy efficient by 2011, and it has turned an efficiency program for existing real estate, which has been in existence since 2005, into an integrated green building initiative. This initiative comprises the components “Sustainable Building Design”, “Life Cycle Cost Analysis”, “Green Building Certification” and “Natural Resources Management”. These components are deliberately arranged around the life cycle of the real estate concerned. This allows a different emphasis to be placed on the different questions in each project phase and each phase of a building’s life and for them to be answered in a targeted manner. “Sustainable Building Design” comes into effect during the tasking and preliminary planning phase of a building project; and, by providing a specially developed sustainability manual, it helps with the definition of target values and the drawing up of efficiency strategies for the planning of the building. The manual epitomizes, and sets out clearly, the attitude of SRE to all building-specific sustainability matters. In addition, it is used in the offering of rewards for project competitions. As a result, through a selection of different energy-efficiency measures that have been roughly conceived beforehand, the primary energy consumption can already be restricted in the project definition phase. “Life Cycle Cost Analysis” comes into effect when the blueprint for buildings is being drawn up. Up to now, when components and systems were being chosen, the main focus was usually on the investment costs involved. By using a cost tool developed specifically to meet the needs of the company, SRE will in future be able to estimate the component-specific utilization costs – such as cleaning, maintenance, and the use of energy – at an early planning stage. “Green Building Certification” is used in building projects during the planning and implementation phase, and it thus ensures the quality of the new real estate over the long term. Siemens is implementing the Green Building Program of the European Commission in new building projects and renovation work in EU countries. In all other countries that are not taking part in the EU Green Building Program, SRE uses certification in accordance with LEED (Leadership in Energy and Environmental Design). In the LEED certification, a transparent and easy-to-use catalog of criteria is employed to make an assessment of the use of energy and other aspects of sustainability, such as the selection of the plot of land, the efficient use of water, the quality of air within buildings, and the selection of materials. This ensures that a neutral and independent assessment is made of all new building and large-scale renovation projects. The action program “Natural Resources Management” rounds off the range of measures in the area of existing real estate. The aim of the program is to identify and highlight all latent efficiency potential in existing buildings. This includes, for instance, modernizing the control equipment used for the heating and ventilation systems. This entails replacing electrical power units with more efficient models, and retrofitting fans and pumps with frequency converters. Sixty buildings have now been inspected, and savings of almost eight million Euros have been achieved. The average payback period is less than two years. One example of this is an old Siemens building from the 1970s at the Munich-Perlach site. Through energy optimization, it has been possible to cu

Kohns, R.

2008-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "large hospital buildings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Emerging Technologies Associates, Inc. (ETA) / Sharp Grossmont Hospital:  

NLE Websites -- All DOE Office Websites (Extended Search)

Emerging Technologies Associates, Inc. (ETA) / Sharp Grossmont Emerging Technologies Associates, Inc. (ETA) / Sharp Grossmont Hospital: SPP Success Story Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources

302

Transforming Commercial Building Operations  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transforming Commercial Building Operations Transforming Commercial Building Operations Transforming Commercial Building Operations Ron Underhill Pacific Northwest National Laboratory ronald.underhill@pnnl.gov (509)375-9765 April 4, 2013 2 | Building Technologies Office eere.energy.gov * Most buildings are not commissioned (Cx) before occupancy, including HVAC and lighting systems * Buildings often are poorly operated and maintained leading to significant energy waste of 5 to 20%, even when they have building automation systems (BASs)

303

Transforming Commercial Building Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

Transforming Commercial Building Operations Transforming Commercial Building Operations Transforming Commercial Building Operations Ron Underhill Pacific Northwest National Laboratory ronald.underhill@pnnl.gov (509)375-9765 April 4, 2013 2 | Building Technologies Office eere.energy.gov * Most buildings are not commissioned (Cx) before occupancy, including HVAC and lighting systems * Buildings often are poorly operated and maintained leading to significant energy waste of 5 to 20%, even when they have building automation systems (BASs)

304

Effect of High Efficiency Lighting on Power Quality in Public Buildings  

Science Conference Proceedings (OSTI)

This power quality (PQ) case study investigates the effect of high efficiency lighting on PQ in public buildings. The buildings scheduled for lighting retrofits that were involved in this study include a graduate center, a hospital facility, and a social services building.

2003-12-31T23:59:59.000Z

305

CALIFORNIA ENERGY COMMISSION SPECIAL DISTRICTS HOSPITALS & PUBLIC CARE COLLEGES & UNIVERSITIES  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION SPECIAL DISTRICTS HOSPITALS & PUBLIC CARE COLLEGES & UNIVERSITIES F O 2004 www.energy.ca.gov/efficiency/partnership Call (916) 654-4147 #12;The Energy Partnership Program Whether you are building a new facility, renovating an existing one, or want to reduce your energy bills

306

IAQ in Hospitals - Better Health through Indoor Air Quality Awareness  

E-Print Network (OSTI)

Quality air is fundamental to people's health and well-being. Indoor air quality is an important issue from both a social and economic point of view. Continual advances in medicine and technology necessitate constant reevaluation of the air-conditioning needs of hospital and medical facilities. The application of air conditioning to health facilities presents many problems not encountered in the usual comfort air conditioning design. Hospital air conditioning assumes a more important role than just the promotion of comfort. Studies show that patients in controlled environment generally have more rapid physical improvement than do those in uncontrolled environment. Air quality at hospitals needs special precautions during design and maintenance stage to prevent infections from spreading. 50% of all illnesses are either caused by, or aggravated by, polluted indoor air. The main objective of this paper is to critically review and summarize the available information about IAQ particularly in health care industries. Symptoms of poor IAQ in a building, contaminants causing poor IAQ, features of HVAC systems for a hospital for better IAQ are briefly discussed in this paper. Strategies to improve indoor air quality in hospitals and the current international research to improve indoor air quality are reported in this paper. Based on the extensive interactions with different stake holders of a hospital it is concluded that maintenance of proper indoor quality in a hospital needs meticulous team work among the various members of the hospital at various stages .

Al-Rajhi, S.; Ramaswamy, M.; Al-Jahwari, F.

2010-01-01T23:59:59.000Z

307

Commercial Buildings Integration Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings Buildings Integration Program Arah Schuur Program Manager arah.schuur@ee.doe.gov April 2, 2013 Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov Vision Commercial buildings are constructed, operated, renovated and transacted with energy performance in mind and net zero ready commercial buildings are common and cost-effective. Commercial Buildings Integration Program Mission Accelerate voluntary uptake of significant energy performance improvements in existing and new commercial buildings. 3 | Building Technologies Office eere.energy.gov BTO Goals: BTO supports the development and deployment of technologies and systems to reduce

308

Home | Better Buildings Workforce  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Buildings Logo Better Buildings Logo EERE Home | Programs & Offices | Consumer Information Search form Search Search Better Buildings Logo Better Buildings Workforce Home Framework Resources Projects Participate Home Framework Resources Projects Better Buildings Workforce Guidelines Buildings Re-tuning Training ANSI Energy Efficiency Standards Collaborative Energy Performance-Based Acquisition Training Participate For a detailed project overview, download the Better Buildings Workforce Guidelines Fact Sheet Home The Better Buildings Initiative is a broad, multi-strategy initiative to make commercial and industrial buildings 20% more energy efficient over the next 10 years. DOE is currently pursuing strategies across five pillars to catalyze change and accelerate private sector investment in energy

309

Buildings without energy bills  

Science Conference Proceedings (OSTI)

In European Union member states, by 31 december 2020, all new buildings shall be nearly zero-energy consumption building. For new buildings occupied and owned by public authorities this shall comply by 31 december 2018. The buildings sectors represents ... Keywords: energy efficiency, low energy buildings, passive houses design, sustainable development

Ruxandra Crutescu

2011-04-01T23:59:59.000Z

310

Building America  

Science Conference Proceedings (OSTI)

Builders generally use a 'spec and purchase' business management system (BMS) when implementing energy efficiency. A BMS is the overall operational and organizational systems and strategies that a builder uses to set up and run its company. This type of BMS treats building performance as a simple technology swap (e.g. a tank water heater to a tankless water heater) and typically compartmentalizes energy efficiency within one or two groups in the organization (e.g. purchasing and construction). While certain tools, such as details, checklists, and scopes of work, can assist builders in managing the quality of the construction of higher performance homes, they do nothing to address the underlying operational strategies and issues related to change management that builders face when they make high performance homes a core part of their mission. To achieve the systems integration necessary for attaining 40% + levels of energy efficiency, while capturing the cost tradeoffs, builders must use a 'systems approach' BMS, rather than a 'spec and purchase' BMS. The following attributes are inherent in a systems approach BMS; they are also generally seen in quality management systems (QMS), such as the National Housing Quality Certification program: Cultural and corporate alignment, Clear intent for quality and performance, Increased collaboration across internal and external teams, Better communication practices and systems, Disciplined approach to quality control, Measurement and verification of performance, Continuous feedback and improvement, and Whole house integrated design and specification.

Brad Oberg

2010-12-31T23:59:59.000Z

311

1999 Commercial Buildings Characteristics--Building Size  

U.S. Energy Information Administration (EIA) Indexed Site

Size of Buildings Size of Buildings Size of Buildings The 1999 CBECS estimated that 2,348,000 commercial buildings, or just over half (50.4 percent) of total buildings, were found in the smallest building size category (1,001 to 5,000 square feet) (Figure 1). Only 7,000 buildings occupied the largest size category (over 500,000 square feet). Detailed tables Figure 1. Distribution of Buildings by Size of Building, 1999 Figure 1. Distribution of Buildings by Size of Building, 1999. If having trouble viewing this page, please contact the National Energy Information Center at (202) 586-8800. Energy Information Administration Commercial Buildings Energy Consumption Survey The middle size categories (10,001 to 100,000 square feet) had relatively more floorspace per category than smaller or larger size categories (Figure 2). The greatest amount of floorspace, about 11,153,000 square feet (or 17 percent of total floorspace) was found in the 10,001 to 25,000 square feet category. Figure 2. Distribution of Floorspace by Size of Building, 1999

312

Building Technologies Office: Subscribe to Building America Updates  

NLE Websites -- All DOE Office Websites (Extended Search)

Subscribe to Building Subscribe to Building America Updates to someone by E-mail Share Building Technologies Office: Subscribe to Building America Updates on Facebook Tweet about Building Technologies Office: Subscribe to Building America Updates on Twitter Bookmark Building Technologies Office: Subscribe to Building America Updates on Google Bookmark Building Technologies Office: Subscribe to Building America Updates on Delicious Rank Building Technologies Office: Subscribe to Building America Updates on Digg Find More places to share Building Technologies Office: Subscribe to Building America Updates on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance

313

Comparison of Building Energy Modeling Programs: Building Loads  

NLE Websites -- All DOE Office Websites (Extended Search)

Comparison of Building Energy Modeling Programs: Building Loads Title Comparison of Building Energy Modeling Programs: Building Loads Publication Type Report LBNL Report Number...

314

A N OTE S BUILDING TECHNOLOGIES PROGRAM Building Energy Codes...  

NLE Websites -- All DOE Office Websites (Extended Search)

A N OTE S BUILDING TECHNOLOGIES PROGRAM Building Energy Codes Resource Guide: COMMERCIAL BUILDINGS for Architects Prepared by: Building Energy Codes Program (BECP) and the American...

315

Energy Efficiency Standards for Federal Buildings | Building...  

NLE Websites -- All DOE Office Websites (Extended Search)

Regulations Site Map Printable Version Development Adoption Compliance Regulations Determinations Federal Buildings Manufactured Housing Resource Center Energy Efficiency Standards...

316

Office Buildings - Full Report  

U.S. Energy Information Administration (EIA) Indexed Site

Office Buildings - Full Report Office Buildings - Full Report file:///C|/mydocs/CBECS2003/PBA%20report/office%20report/office_pdf.html[9/24/2010 3:33:25 PM] Although no one building type dominates the commercial buildings sector, office buildings are the most common and account for more than 800,000 buildings or 17 percent of total commercial buildings. Offices comprised more than 12 billion square feet of floorspace, 17 percent of total commercial floorspace, the most of any building type. Types of Office Buildings The 2003 CBECS Detailed Tables present data for office buildings along with other principal building activities (see Detailed Tables B13 and B14, for example). Since office buildings comprise a wide range of office-related activities, survey respondents were presented with a

317

Thick Buildings [Standards  

E-Print Network (OSTI)

on Occupant Behavior in Buildings, New Directions forSacramento, is a thin building that surrounds an atrium. (Performance of a Green Building," Urban UndQune 1992): 23-

Coffin, Christie Johnson

1995-01-01T23:59:59.000Z

318

Flexible Framework for Building Energy Analysis: Preprint  

SciTech Connect

In the building energy research and advanced practitioner communities, building models are perturbed across large parameter spaces to assess energy and cost performance in the face of programmatic and economic constraints. This paper describes the OpenStudio software framework for performing such analyses.

Hale, E.; Macumber, D.; Weaver, E.; Shekhar, D.

2012-09-01T23:59:59.000Z

319

Rebuilding It Better: Greensburg, Kansas, Kiowa County Memorial Hospital |  

Open Energy Info (EERE)

Rebuilding It Better: Greensburg, Kansas, Kiowa County Memorial Hospital Rebuilding It Better: Greensburg, Kansas, Kiowa County Memorial Hospital Jump to: navigation, search Name Rebuilding It Better: Greensburg, Kansas, Kiowa County Memorial Hospital Agency/Company /Organization National Renewable Energy Laboratory Focus Area Agriculture, Buildings, Economic Development, Energy Efficiency, Water Conservation, Renewable Energy, Wind Phase Bring the Right People Together, Create a Vision, Evaluate Options, Develop Goals Resource Type Case studies/examples Availability Publicly available--Free Publication Date 8/1/2010 Website http://apps1.eere.energy.gov/b Locality Greensburg, Kansas References Rebuilding It Better: Greensburg, Kansas, Kiowa County Memorial Hospital[1] Contents 1 Overview 2 Highlights 3 Environmental Aspects

320

Building Technologies Office Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Roland Risser Roland Risser Director, Building Technologies Office Building Technologies Office Energy Efficiency Starts Here. 2 Building Technologies Office Integrated Approach: Improving Building Performance Research & Development Developing High Impact Technologies Standards & Codes Locking in the Savings Market Stimulation Accelerating Tech-to- Market 3 Building Technologies Office Goal: Reduce building energy use by 50% (compared to a 2010 baseline) 4 Building Technologies Office Working to Overcome Challenges Information Access * Develop building performance tools, techniques, and success stories, such as case studies * Form market partnerships and programs to share best practices * Solution Centers * Certify the workforce to ensure quality work

Note: This page contains sample records for the topic "large hospital buildings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Building Technologies Office: Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources to someone by Resources to someone by E-mail Share Building Technologies Office: Resources on Facebook Tweet about Building Technologies Office: Resources on Twitter Bookmark Building Technologies Office: Resources on Google Bookmark Building Technologies Office: Resources on Delicious Rank Building Technologies Office: Resources on Digg Find More places to share Building Technologies Office: Resources on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Partner Log In Become a Partner Criteria Partner Locator Resources Housing Innovation Awards Events Guidelines for Home Energy Professionals Technology Research, Standards, & Codes

322

Buildings Energy Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Office building windows, clean room, infrared thermograph, data graphic Buildings Energy Efficiency Researchers, in close cooperation with industry, develop technologies for...

323

Building Technologies Office: Events  

NLE Websites -- All DOE Office Websites (Extended Search)

Webinars Building America Residential Research Better Buildings Alliance Solid-State Lighting Events ICMA 99th Annual Conference September 22-25, 2013 Register Now for the 2013...

324

Food Sales Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

buildings, though they comprised only 1 percent of commercial floorspace. Their total energy intensity was the third highest of all the building types, and their electricity...

325

Public Assembly Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

buildings. Since they comprised 7 percent of commercial floorspace, this means that their energy intensity was just slightly below the commercial average. Public assembly buildings...

326

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... of this building in two challenging North American climates. ... building in its native climate were performed ... were formulated-a single-zone model with ...

327

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... National Planning for Construction and Building R&D. National Planning for Construction and Building R&D. (576 K) Wright ...

328

Better Buildings Alliance  

NLE Websites -- All DOE Office Websites (Extended Search)

Kristen Taddonio DOEEEREBTOCommercial Program Kristen.Taddonio@ee.doe.gov April 2, 2013 Better Buildings Alliance BTO Program Peer Review 2 | Building Technologies Office...

329

Building Technologies Program - Energy  

2 Background And Outline Background Building Technology Program (BTP) focused on a goal of zero-net energy homes (2020) and commercial buildings (2025)

330

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... These estimates, and other analyses of energy consumption in office buildings, are based on building energy analysis programs such as DOE-2. ...

331

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... keynote address entitled "Green Buildings - The White House Perspective ... in the areas of building materials, lighting, and indoor air ... Selected Papers. ...

332

Better Buildings Neighborhood Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Leading to Lessons Learned 2 | Building Technologies Office eere.energy.gov Purpose & Objectives - Program Problem Statement: Buildings consume 40% of energy in the United...

333

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... will build an instrument that will provide the building industry with better measurement capabilities to judge the effectiveness of thermal insulation ...

334

HOSPITAL ENERGY AUDITS: A BIBLIOGRAPHY  

E-Print Network (OSTI)

solar energy for heating water, heating space, cooling buildings,a solar system capable of heating and cooling the building.building load, and weather data to predict the performance of the solar heating

Pollack, R. I.

2011-01-01T23:59:59.000Z

335

Building Technologies Office: Commercial Building Codes and Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Building Commercial Building Codes and Standards to someone by E-mail Share Building Technologies Office: Commercial Building Codes and Standards on Facebook Tweet about Building Technologies Office: Commercial Building Codes and Standards on Twitter Bookmark Building Technologies Office: Commercial Building Codes and Standards on Google Bookmark Building Technologies Office: Commercial Building Codes and Standards on Delicious Rank Building Technologies Office: Commercial Building Codes and Standards on Digg Find More places to share Building Technologies Office: Commercial Building Codes and Standards on AddThis.com... About Take Action to Save Energy Activities Partner with DOE Commercial Buildings Resource Database Research & Development Codes & Standards Popular Commercial Links

336

Building Technologies Office: Building America 2013 Technical Update  

NLE Websites -- All DOE Office Websites (Extended Search)

Building America 2013 Building America 2013 Technical Update Meeting to someone by E-mail Share Building Technologies Office: Building America 2013 Technical Update Meeting on Facebook Tweet about Building Technologies Office: Building America 2013 Technical Update Meeting on Twitter Bookmark Building Technologies Office: Building America 2013 Technical Update Meeting on Google Bookmark Building Technologies Office: Building America 2013 Technical Update Meeting on Delicious Rank Building Technologies Office: Building America 2013 Technical Update Meeting on Digg Find More places to share Building Technologies Office: Building America 2013 Technical Update Meeting on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research

337

Solar buildings. Overview: The Solar Buildings Program  

DOE Green Energy (OSTI)

Buildings account for more than one third of the energy used in the United States each year, consuming vast amounts of electricity, natural gas, and fuel oil. Given this level of consumption, the buildings sector is rife with opportunity for alternative energy technologies. The US Department of Energy`s Solar Buildings Program was established to take advantage of this opportunity. The Solar Buildings Program is engaged in research, development, and deployment on solar thermal technologies, which use solar energy to produce heat. The Program focuses on technologies that have the potential to produce economically competitive energy for the buildings sector.

Not Available

1998-04-01T23:59:59.000Z

338

Building Blocks of Tropical Diabatic Heating  

Science Conference Proceedings (OSTI)

Rotated EOF analyses are used to study the composition and variability of large-scale tropical diabatic heating profiles estimated from eight field campaigns. The results show that the profiles are composed of a pair of building blocks. These are ...

Samson Hagos

2010-07-01T23:59:59.000Z

339

Modeling pollutant penetration across building envelopes  

E-Print Network (OSTI)

flows into buildings pass through insulation rather thanbuildings depends substantially on whether or not a large portion o f the airflow passes through fiberglass insulationbuilding envelope. W e considered three wall cavity configurations: uninsulated (Figure 3a), filled with insulation (

Liu, De-Ling

2011-01-01T23:59:59.000Z

340

Building Technologies Office: Better Buildings Neighborhood Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Buildings Neighborhood Program logo. Better Buildings Neighborhood Program logo. The Better Buildings Neighborhood Program is helping over 40 competitively selected state and local governments develop sustainable programs to upgrade the energy efficiency of more than 100,000 buildings. These leading communities are using innovation and investment in energy efficiency to expand the building improvement industry, test program delivery business models, and create jobs. New Materials and Resources January 2014 Read the January issue of the Better Buildings Network View See the new story about Austin Energy Read the new Focus Series with Chicago's EI2 See the new webcast Read the latest DOE blog posts Get Inspired! Hear why Better Buildings partners are excited to bring the benefits of energy upgrades to their neighborhoods.

Note: This page contains sample records for the topic "large hospital buildings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Building Green in Greensburg: City Hall Building  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City Hall Building City Hall Building Destroyed in the tornado, City Hall was completed in October 2009 and built to achieve the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED ® ) Platinum designation. The 4,700-square-foot building serves as a symbol of Greensburg's vitality and leadership in becoming a sustainable community where social, environmental, and economic concerns are held in balance. It houses the City's administrative offices and council chambers, and serves as a gathering place for town meetings and municipal court sessions. According to energy analysis modeling results, the new City Hall building is 38% more energy efficient than an ASHRAE-compliant building of the same size and shape. ENERGY EFFICIENCY FEATURES * A well-insulated building envelope with an

342

Building Technologies Office: Building America Meetings  

NLE Websites -- All DOE Office Websites (Extended Search)

Meetings Meetings Photo of people watching a presentation on a screen; the foreground shows a person's hands taking notes on a notepad. The Department of Energy's (DOE) Building America program hosts open meetings and webinars for industry partners and stakeholders that provide a forum to exchange information about various aspects of residential building research. Upcoming Meetings Past Technical and Stakeholder Meetings Webinars Expert Meetings Upcoming Meetings There are no Building America meetings scheduled at this time. Please subscribe to Building America news and updates to receive notification of future meetings. Past Technical and Stakeholder Meetings Building America 2013 Technical Update Meeting: April 2013 This meeting showcased world-class building science research for high performance homes in a dynamic new format. Researchers from Building America teams and national laboratories presented on key issues that must be resolved to deliver homes that reduce whole house energy use by 30%-50%. View the presentations.

343

Building Green in Greensburg: Business Incubator Building  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Business Incubator Building Business Incubator Building Completed in May 2009, the SunChips ® Business Incubator building not only achieved the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED ® ) Platinum status with greater than 50% energy savings-it became the first LEED Platinum certified municipal building in Kansas. The 9,580-square-foot building features five street-level retail shops and nine second-level professional service offices. It provides an affordable, temporary home where businesses can grow over a period of several years before moving out on their own to make way for new start-up businesses. The building was funded by the United States Department of Agriculture (USDA), Frito-Lay SunChips division, and actor Leonardo DiCaprio.

344

Office Buildings - Energy Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Energy Consumption Office buildings consumed more than 17 percent of the total energy used by the commercial buildings sector (Table 4). At least half of total energy, electricity, and natural gas consumed by office buildings was consumed by administrative or professional office buildings (Figure 2). Table 4. Energy Consumed by Office Buildings for Major Fuels, 2003 All Buildings Total Energy Consumption (trillion Btu) Number of Buildings (thousand) Total Floorspace (million sq. ft.) Sum of Major Fuels Electricity Natural Gas Fuel Oil District Heat All Buildings 4,859 71,658 6,523 3,559 2,100 228 636 All Non-Mall Buildings 4,645 64,783 5,820 3,037 1,928 222 634 All Office Buildings 824 12,208 1,134 719 269 18 128 Type of Office Building

345

Office Buildings - Full Report  

U.S. Energy Information Administration (EIA) Indexed Site

PDF PDF Office Buildings Although no one building type dominates the commercial buildings sector, office buildings are the most common and account for more than 800,000 buildings or 17 percent of total commercial buildings. Offices comprised more than 12 billion square feet of floorspace, 17 percent of total commercial floorspace, the most of any building type. Types of Office Buildings The 2003 CBECS Detailed Tables present data for office buildings along with other principal building activities (see Detailed Tables B13 and B14, for example). Since office buildings comprise a wide range of office-related activities, survey respondents were presented with a follow-up list of specific office types to choose from. Although we have not presented the office sub-category information in the detailed tables we make information

346

building | OpenEI  

Open Energy Info (EERE)

building building Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (7 months ago) Date Updated July 02nd, 2013 (5 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

347

A detailed loads comparison of three building energy modeling programs:  

NLE Websites -- All DOE Office Websites (Extended Search)

detailed loads comparison of three building energy modeling programs: detailed loads comparison of three building energy modeling programs: EnergyPlus, DeST and DOE-2.1E Title A detailed loads comparison of three building energy modeling programs: EnergyPlus, DeST and DOE-2.1E Publication Type Journal Year of Publication 2013 Authors Zhu, Dandan, Tianzhen Hong, Da Yan, and Chuang Wang Date Published 05/2013 Keywords building energy modeling program, building thermal loads, comparison, dest, DOE-2.1E, energyplus Abstract Building energy simulation is widely used to help design energy efficient building envelopes and HVAC systems, develop and demonstrate compliance of building energy codes, and implement building energy rating programs. However, large discrepancies exist between simulation results from different building energy modeling programs (BEMPs). This leads many users and stakeholders

348

The potential for distributed generation in Japanese prototype buildings: A DER-CAM analysis of policy, tariff design, building energy use, and technology development (Japanese translation)  

DOE Green Energy (OSTI)

The August 2003 blackout of the northeastern U.S. and CANADA caused great economic losses and inconvenience to New York City and other affected areas. The blackout was a warning to the rest of the world that the ability of conventional power systems to meet growing electricity demand is questionable. Failure of large power systems can lead to serious emergencies. Introduction of on-site generation, renewable energy such as solar and wind power and the effective utilization of exhaust heat is needed, to meet the growing energy demands of the residential and commercial sectors. Additional benefit can be achieved by integrating these distributed technologies into distributed energy resource (DER) systems. This work demonstrates a method for choosing and designing economically optimal DER systems. An additional purpose of this research is to establish a database of energy tariffs, DER technology cost and performance characteristics, and building energy consumption for Japan. This research builds on prior DER studies at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) and with their associates in the Consortium for Electric Reliability Technology Solutions (CERTS) and operation, including the development of the microgrid concept, and the DER selection optimization program, the Distributed Energy Resources Customer Adoption Model (DER-CAM). DER-CAM is a tool designed to find the optimal combination of installed equipment and an idealized operating schedule to minimize a site's energy bills, given performance and cost data on available DER technologies, utility tariffs, and site electrical and thermal loads over a test period, usually an historic year. Since hourly electric and thermal energy data are rarely available, they are typically developed by building simulation for each of six end use loads used to model the building: electric-only loads, space heating, space cooling, refrigeration, water heating, and natural-gas-only loads. DER-CAM provides a global optimization, albeit idealized, that shows how the necessary useful energy loads can be provided for at minimum cost by selection and operation of on-site generation, heat recovery, cooling, and efficiency improvements. This study examines five prototype commercial buildings and uses DER-CAM to select the economically optimal DER system for each. The five building types are office, hospital, hotel, retail, and sports facility. Each building type was considered for both 5,000 and 10,000 square meter floor sizes. The energy consumption of these building types is based on building energy simulation and published literature. Based on the optimization results, energy conservation and the emissions reduction were also evaluated. Furthermore, a comparison study between Japan and the U.S. has been conducted covering the policy, technology and the utility tariffs effects on DER systems installations.

Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

2004-10-15T23:59:59.000Z

349

The potential for distributed generation in Japanese prototype buildings: A DER-CAM analysis of policy, tariff design, building energy use, and technology development (Japanese translation)  

SciTech Connect

The August 2003 blackout of the northeastern U.S. and CANADA caused great economic losses and inconvenience to New York City and other affected areas. The blackout was a warning to the rest of the world that the ability of conventional power systems to meet growing electricity demand is questionable. Failure of large power systems can lead to serious emergencies. Introduction of on-site generation, renewable energy such as solar and wind power and the effective utilization of exhaust heat is needed, to meet the growing energy demands of the residential and commercial sectors. Additional benefit can be achieved by integrating these distributed technologies into distributed energy resource (DER) systems. This work demonstrates a method for choosing and designing economically optimal DER systems. An additional purpose of this research is to establish a database of energy tariffs, DER technology cost and performance characteristics, and building energy consumption for Japan. This research builds on prior DER studies at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) and with their associates in the Consortium for Electric Reliability Technology Solutions (CERTS) and operation, including the development of the microgrid concept, and the DER selection optimization program, the Distributed Energy Resources Customer Adoption Model (DER-CAM). DER-CAM is a tool designed to find the optimal combination of installed equipment and an idealized operating schedule to minimize a site's energy bills, given performance and cost data on available DER technologies, utility tariffs, and site electrical and thermal loads over a test period, usually an historic year. Since hourly electric and thermal energy data are rarely available, they are typically developed by building simulation for each of six end use loads used to model the building: electric-only loads, space heating, space cooling, refrigeration, water heating, and natural-gas-only loads. DER-CAM provides a global optimization, albeit idealized, that shows how the necessary useful energy loads can be provided for at minimum cost by selection and operation of on-site generation, heat recovery, cooling, and efficiency improvements. This study examines five prototype commercial buildings and uses DER-CAM to select the economically optimal DER system for each. The five building types are office, hospital, hotel, retail, and sports facility. Each building type was considered for both 5,000 and 10,000 square meter floor sizes. The energy consumption of these building types is based on building energy simulation and published literature. Based on the optimization results, energy conservation and the emissions reduction were also evaluated. Furthermore, a comparison study between Japan and the U.S. has been conducted covering the policy, technology and the utility tariffs effects on DER systems installations.

Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

2004-10-15T23:59:59.000Z

350

Building Technologies Office: Buildings Performance Database Analysis Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings Performance Buildings Performance Database Analysis Tools to someone by E-mail Share Building Technologies Office: Buildings Performance Database Analysis Tools on Facebook Tweet about Building Technologies Office: Buildings Performance Database Analysis Tools on Twitter Bookmark Building Technologies Office: Buildings Performance Database Analysis Tools on Google Bookmark Building Technologies Office: Buildings Performance Database Analysis Tools on Delicious Rank Building Technologies Office: Buildings Performance Database Analysis Tools on Digg Find More places to share Building Technologies Office: Buildings Performance Database Analysis Tools on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides

351

Building Technologies Office: Building America Climate-Specific Guidance  

NLE Websites -- All DOE Office Websites (Extended Search)

America America Climate-Specific Guidance to someone by E-mail Share Building Technologies Office: Building America Climate-Specific Guidance on Facebook Tweet about Building Technologies Office: Building America Climate-Specific Guidance on Twitter Bookmark Building Technologies Office: Building America Climate-Specific Guidance on Google Bookmark Building Technologies Office: Building America Climate-Specific Guidance on Delicious Rank Building Technologies Office: Building America Climate-Specific Guidance on Digg Find More places to share Building Technologies Office: Building America Climate-Specific Guidance on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education

352

Building Technologies Office: Better Buildings Alliance Laboratory Fume  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Buildings Better Buildings Alliance Laboratory Fume Hood Specification to someone by E-mail Share Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on Facebook Tweet about Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on Twitter Bookmark Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on Google Bookmark Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on Delicious Rank Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on Digg Find More places to share Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on AddThis.com...

353

Building Technologies Office: About the Commercial Buildings Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

About the Commercial About the Commercial Buildings Integration Program to someone by E-mail Share Building Technologies Office: About the Commercial Buildings Integration Program on Facebook Tweet about Building Technologies Office: About the Commercial Buildings Integration Program on Twitter Bookmark Building Technologies Office: About the Commercial Buildings Integration Program on Google Bookmark Building Technologies Office: About the Commercial Buildings Integration Program on Delicious Rank Building Technologies Office: About the Commercial Buildings Integration Program on Digg Find More places to share Building Technologies Office: About the Commercial Buildings Integration Program on AddThis.com... About Take Action to Save Energy Activities Partner with DOE Commercial Buildings Resource Database

354

Building Technologies Office: Building Energy Data Exchange Specification  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Data Building Energy Data Exchange Specification to someone by E-mail Share Building Technologies Office: Building Energy Data Exchange Specification on Facebook Tweet about Building Technologies Office: Building Energy Data Exchange Specification on Twitter Bookmark Building Technologies Office: Building Energy Data Exchange Specification on Google Bookmark Building Technologies Office: Building Energy Data Exchange Specification on Delicious Rank Building Technologies Office: Building Energy Data Exchange Specification on Digg Find More places to share Building Technologies Office: Building Energy Data Exchange Specification on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides

355

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Results discussed include whole building air change rates, energy consumption and contaminant concentrations. The ...

356

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... economic analysis; energy conservation; energy economics; life cycle cost analysis; public buildings; renewable energy; water conservation ...

357

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Keywords: roofs; building integrated photovoltaics; photovoltaic cells; renewable energy; single-crystalline; solar energy Abstract: ...

358

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... building technology; concretes; durability; effective medium theory; electrical conductivity; interfacial zone; mortar; percolation; fluid flow; sand ...

359

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Keywords: building technology; brazed plate; compact heat exchanger; evaporator; condenser; gravity Abstract: This study ...

360

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... energy management systems. GSA Guide to Specifying Interoperable Building Automation and Control Systems Using ...

Note: This page contains sample records for the topic "large hospital buildings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Building Songs 3  

E-Print Network (OSTI)

. Sman shad building song 3.WAV Length of track 00:03:42 Related tracks (include description/relationship if appropriate) Sman shad building song 1.WAV Sman shad building song 2.WAV Title of track Building Songs 3 Translation of title...

Zla ba sgrol ma

2009-11-06T23:59:59.000Z

362

Building Songs 2  

E-Print Network (OSTI)

. Sman shad building song 2.WAV Length of track 00:03:42 Related tracks (include description/relationship if appropriate) Sman shad building song 1.WAV Sman shad building song 3.WAV Title of track Building Songs 2 Translation of title...

Zla ba sgrol ma

2009-11-06T23:59:59.000Z

363

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... thermal insulation; building technology; guarded hot plate; thermal conductivity; thermal resistance; uncertainty; transmission; mathematical models ...

364

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... heaters; water heaters; blowing agents; insulation; residential buildings; physical properties; thermal conductivity; polyurethane foams Abstract: ...

365

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... computer simulation; technology utilization; insulation; thermal resistance; evaluation ... to the widespread use of building integrated photovoltaic ...

366

Social media marketing in the hospitality industry: The role of benefits in increasing brand community participation and the impact of participation on consumer trust and commitment toward hotel and restaurant brands.  

E-Print Network (OSTI)

??Online community is an effective tool for building the relationship with consumers. Many hospitality firms (i.e., hotels and restaurants) have utilized online communities a new… (more)

Kang, Juhee

2011-01-01T23:59:59.000Z

367

Handbook of energy use for building construction  

Science Conference Proceedings (OSTI)

The construction industry accounts for over 11.14% of the total energy consumed in the US annually. This represents the equivalent energy value of 1 1/4 billion barrels of oil. Within the construction industry, new building construction accounts for 5.19% of national annual energy consumption. The remaining 5.95% is distributed among new nonbuilding construction (highways, ralroads, dams, bridges, etc.), building maintenance construction, and nonbuilding maintenance construction. The handbook focuses on new building construction; however, some information for the other parts of the construction industry is also included. The handbook provides building designers with information to determine the energy required for buildings construction and evaluates the energy required for alternative materials, assemblies, and methods. The handbook is also applicable to large-scale planning and policy determination in that it provides the means to estimate the energy required to carry out major building programs.

Stein, R.G.; Stein, C.; Buckley, M.; Green, M.

1980-03-01T23:59:59.000Z

368

A Look at Education Buildings - Index Page  

U.S. Energy Information Administration (EIA) Indexed Site

Education Education Home: A Look at CBECS Building Activities How large are they? How many employees are there? Where are they located? How old are they? Who owns and occupies them? Are they on multibuilding complexes? How do they use energy and how much does it cost? How do they use electricity? How do they use natural gas? What types of equipment do they use? How do they measure up on conservation efforts? Summary Comparison Table (All Activities) EDUCATION BUILDINGS There were an estimated 309,000 education buildings in the U.S. in 1995. Number of Buildings In the Commercial Buildings Energy Consumption Survey (CBECS), education buildings include those that are used for academic or technical classroom instruction. They include preschools, elementary schools, middle or junior high schools, high schools, vocational schools, and college or university classrooms.

369

Building Energy Software Tools Directory: ModEn  

NLE Websites -- All DOE Office Websites (Extended Search)

hierarchy, starting from heat-moisture transfer processes in building envelopes up to HVAC systems of large enterprises, residential and industrial zones. ModEn simulation...

370

Thermally Activated Cooling: A Regional Approach for Estimating Building Adoption  

E-Print Network (OSTI)

The Effects of Electricity Tariff Structure on DistributedCombined Heat and Power, Electricity Tariffs, Demand Charge,California electricity tariffs for large buildings typically

Edwards, Jennifer L.; Marnay, Chris

2005-01-01T23:59:59.000Z

371

Building Energy Codes-Best Practices Report for APEC Economies...  

Open Energy Info (EERE)

improvement opportunities. However, it is only by mandating standards which capture the energy savings potential in every building, through a code, that large scale energy...

372

Residential Buildings Integration Program  

NLE Websites -- All DOE Office Websites (Extended Search)

David Lee David Lee Program Manager David.Lee@ee.doe.gov 202-287-1785 April 2, 2013 Residential Buildings Integration Program Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov Sub-Programs for Review Better Buildings Neighborhood Program Building America Challenge Home Home Energy Score Home Performance with ENERGY STAR Solar Decathlon 3 | Building Technologies Office eere.energy.gov How Residential Buildings Fits into BTO Research & Development * Develop technology roadmaps * Prioritize opportunities * Solicit and select innovative technology solutions * Collaborate with researchers

373

Commercial Buildings Consortium  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Buildings Consortium Commercial Buildings Consortium Sandy Fazeli National Association of State Energy Officials sfazeli@naseo.org; 703-299-8800 ext. 17 April 2, 2013 Supporting Consortium for the U.S. Department of Energy Net-Zero Energy Commercial Buildings Initiative 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * Many energy savings opportunities in commercial buildings remain untapped, underserved by the conventional "invest-design-build- operate" approach * The commercial buildings sector is siloed, with limited coordination

374

Residential Buildings Integration Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

David Lee David Lee Program Manager David.Lee@ee.doe.gov 202-287-1785 April 2, 2013 Residential Buildings Integration Program Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov Sub-Programs for Review Better Buildings Neighborhood Program Building America Challenge Home Home Energy Score Home Performance with ENERGY STAR Solar Decathlon 3 | Building Technologies Office eere.energy.gov How Residential Buildings Fits into BTO Research & Development * Develop technology roadmaps * Prioritize opportunities * Solicit and select innovative technology solutions * Collaborate with researchers

375

Buildings | Open Energy Information  

Open Energy Info (EERE)

Buildings Buildings Jump to: navigation, search Building Energy Technologies NREL's New Energy-Efficient "RSF" Building Buildings provide shelter for nearly everything we do-we work, live, learn, govern, heal, worship, and play in buildings-and they require enormous energy resources. According to the U.S. Energy Information Agency, homes and commercial buildings use nearly three quarters of the electricity in the United States. Opportunities abound for reducing the huge amount of energy consumed by buildings, but discovering those opportunities requires compiling substantial amounts of data and information. The Buildings Energy Technologies gateway is your single source of freely accessible information on energy usage in the building industry as well as tools to improve

376

Building Technologies Office: News  

NLE Websites -- All DOE Office Websites (Extended Search)

News to someone by News to someone by E-mail Share Building Technologies Office: News on Facebook Tweet about Building Technologies Office: News on Twitter Bookmark Building Technologies Office: News on Google Bookmark Building Technologies Office: News on Delicious Rank Building Technologies Office: News on Digg Find More places to share Building Technologies Office: News on AddThis.com... Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program Building Energy Software Tools Directory High Performance Buildings Database Financial Opportunities Office of Energy Efficiency and Renewable Energy Funding Opportunities Tax Incentives for Residential Buildings

377

DOE - Better Building  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Department of Energy | Energy Efficiency & Renewable Energy logo U.S. Department of Energy | Energy Efficiency & Renewable Energy logo EERE Home | Programs & Offices | Consumer Information Better Buildings Logo Better Buildings Update July 2013 Inside this edition: Highlights from the 2013 Efficiency Forum Recap: Better Buildings Summit for State & Local Communities Launching the Better Buildings Webinar Series Better Buildings Challenge Implementation Models and Showcase Projects Updated Better Buildings Websites New Members Highlights from the 2013 Efficiency Forum More than 170 people attended the second annual Better Buildings Efficiency Forum for commercial and higher education Partners in May at the National Renewable Energy Laboratory (NREL) in Golden, Colorado-the nation's largest net-zero energy office building. DOE thanks all Better Buildings Alliance Members and Better Buildings Challenge Partners that participated in the Efficiency Forum.

378

Food Service Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Service Service Characteristics by Activity... Food Service Food service buildings are those used for preparation and sale of food and beverages for consumption. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Food Service Buildings... An overwhelming majority (72 percent) of food service buildings were small buildings (1,001 to 5,000 square feet). Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics Number of Food Service Buildings by Predominant Building Size Categories Figure showing number of food service buildings by size. If you need assistance viewing this page, please contact 202-586-8800. Equipment Table: Buildings, Size, and Age Data by Equipment Types Predominant Heating Equipment Types in Food Service Buildings

379

Hospitals - Medical - Backup Generator Problems  

Science Conference Proceedings (OSTI)

This power quality (PQ) case study presents the investigation of problems while testing a backup generator at a hospital.

2003-12-31T23:59:59.000Z

380

A Look at Office Buildings - Index  

U.S. Energy Information Administration (EIA) Indexed Site

Office Office Home: A Look at CBECS Building Activities How large are they? How many employees are there? Where are they located? How old are they? Who owns and occupies them? Are they on multibuilding complexes? How do they use energy and how much does it cost? How do they use electricity? How do they use natural gas? What types of equipment do they use? How do they measure up on conservation efforts? Summary Comparison Table (All Activities) OFFICE BUILDINGS There were an estimated 705,000 office buildings in the U.S. in 1995. Number of Buildings In the Commercial Buildings Energy Consumption Survey (CBECS), office buildings include buildings used for general office space, professional offices, and administrative offices. For example, an office may be a computer center, bank, consultant's office, law office, or medical office. An office building may also be part of a campus or complex, such as an administrative building on a college campus. (See Description of Building Types on the main CBECS page for a more detailed description.)

Note: This page contains sample records for the topic "large hospital buildings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Building America System Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building America System Building America System Research Eric Werling, DOE Ren Anderson, NREL eric.werling@ee.doe.gov, 202-586-0410 ren.anderson@nrel.gov, 303-384-7443 April 2, 2013 Building America System Innovations: Accelerating Innovation in Home Energy Savings 2 | Program Name or Ancillary Text eere.energy.gov Project Relevance 3 | Building Technologies Office eere.energy.gov Building America Fills Market Need for a High-Performance Homes HUB of Innovation

382

Building Technologies Office: Building Science Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Education Science Education Photo of students investigating building enclosure moisture problems at a field testing facility in British Columbia. Students study moisture building enclosure issues at the Coquitlam Field Test facility in Vancouver, British Columbia. Credit: John Straube The U.S. Department of Energy's (DOE) Building America program recognizes that the education of future design/construction industry professionals in solid building science principles is critical to widespread development of high performance homes that are energy efficient, healthy, and durable. In November 2012, DOE met with leaders in the building science community to develop a strategic Building Science Education Roadmap that will chart a path for training skilled professionals who apply proven innovations and recognize the value of high performance homes. The roadmap aims to:

383

ENERGY EFFICIENT BUILDINGS PROGRAM. CHAPTER FROM THE ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1979  

SciTech Connect

The research reported in this volume was undertaken during FY 1979 within the Energy & Environment Division of the Lawrence Berkeley Laboratory. This volume will comprise a section of the Energy & Environment Division 1979 Annual Report, to be published in the summer of 1980. Work reported relate to: thermal performance of building envelopes; building ventilation and indoor air quality; a computer program for predicting energy use in buildings; study focused specifically on inherently energy intensive hospital buildings; energy efficient windows and lighting; potential for energy conservation and savings in the buildings sector; and evaluation of energy performance standards for residential buildings.

Authors, Various

1979-12-01T23:59:59.000Z

384

DOE Commercial Reference Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings Buildings Version 1.4_7.0 New Construction, ANSI/ASHRAE/IESNA 90.1-2004 Site Energy Use Intensities (EUIs) [kBtu/ft 2 /yr] August 2012 Miami Houston Phoenix Atlanta Los Angeles Las Vegas San Francisco Baltimore Albuquerque Seattle Chicago Denver Minneapolis Helena Duluth Fairbanks Weighted Average Climate Zone 1A 2A 2B 3A 3B 3B 3C 4A 4B 4C 5A 5B 6A 6B 7 8 Large Office 47 48 45 44 39 41 41 46 40 41 47 42 52 46 53 67 45 Medium Office 51 51 51 48 41 47 43 51 46 45 52 47 57 51 59 76 50 Small Office 52 51 53 47 41 46 41 51 47 47 54 49 59 54 61 83 51 Warehouse 29 23 24 27 19 24 23 32 29 28 38 34 46 41 53 78 30 Stand-alone Retail 60 63 62 63 46 58 53 74 64 68 84 72 96 87 107 150 72 Strip Mall 57 61 60 65 48 61 57 78 68 74 89 76 103 94 115 164 71 Primary School 57 57 57 55 46 54 52 62 56 55 66 59 75 67 80 103 60 Secondary School 60 61 59 60 44 56 51 71 59 63 78 66 91 79 99 135 67 Supermarket

385

Honest Buildings | Open Energy Information  

Open Energy Info (EERE)

Honest Buildings Honest Buildings Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Honest Buildings Agency/Company /Organization: Honest Buildings Sector: Energy Focus Area: Buildings Resource Type: Software/modeling tools User Interface: Website Website: www.honestbuildings.com/ Web Application Link: www.honestbuildings.com/ Cost: Free Honest Buildings Screenshot References: Honest Buildings[1] Logo: Honest Buildings Honest Buildings is a software platform focused on buildings. It brings together building service providers, occupants, owners, and other stakeholders onto a single portal to exchange information, offerings, and needs. It provides a voice for everyone who occupies buildings, works with buildings, and owns buildings globally to comment, display projects, and

386

Better Buildings Partners: Better Buildings Residential Network  

NLE Websites -- All DOE Office Websites (Extended Search)

Network The Better Buildings Residential Network connects energy efficiency programs and partners to share best practices and learn from one another to dramatically increase the...

387

Building Technologies Office: Building Energy Optimization Software  

NLE Websites -- All DOE Office Websites (Extended Search)

website to download. To help meet Building America's goal to develop market-ready energy solutions that improve efficiency of new and existing homes, the National Renewable...

388

Building Technologies Office: About the Commercial Buildings...  

NLE Websites -- All DOE Office Websites (Extended Search)

and others to implement real-world energy saving opportunities. Commercial Building Basics Federal, state, and local governments as well as private companies, own, operate...

389

Building Technologies Office: Energy Efficient Buildings Hub  

NLE Websites -- All DOE Office Websites (Extended Search)

the Energy Efficient Buildings Hub in Philadelphia, Pennsylvania to promote regional job creation and economic growth while also improving the energy efficiency of commercial...

390

Building Technologies Office: Commercial Building Performance...  

NLE Websites -- All DOE Office Websites (Extended Search)

AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange...

391

Building Technologies Office: About the Buildings Performance...  

NLE Websites -- All DOE Office Websites (Extended Search)

AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange...

392

Building Technologies Office: High Performance Green Building...  

NLE Websites -- All DOE Office Websites (Extended Search)

AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange...

393

Building Technologies Program: Building America Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

search Most Popular Expert Meeting Report: Cladding Attachment Over Exterior Insulation (BSC Report) The addition of insulation to the exterior of buildings is an effective...

394

Better Buildings Partners: Better Buildings Residential Network...  

NLE Websites -- All DOE Office Websites (Extended Search)

work they are doing to advance energy efficiency. AFC First Alabama Energy Doctors Austin Energy BC Hydro Boulder County, Colorado Building Sustainable Solutions, LLC California...

395

Buildings Energy Data Book: 9.1 ENERGY STAR  

Buildings Energy Data Book (EERE)

3 3 ENERGY STAR Commercial and Institutional Buildings and Industrial Plants (1) Building Type 1999 Office 2000 K-12 School 2001 Retail 2002 Hospital (General and Surgical) 2003 Supermarket/Grocery 2004 Hotel 2005 Bank/Financial Institution 2006 Warehouse (Unrefrigerated) 2007 Courthouse 2008 Medical Office 2009 Residence Hall/Dormitory 2010 Senior Care Facility 2011 Data Center Total (2) Warehouse (Refrigerated) House of Worship Industrial Plants Total Note(s): Source(s): 1) Data as of February 13, 2012. Additional buildings may qualify after applications are reviewed. 2) Totals are less than sum of individual years since some buildings have multiple years listed. Totals include buildings qualified in 2012. EPA, Database of ENERGY STAR Labeled Buildings and Plants, accessed February 13, 2012

396

Building Technologies Office: Integrated Whole-Building Energy Diagnostics  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Integrated Whole-Building Energy Diagnostics Research Project to someone by E-mail Share Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Facebook Tweet about Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Twitter Bookmark Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Google Bookmark Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Delicious Rank Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Digg Find More places to share Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on AddThis.com...

397

Building Technologies Office: Partner With DOE and Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Partner With DOE and Partner With DOE and Residential Buildings to someone by E-mail Share Building Technologies Office: Partner With DOE and Residential Buildings on Facebook Tweet about Building Technologies Office: Partner With DOE and Residential Buildings on Twitter Bookmark Building Technologies Office: Partner With DOE and Residential Buildings on Google Bookmark Building Technologies Office: Partner With DOE and Residential Buildings on Delicious Rank Building Technologies Office: Partner With DOE and Residential Buildings on Digg Find More places to share Building Technologies Office: Partner With DOE and Residential Buildings on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links

398

Table H7: Natural Gas Usage for Large Hospitals  

U.S. Energy Information Administration (EIA)

Author: Joelle Davis Last modified by: KJO Created Date: 11/30/2001 7:57:29 PM Company: DOE/EIA Other titles: Data for Table H7 RSEs for Table H7 'Data for Table H7 ...

399

Table H3: End Use Equipment in Large Hospitals  

U.S. Energy Information Administration (EIA)

Refrigeration Equipment HVAC Conservation Features ... Commercial Refrigeration ... Walk-In Units ..... Cases or Cabinets ..... Residential-Type Units ...

400

Energy Characteristics and Energy Consumed in Large Hospital ...  

U.S. Energy Information Administration (EIA)

Energy management and conservation reported in high percentages. ... nearly all had regular maintenance and scheduled repair for the HVAC system.

Note: This page contains sample records for the topic "large hospital buildings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Table H5: Major Fuels Usage for Large Hospitals  

U.S. Energy Information Administration (EIA)

District Chilled Water ..... Propane ..... More than 7,000 HDD ..... 5,500-7,000 HDD ..... 4,000-5,499 HDD ..... Fewer than 4,000 HDD ..... ...

402

Table H2: Fuels and End Uses in Large Hospitals  

U.S. Energy Information Administration (EIA)

District Chilled Water ..... Propane ..... Space-Heating ... Cooling Energy Sources Water-Heating Energy Sources Cooking Energy Sources Energy End Uses (more than

403

Large scale solar hot water heating systems for green hospital  

Science Conference Proceedings (OSTI)

Concerns over the impact of the environment on the massive usage of fossil fuels, combined with soaring energy prices, triggered increased interest in the use of solar energy. Solar energy is abundant, provides an important saving to the consumer, and ... Keywords: energy savings, evacuated tubes, greenhouse gas reduction, solar assisted hot water heaters

Poorya Ooshaksaraei; Baharudin Ali; Sohif Mat; M. Yahya; Kamaruzaman Ibrahim; Azami Zaharim; Kamaruzaman Sopian

2010-01-01T23:59:59.000Z

404

Energy Characteristics and Energy Consumed in Large Hospital ...  

U.S. Energy Information Administration (EIA)

... all or a portion of the windows were multi-layer glass and 76 percent of ... EIA - 1000 Independence Avenue, SW, Washington, DC 20585 About EIA Press Room Careers

405

Renovation and Expansion of the Caspary Research Building. Final Report  

SciTech Connect

Critical to the Hospital's rebuilding efforts have been its public partners at the federal, state, and local government levels who have made a major financial commitment to renovating the Hospital's research infrastructure. To date, the Hospital for Special Surgery (HSS) has been awarded a total of nearly $8.5 million to create and equip new, state-of-the-art laboratories for scientific investigations. The modernization of the Hospital's research facilities was jump-started in 1998 with a $950,000 seed grant from the National Institutes of Health (NIH) to renovate laboratories for immunology research in the Caspary Research Building. Coupled with a matching $5.5 million commitment from HSS, this infusion of NIH funding laid the groundwork for an overhaul of all of the Hospital's research space.

Grassia, V. L.

2004-02-07T23:59:59.000Z

406

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

4.1 Federal Buildings Energy Consumption 4.1 Federal Buildings Energy Consumption 4.2 Federal Buildings and Facilities Characteristics 4.3 Federal Buildings and Facilities Expenditures 4.4 Legislation Affecting Energy Consumption of Federal Buildings and Facilities 5Envelope and Equipment 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables This chapter provides information on Federal building energy consumption, characteristics, and expenditures, as well as information on legislation affecting said consumption. The main points from this chapter are summarized below: In FY 2007, Federal buildings accounted for 2.2% of all building energy consumption and 0.9% of total U.S. energy consumption.

407

Religious Worship Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Religious Worship Religious Worship Characteristics by Activity... Religious Worship Religious worship buildings are those in which people gather for religious activities. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Religious Worship Buildings... 93 percent of religious worship buildings were less than 25,000 square feet. The oldest religious worship buildings were found in the Northeast, where the median age was over two and half times older than those in South, where religious worship buildings were the newest. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics Top Number of Religious Worship Buildings by Predominant Building Size Categories Figure showing number of worship buildings by size. If you need assistance viewing this page, please call 202-586-8800.

408

DOE Building Technologies Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Overview Overview September 2013 Buildings.energy.gov/BPD BuildingsPerformanceDatabase@ee.doe.gov 2 * The BPD statistically analyzes trends in the energy performance and physical & operational characteristics of real commercial and residential buildings. The Buildings Performance Database 3 Design Principles * The BPD contains actual data on existing buildings - not modeled data or anecdotal evidence. * The BPD enables statistical analysis without revealing information about individual buildings. * The BPD cleanses and validates data from many sources and translates it into a standard format. * In addition to the BPD's analysis tools, third parties will be able to create applications using the

409

Energy Efficient Buildings Hub  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Henry C. Foley Henry C. Foley April 3, 2013 Presentation at the U.S. DOE Building Technologies Office Peer Review Meeting Purpose and Objectives * Problem Statement - Building energy efficiency has not increased in recent decades compared to other sectors especially transportation - Building component technologies have become more energy efficient but buildings as a whole have not * Impact of Project - A 20% reduction in commercial building energy use could save the nation four quads of energy annually * Project Focus - This is more than a technological challenge; the technology needed to achieve a 10% reduction in building energy use exists - The Hub approach is to comprehensively and systematically address

410

Existing Commercial Reference Buildings Constructed In or After 1980 -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Existing Commercial Reference Buildings Constructed In or After Existing Commercial Reference Buildings Constructed In or After 1980 - Archive Existing Commercial Reference Buildings Constructed In or After 1980 - Archive Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available. Archived Reference Buildings Building Type Version 1.2_4.0 updated 3/12/10 Large office (ZIP 2.3 MB) Medium office (ZIP 2.2 MB) Small office (ZIP 1.4 MB) Warehouse (ZIP 980 KB) Stand-alone retail (ZIP 2 MB) Strip mall (ZIP 2.3 MB) Primary school (ZIP 2.7 MB) Secondary school (ZIP 3.9 MB) Supermarket (ZIP 2.2 MB) Quick service restaurant (ZIP 1.1 MB)

411

Existing Commercial Reference Buildings Constructed Before 1980 - Archive  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Existing Commercial Reference Buildings Constructed Before 1980 - Existing Commercial Reference Buildings Constructed Before 1980 - Archive Existing Commercial Reference Buildings Constructed Before 1980 - Archive Here you will find past versions of the commercial reference building models for existing buildings constructed before 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available. Archived Reference Buildings Building Type Version 1.2_4.0 updated 3/12/10 Large office (ZIP 2.3 MB) Medium office (ZIP 2.2 MB) Small office (ZIP 1.4 MB) Warehouse (ZIP 980 KB) Stand-alone retail (ZIP 2 MB) Strip mall (ZIP 2.3 MB) Primary school (ZIP 2.7 MB) Secondary school (ZIP 3.9 MB) Supermarket (ZIP 2.2 MB) Quick service restaurant (ZIP 1.1 MB) Full service restaurant

412

NREL: Buildings Research - Residential Buildings Research Staff  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Buildings Research Staff Residential Buildings Research Staff Members of the Residential Buildings research staff have backgrounds in architectural, civil, electrical, environmental, and mechanical engineering, as well as environmental design and physics. Ren Anderson Dennis Barley Chuck Booten Jay Burch Sean Casey Craig Christensen Dane Christensen Lieko Earle Cheryn Engebrecht Mike Gestwick Mike Heaney Scott Horowitz Kate Hudon Xin Jin Noel Merket Tim Merrigan David Roberts Joseph Robertson Stacey Rothgeb Bethany Sparn Paulo Cesar Tabares-Velasco Jeff Tomerlin Jon Winkler Jason Woods Support Staff Marcia Fratello Kristy Usnick Photo of Ren Anderson Ren Anderson, Ph.D., Manager, Residential Research Group ren.anderson@nrel.gov Research Focus: Evaluating the whole building benefits of emerging building energy

413

Building Technologies Office: Building America Research Teams  

NLE Websites -- All DOE Office Websites (Extended Search)

Teams Teams Building America research projects are completed by industry consortia (teams) comprised of leading experts from across the country. The research teams design, test, upgrade and build high performance homes using strategies that significantly cut energy use. Building America research teams are selected through a competitive process initiated by a request for proposals. Team members are experts in the field of residential building science, and have access to world-class research facilities, partners, and key personnel, ensuring successful progress toward U.S. Department of Energy (DOE) goals. This page provides a brief description of the teams, areas of focus, and key team members. Advanced Residential Integrated Energy Solutions Alliance for Residential Building Innovation

414

Building Technologies Office: Commercial Building Partnership Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

Partnership Opportunities with the Department of Energy Partnership Opportunities with the Department of Energy Working with industry representatives and partners is critical to achieving significant improvements in the energy efficiency of new and existing commercial buildings. Here you will learn more about the government-industry partnerships that move us toward that goal. Key alliances and partnerships include: Photo of downtown Pittsburgh, Pennsylvania, a municipal Better Buildings Challenge partner, at dusk. Credit: iStockphoto Better Buildings Challenge This national leadership initiative calls on corporate officers, university presidents, and local leaders to progess towards the goal of making American buildings 20 percent more energy-efficient by 2020. Photo of Jim McClendon of Walmart speaking during the CBEA Executive Exchange with Commercial Building Stakeholders forum at the National Renewable Energy Laboratory in Golden, Colorado, on May 24, 2012.

415

Building Technologies Office: Residential Building Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Activities Building Activities The Department of Energy (DOE) is leading several different activities to develop, demonstrate, and deploy cost-effective solutions to reduce energy consumption across the residential building sector by at least 50%. The U.S. DOE Solar Decathlon is a biennial contest which challenges college teams to design and build energy efficient houses powered by the sun. Each team competes in 10 contests designed to gauge the performance, livability and affordability of their house. The Building America program develops market-ready energy solutions that improve the efficiency of new and existing homes while increasing comfort, safety, and durability. Guidelines for Home Energy Professionals foster the growth of a high quality residential energy upgrade industry and a skilled and credentialed workforce.

416

Building Technologies Office: Building America's Top Innovations Advance  

NLE Websites -- All DOE Office Websites (Extended Search)

America's Top America's Top Innovations Advance High Performance Homes to someone by E-mail Share Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Facebook Tweet about Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Twitter Bookmark Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Google Bookmark Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Delicious Rank Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Digg Find More places to share Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on AddThis.com...

417

Building Technologies Office: Subscribe to Building Technologies Office  

NLE Websites -- All DOE Office Websites (Extended Search)

Webinars Webinars Printable Version Share this resource Send a link to Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates to someone by E-mail Share Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Facebook Tweet about Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Twitter Bookmark Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Google Bookmark Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Delicious Rank Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Digg

418

Trends in Commercial Buildings--Buildings and Floorspace  

U.S. Energy Information Administration (EIA) Indexed Site

activity. Number of Commercial Buildings In 1979, the Nonresidential Buildings Energy Consumption Survey estimated that there were 3.8 million commercial buildings in the...

419

Building Energy Software Tools Directory: SIMBAD Building and...  

NLE Websites -- All DOE Office Websites (Extended Search)

SIMBAD Building and HVAC Toolbox SIMBAD Building and HVAC Toolbox logo. Performs transient simulations of HVAC plants with short time steps. SIMBAD Building and HVAC Toolbox is the...

420

Building Energy Software Tools Directory : SIMBAD Building and...  

NLE Websites -- All DOE Office Websites (Extended Search)

SIMBAD Building and HVAC Toolbox Back to Tool Screenshot for SIMBAD Building and HVAC Toolbox. Screenshot for SIMBAD Building and HVAC Toolbox...

Note: This page contains sample records for the topic "large hospital buildings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

About Building Energy Codes | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

buildings account for approximately 41% of all energy consumption and 72% of electricity usage. Building energy codes increase energy efficiency in buildings, resulting in...

422

City of Scottsdale - Green Building Policy for Public Buildings...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Other Agencies You are here Home Savings City of Scottsdale - Green Building Policy for Public Buildings City of Scottsdale - Green Building Policy for...

423

Building America Top Innovations 2013 Profile - Building America...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Center Building America Top Innovations 2013 Profile - Building America Solution Center PNNL set up the framework for the Building America Solution Center, a web tool connecting...

424

Energy Efficiency and Green Building Standards for State Buildings...  

Open Energy Info (EERE)

State Buildings Incentive Type Energy Standards for Public Buildings Applicable Sector State Government Eligible Technologies Comprehensive MeasuresWhole Building, Biomass,...

425

High-Performance Building Requirements for State Buildings (South...  

Open Energy Info (EERE)

State Buildings Incentive Type Energy Standards for Public Buildings Applicable Sector State Government Eligible Technologies Comprehensive MeasuresWhole Building, Biomass,...

426

Building Technologies Office: Commercial Building Energy Asset Score  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Development to someone by E-mail Program Development to someone by E-mail Share Building Technologies Office: Commercial Building Energy Asset Score Program Development on Facebook Tweet about Building Technologies Office: Commercial Building Energy Asset Score Program Development on Twitter Bookmark Building Technologies Office: Commercial Building Energy Asset Score Program Development on Google Bookmark Building Technologies Office: Commercial Building Energy Asset Score Program Development on Delicious Rank Building Technologies Office: Commercial Building Energy Asset Score Program Development on Digg Find More places to share Building Technologies Office: Commercial Building Energy Asset Score Program Development on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator

427

Building Technologies Office: Appliance and Equipment Standards...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE Building Technologies Office Appliance & Equipment Standards...

428

1999 Commercial Buildings Characteristics  

U.S. Energy Information Administration (EIA) Indexed Site

Data Reports > 2003 Building Characteristics Overview Data Reports > 2003 Building Characteristics Overview 1999 Commercial Buildings Energy Consumption Survey—Commercial Buildings Characteristics Released: May 2002 Topics: Energy Sources and End Uses | End-Use Equipment | Conservation Features and Practices Additional Information on: Survey methods, data limitations, and other information supporting the data The 1999 Commercial Buildings Energy Consumption Survey (CBECS) was the seventh in the series begun in 1979. The 1999 CBECS estimated that 4.7 million commercial buildings (± 0.4 million buildings, at the 95% confidence level) were present in the United States in that year. Those buildings comprised a total of 67.3 (± 4.6) billion square feet of floorspace. Additional information on 1979 to 1999 trends

429

Building condition monitoring  

E-Print Network (OSTI)

The building sector of the United States currently consumes over 40% of the United States primary energy supply. Estimates suggest that between 5 and 30% of any building's annual energy consumption is unknowingly wasted ...

Samouhos, Stephen V. (Stephen Vincent), 1982-

2010-01-01T23:59:59.000Z

430

Building Energy Code  

Energy.gov (U.S. Department of Energy (DOE))

''Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

431

Change in historic buildings  

E-Print Network (OSTI)

Change in historic buildings is inevitable. If these changes are not well-managed, the cityscape will be threatened because a city is composed of buildings. A good city should combine both growth and preservation. Controlling ...

Yin, Chien-Ni

1992-01-01T23:59:59.000Z

432

BUILDING PROCTOR December 2009  

E-Print Network (OSTI)

­ 1 Facilities Management Directory.......................................................................Maintenance ...............................................Maintenance ­ 15 Building Audit System to Facilities Management Dispatch Office (491-0077) who, in turn, addresses the maintenance needs. The building

433

Building Energy Standards  

Energy.gov (U.S. Department of Energy (DOE))

''Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

434

Model Building Energy Code  

Energy.gov (U.S. Department of Energy (DOE))

''Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

435

Building, landscape and section  

E-Print Network (OSTI)

All buildings have in their section a relationship to the landscape on which they are sited. Therefore we as inhabitants of these buildings may or may not have a relationship with the landscape. It is the supposition of ...

Johnson, Daniel B. (Daniel Bryant)

1992-01-01T23:59:59.000Z

436

Office Buildings: Assessing and Reducing Plug and Process Loads in Office Buildings (Fact Sheet)  

SciTech Connect

Plug and process loads (PPLs) in commercial buildings account for almost 5% of U.S. primary energy consumption. Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. PPLs are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the occupants. They use an increasingly large fraction of the building energy use pie because the number and variety of electrical devices have increased along with building system efficiency. Reducing PPLs is difficult because energy efficiency opportunities and the equipment needed to address PPL energy use in office spaces are poorly understood.

2013-04-01T23:59:59.000Z

437

Retail Buildings: Assessing and Reducing Plug and Process Loads in Retail Buildings (Fact Sheet)  

SciTech Connect

Plug and process loads (PPLs) in commercial buildings account for almost 5% of U.S. primary energy consumption. Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. PPLs are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the occupants. They use an increasingly large fraction of the building energy use pie because the number and variety of electrical devices have increased along with building system efficiency. Reducing PPLs is difficult because energy efficiency opportunities and the equipment needed to address PPL energy use in retail spaces are poorly understood.

2013-04-01T23:59:59.000Z

438

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Investigation of the Impact of Commercial Building Envelope Airtightness on HVAC Energy Use. Investigation of the Impact ...

439

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... of Entombment as a Decommission Option. ... Safety of Existing Federal Buildings: A Handbook. ... Madrzykowski, D. Manual of Evaluation Procedures ...

440

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Armed Forces Scientific Institute for Protection Technologies in the Field ... National Institute of Standards and Technology. ... Energy and Buildings, Vol. ...

Note: This page contains sample records for the topic "large hospital buildings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... in Operations, Maintenance, and Energy Costs for ... Strengthening, and Repair Technologies for Buildings ... Combustion Science and Technology, Vol. ...

442

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Cost-Effective Responses to Terrorist Risks in Constructed Facilities. ... building economics; disaster mitigation; economic analysis; homeland security ...

443

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... to the World Trade Center Disaster. ... World Trade Center; disasters; building collapse ... fires; flameproofing; steels; evacuation; response time; roofs ...

444

Kiowa County Commons Building  

Energy.gov (U.S. Department of Energy (DOE))

This poster describes the energy efficiency features and sustainable materials used in the Kiowa County Commons Building in Greensburg, Kansas.

445

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... State Solar Energy Legislation of 1976: A Review of Statutes Relating to Buildings. Final Report. State Solar Energy Legislation ...

446

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... GSA Guide to Specifying Interoperable Building Automation and Control Systems Using ANSI/ASHRAE Standard 135-1995, BACnet. ...

447

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... office buildings; air intake; systems engineering; maintenance; occupants; air flow; diffusers; air quality; ventilation systems; ASHRAE 62-2007 ...

448

Construction and Building  

Science Conference Proceedings (OSTI)

... in building sector energy consumption by improving ... housing construction: improving energy efficiency and ... Reinforced Soil Bridge Pier Load Test ...

2000-03-07T23:59:59.000Z

449

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... energy management system. Friend or Foe? ... Bushby, ST; Information Model for Building Automation Systems. Automation in Construction, Vol. ...

450

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... residential energy consumption. Field Study of the Effect of Wall Mass on the Heating and Cooling Loads of Residential Buildings. ...

451

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... insulation technologies are being developed in order to meet increasing stringent minimum efficiency standards for appliances and building ...

452

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Unfortunately, the equipment used to determine the thermal resistance of traditional building, insulation materials is not well suited for measuring ...

453

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... thermal conductance; thermal insulation; test methods Abstract: Calibration measurements of thin heat flux sensors for building applications are ...

454

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Thermal Expansion 17th Symposium. Proceedings. Chapter 2: Building Insulation Materials. June 24-27, 2007, Birmingham ...

455

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... sprinklers; egress; fire spread; fire models; polyurethane foams; pyrotechnics; smoke; insulation; death; fire fatalities; building codes; fire codes ...

456

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... National Institute of Standards and Technology is building an advanced ... thermal transmission properties for specimens of thermal insulation 500 mm ...

457

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... 1993. Journal of Thermal Insulation and Building Environments, Vol. 17, 330-350, April 1994. Keywords: polyisocyanurate ...

458

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... emergency plans. Stairwell Evacuation From Buildings: What We Know We Don't Know. NIST TN 1624; NIST Technical ...

459

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... F. NISTIR 7193; Appendix F; January 2005.Workshop to Define Information Needed by Emergency Responders During Building Emergencies. ...

460

Buildings Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Blog Buildings Blog RSS November 5, 2013 The Building Technologies Office's Emerging Technologies Program works to advance new commerical building technologies that are expected to...

Note: This page contains sample records for the topic "large hospital buildings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Buildings News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings News Buildings News RSS November 6, 2013 Milwaukee Showcases Leadership in Energy Efficiency, Better Buildings Challenge National Program to Reduce Energy Use and Save...

462

California commercial building energy benchmarking  

E-Print Network (OSTI)

querying (building type, climate zone, etc) sufficient forBuilding Type Floor Area Climate Zone Building Age Heatingtype, and zip code/climate zone. A memo describing the

Kinney, Satkartar; Piette, Mary Ann

2003-01-01T23:59:59.000Z

463

PROGRESS IN ENERGY EFFICIENT BUILDINGS  

E-Print Network (OSTI)

I Figure 21. Sample building energy use label expressed inanalyses of actual buildings energy consumption data confirm1983. PROGRESS IN ENERGY EFFICIENT BUILDINGS Leonard W. Wall

Wall, L.W.

2009-01-01T23:59:59.000Z

464

Building Technologies Office: Bookmark Notice  

NLE Websites -- All DOE Office Websites (Extended Search)

in Commercial Buildings Commercial Building Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Energy Asset Score Building...

465

Building Technologies Program: ENERGY STAR®  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY STAR on Twitter Bookmark Building Technologies Program: ENERGY STAR on Google Bookmark Building Technologies Program: ENERGY STAR on Delicious Rank Building...

466

Building Technologies Office: News Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

News Archives on Twitter Bookmark Building Technologies Office: News Archives on Google Bookmark Building Technologies Office: News Archives on Delicious Rank Building...

467

Building Technologies Office: Schedule Setting  

NLE Websites -- All DOE Office Websites (Extended Search)

Schedule Setting on Twitter Bookmark Building Technologies Office: Schedule Setting on Google Bookmark Building Technologies Office: Schedule Setting on Delicious Rank Building...

468

Building Technologies Office: ENERGY STAR®  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY STAR on Twitter Bookmark Building Technologies Office: ENERGY STAR on Google Bookmark Building Technologies Office: ENERGY STAR on Delicious Rank Building...

469

Building Technologies Program: Peer Review  

NLE Websites -- All DOE Office Websites (Extended Search)

Program: Peer Review on Twitter Bookmark Building Technologies Program: Peer Review on Google Bookmark Building Technologies Program: Peer Review on Delicious Rank Building...

470

Building Technologies Office: Regulatory Processes  

NLE Websites -- All DOE Office Websites (Extended Search)

Processes on Twitter Bookmark Building Technologies Office: Regulatory Processes on Google Bookmark Building Technologies Office: Regulatory Processes on Delicious Rank Building...

471

Building Technologies Office: Process Rule  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Process Rule on Twitter Bookmark Building Technologies Office: Process Rule on Google Bookmark Building Technologies Office: Process Rule on Delicious Rank Building...

472

Building Insulation | Open Energy Information  

Open Energy Info (EERE)

Building Insulation Jump to: navigation, search TODO: Add description List of Building Insulation Incentives Retrieved from "http:en.openei.orgwindex.php?titleBuildingInsulat...

473

Building Songs 1  

E-Print Network (OSTI)

. Sman shad building song 1.WAV Length of track 00:01:36 Related tracks (include description/relationship if appropriate) Sman shad building song 2 Title of track Building Songs Translation of title Description (to be used in archive entry...

Zla ba sgrol ma

2009-11-06T23:59:59.000Z

474

Axioms of affine buildings  

E-Print Network (OSTI)

We prove equivalence of certain axiom sets for affine buildings. Along the lines a purely combinatorial proof of the existence of a spherical building at infinity is given. As a corollary we obtain that ``being an affine building'' is independent of the metric structure of the space.

Schwer, Petra N

2009-01-01T23:59:59.000Z

475

Building application stack (BAS)  

Science Conference Proceedings (OSTI)

Many commercial buildings have digital controls and extensive sensor networks that can be used to develop novel applications for saving energy, detecting faults, improving comfort, etc. However, buildings are custom designed, leading to differences in ... Keywords: building applications, controls, energy efficiency

Andrew Krioukov; Gabe Fierro; Nikita Kitaev; David Culler

2012-11-01T23:59:59.000Z

476

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Passive fire protection needs to be evaluated for its ability to contain a fire ... For instance, a hospital may be a safe housing shelter for able-bodied ...

477

Building The last mile'  

SciTech Connect

Utilities may want to leverage the multibillion-dollar investment cable television is about to make. Virtually every utility has corporate objectives to focus more on the customer and change the way the customer is viewed. Utility supply strategy has been shifting away from building large, expensive power plants to making smaller investments with flexible options that can be adjusted to suit future conditions. This strategy is requisite to helping utilities keep and build their share of the market. One result is that utilities and regulators have adopted the concept of demand-side management (DSM) with enthusiasm. What's more, the last 10 years have brought new utility initiatives to explore customer value-oriented pricing structures that recognize the varying cost of production. These DSM opportunities and pricing initiatives require utilities to communicate with customers and help them manage their electricity use. New DSM programs that rely on communications technology include: (1) Providing real-time price signals for electricity-and eventually gas and water; (2) Implementing a direct- or shared-load control program for peak clipping or valley filling by interacting with properly equipped smart appliances; (3) Providing beyond-the-meter value-added services for residential customers, such as weather monitoring, video communications, home comfort automation, appliance monitoring and diagnostics, and energy efficiency tips; and (4) Obtaining detailed data on customers' electricity use patterns to develop new DSM programs. One action by the utility industry will determine whether this strategic vision is achieved: the establishment of a two-way, user-friendly, voice, data, and video communication path to the customer from the utility.

Gupta, P.C.; Bringenberg, J.

1994-03-15T23:59:59.000Z

478

Building Technologies Office: Sensor Suitcase for Small Commercial Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Sensor Suitcase for Sensor Suitcase for Small Commercial Building Retro-Commissioning Research Project to someone by E-mail Share Building Technologies Office: Sensor Suitcase for Small Commercial Building Retro-Commissioning Research Project on Facebook Tweet about Building Technologies Office: Sensor Suitcase for Small Commercial Building Retro-Commissioning Research Project on Twitter Bookmark Building Technologies Office: Sensor Suitcase for Small Commercial Building Retro-Commissioning Research Project on Google Bookmark Building Technologies Office: Sensor Suitcase for Small Commercial Building Retro-Commissioning Research Project on Delicious Rank Building Technologies Office: Sensor Suitcase for Small Commercial Building Retro-Commissioning Research Project on Digg

479

ORISE: Capacity Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Capacity Building Capacity Building Because public health agencies must maintain the resources to respond to public health challenges, critical situations and emergencies, the Oak Ridge Institute for Science and Education (ORISE) helps government agencies and organizations develop a solid infrastructure through capacity building. Capacity building refers to activities that improve an organization's ability to achieve its mission or a person's ability do his or her job more effectively. For organizations, capacity building may relate to almost any aspect of its work-from leadership and administration to program development and implementation. Strengthening an organizational infrastructure can help agencies and community-based organizations more quickly identify targeted audiences for

480

Autotune Building Energy Models  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Autotune Building Energy Models Autotune Building Energy Models Joshua New Oak Ridge National Laboratory newjr@ornl.gov, 865-241-8783 April 2, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * "All (building energy) models are wrong, but some are useful" - 22%-97% different from utility data for 3,349 buildings * More accurate models are more useful - Error from inputs and algorithms for practical reasons - Useful for cost-effective energy efficiency (EE) at speed and scale

Note: This page contains sample records for the topic "large hospital buildings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Chapter 3: Building Siting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

: Building Siting : Building Siting Site Issues at LANL Site Inventory and Analysis Site Design Transportation and Parking LANL | Chapter 3 Site Issues at LANL Definitions and related documents Building Siting Laboratory site-wide issues include transportation and travel distances for building occupants, impacts on wildlife corridors and hydrology, and energy supply and distribution limitations. Decisions made during site selec- tion and planning impact the surrounding natural habitat, architectural design integration, building energy con- sumption, occupant comfort, and occupant productivity. Significant opportunities for creating greener facilities arise during the site selection and site planning stages of design. Because LANL development zones are pre- determined, identify the various factors affecting devel-

482

NREL: Buildings Research - Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications Publications NREL publishes a variety of documents related to its research, including technical reports, brochures, and presentations. Read the information below to find out how to find a publication about buildings research at NREL. Accessing Research Papers Buildings Technical Highlights Research Papers - Commercial Research Papers - Residential Accessing Buildings Research Documents Documents produced by NREL related to buildings technologies may be accessed online in several different ways. National Renewable Energy Laboratory Publications Database The NREL Publications Database covers building technology documents written or edited by NREL staff and subcontractors from 1977 to the present. The database includes technical reports as well as outreach publications such

483

NREL: Buildings Research - Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities NREL provides industry, government, and university researchers with access to state-of-the-art and unique equipment for analyzing a wide spectrum of building energy efficiency technologies and innovations. NREL engineers and researchers work closely with industry partners to research and develop advanced technologies. NREL's existing facilities have been used to test and develop many award-winning building technologies and innovations that deliver significant energy savings in buildings, and the new facilities further extend those capabilities. In addition, the NREL campus includes living laboratories, buildings that researchers and other NREL staff use every day. Researchers monitor real-time building performance data in these facilities to study energy use

484

Better Buildings Alliance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kristen Taddonio DOE/EERE/BTO/Commercial Program Kristen.Taddonio@ee.doe.gov April 2, 2013 Better Buildings Alliance BTO Program Peer Review 2 | Building Technologies Office eere.energy.gov BTO Goals: BTO supports the development and deployment of technologies and systems to reduce building energy use by 50 percent, saving ~$2.2 trillion in energy-related costs. CBI Program Goals: New Buildings - Demonstrate 50% cost-effective savings at a convincing scale by 2020 (EISA 2007) - Demonstrate 100% cost-effective savings at a convincing scale by 2030 (EISA 2007) Existing Buildings

485

Simplified Building Energy Model (SBEM): A Tool to Analyse Building...  

Open Energy Info (EERE)

list of possible values (Agriculture Efficiency Requirements, Appliance & Equipment Standards and Required Labeling, Audit Requirements, Building Certification, Building Codes,...

486

Green Building Codes | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Green Building Codes Green Building Codes Green building codes go beyond minimum code requirements, raising the bar for energy efficiency. They can serve as a proving ground for future standards, and incorporate elements beyond the scope of the model energy codes, such as water and resource efficiency. As regional and national green building codes and programs become more available, they provide jurisdictions with another tool for guiding construction and development in an overall less impactful, more sustainable manner. ICC ASHRAE Beyond Codes International Green Construction Code (IgCC) The International Code Council's (ICC's) International Green Construction code (IgCC) is an overlay code, meaning it is written in a manner to be used with all the other ICC codes. The IgCC contains provisions for site

487

Building Technologies Office: Better Buildings Challenge  

NLE Websites -- All DOE Office Websites (Extended Search)

Challenge Challenge Photo of the Atlanta skyline on a sunny day, including the gold dome of the state capitol. The City of Atlanta has committed 16 million square feet of public and private space to substantive upgrades as part of the Better Buildings Challenge. Credit: iStockphoto The Better Buildings Challenge is part of the U.S. Department of Energy's (DOE's) Better Buildings Initiative, which aims to make U.S. commercial and industrial buildings at least 20% more efficient during the next decade. To achieve this aggressive target, DOE is working with public and private sector partners that commit to being leaders in energy efficiency. These partners will implement energy savings practices that improve energy efficiency and save money, and will showcase effective strategies and the results of their efforts.

488

Buildings*","Buildings Using Any Energy  

U.S. Energy Information Administration (EIA) Indexed Site

apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","District Chilled Water","Propane","Other a " "All Buildings* ...",4645,4414,4404,2391,451,67,33,5...

489

Building Technologies Office: Existing Commercial Reference Buildings...  

NLE Websites -- All DOE Office Websites (Extended Search)

You can also view related resources: an archive of past reference buildings files a ZIP file containing the TMY2 weather data that were used to generate the following...

490

Building Technologies Office: Commercial Building Energy Asset...  

NLE Websites -- All DOE Office Websites (Extended Search)

In order to allow equivalent comparisons of buildings across the U.S., the Asset Scoring Tool applies a weather adjustment to those energy uses that depend on climate (e.g.,...

491

Autotune E+ Building Energy Models  

SciTech Connect

This paper introduces a novel Autotune methodology under development for calibrating building energy models (BEM). It is aimed at developing an automated BEM tuning methodology that enables models to reproduce measured data such as utility bills, sub-meter, and/or sensor data accurately and robustly by selecting best-match E+ input parameters in a systematic, automated, and repeatable fashion. The approach is applicable to a building retrofit scenario and aims to quantify the trade-offs between tuning accuracy and the minimal amount of ground truth data required to calibrate the model. Autotune will use a suite of machine-learning algorithms developed and run on supercomputers to generate calibration functions. Specifically, the project will begin with a de-tuned model and then perform Monte Carlo simulations on the model by perturbing the uncertain parameters within permitted ranges. Machine learning algorithms will then extract minimal perturbation combinations that result in modeled results that most closely track sensor data. A large database of parametric EnergyPlus (E+) simulations has been made publicly available. Autotune is currently being applied to a heavily instrumented residential building as well as three light commercial buildings in which a de-tuned model is autotuned using faux sensor data from the corresponding target E+ model.

New, Joshua Ryan [ORNL; Sanyal, Jibonananda [ORNL; Bhandari, Mahabir S [ORNL; Shrestha, Som S [ORNL

2012-01-01T23:59:59.000Z