Powered by Deep Web Technologies
Note: This page contains sample records for the topic "large hadron collider" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Director's colloquium March 18 large hadron collider  

NLE Websites -- All DOE Office Websites (Extended Search)

Director's colloquium large hadron collider Director's colloquium March 18 large hadron collider Lyndon Evans of CERN will talk about the most complex scientific instrument ever...

2

The Very Large Hadron Collider: The farthest energy frontier  

E-Print Network (OSTI)

THE VERY LARGE HADRON COLLIDER: THE FARTHEST ENERGY FRONTIERAbstract The Very Large Hadron Collider (or Eloisatron)

Barletta, William A.

2001-01-01T23:59:59.000Z

3

Large hadron collider (LHC) project quality assurance plan  

E-Print Network (OSTI)

PUB-5478-Rev.B Large Hadron Collider (LHC) Project Qualityobjectives of the Large Hadron Collider (LHC) Project in aparticipation in the Large Hadron Collider Project. The LHC/

Gullo, Lisa; Karpenko, Victor; Robinson, Kem; Turner, William; Wong, Otis

2002-01-01T23:59:59.000Z

4

Fermilab Now - LHC Large Hadron Collider  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Hadron Collider (LHC) Over the next few months, a 12,500-ton detector will be lowered almost 300 feet below ground near the French-Swiss border. Dubbed "CMS," this detector...

5

Brookhaven and the Large Hadron Collider  

NLE Websites -- All DOE Office Websites (Extended Search)

Brookhaven & the Large Hadron Collider Brookhaven & the Large Hadron Collider Home News Brookhaven & ATLAS ATLAS ATLAS Calorimeter ATLAS Muon Spectrometer Construction Computing Upgrades RHIC & LHC Education LHC tunnel ATLAS detector ATLAS detector RACF BNL built superconducting magnets Brookhaven & the LHC The world's most powerful particle accelerator, the Large Hadron Collider (LHC) in Switzerland, powers unprecedented explorations of the deepest mysteries of the universe. In addition to serving as the U.S. host laboratory for the ATLAS experiment at the LHC, Brookhaven National Lab plays multiple roles in this international collaboration, from construction and project management to data storage and distribution. ATLAS rendering Brookhaven and ATLAS Brookhaven physicists and engineers are participating in one of the most

6

Higgs Physics at the Large Hadron Collider  

E-Print Network (OSTI)

A major goal of the future Large Hadron Collider will be the Higgs boson search. In this paper the discovery In this paper the discovery potential is described as a function of the Higgs mass showing that a Standard Model Higgs boson can be discovered after less than two years of running of the collider. The MSSM Higgs searches and the precision achievable on the measurement of the Higgs boson parameters are also discussed.

Davide Costanzo

2001-05-15T23:59:59.000Z

7

The Large Hadron Electron Collider Project  

E-Print Network (OSTI)

A Conceptual Design Report (CDR) for the Large Hadron Electron Collider, the LHeC, is being prepared, to which an introduction was given for the plenary panel discussion on the future of deep inelastic scattering held at DIS09. This is briefly summarised here. The CDR will comprise designs of the ep/eA collider, based on ring and linear electron accelerators, of the interaction region, designed for simultaneous $ep$ and $pp$ operation, of a new, modular detector, and it will present basics on the physics motivation for a high luminous Tera scale electron-nucleon collider as a complement to the LHC.

Max Klein

2009-08-20T23:59:59.000Z

8

Properties of Jets Measured with Charged Particles with the ATLAS Detector at the Large Hadron Collider  

E-Print Network (OSTI)

3 The Large Hadron Collider and ATLAS3.1 The Large Hadron Collider Complex . . . . . . . .of QCD at the Large Hadron Collider. These improvements will

Zenz, Seth Conrad

2011-01-01T23:59:59.000Z

9

Warped Views on the Large Hadron Collider  

E-Print Network (OSTI)

Models with warped extra dimensions, and their strongly coupled duals, offer a nice solution to the hierarchy problem and a very appealing realisation of flavour. Compatibility with the very stringent electroweak and flavour tests have made a generic picture emerge, with a composite Higgs, partial compositeness and custodial symmetry as the main ingredients. We review the main features of this picture and discuss how -and when- models with warped extra dimensions could be discovered at the Large Hadron Collider.

Jose Santiago

2011-03-21T23:59:59.000Z

10

A laser-based longitudinal density monitor for the large hadron collider  

E-Print Network (OSTI)

MONITOR FOR THE LARGE HADRON COLLIDER * J. -F. Beche, J.profile in the Large Hadron Collider (LHC). The technique

2004-01-01T23:59:59.000Z

11

Updated electron-cloud simulation results for the Large Hadron Collider (LHC)  

E-Print Network (OSTI)

RESULTS FOR THE LARGE HADRON COLLIDER LHC ? M. A. Furman andscreen of the Large Hadron Collider (LHC). We pay particular

Furman, M.A.; Pivi, M.

2001-01-01T23:59:59.000Z

12

String resonances at the Large Hadron Collider  

E-Print Network (OSTI)

The Large Hadron Collider promises to discover new physics beyond the Standard Model. An exciting possibility is the formation of string resonances at the TeV scale. In this article, we show how string resonances may be detected at the LHC in the $pp\\to\\gamma+jet$ channel. Our study is based on event shape variables, missing energy and momentum, maximum transverse momentum of photons and dijet invariant mass. These observables provide interesting signatures which enable us to discriminate string events from the Standard Model background.

Arunava Roy; Marco Cavaglia

2009-02-09T23:59:59.000Z

13

Dijet asymmetry at the Large Hadron Collider  

E-Print Network (OSTI)

The MARTINI numerical simulation allows for direct comparison of theoretical model calculations and the latest results for dijet asymmetry from the ATLAS and CMS collaborations. In this paper, partons are simulated as undergoing radiative and collisional processes throughout the evolution of central lead-lead collisions at the Large Hadron Collider. Using hydrodynamical background evolution determined by a simulation which fits well with the data on charged particle multiplicities from ALICE and a value of $\\alpha_s\\approx 0.25-0.3$, the dijet asymmetry is found to be consistent with partonic energy loss in a hot, strongly-interacting medium.

Clint Young; Björn Schenke; Sangyong Jeon; Charles Gale

2011-03-29T23:59:59.000Z

14

Taking the 'Large' out of Large Hadron Collider: Computational Breakthrough  

NLE Websites -- All DOE Office Websites (Extended Search)

Home » News & Publications » News » Science News » Taking the 'Large' out of Large Hadron Collider Taking the 'Large' out of Large Hadron Collider Computational breakthrough hastens modeling of 'tabletop accelerators' August 9, 2010 | Tags: Accelerator Science Contact: Margie Wylie | mwylie@lbl.gov | 510-486-7421 mori1 This 3D simulation shows how laser pulses create plasma wakes that propel electrons forward, much as a surfer is propelled forward by an ocean wave. Laser wakefield acceleration promises electron accelerators that are thousands of times more powerful than, yet a fraction the size of, conventional radio frequency devices. Particle accelerators like the Large Hadron Collider (LHC) at CERN are the big rock stars of high-energy physics-really big. The LHC cost nearly

15

Big Science and the Large Hadron Collider  

E-Print Network (OSTI)

The Large Hadron Collider (LHC), the particle accelerator operating at CERN, is probably the most complex and ambitious scientific project ever accomplished by humanity. The sheer size of the enterprise, in terms of financial and human resources, naturally raises the question whether society should support such costly basic-research programs. I address this question here by first reviewing the process that led to the emergence of Big Science and the role of large projects in the development of science and technology. I then compare the methodologies of Small and Big Science, emphasizing their mutual linkage. Finally, after examining the cost of Big Science projects, I highlight several general aspects of their beneficial implications for society.

Gian Francesco Giudice

2011-06-13T23:59:59.000Z

16

Optimization of muon timing and searches for heavy long-lived charged particles with the Compact Muon Solenoid detector at the Large Hadron Collider  

E-Print Network (OSTI)

Large Hadron Collider . . . . . . . . . . . . . . . . . . . . . . . .detector at the Large Hadron Collider A dissertationdetector at the Large Hadron Collider by Christopher Patrick

Farrell, Christopher Patrick

2013-01-01T23:59:59.000Z

17

Minimum Bias Measurements with the ATLAS Detector at the CERN Large Hadron Collider  

E-Print Network (OSTI)

Experiment at the Large Hadron Collider. Master’s thesis,1 ATLAS & LHC 1.1 Large Hadron Collider 1.2 Physics at theDetector at the CERN Large Hadron Collider by Michael A.

Leyton, Michael A.

2009-01-01T23:59:59.000Z

18

Broadband impedance calculations of the TAN vacuum chamber for the Large Hadron Collider (LHC)  

E-Print Network (OSTI)

CHAMBER FOR THE LARGE HADRON COLLIDER (LHC) ? D. Li § , G.chamber for the Large Hadron Collider (LHC). The TAN is the

Li, D.; Lambertson, G.; Turner, W.

2001-01-01T23:59:59.000Z

19

First Beam for Large Hadron Collider | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Beam for Large Hadron Collider Beam for Large Hadron Collider First Beam for Large Hadron Collider September 10, 2008 - 3:20pm Addthis WASHINGTON, DC - An international collaboration of scientists today sent the first beam of protons zooming at nearly the speed of light around the world's most powerful particle accelerator-the Large Hadron Collider (LHC)-located at the CERN laboratory near Geneva, Switzerland. The U.S. Department of Energy (DOE) and the National Science Foundation (NSF) invested a total $531 million in the construction of the accelerator and its detectors, which scientists believe could help unlock extraordinary discoveries about the nature of the physical universe. Celebrations across the U.S. and around the world mark the LHC's first circulating beam, an occasion more than 15 years in the making. An

20

SCIENCE ON SATURDAY- "The Large Hadron Collider: big science...  

NLE Websites -- All DOE Office Websites (Extended Search)

5, 2013, 9:30am Science On Saturday MBG Auditorium SCIENCE ON SATURDAY- "The Large Hadron Collider: big science for big questions" Professor James Olsen Department of Physics,...

Note: This page contains sample records for the topic "large hadron collider" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

June 30, 2008: US portion of Large Hadron Collider completed  

Energy.gov (U.S. Department of Energy (DOE))

June 30, 2008The Department and the National Science Foundation announce that the U.S. contribution to the Large Hadron Collider (LHC) has been completed on budget and ahead of schedule. The LHC,...

22

Distinguishing Spins in Decay Chains at the Large Hadron Collider.  

E-Print Network (OSTI)

ar X iv :h ep -p h/ 06 05 28 6v 4 2 9 A ug 2 00 8 Preprint typeset in JHEP style - PAPER VERSION Cavendish–HEP–06/11(rev.) Distinguishing Spins in Decay Chains at the Large Hadron Collider? Christiana Athanasiou1, Christopher G. Lester2... particles at the LHC,” Phys. Lett. B596 (2004) 205–212, hep-ph/0405052. [2] T. Goto, K. Kawagoe, and M. M. Nojiri, “Study of the slepton non-universality at the CERN Large Hadron Collider,” Phys. Rev. D70 (2004) 075016, hep-ph/0406317. – 21 – [3] H. C. Cheng...

Athanasiou, Christiana; Lester, Christopher G; Smillie, Jennifer M; Webber, Bryan R

23

Exploring small extra dimensions at the large hadron collider.  

E-Print Network (OSTI)

been shown that the ATLAS detector at the Large Hadron Collider can identify such narrow states up to a mass of 2080 GeV in the decay mode G ? e+e?, using a conservative model. This work extends the study of the e+e? channel over the full accessible... , the underlying parameters can be extracted. In one test model, the size of the extra dimension can be determined to a precision in length of 7× 10?33 m. Keywords: Hadronic Colliders, Beyond Standard Model, Extra Large Dimensions. Contents 1. Introduction 1 2...

Allanach, B C; Odagiri, Kosuke; Palmer, M J; Parker, Michael A; Sabetfakhri, A; Webber, Bryan R

24

Distinguishing Spins in Decay Chains at the Large Hadron Collider  

E-Print Network (OSTI)

ar X iv :h ep -p h/ 06 05 28 6v 4 2 9 A ug 2 00 8 Preprint typeset in JHEP style - PAPER VERSION Cavendish–HEP–06/11(rev.) Distinguishing Spins in Decay Chains at the Large Hadron Collider? Christiana Athanasiou1, Christopher G. Lester2... particles at the LHC,” Phys. Lett. B596 (2004) 205–212, hep-ph/0405052. [2] T. Goto, K. Kawagoe, and M. M. Nojiri, “Study of the slepton non-universality at the CERN Large Hadron Collider,” Phys. Rev. D70 (2004) 075016, hep-ph/0406317. – 21 – [3] H. C. Cheng...

Athanasiou, Christiana; Lester, Christopher G; Smillie, Jennifer M; Webber, Bryan R

25

Detecting exotic heavy leptons at the large hadron collider.  

E-Print Network (OSTI)

ar X iv :h ep -p h/ 01 08 09 7v 1 1 0 A ug 2 00 1 Preprint typeset in JHEP style. - HYPER VERSION Cavendish-HEP-01/10 DAMTP-2001-71 CERN-TH/2001-205 Detecting Exotic Heavy Leptons at the Large Hadron Collider B.C. Allanach?, C.M. Harris†, M... , CB3 0WA, UK. Abstract: New almost-degenerate charged and neutral heavy leptons are a feature of a number of theories of physics beyond the Standard Model. The prospects for detecting these at the Large Hadron Collider using a time-of-flight technique...

Allanach, B C; Harris, Chris M; Parker, Michael A; Richardson, P; Webber, Bryan R

26

Four-Lepton Resonance at the Large Hadron Collider  

E-Print Network (OSTI)

A spin-1 weakly interacting vector boson, Z', is predicted by many new physics theories. Searches at colliders for such a Z' resonance typically focus on lepton-antilepton or top-antitop events. Here we present a novel channel with a Z' resonance that decays to 4 leptons, but not to 2 leptons, and discuss its possible discovery at the Large Hadron Collider. This baryonic gauge boson is well motivated in a supersymmetry framework.

Vernon Barger; Hye-Sung Lee

2011-11-02T23:59:59.000Z

27

Higgs and Supersymmetry searches at the Large Hadron Collider  

E-Print Network (OSTI)

We present here the results for Higgs and Supersymmetry prospective searches at the Large Hadron Collider. We show that for one year at high luminosity, Standard Model and MSSM Higgs should be observed within the theoretically expected mass range. MSUGRA and restricted phenomenological MSSM searches lead to discovery of up to 2.5 TeV squarks and gluinos.

F. Charles

2001-05-03T23:59:59.000Z

28

The Thermal Model at the Large Hadron Collider  

E-Print Network (OSTI)

A discussion is presented of results with identified particles at the Large Hadron Collider. Possible deviations from the standard statistical distributions are investigated by considering in detail results obtained using the Tsallis distribution. Matter-antimatter production is discussed within the framework of chemical equilibrium in \\pp and heavy ion collisions.

J. Cleymans

2012-03-26T23:59:59.000Z

29

Composite Weak Bosons at the Large Hadron Collider  

E-Print Network (OSTI)

In a composite model of the weak bosons the excited bosons, in particular the p-wave bosons, are studied. The state with the lowest mass is identified with the boson, which has been discovered recently at the "Large Hadron Collider" at CERN. Specific properties of the excited weak bosons are studied, in particular their decays into weak bosons and into photons.

Harald Fritzsch

2013-07-24T23:59:59.000Z

30

Summary of the Very Large Hadron Collider Physics and Detector Subgroup  

E-Print Network (OSTI)

We summarize the activity of the Very Large Hadron Collider Physics and Detector subgroup during Snowmass 96.

D. Denisov; S. Keller

1997-01-28T23:59:59.000Z

31

Learning to See at the Large Hadron Collider  

E-Print Network (OSTI)

The staged commissioning of the Large Hadron Collider presents an opportunity to map gross features of particle production over a significant energy range. I suggest a visual tool - event displays in (pseudo)rapidity-transverse-momentum space - as a scenic route that may help sharpen intuition, identify interesting classes of events for further investigation, and test expectations about the underlying event that accompanies large-transverse-momentum phenomena.

Chris Quigg

2010-01-12T23:59:59.000Z

32

Learning to See at the Large Hadron Collider  

SciTech Connect

The staged commissioning of the Large Hadron Collider presents an opportunity to map gross features of particle production over a significant energy range. I suggest a visual tool - event displays in (pseudo)rapidity-transverse-momentum space - as a scenic route that may help sharpen intuition, identify interesting classes of events for further investigation, and test expectations about the underlying event that accompanies large-transverse-momentum phenomena.

Quigg, Chris

2010-01-01T23:59:59.000Z

33

Perturbative probes of QCD matter at the Large Hadron Collider  

E-Print Network (OSTI)

The main results on electroweak probes, jets, high-pT hadrons, heavy-flavour and quarkonia production from the first two years of heavy-ion operation at the Large Hadron Collider (LHC) are briefly reviewed. Data measured at center-of-mass energies sqrt(s_NN) = 2.76 TeV in lead-lead (Pb-Pb) collisions are compared to proton-proton (p-p) measurements in order to extract information on the properties of hot and dense strongly-interacting matter.

David d'Enterria

2012-07-18T23:59:59.000Z

34

Perturbative probes of QCD matter at the Large Hadron Collider  

E-Print Network (OSTI)

The main results on electroweak probes, jets, high-pT hadrons, heavy-flavour and quarkonia production from the first two years of heavy-ion operation at the Large Hadron Collider (LHC) are briefly reviewed. Data measured at center-of-mass energies sqrt(s_NN) = 2.76 TeV in lead-lead (Pb-Pb) collisions are compared to proton-proton (p-p) measurements in order to extract information on the properties of hot and dense strongly-interacting matter.

d'Enterria, David

2012-01-01T23:59:59.000Z

35

Forward Jet Production at the Large Hadron Collider  

E-Print Network (OSTI)

At the Large Hadron Collider (LHC) it will become possible for the first time to investigate experimentally the forward region in hadron-hadron collisions via high-$p_T$ processes. In the LHC forward kinematics QCD logarithmic corrections in the hard transverse momentum and in the large rapidity interval may both be quantitatively significant. We analyze the hadroproduction of forward jets in the framework of QCD high-energy factorization, which allows one to resum consistently both kinds of corrections to higher orders in QCD perturbation theory. We compute the short-distance matrix elements needed to evaluate the factorization formula at fully exclusive level. We discuss numerically dynamical features of multi-gluon emission at large angle encoded in the factorizing high-energy amplitudes.

M. Deak; F. Hautmann; H. Jung; K. Kutak

2009-08-04T23:59:59.000Z

36

Discriminating Supersymmetry and Black Holes at the Large Hadron Collider  

E-Print Network (OSTI)

We show how to differentiate the minimal supersymmetric extension of the standard model from black hole events at the Large Hadron Collider. Black holes are simulated with the CATFISH generator. Supersymmetry simulations use a combination of PYTHIA and ISAJET. Our study, based on event shape variables, visible and missing momenta, and analysis of dilepton events, demonstrates that supersymmetry and black hole events at the LHC can be easily discriminated.

Arunava Roy; Marco Cavaglia

2008-01-21T23:59:59.000Z

37

Possible Signals of Wino LSP at the Large Hadron Collider  

E-Print Network (OSTI)

We consider a class of anomaly-mediated supersymmetry breaking models where gauginos acquire masses mostly from anomaly mediation while masses of other superparticles are from Kahler interactions, which are as large as gravitino mass, O(10-100) TeV. In this class of models, the neutral Wino becomes the lightest superparticle in a wide parameter region. The mass splitting between charged and neutral Winos are very small and experimental discovery of such Winos is highly non-trivial. We discuss how we should look for Wino-induced signals at Large Hadron Collider.

M. Ibe; Takeo Moroi; T. T. Yanagida

2006-10-21T23:59:59.000Z

38

A review of Quantum Gravity at the Large Hadron Collider  

E-Print Network (OSTI)

The aim of this article is to review the recent developments in the phenomenology of quantum gravity at the Large Hadron Collider. We shall pay special attention to four-dimensional models which are able to lower the reduced Planck mass to the TeV region and compare them to models with a large extra-dimensional volume. We then turn our attention to reviewing the emission of gravitons (massless or massive) at the LHC and to the production of small quantum black holes.

Xavier Calmet

2010-05-11T23:59:59.000Z

39

Charged heavy vector boson production at the Large Hadron Collider  

E-Print Network (OSTI)

We evaluate the sensitivity of the Large Hadron Collider (LHC) to charged heavy vector boson production followed by their decays to $W^\\pm Z^0$. We include the correlated decays of the gauge bosons to leptonic final states. With an integrated luminosity of $10^5$ pb$^{-1}$, charged technirhos in the minimal SU(N)$_{TC}$ model for $N\\geq 7$ yield signals with a significance larger than 5. In more general models, we explore the range of parameter space to which LHC experiments will be sensitive. Rapidity correlations exhibiting enhanced longitudinal gauge boson pair production are also shown.

Dal Soo Oh; M. H. Reno

1998-12-02T23:59:59.000Z

40

Establishing the Mirage Mediation Model at the Large Hadron Collider  

E-Print Network (OSTI)

This thesis describes the research I did during my Master's study. I investigated the stau-neutralino coannihilation region of the Mirage Mediation Model at the Large Hadron Collider (LHC). By constructing five kinematic observables at the LHC, the masses of supersymmetric particles (sparticles) were determined. The Mirage Mediation Model parameters were determined from the sparticles' masses. This is the first time to establish the Mirage Mediation Model at the LHC. All these techniques can be applied to other coannihilation regions of the Mirage Mediation Model and other supersymmetry (SUSY) models.

Wang, Kechen

2011-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "large hadron collider" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Compressed supersymmetry after 1/fb at the Large Hadron Collider  

E-Print Network (OSTI)

We study the reach of the Large Hadron Collider with 1/fb of data at sqrt{s} = 7 TeV for several classes of supersymmetric models with compressed mass spectra, using jets and missing transverse energy cuts like those employed by ATLAS for Summer 2011 data. In the limit of extreme compression, the best limits come from signal regions that do not require more than 2 or 3 jets and that remove backgrounds by requiring more missing energy rather than higher effective mass.

Thomas J. LeCompte; Stephen P. Martin

2011-11-29T23:59:59.000Z

42

Non-universal gaugino and scalar masses, hadronically quiet trileptons and the Large Hadron Collider  

E-Print Network (OSTI)

We investigate the parameter space of the minimal supersymmetric Standard Model (MSSM) where the gluino and squark masses are much above 1 TeV but the remaining part of the sparticle spectrum is accessible to the Large Hadron Collider at CERN. After pointing out that such a scenario may constitute an important benchmark of gaugino/scalar non-universality, we find that hadronically quiet trileptons are rather useful signals for it. Regions of the parameter space, where the signal is likely to be appreciable, are identified through a detailed scan. The advantage of hadronically quiet trileptons over other types of signals is demonstrated.

Subhaditya Bhattacharya; AseshKrishna Datta; Biswarup Mukhopadhyaya

2008-09-11T23:59:59.000Z

43

eta_c production at the Large Hadron Collider  

E-Print Network (OSTI)

We have studied the production of the 1S_0 charmonium state, eta_c, at the Large Hadron Collider (LHC) in the framework of Non-Relativistic Quantum Chromodynamics (NRQCD) using heavy-quark symmetry. We find that NRQCD predicts a large production cross-section for this resonance at the LHC even after taking account the small branching ratio of eta_c into two photons. We show that it will be possible to test NRQCD through its predictions for eta_c, with the statistics that will be achieved at the early stage of the LHC, running at a center of mass energy of 7 TeV with an integrated luminosity of 100 pb^{-1}

Sudhansu S. Biswal; K. Sridhar

2010-07-29T23:59:59.000Z

44

Black Hole Cross Section at the Large Hadron Collider  

E-Print Network (OSTI)

Black hole production at the Large Hadron Collider (LHC) was first discussed in 1999. Since then, much work has been performed in predicting the black hole cross section. In light of the start up of the LHC, it is now timely to review the state of these calculations. We review the uncertainties in estimating the black hole cross section in higher dimensions. One would like to make this estimate as precise as possible since the predicted values, or lower limits, obtain for the fundamental Planck scale and number of extra dimensions from experiments will depend directly on the accuracy of the cross section. Based on the current knowledge of the cross section, we give a range of lower limits on the fundamental Planck scale that could be obtained at LHC energies.

Douglas M. Gingrich

2006-09-06T23:59:59.000Z

45

Department of Energy assessment of the Large Hadron Collider  

SciTech Connect

This report summarizes the conclusions of the committee that assessed the cost estimate for the Large Hadron Collider (LHC). This proton-proton collider will be built at CERN, the European Laboratory for Particle Physics near Geneva, Switzerland. The committee found the accelerator-project cost estimate of 2.3 billion in 1995 Swiss francs, or about $2 billion US, to be adequate and reasonable. The planned project completion date of 2005 also appears achievable, assuming the resources are available when needed. The cost estimate was made using established European accounting procedures. In particular, the cost estimate does not include R and D, prototyping and testing, spare parts, and most of the engineering labor. Also excluded are costs for decommissioning the Large Electron-Positron collider (LEP) that now occupies the tunnel, modifications to the injector system, the experimental areas, preoperations costs, and CERN manpower. All these items are assumed by CERN to be included in the normal annual operations budget rather than the construction budget. Finally, contingency is built into the base estimate, in contrast to Department of Energy (DOE) estimates that explicitly identify contingency. The committee`s charge, given by Dr. James F. Decker, Deputy Directory of the DOE Office of Energy Research, was to understand the basis for the LHC cost estimate, identify uncertainties, and judge the overall validity of the estimate, proposed schedule, and related issues. The committee met at CERN April 22--26, 1996. The assessment was based on the October 1995 LHC Conceptual Design Report or ``Yellow Book,`` cost estimates and formal presentations made by the CERN staff, site inspection, detailed discussions with LHC technical experts, and the committee members` considerable experience.

1996-06-01T23:59:59.000Z

46

Ultrafast tracking electronics for the ATLAS trigger at the CERN Large Hadron Collider  

E-Print Network (OSTI)

FTK Ultrafast tracking electronics for the ATLAS trigger at the CERN Large Hadron Collider Italy challenge at a hadron collider is determining what a new phenomenon is. Higgs, SUSY, KK excitations, Z of decay products multiple decay modes couplings to other particles · For each of these, large samples

47

Large hadron collider (LHC) project quality assurance plan  

Science Conference Proceedings (OSTI)

The LHC Quality Assurance Plan is a set of operating principles, requirements, and practices used to support Berkeley Lab's participation in the Large Hadron Collider Project. The LHC/QAP is intended to achieve reliable, safe, and quality performance in the LHC project activities. The LHC/QAP is also designed to fulfill the following objectives: (1) The LHC/QAP is Berkeley Lab's QA program document that describes the elements necessary to integrate quality assurance, safety management, and conduct of operations into the Berkeley Lab's portion of the LHC operations. (2) The LHC/QAP provides the framework for Berkeley Lab LHC Project administrators, managers, supervisors, and staff to plan, manage, perform, and assess their Laboratory work. (3) The LHC/QAP is the compliance document that conforms to the requirements of the Laboratory's Work Smart Standards for quality assurance (DOE O 414.1, 10 CFR 830.120), facility operations (DOE O 5480.19), and safety management (DOE P 450.4).

Gullo, Lisa; Karpenko, Victor; Robinson, Kem; Turner, William; Wong, Otis

2002-09-30T23:59:59.000Z

48

Estimation of the Invisible Z Background to Hadronic Supersymmetry Searches Performed With Proton-Proton Collision Data at 7 and 8 TeV Observed With the CMS Detector During the First run of the CERN Large Hadron Collider  

E-Print Network (OSTI)

The Large Hadron Collider (LHC) accelerator system, showingEW electroweak. 8 LHC Large Hadron Collider. xii, 17–21, 37,at the CERN Large Hadron Collider”, JINST 3 (2008) S08003,

Sturdy, Jared

2013-01-01T23:59:59.000Z

49

Searches for extra dimensions in the CMS experiment at the Large Hadron Collider (LHC)  

Science Conference Proceedings (OSTI)

Predictions of multidimensonal theories are analyzed, and the possibility of detecting signals from extra spatial dimensions in the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) is studied.

Shmatov, S. V., E-mail: shmatov@cern.ch [Joint Institute for Nuclear Research (Russian Federation); Collaboration: CMS Collaboration

2011-03-15T23:59:59.000Z

50

Predicting Large Hadron Collider Observations using Kazuo Kondo's Mass Quantum Cascade  

E-Print Network (OSTI)

The late Kazuo Kondo left a hitherto unknown a priori particle theory which provides predictions of massive particles which may be detected by the Large Hadron Collider (LHC). This article briefly introduces Kondo's work and documents the derivation and masses of his expected hyper-mesons, hyper-hadrons, heavy leptons and massive neutrinos. Several particles in these classes may have already been detected.

Grenville J. Croll

2008-04-27T23:59:59.000Z

51

90Exploring the Large Hadron Collider The 27-kilometer diameter LHC ring, buried deep underground, uses thousands of  

E-Print Network (OSTI)

90Exploring the Large Hadron Collider The 27-kilometer diameter LHC ring, buried deep underground Joules)? During November, 2009 the Large Hadron Collider experiment at CERN began a slow, step, uses thousands of magnets to steer two beams of protons so that they collide at specific points along

52

Hadron Colliders and Hadron Collider Physics Symposium  

E-Print Network (OSTI)

This article summarizes main developments of the hadron colliders and physics results obtained since their inception around forty years ago. The increase in the collision energy of over two orders of magnitude and even larger increases in luminosity provided experiments with unique data samples. Developments of full acceptance detectors, particle identification and analysis methods provided fundamental discoveries and ultra-precise measurements which culminated in the completion and in depth verification of the Standard Model. Hadron Collider Physics symposium provided opportunities for those working at hadron colliders to share results of their research since 1979 and helped greatly to develop the field of particle physics.

Denisov, Dmitri

2013-01-01T23:59:59.000Z

53

W production at large transverse momentum at the Large Hadron Collider  

E-Print Network (OSTI)

We study the production of W bosons at large transverse momentum in pp collisions at the Large Hadron Collider (LHC). We calculate the complete next-to-leading order (NLO) corrections to the differential cross section. We find that the NLO corrections provide a large increase to the cross section but, surprisingly, do not reduce the scale dependence relative to leading order (LO). We also calculate next-to-next-to-leading-order (NNLO) soft-gluon corrections and find that, although they are small, they significantly reduce the scale dependence thus providing a more stable theoretical prediction.

Richard J. Gonsalves; Nikolaos Kidonakis; Agustin Sabio Vera

2005-07-27T23:59:59.000Z

54

W Production at Large Transverse Momentum at the CERN Large Hadron Collider  

SciTech Connect

We study the production of W bosons at large transverse momentum in pp collisions at the CERN Large Hadron Collider. We calculate the complete next-to-leading order (NLO) corrections to the differential cross section. We find that the NLO corrections provide a large increase to the cross section but, surprisingly, do not reduce the scale dependence relative to leading order (LO). We also calculate next-to-next-to-leading-order (NNLO) soft-gluon corrections and find that, although they are small, they significantly reduce the scale dependence thus providing a more stable result.

Gonsalves, Richard J. [Department of Physics, University at Buffalo, State University of New York, Buffalo, New York 14260-1500 (United States); Kidonakis, Nikolaos [Kennesaw State University, Physics no. 1202, 1000 Chastain Road, Kennesaw, Georgia 30144-5591 (United States); Vera, Agustin Sabio [II. Institut fuer Theoretische Physik, Universitaet Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany)

2005-11-25T23:59:59.000Z

55

Production of tidal-charged black holes at the Large Hadron Collider  

E-Print Network (OSTI)

Tidal-charged black hole solutions localized on a three-brane in the five-dimensional gravity scenario of Randall and Sundrum have been known for some time. The solutions have been used to study the decay, and growth, of black holes with initial mass of about 10 TeV. These studies are interesting in that certain black holes, if produced at the Large Hadron Collider, could live long enough to leave the detectors. I examine the production of tidal-charged black holes at the Large Hadron Collider and show that it is very unlikely that they will be produced during the lifetime of the accelerator.

Douglas M. Gingrich

2010-01-05T23:59:59.000Z

56

Production of tidal-charged black holes at the Large Hadron Collider  

SciTech Connect

Tidal-charged black hole solutions localized on a three-brane in the five-dimensional gravity scenario of Randall and Sundrum have been known for some time. The solutions have been used to study the decay, and growth, of black holes with initial mass of about 10 TeV. These studies are interesting in that certain black holes, if produced at the Large Hadron Collider, could live long enough to leave the detectors. I examine the production of tidal-charged black holes at the Large Hadron Collider and show that it is very unlikely that they will be produced during the lifetime of the accelerator.

Gingrich, Douglas M. [Centre for Particle Physics, Department of Physics, University of Alberta, Edmonton, AB T6G 2G7 (Canada)

2010-03-01T23:59:59.000Z

57

SUSY-induced FCNC top-quark processes at the Large Hadron Collider  

E-Print Network (OSTI)

We systematically calculate various flavor-changing neutral-current top-quark processes induced by supersymmetry at the Large Hadron Collider, which include five decay modes and six production channels. To reveal the characteristics of these processes, we first compare the dependence of the rates for these channels on the relevant supersymmetric parameters, then we scan the whole parameter space to find their maximal rates, including all the direct and indirect current experimental constraints on the scharm-stop flavor mixings. We find that, under all these constraints, only a few channels, through cg->t at parton-level and t-> ch, may be observable at the Large Hadron Collider.

J. J. Cao; G. Eilam; M. Frank; K. Hikasa; G. L. Liu; I. Turan; J. M. Yang

2007-02-26T23:59:59.000Z

58

Large Hadron Collider probe of supersymmetric neutrinoless double beta decay mechanism.  

E-Print Network (OSTI)

ar X iv :0 90 2. 46 97 v1 [ he p- ph ] 26 Fe b 2 00 9 CAVENDISH-HEP-2009-03, DAMTP-2009-15, DO-TH-09/01 Large Hadron Collider probe of supersymmetric neutrinoless double beta decay mechanism B. C. Allanach? DAMTP, University of Cambridge... how data from the Large Hadron Collider (LHC) can favor or disfavor the latter possibility. The experimental observations of neutrino oscillations has lead to the realization that at least two of the three known neutrinos have masses [5]. Thus...

Allanach, B C; Kom, C H; Pas, H

59

The Standard Model and Supersymmetric Flavor Puzzles at the Large Hadron Collider  

E-Print Network (OSTI)

ar X iv :0 71 2. 06 74 v1 [ he p- ph ] 5 D ec 20 07 UCI-TR-2007-49 The Standard Model and Supersymmetric Flavor Puzzles at the Large Hadron Collider Jonathan L. Feng,1 Christopher G. Lester,2 Yosef Nir,3 and Yael Shadmi4 1Department of Physics... –Israel Institute of Technology, Haifa 32000, Israel (Dated: December 2007) Abstract Can the Large Hadron Collider explain the masses and mixings of the known fermions? A promising possibility is that these masses and mixings are determined by flavor symmetries...

Feng, Jonathan; Lester, Christopher G; Nir, Yosef; Shadmi, Yael

2008-01-01T23:59:59.000Z

60

Phenomenology of the minimal $B-L$ Model: the Higgs sector at the Large Hadron Collider and future Linear Colliders  

E-Print Network (OSTI)

This Thesis is devoted to the study of the phenomenology of the Higgs sector of the minimal $B-L$ extension of the Standard Model at present and future colliders. Firstly, the motivations that call for the minimal $B-L$ extension are summarised. In addition, the model is analysed in its salient parts. Moreover, a detailed review of the phenomenological allowed Higgs sector parameter space is given. Finally, a complete survey of the distinctive Higgs boson signatures of the model at both the Large Hadron Collider and the future linear colliders is presented.

Giovanni Marco Pruna

2011-06-23T23:59:59.000Z

Note: This page contains sample records for the topic "large hadron collider" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Signals of neutralinos and charginos from gauge boson fusion at the CERN Large Hadron Collider  

E-Print Network (OSTI)

We point out that interesting signals of the non-strongly interacting sector of the supersymmetric standard model arise from the production of charginos and neutralinos via vector boson fusion (VBF) at the Large Hadron Collider (LHC). In particular, if R-parity is violated, the hadronically quiet signals of charginos and neutralinos through direct production get considerably suppressed. We show that in such cases, the VBF channel can be useful in identifying this sector through clean and background-free final states.

Anindya Datta; Partha Konar; Biswarup Mukhopadhyaya

2001-09-09T23:59:59.000Z

62

Vector meson production in coherent hadronic interactions: Update on predictions for energies available at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider  

SciTech Connect

In this Rapid Communication we update our predictions for the photoproduction of vector mesons in coherent pp and AA collisions at Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) energies using the color dipole approach and the Color Glass Condensate formalism. In particular, we present our predictions for the first run of the LHC at half energy and for the rapidity dependence of the ratio between the J/{Psi} and {rho} cross sections at RHIC energies.

Goncalves, V. P. [Instituto de Fisica e Matematica, Universidade Federal de Pelotas Caixa Postal 354, CEP 96010-900, Pelotas, RS (Brazil); Machado, M. V. T. [Instituto de Fisica, Universidade Federal do Rio Grande do Sul Caixa Postal 15051, CEP 91501-970, Porto Alegre, RS (Brazil)

2011-07-15T23:59:59.000Z

63

The Protection System for the Superconducting Elements of the Large Hadron Collider at CERN  

E-Print Network (OSTI)

The protection system for the superconducting elements of the Large Hadron Collider (LHC) [1] at the European Laboratory for Particle Physics (CERN), and its associated equipment are presented: quench detectors, cold diodes, quench heaters and related power supplies, extraction resistors and associated current breakers. Features such as radiation resistance, redundancy and required reliability are discussed.

Dahlerup-Petersen, K; Gómez-Costa, J L; Hagedorn, Dietrich; Proudlock, Paul; Rodríguez-Mateos, F; Schmidt, R; Sonnemann, F

1999-01-01T23:59:59.000Z

64

Improving the discovery potential of charged Higgs bosons at the Tevatron and Large Hadron Collider  

E-Print Network (OSTI)

We outline several improvements to the experimental analyses carried out at Tevatron (Run 2) or simulated in view of the Large Hadron Collider (LHC) that could increase the scope of CDF/D0 and ATLAS/CMS in detecting charged Higgs bosons

S. Moretti

2002-05-10T23:59:59.000Z

65

Single Production of Fourth Family b' Quark at the Large Hadron electron Collider  

E-Print Network (OSTI)

We examined the single production of fourth family b' quarks at the Large Hadron electron Collider (LHeC).We have analyzed the background and the signal processes for the mass range 300-800 GeV. We find the discovery region for an optimal parametrization of the Vqb' matrix elements.

O. Cakir; V. Cetinkaya

2009-12-10T23:59:59.000Z

66

Jet substructure as a new Higgs search channel at the Large Hadron Collider  

E-Print Network (OSTI)

We show that W H and Z H production where the Higgs boson decays to bbbar can be recovered as good search channels for the Standard Model Higgs at the Large Hadron Collider. This is done by requiring the Higgs to have high transverse momentum, and employing state-of-the-art jet reconstruction and decomposition techniques.

Jonathan M. Butterworth; Adam R. Davison; Mathieu Rubin; Gavin P. Salam

2008-10-02T23:59:59.000Z

67

Constraints on New Physics from Baryogenesis and Large Hadron Collider Data  

E-Print Network (OSTI)

We demonstrate the power of constraining theories of new physics by insisting that they lead to electroweak baryogenesis, while agreeing with current data from the Large Hadron Collider. The general approach is illustrated with a singlet scalar extension of the Standard Model. Stringent bounds can already be obtained, which reduce the viable parameter space to a small island.

Poul H. Damgaard; Donal O'Connell; Troels C. Petersen; Anders Tranberg

2013-05-19T23:59:59.000Z

68

Signatures for right-handed neutrinos at the Large Hadron Collider  

E-Print Network (OSTI)

We explore possible signatures for right-handed neutrinos in TeV scale B-L extension of the Standard Model (SM) at the Large Hadron Collider (LHC). The studied four lepton signal has a tiny SM background. We find the signal experimentally accessible at LHC for the considered parameter regions.

Katri Huitu; Shaaban Khalil; Hiroshi Okada; Santosh Kumar Rai

2008-03-19T23:59:59.000Z

69

NCG gluon fusion for the Higgs production at large hadron colliders  

Science Conference Proceedings (OSTI)

A pure NCG gluon fusion contribution to the Higgs production at large hadron colliders is discussed. It is shown that the NCG results become relevant at very high energies. This can be a good signal for the space-time non commutativity events.

Chadou, I.; Mebarki, N.; Bekli, M. R. [Laboratoire de Physique Mathematique et Subatomique, University of Constantine (Algeria)

2012-06-27T23:59:59.000Z

70

Summary of the Very Large Hadron Collider Physics and Detector subgroup  

SciTech Connect

We summarize the activity of the Very Large Hadron Collider Physics and Detector subgroup during Snowmass 96. Members of the group: M. Albrow, R. Diebold, S. Feher, L. Jones, R. Harris, D. Hedin, W. Kilgore, J. Lykken, F. Olness, T. Rizzo, V. Sirotenko, and J. Womersley. 9 refs.

Denisov, D.; Keller, S.

1996-12-31T23:59:59.000Z

71

Exploring higher dimensional black holes at the large hadron collider.  

E-Print Network (OSTI)

formation in the grazing collision of high-energy particles, Phys. Rev. D67 (2003) 024009, [gr-qc/0209003]. [27] C. M. Harris, Physics Beyond the Standard Model: Exotic Leptons and Black Holes at Future Colliders. PhD thesis, University of Cambridge, 2003...

Harris, Chris M; Palmer, M J; Parker, Michael A; Richardson, P

72

Signals of doubly-charged Higgsinos at the CERN Large Hadron Collider  

SciTech Connect

Several supersymmetric models with extended gauge structures, motivated by either grand unification or by neutrino mass generation, predict light doubly-charged Higgsinos. In this work we study productions and decays of doubly-charged Higgsinos present in left-right supersymmetric models, and show that they invariably lead to novel collider signals not found in the minimal supersymmetric model or in any of its extensions motivated by the {mu} problem or even in extra dimensional theories. We investigate their distinctive signatures at the Large Hadron Collider in both pair- and single-production modes, and show that they are powerful tools in determining the underlying model via the measurements at the Large Hadron Collider experiments.

Demir, Durmus A. [Department of Physics, Izmir Institute of Technology, IZTECH, TR35430 Izmir (Turkey); Deutsches Elektronen--Synchrotron, DESY, D-22603 Hamburg (Germany); Frank, Mariana; Turan, Ismail [Department of Physics, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec H4B 1R6 (Canada); Huitu, Katri; Rai, Santosh Kumar [Department of Physics, University of Helsinki and Helsinki Institute of Physics, P.O. Box 64, FIN-00014 Helsinki (Finland)

2008-08-01T23:59:59.000Z

73

Missing energy in black hole production and decay at the Large Hadron Collider  

E-Print Network (OSTI)

Black holes could be produced at the Large Hadron Collider in TeV-scale gravity scenarios. We discuss missing energy mechanisms in black hole production and decay in large extra-dimensional models. In particular, we examine how graviton emission into the bulk could give the black hole enough recoil to leave the brane. Such a perturbation would cause an abrupt termination in Hawking emission and result in large missing-energy signatures.

Douglas M. Gingrich

2007-06-05T23:59:59.000Z

74

Search for Gluino-Mediated Supersymmetry in Events With Bottom-Quark Jets and Missing Transverse Energy With the Compact Muon Solenoid Detector at the Large Hadron Collider With Proton-Proton Collisions at 8 TeV  

E-Print Network (OSTI)

Detector at the Large Hadron Collider With Proton-ProtonDetector at the Large Hadron Collider With Proton-Protonthe CMS detec- tor at the Large Hadron Collider in 2012. The

Nguyen, Harold

2013-01-01T23:59:59.000Z

75

A Measurement of the Underlying Event Distributions in Proton-Proton Collisions at sqrt(s) = 7 TeV in Events containing Charged Particle Jets using the ATLAS Detector at the Large Hadron Collider  

E-Print Network (OSTI)

3 The ATLAS Inner Detector at the Large Hadron Collider 3.1The Large Hadron Collider at CERN . . . . . . . . . . 3.2Experiment at the Large Hadron Collider, PhD thesis, 2010. [

Virzi, Joseph Salvatore

2012-01-01T23:59:59.000Z

76

Study of highly-excited string states at the Large Hadron Collider  

E-Print Network (OSTI)

In TeV-scale gravity scenarios with large extra dimensions, black holes may be produced at future colliders. Good arguments have been made for why general relativistic black holes may be just out of reach of the Large Hadron Collider (LHC). However, in weakly-coupled string theory, highly excited string states - string balls - could be produced at the LHC with high rates and decay thermally, not unlike general relativistic black holes. In this paper, we simulate and study string ball production and decay at the LHC. We specifically emphasize the experimentally-detectable similarities and differences between string balls and general relativistic black holes at a TeV scale.

Douglas M. Gingrich; Kevin Martell

2008-08-19T23:59:59.000Z

77

Strange quark suppression and strange hadron production in pp collisions at energies available at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider  

Science Conference Proceedings (OSTI)

The parton and hadron cascade model PACIAE based on PYTHIA is utilized to systematically investigate strange particle production in pp collisions at energies available at the BNL Relativistic Heavy Ion Collider (RHIC) and the CERN Large Hadron Collider (LHC). Globally speaking, the PACIAE results of the strange particle rapidity density at midrapidity and the transverse momentum distribution are better than those of PYTHIA (default) in comparison with STAR and ALICE experimental data. This may represent the importance of the parton and hadron rescatterings, as well as the reduction mechanism of strange quark suppression, added in the PACIAE model. The K/{pi} ratios as a function of reaction energy in pp collisions from CERN Super Proton Synchrotron (SPS) to LHC energies are also analyzed in this paper.

Long Haiyan; Feng Shengqin; Zhou Daimei; Yan Yuliang; Ma Hailiang; Sa Benhao [Department of Physics, College of Science, China Three Gorges University, Yichang 443002 (China); Institute of Particle Physics, Huazhong Normal University, Wuhan 430082 (China); China Institute of Atomic Energy, P.O. Box 275 (18), Beijing 102413 (China); China Institute of Atomic Energy, P.O. Box 275 (18), Beijing 102413 (China); Institute of Particle Physics, Huazhong Normal University, Wuhan 430082 (China); CCAST (World Laboratory), P.O. Box 8730, Beijing 100080 (China)

2011-09-15T23:59:59.000Z

78

Sensitivity to the Single Production of Vector-Like Quarks at an Upgraded Large Hadron Collider  

E-Print Network (OSTI)

In this note we consider the sensitivity of the Large Hadron Collider (LHC) to the single production of new heavy vector-like quarks. We consider a model with large mixing with the standard model top quark with electroweak production of single heavy top quarks. We consider center of mass energies of 14, 33, and 100 TeV with various pileup scenarios and present the expected sensitivity and exclusion limits.

Tim Andeen; Clare Bernard; Kevin Black; Taylor Childres; Lidia Dell'Asta; Natascia Vignaroli

2013-09-07T23:59:59.000Z

79

How to Find a Hidden World at the Large Hadron Collider  

E-Print Network (OSTI)

I discuss how the Large Hadron Collider era should broaden our view of particle physics research, and apply this thinking to the case of Hidden Worlds. I focus on one of the simplest representative cases of a Hidden World, and detail the rich implications it has for LHC physics, including universal suppression of Higgs boson production, trans-TeV heavy Higgs boson signatures, heavy-to-light Higgs boson decays, weakly coupled exotic gauge bosons, and Higgs boson decays to four fermions via light exotic gauge bosons. Some signatures may be accessible in the very early stages of collider operation, whereas others motivate a later high-lumonosity upgrade.

James D. Wells

2008-03-08T23:59:59.000Z

80

The Standard Model and Supersymmetric Flavor Puzzles at the Large Hadron Collider  

E-Print Network (OSTI)

Can the Large Hadron Collider explain the masses and mixings of the known fermions? A promising possibility is that these masses and mixings are determined by flavor symmetries that also govern new particles that will appear at the LHC. We consider well-motivated examples in supersymmetry with both gravity- and gauge-mediation. Contrary to spreading belief, new physics need not be minimally flavor violating. We build non-minimally flavor violating models that successfully explain all known lepton masses and mixings, but span a wide range in their predictions for slepton flavor violation. In natural and favorable cases, these models have metastable sleptons and are characterized by fully reconstructible events. We outline many flavor measurements that are then possible and describe their prospects for resolving both the standard model and new physics flavor puzzles at the Large Hadron Collider.

Jonathan L. Feng; Christopher G. Lester; Yosef Nir; Yael Shadmi

2007-12-05T23:59:59.000Z

Note: This page contains sample records for the topic "large hadron collider" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

MULTI-CHANNEL SEARCH FOR SUPERGRAVITY AT THE LARGE HADRON COLLIDER  

E-Print Network (OSTI)

The potential of seeing supersymmetry (SUSY) at the CERN Large Hadron Collider (LHC) was studied by looking at 3 types of signals: dilepton events from slepton pair productions, trilepton events from chargino/neutralino productions and missing energy plus multi-jet events from gluino/squark productions. I described my results by mapping out reachable areas in the supergravity parameter space. Areas explorable at LEP II were also mapped out for comparison.

Chih-Hao Chen

1995-03-09T23:59:59.000Z

82

Effect of charged partons on black hole production at the Large Hadron Collider  

E-Print Network (OSTI)

The cross section for black hole production in hadron colliders is calculated using a factorization hypothesis in which the parton-level process is integrated over the parton density functions of the protons. The mass, spin, charge, colour, and finite size of the partons are usually ignored. We examine the effects of parton electric charge on black hole production using the trapped-surface approach of general relativity. Accounting for electric charge of the partons could reduce the black hole cross section by one to four orders of magnitude at the Large Hadron Collider. The cross section results are sensitive to the Standard Model brane thickness. Lower limits on the amount of energy trapped behind the event horizon in the collision of charged particles are also calculated.

Douglas M. Gingrich

2006-12-09T23:59:59.000Z

83

Summary of the Very Large Hadron Collider Physics and Detector Workshop  

E-Print Network (OSTI)

One of the options for an accelerator beyond the LHC is a hadron collider with higher energy. Work is going on to explore accelerator technologies that would make such a machine feasible. This workshop concentrated on the physics and detector issues associated with a hadron collider with an energy in the center of mass of the order of 100 to 200 TeV.

G. Anderson; U. Baur; M. Berger; F. Borcherding; A. Brandt; D. Denisov; S. Eno; T. Han; S. Keller; D. Khazins; T. LeCompte; J. Lykken; F. Olness; F. Paige; R. Scalise; E. H. Simmons; G. Snow; C. Taylor; J. Womersley

1997-10-06T23:59:59.000Z

84

Precise Predictions for W+4-Jet Production at the Large Hadron Collider  

E-Print Network (OSTI)

We present the next-to-leading order (NLO) QCD results for W+4-jet production at hadron colliders. This is the first hadron-collider process with five final-state objects to be computed at NLO. It represents an important ...

Berger, Carola

85

Hadronic forward scattering: Predictions for the Large Hadron Collider and cosmic rays  

E-Print Network (OSTI)

The status of hadron-hadron interactions is reviewed, with emphasis on the forward and near-forward scattering regions. From analyticity, Finite Energy Sum Rules are introduced from which new analyticity constraints are derived that exploit the many very accurate low energy experimental cross sections, i.e., they constrain the values of the asymptotic cross sections and their derivatives at low energies just above the resonance regions, allowing us new insights into duality. A new robust fitting technique is introduced in order to `clean up' large data samples that are contaminated by outliers. Using our analyticity constraints, new methods of fitting high energy hadronic data are introduced which result in much more precise estimates of the fit parameters, allowing accurate extrapolations to much higher energies. It's shown that the $\\gamma p$, $\\pi^\\pm p$ and nucleon-nucleon cross sections {\\em all} go asymptotically as $\\ln^2s$, saturating the Froissart bound, while conclusively ruling out $\\ln s$ and $s^{\\alpha}$ ($\\alpha\\sim 0.08$) behavior. Implications of this saturation for predictions of $\\sigma_{pp}$ and $\\rho_{pp}$ at the LHC and for cosmic rays p-air cross sections are given.

Martin M. Block

2006-06-20T23:59:59.000Z

86

Soft-gluon resummation for Higgs differential distributions at the Large Hadron Collider  

E-Print Network (OSTI)

We study the transverse-momentum (q_T) and rapidity (y) distributions of the Higgs boson in perturbative QCD, including the most advanced theoretical information presently available: fixed-order perturbation theory at Next-to-Leading Order (NLO) in the large-q_T region (q_T ~ M_H, being M_H the Higgs mass), and soft-gluon resummation at the Next-to-Next-to-Leading Logarithmic accuracy (NNLL) in the small-q_T region (q_T Large Hadron Collider (LHC).

Giuseppe Bozzi

2007-10-12T23:59:59.000Z

87

Production of exotic atoms at energies available at the CERN Large Hadron Collider  

E-Print Network (OSTI)

We study in details the space-time dependence of the production of muonic, pionic, and other exotic atoms by the coherent photon exchange between nuclei at the Large Hadron Collider at CERN. We show that a multipole expansion of the electromagnetic interaction yields an useful insight of the bound-free production mechanism which has not been explored in the literature. Predictions for the spatial, temporal, and angular distribution, as well as the total cross sections, for the production of exotic atoms are also included.

C. A. Bertulani; M. Ellermann

2010-05-21T23:59:59.000Z

88

Production of exotic atoms at the CERN Large Hadron Collider (LHC)  

E-Print Network (OSTI)

We study in details the space-time dependence of the production of muonic, pionic, and other exotic atoms by the coherent photon exchange between nuclei at the Large Hadron Collider (LHC) at CERN. We show that a multipole expansion of the electromagnetic interaction yields an useful insight of the bound-free production mechanism which has not been explored in the literature. Predictions for the spatial, temporal, and angular distribution, as well as the total cross sections, for the production of exotic atoms are also included.

Bertulani, C A

2010-01-01T23:59:59.000Z

89

Production of exotic atoms at energies available at the CERN Large Hadron Collider  

E-Print Network (OSTI)

We study in details the space-time dependence of the production of muonic, pionic, and other exotic atoms by the coherent photon exchange between nuclei at the Large Hadron Collider at CERN. We show that a multipole expansion of the electromagnetic interaction yields an useful insight of the bound-free production mechanism which has not been explored in the literature. Predictions for the spatial, temporal, and angular distribution, as well as the total cross sections, for the production of exotic atoms are also included.

Bertulani, C A

2010-01-01T23:59:59.000Z

90

Production of exotic atoms at the CERN Large Hadron Collider (LHC)  

E-Print Network (OSTI)

We study in details the space-time dependence of the production of muonic, pionic, and other exotic atoms by the coherent photon exchange between nuclei at the Large Hadron Collider (LHC) at CERN. We show that a multipole expansion of the electromagnetic interaction yields an useful insight of the bound-free production mechanism which has not been explored in the literature. Predictions for the spatial, temporal, and angular distribution, as well as the total cross sections, for the production of exotic atoms are also included.

C. A. Bertulani; M. Ellermann

2010-03-17T23:59:59.000Z

91

Dijet asymmetry at the energies available at the CERN Large Hadron Collider  

SciTech Connect

The martini numerical simulation allows for direct comparison of theoretical model calculations and the latest results for dijet asymmetry from the ATLAS and CMS collaborations. In this paper, partons are simulated as undergoing radiative and collisional processes throughout the evolution of central lead-lead collisions at the Large Hadron Collider. Using hydrodynamical background evolution determined by a simulation which fits well with the data on charged particle multiplicities from ALICE and a value of {alpha}{sub s} {approx} 0.25-0.3, the dijet asymmetry is found to be consistent with partonic energy loss in a hot, strongly interacting medium.

Young, C.; Schenke, B.; Jean, S., Gale, C.

2011-08-15T23:59:59.000Z

92

Search for Effect of Influence from Future in Large Hadron Collider  

E-Print Network (OSTI)

We propose an experiment which consists of drawing a card and using it to decide restrictions on the running of Large Hadron Collider (LHC for short) at CERN, such as luminosity, and beam energy. There may potentially occur total shut down. The purpose of such an experiment is to search for influence from the future, that is, backward causation. Since LHC will produce particles of a mathematically new type of fundamental scalars, i.e., the Higgs particles, there is potentially a chance to find unseen effects, such as on influence going from future to past, which we suggest in the present paper.

Holger B. Nielsen; Masao Ninomiya

2007-07-13T23:59:59.000Z

93

Standard Model Higgs boson searches with the ATLAS detector at the Large Hadron Collider  

E-Print Network (OSTI)

The investigation of the mechanism responsible for electroweak symmetry breaking is one of the most important tasks of the scientific program of the Large Hadron Collider. The experimental results on the search of the Standard Model Higgs boson with 1 to 2 fb^-1 of proton proton collision data at sqrt s=7 TeV recorded by the ATLAS detector are presented and discussed. No significant excess of events is found with respect to the expectations from Standard Model processes, and the production of a Higgs boson is excluded at 95% Confidence Level for the mass regions 144-232, 256-282 and 296-466 GeV.

Aleandro Nisati; for the ATLAS Collaboration

2011-11-30T23:59:59.000Z

94

Observable T{sub 7] lepton flavor symmetry at the large hadron collider.  

SciTech Connect

More often than not, models of flavor symmetry rely on the use of nonrenormalizable operators (in the guise of flavons) to accomplish the phenomenologically successful tribimaximal mixing of neutrinos. We show instead how a simple renormalizable two-parameter neutrino mass model of tribimaximal mixing can be constructed with the non-Abelian discrete symmetry T{sub 7} and the gauging of B-L. This is also achieved without the addition of auxiliary symmetries and particles present in almost all other proposals. Most importantly, it is verifiable at the Large Hadron Collider.

Cao, Q.-H.; Khalil, S.; Ma, E.; Okada, H. (High Energy Physics); (Univ. of Chicago); (British Univ. in Egypt); (Ain Shams Univ.); (Univ. of California at Riverside)

2011-03-29T23:59:59.000Z

95

Probing new physics in diphoton production with proton tagging at the Large Hadron Collider  

E-Print Network (OSTI)

The sensitivities to anomalous quartic photon couplings at the Large Hadron Collider are estimated using diphoton production via photon fusion. The tagging of the protons proves to be a very powerful tool to suppress the background and unprecedented sensitivities down to $6 \\cdot 10^{-15}$\\gev$^{-4}$ are obtained, providing a new window on extra dimensions and strongly-interacting composite states in the multi-TeV range. Generic contributions to quartic photon couplings from charged and neutral particles with arbitrary spin are also presented.

S. Fichet; G. von Gersdorff; O. Kepka; B. Lenzi; C. Royon; M. Saimpert

2013-12-18T23:59:59.000Z

96

An iterated search for influence from the future on the Large Hadron Collider  

E-Print Network (OSTI)

We analyse an iterated version of Nielsen and Ninomiya (N&N)'s proposed card game experiment to search for a specific type of backward causation on the running of the Large Hadron Collider (LHC) at CERN. We distinguish "endogenous" and "exogenous" potential causes of failure of LHC and we discover a curious "cross-talk" between their respective probabilities and occurrence timescales when N&N-style backward causation is in effect. Finally, we note a kind of "statistical cosmic censorship" preventing the influence from the future from showing up in a statistical analysis of the iterated runs.

Iain Stewart

2007-12-05T23:59:59.000Z

97

Scrutinizing the ZW+W- vertex at the Large Hadron Collider at 7 TeV  

E-Print Network (OSTI)

We analyze the potential of the CERN Large Hadron Collider running at 7 TeV to search for deviations from the Standard Model predictions for the triple gauge boson coupling ZW+W- assuming an integrated luminosity of 1 fb^{-1}. We show that the study of W+W- and W^\\pm Z productions, followed by the leptonic decay of the weak gauge bosons can improve the present sensitivity on the anomalous couplings \\Delta g_1^Z, \\Delta \\kappa_Z, \\lambda_Z, g_4^Z, and \\tilde{\\lambda}_Z at the 2\\sigma level.

O. J. P. Eboli; J. Gonzalez-Fraile; M. C. Gonzalez-Garcia

2010-06-17T23:59:59.000Z

98

Origin of the Large Perturbative Corrections to Higgs Production at Hadron Colliders  

E-Print Network (OSTI)

The very large K-factor for Higgs-boson production at hadron colliders is shown to result from enhanced perturbative corrections of the form (C_A\\pi\\alpha_s)^n, which arise in the analytic continuation of the gluon form factor to time-like momentum transfer. These terms are resummed to all orders in perturbation theory using the renormalization group. After the resummation, the K-factor for the production of a light Higgs boson at the LHC is reduced to a value close to 1.3.

Valentin Ahrens; Thomas Becher; Matthias Neubert; Li Lin Yang

2008-08-21T23:59:59.000Z

99

Dragging Heavy Quarks in Quark Gluon Plasma at the Large Hadron Collider  

E-Print Network (OSTI)

The drag and diffusion coefficients of charm and bottom quarks propagating through quark gluon plasma (QGP) have been evaluated for conditions relevant to nuclear collisions at Large Hadron Collider (LHC). The dead cone and Landau-Pomeronchuk-Migdal (LPM) effects on radiative energy loss of heavy quarks have been considered. Both radiative and collisional processes of energy loss are included in the {\\it effective} drag and diffusion coefficients. With these effective transport coefficients we solve the Fokker Plank (FP) equation for the heavy quarks executing Brownian motion in the QGP. The solution of the FP equation has been used to evaluate the nuclear suppression factor, $R_{\\mathrm AA}$ for the non-photonic single electron spectra resulting from the semi-leptonic decays of hadrons containing charm and bottom quarks. The effects of mass on $R_{\\mathrm AA}$ has also been highlighted.

Santosh K Das; Jan-e Alam; Payal Mohanty

2010-03-29T23:59:59.000Z

100

Cryogenic studies for the proposed CERN large hadron electron collider (LHEC)  

Science Conference Proceedings (OSTI)

The LHeC (Large Hadron electron Collider) is a proposed future colliding beam facility for lepton-nucleon scattering particle physics at CERN. A new 60 GeV electron accelerator will be added to the existing 27 km circumference 7 TeV LHC for collisions of electrons with protons and heavy ions. Two basic design options are being pursued. The first is a circular accelerator housed in the existing LHC tunnel which is referred to as the "Ring-Ring" version. Low field normal conducting magnets guide the particle beam while superconducting (SC) RF cavities cooled to 2 K are installed at two opposite locations at the LHC tunnel to accelerate the beams. For this version in addition a 10 GeV re-circulating SC injector will be installed. In total four refrigerators with cooling capacities between 1.2 kW and 3 kW @ 4.5 K are needed. The second option

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "large hadron collider" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Test of relativistic gravity for propulsion at the Large Hadron Collider  

E-Print Network (OSTI)

A design is presented of a laboratory experiment that could test the suitability of relativistic gravity for propulsion of spacecraft to relativistic speeds. An exact time-dependent solution of Einstein's gravitational field equation confirms that even the weak field of a mass moving at relativistic speeds could serve as a driver to accelerate a much lighter payload from rest to a good fraction of the speed of light. The time-dependent field of ultrarelativistic particles in a collider ring is calculated. An experiment is proposed as the first test of the predictions of general relativity in the ultrarelativistic limit by measuring the repulsive gravitational field of bunches of protons in the Large Hadron Collider (LHC). The estimated 'antigravity beam' signal strength at a resonant detector of each proton bunch is 3 nm/s^2 for 2 ns during each revolution of the LHC. This experiment can be performed off-line, without interfering with the normal operations of the LHC.

Franklin Felber

2009-10-06T23:59:59.000Z

102

18 kA vapour cooled current leads to test superconducting magnet models for the proposed Large Hadron Collider at CERN using wire matrix heat exchangers  

E-Print Network (OSTI)

18 kA vapour cooled current leads to test superconducting magnet models for the proposed Large Hadron Collider at CERN using wire matrix heat exchangers

Hagedorn, Dietrich; Oberli, L R

1988-01-01T23:59:59.000Z

103

Cryogenic Safety Aspect of the Low-? Magnet Systems at the Large Hadron Collider (LHC)  

E-Print Network (OSTI)

The low-? magnet systems are located in the LHC insertion regions around the four interaction points. They are the key elements in the beams focusing/defocusing process and will allow proton collisions at a luminosity of up to 1034cm-2s-1. Large radiation dose deposited at the proximity of the beam collisions dictate stringent requirements for the design and operation of the systems. The hardware commissioning phase of the LHC was completed in the winter of 2010 and permitted to validate this system safe operation. This paper presents the analysis used to qualify and quantify the safe operation of the low-? magnet systems in the Large Hadron Collider (LHC) for the first years of operation.

Darve, C

2011-01-01T23:59:59.000Z

104

Observation of diffraction with the CMS experiment at the Large Hadron Collider  

E-Print Network (OSTI)

A clear evidence of inclusive diffraction observed by the CMS detector at the Large Hadron Collider in minimum bias events at $\\sqrt{s}=$0.9 TeV, 2.36 TeV is presented. The observed diffractive signal is dominated by inclusive single-diffractive dissociation and can be identified by the presence of a Large Rapidity Gap that extends over the forward region of the CMS detector. A comparison of the data with Monte Carlo predictions provided by PYTHIA6 and PHOJET generators is given. In addition, first observation of the single-diffractive production of di-jets at $\\sqrt{s}=$7 TeV is presented.

Dmytro Volyanskyy

2011-02-03T23:59:59.000Z

105

Charged Higgs Production in Association With W^{\\pm} at Large Hadron Colliders  

E-Print Network (OSTI)

Many new physics models beyond the standard model, such as the littlest higgs models and the left right twin higgs models, predict the existence of the large charged higgs couplings H^-q\\bar b and H^+b\\bar q, where q=t or the new vector-like heavy quark T; On the other hand, some new physics models like the littlest higgs also predict the gauge-higgs couplings. Such couplings may have rich collider phenomenology. We focus our attention on these couplings induced by the littlest higgs models and the left right twin higgs models models and consider their contributions to the production cross section for W^\\pm H^\\mp production at the large hadron colliders. We find that the cross sections, in the littlest higgs models, on the parton level gg \\to W^\\pm H^\\mp and q\\bar q \\to W^\\pm H^\\mp (q=u,d,s,c,b) may reach tens of several dozen femtobarns in reasonable parameters space at the collision energy of 14 TeV and that the total cross section can even reach a few hundred femtobarns in certain favored space. While in the left right twin higgs models, the production rates are basically one order lower than these in littlest higgs. Therefore, due to the large cross sections of that in the littlest higgs, it may be possible to probe the charged higgs via this process in a large parameter space.

Guo-Li Liu; Fei Wang; Shuo Yang

2013-02-07T23:59:59.000Z

106

Studying the effects of minimal length in large extra dimensional models in the jet + missing energy channels at hadron colliders  

E-Print Network (OSTI)

Theories of quantum gravity suggest the existence of a minimal length scale. We study the consequences of a particular implementation of the idea of a minimal length scale in the model of large extra dimensions, the ADD model. To do this we have looked at real graviton production in association with a jet at hadron colliders. In the minimal length scenario, the bounds on the effective string scale are significantly less stringent than those derived in the conventional ADD model, both at the upgraded Tevatron and at the Large Hadron Collider.

Gautam Bhattacharyya; Kumar Rao; K. Sridhar

2005-12-04T23:59:59.000Z

107

A Method to Determine the Flexural Rigidity of the Main Dipole for the Large Hadron Collider  

E-Print Network (OSTI)

The Large Hadron Collider (LHC) superconducting dipole cold mass is a cylindrical structure 15 m long, made of a shrinking cylinder which contains iron laminations and collared coils. This structure, weighing about 28 ton is horizontally bent by 5 mrad. Its shape should be preserved from the assembly phase to the operational condition at cryogenic temperature. Hence an accurate comprehension of the mechanical behaviour of the cold mass is required. In particular the flexural rigidity in horizontal and vertical directions represents one of the foremost properties to be aware of. To determine the flexural rigidity, deformations of the cold mass induced by the self weight have been measured and compared with the predictions of an analytical structural model. A particular care has been taken in reducing the experimental error by an appropriate fitting procedure.

La China, M; Ferracin, P; García-Pérez, J; Todesco, Ezio; Scandale, Walter; 10.1109/TASC.2003.812655

2003-01-01T23:59:59.000Z

108

Is it possible to create a quantum electromagnetic "black hole" at the Large Hadron Collider?  

E-Print Network (OSTI)

As demonstrated by Chernodub, strong magnetic field forces vacuum to develop real condensates of electrically charged rho mesons, which form an anisotropic inhomogeneous superconducting state similar to Abrikosov vortex lattice. As far as electromagnetic field behaviour is concerned, this state of vacuum constitutes a hyperbolic metamaterial [1]. Here we demonstrate that spatial variations of magnetic field may lead to formation of electromagnetic "black holes" inside this metamaterial. Similar to real black holes, horizon area of the electromagnetic "black holes" is quantized in units of the effective "Planck scale" squared. The magnetic fields of the required strength and geometrical configuration may be created on Earth in heavy-ion collisions at the Large Hadron Collider. We evaluate electromagnetic field distribution around an electromagnetic "black hole" which may be created as a result of such collision.

Igor I. Smolyaninov

2012-04-04T23:59:59.000Z

109

Anomaly driven signatures of new invisible physics at the Large Hadron Collider  

E-Print Network (OSTI)

Many extensions of the Standard Model (SM) predict new neutral vector bosons at energies accessible by the Large Hadron Collider (LHC). We study an extension of the SM with new chiral fermions subject to non-trivial anomaly cancellations. If the new fermions have SM charges, but are too heavy to be created at LHC, and the SM fermions are not charged under the extra gauge field, one would expect that this new sector remains completely invisible at LHC. We show, however, that a non-trivial anomaly cancellation between the new heavy fermions may give rise to observable effects in the gauge boson sector that can be seen at the LHC and distinguished from backgrounds.

Ignatios Antoniadis; Alexey Boyarsky; Sam Espahbodi; Oleg Ruchayskiy; James D. Wells

2009-01-06T23:59:59.000Z

110

Radio Frequency Noise Effects on the CERN Large Hadron Collider Beam Diffusion  

SciTech Connect

Radio frequency (rf) accelerating system noise can have a detrimental impact on the Large Hadron Collider (LHC) performance through longitudinal motion and longitudinal emittance growth. A theoretical formalism has been developed to relate the beam and rf station dynamics with the bunch length growth. Measurements were conducted at LHC to determine the performance limiting rf components and validate the formalism through studies of the beam diffusion dependence on rf noise. As a result, a noise threshold was established for acceptable performance which provides the foundation for beam diffusion estimates for higher energies and intensities. Measurements were also conducted to determine the low level rf noise spectrum and its major contributions, as well as to validate models and simulations of this system.

Mastoridis, T.; Baudrenghien, P.; Butterworth, A.; Molendijk, J.; /CERN; Rivetta, C.; Fox, J.D.; /SLAC

2012-04-30T23:59:59.000Z

111

Performance Assessment of 239 Series Sub-cooling Heat Exchangers for the Large Hadron Collider  

E-Print Network (OSTI)

Helium sub-cooling heat exchangers of the counter-flow type are used to minimize the vapor fraction produced in the final expansion of the 1.9 K distributed cooling loops used for cooling the superconducting magnets of the Large Hadron Collider (LHC). These components are of compact design, featuring low-pressure drop and handling very low pressure vapor at low temperature. Following a qualification phase of prototypes, a contract has been placed in European industry for the supply of 239 heat exchanger units. Different levels of extracted heat load require three different variants of heat exchangers. This paper will describe the manufacturing phase with emphasis on the main difficulties encountered to keep the production quality after a brief recall of the prototype phase. Finally, the acceptance tests performed at room temperature and at the nominal cryogenic condition at the factory and at CEA-Grenoble will be presented.

Riddone, G; Roussel, P; Moracchioli, R; Tavian, L

2006-01-01T23:59:59.000Z

112

Geometrical position of the Large Hadron Collider main dipole inside the cryostat  

E-Print Network (OSTI)

The superconducting dipole of the Large Hadron Collider (LHC) is a cylindrical structure made of a shrinking cylinder containing iron laminations and collared coils. This 15 m long structure, weighing about 28 t, is horizontally bent by 5 mrad. Its geometrical shape should be preserved, from the assembly phase to the operational condition at cryogenic temperature. When inserted in its cryostat, the dipole cold mass is supported by three posts also providing the thermal insulation. Sliding interfaces should minimize the interference between the dipole and the cryostat during cooling down and warming up. Indeed, a possible non-linear response of the sliding interface can detrimentally affect the final dipole shape. This paper presents the results of dedicated tests investigating interferences and of specific simulations with a 3D finite element model (FEM) describing the mechanical behaviour of the dipole inside the cryostat. Comparison between measurements and FEM simulations is also discussed.

La China, M; Gubello, G; Hauviller, Claude; Scandale, Walter; Todesco, Ezio

2002-01-01T23:59:59.000Z

113

Precise Predictions for W+4-Jet Production at the Large Hadron Collider  

Science Conference Proceedings (OSTI)

We present the next-to-leading order (NLO) QCD results for W+4-jet production at hadron colliders. This is the first hadron-collider process with five final-state objects to be computed at NLO. It represents an important background to many searches for new physics at the energy frontier. Total cross sections, as well as distributions in the jet transverse momenta, are provided for the initial LHC energy of {radical}(s)=7 TeV. We use a leading-color approximation, known to be accurate to 3% for W production with fewer jets. The calculation uses the BlackHat library along with the SHERPA package.

Berger, C. F. [Center for Theoretical Physics, MIT, Cambridge, Massachusetts 02139 (United States); Bern, Z.; Ita, H. [Department of Physics and Astronomy, UCLA, Los Angeles, California 90095-1547 (United States); Dixon, L. J. [Theory Division, Physics Department, CERN, CH-1211 Geneva 23 (Switzerland)] [SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94309 (United States); Cordero, F. Febres [Departamento de Fisica, Universidad Simon Bolivar, Caracas 1080A (Venezuela, Bolivarian Republic of); Forde, D. [Theory Division, Physics Department, CERN, CH-1211 Geneva 23 (Switzerland)] [NIKHEF Theory Group, Science Park 105, NL-1098 XG Amsterdam (Netherlands); Gleisberg, T. [SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94309 (United States); Kosower, D. A. [Institut de Physique Theorique, CEA-Saclay, F-91191 Gif-sur-Yvette cedex (France); Maitre, D. [Department of Physics, University of Durham, Durham DH1 3LE (United Kingdom)

2011-03-04T23:59:59.000Z

114

Viewpoint: the End of the World at the Large Hadron Collider?  

Science Conference Proceedings (OSTI)

New arguments based on astrophysical phenomena constrain the possibility that dangerous black holes will be produced at the CERN Large Hadron Collider. On 8 August, the Large Hadron Collider (LHC) at CERN injected its first beams, beginning an experimental program that will produce proton-proton collisions at an energy of 14 TeV. Particle physicists are waiting expectantly. The reason is that the Standard Model of strong, weak, and electromagnetic interactions, despite its many successes, is clearly incomplete. Theory says that the holes in the model should be filled by new physics in the energy region that will be studied by the LHC. Some candidate theories are simple quick fixes, but the most interesting ones involve new concepts of spacetime waiting to be discovered. Look up the LHC on Wikipedia, however, and you will find considerable space devoted to safety concerns. At the LHC, we will probe energies beyond those explored at any previous accelerator, and we hope to create particles that have never been observed. Couldn't we, then, create particles that would actually be dangerous, for example, ones that would eat normal matter and eventually turn the earth into a blob of unpleasantness? It is morbid fun to speculate about such things, and candidates for such dangerous particles have been suggested. These suggestions have been analyzed in an article in Reviews of Modern Physics by Jaffe, Busza, Wilczek, and Sandweiss and excluded on the basis of constraints from observation and from the known laws of physics. These conclusions have been upheld by subsequent studies conducted at CERN.

Peskin, Michael E.; /SLAC

2011-11-21T23:59:59.000Z

115

Test of Influence from Future in Large Hadron Collider; A Proposal  

E-Print Network (OSTI)

We have earlier proposed the idea of making card drawing experiment of which outcome potentially decides whether Large Hadron Collider (LHC for short) should be closed or not. The purpose is to test theoretical models which, like e.g. our own model that has an imaginary part of the action with much a similar form to that of the real part. The imaginary part has influence on the initial conditions not only in the past but even from the future. It was speculated that all accelerators producing large amounts of Higgs particles like the Superconducting Super Collider (SSC for short) would call for initial conditions to have been so arranged as to finally not allow these accelerators to come to work. If there were such effects we could perhaps provoke a very clear cut "miracle" by having the effect make the drawn card be the one closing LHC. Here we shall, however, discuss that a total closing is hardly needed and seek to calculate how one could perform checking experiment for the proposed type of influence from future to be made in the statistically least disturbing and least harmful way. We shall also discuss how to extract most information about our effect or model in the unlikely case that a card restricting the running of LHC or the Tevatron would be drawn at all, by estimating say the relative importance of high beam energy or of high luminosity for the purpose of our effect.

Holger B. Nielsen; Masao Ninomiya

2008-02-21T23:59:59.000Z

116

Time evolution of the luminosity of colliding heavy-ion beams in BNL Relativistic Heavy Ion Collider and CERN Large Hadron Collider  

E-Print Network (OSTI)

We have studied the time evolution of the heavy ion luminosity and bunch intensities in the Relativistic Heavy Ion Collider (RHIC), at BNL, and in the Large Hadron Collider (LHC), at CERN. First, we present measurements from a large number of RHIC stores (from Run 7), colliding 100 GeV/nucleon Au beams without stochastic cooling. These are compared with two different calculation methods. The first is a simulation based on multi-particle tracking taking into account collisions, intrabeam scattering, radiation damping, and synchrotron and betatron motion. In the second, faster, method, a system of ordinary differential equations with terms describing the corresponding effects on emittances and bunch populations is solved numerically. Results of the tracking method agree very well with the RHIC data. With the faster method, significant discrepancies are found since the losses of particles diffusing out of the RF bucket due to intrabeam scattering are not modeled accurately enough. Finally, we use both methods to make predictions of the time evolution of the future Pb beams in the LHC at injection and collision energy. For this machine, the two methods agree well.

R. Bruce; M. Blaskiewicz; W. Fischer; J. M. Jowett

2010-09-08T23:59:59.000Z

117

Results from hadron colliders  

SciTech Connect

The present status of hadron collider physics is reviewed. The total cross section for {bar p} + p has been measured at 1.8 TeV: {sigma}{sub tot} = 72.1 {plus minus} 3.3 mb. New data confirm the UA2 observation of W/Z {yields} {bar q}q. Precision measurements of M{sub W} by UA2 and CDF give an average value M{sub W} = 80.13 {plus minus} 0.30 GeV/c{sup 2}. When combined with measurements of M{sub Z} from LEP and SLC this number gives sin{sup 2}{theta}{sub W} = 0.227 {plus minus} 0.006, or m{sub top} = 130{sub {minus}60}{sup +40} GeV/c{sup 2} from the EWK radiative correction term {Delta}r. Evidence for hadron colliders as practical sources of b quarks has been strengthened, while searches for t quarks have pushed the mass above M{sub W}: m{sub top} > 89 GeV/c{sup 2} 95% cl (CDF Preliminary). Searches beyond the standard model based on the missing E{sub T} signature have not yet produced any positive results. Future prospects for the discovery of the top quark in the range m{sub top} < 200 GeV/c{sup 2} look promising. 80 refs., 35 figs., 7 tabs.

Pondrom, L.G. (Wisconsin Univ., Madison, WI (USA))

1990-12-14T23:59:59.000Z

118

Signals of an invisibly decaying Higgs in a scalar dark matter scenario: a study for the Large Hadron Collider  

E-Print Network (OSTI)

We consider the collider phenomenology of a singlet Majoron model with softly broken lepton number. Lepton number is spontaneously broken when the real part of a new singlet scalar develops vacuum expectation value. With the additional soft terms violating lepton numbers, the imaginary part of this singlet scalar becomes a massive pseudo-Majoron which can account for the dark matter. In presence of the coupling of the pseudo-Majoron with the Standard Model (SM) Higgs, the SM Higgs mostly decays into a pair of pseudo-Majorons, giving rise to missing transverse energy signals at a hadron collider. Since the Higgs visible decay branching fractions get reduced in presence of this invisible decay mode, the bounds on the SM Higgs mass from the LEP and Tevatron experiments get diluted and the invisible decay channel of the Higgs become important for the discovery of low mass Higgs at the Large Hadron Collider.

Kirtiman Ghosh; Biswarup Mukhopadhyaya; Utpal Sarkar

2011-05-29T23:59:59.000Z

119

GPU Enhancement of the Trigger to Extend Physics Reach at the Large Hadron Collider  

E-Print Network (OSTI)

At the Large Hadron Collider (LHC), the trigger systems for the detectors must be able to process a very large amount of data in a very limited amount of time, so that the nominal collision rate of 40 MHz can be reduced to a data rate that can be stored and processed in a reasonable amount of time. This need for high performance places very stringent requirements on the complexity of the algorithms that can be used for identifying events of interest in the trigger system, which potentially limits the ability to trigger on signatures of various new physics models. In this paper, we present an alternative tracking algorithm, based on the Hough transform, which avoids many of the problems associated with the standard combinatorial track finding currently used. The Hough transform is also well-adapted for Graphics Processing Unit (GPU)-based computing, and such GPU-based systems could be easily integrated into the existing High-Level Trigger (HLT). This algorithm offers the ability to trigger on topological signatures of new physics currently not practical to reconstruct, such as events with jets or black holes significantly displaced from the primary vertex. This paper presents, for the first time, an implementation and preliminary performance results using NVIDIA Tesla C2075 and K20c GPUs.

P. Lujan; V. Halyo; A. Hunt; P. Jindal; P. LeGresley

2013-11-12T23:59:59.000Z

120

The Local Helium Compound Transfer Lines for the Large Hadron Collider Cryogenic System  

E-Print Network (OSTI)

The cryogenic system for the Large Hadron Collider (LHC) under construction at CERN will include twelve new local helium transfer lines distributed among five LHC points in underground caverns. These lines, being manufactured and installed by industry, will connect the cold boxes of the 4.5-K refrigerators and the 1.8-K refrigeration units to the cryogenic interconnection boxes. The lines have a maximum of 30-m length and may possess either small or large re-distribution units to allow connection to the interface ports. Due to space restrictions the lines may have complex routings and require several elbowed sections. The lines consist of a vacuum jacket, a thermal shield and either three or four helium process pipes. Specific internal and external supporting and compensation systems were designed for each line to allow for thermal contraction of the process pipes (or vacuum jacket, in case of a break in the insulation vacuum) and to minimise the forces applied to the interface equipment. Whenever possible, f...

Parente, C; Munday, A; Wiggins, P

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "large hadron collider" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Meson production in two-photon interactions at energies available at CERN Large Hadron Collider  

E-Print Network (OSTI)

The meson production cross sections are estimated considering photon-photon interactions in hadron - hadron collisions at CERN LHC energies. We consider a large number of mesons with photon-photon partial decay width well constrained by the experiment and some mesons which are currently considered as hadronic molecule and glueball candidates. Our results demonstrate that the experimental analysis of these states is feasible at CERN - LHC.

V. P. Goncalves; D. T. da Silva; W. K. Sauter

2012-09-04T23:59:59.000Z

122

QCD and low-x physics at a Large Hadron electron Collider  

E-Print Network (OSTI)

The Large Hadron electron Collider (LHeC) is a proposed facility which will exploit the new world of energy and intensity offered by the LHC for electron-proton scattering, through the addition of a new electron accelerator. This contribution, which is derived from the draft CERN-ECFA-NuPECC Conceptual Design report (due for release in 2012), addresses the expected impact of the LHeC precision and extended kinematic range for low Bjorken-x and diffractive physics, and detailed simulation studies and prospects for high precision QCD and electroweak fits. Numerous observables which are sensitive to the expected low-x saturation of the parton densities are explored. These include the inclusive electron-proton scattering cross section and the related structure functions $F_2$ and $F_L$, as well as exclusive processes such as deeply-virtual Compton scattering and quasi-elastic heavy vector meson production and diffractive virtual photon dissociation. With a hundred times the luminosity that was achieved at HERA, salient expectations for the LHeC include the complete determination of all light and heavy quark parton distributions for the first time, the high precision extraction of the gluon density, the determination of the strong coupling constant to per-mil accuracy and the precision study of the running of the electroweak mixing angle.

Paul Laycock

2012-02-13T23:59:59.000Z

123

Instrumentation status of the low-b magnet systems at the Large Hadron Collider (LHC)  

SciTech Connect

The low-{beta} magnet systems are located in the Large Hadron Collider (LHC) insertion regions around the four interaction points. They are the key elements in the beams focusing/defocusing process allowing proton collisions at luminosity up to 10{sup 34}cm{sup -2}s{sup -1}. Those systems are a contribution of the US-LHC Accelerator project. The systems are mainly composed of the quadrupole magnets (triplets), the separation dipoles and their respective electrical feed-boxes (DFBX). The low-{beta} magnet systems operate in an environment of extreme radiation, high gradient magnetic field and high heat load to the cryogenic system due to the beam dynamic effect. Due to the severe environment, the robustness of the diagnostics is primordial for the operation of the triplets. The hardware commissioning phase of the LHC was completed in February 2010. In the sake of a safer and more user-friendly operation, several consolidations and instrumentation modifications were implemented during this commissioning phase. This paper presents the instrumentation used to optimize the engineering process and operation of the final focusing/defocusing quadrupole magnets for the first years of operation.

Darve, C.; /Fermilab; Balle, C.; Casas-Cubillos, J.; Perin, A.; Vauthier, N.; /CERN

2011-05-01T23:59:59.000Z

124

Kaluza-Klein gluon searches using the three-b-jet decay channel at the Large Hadron Collider  

E-Print Network (OSTI)

We study observability of a Kaluza-Klein (KK) excitation of a gluon in a five-dimensional model with a warped geometry at the Large Hadron Collider. In this model, the Standard Model fields reside in the bulk and the third generation quarks couple to the KK gluon strongly. We focus on the processes including three b-quarks as a final state where the first KK gluon propagates as an intermediate state. We evaluate a significance of those processes by taking account of kinematical cuts and a detector efficiency at the Large Hadron Collider and find that the significance is lager than 5-sigma with the integrated luminosity of 10 (100) fb^{-1} for a certain range of parameters of the model.

Masato Arai; Gi-Chol Cho; Karel Smolek

2013-07-24T23:59:59.000Z

125

Higgs pair production due to a radion resonance in Randall-Sundrum model: prospects at the Large Hadron Collider  

E-Print Network (OSTI)

We consider Higgs pair production at the Large Hadron Collider (LHC) in a Randall-Sundrum scenario containing a radion field. It is shown that the enhanced effective coupling of the radion to gluons, together with contributions from a low-lying radion pole, can provide larger event rates compared to most new physics possibilities considered so far. We present the results for both an intermediate mass Higgs and a heavy Higgs, with a detailed discussion of the background elimination procedure.

Prasanta Kumar Das; Biswarup Mukhopadhyaya

2003-03-16T23:59:59.000Z

126

Beam losses from ultra-peripheral nuclear collisions between Pb ions in the Large Hadron Collider and their alleviation  

SciTech Connect

Electromagnetic interactions between colliding heavy ions at the Large Hadron Collider (LHC) at CERN will give rise to localized beam losses that may quench superconducting magnets, apart from contributing significantly to the luminosity decay. To quantify their impact on the operation of the collider, we have used a three-step simulation approach, which consists of optical tracking, a Monte-Carlo shower simulation and a thermal network model of the heat flow inside a magnet. We present simulation results for the case of {sup 208}Pb{sup 82+} ion operation in the LHC, with focus on the alice interaction region, and show that the expected heat load during nominal {sup 208}Pb{sup 82+} operation is 40% above the quench level. This limits the maximum achievable luminosity. Furthermore, we discuss methods of monitoring the losses and possible ways to alleviate their effect.

Bruce, R.; /CERN; Bocian, D.; /Fermilab /CERN; Gilardoni, S.; Jowett, J.M.; /CERN

2009-08-01T23:59:59.000Z

127

Single and double photonuclear excitations in Pb+Pb collisions at {radical}(s{sub NN})=2.76 TeV at the CERN Large Hadron Collider  

Science Conference Proceedings (OSTI)

Cross sections are calculated for single and double photon exchange in ultraperipheral Pb+Pb collisions at the CERN Large Hadron Collider. The particle production is simulated with the DPMJET event generator. Large cross sections are found for particle production around midrapidity, making these processes an important background to hadronic nuclear interactions at both the trigger and analysis levels.

Djuvsland, Oystein; Nystrand, Joakim [Department of Physics and Technology, University of Bergen, Bergen (Norway)

2011-04-15T23:59:59.000Z

128

Suppression of high-p{sub T} hadrons in Pb+Pb collisions at energies available at the CERN Large Hadron Collider  

Science Conference Proceedings (OSTI)

The nuclear modification factor R{sub AA}(p{sub T}) for large transverse momentum pion spectra in Pb+Pb collisions at {radical}(s)=2.76 TeV is predicted within the next-to-leading order perturbative QCD parton model. The effect of jet quenching is incorporated through medium-modified fragmentation functions within the higher-twist approach. The jet transport parameter that controls medium modification is proportional to the initial parton density, and the coefficient is fixed by data on the suppression of large-p{sub T} hadron spectra obtained at the BNL Relativistic Heavy Ion Collider. Data on charged hadron multiplicity dN{sub ch}/d{eta}=1584{+-}80 in central Pb+Pb collisions from the ALICE experiment at the CERN Large Hadron Collider are used to constrain the initial parton density both for determining the jet transport parameter and the 3 + 1 dimensional (3 + 1D) ideal hydrodynamic evolution of the bulk matter that is employed for the calculation of R{sub PbPb}(p{sub T}) for neutral pions.

Chen Xiaofang; Wang Enke; Zhang Hanzhong [Institute of Particle Physics, Huazhong Normal University, Wuhan 430079 (China); Hirano, Tetsufumi [Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan); Nuclear Science Division, MS 70R0319, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Wang Xinnian [Institute of Particle Physics, Huazhong Normal University, Wuhan 430079 (China); Nuclear Science Division, MS 70R0319, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

2011-09-15T23:59:59.000Z

129

Search for Large Extra Dimensions in the Diphoton Final State at the Large Hadron Collider  

E-Print Network (OSTI)

A search for large extra spatial dimensions via virtual-graviton exchange in the diphoton channel has been carried out with the CMS detector at the LHC. No excess of events above the standard model expectations is found using a data sample collected in proton-proton collisions at sqrt(s) = 7 TeV and corresponding to an integrated luminosity of 36 inverse picobarns. New lower limits on the effective Planck scale in the range of 1.6-2.3 TeV at the 95% confidence level are set, providing the most restrictive bounds to date on models with more than two large extra dimensions.

CMS Collaboration

2011-03-22T23:59:59.000Z

130

A search for direct heffalon production using the ATLAS and CMS experiments at the Large Hadron Collider  

E-Print Network (OSTI)

The first search is reported for direct heffalon production, using 23.3/fb per experiment of delivered integrated luminosity of proton-proton collisions at rootS = 8TeV from the Large Hadron Collider. The data were recorded with the ATLAS and the CMS detectors. Each exotic composite is assumed to be stable on the detector lifetime (tau >> ns). A particularly striking signature is expected. No signal events are observed after event selection. The cross section for heffalon production is found to be less than 64ab at the 95% confidence level.

Alan J. Barr; Christopher G. Lester

2013-03-29T23:59:59.000Z

131

Energy Extraction in the CERN Large Hadron Collider a Project Overview  

E-Print Network (OSTI)

In case of a resistive transition (quench), fast and reliable extraction of the magnetic energy, stored in the superconducting coils of the electromagnets of a particle collider, represents an important part of its magnet protection system. In general, the quench detectors, the quench heaters and the cold by-pass diodes across each magnet, together with the energy extraction facilities provide the required protection of the quenching superconductors against damage due to local energy dissipation. In CERN's LHC machine the energy stored in each of its eight superconducting dipole chains exceeds 1300 MJ. Following an opening of the extraction switches this energy will be absorbed in large extraction resistors located in the underground collider tunnel or adjacent galleries, during the exponential current decay. Also the sixteen, 13 kA quadrupole chains (QF, QD) and more than one hundred and fifty, 600 A circuits of the corrector magnets will be equipped with extraction systems. The extraction switch-gear is bas...

Dahlerup-Petersen, K; Kazmine, B; Medvedko, A S; Sytchev, V V; Vasilev, L B

2001-01-01T23:59:59.000Z

132

Elliptic flow ($v_2$) in pp collisions at energies available at the CERN Large Hadron Collider: A hydrodynamical approach  

E-Print Network (OSTI)

At Large Hadron Collider energy, the expected large multiplicities suggests the presence of collective behavior even in pp collisions. A hydrodynamical approach has been applied to estimate the expected elliptic flow measured by the azimuthal asymmetry parameter $v_2$, in pp collisions at $\\surd$s = 14 TeV. $v_2$ of $\\pi^-$ is found to be strongly dependent on the parton density profile inside a proton [e.g., surface diffuseness parameter ($\\xi$)]. For $\\xi$ = 0.105, $v_2$ is found to be positive while at $\\xi$ = 0.25, $v_2$ is close to zero and approaches negative values at large $p_t$. The impact parameter dependence of $v_2$ has also been studied.

S. K. Prasad; Victor Roy; S. Chattopadhyay; A. K. Chaudhuri

2009-10-26T23:59:59.000Z

133

Heavy Flavor at the Large Hadron Collider in a Strong Coupling Approach  

E-Print Network (OSTI)

Employing nonperturbative transport coefficients for heavy-flavor (HF) diffusion through quark-gluon plasma (QGP), hadronization and hadronic matter, we compute $D$- and $B$-meson observables in Pb+Pb ($\\sqrt{s}$=2.76\\,TeV) collisions at the LHC. Elastic heavy-quark scattering in the QGP is evaluated within a thermodynamic $T$-matrix approach, generating resonances close to the critical temperature which are utilized for recombination into $D$ and $B$ mesons, followed by hadronic diffusion using effective hadronic scattering amplitudes. The transport coefficients are implemented via Fokker-Planck Langevin dynamics within hydrodynamic simulations of the bulk medium in nuclear collisions. The hydro expansion is quantitatively constrained by transverse-momentum spectra and elliptic flow of light hadrons. Our approach thus incorporates the paradigm of a strongly coupled medium in both bulk and HF dynamics throughout the thermal evolution of the system.

Min He; Rainer J. Fries; Ralf Rapp

2014-01-16T23:59:59.000Z

134

Elliptic flow of thermal photons in heavy-ion collisions at Relativistic Heavy Ion Collider and Large Hadron Collider  

E-Print Network (OSTI)

We calculate the thermal photon transverse momentum spectra and elliptic flow in $\\sqrt{s_{NN}} = 200$ GeV Au+Au collisions at RHIC and in $\\sqrt{s_{NN}} = 2.76$ TeV Pb+Pb collisions at the LHC, using an ideal-hydrodynamical framework which is constrained by the measured hadron spectra at RHIC and LHC. The sensitivity of the results to the QCD-matter equation of state and to the photon emission rates is studied, and the photon $v_2$ is discussed in the light of the photonic $p_T$ spectrum measured by the PHENIX Collaboration. In particular, we make a prediction for the thermal photon $p_T$ spectra and elliptic flow for the current LHC Pb+Pb collisions.

Hannu Holopainen; Sami Räsänen; Kari J. Eskola

2011-04-28T23:59:59.000Z

135

Electroweak boson-tagged jet event asymmetries at the Large Hadron Collider  

E-Print Network (OSTI)

Tagged jet measurements provide a promising experimental channel to quantify the similarities and differences in the mechanisms of jet production in proton-proton and nucleus-nucleus collisions. We present the first calculation of the transverse momentum asymmetry of $Z^0/\\gamma^*$-tagged jet events and the momentum imbalance of $\\gamma$-tagged jet events in $\\sqrt{s}=2.76$ TeV reactions at the LHC. Our results combine the ${\\cal O}(G_F\\alpha_s^2)$, ${\\cal O}(G_F\\alpha_s^2)$ perturbative cross sections with the radiative and collisional processes that modify parton showers in the presence of dense QCD matter. We find that strong asymmetry momentum and imbalance, respectively, are generated in central Pb+Pb reactions that have little sensitivity to the fluctuations of the underlying soft hadronic background. We present theoretical model predictions for their shape and magnitude.

Ivan Vitev

2012-10-03T23:59:59.000Z

136

Nuclear Effects in Prompt Photon Production at the Large Hadron Collider  

E-Print Network (OSTI)

We present a detailed study of prompt photon production cross section in heavy-ion collisions in the central rapidity region at energy of $\\sqrt{s}=5.5$ TeV, appropriate to LHC experiment. We include the next-to-leading order radiative corrections, $O(\\alpha_{em}\\alpha_s^2)$, nuclear shadowing and the parton energy loss effects. We find that the nuclear effects can reduce the invariant cross section for prompt photon production by an order of magnitude at $p_t=3$ GeV. We discuss theoretical uncertainties due to parton energy loss and nuclear shadowing parameters. We show that the K-factor, which signifies the importance of next-to-leading order corrections, is large and has a strong $p_t$ dependence.

Jamal Jalilian-Marian; Kostas Orginos; Ina Sarcevic

2001-01-04T23:59:59.000Z

137

Search for signatures of extra dimensions in the diphoton mass spectrum at the Large Hadron Collider  

SciTech Connect

A search for signatures of extra dimensions in the diphoton invariant-mass spectrum has been performed with the CMS detector at the LHC. No excess of events above the standard model expectation is observed using a data sample collected in proton-proton collisions at {radical}s = 7 TeV corresponding to an integrated luminosity of 2.2 fb{sup -1}. In the context of the large-extra-dimensions model, lower limits are set on the effective Planck scale in the range of 2.3-3.8 TeV at the 95% confidence level. These limits are the most restrictive bounds on virtual-graviton exchange to date. The most restrictive lower limits to date are also set on the mass of the first graviton excitation in the Randall-Sundrum model in the range of 0.86-1.84 TeV, for values of the associated coupling parameter between 0.01 and 0.10.

Chatrchyan, Serguei; Khachatryan, Vardan; Sirunyan, Albert M.; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; /Yerevan Phys. Inst. /Vienna, OAW /Minsk, High Energy Phys. Ctr. /Antwerp U., WISINF /Vrije U., Brussels /Brussels U. /Gent U. /Louvain U. /UMH, Mons /Rio de Janeiro, CBPF /Rio de Janeiro State U.

2011-12-01T23:59:59.000Z

138

DETERMINING THE RATIO OF THE H+ YIELDS TV TO H+ YIELDS TB DECAY RATES FOR LARGE TAN BETA AT THE LARGE HADRON COLLIDER.  

SciTech Connect

We present results on the determination of the observable ratio R = BR(H{sup +} {yields} {tau}{sup +}{nu}{sup -})/BR(H{sup +} {yields} t{bar b}) of charged Higgs boson decay rates as a discriminant quantity between Supersymmetric and non-Supersymmetric models. Simulation of measurements of this quantity through the analysis of the charged Higgs production process gb {yields} tbH{sup +} and relative backgrounds in the two above decay channels has been performed in the context of ATLAS. A {approx} 12-14% accuracy on R can be achieved for tan {beta} = 50, m{sub H{sup {+-}}} = 300-500 GeV and after an integrated luminosity of 300 fb{sup -1}. With this precision measurement, the Large Hadron Collider (LHC) can easily discriminate between models for the two above scenarios, so long as tan {beta} > 20.

ASSAMAGAN,K.A.GUASCH,J.MORETTI,S.PENARANDA,S.

2003-05-27T23:59:59.000Z

139

Measurement of Hadronic Event Shapes and Jet Substructure in Proton-Proton Collisions at 7.0 TeV Center-of-Mass Energy with the ATLAS Detector at the Large Hadron Collider  

SciTech Connect

This thesis presents the first measurement of 6 hadronic event shapes in proton-proton collisions at a center-of-mass energy of {radical}s = 7 TeV using the ATLAS detector at the Large Hadron Collider. Results are presented at the particle-level, permitting comparisons to multiple Monte Carlo event generator tools. Numerous tools and techniques that enable detailed analysis of the hadronic final state at high luminosity are described. The approaches presented utilize the dual strengths of the ATLAS calorimeter and tracking systems to provide high resolution and robust measurements of the hadronic jets that constitute both a background and a signal throughout ATLAS physics analyses. The study of the hadronic final state is then extended to jet substructure, where the energy flow and topology within individual jets is studied at the detector level and techniques for estimating systematic uncertainties for such measurements are commissioned in the first data. These first substructure measurements in ATLAS include the jet mass and sub-jet multiplicity as well as those concerned with multi-body hadronic decays and color flow within jets. Finally, the first boosted hadronic object observed at the LHC - the decay of the top quark to a single jet - is presented.

Miller, David Wilkins

2012-03-20T23:59:59.000Z

140

Predictions for p+Pb at 5.02A TeV to test initial state nuclear shadowing at the Large Hadron Collider  

E-Print Network (OSTI)

Collinear factorized perturbative QCD model predictions are compared for $p+{\\rm Pb}$ at 5.02$A$ TeV to test nuclear shadowing of parton distribution at the Large Hadron Collider (LHC). The pseudorapidity distribution and the nuclear modification factor (NMF), $R_{p{\\rm Pb}}(y=0,p_T<20\\;{\\rm GeV}/{\\it c}) = dn_{p{\\rm Pb}} /(N_{\\rm coll}(b)dn_{pp})$, is computed within {\\small HIJING/\\=B v2.0 model}. These results are updated calculations of those presented in Ref. Phys. Rev C85, 024903 (2012).

Barnafoldi, G G; Gyulassy, M; Levai, P; Petrovici, M; Pop, V Topor

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "large hadron collider" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Simulations of electron-cloud heat load for the cold arcs of the CERN Large Hadron Collider and its high-luminosity upgrade scenarios  

E-Print Network (OSTI)

The heat load generated by an electron cloud in the cold arcs of the Large Hadron Collider (LHC) is a concern for operation near and beyond nominal beam current. We report the results of simulation studies, with updated secondary- emission models, which examine the severity of the electron heat load over a range of possible operation parameters, both for the nominal LHC and for various luminosity-upgrade scenarios, such as the so-called ‘‘full crab crossing’’ and ‘‘early separation’’ schemes, the ‘‘large Piwinski angle’’ scheme, and a variant of the latter providing ‘‘compatibility’’ with the (upgraded) LHCb experiment. The variable parameters considered are the maximum secondary-emission yield, the number of particles per bunch, and the spacing between bunches. In addition, the dependence of the heat load on the longitudinal bunch profile is investigated.

Maury Cuna, H; Zimmermann, F

2012-01-01T23:59:59.000Z

142

Optimization of the design of DC-DC converters for improving the electromagnetic compatibility with the Front-End electronic for the super Large Hadron Collider Trackers  

E-Print Network (OSTI)

The upgrade of the Large Hadron Collider (LHC) experiments at CERN sets new challenges for the powering of the detectors. One of the powering schemes under study is based on DC-DC buck converters mounted on the front-end modules. The hard environmental conditions impose strict restrictions to the converters in terms of low volume, radiation and magnetic field tolerance. Furthermore, the noise emission of the switching converters must not affect the performance of the powered systems. A study of the sources and paths of noise of a synchronous buck converter has been made for identifying the critical parameters to reduce their emissions. As proof of principle, a converter was designed following the PCB layout considerations proposed and then used for powering a silicon strip module prototype for the ATLAS upgrade, in order to evaluate their compatibility.

Fuentes Rojas, Cristian Alejandro; Blanchot, G

2011-01-01T23:59:59.000Z

143

The promise of the large collider  

E-Print Network (OSTI)

"In 2007, the most powerful particle accelerator ever built, CERN's new Large hadron Collider, will probe the secrets of matter in the energy states prevailing in the moments after the Big Bang. By colliding particles together when they are moving at close to the speed of ight, physicists hope to find out about matter in its earliest forms, using the energy produced by the collisions." (2 pages)

2007-01-01T23:59:59.000Z

144

Search for Heavy Resonances Decaying to Taus in 7 TeV Proton-Proton Collisions at the Large Hadron Collider  

E-Print Network (OSTI)

Over the last few decades, the Standard Model (SM) of particle physics has been used as a means of understanding the world around us. However, there is an increasing amount of data that suggests the SM of particle physics only describes nature up to energies of the electroweak scale. Extensions to the SM have been developed as a means of explaining experimental observation. If these extensions are indeed the correct mathematical descriptions of nature, the Large Hadron Collider (LHC), located at the European Center for Nuclear Research (CERN) near Geneva, Switzerland, is expected to produce new and exciting physics signatures that can shed light on the evolution of our universe since the early hypothesized Big Bang. Of particular interest are models that may lead to events with highly energetic tau lepton pairs. In this dissertation, focus is placed on a possible search for new heavy gauge bosons decaying to highly energetic tau pairs using a data sample corresponding to an integrated luminosity of 36 pb^-1 of proton-proton collisions at sqrt(s) = 7 TeV collected with the CMS detector at the CERN LHC. The number of observed events in the data is in good agreement with the predictions for SM background processes. In the context of the Sequential SM, a Z0 with mass less than 468 GeV/c^2 is excluded at 95 percent credibility level, exceeding the sensitivity by the Tevatron experiments at the Fermi National Accelerator Laboratory.

Gurrola, Alfredo

2011-08-01T23:59:59.000Z

145

THEORETICAL PROGRESS FOR THE ASSOCIATED PRODUCTION OF A HIGGS BOSON WITH HEAVY QUARKS AT HADRON COLLIDERS.  

SciTech Connect

The production of a Higgs boson in association with a pair of t{bar t} or b{bar b} quarks plays a very important role at both the Tevatron and the Large Hadron Collider. The theoretical prediction of the corresponding cross sections has been improved by including the complete next-to-leading order QCD corrections. After a brief introduction, we review the results obtained for both the Tevatron and the Large Hadron Collider.

DAWSON,S.JACKSON,C.B.ORR,L.H.REINA,L.WACKEROTH,D.

2003-07-17T23:59:59.000Z

146

A Minimal Spontaneously Broken Hidden Sector and its Impact on Higgs Boson Physics at the Large Hadron Collider  

E-Print Network (OSTI)

Little experimental data bears on the question of whether there is a spontaneously broken hidden sector that has no Standard Model quantum numbers. Here we discuss the prospects of finding evidence for such a hidden sector through renormalizable interactions of the Standard Model Higgs boson with a Higgs boson of the hidden sector. We find that the lightest Higgs boson in this scenario has smaller rates in standard detection channels, and it can have a sizeable invisible final state branching fraction. Details of the hidden sector determine whether the overall width of the lightest state is smaller or larger than the Standard Model width. We compute observable rates, total widths and invisible decay branching fractions within the general framework. We also introduce the ``A-Higgs Model'', which corresponds to the limit of a hidden sector Higgs boson weakly mixing with the Standard Model Higgs boson. This model has only one free parameter in addition to the mass of the light Higgs state and it illustrates most of the generic phenomenology issues, thereby enabling it to be a good benchmark theory for collider searches. We end by presenting an analogous supersymmetry model with similar phenomenology, which involves hidden sector Higgs bosons interacting with MSSM Higgs bosons through D-terms.

Robert Schabinger; James D. Wells

2005-09-21T23:59:59.000Z

147

Trilepton Higgs boson signal at hadron colliders  

SciTech Connect

Most Higgs boson searches pursued at hadron colliders require Yukawa interactions either in the production or the decay of a Higgs boson. We propose a trilepton Higgs boson search based only upon the gauge interactions of the Higgs boson. This strategy can be utilized successfully for the standard model (SM) Higgs boson as well as nonstandard Higgs bosons which break electroweak symmetry but have little to do with fermion mass generation. The trileptons come from Wh production followed by Wh{r_arrow}WWW{sup ({asterisk})}{r_arrow}3l decays. A SM Higgs trilepton signal would be difficult to detect at the Fermilab Tevatron collider: with 100fb{sup {minus}1} of data, only a 3{sigma} signal above background can be achieved after cuts if 140GeV{lt}m{sub h{sub sm}{sup 0}}{lt}175GeV. Some discrimination of signal over background can be gained by analyzing the opposite sign dilepton p{sub T} distributions. At the CERN LHC with 30(100)fb{sup {minus}1} a clear discovery above the 5{sigma} level is possible for a Higgs boson mass in the range 140{endash}185(125{endash}200)GeV. Prospects for a trilepton Higgs boson discovery are greatly improved for models with nonstandard Higgs boson sectors where a Higgs boson couples preferentially to vector bosons rather than to fermions. {copyright} {ital 1998} {ital The American Physical Society}

Baer, H. [Department of Physics, Florida State University, Tallahassee, Florida32306 (United States); Wells, J.D. [Stanford Linear Accelerator Center, Stanford University, Stanford, California94309 (United States)

1998-04-01T23:59:59.000Z

148

A 233 km tunnel for lepton and hadron colliders  

SciTech Connect

A decade ago, a cost analysis was conducted to bore a 233 km circumference Very Large Hadron Collider (VLHC) tunnel passing through Fermilab. Here we outline implementations of e{sup +}e{sup -}, pp-bar , and {mu}{sup +}{mu}{sup -} collider rings in this tunnel using recent technological innovations. The 240 and 500 GeV e{sup +}e{sup -} colliders employ Crab Waist Crossings, ultra low emittance damped bunches, short vertical IP focal lengths, superconducting RF, and low coercivity, grain oriented silicon steel/concrete dipoles. Some details are also provided for a high luminosity 240 GeV e{sup +}e{sup -} collider and 1.75 TeV muon accelerator in a Fermilab site filler tunnel. The 40 TeV pp-bar collider uses the high intensity Fermilab p-bar source, exploits high cross sections for pp-bar production of high mass states, and uses 2 Tesla ultra low carbon steel/YBCO superconducting magnets run with liquid neon. The 35 TeV muon ring ramps the 2 Tesla superconducting magnets at 9 Hz every 0.4 seconds, uses 250 GV of superconducting RF to accelerate muons from 1.75 to 17.5 TeV in 63 orbits with 71% survival, and mitigates neutrino radiation with phase shifting, roller coaster motion in a FODO lattice.

Summers, D. J.; Cremaldi, L. M.; Datta, A.; Duraisamy, M.; Luo, T.; Lyons, G. T. [Dept. of Physics and Astronomy, University of Mississippi-Oxford, University, MS 38677 (United States)

2012-12-21T23:59:59.000Z

149

Prospects for heavy flavor physics at hadron colliders  

SciTech Connect

The role of hadron colliders in the observation and study of CP violation in B decays is discussed. We show that hadron collider experiments can play a significant role in the early studies of these phenomena and will play an increasingly dominant role as the effort turns towards difficult to measure decays, especially those of the B{sub s} meson, and sensitive searches for rare decays and subtle deviations from Standard Model predictions. We conclude with a discussion of the relative merits of hadron collider detectors with `forward` vs `central` rapidity coverage.

Butler, J.N.

1997-09-01T23:59:59.000Z

150

Heavy flavor production and top quark search at hadron colliders  

SciTech Connect

We review heavy flavor production at hadron colliders, with an eye towards the physics of the top quark. Motivation for existence of top, and current status of top search are reviewed. The physics of event simulation at hadron colliders is reviewed. We discuss characteristics of top quark events at p{bar p} colliders that may aid in distinguishing the top quark signal from Standard Model backgrounds, and illustrate various cuts which may be useful for top discovery. Top physics at hadron supercolliders is commented upon, as well as top quark mass measurement techniques. 22 refs., 5 figs.

Baer, H.A.

1991-01-01T23:59:59.000Z

151

Higgs boson production at hadron colliders: Signal and background processes  

SciTech Connect

We review the theoretical status of signal and background calculations for Higgs boson production at hadron colliders. Particular emphasis is given to missing NLO results, which will play a crucial role for the Tevatron and the LHC.

David Rainwater; Michael Spira; Dieter Zeppenfeld

2004-01-12T23:59:59.000Z

152

Flat beams in a 50 TeV hadron collider  

SciTech Connect

The basic beam dynamics of a next generation 50 x 50 TeV hadron collider based on a high field magnet approach have been outlined over the past several years. Radiation damping not only produces small emittances, but also flat beams, just as in electron machines. Based on {open_quotes}Snowmass 96{close_quotes} parameters, we investigate the issues associated with flat beams in very high energy hadron colliders.

Peggs, S.; Harrison, M.; Pilat, F.; Syphers, M.

1997-08-01T23:59:59.000Z

153

Single and Double Photonuclear Excitations in Pb+Pb Collisions at sqrt(s_NN) = 2.76 TeV at the CERN Large Hadron Collider  

E-Print Network (OSTI)

Cross sections are calculated for single and double photon exchange in ultraperipheral Pb+Pb collisions at the LHC. The particle production is simulated with the DPMJET event generator. Large cross sections are found for particle production around mid-rapidity making these processes an important background to hadronic nuclear interactions at both the trigger and analysis levels.

Oystein Djuvsland; Joakim Nystrand

2010-11-22T23:59:59.000Z

154

Exploring anomalous top interactions via the final lepton in ttbar productions/decays at hadron colliders  

E-Print Network (OSTI)

We study momentum distributions of the final-state charged lepton in ppbar/pp --> ttbar --> l^+ X (l=e or mu) at hadron colliders, i.e., Tevatron and Large Hadron Collider (LHC) in order to explore possible new-physics effects in the top-quark sector. Assuming general model-independent ttbar g + ttbar gg and tbW interactions beyond the standard model, we first derive analytical formulas for the corresponding parton-parton processes. We then compute the lepton angular, energy and transverse-momentum distributions in ppbar/pp collisions to clarify how they are affected by those anomalous couplings.

Zenro HIOKI; Kazumasa OHKUMA

2011-04-07T23:59:59.000Z

155

Collider Detector at Fermilab (CDF): Data from B Hadrons Research  

DOE Data Explorer (OSTI)

The Collider Detector at Fermilab (CDF) is a Tevatron experiment at Fermilab. The Tevatron, a powerful particle accelerator, accelerates protons and antiprotons close to the speed of light, and then makes them collide head-on inside the CDF detector. The CDF detector is used to study the products of such collisions. The CDF Physics Group is organized into six working groups, each with a specific focus. The Bottom group studies the production and decay of B hadrons. Their public web page makes data and numerous figures available from both CDF Runs I and II.

156

Estimation of the Invisible Z Background to Hadronic Supersymmetry Searches Performed With Proton-Proton Collision Data at 7 and 8 TeV Observed With the CMS Detector During the First run of the CERN Large Hadron Collider  

E-Print Network (OSTI)

III Analysis of all-hadronic events in the context of ato collect all the events an analysis would like to analyzeselect classes of events for specific analysis. The HLT is

Sturdy, Jared

2013-01-01T23:59:59.000Z

157

Hadron production in p+p, p+Pb, and Pb+Pb collisions with the HIJING 2.0 model at energies available at the CERN Large Hadron Collider  

E-Print Network (OSTI)

The HIJING (Heavy-ion Jet Interaction Generator) Monte Carlo model is updated with the latest parton distributions functions (PDF) and new set of the parameters in the two-component mini-jet model that controls total $p+p$ cross section and the central pseudorapity density. We study hadron spectra and multiplicity distributions using the HIJING 2.0 model and compare to recent experimental data from $p+p$ collisions at the LHC energies. We also give predictions of hadron production in $p+p$, $p+Pb$ and $Pb+Pb$ collisions at the full LHC energy.

Wei-Tian Deng; Xin-Nian Wang; Rong Xu

2010-08-11T23:59:59.000Z

158

DOE's Office of Science Launches Website for U.S. Role at Large Hadron  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Launches Website for U.S. Role at Large Launches Website for U.S. Role at Large Hadron Collider DOE's Office of Science Launches Website for U.S. Role at Large Hadron Collider September 12, 2007 - 2:32pm Addthis U.S. scientists join international colleagues to explore universe's mysteries at world's largest scientific experiments WASHINGTON, DC - The U.S. Department of Energy's Office of Science today launched a new website to tell the story of the U.S. role in the Large Hadron Collider (LHC), a particle accelerator that will begin operating in Europe, near Geneva, Switzerland, next year. Hundreds of physicists, engineers and students from the United States are joining with colleagues from around the globe in the largest and most complex scientific experiments ever built. The LHC experiments will address some of the most

159

International Journal of Modern Physics Letters A Vol. 20 (2005) Higgs Boson Searches at Hadron Colliders  

E-Print Network (OSTI)

The investigation of the dynamics responsible for electroweak symmetry breaking is one of the prime tasks of experiments at present and future colliders. Experiments at the Tevatron pp Collider and at the CERN Large Hadron Collider (LHC) must be able to discover a Standard Model Higgs boson over the full mass range as well as Higgs bosons in extended models. In this review, the discovery potential for the Standard Model Higgs boson and for Higgs bosons in the Minimal Supersymmetric extension is summarized. Emphasis is put on those studies which have been performed recently within the experimental collaborations using a realistic simulation of the detector performance. This includes a discussion of the search for Higgs bosons using the vector boson fusion mode at the LHC, a discussion on the measurement of Higgs boson parameters as well as a detailed review of the MSSM sector for different benchmark scenarios. The Tevatron part of the review also contains a discussion of first physics results from data taken in the ongoing Run II. 1

Volker Büscher; Karl Jakobs

2005-01-01T23:59:59.000Z

160

Z' Discovery Reach at Future Hadron Colliders: A Snowmass White Paper  

E-Print Network (OSTI)

Extra neutral gauge bosons are a feature of many models of physics beyond the standard model (BSM) and their discovery could possibly be the first evidence for new physics. In this Snowmass white paper we compare the discovery reach of the high energy hadron colliders considered by the Snowmass study for a broad range of BSM models. It is expected that the LHC should be able to see evidence for a Z' arising from a large variety of BSM models up to a mass of ~5 TeV when the LHC reaches its design energy and luminosity, and up to ~6 TeV with the high luminosity upgrade. Further into the future, the high energy LHC would substantially extend this reach to ~11 TeV, while the ~100 TeV VHE-LHC could see evidence for Z' 's up to ~30 TeV.

Stephen Godfrey; Travis Martin

2013-09-06T23:59:59.000Z

Note: This page contains sample records for the topic "large hadron collider" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

TESLA*HERA as Lepton (Photon)-Hadron Collider  

E-Print Network (OSTI)

New facilities for particle and nuclear physics research, which will be available due to constructing the TESLA linear electron-positron collider tangentially to the HERA proton ring, are discussed.

O. Yavas; A. K. Ciftci; S. Sultansoy

2000-04-11T23:59:59.000Z

162

Pseudoscalar Higgs boson production at hadron colliders in NNLO QCD  

SciTech Connect

We compute the total cross-section for direct production of the pseudoscalar Higgs boson in hadron collisions at next-to-next-to-leading order (NNLO) in perturbative QCD. The {Omicron}({alpha}{sub s}{sup 2}) QCD corrections increase the NLO production cross-section by approximately 20-30%.

Anastasiou, Charalampos

2002-08-26T23:59:59.000Z

163

Higgs Boson Production at Hadron Colliders in NNLO QCD  

SciTech Connect

We compute the total cross-section for direct Higgs boson production in hadron collisions at NNLO in perturbative QCD. A new technique which allows us to perform an algorithmic evaluation of inclusive phase-space integrals is introduced, based on the Cutkosky rules, integration by parts and the differential equation method for computing master integrals. Finally, we discuss the numerical impact of the {Omicron}({alpha}{sub s}{sup 2}) QCD corrections to the Higgs boson production cross-section at the LHC and the Tevatron.

Anastasiou, Charalampos

2002-08-08T23:59:59.000Z

164

Electroweak and flavor dynamics at hadron colliders - I  

SciTech Connect

This is the first of two reports cataloging the principal signatures of electroweak and flavor dynamics at {anti p}p and pp colliders. Here, we discuss some of the signatures of dynamical electroweak and flavor symmetry breaking. The framework for dynamical symmetry breaking we assume is technicolor, with a walking coupling {alpha}{sub TC}, and extended technicolor. The reactions discussed occur mainly at subprocess energies {radical}{cflx s}{approx_lt} 1 TeV. They include production of color-singlet and octet technirhos and their decay into pairs of technipions, longitudinal weak bosons, or jets. Technipions, in turn, decay predominantly into heavy fermions. This report will appear in the Proceedings of the 1996 DPF/DPB Summer Study on New Directions for High Energy Physics (Snowmass 96).

Elchtent, E.; Lane, K. [Boston Univ., MA (United States)

1998-02-01T23:59:59.000Z

165

New aspects of beam-beam interactions in hadron colliders  

Science Conference Proceedings (OSTI)

Beam-beam phenomena have until now limited the beam currents and luminosity achievable in the Tevatron. injected proton currents are about ten times larger than the anti-proton currents so beam-beam effects have largely acted on the anti-protons and at all stages of the operational cycle. The effects of the anti-protons on the protons have until now been relatively benign but that may change at higher anti-proton currents. After 36 bunches of protons are injected and placed on the proton helix, anti-protons are injected four bunches at a time. After all bunches are injected, acceleration to top energy takes bout 85 seconds. After reaching flat top, the optics around the interaction regions (IRs) is changed to lower {beta}* from 1.6 m to 0.35 m at B0 and D0. The beams are brought into collision by collapsing the separation bumps around the IPs. During a high energy physics store each bunch experiences two head-on collisions with bunches in the opposing beam and seventy long-range interactions. At all other stages of the operational cycle, each bunch experiences only long-range interactions--seventy two in all. Performance limitations from beam-beam effects until now have been primarily due to these long-range interactions. The anti-proton losses at 150 GeV have decreased during the last year mostly due to better control of the orbits, tunes and chromaticities. During this period proton intensities have increased about 50%, thus anti-proton losses at 150 GeV have not been very dependent on proton intensities. Anti-proton and proton losses on the ramp together with proton losses at 150 GeV are the dominant contributors to the Tevatron inefficiency.

Tanaji Sen

2003-06-02T23:59:59.000Z

166

Measuring the Higgs boson mass in dileptonic W-boson decays at hadron colliders  

E-Print Network (OSTI)

ar X iv :0 90 2. 48 64 v2 [ he p- ph ] 22 Ju l 2 00 9 Cavendish-HEP-09/04 Measuring the Higgs boson mass in dileptonic W -boson decays at hadron colliders Alan J. Barr,1, ? Ben Gripaios,2, † and Christopher G. Lester3, ‡ 1Denys Wilkinson... measurements of the Higgs boson mass using the decay h ? W+W?, followed by the leptonic decay of each W -boson, will be performed by fitting the shape of a distribution that is sensitive to the Higgs mass. We demonstrate that the variable most commonly used...

Barr, Alan; Gripaios, Ben; Lester, Christopher G

2009-01-01T23:59:59.000Z

167

Hadron Collider  

NLE Websites -- All DOE Office Websites (Extended Search)

in Particle Physics: Chuck Marofske 9 Electrical Accident 10 Banners Simulation of a Higgs boson decay. DOE Photo By Judy Jackson, Office of Public Affairs As they cleared security...

168

Electroweak Precision Measurements and Collider Probes of the Standard Model with Large Extra Dimensions  

SciTech Connect

The elementary particles of the Standard Model may live in more than 3+1 dimensions. We study the consequences of large compactified dimensions on scattering and decay observables at high-energy colliders. Our analysis includes global fits to electroweak precision data, indirect tests at high-energy electron-positron colliders (LEP2 and NLC), and direct probes of the Kaluza-Klein resonances at hadron colliders (Tevatron and LHC). The present limits depend sensitively on the Higgs sector, both the mass of the Higgs boson and how many dimensions it feels. If the Higgs boson is trapped on a 3+1 dimensional wall with the fermions, large Higgs masses (up to 500 GeV) and relatively light Kaluza-Klein mass scales (less than 4 TeV) can provide a good fit to precision data. That is, a light Higgs boson is not necessary to fit the electroweak precision data, as it is in the Standard Model. If the Higgs boson propagates in higher dimensions, precision data prefer a light Higgs boson (less than 260 GeV), and a higher compactification scale (greater than 3.8 TeV). Future colliders can probe much larger scales. For example, a 1.5 TeV electron-positron linear collider can indirectly discover Kaluza-Klein excitations up to 31 TeV if 500 fb{sup {minus}1} integrated luminosity is obtained.

Rizzo, Thomas G.

1999-06-03T23:59:59.000Z

169

Suggestions for benchmark scenarios for MSSM Higgs Boson searches at hadron colliders.  

SciTech Connect

The Higgs boson search has shifted from LEP2 to the Tevatron and will subsequently move to the LHC. Due to the different initial states, the Higgs production and decay channels relevant for Higgs boson searches were different at LEP2 to what they are at hadron colliders. They suggest new benchmark scenarios for the MSSM Higgs boson search at hadron colliders that exemplify the phenomenology of different parts of the MSSM parameter space. Besides the m{sub h}{sup max} scenario and the no-mixing scenario used in the LEP2 Higgs boson searches, they propose two new scenarios. In one the main production channel at the LHC, gg {yields} h, is suppressed. In the other, important Higgs decay channels at the Tevatron and at the LCH, h {yields} b{bar b} and h {yields} {tau}{sup +}{tau}{sup -}, are suppressed. All scenarios evade the LEP2 constraints for nearly the whole M{sub A}-tan {beta}-plane.

Carena, M.; Heinemeyer, S.; Wagner, C.E.M.; Weiglein, G.

2002-04-15T23:59:59.000Z

170

A novel method for modeling the recoil in W boson events at hadron collider  

E-Print Network (OSTI)

We present a new method for modeling the hadronic recoil in W->lnu events produced at hadron colliders. The recoil is chosen from a library of recoils in Z->ll data events and overlaid on a simulated W->lnu event. Implementation of this method requires that the data recoil library describe the properties of the measured recoil as a function of the true, rather than the measured, transverse momentum of the boson. We address this issue using a multidimensional Bayesian unfolding technique. We estimate the statistical and systematic uncertainties from this method for the W boson mass and width measurements assuming 1 fb-1 of data from the Fermilab Tevatron. The uncertainties are found to be small and comparable to those of a more traditional parameterized recoil model. For the high precision measurements that will be possible with data from Run II of the Fermilab Tevatron and from the CERN LHC, the method presented in this paper may be advantageous, since it does not require an understanding of the measured recoil from first principles.

V. M. Abazov

2009-07-21T23:59:59.000Z

171

Heavy-quark production at large rapidities at hadron colliders.  

E-Print Network (OSTI)

to those partonic subprocesses that feature a gluon exchange in the t-channel; this happens for gg ? QQ¯g and qg ? QQ¯q, and it is peculiar to the NLO computations of quark pair production, as opposed to Born-level predictions, in which only fermions... -energy limit is QQ¯+1 jet production. In this case the partonic subprocesses gg ? QQ¯g and qg ? QQ¯q, which feature a gluon exchange in the t-channel, are O(?3S) at the Born level. This can also be considered as a reformulation of the standard Mueller...

Andersen, Jeppe R; Del Duca, Vittoria; Frixione, Stefano; Maltoni, Fabio; Stirling, W James

172

Singlet scalars as Higgs imposters at the Large Hadron Collider  

SciTech Connect

An electroweak singlet scalar can couple to pairs of vector bosons through loop-induced dimension five operators. Compared to a Standard Model Higgs boson, the singlet decay widths in the diphotons and Z{gamma} channels are generically enhanced, while decays into massive final states like WW and ZZ are kinematically disfavored. The overall event rates into {gamma}{gamma} and Z{gamma} can exceed the Standard Model expectations by orders of magnitude. Such a singlet may appear as a resonant signal in the {gamma}{gamma} and Z{gamma} channels, even with a mass above the WW kinematic threshold.

Low, Ian; Lykken, Joseph; Shaughnessy, Gabe

2011-05-01T23:59:59.000Z

173

NNLO Benchmarks for Gauge and Higgs Boson Production at TeV Hadron Colliders  

E-Print Network (OSTI)

The inclusive production cross sections for $W^+, W^-$ and $Z^0$-bosons form important benchmarks for the physics at hadron colliders. We perform a detailed comparison of the predictions for these standard candles based on recent next-to-next-to-leading order (NNLO) parton parameterizations and new analyses including the combined HERA data, compare to all available experimental results, and discuss the predictions for present and upcoming RHIC, SPS, Tevatron and LHC energies. The rates for gauge boson production at the LHC can be rather confidently predicted with an accuracy of better than about 10% at NNLO. We also present detailed NNLO predictions for the Higgs boson production cross sections for Tevatron and LHC energies (1.96, 7, 8, 14 TeV), and propose a possible method to monitor the gluon distribution experimentally in the kinematic region close to the mass range expected for the Higgs boson. The production cross sections of the Higgs boson at the LHC are presently predicted with an accuracy of about 10--17%. The inclusion of the NNLO contributions is mandatory for achieving such accuracies since the total uncertainties are substantially larger at NLO.

S. Alekhin; J. Blümlein; P. Jimenez-Delgado; S. Moch; E. Reya

2010-11-29T23:59:59.000Z

174

The ALICE Photo Gallery: Images from A Large Ion Collider Experiment (ALICE) at CERN  

DOE Data Explorer (OSTI)

ALICE is the acronym for A Large Ion Collider Experiment, one of the largest experiments in the world devoted to research in the physics of matter at an infinitely small scale. Hosted at CERN, the European Laboratory for Nuclear Research, this project involves an international collaboration of more than 1000 physicists, engineers and technicians, including around 200 graduate students, from 105 physics institutes in 30 countries across the world. The ALICE Experiment is going in search of answers to fundamental questions, using the extraordinary tools provided by the Large Hadron Collider (LHC): 1) What happens to matter when it is heated to 100,000 times the temperature at the centre of the Sun? 2) Why do protons and neutrons weigh 100 times more than the quarks they are made of? 3) Can the quarks inside the protons and neutrons be freed? [copied from http://aliceinfo.cern.ch/Public/Welcome.html]

The Alice Photo Gallery highlights images taken by three professional photographers, Pavel Cugini, Peter Ginter, and Antonio Saba. Other pictures can be found in the Cern Document Server Database at http://cdsweb.cern.ch/.

Cugini, Pavel; Ginter, Peter; Saba, Antonio

175

Hadron production and QGP Hadronization in Pb--Pb collisions at $\\sqrt{s_{NN}}=2.76$ TeV  

E-Print Network (OSTI)

We show that all central rapidity hadron yields measured in Pb--Pb collisions at $\\sqrt{s_{NN}}=2.76$ TeV are well described by the chemical non-equilibrium statistical hadronization model (SHM), where the chemically equilibrated QGP source breaks up directly into hadrons. SHM parameters are obtained as a function of centrality of colliding ions, and we compare CERN Large Hadron Collider (LHC) with Brookhaven National Laboratory Relativistic Heavy Ion Collider (RHIC) results. We predict yields of unobserved hadrons and address anti-matter production. The physical properties of the quark--gluon plasma fireball particle source show universality of hadronization conditions at LHC and RHIC.

Michal Petran; Jean Letessier; Vojtech Petracek; Johann Rafelski

2013-03-08T23:59:59.000Z

176

Dark matter at colliders  

SciTech Connect

We show that colliders can impose strong constraints on dark matter. We take an effective field theory approach where dark matter couples to quarks and gluons through high dimensional operators. We discuss limits on interactions of dark matter and hadronic matter from the ATLAS experiment at the Large Hadron Collider (LHC). For spin-independent scattering, the LHC limits are stronger than those from direct detection experiments for light WIMPs. For spin-dependent scattering, the LHC sets better limits over much of parameter space.

Yu Haibo [Department of Physics, University of Michigan, Ann Arbor, MI, 48109 (United States)

2013-05-23T23:59:59.000Z

177

First evidence for WW and WZ diboson production with semi-leptonic decays at a Hadron Collider  

SciTech Connect

Presented is a measurement of the simultaneous production of a W{sup {+-}} boson in association with a second weak boson (W{sup {+-}} or Z{sup 0}) in p{bar p} collisions at {radical}s = 1.96 TeV. Events are consider with one electron or one muon, missing transverse energy, and at least two hadronic jets. The data were collected by the D0 detector in Run IIa of the Tevatron accelerator and correspond to 1.07 fb{sup -1} of integrated luminosity for each of the two channels (WW/WZ {yields} e{nu}q{bar q} and WW/WZ {yields} {mu}{nu}q{bar q}). The cross section for WW + WZ production is measured to be 20.2 {+-} 2.5(stat) {+-} 3.6(sys) {+-} 1.2(lum) pb with a Gaussian significance of 4.4 standard deviations above the background-only scenario. This measurement is consistent with the Standard Model prediction and represents the first direct evidence for WW and WZ production with semi-leptonic decays at a hadron collider.

Haley, Joseph Glenn Biddle; /Princeton U.

2009-03-01T23:59:59.000Z

178

Accessing the Distribution of Linearly Polarized Gluons in Unpolarized Hadrons  

SciTech Connect

Gluons inside unpolarized hadrons can be linearly polarized provided they have a nonzero transverse momentum. The simplest and theoretically safest way to probe this distribution of linearly polarized gluons is through cos2{phi} asymmetries in heavy quark pair or dijet production in electron-hadron collisions. Future Electron-Ion Collider (EIC) or Large Hadron electron Collider (LHeC) experiments are ideally suited for this purpose. Here we estimate the maximum asymmetries for EIC kinematics.

Boer, Daniel; /Groningen, KVI; Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins; Mulders, Piet J.; /Vrije U., Amsterdam; Pisano, Cristian; /Cagliari U. /INFN, Cagliari

2011-08-19T23:59:59.000Z

179

Associated Higgs-W-Boson Production at Hadron Colliders: A Fully Exclusive QCD Calculation at NNLO  

SciTech Connect

We consider QCD radiative corrections to standard model Higgs-boson production in association with a W boson in hadron collisions. We present a fully exclusive calculation up to next-to-next-to-leading order (NNLO) in QCD perturbation theory. To perform this NNLO computation, we use a recently proposed version of the subtraction formalism. Our calculation includes finite-width effects, the leptonic decay of the W boson with its spin correlations, and the decay of the Higgs boson into a bb pair. We present selected numerical results at the Tevatron and the LHC.

Ferrera, Giancarlo [Dipartimento di Fisica e Astronomia, Universita di Firenze and INFN, Sezione di Firenze, I-50019 Sesto Fiorentino, Florence (Italy); Grazzini, Massimiliano [Institut fuer Theoretische Physik, Universitaet Zuerich, CH-8057 Zuerich (Switzerland); Tramontano, Francesco [Theory Group, Physics Department, CERN, CH-1211 Geneva 23 (Switzerland)

2011-10-07T23:59:59.000Z

180

Using neural networks to enhance the Higgs boson signal at hadron colliders  

SciTech Connect

Neural networks are used to help distinguish the ZZ {yields} {ell}{sup +}{ell}{sup {minus}}-jet-jet signal produced by the decay of a 400 GeV Higgs boson at a proton-proton collider energy of 15 TeV from the ``ordinary`` QCD Z + jets background. The ideal case where only one event at a time enters the detector (no pile-up) and the case of multiple interactions per beam crossing (pile-up) are examined. In both cases, when used in conjunction with the standard cuts, neural networks provide an additional signal to background enhancement.

Field, R.D.; Kanev, Y.; Tayebnejad, M. [Univ. of Florida, Gainesville, FL (United States); Griffin, P.A. [Rockefeller Univ., New York, NY (United States)

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "large hadron collider" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Signatures of doubly-charged Higgsinos at colliders  

SciTech Connect

Several supersymmetric models with extended gauge structures predict light doubly-charged Higgsinos. Their distinctive signature at the large hadron collider is highlighted by studying its production and decay characteristics.

Demir, D. A. [Department of Physics, Izmir Institute of Technology, IZTECH, TR35430 Izmir (Turkey); Deutsches Elektronen-Synchrotron, DESY, D-22603 Hamburg (Germany); Frank, M.; Turan, I. [Department of Physics, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, H4B 1R6 (Canada); Huitu, K.; Rai, S. K. [Department of Physics, University of Helsinki and Helsinki Institute of Physics, P.O. Box 64, FIN-00014, Helsinki (Finland)

2008-11-23T23:59:59.000Z

182

A study on dual readout crystal calorimeter for hadron and jet energy measurement at a future lepton collider  

SciTech Connect

Studies of requirements and specifications of crystals are necessary to develop a new generation of crystals for dual readout crystal hadron or total absorption calorimeter. This is a short and basic study of the characteristics and hadron energy measurement of PbWO4 and BGO crystals for scintillation and Cerenkov Dual Readout hadron calorimeter.

Yeh, G.P.; /Fermilab

2010-01-01T23:59:59.000Z

183

Pair Production of Heavy Quarkonium and $B_c(^*)$ Mesons at Hadron Colliders  

E-Print Network (OSTI)

We investigate the pair production of S-wave heavy quarkonium at the LHC in the color-singlet mechanism (CSM) and estimate the contribution from the gluon fragmentation process in the color-octet mechanism (COM) for comparison. With the matrix elements extracted previously in the leading order calculations, the numerical results show that the production rates are quite large for the pair production processes at the LHC. The $p_t$ distribution of double $J/\\psi$ production in the CSM is dominant over that in the COM when $p_t$ is smaller than about 8GeV. For the production of double $\\Upsilon$, the contribution of the COM is always larger than that in the CSM. The large differences in the theoretical predictions between the CSM and COM for the $p_t$ distributions in the large $p_t$ region are useful in clarifying the effects of COM on the quarkonium production. We also investigate the pair production of S-wave $B_c$ and $B_c^*$ mesons, and the measurement of these processes is useful to test the CSM and extract the LDMEs for the $B_c$ and $B_c^*$ mesons.

Rong Li; Yu-Jie Zhang; Kuang-Ta Chao

2009-03-12T23:59:59.000Z

184

Phenomenology of Production and Decay of Spinning Extra-Dimensional Black Holes at Hadron Colliders.  

E-Print Network (OSTI)

Standard Model, Large Extra Dimensions. ?Work supported in part by the UK Science and Technology Facilities Council. Contents 1. Introduction 2 2. Black hole production 3 2.1 Theoretical studies of the production phase 4 2.2 Incorporation of the results... of black hole decay 22 4.1 Fixed-multiplicity model 23 4.2 Variable-multiplicity model 24 4.3 Boiling model 24 4.4 Stable remnant model 24 4.5 Straight-to-remnant option 25 5. Results 25 5.1 Black hole mass and angular momentum 26 5.2 Rotation effects 29 5...

Frost, James A; Gaunt, Jonathan R; Sampaio, Marco Oliveira Pena; Casals, Marc; Dolan, Sam R; Parker, Michael A; Webber, Bryan R

185

Constraints on the gluon PDF from top quark pair production at hadron colliders  

E-Print Network (OSTI)

Using the recently derived NNLO cross sections \\cite{Czakon:2013goa}, we provide NNLO+NNLL theoretical predictions for top quark pair production based on all the available NNLO PDF sets, and compare them with the most precise LHC and Tevatron data. In this comparison we study in detail the PDF uncertainty and the scale, $m_t$ and $\\alpha_s$ dependence of the theoretical predictions for each PDF set. Next, we observe that top quark pair production provides a powerful direct constraint on the gluon PDF at large $x$, and include Tevatron and LHC top pair data consistently into a global NNLO PDF fit. We then explore the phenomenological consequences of the reduced gluon PDF uncertainties, by showing how they can improve predictions for Beyond the Standard Model processes at the LHC. Finally, we update to full NNLO+NNLL the theoretical predictions for the ratio of top quark cross sections between different LHC center of mass energies, as well as the cross sections for hypothetical heavy fourth-generation quark production at the LHC.

Michal Czakon; Michelangelo L. Mangano; Alexander Mitov; Juan Rojo

2013-03-28T23:59:59.000Z

186

Linear collider signals of an invisible Higgs boson in theories of large extra dimensions  

SciTech Connect

We discuss the possibility of detecting a Higgs boson in electron-positron collider experiments if large extra dimensions are realized in nature. In such a case, the Higgs boson can decay invisibly by oscillating into a graviscalar Kaluza-Klein tower. We show that the search for such a Higgs boson at an e{sup +}e{sup -} linear collider entails more complications than are usually thought of in relation to an invisibly decaying Higgs boson. The main sources of such complications are due to the simultaneous presence of a continuum graviton production and the broadening of the Higgs peak. We discuss possible ways of overcoming such difficulties and conclude that the detection of such a Higgs boson might still be a problem beyond the mass range of 250-300 GeV.

Datta, Anindya [INFN, Sezione di Roma, Universita La Sapienza, P. le A. Moro 2, Rome I-00185 (Italy); Huitu, Katri [Helsinki Institute of Physics, P.O. Box 64, FIN-00014 University of Helsinki (Finland); High Energy Physics Division, Department of Physical Sciences, P.O. Box 64, FIN-00014 University of Helsinki (Finland); Laamanen, Jari [Helsinki Institute of Physics, P.O. Box 64, FIN-00014 University of Helsinki (Finland); Mukhopadhyaya, Biswarup [Harish Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad - 211 019 (India)

2004-10-01T23:59:59.000Z

187

Linear Collider LHC Subpanel | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Subpanel on the Linear Collider and the Large Hadron Subpanel on the Linear Collider and the Large Hadron Collider High Energy Physics Advisory Panel (HEPAP) HEPAP Home Meetings Members .pdf file (20KB) Charges/Reports Charter .pdf file (44KB) HEP Committees of Visitors HEP Home Charges/Reports Subpanel on the Linear Collider and the Large Hadron Collider Print Text Size: A A A RSS Feeds FeedbackShare Page Joseph Lykken (FNAL) Co-Chair James Siegrist (LBNL) Co-Chair Jonathan Bagger (JHU) Barry Barish (Caltech) Neil Calder (SLAC) Jonathan Feng (UC Irvine) Fred Gilman (Carnegie Mellon) JoAnne Hewett (SLAC) John Huth (Harvard) Judy Jackson (Fermilab) Young-Kee Kim (Chicago) Rocky Kolb (Fermilab) Joe Lykken (Fermilab) Konstantin Matchev (Florida) Hitoshi Murayama (UC Berkeley) Jim Siegrist (UC Berkeley) Paris Sphicas (CERN/Athens)

188

Prospects for Charged Higgs Boson Searches at the Large Hadron Collider with Early ATLAS Data.  

E-Print Network (OSTI)

??See full text for abstract Why are you so massive?It might come as a surprise, but this is the biggest unanswered question in modern-day particle… (more)

Lane, Jenna Louise

2010-01-01T23:59:59.000Z

189

Minimum Bias Measurements with the ATLAS Detector at the CERN Large Hadron Collider  

E-Print Network (OSTI)

Uncertainty . . 8 Analysis with Data 8.1 Event and VertexAPPENDIX A. EVENT SAMPLE Analysis of the reconstructed event7. CHAPTER 8. ANALYSIS WITH DATA Event and Vertex Quality

Leyton, Michael A.

2009-01-01T23:59:59.000Z

190

RF system models for the CERN Large Hadron Collider with application to longitudinal dynamics  

Science Conference Proceedings (OSTI)

The LHC RF station-beam interaction strongly influences the longitudinal beam dynamics, both single bunch and collective effects. Non-linearities and noise generated within the Radio Frequency (RF) accelerating system interact with the beam and contribute to beam motion and longitudinal emittance blowup. Thus, the noise power spectrum of the RF accelerating voltage strongly affects the longitudinal beam distribution. Furthermore, the coupled-bunch instabilities are also directly affected by the RF components and the configuration of the Low Level RF (LLRF) feedback loops. In this work we present a formalism relating the longitudinal beam dynamics with the RF system configurations, an estimation of collective effects stability margins, and an evaluation of longitudinal sensitivity to various LLRF parameters and configurations.

Mastorides, T.; Rivetta, C.; Fox, J.D.; Winkle, D.Van; /SLAC; Baudrenghien, P.; /CERN

2011-03-03T23:59:59.000Z

191

Monte Carlo-Based Field Calibration of Radiation Monitors for the Large Hadron Collider at CERN  

Science Conference Proceedings (OSTI)

Accelerators / Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (PART 3) / Radiation Protection

C. Theis; D. Forkel-Wirth; D. Lacarrère; S. Roesler; H. Vincke

192

A Nuclear Physics Program at the ATLAS Experiment at the CERN Large Hadron Collider  

E-Print Network (OSTI)

The ATLAS collaboration has significant interest in the physics of ultra-relativistic heavy ion collisions. We submitted a Letter of Intent to the United States Department of Energy in March 2002. The following document is a slightly modified version of that LOI. More details are available at: http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/SM/ions

S. Aronson; K. Assamagan; H. Gordon; M. Leite; M. Levine; P. Nevski; H. Takai; S. White; B. Cole; J. L. Nagle

2002-12-13T23:59:59.000Z

193

The Little Randall-Sundrum Model at the Large Hadron Collider  

E-Print Network (OSTI)

We present a predictive warped model of flavor that is cut off at an ultraviolet scale O(10^3) TeV. This "Little Randall-Sundrum (LRS)" model is a volume-truncation, by a factor $y \\approx 6$, of the RS scenario and is holographically dual to dynamics with number of colors larger by $y$. The LRS couplings between Kaluza-Klein states and the Standard Model fields, including the proton constituents, are explicitly calculable without ad hoc assumptions. Assuming separate gauge and flavor dynamics, a number of unwanted contributions to precision electroweak, $Z b\\bar b$ and flavor observables are suppressed in the LRS framework, compared with the corresponding RS case. An important consequence of the LRS truncation, independent of precise details, is a significant enhancement of the clean (golden) di-lepton LHC signals, by O(y^3), due to a larger "$\\rho$-photon" mixing and a smaller inter-composite coupling.

Hooman Davoudiasl; Gilad Perez; Amarjit Soni

2008-02-04T23:59:59.000Z

194

Explanation of Di-jet asymmetry in Pb+Pb collisions at the Large Hadron Collider  

E-Print Network (OSTI)

We investigate the medium modification of a partonic jet shower traversing in a hot quark-gluon plasma. We derive and solve a differential equation that governs the evolution of the radiated gluon spectrum as the jet propagates through the medium. Energy contained inside the jet cone is lost by dissipation through elastic collisions with the medium and by scattering of shower partons to larger angles. We find that the jet energy loss at early times is dominated by medium effects on the vacuum radiation, and by medium-induced radiation effects at late times. We compare our numerical results for the nuclear modification of the di-jet asymmetry with that recently reported by the ATLAS collaboration.

Guang-You Qin; Berndt Müller

2010-12-23T23:59:59.000Z

195

Gluon saturation in dijet production in p-Pb collisions at Large Hadron Collider  

E-Print Network (OSTI)

We study saturation effects in the production of dijets in p-p and p-Pb collisions using the framework of high energy factorization. We focus on central-forward jet configurations, which allow for probing gluon density at low longitudinal momentum fraction. We find significant suppression of the central-forward jet decorrelations in p-Pb compared to p-p, which we attribute to saturation of gluon density in nuclei.

Krzysztof Kutak; Sebastian Sapeta

2012-05-22T23:59:59.000Z

196

Gluon distributions in nuclei probed at the CERN Large Hadron Collider  

E-Print Network (OSTI)

Using updated gluon distributions from global fits to data, we investigate the sensitivity of direct photoproduction of heavy quarks and exclusive production of vector mesons to varying strength of gluon modifications. Implications of using these processes for constraining nuclear gluon distributions are discussed.

Adeola Adeluyi; Carlos Bertulani

2011-04-21T23:59:59.000Z

197

Distinguishing spins in supersymmetric and universal extra dimension models at the large hadron collider.  

E-Print Network (OSTI)

to verify the UED spin assignments if the spectrum is quasi-degenerate like that in table 1. The SUSY mass spectrum, on the other hand, does ?˜01 ?˜ 0 2 u˜L e˜R e˜L 96 177 537 143 202 Table 2: SUSY masses in GeV, for SPS point 1a. not naturally have the same...

Smillie, Jennifer M; Webber, Bryan R

198

Detecting H{yields}hh in the mirror model at the CERN Large Hadron Collider  

SciTech Connect

The Higgs sector may play an important role in detecting mirror particles, which can be the candidates of dark matter and appear as missing energy in the detectors at the LHC. In this paper we worked out the Higgs boson spectrum and the Higgs couplings for the symmetric vacuum, namely v{sub 1}=v{sub 2}=v, in the mirror model, and investigated the constraints from electroweak precision observables. Our study showed that electroweak precision observables have already constrained the Higgs boson sector severely. We then explored the Higgs boson phenomenology, and focused on the scenario that the heavier Higgs boson H can decay into a pair of lighter Higgs bosons h. We proposed to study the invisible decay of the Higgs boson via the pair production of them, in which one Higgs boson decays into bottom quarks and the other decays invisibly. Our detail simulation for signals and backgrounds showed that the observation of the signal can reach 5{sigma} significance for m{sub H}=260 GeV and m{sub h}=115 GeV with 10 fb{sup -1} integrated luminosity at the LHC. Moreover the possible method to further suppress dominant Zbb background was discussed. We also simulated the signals and backgrounds for H{yields}hh{yields}4b. Our results showed that it is very difficult to isolate the signals from huge QCD continuum backgrounds.

Li Wensheng; Yin Pengfei; Zhu Shouhua [Institute of Theoretical Physics, School of Physics, Peking University, Beijing 100871 (China)

2007-11-01T23:59:59.000Z

199

Minimum Bias Measurements with the ATLAS Detector at the CERN Large Hadron Collider  

E-Print Network (OSTI)

efficiency at the Event Filter MBTS trigger efficiency atand counted at the Event Filter trigger level. Any eventsCHAPTER 3. MINIMUM BIAS TRIGGER Event Selection The analysis

Leyton, Michael A.

2009-01-01T23:59:59.000Z

200

Quark-Hadron Duality for Hybrid Mesons at Large-Nc  

E-Print Network (OSTI)

We investigate implications of quark-hadron duality for hybrid mesons in the large-Nc limit. A simple formalism is developed which implements duality for QCD two-point functions of currents of quark bilinears, with any number of gluons. We argue that the large-Nc meson masses share a common parameter, which is related to the QCD string tension. This parameter is fixed from correlators of conserved vector and axial-vector currents, and using lattice QCD determinations of the string tension. Our results predict towers of hybrid mesons which, within expected 1/Nc corrections, naturally accommodate the 1^(-+) experimental hybrid candidates.

S. R. Beane

2001-08-02T23:59:59.000Z

Note: This page contains sample records for the topic "large hadron collider" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Klystron switching power supplies for the Internation Linear Collider  

Science Conference Proceedings (OSTI)

The International Linear Collider is a majestic High Energy Physics particle accelerator that will give physicists a new cosmic doorway to explore energy regimes beyond the reach of today's accelerators. ILC will complement the Large Hadron Collider (LHC), a proton-proton collider at the European Center for Nuclear Research (CERN) in Geneva, Switzerland, by producing electron-positron collisions at center of mass energy of about 500 GeV. In particular, the subject of this dissertation is the R&D for a solid state Marx Modulator and relative switching power supply for the International Linear Collider Main LINAC Radio Frequency stations.

Fraioli, Andrea; /Cassino U. /INFN, Pisa

2009-12-01T23:59:59.000Z

202

NLO QCD CORRECTIONS TO HADRONIC HIGGS PRODUCTION WITH HEAVY QUARKS.  

SciTech Connect

The production of a Higgs boson in association with a pair of t{bar t} or b{bar b} quarks plays a very important role at both the Tevatron and the Large Hadron Collider. The theoretical prediction of the corresponding cross sections has been improved by including the complete next-to-leading order QCD corrections. After a brief description of the most relevant technical aspects of the calculation, we review the results obtained for both the Tevatron and the Large Hadron Collider.

DAWSON,S.; JACKSON,C.; ORR,L.; REINA,L.; WACHEROTH,D.

2003-07-02T23:59:59.000Z

203

Reco level Smin and subsystem Smin: improved global inclusive variables for measuring the new physics mass scale in MET events at hadron colliders  

SciTech Connect

The variable {radical}s{sub min} was originally proposed in [1] as a model-independent, global and fully inclusive measure of the new physics mass scale in missing energy events at hadron colliders. In the original incarnation of {radical}s{sub min}, however, the connection to the new physics mass scale was blurred by the effects of the underlying event, most notably initial state radiation and multiple parton interactions. In this paper we advertize two improved variants of the {radical}s{sub min} variable, which overcome this problem. First we show that by evaluating the {radical}s{sub min} variable at the RECO level, in terms of the reconstructed objects in the event, the effects from the underlying event are significantly diminished and the nice correlation between the peak in the {radical}s{sub min}{sup (reco)} distribution and the new physics mass scale is restored. Secondly, the underlying event problem can be avoided altogether when the {radical}s{sub min} concept is applied to a subsystem of the event which does not involve any QCD jets. We supply an analytic formula for the resulting subsystem {radical}s{sub min}{sup (sub)} variable and show that its peak exhibits the usual correlation with the mass scale of the particles produced in the subsystem. Finally, we contrast {radical}s{sub min} to other popular inclusive variables such as H{sub T}, M{sub Tgen} and M{sub TTgen}. We illustrate our discussion with several examples from supersymmetry, and with dilepton events from top quark pair production.

Konar, Partha; /Florida U.; Kong, Kyoungchul; /SLAC; Matchev, Konstantin T.; Park, Myeonghun; /Florida U.

2011-08-11T23:59:59.000Z

204

The hunting of the squark: experimental strategies in the search for supersymmetry at the Large Hadron Collider  

E-Print Network (OSTI)

are corrected by estimating the contributions from energy deposits outside the cluster, as well as in the material surrounding the EM calorimeter. Tracks are extrapolated to the calorimeter, accounting for radiative losses, from their final measured location... Muons are chiefly identified on the basis of tracks or segments found in the MS, as no other particles penetrate the calorimeters. ATLAS reconstruction distinguishes three types of muons: standalone, segment-tagged and combined [9]. Standalone muons...

Khoo, Teng Jian

2013-06-11T23:59:59.000Z

205

Suppression of bottomonia states in finite size quark gluon plasma in PbPb collisions at Large Hadron Collider  

E-Print Network (OSTI)

The bottomonium states due to their varying binding energies dissolve at different temperatures and thus their nuclear modification factors and relative yields have potential to map the properties of Quark Gluon Plasma (QGP). We estimate the suppression of bottomonia states due to color screening in an expanding QGP of finite lifetime and size with the conditions relevant for PbPb collisions at LHC. The properties of $\\Upsilon$ states and recent results on their dissociation temperatures have been used as ingredient in the study. The nuclear modification factors and the ratios of yields of $\\Upsilon$ states are then obtained as a function of transverse momentum and centrality. We compare our theoretical calculations with the bottomonia yields measured with CMS in PbPb collisions at $\\sqrt{s_{\\rm NN}}$ = 2.76 TeV. The model calculations explain the data very well.

A. Abdulsalam; Prashant Shukla

2012-10-29T23:59:59.000Z

206

Probing two-photon decay widths of mesons at energies available at the CERN Large Hadron Collider (LHC)  

E-Print Network (OSTI)

Meson production cross sections in ultra-peripheral relativistic heavy ion collisions at LHC are revisited. The relevance of meson models and of exotic QCD states is discussed. This study includes states that have not been considered before in the literature.

C. A. Bertulani

2009-03-18T23:59:59.000Z

207

P{bar P} collider physics  

Science Conference Proceedings (OSTI)

A brief introduction to {bar p}p collider physics is given. Selected results from the collider experiments at the CERN S{bar p}pS and the Tevatron collider are described. The emphasis is on experimental aspects of {bar p}p collisions. Minimum bias physics and the production of jets, Intermediate Vector Bosons and heavy flavors is reviewed. The outlook for physics at hadron colliders for the near future is briefly discussed.

Demarteau, M. [State Univ. of New York, Stony Brook, NY (United States)

1992-04-01T23:59:59.000Z

208

Muon Muon Collider: Feasibility Study  

SciTech Connect

A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10{sup 35} cm{sup -2}s{sup -1}. The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice - we believe - to allow us to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring wich has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design. Muons because of their large mass compared to an electron, do not produce significant synchrotron radiation. As a result there is negligible beamstrahlung and high energy collisions are not limited by this phenomena. In addition, muons can be accelerated in circular devices which will be considerably smaller than two full-energy linacs as required in an e{sup +} - e{sup -} collider. A hadron collider would require a CM energy 5 to 10 times higher than 4 TeV to have an equivalent energy reach. Since the accelerator size is limited by the strength of bending magnets, the hadron collider for the same physics reach would have to be much larger than the muon collider. In addition, muon collisions should be cleaner than hadron collisions. There are many detailed particle reactions which are open to a muon collider and the physics of such reactions - what one learns and the necessary luminosity to see interesting events - are described in detail. Most of the physics accesible to an e{sup +} - e{sup -} collider could be studied in a muon collider. In addition the production of Higgs bosons in the s-channel will allow the measurement of Higgs masses and total widths to high precision; likewise, t{bar t} and W{sup +}W{sup -} threshold studies would yield m{sub t} and m{sub w} to great accuracy. These reactions are at low center of mass energy (if the MSSM is correct) and the luminosity and {Delta}p/p of the beams required for these measurements is detailed in the Physics Chapter. On the other hand, at 2 + 2 TeV, a luminosity of L {approx} 10{sup 35} cm{sup -2}s{sup -1} is desirable for studies such as, the scattering of longitudinal W bosons or the production of heavy scalar particles. Not explored in this work, but worth noting, are the opportunities for muon-proton and muon-heavy ion collisions as well as the enormous richness of such a facility for fixed target physics provided by the intense beams of neutrinos, muons, pions, kaons, antiprotons and spallation neutrons. To see all the interesting physics described herein requires a careful study of the operation of a detector in the very large background. Three sources of background have been identified. The first is from any halo accompanying the muon beams in the collider ring. Very carefully prepared beams will have to be injected and maintained. The second is due to the fact that on average 35% of the muon energy appears in its decay electron. The energy of the electron subsequently is converted into EM showers either from the synchrotron radiation they emit in the collider magnetic field or from direct collision with the surrounding material. The decays that occur as the beams traverse the low beta insert are of particular concern for detector backgrounds. A third source of background is e{sup +} - e{sup -} pair creation from {mu}{sup +} - {mu}{sup -} interaction. Studies of

Gallardo, J.C.; Palmer, R.B.; /Brookhaven; Tollestrup, A.V.; /Fermilab; Sessler, A.M.; /LBL, Berkeley; Skrinsky, A.N.; /Novosibirsk, IYF; Ankenbrandt, C.; Geer, S.; Griffin, J.; Johnstone, C.; Lebrun, P.; McInturff, A.; Mills, Frederick E.; Mokhov, N.; Moretti, A.; Neuffer, D.; Ng, K.Y.; Noble, R.; Novitski, I.; Popovic, M.; Qian, C.; Van Ginneken, A. /Fermilab /Brookhaven /Wisconsin U., Madison /Tel Aviv U. /Indiana U. /UCLA /LBL, Berkeley /SLAC /Argonne /Sobolev IM, Novosibirsk /UC, Davis /Munich, Tech. U. /Virginia U. /KEK, Tsukuba /DESY /Novosibirsk, IYF /Jefferson Lab /Mississippi U. /SUNY, Stony Brook /MIT /Columbia U. /Fairfield U. /UC, Berkeley

2012-04-05T23:59:59.000Z

209

Fermilab | Science at Fermilab | Fermilab and the Higgs Boson | Large  

NLE Websites -- All DOE Office Websites (Extended Search)

Fermilab and the Higgs Boson Fermilab and the Higgs Boson In this Section: Fermilab and the Higgs Boson Tevatron Experiments: CDF and DZero Large Hadron Collider Experiments: CMS Large Hadron Collider Experiments: CMS On July 4, 2012, scientists on the CMS and ATLAS experiments at the Large Hadron Collider announced the discovery of the Higgs boson. Fermilab was heavily involved in both the construction of the LHC – designing magnets that focus the particle beams into a collision – and the science conducted with the accelerator that led to the Higgs discovery. Scientists from the United States, including 100 Fermilab employees, make up approximately a third of the CMS collaboration, one of the two main experiments operating on the LHC. Fermilab serves as the hub for U.S. researchers working on the international experiment. Fermilab is home to

210

International linear collider reference design report  

Science Conference Proceedings (OSTI)

The International Linear Collider will give physicists a new cosmic doorway to explore energy regimes beyond the reach of today's accelerators. A proposed electron-positron collider, the ILC will complement the Large Hadron Collider, a proton-proton collider at the European Center for Nuclear Research (CERN) in Geneva, Switzerland, together unlocking some of the deepest mysteries in the universe. With LHC discoveries pointing the way, the ILC -- a true precision machine -- will provide the missing pieces of the puzzle. Consisting of two linear accelerators that face each other, the ILC will hurl some 10 billion electrons and their anti-particles, positrons, toward each other at nearly the speed of light. Superconducting accelerator cavities operating at temperatures near absolute zero give the particles more and more energy until they smash in a blazing crossfire at the centre of the machine. Stretching approximately 35 kilometres in length, the beams collide 14,000 times every second at extremely high energies -- 500 billion-electron-volts (GeV). Each spectacular collision creates an array of new particles that could answer some of the most fundamental questions of all time. The current baseline design allows for an upgrade to a 50-kilometre, 1 trillion-electron-volt (TeV) machine during the second stage of the project. This reference design provides the first detailed technical snapshot of the proposed future electron-positron collider, defining in detail the technical parameters and components that make up each section of the 31-kilometer long accelerator. The report will guide the development of the worldwide R&D program, motivate international industrial studies and serve as the basis for the final engineering design needed to make an official project proposal later this decade.

Aarons, G.

2007-06-22T23:59:59.000Z

211

Impact of parton distribution function and {alpha}{sub s} uncertainties on Higgs boson production in gluon fusion at hadron colliders  

SciTech Connect

We present a systematic study of uncertainties due to parton distributions (PDFs) and the strong coupling on the gluon-fusion production cross section of the standard model Higgs at the Tevatron and LHC colliders. We compare procedures and results when three recent sets of PDFs are used, CTEQ6.6, MSTW08, and NNPDF1.2, and we discuss specifically the way PDF and strong coupling uncertainties are combined. We find that results obtained from different PDF sets are in reasonable agreement if a common value of the strong coupling is adopted. We show that the addition in quadrature of PDF and {alpha}{sub s} uncertainties provides an adequate approximation to the full result with exact error propagation. We discuss a simple recipe to determine a conservative PDF+{alpha}{sub s} uncertainty from available global parton sets, and we use it to estimate this uncertainty on the given process to be about 10% at the Tevatron and 5% at the LHC for a light Higgs.

Demartin, Federico; Mariani, Elisa [Dipartimento di Fisica, Universita di Milano, Via Celoria 16, I-20133 Milano (Italy); Forte, Stefano; Vicini, Alessandro [Dipartimento di Fisica, Universita di Milano, Via Celoria 16, I-20133 Milano (Italy); INFN, Sezione di Milano, Via Celoria 16, I-20133 Milano (Italy); Rojo, Juan [INFN, Sezione di Milano, Via Celoria 16, I-20133 Milano (Italy)

2010-07-01T23:59:59.000Z

212

Hadronic Production of the Doubly Heavy Baryon $?_{bc}$ at LHC  

E-Print Network (OSTI)

We investigate the hadronic production of the doubly heavy baryon $\\Xi_{bc}$ at the large hadron collider (LHC), where contributions from the four $(bc)$-diquark states $(bc)_{\\bf\\bar{3},6}[^1S_0]$ and $(bc)_{\\bf\\bar{3},6}[^3S_1]$ have been taken into consideration. Numerical results show that under the condition of $p_T>4$ GeV and $|y|energy $\\sqrt{S}=7$ TeV and $\\sqrt{S}=14$ TeV respectively. For experimental usage, the total and the interested differential cross-sections are estimated under some typical $p_T$- and $y$- cuts for the LHC detectors CMS, ATLAS and LHCb. Main uncertainties are discussed and a comparative study on the hadronic production of $\\Xi_{cc}$, $\\Xi_{bc}$ and $\\Xi_{bb}$ at LHC are also presented.

Jia-Wei Zhang; Xing-Gang Wu; Tao Zhong; Yao Yu; Zhen-Yun Fang

2011-01-06T23:59:59.000Z

213

Large-Area Plasma-Panel Radiation Detectors for Nuclear Medicine Imaging to Homeland Security and the Super Large Hadron Collider  

E-Print Network (OSTI)

A new radiation sensor derived from plasma panel display technology is introduced. It has the capability to detect ionizing and non-ionizing radiation over a wide energy range and the potential for use in many applications. The principle of operation is described and some early results presented.

Friedman, Peter S; Chapman, J Wehrley; Levin, Daniel S; Weaverdyck, Curtis; Zhou, Bing; Benhammou, Yan; Etzion, Erez; Moshe, M Ben; Silver, Yiftah; Beene, James R; Varner, Robert L

2010-01-01T23:59:59.000Z

214

Large-Area Plasma-Panel Radiation Detectors for Nuclear Medicine Imaging to Homeland Security and the Super Large Hadron Collider  

E-Print Network (OSTI)

A new radiation sensor derived from plasma panel display technology is introduced. It has the capability to detect ionizing and non-ionizing radiation over a wide energy range and the potential for use in many applications. The principle of operation is described and some early results presented.

Peter S. Friedman; Robert Ball; J. Wehrley Chapman; Daniel S. Levin; Curtis Weaverdyck; Bing Zhou; Yan Benhammou; Erez Etzion; M. Ben Moshe; Yiftah Silver; James R. Beene; Robert L. Varner Jr.

2010-07-03T23:59:59.000Z

215

Managing very large distributed data sets on a data grid  

Science Conference Proceedings (OSTI)

In this work we address the management of very large data sets, which need to be stored and processed across many computing sites. The motivation for our work is the ATLAS experiment for the Large Hadron Collider (LHC), where the authors have been involved ... Keywords: data management, distributed systems, grid computing, modelling, simulation

Miguel Branco; Ed Zaluska; David de Roure; Mario Lassnig; Vincent Garonne

2010-08-01T23:59:59.000Z

216

Superconducting Magnet Technology for Future Hadron Colliders  

E-Print Network (OSTI)

accelerators organized at Brookhaven National Laboratory inquadrupole magnets (Brookhaven. 1965). the first of a longbeam transport dipoles (Brookhaven. 1973 and Argonne. 1976).

Scanlan, R.M.

2011-01-01T23:59:59.000Z

217

Higgs friends and counterfeits at hadron colliders  

SciTech Connect

We consider the possibility of 'Higgs counterfeits' - scalars that can be produced with cross sections comparable to the SM Higgs, and which decay with identical relative observable branching ratios, but which are nonetheless not responsible for electroweak symmetry breaking. We also consider a related scenario involving 'Higgs friends,' fields similarly produced through gg fusion processes, which would be discovered through diboson channels WW,ZZ,{gamma}{gamma}, or even {gamma}Z, potentially with larger cross sections times branching ratios than for the Higgs. The discovery of either a Higgs friend or a Higgs counterfeit, rather than directly pointing towards the origin of the weak scale, would indicate the presence of new colored fields necessary for the sizable production cross section (and possibly new colorless but electroweakly charged states as well, in the case of the diboson decays of a Higgs friend). These particles could easily be confused for an ordinary Higgs, perhaps with an additional generation to explain the different cross section, and we emphasize the importance of vector boson fusion as a channel to distinguish a Higgs counterfeit from a true Higgs. Such fields would naturally be expected in scenarios with 'effective Z's,' where heavy states charged under the SM produce effective charges for SM fields under a new gauge force. We discuss the prospects for discovery of Higgs counterfeits, Higgs friends, and associated charged fields at the LHC.

Fox, Patrick J.; /Fermilab; Tucker-Smith, David; /New York U., CCPP /New York U. /Williams Coll. /Princeton, Inst. Advanced Study; Weiner, Neal; /New York U., CCPP /New York U. /Princeton, Inst. Advanced Study

2011-04-01T23:59:59.000Z

218

Higgs friends and counterfeits at hadron colliders  

E-Print Network (OSTI)

We consider the possibility of "Higgs counterfeits" - scalars that can be produced with cross sections comparable to the SM Higgs, and which decay with identical relative observable branching ratios, but which are nonetheless not responsible for electroweak symmetry breaking. We also consider a related scenario involving "Higgs friends," fields similarly produced through gg fusion processes, which would be discovered through diboson channels WW, ZZ, gamma gamma, or even gamma Z, potentially with larger cross sections times branching ratios than for the Higgs. The discovery of either a Higgs friend or a Higgs counterfeit, rather than directly pointing towards the origin of the weak scale, would indicate the presence of new colored fields necessary for the sizable production cross section (and possibly new colorless but electroweakly charged states as well, in the case of the diboson decays of a Higgs friend). These particles could easily be confused for an ordinary Higgs, perhaps with an additional generation to explain the different cross section, and we emphasize the importance of vector boson fusion as a channel to distinguish a Higgs counterfeit from a true Higgs. Such fields would naturally be expected in scenarios with "effective Z's," where heavy states charged under the SM produce effective charges for SM fields under a new gauge force. We discuss the prospects for discovery of Higgs counterfeits, Higgs friends, and associated charged fields at the LHC.

Patrick J. Fox; David Tucker-Smith; Neal Weiner

2011-04-28T23:59:59.000Z

219

Conceptual design report for a superconducting coil suitable for use in the large solenoid detector at the SSC (Superconducting Super Collider)  

Science Conference Proceedings (OSTI)

The conceptual design of a large superconducting solenoid suitable for a magnetic detector at the Superconducting Super Collider (SSC) was done at Fermilab. The magnet will provide a magnetic field of 1.7 T over a volume 8 m in diameter by 16 m long. The particle-physics calorimetry will be inside the field volume and so the coil will be bath cooled and cryostable; the vessels will be stainless steel. Predictability of performance and the ability to safely negotiate all probable failure modes, including a quench, are important items of the design philosophy. Our conceptual design of the magnet and calorimeter has convinced us that this magnet is a reasonable extrapolation of present technology and is therefore feasible. The principal difficulties anticipated are those associated with the very large physical dimensions and stored energy of the magnet. 5 figs.

Fast, R.W.; Grimson, J.H.; Krebs, H.J.; Kephart, R.D.; Theriot, D.; Wands, R.H.

1989-09-15T23:59:59.000Z

220

Muon Collider Papers and Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

of muon collider papers and reports. Muon Collider Feasibilty Study ... Snowmass Book BNL Muon Collider Project Publication Index Fermilab Muon Collider Notes Muon Collider...

Note: This page contains sample records for the topic "large hadron collider" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Hadronic production of the doubly heavy baryon {Xi}{sub bc} at the LHC  

Science Conference Proceedings (OSTI)

We investigate the hadronic production of the doubly heavy baryon {Xi}{sub bc} at the Large Hadron Collider (LHC), where contributions from the four (bc)-diquark states (bc){sub 3,6}[{sup 1}S{sub 0}] and (bc){sub 3,6}[{sup 3}S{sub 1}] have been taken into consideration. Numerical results show that under the condition of p{sub T}>4 GeV and |y|energy {radical}(S)=7 TeV and {radical}(S)=14 TeV, respectively. For experimental usage, the total and the interested differential cross sections are estimated under some typical p{sub T} and y cuts for the LHC detectors CMS, ATLAS, and LHCb. The main uncertainties are discussed and a comparative study on the hadronic production of {Xi}{sub cc}, {Xi}{sub bc}, and {Xi}{sub bb} at the LHC are also presented.

Zhang Jiawei; Wu Xinggang; Zhong Tao; Yu Yao; Fang Zhenyun [Department of Physics, Chongqing University, Chongqing 400044 (China)

2011-02-01T23:59:59.000Z

222

Search for Diphoton Events with Large Missing Transverse Energy in 6.3 fb-1 of ppbar Collisions using the D0 Detector at the Fermilab Tevatron Collider  

SciTech Connect

A search for diphoton events with large missing transverse energy produced in p{bar p} collisions at {radical}s = 1.96 TeV is presented. The data were collected with the D0 detector at the Fermilab Tevatron Collider between 2002 and 2010, and correspond to 6.3 fb{sup -1} of integrated luminosity. The observed missing transverse energy distribution is well described by the Standard Model prediction, and 95% C.L. limits are derived on two realizations of theories beyond the Standard Model. In a gauge mediated supersymmetry breaking scenario, the breaking scale {Lambda} is excluded for {Lambda} < 124 TeV. In a universal extra dimension model including gravitational decays, the compactification radius R{sub c} is excluded for R{sub c}{sup -1} < 477 GeV.

Cooke, Mark Stephen; /Columbia U.

2010-09-01T23:59:59.000Z

223

Optimization of muon timing and searches for heavy long-lived charged particles with the Compact Muon Solenoid detector at the Large Hadron Collider  

E-Print Network (OSTI)

for the Standard Model Higgs boson with the ATLAS detectorto be found that is predicted by the SM is the Higgs Boson.The discovery of the Higgs Boson is one of the reasons the

Farrell, Christopher Patrick

2013-01-01T23:59:59.000Z

224

Optimization of muon timing and searches for heavy long-lived charged particles with the Compact Muon Solenoid detector at the Large Hadron Collider  

E-Print Network (OSTI)

loss in efficiency to trigger events containing an HSCP duethe probability to pre-trigger the event can be written as Pthe rate of events collected by the trigger. The momentum

Farrell, Christopher Patrick

2013-01-01T23:59:59.000Z

225

RHIC | Relativistic Heavy Ion Collider  

NLE Websites -- All DOE Office Websites (Extended Search)

indicate that collisions of small particles with large gold nuclei at the Relativistic Heavy Ion Collider may be serving up miniscule servings of hot quark-gluon plasma. RHIC...

226

Physics validation studies for muon collider detector background simulations  

Science Conference Proceedings (OSTI)

Within the broad discipline of physics, the study of the fundamental forces of nature and the most basic constituents of the universe belongs to the field of particle physics. While frequently referred to as 'high-energy physics,' or by the acronym 'HEP,' particle physics is not driven just by the quest for ever-greater energies in particle accelerators. Rather, particle physics is seen as having three distinct areas of focus: the cosmic, intensity, and energy frontiers. These three frontiers all provide different, but complementary, views of the basic building blocks of the universe. Currently, the energy frontier is the realm of hadron colliders like the Tevatron at Fermi National Accelerator Laboratory (Fermilab) or the Large Hadron Collider (LHC) at CERN. While the LHC is expected to be adequate for explorations up to 14 TeV for the next decade, the long development lead time for modern colliders necessitates research and development efforts in the present for the next generation of colliders. This paper focuses on one such next-generation machine: a muon collider. Specifically, this paper focuses on Monte Carlo simulations of beam-induced backgrounds vis-a-vis detector region contamination. Initial validation studies of a few muon collider physics background processes using G4beamline have been undertaken and results presented. While these investigations have revealed a number of hurdles to getting G4beamline up to the level of more established simulation suites, such as MARS, the close communication between us, as users, and the G4beamline developer, Tom Roberts, has allowed for rapid implementation of user-desired features. The main example of user-desired feature implementation, as it applies to this project, is Bethe-Heitler muon production. Regarding the neutron interaction issues, we continue to study the specifics of how GEANT4 implements nuclear interactions. The GEANT4 collaboration has been contacted regarding the minor discrepancies in the neutron interaction cross sections for boron. While corrections to the data files themselves are simple to implement and distribute, it is quite possible, however, that coding changes may be required in G4beamline or even in GEANT4 to fully correct nuclear interactions. Regardless, these studies are ongoing and future results will be reflected in updated releases of G4beamline.

Morris, Aaron Owen; /Northern Illinois U.

2011-07-01T23:59:59.000Z

227

Operation of a large GEM-MSGC detector in a high intensity hadronic test beam using fully pipelined readout electronics  

E-Print Network (OSTI)

98-060 In a recent test beam experiment at PSI a new tracking device for very high particle fluxes consisting of a low gain micro strip gas chamber (MSGC) combined with a gas electron multiplier (GEM) foil has been run under beam conditions similar to those foreseen in the HERA-B experiment [1], where such devices are being installed for the inner tracker. They are also being evaluated for the LHCb experiment [2]. In both detectors very high, mainly hadronic particle densities (up to 10 4 mm -2 sec -1) are expected, while the momentum resolution of the magnetic spectrometers foreseen in the two experiments is limited by multiple scattering. Also photon conversions represent a significant background source and therefore a minimal thickness in terms of radiation length is important, while position resolution requirements are moderate (typically 300 mu m pitch is sufficient). This paper describes the detailed construction of this novel detector, the test beam configuration and some of the data taken using the fu...

Eisele, F; Straumann, U; Straumann, Ulrich

1998-01-01T23:59:59.000Z

228

Dark matter and Higgs boson collider implications of fermions in an abelian-gauged hidden sector  

E-Print Network (OSTI)

We add fermions to an abelian-gauged hidden sector. We show that the lightest can be the dark matter with the right thermal relic abundance, and discovery is within reach of upcoming dark matter detectors. We also show that these fermions change Higgs boson phenomenology at the Large Hadron Collider (LHC), and in particular could induce a large invisible width to the lightest Higgs boson state. Such an invisibly decaying Higgs boson can be discovered with good significance in the vector boson fusion channel at the LHC.

Shrihari Gopalakrishna; Seung J. Lee; James D. Wells

2009-04-13T23:59:59.000Z

229

Measurement of the Masses and Lifetimes of B Hadrons at the Tevatron  

SciTech Connect

The latest results for the B Hadron sector at the Tevatron Collider are summarized. The properties of B hadrons can be precisely measured at the Tevatron. In particularly they will focus on the masses and lifetimes. The new Tevatron results for the CP violation in B Hadrons are also discussed.

Catastini, Pierluigi; /Pisa U. /INFN, Pisa

2006-05-01T23:59:59.000Z

230

Higgs Boson Production Rates in Hadronic Collisions  

E-Print Network (OSTI)

Higgs boson production rates at hadron colliders are reviewed with particular emphasis on progress in the calculation of higher order QCD effects. Emphasis is placed on the uncertainties in the predictions for Higgs boson production. A firm understanding of these uncertainties is crucial for extracting new physics signals.

S. Dawson

2001-11-19T23:59:59.000Z

231

The Future of Hadrons: The Nexus of Subatomic Physics  

SciTech Connect

The author offers brief observations on matters discussed at the XIV International Conference on Hadron Spectroscopy and explore prospects for hadron physics. Quantum chromodynamics (QCD) has been validated as a new law of nature. It is internally consistent up to very high energies, and so could be a complete theory of the strong interactions. Whether QCD is the final answer for the strong interactions is a subject for continuing experimental tests, which are being extended in experimentation at the Large Hadron Collider. Beyond the comparison of perturbative calculations with experiment, it remains critically important to test the confinement hypothesis by searching for free quarks, or for signatures of unconfined color. Sensitive negative searches for quarks continue to be interesting, and the definitive observation of free quarks would be revolutionary. Breakdowns of factorization would compromise the utility of perturbative QCD. Other discoveries that would require small or large revisions to QCD include the observation of new kinds of colored matter beyond quarks and gluons, the discovery that quarks are composite, or evidence that SU(3){sub c} gauge symmetry is the vestige of a larger, spontaneously broken, color symmetry. While probing our underlying theory for weakness or new openings, we have plenty to do to apply QCD to myriad experimental settings, to learn its implications for matter under unusual conditions, and to become more adept at calculating its consequences. New experimental tools provide the means for progress on a very broad front.

Quigg, Chris; /Fermilab

2011-09-01T23:59:59.000Z

232

Estimation of the Invisible Z Background to Hadronic Supersymmetry Searches Performed With Proton-Proton Collision Data at 7 and 8 TeV Observed With the CMS Detector During the First run of the CERN Large Hadron Collider  

E-Print Network (OSTI)

for the Standard Model Higgs boson with the ATLAS detectorthe existence of the Higgs boson, has been confirmed withinW vector boson Z 0 Higgs boson H 2(n particle/antiparticle )

Sturdy, Jared

2013-01-01T23:59:59.000Z

233

Muon Collider History  

NLE Websites -- All DOE Office Websites (Extended Search)

Colliders: A Brief History Below is a brief potted history of the muon collider concept. Click here for a one transparency summary. The muon collider concept is an idea dating back...

234

The Multi-Purpose Detector for NICA heavy-Ion Collider at JINR  

Science Conference Proceedings (OSTI)

The Multi-Purpose Detector (MPD) is designed to study heavy-ion collisions at the Nuclotron-based heavy Ion Collider fAcility (NICA) at JINR, Dubna. Its main components located inside a superconducting solenoid are a tracking system composed of a silicon microstrip vertex detector followed by a large volume time-projection chamber, a time-of-flight system for particle identification and a barrel electromagnetic calorimeter. A zero degree hadron calorimeter is designed specifically to measure the energy of spectators. In this paper, all parts of the apparatus are described and their tracking and particle identification parameters are discussed in some detail.

Rogachevsky, O. V., E-mail: rogachevsky@jinr.ru [JINR, Veksler and Baldin Laboratory on High Energy Physics (Russian Federation)

2012-05-15T23:59:59.000Z

235

Relativistic Heavy Ion Collider  

NLE Websites -- All DOE Office Websites (Extended Search)

Relativistic Heavy Ion Collider Relativistic Heavy Ion Collider managed for the U.S. Department of Energy by Brookhaven Science Associates, founded by Stony Brook University and Battelle. managed for the U.S. Department of Energy by Brookhaven Science Associates, a company founded by Stony Brook University and Battelle 07/07 Brookhaven National Laboratory Funded by the U.S. Department of Energy, Brookhaven National Laboratory is a multipurpose research institution located on a 5,300-acre site on Long Island, New York. Six Nobel Prize-winning discoveries have been made at Brookhaven Lab. The Laboratory operates large-scale scientific facilities and performs research in physics, chemistry, biology, medicine, applied science, and

236

Challenging the standard model at the Tevatron collider  

SciTech Connect

Even at a time where the world's eyes are focused on the Large Hadron Collider at CERN, which has reached the energy frontier in 2010, many important results are still being obtained from data analyses performed at the Tevatron collider at Fermilab. This contribution discusses recent highlights in the areas of B hadron, electroweak, top quark, and Higgs boson physics. The standard model (SM) of particle physics forms the cornerstone of our understanding of elementary particles and their interactions, and many of its aspects have been investigated in great detail. Yet it is generally suspected to be incomplete (e.g. by not allowing for the incorporation of gravity in a field theoretical setting) and un-natural (e.g. the mass of the Higgs boson is not well protected against radiative corrections). In addition, it does not explain the dark matter and dark energy content of the Universe. It is therefore of eminent importance to test the limits of validity of the SM. In the decade since its upgrade to a centre-of-mass energy {radical}s = 1.96 TeV, the Tevatron p{bar p} collider has delivered an integrated luminosity of about 10 fb{sup -1}, up to 9 fb{sup -1} of which are available for analysis by its CDF and D0 collaborations. These large datasets allow for stringent tests of the SM in two areas: direct searches for particles or final states that are not very heavy but that suffer from small production cross sections (e.g. the Higgs boson), and searches for indirect manifestations of beyond-the-standard-model (BSM) effects through virtual effects. The latter searches can often be carried out by precise measurements of otherwise known processes. This contribution describes such tests of the SM carried out by the CDF and D0 collaborations. In particular, recent highlights in the areas of B hadron physics, electroweak physics, top quark physics, and Higgs boson physics are discussed. Recent results of tests of QCD and of direct searches for new phenomena are described in another contribution.

Filthaut, Frank; /Nijmegen U.

2011-03-01T23:59:59.000Z

237

Challenging the standard model at the Tevatron collider  

SciTech Connect

Even at a time where the world's eyes are focused on the Large Hadron Collider at CERN, which has reached the energy frontier in 2010, many important results are still being obtained from data analyses performed at the Tevatron collider at Fermilab. This contribution discusses recent highlights in the areas of B hadron, electroweak, top quark, and Higgs boson physics. The standard model (SM) of particle physics forms the cornerstone of our understanding of elementary particles and their interactions, and many of its aspects have been investigated in great detail. Yet it is generally suspected to be incomplete (e.g. by not allowing for the incorporation of gravity in a field theoretical setting) and un-natural (e.g. the mass of the Higgs boson is not well protected against radiative corrections). In addition, it does not explain the dark matter and dark energy content of the Universe. It is therefore of eminent importance to test the limits of validity of the SM. In the decade since its upgrade to a centre-of-mass energy {radical}s = 1.96 TeV, the Tevatron p{bar p} collider has delivered an integrated luminosity of about 10 fb{sup -1}, up to 9 fb{sup -1} of which are available for analysis by its CDF and D0 collaborations. These large datasets allow for stringent tests of the SM in two areas: direct searches for particles or final states that are not very heavy but that suffer from small production cross sections (e.g. the Higgs boson), and searches for indirect manifestations of beyond-the-standard-model (BSM) effects through virtual effects. The latter searches can often be carried out by precise measurements of otherwise known processes. This contribution describes such tests of the SM carried out by the CDF and D0 collaborations. In particular, recent highlights in the areas of B hadron physics, electroweak physics, top quark physics, and Higgs boson physics are discussed. Recent results of tests of QCD and of direct searches for new phenomena are described in another contribution.

Filthaut, Frank; /Nijmegen U.

2011-03-01T23:59:59.000Z

238

High energy physics - The large and the small  

Science Conference Proceedings (OSTI)

In this Sixth International School on Field Theory and Gravitation, I was invited to give this talk to the students and researchers of Field Theory mainly about LHC - The Large Hadron Collider and results. I will try to summarize the main daily life of the high energy physics and give an idea about the experiments and the expectations for the near future. I will comment the present results and the prospects to LHC/CMS.

Santoro, Alberto [Universidade do Estado do Rio de Janeiro (Brazil)

2012-09-24T23:59:59.000Z

239

Muon Collider Progress: Accelerators  

SciTech Connect

A muon collider would be a powerful tool for exploring the energy-frontier with leptons, and would complement the studies now under way at the LHC. Such a device would offer several important benefits. Muons, like electrons, are point particles so the full center-of-mass energy is available for particle production. Moreover, on account of their higher mass, muons give rise to very little synchrotron radiation and produce very little beamstrahlung. The first feature permits the use of a circular collider that can make efficient use of the expensive rf system and whose footprint is compatible with an existing laboratory site. The second feature leads to a relatively narrow energy spread at the collision point. Designing an accelerator complex for a muon collider is a challenging task. Firstly, the muons are produced as a tertiary beam, so a high-power proton beam and a target that can withstand it are needed to provide the required luminosity of ~1 × 10{sup 34} cm{sup –2}s{sup –1}. Secondly, the beam is initially produced with a large 6D phase space, which necessitates a scheme for reducing the muon beam emittance (“cooling”). Finally, the muon has a short lifetime so all beam manipulations must be done very rapidly. The Muon Accelerator Program, led by Fermilab and including a number of U.S. national laboratories and universities, has undertaken design and R&D activities aimed toward the eventual construction of a muon collider. Design features of such a facility and the supporting R&D program are described.

Zisman, Michael S.

2011-09-10T23:59:59.000Z

240

Hadronic Production of the Doubly Heavy Baryon $\\Xi_{bc}$ at LHC  

E-Print Network (OSTI)

We investigate the hadronic production of the doubly heavy baryon $\\Xi_{bc}$ at the large hadron collider (LHC), where the contributions from the four $(bc)$-diquark states $(bc)_{\\bf\\bar{3},6}[^1S_0]$ and $(bc)_{\\bf\\bar{3},6}[^3S_1]$ have been taken into consideration. Numerical results show that sizable $\\Xi_{bc}$ events about $ 1.1\\times 10^7$ and $2.0\\times10^9$ per year can be produced for the case of the center-of-mass energy $\\sqrt{S}=7$ TeV and $\\sqrt{S}=14$ TeV accordingly. For experimental usage, the total and the interested differential cross-sections are estimated under some typical $p_T$- and $y$- cuts for the LHC detectors CMS, ATLAS and LHCb, respectively.

Zhang, Jia-Wei; Zhong, Tao; Yu, Yao; Fang, Zhen-Yun

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "large hadron collider" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Searches for new gauge bosons at future colliders  

SciTech Connect

The search reaches for new gauge bosons at future hadron and lepton colliders are summarized for a variety of extended gauge models. Experiments at these energies will vastly improve over present limits and will easily discover a Z` and/or W` in the multi-TeV range.

Rizzo, T.G.

1996-09-01T23:59:59.000Z

242

RHIC | Relativistic Heavy Ion Collider  

NLE Websites -- All DOE Office Websites (Extended Search)

Relativistic Heavy Ion Collider Relativistic Heavy Ion Collider Photo of LINAC The Relativistic Heavy Ion Collider (RHIC) is a world-class particle accelerator at Brookhaven National Laboratory where physicists are exploring the most fundamental forces and properties of matter and the early universe. RHIC accelerates beams of particles (e.g., the nuclei of heavy atoms such as gold) to nearly the speed of light, and smashes them together to recreate a state of matter thought to have existed immediately after the Big Bang some 13.8 billion years ago. STAR and PHENIX, two large detectors located around the 2.4-mile-circumference accelerator, take "snapshots" of these collisions to reveal a glimpse of the basic constituents of visible matter, quarks and gluons. Understanding matter at

243

RHIC | Relativistic Heavy Ion Collider  

NLE Websites -- All DOE Office Websites

Brookhaven National Laboratory Brookhaven National Laboratory search U.S. Department of Energy logo Home RHIC Science News Images Videos For Scientists Björn Schenke 490th Brookhaven Lecture, 12/18 Join Björn Schenke of Brookhaven Lab's Physics Department for the 490th Brookhaven Lecture, titled 'The Shape and Flow of Heavy Ion Collisions,' on Wednesday, Dec. 18, at 4 p.m. in Berkner Hall. droplets Tiny Drops of Hot Quark Soup-How Small Can They Be? New analyses indicate that collisions of small particles with large gold nuclei at the Relativistic Heavy Ion Collider may be serving up miniscule servings of hot quark-gluon plasma. RHIC Physics RHIC is the first machine in the world capable of colliding ions as heavy as gold. The Spin Puzzle RHIC is the world's only machine capable of colliding beams of polarized

244

Fake Dark Matter at Colliders  

E-Print Network (OSTI)

If the dark matter (DM) consists of a weakly interacting massive particle (WIMP), it can be produced and studied at future collider experiments like those at the LHC. The production of collider-stable WIMPs is characterized by hard scattering events with large missing transverse energy. Here we point out that the discovery of this well-characterized DM signal may turn out to be a red herring. We explore an alternative explanation -- fake dark matter -- where the only sources of missing transverse energy are standard model neutrinos. We present examples of such models, focusing on supersymmetric models with R-parity violation. We also briefly discuss means of differentiating fake dark matter from the production of new collider-stable particles.

Chang, Spencer

2009-01-01T23:59:59.000Z

245

Fake Dark Matter at Colliders  

E-Print Network (OSTI)

If the dark matter (DM) consists of a weakly interacting massive particle (WIMP), it can be produced and studied at future collider experiments like those at the LHC. The production of collider-stable WIMPs is characterized by hard scattering events with large missing transverse energy. Here we point out that the discovery of this well-characterized DM signal may turn out to be a red herring. We explore an alternative explanation -- fake dark matter -- where the only sources of missing transverse energy are standard model neutrinos. We present examples of such models, focusing on supersymmetric models with R-parity violation. We also briefly discuss means of differentiating fake dark matter from the production of new collider-stable particles.

Spencer Chang; Andre de Gouvea

2009-01-30T23:59:59.000Z

246

CGC, Full 3D Hydro, and Hadronic Cascade  

E-Print Network (OSTI)

Abstract. We investigate how robust the discovery of perfect fluid is through comparison of hydrodynamic calculations with elliptic flow coefficient v2 at midrapidity in Au+Au collisions at ? sNN = 200 GeV. Employing the Glauber model for initial entropy density distributions, we reasonably reproduce centrality dependence of v2 by using ideal fluid description of the early QGP stage and a hadronic cascade in the late hadronic stage. On the other hand, initial conditions based on the Colour Glass Condensate model are found to generate larger elliptic flow due to larger initial eccentricity ?. We further predict v2/? at a fixed impact parameter as a function of collision energy ? sNN up to the LHC energy. One of the important new discoveries made at the Relativistic Heavy Ion Collider (RHIC) is the large elliptic flow v2 in non-central Au+Au collisions [1]. At the highest RHIC energy, the observed v2 values near midrapidity at low transverse momentum pT in central and semicentral collisions agree with predictions from ideal fluid dynamics [2]. The ideal fluid dynamical description, however, gradually breaks down as one moves away from midrapidity or studies in peripheral collisions. This requires more realistic

T Hirano; U Heinz; D Kharzeev; R Lacey; Y Nara

2007-01-01T23:59:59.000Z

247

Hadron Spectroscopy in COMPASS  

E-Print Network (OSTI)

The COmmon Muon and Proton Apparatus for Structure and Spectroscopy (COMPASS) is a multi-purpose fixed-target experiment at the CERN Super Proton Synchrotron (SPS) aimed at studying the structure and spectrum of hadrons. In the naive Constituent Quark Model (CQM) mesons are bound states of quarks and antiquarks. QCD, however, predict the existence of hadrons beyond the CQM with exotic properties interpreted as excited glue (hybrids) or even pure gluonic bound states (glueballs). One main goal of COMPASS is to search for these states. Particularly interesting are so called spin-exotic mesons which have J^{PC} quantum numbers forbidden for ordinary q\\bar{q} states. Its large acceptance, high resolution, and high-rate capability make the COMPASS experiment an excellent device to study the spectrum of light-quark mesons in diffractive and central production reactions up to masses of about 2.5 GeV. COMPASS is able to measure final states with charged as well as neutral particles, so that resonances can be studied in different reactions and decay channels. During 2008 and 2009 COMPASS acquired large data samples using negative and positive secondary hadron beams on lH_2, Ni, and Pb targets. The presented overview of the first results from this data set focuses in particular on the search for spin-exotic mesons in diffractively produced \\pi^-\\pi^+\\pi^-, \\eta\\pi, \\eta'\\pi, and \\pi^-\\pi^+\\pi^-\\pi^+\\pi^- final states and the analysis of central-production of \\pi^+\\pi^- pairs in order to study glueball candidates in the scalar sector.

Boris Grube; for the COMPASS Collaboration

2013-01-31T23:59:59.000Z

248

Reach in All Hadronic Stop Decays: A Snowmass White Paper  

E-Print Network (OSTI)

We study the discovery prospects for stops which decay to a top and a light neutralino. We consider fully hadronic decays of the tops and present an estimate for the reach at various future collider runs. Our results are summarized in Table 1.

Stolarski, Daniel

2013-01-01T23:59:59.000Z

249

Reach in All Hadronic Stop Decays: A Snowmass White Paper  

E-Print Network (OSTI)

We study the discovery prospects for stops which decay to a top and a light neutralino. We consider fully hadronic decays of the tops and present an estimate for the reach at various future collider runs. Our results are summarized in Table 1.

Daniel Stolarski

2013-09-06T23:59:59.000Z

250

The COMPASS Hadron Spectroscopy Programme  

E-Print Network (OSTI)

COMPASS is a fixed-target experiment at the CERN SPS for the investigation of the structure and the dynamics of hadrons. The experimental setup features a large acceptance and high momentum resolution spectrometer including particle identification and calorimetry and is therefore ideal to access a broad range of different final states. Following the promising observation of a spin-exotic resonance during an earlier pilot run, COMPASS focused on light-quark hadron spectroscopy during the years 2008 and 2009. A data set, world leading in terms of statistics and resolution, has been collected with a 190GeV/c hadron beam impinging on either liquid hydrogen or nuclear targets. Spin-exotic meson and glueball candidates formed in both diffractive dissociation and central production are presently studied. Since the beam composition includes protons, the excited baryon spectrum is also accessible. Furthermore, Primakoff reactions have the potential to determine radiative widths of the resonances and to probe chiral pe...

Austregesilo, A

2012-01-01T23:59:59.000Z

251

Updated measurements of hadronic B decays at CDF  

SciTech Connect

The CDF experiment at the Tevatron p{bar p} collider established that extensive and detailed exploration of the b-quark dynamics is possible in hadron collisions, with results competitive and supplementary to those from e{sup +}e{sup -} colliders. This provides a rich, and highly rewarding program that has currently reached full maturity. In the following I report some recent results on hadronic decays: the evidence for the charmless annihilation decay mode B{sub s}{sup 0} {yields} {pi}{sup +}{pi}{sup -}, and the first reconstruction in hadron collisions of the suppressed decays B{sup -} {yields} D({yields} K{sup +}{pi}{sup 0})K{sup -} and B{sup -} {yields} D({yields} K{sup +} {pi}{sup -}){pi}{sup -}.

Morello, Michael J.

2012-01-01T23:59:59.000Z

252

Search for hadronic resonance in multijet final states with the CDF detector  

SciTech Connect

This thesis describes a search for a new hadronic resonance in 3.2 fb{sup -1} of data using the Collider Detector at Fermilab. The Fermilab Tevatron accelerator collides beams of protons and antiprotons at a center of mass energy of {radical}s = 1.96 TeV. A unique approach is presented to extract multijet resonances from the large QCD background. Although the search is model independent, a pair produced supersymmetric gluino decaying through R-parity violation into three partons each is used to test our sensitivity to new physics. We measure these partons as jets, and require a minimum of six jets in an event. We make use of the kinematic features and correlations and use an ensemble of jet combinations to distinguish signal from multijet QCD backgrounds. Our background estimates also include all-hadronic t{bar t} decays that have a signature similar to signal. We observe no significant excess in an invariant mass range of 77 GeV/c{sup 2} to 240 GeV/c{sup 2} and place 95% C.L. limits on {sigma}(p{bar p} {yields} {tilde g}{tilde g} {yields} 3jets + 3jets) as a function of gluino invariant mass.

Seitz, Claudia; /Rutgers U., Piscataway

2011-01-01T23:59:59.000Z

253

Fermilab | Muon Collider | Graphics  

NLE Websites -- All DOE Office Websites (Extended Search)

Graphics A chain of accelerators and other devices is necessary to produce and accelerate muons before scientists can make muons collide. Click image for larger version A muon...

254

Next Linear Collider Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Welcome to the Next Linear Collider NLC Home Page If you would like to learn about linear colliders in general and about this next-generation linear collider project's mission,...

255

Papers on Muon Colliders  

NLE Websites -- All DOE Office Websites (Extended Search)

Magnets for Muon Collider and Neutrino Storage Ring Magnets for Muon Collider and Neutrino Storage Ring (and Open Midplane Dipole for LARP): R. Gupta, et al., "High Field HTS Solenoid for a Muon Collider – Demonstrations, Challenges and Strategies, MT23, July 2013", presented at MT23, (talk) R. Weggel et al., "Open Midplane Dipoles for Muon Collider", 2011 Particle Accelerator Conference, New York (POSTER).. R. Gupta, M. Anerella, A. Ghosh, H. Kirk, R. Palmer, S. Plate, W. Sampson, Y. Shiroyanagi, P. Wanderer, B. Brandt, D. Cline, A. Garren, J. Kolonko, R. Scanlan, R. Weggel, "High field HTS R&D solenoid for muon collider", 2010 Applied Superconductivity Conference, Washington, DC, August 2010 >> Y. Shiroyanagi, W. Sampson, A. Ghosh, R. Gupta, "The Construction and

256

Calorimeter based detectors for high energy hadron colliders  

Science Conference Proceedings (OSTI)

This report discusses the following topics: the central calorimeter; and installation; commissioning; and calorimeter beam tests; the central drift chamber; cosmic ray and beam tests; chamber installation and commissioning; and software development; and SSC activities: the EMPACT project.

Marx, M.D.; Rijssenbeek, M. (State Univ. of New York, Stony Brook, NY (USA))

1990-01-01T23:59:59.000Z

257

Nuclear shadowing and prompt photons at relativistic hadron colliders  

E-Print Network (OSTI)

The production of prompt photons at high energies provides a direct probe of the dynamics of the strong interactions. In particular, one expect that it could be used to constrain the behavior of the nuclear gluon distribution in $pA$ and $AA$ collisions. In this letter we investigate the influence of nuclear effects in the production of prompt photons and estimate the transverse momentum dependence of the nuclear ratios $R_{pA} = {\\frac{d\\sigma (pA)}{dy d^2 p_T}} / A {\\frac{d\\sigma (pp)}{dy d^2 p_T}}$ and $R_{AA} = {\\frac{d\\sigma (AA)}{dy d^2 p_T}} / A^2 {\\frac{d\\sigma (pp)}{dy d^2 p_T}}$ at RHIC and LHC energies. We demonstrate that the study of these observables can be useful to determine the magnitude of the shadowing and antishadowing effects in the nuclear gluon distribution.

C. Brenner Mariotto; V. P. Goncalves

2008-07-10T23:59:59.000Z

258

Higgs Boson Production with Heavy Quarks at Hadron Colliders.  

E-Print Network (OSTI)

?? One of the remaining puzzles in particle physics is the origin of electroweak symmetry breaking. In the Standard Model (SM), a single doublet of… (more)

Jackson, Christopher B.

2005-01-01T23:59:59.000Z

259

Phenomenological aspects of new physics at high energy hadron colliders  

E-Print Network (OSTI)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.2.3 ISR effects without invisible particle emission . . . . . . . . . . . . 54 4.2.4 Mellin transform inversion . . . . . . . . . . . . . . . . . . . . . . . 65 4.2.5 ISR effects including invisible particle emission . . . . . . . . . . . . 68 4...

Papaefstathiou, Andreas

2011-07-12T23:59:59.000Z

260

QCD effects in Higgs boson production at hadron colliders  

E-Print Network (OSTI)

We present updated predictions for Higgs boson production at the Tevatron and the LHC and we review their corresponding uncertainties. We report on a study of the impact of QCD radiative corrections on the Higgs boson search at the Tevatron.

M. Grazzini

2010-01-21T23:59:59.000Z

Note: This page contains sample records for the topic "large hadron collider" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Top quark and charged Higgs production at hadron colliders  

Science Conference Proceedings (OSTI)

I present a brief theoretical update on top quark pair production at the Tevatron and give values of the NNLO-NNNLL cross section for both mt = 175 and 178 GeV. I then present a calculation of the cross section for charged Higgs production in association with a top quark at the LHC, including NNLO soft-gluon corrections.

Kidonakis, Nikolaos [Kennesaw State University, Physics no. 1202, 1000 Chastain Rd, Kennesaw, GA 30144-5591 (United States)

2005-10-06T23:59:59.000Z

262

Science Requirements and Conceptual Design for a Polarized Medium Energy Electron-Ion Collider at Jlab  

Science Conference Proceedings (OSTI)

Researchers have envisioned an electron-ion collider with ion species up to heavy ions, high polarization of electrons and light ions, and a well-matched center-of-mass energy range as an ideal gluon microscope to explore new frontiers of nuclear science. In its most recent Long Range Plan, the Nuclear Science Advisory Committee (NSAC) of the US Department of Energy and the National Science Foundation endorsed such a collider in the form of a 'half-recommendation.' As a response to this science need, Jefferson Lab and its user community have been engaged in feasibility studies of a medium energy polarized electron-ion collider (MEIC), cost-effectively utilizing Jefferson Lab's already existing Continuous Electron Beam Accelerator Facility (CEBAF). In close collaboration, this community of nuclear physicists and accelerator scientists has rigorously explored the science case and design concept for this envisioned grand instrument of science. An electron-ion collider embodies the vision of reaching the next frontier in Quantum Chromodynamics - understanding the behavior of hadrons as complex bound states of quarks and gluons. Whereas the 12 GeV Upgrade of CEBAF will map the valence-quark components of the nucleon and nuclear wave functions in detail, an electron-ion collider will determine the largely unknown role sea quarks play and for the first time study the glue that binds all atomic nuclei. The MEIC will allow nuclear scientists to map the spin and spatial structure of quarks and gluons in nucleons, to discover the collective effects of gluons in nuclei, and to understand the emergence of hadrons from quarks and gluons. The proposed electron-ion collider at Jefferson Lab will collide a highly polarized electron beam originating from the CEBAF recirculating superconducting radiofrequency (SRF) linear accelerator (linac) with highly polarized light-ion beams or unpolarized light- to heavy-ion beams from a new ion accelerator and storage complex. Since the very beginning, the design studies at Jefferson Lab have focused on achieving high collider performance, particularly ultrahigh luminosities up to 10{sup 34} cm{sup -2}s{sup -1} per detector with large acceptance, while maintaining high polarization for both the electron and light-ion beams. These are the two key performance requirements of a future electron-ion collider facility as articulated by the NSAC Long Range Plan. In MEIC, a new ion complex is designed specifically to deliver ion beams that match the high bunch repetition and highly polarized electron beam from CEBAF. During the last two years, both development of the science case and optimization of the machine design point toward a medium-energy electron-ion collider as the topmost goal for Jefferson Lab. The MEIC, with relatively compact collider rings, can deliver a luminosity above 10{sup 34} cm{sup -2}s{sup -1} at a center-of-mass energy up to 65 GeV. It offers an electron energy up to 11 GeV, a proton energy up to 100 GeV, and corresponding energies per nucleon for heavy ions with the same magnetic rigidity. This design choice balances the scope of the science program, collider capabilities, accelerator technology innovation, and total project cost. An energy upgrade could be implemented in the future by adding two large collider rings housed in another large tunnel to push the center-of-mass energy up to or exceeding 140 GeV. After careful consideration of an alternative electron energy recovery linac on ion storage ring approach, a ring-ring collider scenario at high bunch repetition frequency was found to offer fully competitive performance while eliminating the uncertainties of challenging R&D on ampere-class polarized electron sources and many-pass energy-recovery linacs (ERLs). The essential new elements of an MEIC facility at Jefferson Lab are an electron storage ring and an entirely new, modern ion acceleration and storage complex. For the high-current electron collider ring, the upgraded 12 GeV CEBAF SRF linac will serve as a full-energy injector, and, if needed, provide top

Abeyratne, S; Ahmed, S; Barber, D; Bisognano, J; Bogacz, A; Castilla, A; Chevtsov, P; Corneliussen, S; Deconinck, W; Degtiarenko, P; Delayen, J; Derbenev, Ya; DeSilva, S; Douglas, D; Dudnikov, V; Ent, R; Erdelyi, B; Evtushenko, P; Fujii, Yu; Filatov, Yury; Gaskell, D; Geng, R; Guzey, V; Horn, T; Hutton, A; Hyde, C; Johnson, R; Kim, Y; Klein, F; Kondratenko, A; Kondratenko, M; Krafft, G; Li, R; Lin, F; Manikonda, S; Marhauser, F; McKeown, R; Morozov, V; Dadel-Turonski, P; Nissen, E; Ostroumov, P; Pivi, M; Pilat, F; Poelker, M; Prokudin, A; Rimmer, R; Satogata, T; Sayed, H; Spata, M; Sullivan, M; Tennant, C; Terzic, B; Tiefenback, M; Wang, M; Wang, S; Weiss, C; Yunn, B

2012-08-01T23:59:59.000Z

263

Linear Collider Physics Resource Book Snowmass 2001  

Science Conference Proceedings (OSTI)

The American particle physics community can look forward to a well-conceived and vital program of experimentation for the next ten years, using both colliders and fixed target beams to study a wide variety of pressing questions. Beyond 2010, these programs will be reaching the end of their expected lives. The CERN LHC will provide an experimental program of the first importance. But beyond the LHC, the American community needs a coherent plan. The Snowmass 2001 Workshop and the deliberations of the HEPAP subpanel offer a rare opportunity to engage the full community in planning our future for the next decade or more. A major accelerator project requires a decade from the beginning of an engineering design to the receipt of the first data. So it is now time to decide whether to begin a new accelerator project that will operate in the years soon after 2010. We believe that the world high-energy physics community needs such a project. With the great promise of discovery in physics at the next energy scale, and with the opportunity for the uncovering of profound insights, we cannot allow our field to contract to a single experimental program at a single laboratory in the world. We believe that an e{sup +}e{sup -} linear collider is an excellent choice for the next major project in high-energy physics. Applying experimental techniques very different from those used at hadron colliders, an e{sup +}e{sup -} linear collider will allow us to build on the discoveries made at the Tevatron and the LHC, and to add a level of precision and clarity that will be necessary to understand the physics of the next energy scale. It is not necessary to anticipate specific results from the hadron collider programs to argue for constructing an e{sup +}e{sup -} linear collider; in any scenario that is now discussed, physics will benefit from the new information that e{sup +}e{sup -} experiments can provide. This last point merits further emphasis. If a new accelerator could be designed and built in a few years, it would make sense to wait for the results of each accelerator before planning the next one. Thus, we would wait for the results from the Tevatron before planning the LHC experiments, and wait for the LHC before planning any later stage. In reality accelerators require a long time to construct, and they require such specialized resources and human talent that delay can cripple what would be promising opportunities. In any event, we believe that the case for the linear collider is so compelling and robust that we can justify this facility on the basis of our current knowledge, even before the Tevatron and LHC experiments are done. The physics prospects for the linear collider have been studied intensively for more than a decade, and arguments for the importance of its experimental program have been developed from many different points of view. This book provides an introduction and a guide to this literature. We hope that it will allow physicists new to the consideration of linear collider physics to start from their own personal perspectives and develop their own assessments of the opportunities afforded by a linear collider.

Ronan (Editor), M.T.

2001-06-01T23:59:59.000Z

264

Ion desorption stability in superconducting high energy physics proton colliders  

DOE Green Energy (OSTI)

In this article we extend our previous analysis of a cold beam tube vacuum in a superconducting proton collider to include ion desorption in addition to thermal desorption and synchrotron radiation induced photodesorption. The ion desorption terms introduce the possibility of vacuum instability. This is similar to the classical room temperature case but is now modified by the inclusion of ion desorption coefficients for cryosorbed (physisorbed) molecules which can greatly exceed the coefficients for tightly bound molecules. The sojourn time concept for physisorbed H{sub 2} is generalized to include photodesorption and ion desorption as well as the usually considered thermal desorption. The ion desorption rate is density dependent and divergent so at the onset of instability the sojourn time goes to zero. Experimental data are used to evaluate the H{sub 2} sojourn time for the conditions of the Large Hadron Collider (LHC) and the situation is found to be stable. The sojourn time is dominated by photodesorption for surface density {ital s}(H{sub 2}) less than a monolayer and by thermal desorption for {ital s}(H{sub 2}) greater than a monolayer. For a few percent of a monolayer, characteristic of a beam screen, the photodesorption rate exceeds the ion desorption rate by more than two orders of magnitude. The photodesorption rate corresponds to a sojourn time of approximately 100 s. The article then turns to the evaluation of stability margins and the inclusion of gases heavier than H{sub 2} (CO, CO{sub 2}, and CH{sub 4}), where ion desorption introduces coupling between molecular species. Stability conditions are worked out for a simple cold beam tube, a cold beam tube pumped from the ends, and a cold beam tube with a coaxial perforated beam screen. In each case a simple inequality for stability of a single component is replaced by a determinant that must be greater than zero for a gas mixture. (Abstract Truncated)

Turner, W.C. [E. O. Lawrence Berkeley National Laboratory, University of California--Berkeley, Berkeley, California 94720 (United States)] [E. O. Lawrence Berkeley National Laboratory, University of California--Berkeley, Berkeley, California 94720 (United States)

1996-07-01T23:59:59.000Z

265

International Linear Collider-A Technical Progress Report  

Science Conference Proceedings (OSTI)

The International Linear Collider: A Technical Progress Report marks the halfway point towards the Global Design Effort fulfilling its mandate to follow up the ILC Reference Design Report with a more optimised Technical Design Report (TDR) by the end of 2012. The TDR will be based on much of the work reported here and will contain all the elements needed to propose the ILC to collaborating governments, including a technical design and implementation plan that are realistic and have been better optimised for performance, cost and risk. We are on track to develop detailed plans for the ILC, such that once results from the Large Hadron Collider (LHC) at CERN establish the main science goals and parameters of the next machine, we will be in good position to make a strong proposal for this new major global project in particle physics. The two overriding issues for the ILC R&D programme are to demonstrate that the technical requirements for the accelerator are achievable with practical technologies, and that the ambitious physics goals can be addressed by realistic ILC detectors. This GDE interim report documents the impressive progress on the accelerator technologies that can make the ILC a reality. It highlights results of the technological demonstrations that are giving the community increased confidence that we will be ready to proceed with an ILC project following the TDR. The companion detector and physics report document likewise demonstrates how detector designs can meet the ambitious and detailed physics goals set out by the ILC Steering Committee. LHC results will likely affect the requirements for the machine design and the detectors, and we are monitoring that very closely, intending to adapt our design as those results become available.

Elsen, Eckhard; /DESY; Harrison, Mike; /Brookhaven; Hesla, Leah; /Fermilab; Ross, Marc; /Fermilab; Royole-Degieux, Perrine; /Paris, IN2P3; Takahashi, Rika; /KEK, Tsukuba; Walker, Nicholas; /DESY; Warmbein, Barbara; /DESY; Yamamoto, Akira; /KEK, Tsukuba; Yokoya, Kaoru; /KEK, Tsukuba; Zhang, Min; /Beijing, Inst. High Energy Phys.

2011-11-04T23:59:59.000Z

266

muon Collider Notes  

NLE Websites -- All DOE Office Websites (Extended Search)

Muon Collider Notes Muon Collider Notes MC-001 D. Neuffer, "Colliding Muon Beams at 90 GeV" Fermilab Note FN-319, July 1979. MC-002 D. Neuffer, "Principles and Applications of Muon Cooling" Proc. of the 12th International Conf. on High-Energy Accelerators, p. 481, 1983. MC-003 V.V. Parkhomchuk and A.N. Skrinsky, "Ionization Cooling: Physics and Applications" Proc. of the 12th International Conf. on High-Energy Accelerators, p. 485, 1983. MC-004 E.A. Perevedentsev and A.N. Skrinsky, "On the Proton Klystron" Proc. of the 12th International Conf. on High-Energy Accelerators, p. 508, 1983. MC-005 D. Neuffer, "Principles and Applications of Muon Cooling" Particle Accelerators, Vol. 14, p. 75, 1983. MC-006 D. Neuffer, "Multi-TeV Muon Colliders" Proc. of the Advanced

267

Linear collider: a preview  

Science Conference Proceedings (OSTI)

Since no linear colliders have been built yet it is difficult to know at what energy the linear cost scaling of linear colliders drops below the quadratic scaling of storage rings. There is, however, no doubt that a linear collider facility for a center of mass energy above say 500 GeV is significantly cheaper than an equivalent storage ring. In order to make the linear collider principle feasible at very high energies a number of problems have to be solved. There are two kinds of problems: one which is related to the feasibility of the principle and the other kind of problems is associated with minimizing the cost of constructing and operating such a facility. This lecture series describes the problems and possible solutions. Since the real test of a principle requires the construction of a prototype I will in the last chapter describe the SLC project at the Stanford Linear Accelerator Center.

Wiedemann, H.

1981-11-01T23:59:59.000Z

268

The TESLA superconducting linear collider  

Science Conference Proceedings (OSTI)

This paper summarizes the present status of the studies for a superconducting Linear Collider (TESLA).

R. Brinkmann; the TESLA Collaboration

1997-01-01T23:59:59.000Z

269

Charged hadrons and nuclear parton distributions in p(d)A collisions  

E-Print Network (OSTI)

Nuclear gluon modifications are the least constrained component of current global fits to nuclear parton distributions, due to the inadequate constraining power of presently available experimental data from nuclear deep inelastic scattering and nuclear Drell-Yan lepton-pair production. A recent advance is the use of observables from relativistic nucleus-nucleus collisions to supplement the data pool for global fits. It is thus of interest to investigate the sensitivity of various experimental observables to different strengths of nuclear gluon modifications from large to small Bjorken $x$. In this work we utilize three recent global fits with different gluon strengths to investigate the sensitivity of three observables: nuclear modification factor, pseudorapidity asymmetry, and charge ratio. We observe that both nuclear modification factor and pseudorapidity asymmetry are quite sensitive to the strength of gluon modifications in a wide pseudorapidity interval. The sensitivity is greatly enhanced at LHC (Large Hadron Collider) energies relative to that at RHIC (Relativistic Heavy Ion Collider). The charge ratio is mildly sensitive only at large Bjorken x. Thus measurement of these observables in proton-lead collisions at the LHC affords the potential to further constrain gluon modifications in global fits.

Adeola Adeluyi; Trang Nguyen; Bao-An Li

2010-04-27T23:59:59.000Z

270

Search for Charged Higgs Boson Decays of the Top Quark Using Hadronic tau Decays  

SciTech Connect

We present the result of a search for charged Higgs boson decays of the top quark, produced in p{bar p} collisions at {radical}s = 1.8 TeV. When the charged Higgs boson is heavy and decays to a {tau} lepton, which subsequently decays hadronically, the resulting events have a unique signature: large missing transverse energy and the low-charged-multiplicity {tau}. Data collected in 1992 and 1993 at the Collider Detector at Fermilab, corresponding to 18.7 {+-} 0.7 pb{sup -1}, exclude new regions of combined top quark and charged Higgs boson mass, in extensions to the standard model with two Higgs doublets.

Abe, F.

1996-01-01T23:59:59.000Z

271

Development of GEM-Based Digital Hadron Calorimetry Using the SLAC KPiX Chip  

Science Conference Proceedings (OSTI)

The development of Digital Hadron Calorimetry for the SiD detector Concept for the International Linear Collider is described. The jet energy requirements of the ILC physics program are discussed. The concept of GEM-based digital hadron calorimetry is presented, followed by a description of, and results from, prototype detectors. Plans are described for the construction of 1m{sup 2} GEM-DHCAL planes to be tested as part of a future calorimeter stack.

White, A.; /Texas U., Arlington /Washington U., Seattle /Unlisted /SLAC

2012-04-12T23:59:59.000Z

272

Probing the Quark Sea and Gluons: the Electron-Ion Collider Projects  

Science Conference Proceedings (OSTI)

EIC is the generic name for the nuclear science-driven Electron-Ion Collider presently considered in the US. Such an EIC would be the world’s first polarized electron-proton collider, and the world’s first e-A collider. Very little remains known about the dynamical basis of the structure of hadrons and nuclei in terms of the fundamental quarks and gluons of Quantum Chromodynamics (QCD). A large community effort to sharpen a compelling nuclear science case for an EIC occurred during a ten-week program taking place at the Institute for Nuclear Theory (INT) in Seattle from September 13 to November 19, 2010. The critical capabilities of a stage-I EIC are a range in center-of-mass energies from 20 to 70 GeV and variable, full polarization of electrons and light ions (the latter both longitudinal and transverse), ion species up to A=200 or so, multiple interaction regions, and a high luminosity of about 10{sup 34} electron-nucleons per cm{sup 2} and per second. The physics program of such a stage-I EIC encompass inclusive measurements (ep/A{yields}e'+X), which require detection of the scattered lepon and/or the full scattered hadronic debris with high precision, semi-inclusive processes (ep/A{yields}e'+h+X), which require detection in coincidence with the scattered lepton of at least one (current or target region) hadron; and exclusive processes (ep/A{yields}e'+N'/A'+{gamma}/m), which require detection of all particles in the reaction. The main science themes of an EIC are to i) map the spin and spatial structure of quarks and gluons in nucleons, ii) discover the collective effects of gluons in atomic nuclei, and (iii) understand the emergence of hadronic matter from color charge. In addition, there are opportunities at an EIC for fundamental symmetry and nucleon structure measurements using the electroweak probe. To truly make headway to image the sea quarks and gluons in nucleons and nuclei, the EIC needs high luminosity over a range of energies as more exclusive scattering probabilities are small, and any integrated detector/interaction region design needs to provide uniform coverage to detect spectator and diffractive products. This is because e-p and even more e-A colliders have a large fraction of their science related to what happens to the nucleon or ion beams. As a result, the philosophy of integration of complex detectors into an extended interaction region faces challenging constraints. Designs feature crossing angles between the protons or heavy ions during collisions with electrons, to remove potential problems for the detector induced by synchrotron radiation. Designs allocate quite some detector space before the final-focus ion quads, at the cost of luminosity, given that uniform detection coverage is a must for deep exclusive and diffractive processes. The integrated EIC detector/interaction region design at JLab focused on establishing full acceptance for such processes over a wide range of proton energies (20-100 GeV) with well achievable interaction region magnets. The detector design at BNL uses the higher ion beam energies to achieve good detection efficiency for instance for protons following a DVCS reaction, for proton beam energies starting from 100 GeV. Following a recommendation of the 2007 US Nuclear Science Long-Range Planning effort, the DOE Office of Nuclear Physics (DOE/NP) has allocated accelerator R&D funds to lay the foundation for a polarized EIC. BNL, in association with JLab and DOE/NP, has also established a generic detector R&D program to address the scientific requirements for measurements at a future EIC.

Rolf Ent

2012-04-01T23:59:59.000Z

273

Photon collider at TESLA  

E-Print Network (OSTI)

High energy photon colliders (gamma-gamma, gamma-electron) based on backward Compton scattering of laser light is a very natural addition to e+e- linear colliders. In this report we consider this option for the TESLA project. Recent study has shown that the horizontal emittance in the TESLA damping ring can be further decreased by a factor of four. In this case the gamma-gamma luminosity luminosity in the high energy part of spectrum can reach (1/3)L_{e+e-}. Typical cross sections of interesting processes in gamma-gamma collisions are higher than those in e+e- collisions by about one order of magnitude, so the number of events in gamma-gamma collisions will be more than that in e+e- collisions. Photon colliders can, certainly, give additional information and they are the best for the study of many phenomena. The main question is now the technical feasibility. The key new element in photon colliders is a very powerful laser system. An external optical cavity is a promising approach for the TESLA project. A free electron laser is another option. However, a more straightforward solution is ``an optical storage ring (optical trap)'' with diode pumped solid state laser injector which is today technically feasible. This paper briefly reviews the status of a photon collider based at TESLA, its possible parameters and existing problems.

Valery Telnov

2000-10-13T23:59:59.000Z

274

Search for Gluino-Mediated Supersymmetry in Events With Bottom-Quark Jets and Missing Transverse Energy With the Compact Muon Solenoid Detector at the Large Hadron Collider With Proton-Proton Collisions at 8 TeV  

E-Print Network (OSTI)

and H. E. Haber. Higgs Boson Theory and Phenomenology.et al. , The LEP Working Group for Higgs Boson Searches.for the Standard Model Higgs Boson at LEP. Phys.Lett. ,

Nguyen, Harold

2013-01-01T23:59:59.000Z

275

Search for Gluino-Mediated Supersymmetry in Events With Bottom-Quark Jets and Missing Transverse Energy With the Compact Muon Solenoid Detector at the Large Hadron Collider With Proton-Proton Collisions at 8 TeV  

E-Print Network (OSTI)

ZL QCD-dominated events, the trigger efficiencies are splitobserved number of events (assuming 100% trigger efficiency)not all events passing the prescaled trigger are actually

Nguyen, Harold

2013-01-01T23:59:59.000Z

276

Physics Out Loud - Hadron  

NLE Websites -- All DOE Office Websites (Extended Search)

Gluons Previous Video (Gluons) Physics Out Loud Main Index Next Video (Hybrid Meson) Hybrid Meson Hadron David Lawrence, a physicist, uses a little Greek in his description of a...

277

CERN Courier Article  

NLE Websites -- All DOE Office Websites (Extended Search)

the hadron-hadron collider energy frontier will be provided by the CERN Large Hadron Collider (LHC), a proton-proton collider with a center-of-mass energy of 14 TeV due to...

278

RHIC | Electron-Ion Collider  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron-Ion Collider A breakthrough particle accelerator could collide electrons with heavy ions or protons at nearly the speed of light to create rapid-fire, high-resolution...

279

Collider-Accelerator Department  

NLE Websites -- All DOE Office Websites (Extended Search)

RHIC Tunnel and Magnets RHIC Tunnel and Magnets RHIC Tunnel and Magnets AGS Tunnel and Magnets NSRL Beamline RF Kicker Snake 200-MeV LINAC AGS Cold Snake Magnet About the Collider-Accelerator Department The mission of the Collider-Accelerator Department is to develop, improve and operate the suite of particle / heavy ion accelerators used to carry out the program of accelerator-based experiments at BNL; to support the experimental program including design, construction and operation of the beam transports to the experiments plus support of detector and research needs of the experiments; to design and construct new accelerator facilities in support of the BNL and national missions. The C-A Department supports an international user community of over 1500 scientists. The department performs all these functions in an environmentally responsible and safe manner under a rigorous conduct of operations approach.

280

Aspects of Hadron Physics  

E-Print Network (OSTI)

Detailed investigations of the structure of hadrons are essential for understanding how matter is constructed from the quarks and gluons of Quantum chromodynamics (QCD), and amongst the questions posed to modern hadron physics, three stand out. What is the rigorous, quantitative mechanism responsible for confinement? What is the connection between confinement and dynamical chiral symmetry breaking? And are these phenomena together sufficient to explain the origin of more than 98% of the mass of the observable universe? Such questions may only be answered using the full machinery of nonperturbative relativistic quantum field theory. This contribution provides a perspective on progress toward answering these key questions. In so doing it will provide an overview of the contemporary application of Dyson-Schwinger equations in Hadron Physics. The presentation assumes that the reader is familiar with the concepts and notation of relativistic quantum mechanics, with the functional integral formulation of quantum field theory and with regularisation and renormalisation in its perturbative formulation.

C. D. Roberts; M. S. Bhagwat; S. V. Wright; A. Holl

2008-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "large hadron collider" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

muon_collider  

NLE Websites -- All DOE Office Websites (Extended Search)

muon_collider muon_collider muon_collider FridayMeetings MCTFmeetings MondayMeetings prstab texput.log #prstab.tex# last.kumac prstab.ps arxiv.tar.gz prstab.tar.gz referee_response_II.pdf prstab.pdf prstab.aux prstab.dvi prstab.end prstab.log prstab.tex prstab.tex~ accel-010307-f03.eps accel-010307-f28.eps old conclusions.tex higgsfact.tex introduction.tex mice.tex neufact.tex physics.tex prstab.tex r_and_d.tex authors_merged.tex buncher.tex temp.prt last.kumacold ringfig.eps MICE-fig.ps chgr_norm.ps chgr_merit.ps temp.csh temp.prt~ xupdn-a-model-view-iron5.eps site1-Layout1.eps rla2.eps phaserot.eps mole-hill.eps intoap.eps emit.eps cavity.eps allcount.eps MICE-88MHz-cooling.eps changes hh_ha_susy_rtsscan.eps letter_plots.eps scott33.eps scott32b.eps scott32a.eps MICE-200MHz-long.eps MICE-resolution.eps dipole_fields.eps

282

A New Slant on Hadron Structure  

E-Print Network (OSTI)

Rather than regarding the restriction of current lattice QCD simulations to quark masses that are 5--10 times larger than those observed, we note that this presents a wonderful opportunity to deepen our understanding of QCD. Just as it has been possible to learn a great deal about QCD by treating $N_c$ as a variable, so the study of hadron properties as a function of quark mass is leading us to a much deeper appreciation of hadron structure. As examples we cite recent progress in using the chiral properties of QCD to connect hadron masses, magnetic moments, charge radii and structure functions calculated at large quark masses within lattice QCD with the values observed physically.

W. Detmold; D. B. Leinweber; W. Melnitchouk; A. W. Thomas; S. V. Wright

2001-04-12T23:59:59.000Z

283

High intensity hadron accelerators  

SciTech Connect

This rapporteur report consists mainly of two parts. Part I is an abridged review of the status of all High Intensity Hadron Accelerator projects in the world in semi-tabulated form for quick reference and comparison. Part II is a brief discussion of the salient features of the different technologies involved. The discussion is based mainly on my personal experiences and opinions, tempered, I hope, by the discussions I participated in in the various parallel sessions of the workshop. In addition, appended at the end is my evaluation and expression of the merits of high intensity hadron accelerators as research facilities for nuclear and particle physics.

Teng, L.C.

1989-05-01T23:59:59.000Z

284

Production and Flow of Identified Hadrons at RHIC  

E-Print Network (OSTI)

We review the production and flow of identified hadrons at RHIC with a main emphasis on the intermediate transverse momentum region ($2production and resolve the anomalously large baryon yields and elliptic flow observed in the experiments.

Julia Velkovska

2004-11-18T23:59:59.000Z

285

Critical issues for high-brightness heavy-ion beams -- prioritized  

E-Print Network (OSTI)

National Ignition Facility (NIF) will provide motivation toobtaining funding for the NIF, the Large Hadron Collider (

2007-01-01T23:59:59.000Z

286

Hadronic Physics: an Outlook  

Science Conference Proceedings (OSTI)

A brief outlook, in two senses, is presented for hadronic physics. The likely near term future for experiment and lattice effort is sketched and I speculate on future directions in theory. I also look out at other fields, presenting a short review of QCD ideas in ''Beyond the Standard Model'' physics.

Swanson, Eric S. [Dept of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA 15260 (United States)

2010-08-05T23:59:59.000Z

287

Search for dark matter candidates and large extra dimensions in events with a jet and missing transverse momentum with the ATLAS detector  

E-Print Network (OSTI)

A search for new phenomena in events with a high-energy jet and large missing transverse momentum is performed using data from proton-proton collisions at sqrt(s)=7 TeV with the ATLAS experiment at the Large Hadron Collider. Four kinematic regions are explored using a dataset corresponding to an integrated luminosity of 4.7 inverse femtobarn. No excess of events beyond expectations from Standard Model processes is observed, and limits are set on large extra dimensions and the pair production of dark matter particles.

The ATLAS Collaboration

2012-10-16T23:59:59.000Z

288

Novel Perspectives for Hadron Physics  

SciTech Connect

I discuss several novel and unexpected aspects of quantum chromodynamics. These include: (a) the nonperturbative origin of intrinsic strange, charm and bottom quarks in the nucleon at large x; the breakdown of pQCD factorization theorems due to the lensing effects of initial- and final-state interactions; (b) important corrections to pQCD scaling for inclusive reactions due to processes in which hadrons are created at high transverse momentum directly in the hard processes and their relation to the baryon anomaly in high-centrality heavy-ion collisions; and (c) the nonuniversality of quark distributions in nuclei. I also discuss some novel theoretical perspectives in QCD: (a) light-front holography - a relativistic color-confining first approximation to QCD based on the AdS/CFT correspondence principle; (b) the principle of maximum conformality - a method which determines the renormalization scale at finite order in perturbation theory yielding scheme independent results; (c) the replacement of quark and gluon vacuum condensates by 'in-hadron condensates' and how this helps to resolve the conflict between QCD vacuum and the cosmological constant.

Brodsky, Stanley J.; /SLAC

2012-03-09T23:59:59.000Z

289

Photon collider at TESLA 1  

E-Print Network (OSTI)

High energy photon colliders (??, ?e) based on backward Compton scattering of laser light is a very natural addition to e + e ? linear colliders. In this report we consider this option for the TESLA project. Recent study has shown that the horizontal emittance in the TESLA damping ring can be further decreased by a factor of four. In this case the ?? luminosity in the high energy part of spectrum can reach about (1/3)L e e ?. Typical cross sections of interesting processes in ?? collisions are higher than those in e + e ? collisions by about one order of magnitude, so the number of events in ?? collisions will be more than that in e + e ? collisions. Photon colliders can, certainly, give additional information and they are the best for the study of many phenomena. The main question is now the technical feasibility. The key new element in photon colliders is a very powerful laser system. An external optical cavity is a promising approach for the TESLA project. A free electron laser is another option. However, a more straightforward solution is “an optical storage ring (optical trap) ” with a diode pumped solid state laser injector which is today technically feasible. This paper briefly reviews the status of a photon collider based on the linear collider TESLA, its possible parameters and existing problems. PACS: 29.17.+w, 41.75.Ht, 41.75.Lx, 13.60.Fz Key words: photon collider; linear collider; photon photon; gamma gamma; photon electron; Compton scattering; backscattering 1

Valery Telnov

2001-01-01T23:59:59.000Z

290

Parton Distributions in Hadrons  

SciTech Connect

We use the statistical model of Zhang et al. to calculate parton distributions in hadrons. The model does reasonably well in predicting the distributions of partons in the proton, including the (d-bar - u-bar) excess in the proton sea. We extend the model to calculate quark and gluon distributions in the pion, kaon, and the pentaquark. The hadrons are described in terms of quark and gluon Fock states. Detailed balance between each pair of states is assumed, from which the coefficients of the Fock state expansion are determined. The parton distribution functions are found in the hadron rest frame from a Monte Carlo calculation. The results are evolved to appropriate QCD scales for comparison with experiment. Despite its simplicity, the model is in good agreement with the experimentally measured distributions of partons in the pion and kaon. This project has included significant participation by undergraduates at Seattle University, made possible by support from the Research in Undergraduate Institutions Program of the National Science Foundation.

Alberg, Mary [Department of Physics, Seattle University, Seattle, WA 98122 (United States); Department of Physics, University of Washington, Seattle, WA 98195 (United States); Henley, Ernest M. [Department of Physics, University of Washington, Seattle, WA 98195 (United States); Institute for Nuclear Theory, University of Washington, Seattle, WA 98195 (United States)

2006-07-11T23:59:59.000Z

291

Hadron Physics at the Charm and Bottom Thresholds and Other Novel QCD Physics Topics at the NICA Accelerator Facility  

Science Conference Proceedings (OSTI)

The NICA collider project at the Joint Institute for Nuclear Research in Dubna will have the capability of colliding protons, polarized deuterons, and nuclei at an effective nucleon-nucleon center-of mass energy in the range {radical}s{sub NN} = 4 to 11 GeV. I briefly survey a number of novel hadron physics processes which can be investigated at the NICA collider. The topics include the formation of exotic heavy quark resonances near the charm and bottom thresholds, intrinsic strangeness, charm, and bottom phenomena, hidden-color degrees of freedom in nuclei, color transparency, single-spin asymmetries, the RHIC baryon anomaly, and non-universal antishadowing.

Brodsky, Stanley J.; /SLAC

2012-06-20T23:59:59.000Z

292

Links to Muon Collider Related Web Pages  

NLE Websites -- All DOE Office Websites (Extended Search)

Muon Collider related web pages: Muon Collider Feasibility Study ... Fermilab Page MUCOOL Collaboration: Ionization Cooling R&D Snowmass 1996 Feasibility Study Book Brookhaven Muon...

293

Neutrino Physics at a Muon Collider  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics at a Muon Collider The intense muon beams needed for high luminosity muon colliders produce intense beams of neutrinos. Dedicated muon storage rings with long straight...

294

mu+-mu? colliders: possibilities and challenges  

SciTech Connect

The current status of the mu+-mu? collider concept is reviewed and discussed. In a reference scenario, a high-intensity pulsed proton accelerator (of K-factory class) produces large numbers of secondary pi's in a nuclear target, which produce muons by decay. The muons are collected and cooled (by "ionization cooling") to form high-intensity bunches that are accelerated to high-energy collisions. High-luminosity mu+-mu? and mu?-p colliders at TeV or higher energy scales may be possible. Challenges in implementing the scenario are described. Possible variations in muon production, accumulation, and collisions are discussed; further innovations and improvements are encouraged.

David Neuffer

1994-10-01T23:59:59.000Z

295

The Onset of Quark-Hadron Duality in Pion Electroproduction  

DOE Green Energy (OSTI)

A large data set of charged-pion electroproduction from both hydrogen and deuterium targets has been obtained spanning the low-energy residual-mass region. These data conclusively show the onset of the quark-hadron duality phenomenon, as predicted for high-energy hadron electroproduction. We construct several ratios from these data to exhibit the relation of this phenomenon to the high-energy factorization ansatz of electron-quark scattering and subsequent quark-to- pion production mechanisms.

Tigran Navasardyan; Gary Adams; Abdellah Ahmidouch; Tatiana Angelescu; John Arrington; Razmik Asaturyan; O. Baker; Nawal Benmouna; Crystal Bertoncini; Henk Blok; Werner Boeglin; Peter Bosted; Herbert Breuer; Michael Christy; Simon Connell; Yonggang Cui; Mark Dalton; Samuel Danagoulian; Donal Day; T. Dodario; James Dunne; Dipangkar Dutta; Najib Elkhayari; Rolf Ent; Howard Fenker; Valera Frolov; Liping Gan; David Gaskell; Kawtar Hafidi; Wendy Hinton; Roy Holt; Tanja Horn; Garth Huber; Ed Hungerford; Xiaodong Jiang; Mark Jones; Kyungseon Joo; Narbe Kalantarians; James Kelly; Cynthia Keppel; Edward Kinney; V. Kubarovski; Ya Li; Yongguang Liang; Simona Malace; Pete Markowitz; Erin McGrath; Daniella Mckee; David Meekins; Hamlet Mkrtchyan; Brian Moziak; Gabriel Niculescu; Maria-Ioana Niculescu; Allena Opper; Tanya Ostapenko; Paul Reimer; Joerg Reinhold; Julie Roche; Stephen Rock; Elaine Schulte; Edwin Segbefia; C. Smith; G.R. Smith; Paul Stoler; Vardan Tadevosyan; Liguang Tang; Maurizio Ungaro; Alicia Uzzle; Sandra Vidakovic; Anthony Villano; William Vulcan; Miao Wang; Glen Warren; Frank Wesselmann; Bogdan Wojtsekhowski; Stephen Wood; Chuncheng Xu; Lulin Yuan; Xiaochao Zheng; Hong Guo Zhu

2006-08-29T23:59:59.000Z

296

Top Quark Anomalous Couplings at the International Linear Collider  

SciTech Connect

We present a study of the experimental determination of the forward-backward asymmetry in the process e{sup +}e{sup -} {yields} t{bar t} and in the subsequent t {yields} Wb decay, studied in the context of the International Linear Collider. This process probes the elementary couplings of the top quark to the photon, the Z and the W bosons at a level of precision that is difficult to achieve at hadron colliders. Measurement of the forward-backward asymmetry requires excellent b quark identification and determination of the quark charge. The study reported here is performed in the most challenging all-hadronic channel e{sup +}e{sup -} {yields} b{bar b}q{bar q}q{bar q}. It includes realistic details of the experimental environment, a full Monte Carlo simulation of the detector, based on the Silicon Detector concept, and realistic event reconstruction. The forward-backward asymmetries are determined to a precision of approximately 1% for each of two choices of beam polarization. We analyze the implications for the determination of the t{bar t}Z and Wt{bar b} couplings.

Devetak, Erik; Nomerotski, Andrei; /Oxford U.; Peskin, Michael; /SLAC

2011-08-15T23:59:59.000Z

297

Higgs-boson production at the Photon Collider at TESLA  

E-Print Network (OSTI)

In this thesis feasibility of the precise measurement of the Higgs-boson production cross section gamma+gamma->higgs->b+bbar at the Photon Collider at TESLA is studied in detail. The study is based on the realistic luminosity spectra simulation. The heavy quark background is estimated using the dedicated code based on NLO QCD calculations. Other background processes, which were neglected in the earlier analyses, are also studied. Also the contribution from the overlaying events, gamma+gamma->hadrons, is taken into account. The non-zero beam crossing angle and the finite size of colliding bunches are included in the event generation. The analysis is based on the full detector simulation with realistic b-tagging, and the criteria of event selection are optimized separately for each considered Higgs-boson mass. For the Standard-Model Higgs boson with mass of 120 to 160 GeV the partial width \\Gamma(h->gamma+gamma)BR(h->b+bbar) can be measured with a statistical accuracy of 2.1-7.7% after one year of the Photon Collider running. The systematic uncertainties of the measurement are estimated to be of the order of 2%. For MSSM Higgs bosons A and H, for M_A=200-350 GeV and tan(beta)=7, the statistical precision of the cross-section measurement is estimated to be 8--34%, for four considered MSSM parameters sets. As heavy neutral Higgs bosons in this scenario may not be discovered at LHC or at the first stage of the e+e- collider, an opportunity of being a discovery machine is also studied for the Photon Collider.

Piotr Niezurawski

2005-03-31T23:59:59.000Z

298

Brookhaven National Laboratory The Relativistic Heavy Ion Collider (RHIC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Relativistic Heavy Ion Collider (RHIC) Relativistic Heavy Ion Collider (RHIC) An Exciting Beginning and a Compelling Future At the Relativistic Heavy Ion Collider (RHIC), a world-class particle accelerator at Brookhaven National Laboratory, physicists are exploring the most fundamental forces and properties of matter and the early universe, with important implications for our understanding of the world around us. Operated with funding from the U.S. Department of Energy's Office of Science, the Relativistic Heavy Ion Collider (RHIC), was designed to recreate a state of matter thought to have existed immediately after the Big Bang some 13 billion years ago, and to investigate how the proton gets its spin and intrinsic magnetism from its quark and gluon constituents. Large detectors located

299

Fermilab | Muon Collider | How Does a Muon Collider Work?  

NLE Websites -- All DOE Office Websites (Extended Search)

A muon collider complex would comprise several machines and many different A muon collider complex would comprise several machines and many different components. Scientists across the world are developing and testing them. View full graphic How Does a Muon Collider Work? A muon collider complex would comprise several machines and many different components. Scientists across the world are developing and testing them. Proton accelerator To create lots of muons, scientists use a high-intensity proton accelerator that steers protons into a target. The collisions create short-lived particles called pions. Within 50 meters the pions decay into muons and neutral particles called neutrinos. The muons have an energy of about 200 MeV. Capture cavities Magnets guide the muons into and through a set of radiofrequency cavities. The electric field inside the cavities increases the energy of slow muons

300

Interim report on the Global Design Effort Global International Linear Collider (ILC) R&D  

Science Conference Proceedings (OSTI)

The International Linear Collider: A Technical Progress Report marks the halfway point towards the Global Design Effort fulfilling its mandate to follow up the ILC Reference Design Report with a more optimised Technical Design Report (TDR) by the end of 2012. The TDR will be based on much of the work reported here and will contain all the elements needed to propose the ILC to collaborating governments, including a technical design and implementation plan that are realistic and have been better optimised for performance, cost and risk. We are on track to develop detailed plans for the ILC, such that once results from the Large Hadron Collider (LHC) at CERN establish the main science goals and parameters of the next machine, we will be in good position to make a strong proposal for this new major global project in particle physics. The two overriding issues for the ILC R&D programme are to demonstrate that the technical requirements for the accelerator are achievable with practical technologies, and that the ambitious physics goals can be addressed by realistic ILC detectors. This GDE interim report documents the impressive progress on the accelerator technologies that can make the ILC a reality. It highlights results of the technological demonstrations that are giving the community increased confidence that we will be ready to proceed with an ILC project following the TDR. The companion detector and physics report document likewise demonstrates how detector designs can meet the ambitious and detailed physics goals set out by the ILC Steering Committee. LHC results will likely affect the requirements for the machine design and the detectors, and we are monitoring that very closely, intending to adapt our design as those results become available.

Harrison, M.

2011-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "large hadron collider" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Hadron Production in Heavy Ion Collisions  

E-Print Network (OSTI)

2A GeV 3 Hadron Production from AGS to RHIC 3.1 SystematicsHadron Production in Heavy Ion Collisions Hans Georg RitterAC02- 05CH11231. Hadron Production in Heavy Ion Collisions

Ritter, Hans Georg

2009-01-01T23:59:59.000Z

302

Quest for precision in hadronic cross sections at low energy: Monte Carlo tools vs. experimental data  

E-Print Network (OSTI)

We present the achievements of the last years of the experimental and theoretical groups working on hadronic cross section measurements at the low energy e+e- colliders in Beijing, Frascati, Ithaca, Novosibirsk, Stanford and Tsukuba and on tau decays. We sketch the prospects in these fields for the years to come. We emphasise the status and the precision of the Monte Carlo generators used to analyse the hadronic cross section measurements obtained as well with energy scans as with radiative return, to determine luminosities and tau decays. The radiative corrections fully or approximately implemented in the various codes and the contribution of the vacuum polarisation are discussed.

Actis, S; Arbuzov, A; Balossini, G; Beltrame, P; Bignamini, C; Bonciani, R; Carloni Calame, C M; Cherepanov, V; Czakon, M; Czyz, H; Denig, A; Eidelman, S; Fedotovich, G V; Ferroglia, A; Gluza, J; Grzeli nska, A; Gunia, M; Hafner, A; Ignatov, F; Jadach, S; Jegerlehner, F; Kalinowski, A; Kluge, W; Korchin, A; Kuhn, J H; Kuraev, E A; Lukin, P; Mastrolia, P; Montagna, G; Muller, S E; Nguyen, F; Nicrosini, O; Nomura, D; Pakhlova, G; Pancheri, G; Passera, M; Penin, A; Piccinini, F; Placzek, W; Przedzinski, T; Remiddi, E; Riemann, T; Rodrigo, G; Roig, P; Shekhovtsova, O; Shen, C P; Sibidanov, A L; Teubner, T; Trentadue, L; Venanzoni, G; van der Bij, J J; Wang, P; Ward, B F L; Was, Z; Worek, M; Yuan, C Z

2010-01-01T23:59:59.000Z

303

First Linear Collider ISG Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Collider Internation Study Group Workshop Full meeting proceedings Participant Photos Banquet Dinner Photos Note that you will need to have Adobe Reader 3.0 or GhostView installed...

304

Oscillation Energies of Colliding Raindrops  

Science Conference Proceedings (OSTI)

When raindrops collide, some of the kinetic energy involved in the collision will be available to initiate or sustain oscillations in the surviving drops. This paper presents results of a simple model of drop collisions that generates an estimate ...

David B. Johnson; Kenneth V. Beard

1984-04-01T23:59:59.000Z

305

Relativistic Heavy Ion Collider, RHIC  

NLE Websites -- All DOE Office Websites (Extended Search)

The Relativistic Heavy Ion Collider website has moved to www.bnl.govrhicdefault.asp Sponsored by the U.S. Department of Energy Office of Science, Office of Nuclear Physics. Last...

306

Muon Collider Machine-Detector Interface  

SciTech Connect

In order to realize the high physics potential of a Muon Collider (MC) a high luminosity of {mu}{sup +}{mu}{sup -}-collisions at the Interaction Point (IP) in the TeV range must be achieved ({approx}10{sup 34} cm{sup -2}s{sup -1}). To reach this goal, a number of demanding requirements on the collider optics and the IR hardware - arising from the short muon lifetime and from relatively large values of the transverse emittance and momentum spread in muon beams that can realistically be obtained with ionization cooling should be satisfied. These requirements are aggravated by limitations on the quadrupole gradients as well as by the necessity to protect superconducting magnets and collider detectors from muon decay products. The overall detector performance in this domain is strongly dependent on the background particle rates in various sub-detectors. The deleterious effects of the background and radiation environment produced by the beam in the ring are very important issues in the Interaction Region (IR), detector and Machine-Detector Interface (MDI) designs. This report is based on studies presented very recently.

Mokhov, Nikolai V.; /Fermilab

2011-08-01T23:59:59.000Z

307

Chromaticity correction for a muon collider optics  

Science Conference Proceedings (OSTI)

Muon Collider (MC) is a promising candidate for the next energy frontier machine. However, in order to obtain peak luminosity in the 10{sup 34} cm{sup 2}s{sup -1} range the collider lattice designmust satisfy a number of stringent requirements. In particular the expected large momentum spread of the muon beam and the very small {beta}* call for a careful correction of the chromatic effects. Here we present a particular solution for the interaction region (IR) optics whose distinctive feature is a three-sextupole local chromatic correction scheme. The scheme may be applied to other future machines where chromatic effects are expected to be large. The expected large muon energy spread requires the optics to be stable over a wide range of momenta whereas the required luminosity calls for {beta}* in the mm range. To avoid luminosity degradation due to hour-glass effect, the bunch length must be comparatively small. To keep the needed RF voltage within feasible limits the momentum compaction factor must be small over the wide range of momenta. A low {beta}* means high sensitivity to alignment and field errors of the Interaction Region (IR) quadrupoles and large chromatic effects which limit the momentum range of optics stability and require strong correction sextupoles, which eventually limit the Dynamic Aperture (DA). Finally, the ring circumference should be as small as possible, luminosity being inversely proportional to the collider length. A promising solution for a 1.5 TeV center of mass energy MC with {beta}* = 1 m in both planes has been proposed. This {beta}* value has been chosen as a compromise between luminosity and feasibility based on the magnet design and energy deposition considerations. The proposed solution for the IR optics together with a new flexible momentum compaction arc cell design allows to satisfy all requirements and is relatively insensitive to the beam-beam effect.

Alexahin, Y.; Gianfelice-Wendt, E.; Kapin, V.; /Fermilab

2011-03-01T23:59:59.000Z

308

Tau tau Fusion to SUSY Higgs Bosons at a Photon Collider: Measuring tan(beta)  

E-Print Network (OSTI)

Tau tau fusion to light h and heavy H,A Higgs bosons is investigated in the Minimal Supersymmetric Standard Model (MSSM) at a photon collider as a promising channel for measuring large values of tan(beta). For standard design parameters of a photon collider an error close to unity, uniform for tan(beta) above 10, may be expected, improving on complementary measurements at LHC and e+e- linear colliders.

S. Y. Choi; J. Kalinowski; J. S. Lee; M. M. Muehlleitner; M. Spira; P. M. Zerwas

2004-07-05T23:59:59.000Z

309

Muon muon collider: Feasibility study  

Science Conference Proceedings (OSTI)

A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10{sup 35} cm{sup {minus}2} s{sup {minus}1}. The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice--the authors believe--to allow them to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring which has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design.

NONE

1996-06-18T23:59:59.000Z

310

Search for the Production of Gluinos and Squarks with the CDF II Experiment at the Tevatron Collider  

SciTech Connect

This thesis reports on two searches for the production of squarks and gluinos, supersymmetric partners of the Standard Model (SM) quarks and gluons, using the CDF detector at the Tevatron {radical}s = 1.96 TeV p{bar p} collider. An inclusive search for squarks and gluinos pair production is performed in events with large E{sub T} and multiple jets in the final state, based on 2 fb{sup -1} of CDF Run II data. The analysis is performed within the framework of minimal supergravity (mSUGRA) and assumes R-parity conservation where sparticles are produced in pairs. The expected signal is characterized by the production of multiple jets of hadrons from the cascade decays of squarks and gluinos and large missing transverse energy E{sub T} from the lightest supersymmetric particles (LSP). The measurements are in good agreement with SM predictions for backgrounds. The results are translated into 95% confidence level (CL) upper limits on production cross sections and squark and gluino masses in a given mSUGRA scenario. An upper limit on the production cross section is placed in the range between 1 pb and 0.1 pb, depending on the gluino and squark masses considered. The result of the search is negative for gluino and squark masses up to 392 GeV/c{sup 2} in the region where gluino and squark masses are close to each other, gluino masses up to 280 GeV/c{sup 2} regardless of the squark mass, and gluino masses up to 423 GeV=c2 for squark masses below 378 GeV/c{sup 2}. These results are compatible with the latest limits on squark/gluino production obtained by the D0 Collaboration and considerably improve the previous exclusion limits from direct and indirect searches at LEP and the Tevatron. The inclusive search is then extended to a scenario where the pair production of sbottom squarks is dominant. The new search is performed in a generic MSSM scenario with R-parity conservation. A specific SUSY particle mass hierarchy is assumed such that the sbottom decays exclusively as {tilde b}{sub 1} {yields} b{sub {tilde {chi}}{sub 1}{sup 0}}. The expected signal for direct sbottom pair production is characterized by the presence of two jets of hadrons from the hadronization of the bottom quarks and E=T from the two LSPs in the final state. The events are selected with large E{sub T} and two energetic jets in the final state, and at least one jet is required to be associated with a b quark. The measurements are in good agreement with SM predictions for backgrounds. The results are translated into 95% CL exclusion limits on production cross sections and sbottom and neutralino masses in the given MSSM scenario. Cross sections down to 0.1 pb are excluded for the sbottom mass range considered. Sbottom masses up to 230 GeV/c{sup 2} are excluded at 95% CL for neutralino masses below 70 GeV/c{sup 2}. This analysis increases the previous CDF limit by more than 40 GeV/c{sup 2}. The sensitivity of both the inclusive and the exclusive search is dominated by systematic effects and the results of the two analyses can be considered as conclusive for CDF Run II. With the new energy frontier of the newly commissioned Large Hadron Collider in Geneva, the experience from Tevatron will be of crucial importance in the developing of effective strategies to search for SUSY in the next era of particle physics experiments.

De Lorenzo, Gianluca; /Barcelona, IFAE

2010-05-01T23:59:59.000Z

311

Linear Collider Collaboration Tech Notes  

NLE Websites -- All DOE Office Websites (Extended Search)

6, 27/05/99 6, 27/05/99 Tolerances of Random RF Jitters in X-Band Main Linacs May 27, 1999 Kiyoshi KUBO KEK Tsukuba, Japan Abstract: Tracking simulations have been performed for the main linacs of an X-band linear collider. We discuss the choice of phase of the accelerating field relative to the bunches. The tolerances of the phase and the amplitude errors are studied. Tolerances of Random RF Jitters in X-Band Main Linacs K. Kubo, KEK Abstract Tracking simulations have been performed for main linacs of X-band linear collider. We discuss about choice of the phase of the accelerating field relative to the bunches. The tolerances of the phase and the amplitude errors are studied. 1 INTRODUCTION In order to preserve the low emittance through the main linacs of future linear colliders, various effects

312

Search for microscopic black holes in a like-sign dimuon final state using large track multiplicity with the ATLAS detector  

E-Print Network (OSTI)

A search is presented for microscopic black holes in a like-sign dimuon final state in proton--proton collisions at sqrt(s)= 8 TeV. The data were collected with the ATLAS detector at the Large Hadron Collider in 2012 and correspond to an integrated luminosity of 20.3 fb-1. Using a high track multiplicity requirement, 0.6 +- 0.2 background events from Standard Model processes are predicted and none observed. This result is interpreted in the context of low-scale gravity models and 95% CL lower limits on microscopic black hole masses are set for different model assumptions.

ATLAS Collaboration

2013-08-19T23:59:59.000Z

313

Hadron physics with KLOE-2  

E-Print Network (OSTI)

In the upcoming month the KLOE-2 data taking campaign will start at the upgraded DAFNE phi-factory of INFN Laboratori Nazionali di Frascati. The main goal is to collect an integrated luminosity of about 20 fb^(-1) in 3-4 years in order to refine and extend the KLOE program on both kaon physics and hadron spectroscopy. Here the expected improvements on the results of hadron spectroscopy are presented and briefly discussed.

Czerwinski, Eryk; Babusci, D; Badoni, D; Bencivenni, G; Bini, C; Bloise, C; Bocci, V; Bossi, F; Branchini, P; Budano, A; Bulychjev, S A; Campana, P; Capon, G; Ceradini, F; Ciambrone, P; Czerwinski, E; Dane, E; De Lucia, E; De Robertis, G; De Santis, A; De Zorzi, G; Di Domenico, A; Di Donato, C; Di Micco, B; Domenici, D; Erriquez, O; Felici, G; Fiore, S; Franzini, P; Gauzzi, P; Giovannella, S; Gonnella, F; Graziani, E; Happacher, F; Hoistad, B; Iarocci, E; Jacewicz, M; Johansson, T; Kulikov, V V; Kupsc, A; Lee-Franzini, J; Loddo, F; Martemianov, M A; Martini, M; Matsyuk, M A; Messi, R; Miscetti, S; Moricciani, D; Morello, G; Moskal, P; Nguyen, F; Passeri, A; Patera, V; Ranieri, A; Santangelo, P; Sarra, I; Schioppa, M; Sciascia, B; Sciubba, A; Silarski, M; Taccini, C; Tortora, L; Venanzoni, G; Versaci, R; Wislicki, W; Wolke, M; Zdebik, J

2010-01-01T23:59:59.000Z

314

Fermilab | Science at Fermilab | Questions for the Universe ...  

NLE Websites -- All DOE Office Websites (Extended Search)

solve the mystery of dark energy: Large Hadron Collider, CERN, Switzerland, Geneva International Linear Collider (proposed) Joint Dark Energy Mission (proposed) Large Synoptic...

315

Discriminating between Z Prime -boson effects and effects of anomalous gauge couplings in the double production of W{sup {+-}} bosons at a linear collider  

Science Conference Proceedings (OSTI)

The potential of the International Linear electron-positron Collider (ILC) for seeking, in the annihilation production of W{sup {+-}}-boson pairs, signals induced by new neutral gauge bosons predicted by models belonging to various classes and featuring an extended gauge sector is studied. Limits that will be obtained at ILC for the parameters and masses of Z Prime bosons are compared with present-day and future data from the Large Hadron Collider (LHC). The possibility of discriminating between the effects of Z-Z Prime mixing and signals induced by anomalous gauge couplings (AGC) is demonstrated within theoretically motivated trilinear gauge models involving several free anomalous parameters. It is found that the sensitivity of ILC to the effects of Z-Z Prime mixing in the process e{sup +}e{sup -} {yields} W{sup +}W{sup -} and its ability to discriminate between these two new-physics scenarios, Z Prime and AGC, become substantially higher upon employing polarized initial (e{sup +}e{sup -}) and final (W{sup {+-}}) states.

Andreev, Vasili V., E-mail: quarks@gsu.by [Francisk Skorina Gomel State University (Belarus); Pankov, A. A., E-mail: pankov@ictp.it [Abdus Salam ICTP International Centre for Theoretical Physics (Italy)

2013-06-15T23:59:59.000Z

316

Hadron nucleus interactions  

SciTech Connect

The elastic and inelastic scattering of intermediate energy (less than or equal to 1 GeV) protons by nuclei is considered first. The discussion focuses on the determination of the proton-nucleus optical potential in terms of the elementary nucleon-nucleon scattering amplitudes and the properties of the target and residual nucleus. The result is a series of terms for the optical potential. Then the interaction of pions with nuclei for energies in the neighborhood of the ..delta..-resonance is discussed. In this energy domain an incident pion will with high probability be absorbed by a nucleon to produce the ..delta..-resonance and thus form a ..delta..-particle hole state in the nucleus. Next, the subject of hypernuclei is taken up. The ..lambda.. hypernuclei and a recently observed ..sigma.. hypernuclei comprise situations in which the core nucleus can be probed by a baryon of roughly the same mass as a nucleon, with similar albeit not identical interactions with nucleons. But the ..lambda.. (or ..sigma..) does not need to satisfy the Pauli exclusion principle with respect to the nucleons, and therefore can be in orbits forbidden to it if it were a nucleon. As the energy of the projectile increases, it becomes correspondingly more important to take relativistic effects into account. The importance of these effects is strikingly revealed by experiments involving the collision of ultrarelativistic hadrons, protons, pions, kaons (up to Fermilab energies) with nuclei. This phenomenon forms part of the final topic, which includes as well as the collision of relativistic heavy ion projectiles with nuclei. A nuclear Weiszaecker-Williams method developed for dealing with peripheral collisions is described. 32 figures, 10 tables. (RWR)

Feshbach, H.

1980-10-01T23:59:59.000Z

317

Advances in Beam Cooling for Muon Colliders  

DOE Green Energy (OSTI)

A six-dimensional (6D) ionization cooling channel based on helical magnets surrounding RF cavities filled with dense hydrogen gas is the basis for the latest plans for muon colliders. This helical cooling channel (HCC) has solenoidal, helical dipole, and helical quadrupole magnetic fields, where emittance exchange is achieved by using a continuous homogeneous absorber. Momentum-dependent path length differences in the dense hydrogen energy absorber provide the required correlation between momentum and ionization loss to accomplish longitudinal cooling. Recent studies of an 800 MHz RF cavity pressurized with hydrogen, as would be used in this application, show that the maximum gradient is not limited by a large external magnetic field, unlike vacuum cavities. Two new cooling ideas, Parametric-resonance Ionization Cooling and Reverse Emittance Exchange, will be employed to further reduce transverse emittances to a few mm-mr, which allows high luminosity with fewer muons than previously imagined. We describe these new ideas as well as a new precooling idea based on a HCC with z dependent fields that is being developed for an exceptional 6D cooling demonstration experiment. The status of the designs, simulations, and tests of the cooling components for a high luminosity, low emittance muon collider will be reviewed.

R.P. Johnson, Y.S. Derbenev

2006-09-01T23:59:59.000Z

318

Ionization cooling in the muon collider  

SciTech Connect

The muon beams in a high luminosity muon collider are produced with a very large emittance. The process of ionization cooling offers a method for reducing the 6-dimensional normalized emittance of the beam by a factor of {approx} 10{sup 6}. A simple analytic theory has been developed that demonstrates the dependence of the net cooling on various experimental parameters. The simple theory has been checked and realistic arrangements have been examined using Monte Carlo simulations. Transverse cooling of the initial beam can be achieved using passive Li absorbers in a FOFO lattice. The last factor of 10 in transverse cooling probably requires the use of current-carrying Li lenses. Efficient longitudinal cooling requires the use of wedge shaped absorbers in a dispersive section of the beam line. An example, multi-stage cooling scenario has been developed that meets the requirements of the muon collider. Preliminary designs have been made of solenoids for use in the FOFO lattice and of solenoids and dipoles for use in the emittance exchange sections. Detailed simulation work, farther optimization, and preparations for experimental demonstrations of critical components are currently in progress.

Fernow, R.C.; Gallardo, J.C.; Kirk, H.G.; Palmer, R.B. [and others

1996-10-01T23:59:59.000Z

319

Nuclear physics with a medium-energy Electron-Ion Collider  

E-Print Network (OSTI)

A polarized ep/eA collider (Electron-Ion Collider, or EIC) with variable center-of-mass energy sqrt(s) ~ 20-70 GeV and a luminosity ~ 10^{34} cm^{-2} s^{-1} would be uniquely suited to address several outstanding questions of Quantum Chromodynamics (QCD) and the microscopic structure of hadrons and nuclei: (i) the three-dimensional structure of the nucleon in QCD (sea quark and gluon spatial distributions, orbital motion, polarization, correlations); (ii) the fundamental color fields in nuclei (nuclear parton densities, shadowing, coherence effects, color transparency); (iii) the conversion of color charge to hadrons (fragmentation, parton propagation through matter, in-medium jets). We briefly review the conceptual aspects of these questions and the measurements that would address them, emphasizing the qualitatively new information that could be obtained with the collider. Such a medium-energy EIC could be realized at Jefferson Lab after the 12 GeV Upgrade (MEIC), or at Brookhaven National Lab as the low-energy stage of eRHIC.

A. Accardi; V. Guzey; A. Prokudin; C. Weiss

2011-10-05T23:59:59.000Z

320

Nuclear physics with a medium-energy Electron-Ion Collider  

Science Conference Proceedings (OSTI)

A polarized ep/eA collider (Electron-Ion Collider, or EIC) with variable center-of-mass energy {radical}s {approx} 20-70 GeV and a luminosity {approx}10{sup 34} cm{sup -2} s{sup -1} would be uniquely suited to address several outstanding questions of Quantum Chromodynamics (QCD) and the microscopic structure of hadrons and nuclei: (i) the three-dimensional structure of the nucleon in QCD (sea quark and gluon spatial distributions, orbital motion, polarization, correlations); (ii) the fundamental color fields in nuclei (nuclear parton densities, shadowing, coherence effects, color transparency); (iii) the conversion of color charge to hadrons (fragmentation, parton propagation through matter, in-medium jets). We briefly review the conceptual aspects of these questions and the measurements that would address them, emphasizing the qualitatively new information that could be obtained with the collider. Such a medium-energy EIC could be realized at Jefferson Lab after the 12 GeV Upgrade (MEIC), or at Brookhaven National Lab as the low-energy stage of eRHIC.

A. Accardi, V. Guzey, A. Prokudin, C. Weiss

2012-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "large hadron collider" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Atomic Physics Aspects of a Relativistic Nuclear Collider  

DOE Green Energy (OSTI)

Atomic collision cross sections involving bare uranium nuclei are large at relativistic energies and will affect the design and operation of a relativistic nuclear collider (RNC). The most significant may be production of electron-positron pairs and muon pairs ({approx} 10{sup 8} per sec. and 2000 per sec. respectively for a 100 GeV/nucleon collider with a luminosity of 10{sup 27} cm{sup 2} s{sup -1}). Although the pair production is a direct measure of the luminosity it is also a large source of background and capture of an electron from the pair by one of the nuclei will result in the loss of the ion. Another important loss mechanism is Coulomb excitation of the giant nuclear dipole and giant nuclear quadrupole resonances. Storing and colliding bare and highly-stripped uranium opens up new possibilities for novel atomic physics experiments and an alternate approach for present experiments. As examples, the use of a collider for experiments to study spontaneous decay of the super-critical state (both positron production and x-ray production) of quasi-atoms of atomic number Z > 172, and a storage-ring measurement of the ground state hyperfine structure of hydrogen like thallium as a test of quantum electrodynamics (QED) are discussed.

Gould, R.

1984-11-01T23:59:59.000Z

322

Strange hadronic matter  

SciTech Connect

In an extended mean field theory, there is found a large class of bound multi-strange objects, formed from combinations of (p,n,[Lambda] [Xi][sup 0] [Xi][sup [minus

Schafner, J. (Washington Univ., Seattle, WA (United States). Inst. for Nuclear Theory Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik); Dover, C.B. (Washington Univ., Seattle, WA (United States). Inst. for Nuclear Theory Brookhaven National Lab., Upton, NY (United States)); Gal, A. (Washington Univ., Seattle, WA (United States). Inst. for Nuclear Theory Frankfurt Univ. (Germany). Inst.

1993-02-01T23:59:59.000Z

323

Figures for CERN Courier  

NLE Websites -- All DOE Office Websites (Extended Search)

Collider (FMC), Next Muon Collider (NMC), Next Linear Collider (NLC), and Very Large Hadron Collider (VLHC). These are compared with the footprint of the LHC at CERN, and the...

324

Recent Results on Muon Capture for a Neutrino Factory and Muon Collider  

SciTech Connect

Scenarios for capture, bunching and phase-energy rotation of {mu}'s from a proton source have been developed. The goal is capture of a maximal number of muons in a string of rf bunches with applications in neutrino factories and {mu}{sup +}-{mu}{sup -} colliders. In this note we begin with the bunching, phase rotation and cooling scenario used in neutrino factory study 2B and adapted by R. Palmer as the initial stage of a {mu}{sup +}-{mu}{sup -} collider scenario. However the scenario produces a relatively large number of bunches that must be recombined for maximal collider luminosity. In this paper we modify the scenario to obtain a smaller number of bunches, and, after some optimization, obtain cases that are better for both n-factory and collider scenarios. We describe these examples and consider some variations toward an optimal {nu}-factory + collider scenario.

Neuffer, David; /Fermilab

2008-01-01T23:59:59.000Z

325

Energy Efficiency of large Cryogenic Systems: the LHC Case and Beyond  

E-Print Network (OSTI)

Research infrastructures for high-energy and nuclear physics, nuclear fusion and production of high magnetic fields are increasingly based on applied superconductivity and associated cryogenics in their quest for scientific breakthroughs at affordable capital and operation costs, a condition for their acceptance and sustained funding by society. The thermodynamic penalty for operating at low temperature makes energy efficiency a key requirement for their large cryogenic systems, from conceptual design to procurement, construction and operation. Meeting this requirement takes a combined approach on several fronts in parallel: management of heat loads and sizing of cooling duties, distribution of cooling power matching the needs of the superconducting devices, efficient production of refrigeration, optimal control resting on precise instrumentation and diagnostics, as well as a targeted industrial procurement policy. The case of the Large Hadron Collider (LHC) at CERN is presented. Potential improvements for fu...

Claudet, S; Ferlin, G; Lebrun, P; Tavian, L; Wagner, U

2013-01-01T23:59:59.000Z

326

Quark confinement and hadronic interactions  

SciTech Connect

A study of quark models for many-hadron systems is presented. The starting point in the construction of these nonrelativistic models is a proper formal definition of the concept of color singlet and nonsinglet clusters in a multiquark system which respects the exchange symmetry of the quarks. This definition provides a natural way to impose saturation of the confining forces.

Lenz, F.; Londergan, J.T.; Moniz, E.J.; Rosenfelder, R.; Stingl, M.; Yazaki, K.

1986-08-01T23:59:59.000Z

327

CERN  

NLE Websites -- All DOE Office Websites (Extended Search)

y nuevas partculas y fuerzas fundamentales. Para mayor informacin: LHC: Large Hadron Collider El gran colisionador de hadrones se ha planeado que habite en el mismo tnel...

328

ICFA Statements  

NLE Websites -- All DOE Office Websites (Extended Search)

Network ICFA Statement on Linear Colliders (August 1999) ICFA Statement on Large Hadron Collider 1996 ICFA Seminar Statement ICFA Statement on Communications in International...

329

Simulation in Particle Physics Rob Roser and Tom LeCompte  

NLE Websites -- All DOE Office Websites (Extended Search)

parallel architectures Projecting our Needs The Energy Frontier 112712 3 The Large Hadron Collider is the world's largest particle accelerator. * It collides beams of protons...

330

Important communication talk  

NLE Websites -- All DOE Office Websites (Extended Search)

month, Fermilab's Tevatron was the world's highest-energy collider. * Now, the Large Hadron Collider at CERN in Geneva has begun operations. Ultimately it will have seven times...

331

Fermilab Today  

NLE Websites -- All DOE Office Websites (Extended Search)

billion building the Large Hadron Collider, in which the colliding protons will recreate energies and conditions last seen a trillionth of a second after the Big Bang. Researchers...

332

The Particle Adventure | What is fundamental? | Fundamental  

NLE Websites -- All DOE Office Websites (Extended Search)

History of the Higgs Boson > Collisions at the Large Hadron Collider... Collisions at the Large Hadron Collider can produce many things Dennis Overbye in the New York Times talks...

333

Probing Higgs Boson Interactions At Future Colliders.  

E-Print Network (OSTI)

??We present in this thesis a detailed analysis of Higgs boson interactions at future colliders. In particular we examine, in a model independent way, the… (more)

Biswal, Sudhansu Sekhar

2009-01-01T23:59:59.000Z

334

Links to Muon Collider Related Web Pages  

NLE Websites -- All DOE Office Websites (Extended Search)

useful nu-factory related web pages: Nu-FactoryMuon Collider Studies at Fermilab Neutrino Factory Design Study MUCOOL Collaboration: Ionization Cooling R&D Brookhaven Muon...

335

Siting the International Linear Collider at Hanford  

SciTech Connect

Review of the proposed International Linear Collider, applications in high energy physics, and evaluation of the Hanford Site as a possible location for siting the facilityl.

Kouzes, Richard T.; Asner, David M.; Brodzinski, Ronald L.; Fast, James E.; Miley, Harry S.

2012-03-15T23:59:59.000Z

336

Siting the International Linear Collider at Hanford  

SciTech Connect

Review of the proposed International Linear Collider, applications in high energy physics, and evaluation of the Hanford Site as a possible location for siting the facility.

Kouzes, Richard T.; Asner, David M.; Brodzinski, Ronald L.; Fast, James E.; Miley, Harry S.

2012-05-01T23:59:59.000Z

337

Subcritical Fission Reactor Based on Linear Collider  

E-Print Network (OSTI)

The beams of Linear Collider after main collision can be utilized to build an accelerator--driven sub--critical reactor.

I. F. Ginzburg

2005-07-29T23:59:59.000Z

338

The Next Linear Collider Program  

NLE Websites -- All DOE Office Websites (Extended Search)

To use the left side navigation on this page, you will need to turn on To use the left side navigation on this page, you will need to turn on Javascript. You do not need JavaScript to use the text-based navigation bar at the bottom of the page. The Next Linear Collider at SLAC Navbar MISSION: Scientists expect research at this facility to answer fundamental questions about the behavior of matter and the origins of the Universe. NLC 8-Pack on the Drawing Board What's New In the Next Linear Collider: • NLC Newsletter October, 2001 • NLC Snowmass report 2001 • NLC All Hands Talk, August 2001 Upcoming Events: • Fall 2001 Working Sessions, Oct. 22-23, 2001 • Pulse Compression Workshop, Oct. 22-24, 2001 • Machine Advisory Committee Mtg., Oct. 24-26, 2001 • ISG-7 at KEK, Nov. 12-15, 2001 • LC' 02 at SLAC, Feb. 4-8, 2002 NLC Website Search: Entire SLAC Web | Help |

339

Stochastic cooling in muon colliders  

SciTech Connect

Analysis of muon production techniques for high energy colliders indicates the need for rapid and effective beam cooling in order that one achieve luminosities > 10{sup 30} cm{sup {minus}2}s{sup {minus}1} as required for high energy physics experiments. This paper considers stochastic cooling to increase the phase space density of the muons in the collider. Even at muon energies greater than 100 GeV, the number of muons per bunch must be limited to {approximately}10{sup 3} for the cooling rate to be less than the muon lifetime. With such a small number of muons per bunch, the final beam emittance implied by the luminosity requirement is well below the thermodynamic limit for beam electronics at practical temperatures. Rapid bunch stacking after the cooling process can raise the number of muons per bunch to a level consistent with both the luminosity goals and with practical temperatures for the stochastic cooling electronics. A major advantage of our stochastic cooling/stacking scheme over scenarios that employ only ionization cooling is that the power on the production target can be reduced below 1 MW.

Barletta, W.A.; Sessler, A.M.

1993-09-01T23:59:59.000Z

340

Hadron Physics with CLAS12  

DOE Green Energy (OSTI)

Hadron spectroscopy has been an essential part of the physics program with the CLAS detector in experimental Hall B at Jefferson Lab. Production of baryon and meson resonances with high energy (polarized) electron and photon beams was studied on a veriety of targets, ranging from hydrogen to lead. Physics topics of interest include: investigation of the spectrum of baryon and meson resonances, transition form-factors, meson-nucleon couplings (mesons in nuclei), and search for exotic and missing states. With the 12 GeV upgrade of the CEBAF machine, hadron spectroscopy in Hall B will be extended to a new domain of higher mass resonances and the range of higher transferred momentum using up to 11 GeV electron beams and the upgraded CLAS12 detector. In this paper a brief description of the CLAS12 detector and the physics program adopted for 12 GeV with emphasis to baryon and meson spectroscopy is presented.

Stepan Stepanyan

2010-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "large hadron collider" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Strange hadronic matter  

SciTech Connect

In an extended mean field theory, there is found a large class of bound multi-strange objects, formed from combinations of (p,n,{Lambda} {Xi}{sup 0} {Xi}{sup {minus}}, baryons, which are stable against strong decay. A maximal binding energy per baryon of E{sub B}/A {approx} {minus}21 MeV, strangeness per baryon of {integral}{sub s} {approx} 1--1.2, charge per baryon of {integral}{sub q} {approx} {minus}-0.1 to 0.1, and baryon density of 2.5--3 times that of ordinary nuclei are predicted. For A {ge} 6, stable combinations involving only ({Lambda},{Xi}{sup 0},{Xi}) hyperons are obtained.

Schafner, J. [Washington Univ., Seattle, WA (United States). Inst. for Nuclear Theory]|[Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik; Dover, C.B. [Washington Univ., Seattle, WA (United States). Inst. for Nuclear Theory]|[Brookhaven National Lab., Upton, NY (United States); Gal, A. [Washington Univ., Seattle, WA (United States). Inst. for Nuclear Theory]|[Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik]|[Hebrew Univ., Jerusalem (Israel). Racah Inst. of Physics; Greiner, C. [Washington Univ., Seattle, WA (United States). Inst. for Nuclear Theory]|[Duke Univ., Durham, NC (United States). Dept. of Physics; Stoecker, H. [Washington Univ., Seattle, WA (United States). Inst. for Nuclear Theory]|[Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik

1993-02-01T23:59:59.000Z

342

Total Hadron Cross Section, New Particles, and Muon Electron Events in e{sup +}e{sup -} Annihilation at SPEAR  

DOE R&D Accomplishments (OSTI)

The review of total hadron electroproduction cross sections, the new states, and the muon--electron events includes large amount of information on hadron structure, nine states with width ranging from 10's of keV to many MeV, the principal decay modes and quantum numbers of some of the states, and limits on charm particle production. 13 references. (JFP)

Richter, B.

1976-01-00T23:59:59.000Z

343

Hadronic Resonances from Lattice QCD  

Science Conference Proceedings (OSTI)

The determination of the pattern of hadronic resonances as predicted by Quantum Chromodynamics requires the use of non-perturbative techniques. Lattice QCD has emerged as the dominant tool for such calculations, and has produced many QCD predictions which can be directly compared to experiment. The concepts underlying lattice QCD are outlined, methods for calculating excited states are discussed, and results from an exploratory Nucleon and Delta baryon spectrum study are presented.

John Bulava; Robert Edwards; George Fleming; K. Jimmy Juge; Adam C. Lichtl; Nilmani Mathur; Colin Morningstar; David Richards; Stephen J. Wallace

2007-06-16T23:59:59.000Z

344

Light Hadron Spectroscopy and Charmonium  

E-Print Network (OSTI)

During the last few years there has been a renaissance in charm and charmonium spectroscopy with higher precision measurements at the $\\psi^{'}$ and $\\psi(3770)$ coming from BESII and CLEOc and many new discoveries coming from B-factories. In this paper, I review some new results on "classical" charmonium and $e^+ e^- \\to$ hadrons using B-factory Initial State Radiation and two photon events.

Frederick A. Harris

2008-10-17T23:59:59.000Z

345

Hadron Spectroscopy at CLAS  

DOE Green Energy (OSTI)

Meson photoproduction was studied at the CEBAF Large Acceptance Spectrometer (CLAS) utilizing a 5.5 GeV/c photon beam incident on a hydrogen target. Here we report on the partial wave analyzes (PWA) performed on the exclusive final states pi{sup +}pi{sup +}pi{sup -}n and K{sup +}K{sup -}pi{sup +}n. In addition, CLAS has data on the final state pi{sup +}pi{sup 0}pi{sup -}p which will be reported in the near future. The analysis of the pi{sup +}pi{sup +}pi{sup -} system shows clearly the a2(1320), as well as evidence for the a1(1260) and the pi2(1670). The pi1(1600), previously observed in {pi}{sup -}p interactions, is seen very weakly here. In the K{sup +}K{sup -}pi{sup +}n channel there is evidence for the Theta{sup +}(1540) S=+1 baryon pentaquark. The PWA of this system gives an excellent description of the background which rules out mesonic reflection as a source of the signal.

Dennis Weygand

2005-05-01T23:59:59.000Z

346

Research and Development of Future Muon Collider  

SciTech Connect

Muon collider is a considerable candidate of the next generation high-energy lepton collider machine. A novel accelerator technology must be developed to overcome several intrinsic issues of muon acceleration. Recent research and development of critical beam elements for a muon accelerator, especially muon beam phase space ionization cooling channel, are reviewed in this paper.

Yonehara, K.; /Fermilab

2012-05-01T23:59:59.000Z

347

Reconstructing the Higgs boson in dileptonic W decays at hadron colliders  

SciTech Connect

We examine the prospect to measure the Higgs boson mass using the recently introduced kinematic variable, the M{sub T2}-assisted on-shell (MAOS) momentum, that provides a systematic approximation to the invisible neutrino momenta in dileptonic decays of a W-boson pair. For this purpose, we introduce a modified version of the MAOS momentum that is applicable even when one or both of the W-bosons from the Higgs decay are in off shell. It is demonstrated that the MAOS Higgs mass distribution, constructed with the MAOS neutrino momenta, shows a clear peak at the true Higgs boson mass when an event cut selecting higher value of M{sub T2} is employed. We perform the likelihood analysis for this MAOS mass distribution to determine the Higgs boson mass, and find it can improve the accuracy of the Higgs mass measurement. Our results indicate that the MAOS Higgs mass can also be useful for the discovery or exclusion of the Higgs boson in certain mass range.

Choi, Kiwoon; Park, Chan Beom [Department of Physics, KAIST, Daejeon 305-701 (Korea, Republic of); Choi, Suyong [Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Lee, Jae Sik [Physics Division, National Center for Theoretical Sciences, Hsinchu, Taiwan (China)

2009-10-01T23:59:59.000Z

348

Hadron Collider Production of Massive Color-Octet Vector Bosons at Next-to-Leading Order  

E-Print Network (OSTI)

This paper completes the study of the next-to-leading order (NLO) QCD corrections to massive color-octet vector boson production at the LHC and Tevatron. The massive color-octet vector bosons are generically referred to as colorons. Building on our previous calculation of quark-initiated coloron production at NLO, we use the pinch technique to investigate coloron production via gluon fusion. We demonstrate that this one-loop production amplitude is finite, and find that its numerical contribution to coloron production is typically four orders of magnitude smaller than the contribution from quark annihilation. Coloron production via gluon fusion is therefore only relevant if the colorons are (nearly) fermiophobic. We then present extensive plots and tables of our full results for NLO coloron production at the Tevatron and the LHC.

R. Sekhar Chivukula; Arsham Farzinnia; Jing Ren; Elizabeth H. Simmons

2013-03-05T23:59:59.000Z

349

The 100,000 amp dc power supply for a staged hadron collider superferric magnet  

SciTech Connect

A 1.5 volt 100,000 amp DC switcher power supply was developed for testing a superferric magnet string at FNAL. This supply was used during testing as both the ramping supply and holding supply powering a single magnet load with a total load resistance of 0.7{micro} Ohms. The supply consists of ten paralleled switcher cells, powered by a 400 volt/600 Amp DC power supply. Each cell consists of an IGBT H-bridge driving a step-down transformer at a switching frequency of 2 kHz. The transformer has an effective turns ratio of 224:1. The secondary consists of 32 parallel single-turn full wave rectifier windings. The rectification is done with 64 Shottky diodes. Each cell is rated at 1.5 volts/10,000 amps. During this test each cell was operated as a constant power source without load current or field feedback. This paper will describe the design of the switcher cell and control system used during testing. We will also describe the next level of improvements to the current feedback system to improve the ramp control.

Hays, Steven L.; Claypool, Bradley; Foster, G.William; /Fermilab

2005-09-01T23:59:59.000Z

350

Trigger and Data Acquisition for hadron colliders at the Energy Frontier  

E-Print Network (OSTI)

The LHC trigger and data acquisition systems will need significant modifications to operate at the HL-LHC. Due to the increased occupancy of each crossing, Level-1 trigger systems would experience degraded performance of the LHC algorithms presently selecting up to 100 kHz of crossings from the LHC input rate of 40 MHz. The DAQ systems will experience larger event sizes due to greater occupancy and higher channel counts of new detectors. This paper summarizes findings and recommendations to upgrade the LHC experiments trigger and data acquisition systems for operation at the HL-HLC.

Smith, Wesley H

2013-01-01T23:59:59.000Z

351

Trigger and Data Acquisition for hadron colliders at the Energy Frontier  

E-Print Network (OSTI)

The LHC trigger and data acquisition systems will need significant modifications to operate at the HL-LHC. Due to the increased occupancy of each crossing, Level-1 trigger systems would experience degraded performance of the LHC algorithms presently selecting up to 100 kHz of crossings from the LHC input rate of 40 MHz. The DAQ systems will experience larger event sizes due to greater occupancy and higher channel counts of new detectors. This paper summarizes findings and recommendations to upgrade the LHC experiments trigger and data acquisition systems for operation at the HL-HLC.

Wesley H. Smith

2013-07-02T23:59:59.000Z

352

Beam energy dependence of strange hadron production from STAR at RHIC  

E-Print Network (OSTI)

We present STAR measurements of K^{0}_{S}, \\phi, \\Lambda, \\Xi, and \\Omega at mid-rapidity from Au+Au collisions at \\sqrt{s_{NN}} = 7.7, 11.5, 19.6, 27, and 39 GeV from the Beam Energy Scan (BES) program at the BNL Relativistic Heavy Ion Collider (RHIC). Nuclear modification factors and baryon-to-meson ratios are measured to understand recombination and parton energy loss mechanisms. Implications on partonic versus hadronic dynamics at low beam energies are discussed.

Xiaoping Zhang

2013-05-20T23:59:59.000Z

353

Linear Collider Collaboration Tech Notes  

NLE Websites -- All DOE Office Websites (Extended Search)

NLC Home Page NLC Technical SLAC The LCC Tech Note series was started in July 1998 to document the JLC/NLC collaborative design effort. The notes are numbered sequentially and may also be given a SLAC, FNAL, LBNL, LLNL and/or KEK publication number. The LCC notes will be distributed through the Web in electronic form as PDF files -- the authors are responsible for keeping the original documents. Other document series are the NLC Notes that were started for the SLAC ZDR, the KEK ATF Notes, and at some future time there should be a series of Technical (NLD) Notes to document work on detector studies for the next-generation linear collider. LCC-0001 "Memorandum of Understanding between KEK and SLAC," 2/98. LCC-0002 "Transparencies and Summaries from the 1st ISG meeting: January 1998," G. Loew, ed., 2/98.

354

Factorization for hadronic heavy quarkonium production  

E-Print Network (OSTI)

We briefly review several models of heavy quarkonium production in hadronic collisions, and discuss the status of QCD factorization for these production models.

Jian-Wei Qiu

2006-10-31T23:59:59.000Z

355

Heavy flavor production from photons and hadrons  

Science Conference Proceedings (OSTI)

The present state of the production and observation of hadrons containing heavy quarks or antiquarks as valence constituents, in reactions initiated by real and (space-like) virtual photon or by hadron beams is discussed. Heavy flavor production in e/sup +/e/sup -/ annihilation, which is well covered in a number of recent review papers is not discussed, and similarly, neutrino production is omitted due to the different (flavor-changing) mechanisms that are involved in those reactions. Heavy flavors from spacelike photons, heavy flavors from real photons, and heavy flavors from hadron-hadron collisions are discussed. (WHK)

Heusch, C.A.

1982-01-01T23:59:59.000Z

356

Governance of the International Linear Collider Project  

SciTech Connect

Governance models for the International Linear Collider Project are examined in the light of experience from similar international projects around the world. Recommendations for one path which could be followed to realize the ILC successfully are outlined. The International Linear Collider (ILC) is a unique endeavour in particle physics; fully international from the outset, it has no 'host laboratory' to provide infrastructure and support. The realization of this project therefore presents unique challenges, in scientific, technical and political arenas. This document outlines the main questions that need to be answered if the ILC is to become a reality. It describes the methodology used to harness the wisdom displayed and lessons learned from current and previous large international projects. From this basis, it suggests both general principles and outlines a specific model to realize the ILC. It recognizes that there is no unique model for such a laboratory and that there are often several solutions to a particular problem. Nevertheless it proposes concrete solutions that the authors believe are currently the best choices in order to stimulate discussion and catalyze proposals as to how to bring the ILC project to fruition. The ILC Laboratory would be set up by international treaty and be governed by a strong Council to whom a Director General and an associated Directorate would report. Council would empower the Director General to give strong management to the project. It would take its decisions in a timely manner, giving appropriate weight to the financial contributions of the member states. The ILC Laboratory would be set up for a fixed term, capable of extension by agreement of all the partners. The construction of the machine would be based on a Work Breakdown Structure and value engineering and would have a common cash fund sufficiently large to allow the management flexibility to optimize the project's construction. Appropriate contingency, clearly apportioned at both a national and global level, is essential if the project is to be realised. Finally, models for running costs and decommissioning at the conclusion of the ILC project are proposed. This document represents an interim report of the bodies and individuals studying these questions inside the structure set up and supervised by the International Committee for Future Accelerators (ICFA). It represents a request for comment to the international community in all relevant disciplines, scientific, technical and most importantly, political. Many areas require further study and some, in particular the site selection process, have not yet progressed sufficiently to be addressed in detail in this document. Discussion raised by this document will be vital in framing the final proposals due to be published in 2012 in the Technical Design Report being prepared by the Global Design Effort of the ILC.

Foster, B.; /Oxford U.; Barish, B.; /Caltech; Delahaye, J.P.; /CERN; Dosselli, U.; /INFN, Padua; Elsen, E.; /DESY; Harrison, M.; /Brookhaven; Mnich, J.; /DESY; Paterson, J.M.; /SLAC; Richard, F.; /Orsay, LAL; Stapnes, S.; /CERN; Suzuki, A.; /KEK, Tsukuba; Wormser, G.; /Orsay, LAL; Yamada, S.; /KEK, Tsukuba

2012-05-31T23:59:59.000Z

357

Black Holes at Future Colliders and Beyond: a Topical Review  

E-Print Network (OSTI)

One of the most dramatic consequences of low-scale (~1 TeV) quantum gravity in models with large or warped extra dimension(s) is copious production of mini black holes at future colliders and in ultra-high-energy cosmic ray collisions. Hawking radiation of these black holes is expected to be constrained mainly to our three-dimensional world and results in rich phenomenology. In this topical review we discuss the current status of astrophysical observations of black holes and selected aspects of mini black hole phenomenology, such as production at colliders and in cosmic rays, black hole decay properties, Hawking radiation as a sensitive probe of the dimensionality of extra space, as well as an exciting possibility of finding new physics in the decays of black holes.

Greg Landsberg

2006-07-26T23:59:59.000Z

358

Design report for an indirectly cooled 3-m diameter superconducting solenoid for the Fermilab Collider Detector Facility  

SciTech Connect

The Fermilab Collider Detector Facility (CDF) is a large detector system designed to study anti pp collisions at very high center of mass energies. The central detector for the CDF shown employs a large axial magnetic field volume instrumented with a central tracking chamber composed of multiple layers of cylindrical drift chambers and a pair of intermediate tracking chambers. The purpose of this system is to determine the trajectories, sign of electric charge, and momenta of charged particles produced with polar angles between 10 and 170 degrees. The magnetic field volume required for tracking is approximately 3.5 m long an 3 m in diameter. To provide the desired ..delta..p/sub T/p/sub T/ less than or equal to 1.5% at 50 GeV/c using drift chambers with approx. 200..mu.. resolution the field inside this volume should be 1.5 T. The field should be as uniform as is practical to simplify both track finding and the reconstruction of particle trajectories with the drift chambers. Such a field can be produced by a cylindrical current sheet solenoid with a uniform current density of 1.2 x 10/sup 6/ A/m (1200 A/mm) surrounded by an iron return yoke. For practical coils and return yokes, both central electromagnetic and central hadronic calorimetry must be located outside the coil of the magnet. This geometry requires that the coil and the cryostat be thin both in physical thickness and in radiation and absorption lengths. This dual requirement of high linear current density and minimal coil thickness can only be satisfied using superconducting technology. In this report we describe the design for an indirectly cooled superconducting solenoid to meet the requirements of the Fermilab CDF. The components of the magnet system are discussed in the following chapters, with a summary of parameters listed in Appendix A.

Fast, R.; Grimson, J.; Kephart, R.

1982-10-01T23:59:59.000Z

359

Interpretation of strange hadron production at LHC  

E-Print Network (OSTI)

We extend the SHM analysis of hadron production results showing here consistency with the increased experimental data set, stability of the fit with regard to inclusion of finite resonance widths and 2-star hyperon resonances. We present new results on strangeness yield as a function of centrality and present their interpretation in terms of QGP inspired model of strangeness abundance in the hadronizing fireball.

Michal Petrá?; Jean Letessier; Vojt?ch Petrá?ek; Johann Rafelski

2013-09-25T23:59:59.000Z

360

A Survey of Hadron Therapy Accelerator Technologies.  

SciTech Connect

Hadron therapy has entered a new age [1]. The number of facilities grows steadily, and 'consumer' interest is high. Some groups are working on new accelerator technology, while others optimize existing designs by reducing capital and operating costs, and improving performance. This paper surveys the current requirements and directions in accelerator technology for hadron therapy.

PEGGS,S.; SATOGATA, T.; FLANZ, J.

2007-06-25T23:59:59.000Z

Note: This page contains sample records for the topic "large hadron collider" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Light Hadron Masses and Decay Constants  

E-Print Network (OSTI)

The extraction of the light hadron spectrum from a first-principle Quantum Chromodynamics approach is a profound application for lattice simulations of Quantum Chromodynamics. This review will cover recent lattice results for the masses and decay constants of the light hadrons. In particular, the applicability of different approaches for the extrapolation towards the physical point will be discussed.

Enno E. Scholz

2009-11-11T23:59:59.000Z

362

Light Hadron Physics at the B Factories  

E-Print Network (OSTI)

We report measurements of hadronic final states produced in $e^+e^-$ annihilations from the BaBar and Belle experiments. In particular, we present cross sections measured in several different processes, including two-photon physics, Initial-State Radiation, and exclusive hadron productions at center-of-mass energies near 10.58 GeV. Results are compared with theoretical predictions.

Selina Z. Li

2008-10-06T23:59:59.000Z

363

Dilepton Spectroscopy of QCD Matter at Collider Energies  

E-Print Network (OSTI)

Low-mass dilepton spectra as measured in high-energy heavy-ion collisions are a unique tool to obtain spectroscopic information about the strongly interacting medium produced in these reactions. Specifically, in-medium modifications of the vector spectral function, which is well known in the vacuum, can be deduced from the thermal radiation off the expanding QCD fireball. This, in particular, allows to investigate the fate of the $\\rho$ resonance in the dense medium, and possibly infer from it signatures of the (partial) restoration of chiral symmetry, which is spontaneously broken in the QCD vacuum. After briefly reviewing calculations of thermal dilepton emission rates from hot QCD matter, utilizing effective hadronic theory, lattice QCD or resummed perturbative QCD, we focus on applications to dilepton spectra at heavy-ion collider experiments at RHIC and LHC. This includes invariant-mass spectra at full RHIC energy with transverse-momentum dependencies and azimuthal asymmetries, as well as a systematic investigation of the excitation function down to fixed-target energies, thus making contact to previous precision measurements at the SPS. Furthermore, predictions for the energy frontier at the LHC are presented in both dielectron and dimuon channels.

Ralf Rapp

2013-04-08T23:59:59.000Z

364

Decoupling schemes for the SSC Collider  

Science Conference Proceedings (OSTI)

A decoupling system is designed for the SSC Collider. This system can accommodate three decoupling schemes by using 44 skew quadrupoles in the different configurations. Several decoupling schemes are studied and compared in this paper.

Cai, Y.; Bourianoff, G.; Cole, B.; Meinke, R.; Peterson, J.; Pilat, F.; Stampke, S.; Syphers, M.; Talman, R.

1993-05-01T23:59:59.000Z

365

Spin Effects in High Energy Hadron Elastic Scattering  

SciTech Connect

The interference of the electromagnetic spin-flip amplitude with a hadronic spin-nonflip amplitude in elastic scattering leads to significant spin dependencies at very low momentum transfer t. Recent results on AN and ANN in polarized proton-proton elastic scattering at very low t using a polarized atomic hydrogen gas jet target and the 100 GeV/c polarized proton beam are at RHIC are presented. Our AN pp data are well described with the electromagnetic spin-flip alone and do not support the presence of a large hadronic spin-flip amplitude. The double spin asymmetry ANN is found to be consistent with zero over the whole measured t range, indicating that double spin-flip amplitudes do not play a role in this kinematical region.

Bravar, Alessandro [Brookhaven National Laboratory, Upton, NY 11973 (United States)

2006-11-17T23:59:59.000Z

366

Photon Linear Collider Gamma-Gamma Summary  

SciTech Connect

High energy photon - photon collisions can be achieved by adding high average power short-pulse lasers to the Linear Collider, enabling an expanded physics program for the facility. The technology required to realize a photon linear collider continues to mature. Compton back-scattering technology is being developed around the world for low energy light source applications and high average power lasers are being developed for Inertial Confinement Fusion.

Gronberg, J

2012-02-27T23:59:59.000Z

367

Observation of New Charmless Decays of Bottom Hadrons  

SciTech Connect

The authors search for new charmless decays of neutral b-hadrons to pairs of charged hadrons with the upgraded Collider Detector at the Fermilab Tevatron. Using a data sample corresponding to 1 fb{sup -1} of integrated luminosity, they report the first observation of the B{sub s}{sup 0} {yields} K{sup +}{pi}{sup +} decay, with a significance of 8.2{sigma}, and measure {Beta}(B{sub s}{sup 0} {yields} K{sup -}{pi}{sup +}) = (5.0 {+-} 0.7 (stat.) {+-} 0.8 (syst.)) x 10{sup -6}. They also report the first observation of charmless b-baryon decays in the channels {Lambda}{sub b}{sup 0} {yields} p{pi}{sup -} and {Lambda}{sub b}{sup 0} {yields} pK{sup -} with significances of 6.0{sigma} and 11.5{sigma} respectively, and they measure {Beta}({Lambda}{sub b}{sup 0} {yields} p{pi}{sup -}) = (3.5 {+-} 0.6 (stat.) {+-} 0.9 (syst.)) x 10{sup -6} and {Beta}({Lambda}{sub b}{sup 0} {yields} pK{sup -}) = (5.6 {+-} 0.8 (stat.) {+-} 1.5 (syst.)) x 10{sup -6}. No evidence is found for the decays B{sup 0} {yields} K{sup +}K{sup -} and B{sub s}{sup 0} {yields} {pi}{sup +}{pi}{sup -}, and they set an improved upper limit {Beta}(B{sub s}{sup 0} {yields} {pi}{sup +}{pi}{sup -}) < 1.2 x 10{sup -6} at the 90% confidence level. All quoted branching fractions are measured using {Beta}(B{sup 0} {yields} K{sup +}{pi}{sup -}) as a reference.

Morello, Michael J.; /Fermilab

2010-02-01T23:59:59.000Z

368

Hadronic Screening in Improved Taste  

E-Print Network (OSTI)

We present our results on meson and nucleon screening masses in finite temperature two flavour QCD using smeared staggered valence quarks and staggered thin-link sea quarks with different lattice spacings and quark masses. We investigate optimization of smearing by observing its effects on the infrared (IR) and ultraviolet (UV) components of gluon and quark fields. The application of smearing to screening at finite temperature also provides a transparent window into the mechanism of the interplay of smearing and chiral symmetry. The improved hadronic operators show that above the finite temperature cross over, T_c, screening masses are consistent with weak-coupling predictions. There is also evidence for a rapid opening up of a spectral gap of the Dirac operator immediately above T_c.

Sourendu Gupta; Nikhil Karthik

2013-02-20T23:59:59.000Z

369

Muon Collider Collaboration Meeting Program  

NLE Websites -- All DOE Office Websites (Extended Search)

schemes 9. Beam halo and scraping 10. Beam instabilities 11. Large aperture magnets 12. Resonant power supplies 6. Lattice C. Johnstone, FNAL; A. Garren, LBL *** 1....

370

Higgs Boson Search at e + e ? and Photon Linear Colliders ?  

E-Print Network (OSTI)

The various search modes for the Higgs bosons of the Standard Model (SM) and its Minimal Supersymmetric Extension (MSSM) at the International Linear Collider (ILC) will be summarized briefly. In particular, as a unique discovery mode the production of heavy neutral MSSM Higgs bosons for medium values of tan? in photon collisions will be presented. Furthermore, ? + ? ? fusion into MSSM Higgs bosons in the photon mode will be shown to give access to the mixing parameter tan ? with a precision of better than 10 % for large values of this parameter. PACS numbers: 12.15.-y, 12.60.-i 1.

M. M. Mühlleitner

2005-01-01T23:59:59.000Z

371

Nuclear medium effects from hadronic atoms  

E-Print Network (OSTI)

The state of the art in the study of pionic, kaonic and Sigmionic atoms, along with the in-medium nuclear interactions deduced for these hadrons, is reviewed. A special emphasis is placed on recent developments in antikaon-nuclear physics, where a strongly attractive density dependent antikaon-nuclear potential of order 150-200 MeV in nuclear matter emerges by fitting K^- atom data. This has interesting repercussions on antikaon quasibound nuclear states, on the composition of strange hadronic matter and on kaon condensation in self bound hadronic systems.

Friedman, E

2011-01-01T23:59:59.000Z

372

Fully hadronic ttbar cross section measurement with ATLAS detector  

E-Print Network (OSTI)

The top quark pair production cross section in the fully hadronic final state is characterized by a six jet topology, two of which could be identified as originating from a b-quark using ATLAS b-tagging algorithms. Compared to other decay channels, this final state presents an advantageous larger branching ratio; on the other hand it suffers from a very large QCD multi-jet background, generally difficult to estimate from Monte Carlo simulation and therefore evaluated using data-driven techniques. The analysis is performed using 36pb-1 of pp collisions produced at the LHC with a center-of-mass energy of 7 TeV. The observed upper limit is set at 261 pb at 95% confidence level, where the expected Standard Model cross-section for the ttbar process is 165+11-16 pb. In the future, when the LHC luminosity increases, it is essential, to efficiently trigger on these fully hadronic ttbar events, to use dedicated triggers. An overview of the analysis for ttbar production cross section measurement in the fully hadronic final state and the state-of-the-art of the b-jet trigger performance estimation are presented in this contribution.

Claudia Bertella

2011-11-16T23:59:59.000Z

373

Studies of Hadronization Mechanisms using Pion Electroproduction in Deep Inelas tic Scattering from Nuclei  

SciTech Connect

Atomic nuclei can be used as spatial analyzers of the hadronization process in semi-inclusive deep inelastic scattering. The study of this process using fully-identified final state hadrons began with the HERMES program in the late 1990s, and is now continuing at Jefferson Lab. In the measurement described here, electrons and positive pions were measured from a 5 GeV electron beam incident on targets of liquid deuterium, C, Fe, and Pb using CLAS in Hall B. The broadening of the transverse momentum of positive pions has been studied in detail as a function of multiple kinematic variables, and interpreted in terms of the transport of the struck quark through the nuclear systems. New insights are being obtained into the hadronization process from these studies; and experiments of this type can be relevant for the interpretation of jet quenching and proton-nucleus collisions at RHIC and LHC. These measurements will be extended in the next few years with the approved Jlab experiment E12-06-117, and later at a future Electron-Ion Collider.

Will Brooks, Hayk Hakobyan, Cristian Peña, Miguel Arratia, Constanza Valdés

2012-04-01T23:59:59.000Z

374

Assessing Risk in Costing High-energy Accelerators: from Existing Projects to the Future Linear Collider  

E-Print Network (OSTI)

High-energy accelerators are large projects funded by public money, developed over the years and constructed via major industrial contracts both in advanced technology and in more conventional domains such as civil engineering and infrastructure, for which they often constitute one-of markets. Assessing their cost, as well as the risk and uncertainty associated with this assessment is therefore an essential part of project preparation and a justified requirement by the funding agencies. Stemming from the experience with large circular colliders at CERN, LEP and LHC, as well as with the Main Injector, the Tevatron Collider Experiments and Accelerator Upgrades, and the NOvA Experiment at Fermilab, we discuss sources of cost variance and derive cost risk assessment methods applicable to the future linear collider, through its two technical approaches for ILC and CLIC. We also address disparities in cost risk assessment imposed by regional differences in regulations, procedures and practices.

Lebrun, Philippe

2010-01-01T23:59:59.000Z

375

Track segments in hadronic showers in a highly granular scintillator-steel hadron calorimeter  

E-Print Network (OSTI)

We investigate the three dimensional substructure of hadronic showers in the CALICE scintillator-steel hadronic calorimeter. The high granularity of the detector is used to find track segments of minimum ionising particles within hadronic showers, providing sensitivity to the spatial structure and the details of secondary particle production in hadronic cascades. The multiplicity, length and angular distribution of identified track segments are compared to GEANT4 simulations with several different shower models. Track segments also provide the possibility for in-situ calibration of highly granular calorimeters.

CALICE Collaboration; C. Adloff; J. -J. Blaising; M. Chefdeville; C. Drancourt; R. Gaglione; N. Geffroy; Y. Karyotakis; I. Koletsou; J. Prast; G. Vouters; K. Francis; J. Repond; J. Schlereth; J. Smith; L. Xia; E. Baldolemar; J. Li; S. T. Park; M. Sosebee; A. P. White; J. Yu; G. Eigen; Y. Mikami; N. K. Watson; G. Mavromanolakis; M. A. Thomson; D. R. Ward; W. Yan; D. Benchekroun; A. Hoummada; Y. Khoulaki; J. Apostolakis; D. Dannheim; A. Dotti; G. Folger; V. Ivantchenko; W. Klempt; E. van der Kraaij; A. -I. Lucaci-Timoce; A. Ribon; D. Schlatter; V. Uzhinskiy; C. Carloganu; P. Gay; S. Manen; L. Royer; M. Tytgat; N. Zaganidis; G. C. Blazey; A. Dyshkant; J. G. R. Lima; V. Zutshi; J. -Y. Hostachy; L. Morin; U. Cornett; D. David; G. Falley; K. Gadow; P. Göttlicher; C. Günter; O. Hartbrich; B. Hermberg; S. Karstensen; F. Krivan; K. Krüger; S. Lu; S. Morozov; V. Morgunov; M. Reinecke; F. Sefkow; P. Smirnov; M. Terwort; N. Feege; E. Garutti; S. Laurien; I. Marchesini; M. Matysek; M. Ramilli; K. Briggl; P. Eckert; T. Harion; H. -Ch. Schultz-Coulon; W. Shen; R. Stamen; B. Bilki; E. Norbeck; Y. Onel; G. W. Wilson; K. Kawagoe; Y. Sudo; T. Yoshioka; P. D. Dauncey; A. -M. Magnan; V. Bartsch; M. Wing; F. Salvatore; E. Cortina Gil; S. Mannai; G. Baulieu; P. Calabria; L. Caponetto; C. Combaret; R. Della Negra; G. Grenier; R. Han; J-C. Ianigro; R. Kieffer; I. Laktineh; N. Lumb; H. Mathez; L. Mirabito; A. Petrukhin; A. Steen; W. Tromeur; M. Vander Donckt; Y. Zoccarato; E. Calvo Alamillo; M. -C. Fouz; J. Puerta-Pelayo; F. Corriveau; B. Bobchenko; M. Chadeeva; M. Danilov; A. Epifantsev; O. Markin; R. Mizuk; E. Novikov; V. Popov; V. Rusinov; E. Tarkovsky; N. Kirikova; V. Kozlov; P. Smirnov; Y. Soloviev; P. Buzhan; A. Ilyin; V. Kantserov; V. Kaplin; A. Karakash; E. Popova; V. Tikhomirov; C. Kiesling; K. Seidel; F. Simon; C. Soldner; M. Szalay; M. Tesar; L. Weuste; M. S. Amjad; J. Bonis; S. Callier; S. Conforti di Lorenzo; P. Cornebise; Ph. Doublet; F. Dulucq; J. Fleury; T. Frisson; N. van der Kolk; H. Li; G. Martin-Chassard; F. Richard; Ch. de la Taille; R. Pöschl; L. Raux; J. Rouene; N. Seguin-Moreau; M. Anduze; V. Balagura; V. Boudry; J-C. Brient; R. Cornat; M. Frotin; F. Gastaldi; E. Guliyev; Y. Haddad; F. Magniette; G. Musat; M. Ruan; T. H. Tran; H. Videau; B. Bulanek; J. Zacek; J. Cvach; P. Gallus; M. Havranek; M. Janata; J. Kvasnicka; D. Lednicky; M. Marcisovsky; I. Polak; J. Popule; L. Tomasek; M. Tomasek; P. Ruzicka; P. Sicho; J. Smolik; V. Vrba; J. Zalesak; B. Belhorma; H. Ghazlane; K. Kotera; T. Takeshita; S. Uozumi; D. Jeans; M. Götze; J. Sauer; S. Weber; C. Zeitnitz

2013-05-30T23:59:59.000Z

376

Hadron Production in Heavy Ion Collisions  

E-Print Network (OSTI)

We review hadron production in heavy ion collisions with emphasis on pion and kaon production at energies below 2 AGeV and on partonic collectivity at RHIC energies.

Helmut Oeschler; Hans Georg Ritter; Nu Xu

2009-08-12T23:59:59.000Z

377

Direct photon-charged hadron azimuthal correlations  

E-Print Network (OSTI)

Azimuthal correlations of direct photons at high transverse energy (8 $<$ E$_T$ $<$ 16 GeV) with away-side hadrons of transverse momentum (3 $<$ p$_T$ $<$ 6 GeV/c) have been measured over a broad range of centrality for $Au+Au$ collisions and $p+p$ collisions at $\\sqrt{s_{NN}}$ = 200 GeV. The presented results are the first measurements at RHIC for $\\gamma$-hadron azimuthal correlations in $Au+Au$ collisions.

Ahmed M. Hamed

2008-06-13T23:59:59.000Z

378

Effective hadron theories from a quark model  

SciTech Connect

In the context of the quark exchange model of Lenz et al., effective hadron theories are constructed and the resulting physical observables compared to their ''experimental'' values as defined by the calculations using the exact quark model operators. This model study illustrates convergence issues for an effective hadron basis in a quark model in which all physical observables can be computed exactly.

Gardner, S.; Moniz, E.J.

1987-12-01T23:59:59.000Z

379

Summary of the Hadronic Weak Interaction session  

Science Conference Proceedings (OSTI)

We summarize and discuss present and future experiments on decays of light mesons and muons that were presented in the Hadronic Weak Interaction working group session of the ``Workshop on Future Directions in Particle and Nuclear Physics at Multi-GeV Hadron Facilities.`` Precise measurements and rare-decay searches, which sense mass scales in the 1--1000 TeV region, are discussed in the context of the standard model and beyond.

Bock, G. [Fermi National Accelerator Lab., Batavia, IL (United States); Bryman, D.A.; Numao, T. [British Columbia Univ., Vancouver, BC (Canada). TRIUMF Facility

1993-07-01T23:59:59.000Z

380

Linear Collider Collaboration Tech Notes LCC-0100  

NLE Websites -- All DOE Office Websites (Extended Search)

100 100 August 2002 Systematic Ground Motion and Macroalignment for Linear Colliders Rainer Pitthan Stanford Linear Accelerator Center Stanford University Stanford, CA 94309, USA Abstract: Future colliders with their µm-range operational tolerances still need to be classically aligned to the 50 - 100 µm range, and kept there, over the km range. This requirement will not be a show-stopper, but not be trivial either. 50 µm movements over a betatron wavelength is a the range where systematic long term motions can prevent efficient operation. Systematic Ground Motion and Macro-Alignment for Linear Colliders Complete talk at: http://www-project.slac.stanford.edu/lc/wkshp/snowmass2001/t6/info/pitthan july

Note: This page contains sample records for the topic "large hadron collider" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Fermilab | Muon Collider | Reports and Papers  

NLE Websites -- All DOE Office Websites (Extended Search)

Reports and Papers Reports and Papers Comprehensive Reports J. Gallardo, R. Palmer, A. Tollestrup, A. Sessler, A. Skrinsky et al., "μ+ μ- Collider: A Feasibility Study," DPF/DPB Summer Study on New Directions for High Energy Physics, Snow- mass, Colorado, 25 Jun - 12 Jul 1996, BNL - 52503, Fermilab - Conf - 96 - 092, LBNL - 38946, http://www.cap.bnl.gov/mumu/pubs/snowmass96.html C. Ankenbrandt et al.,"Status of muon collider research and development and future plans," Phys. Rev. ST Accel. Beams 2 (1999) 081001, http://prst-ab.aps.org/abstract/PRSTAB/v2/i8/e081001 M. M. Alsharo'a et al., "Recent progress in neutrino factory and muon collider research within the Muon Collaboration," Phys. Rev. ST Accel. Beams 6 (2003) 081001, http://prst-ab.aps.org/abstract/PRSTAB/v6/i8/e081001

382

Microsoft Word - WFnote-238_Summary of short pulse collider.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

electron-positron linear collider from the International Linear Collider (ILC) and Compact Linear Collider (CLIC) teams have been well established. Both proposed machines work...

383

Electromagnetic form factors of hadrons  

SciTech Connect

A vector meson dominance model of the electromagnetic form factors of hadrons is developed which is based on the use of unstable particle propagators. Least-square fits are made to the proton, neutron, pion and kaon form factor data in both the space and time-like regions. A good fit to the low-energy nucleon form factor data is obtained using only rho, $omega$, and phi dominance, and leads to a determination of the vector meson resonance parameters in good agreement with experiment. The nucleon-vector meson coupling constants obey simple sum rules indicating that there exists no hard core contribution to the form factors within theoretical uncertainties. The prediction for the electromagnetic radii of the proton is in reasonable agreement with recent experiments. The pion and kaon charge form factors as deduced from the nucleon form factors assuming vector meson universality are compared to the data. The pion form factor agrees with the data in both the space and time-like regions. The pion charge radius is in agreement with the recent Dubna result, but the isovector P-wave pion-pion phase shift calculated from the theory disagrees with experiment. A possible contribution to the form factors from a heavy rho meson is also evaluated. (auth)

Zidell, V.S.

1976-01-01T23:59:59.000Z

384

Direct photon-charged hadron coincidence measurements in STAR  

E-Print Network (OSTI)

The multiplicities of charged particle with transverse momentum (3 $direct photons and $\\pi^{0}$ of high transverse momentum (8 $direct $\\gamma$ are extracted. An agreement is observed between the measured suppression for direct $\\gamma$-trigger associated-particle yields in $Au+Au$ compared to that in $p+p$ and theoretical calculations, although the uncertainties are large. Within the current uncertainties, the suppression is similar to the previously observed suppression in single-particle yields as well as in hadron-triggered associated-particle yields.

Ahmed M. Hamed

2009-05-26T23:59:59.000Z

385

Top-quark asymmetry and the search for a light hadronic resonance in association with a single top quark  

Science Conference Proceedings (OSTI)

The exchange of a light t-channel flavor-changing gauge boson, V', with mass {approx}m{sub top} remains a leading explanation for the anomalous forward-backward asymmetry in top-quark production at the Tevatron. Unlike other ideas, including heavier t-channel mediators, the light V' model is not easily seen in the m{sub tt} distribution. We advocate a more promising strategy. While current analyses at hadron colliders may not be sensitive, we propose searching for a jj resonance in association with single top that may allow discovery in existing data. Deviations in the lepton charge asymmetry in this sample should also be present.

Jung, Sunghoon; Pierce, Aaron [Michigan Center for Theoretical Physics, Department of Physics, University of Michigan, Ann Arbor, Michigan 48109 (United States); Wells, James D. [Michigan Center for Theoretical Physics, Department of Physics, University of Michigan, Ann Arbor, Michigan 48109 (United States); CERN Theoretical Physics (PH-TH), CH-1211 Geneva 23 (Switzerland)

2011-11-01T23:59:59.000Z

386

PHYSICS WITH AND PHYSICS OF COLLIDING ELECTRON BEAMS  

E-Print Network (OSTI)

contributed so much to the physics of colliding beams, theyto reap so little from the physics with colliding beams.Conference on High-Energy Physics, Vienna" September 1968 (

Pellegrini, Claudio

2008-01-01T23:59:59.000Z

387

Tune spectra in the Tevatron Collider  

SciTech Connect

A variety of transverse and longitudinal tune studies have been made in the Tevatron with both single and colliding beams. Besides measuring such typical quantities as tunes and chromaticity, beam- beam tune shifts and coherent beam-beam normal mode oscillations have been observed. A number of measurements are reported where the beam response to stimulation is studied. 13 refs., 9 figs.

Jackson, G.

1989-03-01T23:59:59.000Z

388

QCD parton model at collider energies  

Science Conference Proceedings (OSTI)

Using the example of vector boson production, the application of the QCD improved parton model at collider energies is reviewed. The reliability of the extrapolation to SSC energies is assessed. Predictions at ..sqrt..S = 0.54 TeV are compared with data. 21 references.

Ellis, R.K.

1984-09-01T23:59:59.000Z

389

A Moment Equation Approach to a Muon Collider Cooling Lattice  

E-Print Network (OSTI)

a Muon Collider Cooling Lattice C.M. Celata, A.M. Sessler,a Muon Collider Cooling Lattice C.M. Celata and A.M. SesslerMUON COLLIDER COOLING LATTICE eM. Celata and A. M. Sessler,

Celata, C.M.; Sessler, A.M.; Lee, P.B.; Shadwick, B.A.; Wurtele, S.

2008-01-01T23:59:59.000Z

390

Higgs boson and Z physics at the first muon collider  

SciTech Connect

The potential for the Higgs boson and Z-pole physics at the first muon collider is summarized, based on the discussions at the ``Workshop on the Physics at the First Muon Collider and at the Front End of a Muon Collider``.

Demarteau, M.; Han, T.

1998-01-01T23:59:59.000Z

391

Search for solar hadronic axions produced by a bremsstrahlung-like process  

E-Print Network (OSTI)

We have searched for hadronic axions which may be produced in the Sun by a bremsstrahlung-like process, and observed in the HPGe detector by an axioelectric effect. A conservative upper limit on the hadronic axion mass m_a < 334 eV at 95% C.L. is obtained. Our experimental approach is based on the axion-electron coupling and it does not include the axion-nucleon coupling, which suffers from the large uncertainties related to the estimation of the flavor-singlet axial-vector matrix element.

D. Kekez; A. Ljubicic; Z. Krecak; M. Krcmar

2008-07-22T23:59:59.000Z

392

Open-Midplane Dipoles for a Muon Collider  

SciTech Connect

For a muon collider with copious decay particles in the plane of the storage ring, open-midplane dipoles (OMD) may be preferable to tungsten-shielded cosine-theta dipoles of large aperture. The OMD should have its midplane completely free of material, so as to dodge the radiation from decaying muons. Analysis funded by a Phase I SBIR suggests that a field of 10-20 T should be feasible, with homogeneity of 1 x 10{sup -4} and energy deposition low enough for conduction cooling to 4.2 K helium. If funded, a Phase II SBIR would refine the analysis and build and test a proof-of-principle magnet. A Phase I SBIR has advanced the feasibility of open-midplane dipoles for the storage ring of a muon collider. A proposed Phase II SBIR would refine these predictions of stresses, deformations, field quality and energy deposition. Design optimizations would continue, leading to the fabrication and test, for the first time, of a proof-of-principle dipole of truly open-midplane design.

Weggel, R.; Gupta, R.; Kolonko, J., Scanlan, R., Cline, D., Ding, X., Anerella, M., Kirk, H., Palmer, B., Schmalzle, J.

2011-03-28T23:59:59.000Z

393

Density-Dependent Relations among Properties of Hadronic Matter and Applications to Hadron-Quark Stars  

SciTech Connect

Density-dependent relations among the saturation properties of symmetric nuclear matter and hyperonic matter, and properties of hadron-(strange) quark stars are shown by applying the conserving nonlinear {sigma}-{omega}-{rho} hadronic mean-field theory. Nonlinear interactions are renormalized self-consistently as effective coupling constants, effective masses, and sources of equations of motion by maintaining thermodynamic consistency to the mean-field approximation. Effective masses and coupling constants at the saturation point of symmetric nuclear matter simultaneously determine the binding energy and saturation properties of hyperonic matter. The coupling constants expected from the hadronic mean-field model and SU(6) quark model for the vector coupling constants are compared by calculating masses of hadron-quark neutron stars. The nonlinear {sigma}-{omega}-{rho} mean-field approximation with vacuum fluctuation corrections and strange quark matter defined by the MIT-bag model were employed to examine properties of hadron-(strange) quark stars. We found that hadron-(strange) quark stars become more stable at high densities compared to pure hadronic and strange quark stars.

Uechi, Hiroshi [Department of Distributions and Communication Sciences, Osaka Gakuin University, Osaka (Japan); Uechi, Schun T. [Research Center for Nuclear Physics (RCNP), Osaka University, Osaka (Japan)

2011-05-06T23:59:59.000Z

394

DCal: A custom integrated circuit for calorimetry at the International Linear Collider  

SciTech Connect

A research and development collaboration has been started with the goal of producing a prototype hadron calorimeter section for the purpose of proving the Particle Flow Algorithm concept for the International Linear Collider. Given the unique requirements of a Particle Flow Algorithm calorimeter, custom readout electronics must be developed to service these detectors. This paper introduces the DCal or Digital Calorimetry Chip, a custom integrated circuit developed in a 0.25um CMOS process specifically for this International Linear Collider project. The DCal is capable of handling 64 channels, producing a 1-bit Digital-to-Analog conversion of the input (i.e. hit/no hit). It maintains a 24-bit timestamp and is capable of operating either in an externally triggered mode or in a self-triggered mode. Moreover, it is capable of operating either with or without a pipeline delay. Finally, in order to permit the testing of different calorimeter technologies, its analog front end is capable of servicing Particle Flow Algorithm calorimeters made from either Resistive Plate Chambers or Gaseous Electron Multipliers.

Hoff, James R.; Mekkaoui, Abderrazek; Yarema, Ray; /Fermilab; Drake, Gary; Repond, Jose; /Argonne

2005-10-01T23:59:59.000Z

395

Production of jets at forward rapidities in hadronic collisions  

E-Print Network (OSTI)

We discuss high-pT production processes at forward rapidities in hadron-hadron collisions, and describe recent results from using QCD high-energy factorization in forward jet production at the LHC.

F. Hautmann

2009-09-07T23:59:59.000Z

396

Nonlinear Energy Collimation System for Linear Colliders  

E-Print Network (OSTI)

The post-linac energy collimation system of multi-TeV linear colliders is designed to fulfil an important function of protection of the Beam Delivery System (BDS) against miss-steered beams likely generated by failure modes in the main linac. For the case of the Compact Linear Collider (CLIC), the energy collimators are required to withstand the impact of a full bunch train in case of failure. This is a very challenging task, assuming the nominal CLIC beam parameters at 1.5 TeV beam energy. The increase of the transverse spot size at the collimators using nonlinear magnets is a potential solution to guarantee the survival of the collimators. In this paper we present an alternative nonlinear optics based on a skew sextupole pair for energy collimation. Performance simulation results are also presented.

Resta-Lopez, Javier

2011-01-01T23:59:59.000Z

397

Jets and the hadronic final state at HERA  

E-Print Network (OSTI)

Recent results on jets and the hadronic final state from the HERA collaborations H1 and ZEUS are reviewed.

T. Schoerner-Sadenius

2004-10-07T23:59:59.000Z

398

Microsoft Word - ESnet SRS SC12 paper camera ready.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

instruments and high performance computing centers. Large-scale instruments like Large Hadron Collider or Square Kilometer Array 1 and simulations produce petabytes of data that...

399

Electron Ion Collider: The Next QCD Frontier  

NLE Websites -- All DOE Office Websites (Extended Search)

Ion Collider: Ion Collider: The Next QCD Frontier Understanding the glue that binds us all Electron Ion Collider: The Next QCD Frontier Understanding the glue that binds us all BNL-98815-2012-JA JLAB-PHY-12-1652 arXiv:1212.1701 Authors A. Accardi 14,28 , J. L. Albacete 16 , M. Anselmino 29 , N. Armesto 36 , E. C. Aschenauer 3,† , A. Bacchetta 35 , D. Boer 33 , W. Brooks 37,† , T. Burton 3 , N.-B. Chang 23 , W.-T. Deng 13,23 , A. Deshpande 25,∗,† , M. Diehl 11,† , A. Dumitru 2 , R. Dupr´ e 7 , R. Ent 28,‡ , S. Fazio 3 , H. Gao 12,† , V. Guzey 28 , H. Hakobyan 37 , Y. Hao 3 , D. Hasch 15 , R. Holt 1,† , T. Horn 5,† , M. Huang 23 , A. Hutton 28,† , C. Hyde 20 , J. Jalilian-Marian 2 , S. Klein 17 , B. Kopeliovich 37 , Y. Kovchegov 19,† , K. Kumar 24,† , K. Kumeriˇ cki 40 , M. A. C. Lamont 3 , T. Lappi 34 , J.-H. Lee 3 , Y. Lee 3 , E. M. Levin 26,37 , F.-L. Lin 28 , V. Litvinenko 3 , T. W. Ludlam 3,‡ , C. Marquet

400

A method for the separation and reconstructions of charged hadron and neutral hadron from their overlapped showers in electromagnetic calorimeter  

E-Print Network (OSTI)

The separation and reconstructions of charged hadron and neutral hadron from their overlapped showers in electromagnetic calorimeter is very important for the reconstructions of some particles with hadronic decays, for example the tau reconstruction in the searches for the Standard Model and supersymmetric Higgs bosons at the LHC. In this paper, a method combining the shower cluster in electromagnetic calorimeter and the parametric formula for hadron showers, was developed to separate the overlapped showers between charged hadron and neutral hadron. Taking the hadronic decay containing one charged pion and one neutral pion in the final status of tau for example, satisfied results of the separation of the overlapped showers, the reconstructions of the energy and positions of the hadrons were obtained. An improved result for the tau reconstruction with this decay model can be also achieved after the application of the proposed method.

Liang Song; Tao Jun-Quan; Shen Yu-Qiao; Fan Jia-Wei; Xiao Hong; Chen Guo-Ming

2013-05-09T23:59:59.000Z

Note: This page contains sample records for the topic "large hadron collider" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Chiral thermodynamics of dense hadronic matter  

Science Conference Proceedings (OSTI)

We discuss phases of hot and dense hadronic matter using chiral Lagrangians. A two-flavored parity doublet model constrained by the nuclear matter ground state predicts chiral symmetry restoration. The model thermodynamics is shown within the mean-field approximation. A field-theoretical constraint on possible phases from the anomaly matching is also discussed.

Sasaki, C., E-mail: sasaki@fias.uni-frankfurt.de [Frankfurt Institute for Advanced Studies (Germany)

2012-05-15T23:59:59.000Z

402

Emergence String and Mass Formulas of Hadrons  

E-Print Network (OSTI)

Assume that hadrons are formed from the emergence string. Usual string should possess two moving states: oscillation and rotation, so we propose corresponding potential and the equation of the emergence string, whose energy spectrum is namely the GMO mass formula and its modified accurate mass formula. These are some relations between the string and observable experimental data.

Yi-Fang Chang

2011-07-19T23:59:59.000Z

403

Hadron thermodynamics, concavity and negative heat capacities  

E-Print Network (OSTI)

Problems associated with the nonextensivity of a hadron gas were discussed some time ago. Recently the topic has come to light again and here earlier results are re-examined in the light of new knowledge and attention is drawn to problems with the more modern work.

J. Dunning-Davies

2004-06-09T23:59:59.000Z

404

Reliability and Maintainability Issues for the Next Linear Collider  

Science Conference Proceedings (OSTI)

Large accelerators for high energy physics research traditionally have been designed using informal best design, engineering, and management practices to achieve acceptable levels of operational availability. However, the Next Linear Collider(NLC) project presents a particular challenge for operational availability due to the unprecedented size and complexity of the accelerator systems required to achieve the physics goals of high center-of-mass energy and high luminosity. Formal reliability and maintainability analysis, design, and implementation will be required to achieve acceptable operational availability for the high energy physics research program. This paper introduces some of the basic concepts of reliability analysis and applies them to the 2.6-cm microwave power system of the two 10-km-long, 250-GeV linacs that are currently proposed for the NLC design.

Wilson, Zane J.; Gold, Saul L.; Koontz, Ron F.; Lavine, Ted L.; /SLAC

2011-08-26T23:59:59.000Z

405

Search for quirks at the Fermilab Tevatron Collider  

Science Conference Proceedings (OSTI)

We report results of a search for particles with anomalously high ionization in events with a high transverse energy jet and large missing transverse energy in 2.4 fb{sup -1} of integrated luminosity collected by the D0 experiment at the Fermilab Tevatron p{bar p} collider. Production of such particles (quirks) is expected in scenarios with extra QCD-like SU(N) sectors, and this study is the first dedicated search for such signatures. We find no evidence of a signal and set a lower mass limit of 107 GeV for the mass of a charged quirk with strong dynamics scale {Lambda} in the range from 10 keV to 1 MeV.

Abazov, V.M.; /Dubna, JINR; Abbott, B.; /Oklahoma U.; Abolins, M.; /Michigan State U.; Acharya, B.S.; /Tata Inst.; Adams, M.; /Illinois U., Chicago; Adams, T.; /Florida State U.; Alexeev, G.D.; /Dubna, JINR; Alkhazov, G.; /St. Petersburg, INP; Alton, A.; /Augustana Coll., Sioux Falls /Michigan U.; Alverson, G.; /Northeastern U.; Alves, G.A.; /Rio de Janeiro, CBPF /NIKHEF, Amsterdam

2010-08-01T23:59:59.000Z

406

Novel High Transverse Momentum Phenomena in Hadronic and Nuclear Collisions  

SciTech Connect

I discuss a number of novel phenomenological features of QCD in high transverse momentum reactions. The presence of direct higher-twist processes, where a proton is produced directly in the hard subprocess, can explain the 'baryon anomaly' - the large proton-to-pion ratio seen at RHIC in high centrality heavy ion collisions. Direct hadronic processes can also account for the deviation from leading-twist PQCD scaling at fixed x{sub T} = 2 p{sub T}/{radical}s. I suggest that the 'ridge' --the same-side long-range rapidity correlation observed at RHIC in high centrality heavy ion collisions is due to the imprint of semihard DGLAP gluon radiation from initial-state partons which have transverse momenta biased toward the trigger. A model for early thermalization of the quark-gluon medium is also outlined. Rescattering interactions from gluon-exchange, normally neglected in the parton model, have a profound effect in QCD hard-scattering reactions, leading to leading-twist single-spin asymmetries, diffractive deep inelastic scattering, diffractive hard hadronic reactions, the breakdown of the Lam-Tung relation in Drell-Yan reactions, nuclear shadowing--all leading-twist dynamics not incorporated in the light-front wavefunctions of the target computed in isolation. Anti shadowing is shown to be quark flavor specific and thus different in charged and neutral deep inelastic lepton-nucleus scattering. I also discuss other aspects of quantum effects in heavy ion collisions, such as tests of hidden color in nuclear wavefunctions, the use of diffraction to materialize the Fock states of a hadronic projectile and test QCD color transparency, and the important consequences of color-octet intrinsic heavy quark distributions in the proton for particle and Higgs production at high x{sub F}. I also discuss how the AdS/CFT correspondence between Anti-de Sitter space and conformal gauge theories allows one to compute the analytic form of frame-independent light-front wavefunctions of mesons and baryons and to compute quark and gluon hadronization at the amplitude level. Finally, the BLM method for determining the renormalization scale in PQCD calculations is reviewed.

Brodsky, Stanley J.; /SLAC

2009-04-10T23:59:59.000Z

407

Hadron spectroscopy in diffractive and central production processes at COMPASS  

SciTech Connect

COMPASS is a fixed-target experiment using secondary high-energetic hadron beams provided by the CERN SPS. In 2008 and 2009, a large amount of data has been collected with a 190 GeV/c pion beam for the investigation of the hadron spectrum in diffractive and central production processes. A big variety of observed final states, including {pi}{sup -}{pi}{sup +}{pi}{sup -}, {pi}{sup -}{pi}{sup 0}{pi}{sup 0}, {pi}{sup -}{eta}{eta}, {pi}{sup -}K{sub s}K{sub s}, {pi}{sup -}K{sup +}K{sup -}, K{sup -}{pi}{sup +}{pi}{sup -}, and centrally produced 4{pi}, is being analysed. The potential for systematic spectroscopic studies especially concerning the existence and nature of spin-exotic, hybrid and glueball states is discussed. In addition, we show the first results from the data set collected with a proton beam in 2008. These data indicate the chance of COMPASS to contribute to the field of baryon spectroscopy.

Jasinski, Prometeusz Kryspin [Institut fuer Kernphysik, 55128 - Mainz University (Germany)

2011-07-15T23:59:59.000Z

408

Hadron Structure from Lattice QCD  

NLE Websites -- All DOE Office Websites (Extended Search)

Lattice QCD in Nuclear Physics Lattice QCD in Nuclear Physics Robert Edwards Jefferson Lab NERSC 2011 Report: Robert Edwards, Martin Savage & Chip Watson Current HPC Methods * Algorithms - Gauge generation - Analysis phase * Codes - USQCD SciDAC codes - Heavily used at NERSC: QDP++ & Chroma * Quantities that affect the scale of the simulations - Lattice size, lattice spacing & pion mass Gauge generation Hybrid Monte Carlo (HMC) * Hamiltonian integrator: 1 st order coupled PDE's * Large, sparse, matrix solve per step * "Configurations" via importance sampling * Use Metropolis method * Produce ~1000 useful configurations in a dataset Cost: * Controlled by lattice size & spacing, quark mass * Requires capability resources

409

LEIC - A Polarized Low Energy Electron-ion Collider at Jefferson Lab  

Science Conference Proceedings (OSTI)

A polarized electron-ion collider is envisioned as the future nuclear science program at JLab beyond the 12 GeV CEBAF. Presently, a medium energy collider (MEIC) is set as an immediate goal with options for a future energy upgrade. A comprehensive design report for MEIC has been released recently. The MEIC facility could also accommodate electron and proton/ion collisions in a low CM energy range, covering proton energies from 10 to 25 GeV and ion energies with a similar magnetic rigidity, for additional science reach. In this paper, we present a conceptual design of this low energy collider, LEIC, showing its luminosity can reach above 10{sup 33} cm{sup -2}s{sup -1}. The design specifies that the large booster of the MEIC is converted to a low energy ion collider ring with an interaction region and an electron cooler integrated into it. The design provides options for either sharing the detector with the MEIC or a dedicated low energy detector in a third collision point, with advantages of either a minimum cost or extra detection parallel to the MEIC operation, respectively. The LEIC could be positioned as the first and low cost phase of a multi-stage approach to realize the full MEIC.

Derbenev, Yaroslav S. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Hutton, Andrew M. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Krafft, Geoffrey A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Li, Rui [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Lin, Fanglei [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Morozov, Vasiliy [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Nissen, Edward W. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Yunn, Byung C. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Zhang, He [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Sullivan, Michael K. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Zhang, Yuhong [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

2013-06-01T23:59:59.000Z

410

Linear Collider Collaboration Tech Notes LCC-0104  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 October 2002 Beamstrahlung Photon Load on the TESLA Extraction Septum Blade Andrei Seryi Stanford Linear Accelerator Center Stanford, CA 94309, USA Abstract: This note describes work performed in the framework of the International Linear Collider Technical Review Committee [1] to estimate the power load on the TESLA extraction septum blade due to beamstrahlung photons. It is shown, that under realistic conditions the photon load can be several orders of magnitude higher than what was estimated in the TESLA TDR [2] for the ideal Gaussian beams, potentially representing a serious limitation of the current design. Beamstrahlung Photon Load on the TESLA Extraction Septum Blade ANDREI SERYI STANFORD LINEAR

411

Linear Collider Collaboration Tech Notes LCC-0108  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 TESLA 2002-10 CBP Tech Note-268 November 2002 Comparison of Emittance Tuning Simulations in the NLC and TESLA Damping Rings Andrej Wolski Lawrence Berkeley National Laboratory University of California Berkeley, CA Winfried Decking Deutsches Elektron Synchrotron (DESY) Hamburg, Germany Abstract: Vertical emittance is a critical issue for future linear collider damping rings. Both NLC and TESLA specify vertical emittance of the order of a few picometers, below values currently achieved in any storage ring. Simulations show that algorithms based on correcting the closed orbit and the vertical dispersion can be effective in reducing the vertical emittance to the required levels, in the presence of a limited subset of

412

Two gauge boson physics at future colliders  

SciTech Connect

Electroweak unification suggests that there should be WW and ZZ physics analogous to {gamma}{gamma} physics. Indeed, WW and ZZ collisions will provide an opportunity to search for the Higgs boson at future high energy colliders. Cross sections in the picobarn range are predicted for Higgs boson production at the proposed 40-TeV SSC. While other states may be produced by WW and ZZ collisions, it is the Higgs boson that looms as the most attractive objective. 31 refs., 5 figs.

Cahn, R.N.

1988-05-13T23:59:59.000Z

413

LASER-PLASMA-ACCELERATOR-BASED GAMMA GAMMA COLLIDERS  

E-Print Network (OSTI)

LASER-PLASMA-ACCELERATOR-BASED ?? COLLIDERS ? C. B.linear col- lider based on laser-plasma-accelerators arediscussed, and a laser-plasma-accelerator-based gamma-

Schroeder, C. B.

2010-01-01T23:59:59.000Z

414

Far Future Colliders and Required R&D Program  

Science Conference Proceedings (OSTI)

Particle colliders for high energy physics have been in the forefront of scientific discoveries for more than half a century. The accelerator technology of the collider has progressed immensely, while the beam energy, luminosity, facility size and the cost have grown by several orders of magnitude. The method of colliding beams has not fully exhausted its potential but its pace of progress has greatly slowed down. In this paper we very briefly review the R&D toward near future colliders and make an attempt to look beyond the current horizon and outline the changes in the paradigm required for the next breakthroughs.

Shiltsev, V.; /Fermilab

2012-06-01T23:59:59.000Z

415

RHIC | Physics of the Relativistic Heavy Ion Collider  

NLE Websites -- All DOE Office Websites (Extended Search)

The Physics of RHIC Physicists from around the world are using the Relativistic Heavy Ion Collider to explore some of Nature's most basic -- and intriguing -- ingredients and...

416

Mixing and Lifetimes of b-hadrons  

Science Conference Proceedings (OSTI)

We review the status of mixing and lifetimes of b-hadrons. We will show that {delta}{gamma}/{delta}M, a{sub sl} and {phi} are better suited to search for new physics effects than {delta}M alone, because of our poor knowledge of the decay constants. The theoretical precision in the determination of {gamma}{sub 12}/M{sub 12}--which contains all information on {delta}{gamma}/{delta}M, a{sub sl} and {phi}--can be tested directly by investigating the lifetimes of b-hadrons, because both quantities rely on the same theoretical footing. In particular we will also present a numerical estimate for the lifetime of the {xi}{sub b}-baryon.

Lenz, Alexander J. [Fakultaet fuer Physik, Universitaet Regensburg, 93040 Regensburg (Germany)

2008-07-02T23:59:59.000Z

417

Hadron physics as Seiberg dual of QCD  

SciTech Connect

We try to identify the light hadron world as the magnetic picture of QCD. We take both phenomenological and theoretical approaches to this hypothesis, and find that the interpretation seems to show interesting consistencies. In particular, one can identify the {rho} and {omega} mesons as the magnetic gauge bosons, and the Higgs mechanism for them provides a dual picture of the color confinement{sup 1}.

Kitano, Ryuichiro [Department of Physics, Tohoku University, Sendai 980-8578 (Japan)

2012-07-27T23:59:59.000Z

418

Frequency scaling of linear super-colliders  

SciTech Connect

The development of electron-positron linear colliders in the TeV energy range will be facilitated by the development of high-power rf sources at frequencies above 2856 MHz. Present S-band technology, represented by the SLC, would require a length in excess of 50 km per linac to accelerate particles to energies above 1 TeV. By raising the rf driving frequency, the rf breakdown limit is increased, thereby allowing the length of the accelerators to be reduced. Currently available rf power sources set the realizable gradient limit in an rf linac at frequencies above S-band. This paper presents a model for the frequency scaling of linear colliders, with luminosity scaled in proportion to the square of the center-of-mass energy. Since wakefield effects are the dominant deleterious effect, a separate single-bunch simulation model is described which calculates the evolution of the beam bunch with specified wakefields, including the effects of using programmed phase positioning and Landau damping. The results presented here have been obtained for a SLAC structure, scaled in proportion to wavelength.

Mondelli, A.; Chernin, D.; Drobot, A.; Reiser, M.; Granatstein, V.

1986-06-01T23:59:59.000Z

419

Photon-Hadron Jet Correlations in p+p and Au+Au Collisions at sqrt(s_NN) = 200 GeV  

E-Print Network (OSTI)

We report the observation at the Relativistic Heavy Ion Collider (RHIC) of suppression of back-to-back correlations in the direct photon+jet channel in Au+Au relative to p+p collisions. Two-particle correlations of direct photon triggers with associated hadrons are obtained by statistical subtraction of the decay photon-hadron background. The initial momentum of the away-side parton is tightly constrained, because the parton-photon pair exactly balance in momentum at leading order in perturbative quantum chromodynamics (pQCD), making such correlations a powerful probe of the in-medium parton energy loss. The away-side nuclear suppression factor, I_AA, in central Au+Au collisions, is 0.32 +/- 0.12(stat) +/- 0.09(syst) for hadrons of 3 photons of 5 photon associated yields in p+p collisions scale approximately with the momentum balance, z_T = p_T^hadron/p_T^photon, as expected for a measure of the away-side parton fragmentation function. We compare to Au+Au collisions for which the momentum balance dependence of the nuclear modification should be sensitive to the path-length dependence of parton energy loss.

PHENIX Collaboration; A. Adare

2009-03-19T23:59:59.000Z

420

Search for a signal on intermediate baryon systems formation in hadron-nuclear and nuclear-nuclear interactions at high energies  

E-Print Network (OSTI)

We have analyzed the behavior of different characteristics of hadron-nuclear and nuclear-nuclear interactions as a function of centrality to get a signal on the formation of intermediate baryon systems. We observed that the data demonstrate the regime change and saturation. The angular distributions of slow particles exhibit some structure in the above mentioned reactions at low energy. We believe that the structure could be connected with the formation and decay of the percolation cluster. With increasing the mass of colliding nuclei, the structure starts to become weak and almost disappears ultimately. This shows that the number of secondary internuclear interactions increases with increasing the mass of the colliding nuclei. The latter could be a reason of the disintegration of any intermediate formations as well as clusters, which decrease their influence on the angular distribution of the emitted particles.

Y. H. Huseynaliyev; M. K. Suleymanov; E. U. Khan; A. Kravchakova; S. Vokal

2007-08-20T23:59:59.000Z

Note: This page contains sample records for the topic "large hadron collider" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Model-independent extraction of $|V_{tq}|$ matrix elements from top-quark measurements at hadron colliders  

E-Print Network (OSTI)

Current methods to extract the quark-mixing matrix element $|V_{tb}|$ from single-top production measurements assume that $|V_{tb}|\\gg |V_{td}|, |V_{ts}|$: top quarks decay into $b$ quarks with 100% branching fraction, s-channel single-top production is always accompanied by a $b$ quark and initial-state contributions from $d$ and $s$ quarks in the $t$-channel production of single top quarks are neglected. Triggered by a recent measurement of the ratio $R=\\frac{|V_{tb}|^{2}}{|V_{td}|^{2}+|V_{ts}|^{2}+|V_{tb}|^{2}}=0.90 \\pm 0.04$ performed by the D0 collaboration, we consider a $|V_{tb}|$ extraction method that takes into account non zero d- and s-quark contributions both in production and decay. We propose a strategy that allows to extract consistently and in a model-independent way the quark mixing matrix elements $|V_{td}|$, $|V_{ts}|$, and $|V_{tb}|$ from the measurement of $R$ and from single-top measured event yields. As an illustration, we apply our method to the Tevatron data using a CDF analysis of the measured single-top event yield with two jets in the final state one of which is identified as a $b$-quark jet. We constrain the $|V_{tq}|$ matrix elements within a four-generation scenario by combining the results with those obtained from direct measurements in flavor physics and determine the preferred range for the top-quark decay width within different scenarios.

H. Lacker; A. Menzel; F. Spettel; D. Hirschbühl; J. Lück; F. Maltoni; W. Wagner; M. Zaro

2012-02-21T23:59:59.000Z

422

Effects of QCD radiation on inclusive variables for determining the scale of new physics at hadron colliders.  

E-Print Network (OSTI)

and subtracting the expression {P˜a(z) + P˜b(z)}Fa(x¯1, Q)Fb(x¯2, Q)?ˆab(M2) (3.1) in the integrand of eq. (2.18) and comparing with eq. (2.13), we see that the last line of that equation corresponds to a change of scale Q ? Qc = ?cQ in the parton distributions... , leading to M2 d?ab dM2dY = Fa(x¯1, Qc)Fb(x¯2, Qc)?ab(M2) (3.2) where to first order ?ab(M2) = ?ˆab(M2) + ?max ?S pi ? dz{P˜a(z) + P˜b(z)}{?ˆab(zM2)? ?ˆab(M2)} . (3.3) The interpretation of this result is simple: undetected ISR at angles less than ?c, corre...

Papaefstathiou, Andreas; Webber, Bryan R

423

Higgs Boson Production at Hadron Colliders: Differential Cross Section Through Next-to-Next-to-Leading Order  

SciTech Connect

The authors present a calculation of the fully differential cross section for Higgs boson production in the gluon fusion channel through next-to-next-to-leading order in perturbative QCD. They apply the method introduced in [1] to compute double real emission corrections. The calculation permits arbitrary cuts on the final state in the reaction hh {yields} H + X. it can be easily extended to include decays of the Higgs boson into observable final states. In this Letter, they discuss the most important features of the calculation, and present some examples of physical applications that illustrate the range of observables that can be studied using the result. They compute the NNLO rapidity distribution of the Higgs boson, and also calculate the NNLO rapidity distribution with a veto on jet activity.

Anastasiou, C

2004-09-08T23:59:59.000Z

424

NLO production of W-prime bosons at hadron colliders using the MC@NLO and POWHEG methods.  

E-Print Network (OSTI)

. Latunde-Dada Cavendish Laboratory, University of Cambridge, Cambridge, UK Email: andreas@hep.phy.cam.ac.uk, seyi@hep.phy.cam.ac.uk Abstract: We present a next-to-leading order (NLO) treatment of the production of a new charged heavy vector boson... 8× 105 1× 106 sˆ(GeV2) 0.00010 0.00005 -0.00005 -0.00010 Figure 2: The interference term Sint in the case where hW ? = 1, MW ? = 1 TeV, plotted against sˆ, for different widths: ?W ? = 1, 35, 100 GeV (green, blue, purple respectively). The terms SW...

Papaefstathiou, Andreas; Latunde-Dada, Oluseyi

425

Design considerations for a laser-plasma linear collider  

SciTech Connect

Design considerations for a next-generation electron-positron linear collider based on laser-plasma-accelerators are discussed. Several of the advantages and challenges of laser-plasma based accelerator technology are addressed. An example of the parameters for a 1 TeV laser-plasma based collider is presented.

Schroeder, C. B.; Esarey, E.; Geddes, C. G. R.; Toth, Cs.; Leemans, W. P.

2008-08-01T23:59:59.000Z

426

Strong WW scattering physics: A comparative study for the LHC, NLC and a Muon Collider  

SciTech Connect

We discuss the model independent parameterization for a strongly interacting electroweak sector. Phenomenological studies are made to probe such a sector for future colliders such as the LHC, e{sup +}e{sup -} Linear collider and a muon collider.

Han, Tao

1997-04-01T23:59:59.000Z

427

Preliminary results on the empirical applicability of the Tsallis distribution in elastic hadron scattering  

SciTech Connect

We show that the proton-proton elastic differential cross section data at dip position and beyond can be quite well described by a parametrization based on the Tsallis distribution, with only five free fit parameters. Extrapolation of the results obtained at 7 TeV to large momentum transfer, suggests that hadrons may not behave as a black-disk at the asymptotic energy region.

Fagundes, D. A.; Menon, M. J.; Silva, P. V. [Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas, UNICAMP 13083-859 Campinas, SP (Brazil)

2013-03-25T23:59:59.000Z

428

Anomalous Soft Photons Associated with Hadron Production in String Fragmentation  

Science Conference Proceedings (OSTI)

The bosonized QCD2+QED2 system for quarks with two flavors contains QCD2 and QED2 bound states, with an isoscalar photon at about 25 MeV and an isovector (I=1 J_{3}=0) photon at about 44 MeV. Consequently, when a quark and antiquark at the two ends of a string pulls apart from each other at high energies, hadrons and soft photons will be produced simultaneously in the fragmentation of the string. The production of the QED2 soft photons in association with hadrons may explain the anomalous soft photon data in hadron-hadron collisions and e^{+}-e^{-} annihilations at high energies.

Wong, Cheuk-Yin [ORNL

2011-01-01T23:59:59.000Z

429

Linear Collider Collaboration Tech Notes LCC-0109  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 TESLA 2002-11 CBP Tech Note-269 November 2002 Alignment Stability Models for Damping Rings Andrej Wolski Lawrence Berkeley National Laboratory University of California Berkeley, CA Winfried Decking Deutsches Elektron Synchrotron (DESY) Hamburg, Germany Abstract: Linear collider damping rings are highly sensitive to magnet alignment. Emittance tuning simulations for current designs of damping rings for TESLA and NLC have given encouraging results, but depend on invasive measurements of dispersion. The frequency with which such measurements must be made is therefore an operational issue, and depends on the time stability of the alignment. In this note, we consider three effects that lead to misalignment and the need to retune the damping ring: (1)

430

Optimal, real-time control--colliders  

Science Conference Proceedings (OSTI)

With reasonable definitions, optimal control is possible for both classical and quantal systems with new approaches called PISC(Parallel) and NISC(Neural) from analogy with RISC (Reduced Instruction Set Computing). If control equals interaction, observation and comparison to some figure of merit with interaction via external fields, then optimization comes from varying these fields to give design or operating goals. Structural stability can then give us tolerance and design constraints. But simulations use simplified models, are not in real-time and assume fixed or stationary conditions, so optimal control goes far beyond convergence rates of algorithms. It is inseparable from design and this has many implications for colliders. 12 refs., 3 figs.

Spencer, J.E.

1991-05-01T23:59:59.000Z

431

Ground motion data for International Collider models  

SciTech Connect

The proposed location for the International Linear Collider (ILC) in the Americas region is Fermilab in Batavia Illinois. If built at this location the tunnels would be located in the Galena Platteville shale at a depth of 100 or more meters below the surface. Studies using hydro static water levels and seismometers have been conducted in the MINOS hall and the LaFrange Mine in North Aurora Illinois to determine the level of ground motion. Both these locations are in the Galena Platteville shale and indicate the typical ground motion to be expected for the ILC. The data contains both natural and cultural noise. Coefficients for the ALT law are determined. Seismic measurements at the surface and 100 meters below the surface are presented.

Volk, J.T.; LeBrun, P.; Shiltsev, V.; Singatulin, S.; /Fermilab

2007-11-01T23:59:59.000Z

432

Press Pass | Press Release | July 2, 2012: Tevatron scientists...  

NLE Websites -- All DOE Office Websites (Extended Search)

National Accelerator Laboratory. "Our data strongly point toward the existence of the Higgs boson, but it will take results from the experiments at the Large Hadron Collider in...

433

Probing QCD with the ALICE detector at the LHC  

Science Conference Proceedings (OSTI)

We will review the main results obtained so far within the ALICE experiment at the CERN’s Large Hadron Collider.

A. Andronic; The ALICE Collaboration

2010-01-01T23:59:59.000Z

434

Fermilab | Science at Fermilab | Questions for the Universe ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Hadron Collider, CERN, Geneva, Switzerland Lattice Computational Facilities, Fermilab, Batavia, IL Further reading courtesy of Symmetry magazine The Growth of Inflation...

435

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Quark Gluon Plasma, Solar-Power Generating Windows and CCS Field Studies Large Hadron Collider's (LHC) first record-setting run of high-energy proton collisions,...

436

ESnet in the News  

NLE Websites -- All DOE Office Websites (Extended Search)

said Mr. Cotter, referring specifically to researchers working with the Large Hadron Collider, which produces troves of data. The network should also help climate...

437

FSO Hersemann/ AB D~~  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

mount the experiment on a timescale competitive with results flowing from the Large Hadron Collider; and the overall cost to achieve the scientific requirements. NEPA EENF for...

438

RHIC Newsroom  

NLE Websites -- All DOE Office Websites (Extended Search)

Division are in the final stages of assembling "replacement" magnets for the Large Hadron Collider (LHC) at CERN. Brookhaven built twenty magnets already installed at the LHC....

439

Press Pass - Press Releases  

NLE Websites -- All DOE Office Websites (Extended Search)

09 Press Release Archive Recent Releases Beams are Back in the Large Hadron Collider 112009 Fermilab seeks nominations for new Community Advisory Board to assist in future...

440

About Fermilab - Research at Fermilab  

NLE Websites -- All DOE Office Websites (Extended Search)

effort, with experiment collaborations numbering in the hundreds. The Large Hadron Collider at CERN is now producing collisions at seven times the energy of the...

Note: This page contains sample records for the topic "large hadron collider" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

QuarkNet Boot Camp at Fermilab  

NLE Websites -- All DOE Office Websites (Extended Search)

team will analyze data collected from the Compact Muon Solenoid detector at the Large Hadron Collider. These filtered data contain information about an indirectly observed...

442

Symposium on the Nature of Science?Streaming Video Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

VI: October 8, 2008 Jeffrey Berryhill Big Science's Next Big Bang: The Large Hadron Collider Carl Haber Imaging the Voices of the Past: Using Physics to Restore...

443

Fermilab at Work | Experiments and Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Working Group U.S. Long-Baseline Neutrino Experiment Study U.S. Lattice QCD Very Large Hadron Collider WFIRST Accelerator Experiments FermilabNICADD Photoinjector Laboratory...

444

LHC Discovers New Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

The newest particle physics instruments for the energy frontier are CERN's Large hadron Collider and its detectors. Physicists look for new science by looking for the...

445

Fermilab | Science at Fermilab | Questions for the Universe ...  

NLE Websites -- All DOE Office Websites (Extended Search)

someday shed light on dark matter: Large Hadron Collider, CERN, Geneva, Switzerland Sloan Digital Sky Survey, Fermilab, Batavia, IL VERITAS, Fred Lawrence Whipple Observatory,...

446

Fermilab | Science at Fermilab | Computing | Grid Computing  

NLE Websites -- All DOE Office Websites (Extended Search)

of Fermilab's Computing Division looked ahead to experiments like those at the Large Hadron Collider, which would collect more data than any computing center in existence could...

447

Brace for Impact: Why Does Matter Dominate Our Universe? - NERSC...  

NLE Websites -- All DOE Office Websites (Extended Search)

(Courtesy of H. W. Linn, University of Washington) While the fireworks at CERN's Large Hadron Collider (LHC) transfix the world, theorists are quietly doing some computational...

448

WorldWideScience.org - A Global Science Gateway Fostering Internationa...  

Office of Scientific and Technical Information (OSTI)

the scientific and technical feasibility of fusion energy. Similarly, DOE-supported high energy and nuclear physicists participate in experiments at the Large Hadron Collider at...

449

Fermilab Today | University of Oklahoma  

NLE Websites -- All DOE Office Websites (Extended Search)

to emerge from the Large Hadron Collider. Our theory group also works on nonperturbative quantum field theory. WHAT SETS PARTICLE PHYSICS AT THE UNIVERSITY OF OKLAHOMA APART? OU...

450

Fermilab Today | University of Rochester Profile  

NLE Websites -- All DOE Office Websites (Extended Search)

SCHOOL COLORS: Blue and yellow PARTICLE PHYSICS COLLABORATIONS: MINERvA, CDF, DZero, Compact Muon Solenoid, Large Hadron Collider and LPC. EXPERIMENTS AT FERMILAB: In addition to...

451

Berkeley Lab - Science Video Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

is it going? cosmic microwave background cosmological inflation expanding universe Higgs boson Large Hadron Collider measuring the universe What's the future of energy?...

452

Press Pass - Press Release - March 14, 2013: New evidence strengthens...  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory and Brookhaven National Laboratory. Fermilab is heavily involved in the Higgs boson research at the Large Hadron Collider. The Illinois laboratory serves as the U.S....

453

Follow the Atoms | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

the masses of data produced at the Large Hadron Collider in the quest for the Higgs boson, modeling turbulence in pursuit of improved jet engines, simulating earth's...

454

Fermilab Today  

NLE Websites -- All DOE Office Websites (Extended Search)

4, 2012 Special Edition Search for Higgs boson at Large Hadron Collider reveals new particle Fermilab houses a Remote Operations Center for the CMS experiment, allowing scientists...

455

Fermilab Today  

NLE Websites -- All DOE Office Websites (Extended Search)

CERN press release CERN experiments observe particle consistent with long-sought Higgs boson US LHC press release Search for Higgs boson at Large Hadron Collider reveals new...

456

Press Pass - Press Release - December 13, 2011: Possible signs...  

NLE Websites -- All DOE Office Websites (Extended Search)

at the Large Hadron Collider have nearly eliminated the space in which the Higgs boson could dwell, scientists announced in a seminar held at CERN today. However, the...

457

Standard Model Higgs Boson Discovery Potential in the Decay Channel H - > ZZ(*) - > 4 mu with the CMS Detector.  

E-Print Network (OSTI)

??The Compact Muon Solenoid (CMS) is a general purpose detector at the Large Hadron Collider (LHC) currently under construction at CERN with start-up date in… (more)

Drozdetski, Alexei Alexandrovic

2007-01-01T23:59:59.000Z

458

Search for the Higgs Boson in the Vector Boson Fusion Channel at the ATLAS Detector.  

E-Print Network (OSTI)

??The search for the Higgs boson has been a cornerstone of the physics program at the Large Hadron Collider in Geneva Switzerland. The ATLAS experiment… (more)

Ouellette, Eric Alexandre

2014-01-01T23:59:59.000Z

459

ElectroWeak theory after the first LHC phase  

E-Print Network (OSTI)

I summarize the status of the ElectroWeak Interactions after the first phase of the Large Hadron Collider and I give an outlook on its possible developments.

Riccardo Barbieri

2013-09-13T23:59:59.000Z

460

ElectroWeak theory after the first LHC phase  

E-Print Network (OSTI)

I summarize the status of the ElectroWeak Interactions after the first phase of the Large Hadron Collider and I give an outlook on its possible developments.

Barbieri, Riccardo

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "large hadron collider" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Discoveries | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

James Proudfoot, and Rikutaro Yoshida played a key role in the discovery of the Higgs boson by the Large Hadron Collider collaborative research team. Sreenath Gupta and his...

462

SLAC National Accelerator Laboratory - SLAC Professor Emeritus...  

NLE Websites -- All DOE Office Websites (Extended Search)

- the same mechanism that confers mass on fundamental particles and predicts the Higgs boson, the particle apparently found by the Large Hadron Collider this year. She and...

463

ALCF Project Seeks Evidence of Physics Beyond the Standard Model...  

NLE Websites -- All DOE Office Websites (Extended Search)

Beyond the Standard Model November 21, 2013 Printer-friendly version Finding the Higgs boson at CERN's Large Hadron Collider was a monumental discovery that confirmed the...

464

Hadron potentials within the gauge/string correspondence  

Science Conference Proceedings (OSTI)

It is known, since the 70s, that the large N 't Hooft limit of gauge theories is related to string theories. In 1998, J. M. Maldacena identified precisely such a relation: the so-called AdS/CFT correspondence which speculates a duality between a large N strongly-coupled supersymmetric and conformal Yang-Mills theory in four dimensions and a weakly-coupled string theory defined in a five-dimensional anti-de Sitter AdS{sub 5} space-time. This review aims at introducing concepts and methods used to derive, in the framework of the gauge/string correspondence, the interaction potentials of mesons and baryons at zero and finite temperature. The dual string configurations associated with the different kinds of hadrons are described and their behaviours at short and large distances are understood. Although the application of Maldacena's AdS/CFT conjecture to QCD is not straightforward, QCD being neither supersymmetric nor conformal, the AdS/QCD correspondence approach attempts to identify the dual theory of QCD. Especially, the study of heavy quark-antiquark bound-states leads to establish general dual criteria for the confinement.

Jugeau, Frederic, E-mail: jugeau@ihep.ac.c [Institute of High Energy Physics, Chinese Academy of Sciences, P. O. Box 918(4), Beijing 100049 (China); Theoretical Physics Center for Science Facilities, Chinese Academy of Sciences, Beijing 100049 (China)

2010-08-15T23:59:59.000Z

465

Heavy Hadron Spectroscopy and Production at Tevatron  

SciTech Connect

Using data from p{bar p} collisions at {radical}s = 1.96 TeV recorded by the CDFII and D0 detectors at the Fermilab Tevatron, we present recent results on charm and bottom hadrons. The most recent CDF results on properties of the four bottom baryon resonant states {Sigma}{sub b}{sup (*)-}, {Sigma}{sub b}{sup (*)+}. New results on exotic {Upsilon}(4140) state observed by CDF are also reported. A precise measurement of production rates of the lowest lying bottom baryon, {Lambda}{sub b}{sup 0}, produced in the D0 detector is presented.

Gorelov, Igor V.; /New Mexico U.

2011-10-01T23:59:59.000Z

466

Hadron Mass Extraction from Lattice QCD  

E-Print Network (OSTI)

The extraction of quantities from lattice QCD calculations at realistic quark masses is of considerable importance. Whilst physical quark masses are some way off, the recent advances in the calculation of hadron masses within full QCD now invite improved extrapolation methods. We show that, provided the correct chiral behaviour of QCD is respected in the extrapolation to realistic quark masses, one can indeed obtain a fairly reliable determination of masses, the sigma commutator and the J parameter. We summarise these findings by presenting the nonanalytic behaviour of nucleon and rho masses in the standard Edinburgh plot.

S. V. Wright; D. B. Leinweber; A. W. Thomas; K. Tsushima

2001-11-27T23:59:59.000Z

467

Future directions in particle and nuclear physics at multi-GeV hadron beam facilities  

Science Conference Proceedings (OSTI)

This report contains papers on the following topics in particle and nuclear physics: hadron dynamics; lepton physics; spin physics; hadron and nuclear spectroscopy; hadronic weak interactions; and Eta physics. These papers have been indexed separately elsewhere.

Geesaman, D.F. [Argonne National Lab., IL (United States)] [ed.

1993-11-01T23:59:59.000Z

468

Search for Exclusive Charmless Hadronic B Decays  

E-Print Network (OSTI)

We have searched for several two-body charmless hadronic decays of B mesons. These final states include K and with both charged and neutral kaons and pions; K , Kae, and ae; and OEX s , where X s = K; K , or OE. The data used in this analysis consist of 2:0 fb \\Gamma1 taken on the \\Upsilon(4S ) with the CLEO-II detector at the Cornell Electron Storage Ring (CESR). This data set includes 2.2 million BB pairs, allowing us to place upper limits on these branching ratios in the range from 10 \\Gamma4 to 10 \\Gamma5 . Permanent address: University of Hawaii at Manoa y Permanent address: INP, Novosibirsk, Russia 2 I. INTRODUCTION The decays of B-mesons to two charmless hadrons can proceed via a b ! u tree-level spectator diagram (Figure 1a), or via a b ! sg one-loop "penguin-diagram" (Figure 1b) and to a lesser extent, via the CKM-suppressed b ! dg penguin diagram. Although rare decays can also proceed via b ! u internal, color-suppressed diagrams (Figure 1c), b ! u exch...

Gronberg Kutschke Menary; Ichep Ref; Gsl Cleo Conf; Search Exclusive; Charmless Hadronic; B Decays; S. Menary; S. Nakanishi; C. Qiao

1994-01-01T23:59:59.000Z

469

Search For Hadronic Axions Emitted From The Sun  

SciTech Connect

We made a search for hadronic axions, which could be emitted from the Sun in the axiobremsstrahlung process and absorbed in the HPGe detector by axioelectric effect. An upper limit on hadronic axion mass of 100 eV is obtained at the 95% confidence level.

Ljubicic, A.; Kekez, D.; Krecak, Z. [Institute Rudjer Boskovic, Bijenicka 54 10001 Zagreb (Croatia)

2007-10-26T23:59:59.000Z

470

Hadronic decays of the tau lepton: Theoretical outlook  

E-Print Network (OSTI)

The structure of the form factors stemmed from the hadronization of QCD currents in the energy region of the resonances can be explored through the analyses of exclusive hadronic decays of the tau lepton. I give a short review on the later theoretical progress achieved in the description of experimental data.

J. Portoles

2007-02-13T23:59:59.000Z

471

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

LHC The Large Hadron Collider at the CERN laboratory in Geneva, Switzerland. LHC will collide protons into protons at a center-of-mass energy of about 14 TeV. When completed in the...

472

U.S. CMS - U.S. CMS @ Work - Research Program Office/Management  

NLE Websites -- All DOE Office Websites (Extended Search)

mass and energy range between 100 and 1000 GeV (1 TeV) for this mechanism. The Large Hadron Collider currently nearing completion at CERN, near Geneva, Switzerland, will collide...

473

Comparison of LHC and ILC Capabilities for Higgs Boson Coupling Measurements  

Science Conference Proceedings (OSTI)

I estimate the accuracies on Higgs boson coupling constants that experiments at the Large Hadron Collider and the International Linear Collider are capable of reaching over the long term.

Peskin, Michael E.; /SLAC

2012-07-11T23:59:59.000Z

474

Search for a Higgs Boson Produced in Association with a W Boson at ATLAS.  

E-Print Network (OSTI)

??The Large Hadron Collider at CERN is the most modern proton-proton collider and data taking will start in 2009, with a centre-of-mass energy of 7… (more)

Ruckert, Benjamin

2009-01-01T23:59:59.000Z

475

Looking into the matter of light-quark hadrons  

E-Print Network (OSTI)

In tackling QCD, a constructive feedback between theory and extant and forthcoming experiments is necessary in order to place constraints on the infrared behaviour of QCD's \\beta-function, a key nonperturbative quantity in hadron physics. The Dyson-Schwinger equations provide a tool with which to work toward this goal. They connect confinement with dynamical chiral symmetry breaking, both with the observable properties of hadrons, and hence provide a means of elucidating the material content of real-world QCD. This contribution illustrates these points via comments on: in-hadron condensates; dressed-quark anomalous chromo- and electro-magnetic moments; the spectra of mesons and baryons, and the critical role played by hadron-hadron interactions in producing these spectra.

Craig D. Roberts

2011-09-28T23:59:59.000Z

476

Unstable rotational states of string models and width of a hadron  

Science Conference Proceedings (OSTI)

Rotational states (planar uniform rotations) of various string hadron models are tested for stability with respect to small disturbances. These models include an open or closed string carrying n massive points (quarks), and their rotational states result in a set of quasilinear Regge trajectories. It is shown that rotations of the linear string baryon model q-q-q and the similar states of the closed string are unstable, because spectra of small disturbances for these states contain complex frequencies, corresponding to exponentially growing modes of disturbances. Rotations of the linear model are unstable for any values of points' masses, but for the closed string we have the threshold effect. This instability is important for describing excited hadrons; in particular, it increases predictions for their width {gamma}. Predicted large values {gamma} for N, {delta} and strange baryons in comparison with experimental data result in unacceptability of the linear string model q-q-q for describing these baryon states.

Sharov, G. S. [Tver State University, 170002, Sadovyj per. 35, Tver (Russian Federation)

2009-06-01T23:59:59.000Z

477

Muon Collider interaction region and machine-detector interface design  

Science Conference Proceedings (OSTI)

One of the key systems of a Muon Collider (MC) - seen as the most exciting option for the energy frontier machine in the post-LHC era - is its interaction region (IR). Designs of its optics, magnets and machine-detector interface are strongly interlaced and iterative. As a result of recent comprehensive studies, consistent solutions for the 1.5-TeV c.o.m. MC IR have been found and are described here. To provide the required momentum acceptance, dynamic aperture and chromaticity, an innovative approach was used for the IR optics. Conceptual designs of large-aperture high-field dipole and high-gradient quadrupole magnets based on Nb{sub 3}Sn superconductor were developed and analyzed in terms of the operating margin, field quality, mechanics, coil cooling and quench protection. Shadow masks in the interconnect regions and liners inside the magnets are used to mitigate the unprecedented dynamic heat deposition due to muon decays ({approx}0.5 kW/m). It is shown that an appropriately designed machine-detector interface (MDI) with sophisticated shielding in the detector has a potential to substantially suppress the background rates in the MC detector.

Mokhov, N.V.; Alexahin, Y.I.; Kashikhin, V.V.; Striganov, S.I.; Zlobin, A.V.; /Fermilab

2011-03-01T23:59:59.000Z

478

Hydrodynamics and High-Energy Physics of WR Colliding Winds  

E-Print Network (OSTI)

One of the main properties of Wolf-Rayet (WR) stars is a very intense outflow of gas. No less than 40\\% \\ of WR stars belong to binary systems. Young massive O and B stars are the secondary components of such systems. OB stars also have an intense stellar wind. If the intensities of the stellar winds of WR and OB stars are more or less comparable or if the distance between the components of the binary is large enough, the winds flowing out of WR and OB stars can collide and the shock waves are formed. In the shock the gas is heated to temperature $\\sim 10^7$ K and generates X-ray emission. Stellar wind collision may be responsible not only for the X-ray emission of WR + OB binaries and for their radio, IR and $\\gamma$-ray emision as well. Stellar wind collision, gas heating, particle acceleration, and generation of X-ray, $\\gamma$-ray, radio and IR emission in WR + OB binaries are discussed.

Vladimir V. Usov

1994-05-29T23:59:59.000Z

479

Neutrino Factory and Muon Collider R&D  

E-Print Network (OSTI)

European, Japanese, and US Neutrino Factory designs are presented. The main R&D issues and associated R&D programs, future prospects, and the additional issues that must be addressed to produce a viable Muon Collider design, are discussed.

Steve Geer

2001-11-05T23:59:59.000Z

480

The LHC as a Proton-Nucleus Collider  

E-Print Network (OSTI)

Following its initial operation as a proton-proton (p-p) and heavy-ion (208Pb82+-208Pb82+) collider, the LHC is expected to operate as a p-Pb collider. Later it may collide protons with other lighter nuclei such as 40Ar18+ or 16O8+. We show how the existing proton and lead-ion injector chains may be efficiently operated in tandem to provide these hybrid collisions. The two-in-one magnet design of the LHC main rings imposes different revolution frequencies for the two beams in part of the magnetic cycle. We discuss and evaluate the consequences for beam dynamics and estimate the potential performance of the LHC as a proton-nucleus collider.

Carli, C

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "large hadron collider" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.