Powered by Deep Web Technologies
Note: This page contains sample records for the topic "large format lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Large-Format Lithium-Ion Battery Costs Analysis  

Science Conference Proceedings (OSTI)

The high cost of lithium ion batteries poses a serious problem for the competitiveness of Plug-In Hybrid Electric Vehicles (PHEVs) and Battery Electric Vehicles (BEVs). The problem is complicated by the fact that the lithium ion battery cost projections developed by a number of apparently credible organizations over the past 5 years or so differ so much that different conclusions regarding the economic competitiveness of PHEVs (and even more so BEVs) have been stated. This situation creates confusion and...

2010-12-15T23:59:59.000Z

2

Minimization of Circuitry in Large Format Lithium-ion Battery Management Systems.  

E-Print Network (OSTI)

??Lithium-ion based batteries are the most energy and power dense rechargeable batteries currently available. However, to operate within safety limits battery voltages, currents, and temperatures… (more)

Miller, Jerin

2012-01-01T23:59:59.000Z

3

Multi-Dimensional Electrochemical-Thermal Coupled Model of Large Format Cylindrical Lithium Ion Cells (Presentation)  

DOE Green Energy (OSTI)

Presentation on 3-D modeling of lithium-ion cells used in plug-in hyybrid electric vehicle batteries. 3-D models provide better understanding of cell design, operation, and management.

Kim, G.-H.; Smith, K.

2007-10-01T23:59:59.000Z

4

Simplified Electrode Formation using Stabilized Lithium Metal ...  

A team of Berkeley Lab researchers led by Gao Liu has developed a doping process for lithium ion battery electrode formation that can boost a cell’s ...

5

Three-Dimensional Thermal-Electrochemical Coupled Model for Spirally Wound Large-Format Lithium-Ion Batteries (Presentation)  

DOE Green Energy (OSTI)

This presentation discusses the behavior of spirally wound large-format Li-ion batteries with respect to their design. The objectives of the study include developing thermal and electrochemical models resolving 3-dimensional spirally wound structures of cylindrical cells, understanding the mechanisms and interactions between local electrochemical reactions and macroscopic heat and electron transfers, and developing a tool and methodology to support macroscopic designs of cylindrical Li-ion battery cells.

Lee, K. J.; Smith K.; Kim, G. H.

2011-04-01T23:59:59.000Z

6

FILM FORMATION ON LITHIUM IN PROPYLENE CARBONATE SOLUTIONS UNDER OPEN CIRCUIT CONDITIONS  

E-Print Network (OSTI)

and Ambient Temperature Lithium Batteries, B. B. Owens and1 Soci ety FILM FORMATION ON LITHIUM IN PROPYLENE CARBONATECalifornia. Film Formation on Lithium 1n Propylene Carbonate

Geronov, Y.

2011-01-01T23:59:59.000Z

7

Addressing the Impact of Temperature Extremes on Large Format Li-Ion Batteries for Vehicle Applications (Presentation)  

SciTech Connect

This presentation discusses the effects of temperature on large format lithium-ion batteries in electric drive vehicles.

Pesaran, A.; Santhanagopalan, S.; Kim, G. H.

2013-05-01T23:59:59.000Z

8

Simplified Electrode Formation using Stabilized Lithium Metal Powder (SLMP) Doping of Lithium Ion Battery Electrodes  

lithium ion battery electrode formation that can boost a cell’s charge capacity and lower its cost while improving reliability and safety.

9

REACTIVE FLOW IN LARGE-DEFORMATION ELECTRODES OF LITHIUM-ION BATTERIES  

E-Print Network (OSTI)

8/3/2012 1 REACTIVE FLOW IN LARGE-DEFORMATION ELECTRODES OF LITHIUM-ION BATTERIES LAURENCE BRASSART;8/3/2012 2 1. Introduction In a lithium-ion battery, each electrode is a host of lithium. When the battery to 4.4 lithium atoms. By comparison, in the commonly used anodes in lithium-ion batteries made

Suo, Zhigang

10

Status of shipping provisions for large lithium batteries  

DOE Green Energy (OSTI)

In 1990, the Electric and Hybrid Propulsion Division of the US Department of Energy (DOE) established its ad hoc Advanced Battery Readiness Working Group to identify regulatory barriers to the commercialization of advanced electric vehicle (EV) battery technologies and to facilitate the removal of these barriers. As one of three sub-working groups, the Shipping Sub-working Group (SSWG) was formed to address regulatory issues associated with the domestic and international transport of new battery technologies under development for EV and hybrid electric vehicle (HEV) applications. The SSWG is currently working with DOT on a proposal, which is intended for submission and consideration at the July 1998 meeting of the UN Sub-Committee of Experts. It is their intent to secure full support for the revised proposal from both the German and French delegations prior to its submission. It is critical to obtain UN Sub-Committee approval in July 1998, so that the DOT proposal can be considered and approved by the UN Committee of Experts at their meeting in December 1998. The UN Committee of Experts meets only on even numbered years, so failure to secure their approval in December 1998 will cause a two-year delay in implementing international regulations for large EV and HEV lithium-ion and lithium-polymer batteries. Details of the DOT proposal are provided in this paper, including provisions that would relax the lithium and lithium-alloy mass restrictions in a general way, thereby providing a measure of relief for small cells and batteries.

Henriksen, G.L.

1998-01-01T23:59:59.000Z

11

Large Plastic Deformation in High-Capacity Lithium-Ion Batteries Caused by Charge and Discharge  

E-Print Network (OSTI)

Large Plastic Deformation in High-Capacity Lithium-Ion Batteries Caused by Charge and Discharge, Massachusetts 02138 Evidence has accumulated recently that a high-capacity elec- trode of a lithium-ion battery in the particle is high, possibly leading to fracture and cavitation. I. Introduction LITHIUM-ION batteries

Suo, Zhigang

12

LITHIUM ABUNDANCES IN EXOPLANET HOST STARS AS TEST OF PLANETARY FORMATION SCENARII  

E-Print Network (OSTI)

Abstract. Following the observations of Israelian et al. (2004), we compare different evolutionary models in order to study the lithium destruction processes and the planetary formation scenarii. 1

G. Alecian; O. Richard; S. Vauclair (eds; M. Castro; O. Richard; S. Vauclair

2005-01-01T23:59:59.000Z

13

Lithium abundances in exoplanet host stars as test of planetary formation scenarii  

E-Print Network (OSTI)

Following the observations of Israelian et al. 2004, we compare different evolutionary models in order to study the lithium destruction processes and the planetary formation scenarii.

M. Castro; O. Richard; S. Vauclair

2005-10-20T23:59:59.000Z

14

A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage  

E-Print Network (OSTI)

A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage Yuan Yang develop a new lithium/ polysulfide (Li/PS) semi-liquid battery for large-scale energy storage, with lithium polysulfide (Li2S8) in ether solvent as a catholyte and metallic lithium as an anode. Unlike

Cui, Yi

15

Prediction of Multi-Physics Behaviors of Large Lithium-Ion Batteries During Internal and External Short Circuit (Presentation)  

DOE Green Energy (OSTI)

This presentation describes the multi-physics behaviors of internal and external short circuits in large lithium-ion batteries.

Kim, G. H.; Lee, K. J.; Chaney, L.; Smith, K.; Darcy, E.; Pesaran, A.; Darcy, E.

2010-11-01T23:59:59.000Z

16

A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage  

SciTech Connect

Large-scale energy storage represents a key challenge for renewable energy and new systems with low cost, high energy density and long cycle life are desired. In this article, we develop a new lithium/polysulfide (Li/PS) semi-liquid battery for large-scale energy storage, with lithium polysulfide (Li{sub 2}S{sub 8}) in ether solvent as a catholyte and metallic lithium as an anode. Unlike previous work on Li/S batteries with discharge products such as solid state Li{sub 2}S{sub 2} and Li{sub 2}S, the catholyte is designed to cycle only in the range between sulfur and Li{sub 2}S{sub 4}. Consequently all detrimental effects due to the formation and volume expansion of solid Li{sub 2}S{sub 2}/Li{sub 2}S are avoided. This novel strategy results in excellent cycle life and compatibility with flow battery design. The proof-of-concept Li/PS battery could reach a high energy density of 170 W h kg{sup -1} and 190 W h L{sup -1} for large scale storage at the solubility limit, while keeping the advantages of hybrid flow batteries. We demonstrated that, with a 5 M Li{sub 2}S{sub 8} catholyte, energy densities of 97 W h kg{sup -1}) and 108 W h L{sup -1} can be achieved. As the lithium surface is well passivated by LiNO{sub 3} additive in ether solvent, internal shuttle effect is largely eliminated and thus excellent performance over 2000 cycles is achieved with a constant capacity of 200 mA h g{sup -1}. This new system can operate without the expensive ion-selective membrane, and it is attractive for large-scale energy storage.

Yang, Yuan; Zheng, Guangyuan; Cui, Yi

2013-01-01T23:59:59.000Z

17

A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage  

SciTech Connect

Large-scale energy storage represents a key challenge for renewable energy and new systems with low cost, high energy density and long cycle life are desired. In this article, we develop a new lithium/polysulfide (Li/PS) semi-liquid battery for large-scale energy storage, with lithium polysulfide (Li{sub 2}S{sub 8}) in ether solvent as a catholyte and metallic lithium as an anode. Unlike previous work on Li/S batteries with discharge products such as solid state Li{sub 2}S{sub 2} and Li{sub 2}S, the catholyte is designed to cycle only in the range between sulfur and Li{sub 2}S{sub 4}. Consequently all detrimental effects due to the formation and volume expansion of solid Li{sub 2}S{sub 2}/Li{sub 2}S are avoided. This novel strategy results in excellent cycle life and compatibility with flow battery design. The proof-of-concept Li/PS battery could reach a high energy density of 170 W h kg{sup -1} and 190 W h L{sup -1} for large scale storage at the solubility limit, while keeping the advantages of hybrid flow batteries. We demonstrated that, with a 5 M Li{sub 2}S{sub 8} catholyte, energy densities of 97 W h kg{sup -1} and 108 W h L{sup -1} can be achieved. As the lithium surface is well passivated by LiNO{sub 3} additive in ether solvent, internal shuttle effect is largely eliminated and thus excellent performance over 2000 cycles is achieved with a constant capacity of 200 mA h g{sup -1}. This new system can operate without the expensive ion-selective membrane, and it is attractive for large-scale energy storage.

Yang, Yuan; Zheng, Guangyuan; Cui, Yi

2013-01-01T23:59:59.000Z

18

Lithium implantation at low temperature in silicon for sharp buried amorphous layer formation and defect engineering  

SciTech Connect

The crystalline-to-amorphous transformation induced by lithium ion implantation at low temperature has been investigated. The resulting damage structure and its thermal evolution have been studied by a combination of Rutherford backscattering spectroscopy channelling (RBS/C) and cross sectional transmission electron microscopy (XTEM). Lithium low-fluence implantation at liquid nitrogen temperature is shown to produce a three layers structure: an amorphous layer surrounded by two highly damaged layers. A thermal treatment at 400 Degree-Sign C leads to the formation of a sharp amorphous/crystalline interfacial transition and defect annihilation of the front heavily damaged layer. After 600 Degree-Sign C annealing, complete recrystallization takes place and no extended defects are left. Anomalous recrystallization rate is observed with different motion velocities of the a/c interfaces and is ascribed to lithium acting as a surfactant. Moreover, the sharp buried amorphous layer is shown to be an efficient sink for interstitials impeding interstitial supersaturation and {l_brace}311{r_brace} defect formation in case of subsequent neon implantation. This study shows that lithium implantation at liquid nitrogen temperature can be suitable to form a sharp buried amorphous layer with a well-defined crystalline front layer, thus having potential applications for defects engineering in the improvement of post-implantation layers quality and for shallow junction formation.

Oliviero, E. [CSNSM, CNRS-IN2P3-Universite Paris-Sud, Batiment 108, 91405 Orsay (France); David, M. L.; Beaufort, M. F.; Barbot, J. F. [Institut Pprime, CNRS-Universite de Poitiers-ENSMA, SP2MI, Bd Marie et Pierre Curie, BP30179, 86962 Futuroscope-Chasseneuil Cedex (France); Fichtner, P. F. P. [Departamento de Metalurgia, Universidade Federal do Rio Grande do Sul, Av Bento Goncalves 9500, Caixa Postal 15051, 90035-190 Porto Alegre, RS (Brazil)

2013-02-28T23:59:59.000Z

19

Fail Safe Design for Large Capacity Lithium-ion Batteries  

NATIONAL RENEWABLE ENERGY LABORATORY! Challenges for Large LIB Systems 2 • Li-ion batteries are flammable, require expensive manufacturing to reduce defects

20

Electrochemical studies of the film formation on lithium in propylene carbonate solutions under open circuit conditions  

DOE Green Energy (OSTI)

The nature of protective surface layers formed on lithium in propylene carbonate solutions of LiClO/sub 4/ and LiAsF/sub 6/ at open circuit has been investigated by electrochemical pulse measurements and other techniques. The results are consistent with the fast formation of a compact thin layer of Li/sub 2/O by reaction with residual water. This layer acts as a solid ionic conductor. Slow corrosion processes produce a thicker porous overlayer.

Geronov, Y.; Schwager, F.; Muller, R.H.

1981-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "large format lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Fail-Safe Design for Large Capacity Lithium-Ion Battery Systems  

Science Conference Proceedings (OSTI)

A fault leading to a thermal runaway in a lithium-ion battery is believed to grow over time from a latent defect. Significant efforts have been made to detect lithium-ion battery safety faults to proactively facilitate actions minimizing subsequent losses. Scaling up a battery greatly changes the thermal and electrical signals of a system developing a defect and its consequent behaviors during fault evolution. In a large-capacity system such as a battery for an electric vehicle, detecting a fault signal and confining the fault locally in the system are extremely challenging. This paper introduces a fail-safe design methodology for large-capacity lithium-ion battery systems. Analysis using an internal short circuit response model for multi-cell packs is presented that demonstrates the viability of the proposed concept for various design parameters and operating conditions. Locating a faulty cell in a multiple-cell module and determining the status of the fault's evolution can be achieved using signals easily measured from the electric terminals of the module. A methodology is introduced for electrical isolation of a faulty cell from the healthy cells in a system to prevent further electrical energy feed into the fault. Experimental demonstration is presented supporting the model results.

Kim, G. H.; Smith, K.; Ireland, J.; Pesaran, A.

2012-07-15T23:59:59.000Z

22

Early Cloud Formation by Large Area Fires  

Science Conference Proceedings (OSTI)

Fires simultaneously burning in hundreds of square kilometers could result from a nuclear weapon explosion. The strong buoyancy field of such large area fires induces high-velocity fire winds that turn upward in the burning region. This results ...

R. D. Small; K. E. Heikes

1988-05-01T23:59:59.000Z

23

Materials Processing for Lithium-Ion Batteries  

SciTech Connect

Extensive efforts have been undertaken to develop and optimize new materials for lithium-ion batteries to address power and energy demands of mobile electronics and electric vehicles. However, the introduction of large-format lithium-ion batteries is hampered by high cost, safety concerns, and deficiencies in energy density and calendar life. Advanced materials-processing techniques can contribute solutions to such issues. From that perspective, this work summarizes the materials-processing techniques used to fabricate the cathodes, anodes, and separators used in lithium-ion batteries.

Li, Jianlin [ORNL; Daniel, Claus [ORNL; Wood III, David L [ORNL

2010-01-01T23:59:59.000Z

24

Block copolymer electrolytes for lithium batteries  

E-Print Network (OSTI)

in the energy equation, battery capacity, is defined as theperformance and capacity fading of a lithium-ion batteryof large-capacity lithium- ion battery systems. With new

Hudson, William Rodgers

2011-01-01T23:59:59.000Z

25

California Lithium Battery, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

California California Lithium Battery, Inc. America's Next Top Energy Innovator Challenge 626 likes California Lithium Battery, Inc. Argonne National Laboratory California Lithium Battery ("CALBattery") is a start-up California company established in 2011 to develop and manufacture a breakthrough high energy density and long cycle life lithium battery for utility energy storage, transportation, and defense industries. The company is a joint venture between California-based Ionex Energy Storage Systems and CALiB Power. US production of this advanced Very Large Format (400Ah+) si-graphene LI-ion battery is scheduled to start in California in 2014. Plans are to produce the initial batteries for CALBattery JV partner Ionex Energy Storage Systems for use in 1-100MW grid scale energy storage

26

California Lithium Battery, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

California California Lithium Battery, Inc. America's Next Top Energy Innovator Challenge 626 likes California Lithium Battery, Inc. Argonne National Laboratory California Lithium Battery ("CALBattery") is a start-up California company established in 2011 to develop and manufacture a breakthrough high energy density and long cycle life lithium battery for utility energy storage, transportation, and defense industries. The company is a joint venture between California-based Ionex Energy Storage Systems and CALiB Power. US production of this advanced Very Large Format (400Ah+) si-graphene LI-ion battery is scheduled to start in California in 2014. Plans are to produce the initial batteries for CALBattery JV partner Ionex Energy Storage Systems for use in 1-100MW grid scale energy storage

27

California Lithium Battery, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

California California Lithium Battery, Inc. America's Next Top Energy Innovator Challenge 626 likes California Lithium Battery, Inc. Argonne National Laboratory California Lithium Battery ("CALBattery") is a start-up California company established in 2011 to develop and manufacture a breakthrough high energy density and long cycle life lithium battery for utility energy storage, transportation, and defense industries. The company is a joint venture between California-based Ionex Energy Storage Systems and CALiB Power. US production of this advanced Very Large Format (400Ah+) si-graphene LI-ion battery is scheduled to start in California in 2014. Plans are to produce the initial batteries for CALBattery JV partner Ionex Energy Storage Systems for use in 1-100MW grid scale energy storage

28

Evaluation Study for Large Prismatic Lithium-Ion Cell Designs Using Multi-Scale Multi-Dimensional Battery Model (Presentation)  

Science Conference Proceedings (OSTI)

Addresses battery requirements for electric vehicles using a model that evaluates physical-chemical processes in lithium-ion batteries, from atomic variations to vehicle interface controls.

Kim, G. H.; Smith, K.

2009-05-01T23:59:59.000Z

29

3D Thermal and Electrochemical Model for Spirally Wound Large Format Lithium-ion Batteries (Presentation)  

DOE Green Energy (OSTI)

In many commercial cells, long tabs at both cell sides, leading to uniform potentials along the spiral direction of wound jelly rolls, are rarely seen because of their high manufacturing cost. More often, several metal strips are welded at discrete locations along both current collector foils. With this design, the difference of electrical potentials is easily built up along current collectors in the spiral direction. Hence, the design features of the tabs, such as number, location and size, can be crucial factors for spiral-shaped battery cells. This paper presents a Li-ion battery cell model having a 3-dimensional spiral mesh involving a wound jellyroll structure. Further results and analysis will be given regarding impacts of tab location, number, and size.

Lee, K. J.; Kim, G. H.; Smith, K.

2010-10-14T23:59:59.000Z

30

Hydrogen Outgassing from Lithium Hydride  

DOE Green Energy (OSTI)

Lithium hydride is a nuclear material with a great affinity for moisture. As a result of exposure to water vapor during machining, transportation, storage and assembly, a corrosion layer (oxide and/or hydroxide) always forms on the surface of lithium hydride resulting in the release of hydrogen gas. Thermodynamically, lithium hydride, lithium oxide and lithium hydroxide are all stable. However, lithium hydroxides formed near the lithium hydride substrate (interface hydroxide) and near the sample/vacuum interface (surface hydroxide) are much less thermally stable than their bulk counterpart. In a dry environment, the interface/surface hydroxides slowly degenerate over many years/decades at room temperature into lithium oxide, releasing water vapor and ultimately hydrogen gas through reaction of the water vapor with the lithium hydride substrate. This outgassing can potentially cause metal hydriding and/or compatibility issues elsewhere in the device. In this chapter, the morphology and the chemistry of the corrosion layer grown on lithium hydride (and in some cases, its isotopic cousin, lithium deuteride) as a result of exposure to moisture are investigated. The hydrogen outgassing processes associated with the formation and subsequent degeneration of this corrosion layer are described. Experimental techniques to measure the hydrogen outgassing kinetics from lithium hydride and methods employing the measured kinetics to predict hydrogen outgassing as a function of time and temperature are presented. Finally, practical procedures to mitigate the problem of hydrogen outgassing from lithium hydride are discussed.

Dinh, L N; Schildbach, M A; Smith, R A; Balazs1, B; McLean II, W

2006-04-20T23:59:59.000Z

31

Modeling of Nonuniform Degradation in Large-Format Li-ion Batteries (Presentation)  

DOE Green Energy (OSTI)

Study of impacts of large-format cell design features on battery useful life to improve battery engineering models, including both realistic geometry and physics.

Smith, K.; Kim, G. H.; Pesaran, A.

2009-05-01T23:59:59.000Z

32

Real-time observation of lithium fibers growth inside a nanoscale lithium-ion battery  

E-Print Network (OSTI)

Real-time observation of lithium fibers growth inside a nanoscale lithium-ion battery Hessam August 2011; accepted 29 August 2011; published online 22 September 2011) Formation of lithium dendrite to observe the real-time nucleation and growth of the lithium fibers inside a nanoscale Li-ion battery. Our

Endres. William J.

33

Scoping studies: behavior and control of lithium and lithium aerosols  

Science Conference Proceedings (OSTI)

The HEDL scoping studies examining the behavior of lithium and lithium aerosols have been conducted to determine and examine potential safety and environmental issues for postulated accident conditions associated with the use of lithium as a fusion reactor blanket and/or coolant. Liquid lithium reactions with air, nitrogen, carbon dioxide and concretes have been characterized. The effectiveness of various powder extinguishing agents and methods of application were determined for lithium-air reactions. The effectiveness of various lithium aerosol collection methods were determined and the volatilization and transport of radioactive metals potentially associated with lithium-air reactions were evaluated. Liquid lithium atmosphere reactions can be safely controlled under postulated accident conditions, but special handling practices must be provided. Lithium-concrete reactions should be avoided because of the potential production of high temperatures, corrosive environment and hydrogen. Carbon microspheres are effective in extinguishing well established lithium-air reactions for the lithium quantities tested (up to 10 kg). Large mass loading of lithium aerosols can be efficiently collected with conventional air cleaning systems. Potentially radioactive species (cobalt, iron and manganese) will be volatilized in a lithium-air reaction in contact with neutron activated stainless steel.

Jeppson, D.W.

1982-01-01T23:59:59.000Z

34

Electrolyte additive for lithium rechargeable organic electrolyte battery  

DOE Patents (OSTI)

A large excess of lithium iodide in solution is used as an electrolyte adive to provide overcharge protection for a lithium rechargeable organic electrolyte battery.

Behl, Wishvender K. (Ocean, NJ); Chin, Der-Tau (Winthrop, NY)

1989-01-01T23:59:59.000Z

35

Understanding Diffusion-Induced-Stresses in Lithium Ion Battery ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Lithium insertion and removal in lithium ion battery electrodes can result in large volume expansion and contraction which may cause fracture ...

36

Lithium-endohedral C{sub 60} complexes.  

DOE Green Energy (OSTI)

High capacity, reversible, lithium intercalated carbon anodes have been prepared, 855 m.Ah/g, which exceed the capacity for stage 1 lithium intercalated carbon anodes, 372 mAh/g. Since there is very little hydrogen content in the high capacity anode, the fullerene C{sub 60} lattice is used to investigate the nature of lithium ion bonding and spacing between lithiums in endohedral lithium complexes of C{sub 60}. Three lithium-endohedral complexes have been investigated using ab initio molecular orbital calculations involving 2,3 and 5 lithium. The calculated results suggest that lithium cluster formation may be important for achieving the high capacity lithium carbon anodes.

Scanlon, L. G.

1998-05-04T23:59:59.000Z

37

The UC Davis Emerging Lithium Battery Test Project  

E-Print Network (OSTI)

Miller, M. , Emerging Lithium-ion Battery Technologies forSymposium on Large Lithium-ion Battery Technology andAltairnano EIG Lithium-ion battery modules available for

Burke, Andy; Miller, Marshall

2009-01-01T23:59:59.000Z

38

Femtosecond second-harmonic generation in periodically poled lithium niobate  

E-Print Network (OSTI)

Femtosecond second-harmonic generation in periodically poled lithium niobate waveguides poled lithium niobate waveguides under large conversion conditions. Strong saturation of the SHG detailed experi- mental data on femtosecond SHG in periodically poled lithium niobate (PPLN) waveguides

Purdue University

39

Materials issues in lithium ion rechargeable battery technology  

DOE Green Energy (OSTI)

Lithium ion rechargeable batteries are predicted to replace Ni/Cd as the workhorse consumer battery. The pace of development of this battery system is determined in large part by the availability of materials and the understanding of interfacial reactions between materials. Lithium ion technology is based on the use of two lithium intercalating electrodes. Carbon is the most commonly used anode material, while the cathode materials of choice have been layered lithium metal chalcogenides (LiMX{sub 2}) and lithium spinel-type compounds. Electrolytes may be either organic liquids or polymers. Although the first practical use of graphite intercalation compounds as battery anodes was reported in 1981 for molten salt cells and in 1983 for ambient temperature systems, it was not until Sony Energytech announced a new lithium ion intercalating carbon anode in 1990, that interest peaked. The reason for this heightened interest is that these electrochemical cells have the high energy density, high voltage and light weight of metallic lithium, but without the disadvantages of dendrite formation on charge, improving their safety and cycle life.

Doughty, D.H.

1995-07-01T23:59:59.000Z

40

Large-Scale Environmental Parameters Associated with Tropical Cyclone Formations in the Western North Pacific  

Science Conference Proceedings (OSTI)

The local environmental conditions associated with 405 tropical cyclone (TC) formations in the western North Pacific during 1990–2001 are examined in this study. Six large-scale parameters are obtained and computed from the NCEP reanalyses with ...

Kevin K. W. Cheung

2004-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "large format lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Advanced Lithium Ion Battery Technologies - Energy Innovation Portal  

The Berkeley Lab technology contributes to improved battery safety by circumventing lithium metal dendrite formation. Benefits. ... hybrid electric vehicles;

42

Modeling of Nonuniform Degradation in Large-Format Li-ion Batteries (Poster)  

DOE Green Energy (OSTI)

Shows results of an empirical model capturing effects of both storage and cycling and developed the lithium ion nickel cobalt aluminum advanced battery chemistry.

Smith, K.; Kim, G. H.; Pesaran, A.

2009-06-01T23:59:59.000Z

43

Solid solution lithium alloy cermet anodes  

SciTech Connect

A metal-ceramic composite ("cermet") has been produced by a chemical reaction between a lithium compound and another metal. The cermet has advantageous physical properties, high surface area relative to lithium metal or its alloys, and is easily formed into a desired shape. An example is the formation of a lithium-magnesium nitride cermet by reaction of lithium nitride with magnesium. The reaction results in magnesium nitride grains coated with a layer of lithium. The nitride is inert when used in a battery. It supports the metal in a high surface area form, while stabilizing the electrode with respect to dendrite formation. By using an excess of magnesium metal in the reaction process, a cermet of magnesium nitride is produced, coated with a lithium-magnesium alloy of any desired composition. This alloy inhibits dendrite formation by causing lithium deposited on its surface to diffuse under a chemical potential into the bulk of the alloy.

Richardson, Thomas J.

2013-07-09T23:59:59.000Z

44

Magnetism in Lithium–Oxygen Discharge Product  

SciTech Connect

Nonaqueous lithium–oxygen batteries have a much superior theoretical gravimetric energy density compared to conventional lithium-ion batteries, and thus could render long-range electric vehicles a reality. A molecular-level understanding of the reversible formation of lithium peroxide in these batteries, the properties of major/minor discharge products, and the stability of the nonaqueous electrolytes is required to achieve successful lithium–oxygen batteries. We demonstrate that the major discharge product formed in the lithium–oxygen cell, lithium peroxide, exhibits a magnetic moment. These results are based on dc-magnetization measurements and a lithium– oxygen cell containing an ether-based electrolyte. The results are unexpected because bulk lithium peroxide has a significant band gap. Density functional calculations predict that superoxide- type surface oxygen groups with unpaired electrons exist on stoichiometric lithium peroxide crystalline surfaces and on nanoparticle surfaces; these computational results are consistent with the magnetic measurement of the discharged lithium peroxide product as well as EPR measurements on commercial lithium peroxide. The presence of superoxide-type surface oxygen groups with spin can play a role in the reversible formation and decomposition of lithium peroxide as well as the reversible formation and decomposition of electrolyte molecules.

Lu, Jun; Jung, Hun-Ji; Lau, Kah Chun; Zhang, Zhengcheng; Schlueter, John A.; Du, Peng; Assary, Rajeev S.; Greeley, Jeffrey P.; Ferguson, Glen A.; Wang, Hsien-Hau; Hassoun, Jusef; Iddir, Hakim; Zhou, Jigang; Zuin, Lucia; Hu, Yongfeng; Sun, Yang-Kook; Scrosati, Bruno; Curtiss, Larry A.; Amine, Khalil

2013-05-13T23:59:59.000Z

45

Recent advances in lithium ion technology  

Science Conference Proceedings (OSTI)

Lithium ion technology is based on the use of lithium intercalating electrodes. Carbon is the most commonly used anode material, while the cathode materials of choice have been layered lithium metal chalcogenides (LiMX{sub 2}) and lithium spinel-type compounds. Electrolytes may be either organic liquids or polymers. Although the first practical use of graphite intercalation compounds as battery anodes was reported in 1981 for molten salt cells (1) and in 1983 for ambient temperature systems (2) it was not until Sony Energytech announced a new lithium ion rechargeable cell containing a lithium ion intercalating carbon anode in 1990, that interest peaked. The reason for this heightened interest is that these cells have the high energy density, high voltage and fight weight of metallic lithium systems plus a very long cycle life, but without the disadvantages of dendrite formation on charge and the safety considerations associated with metallic lithium.

Levy, S.C.

1995-01-01T23:59:59.000Z

46

Lithium Iron Phosphate Composites for Lithium Batteries  

The materials can be added at low cost without changing current scalable cathode ... Lithium Iron Phosphate Composites for Lithium Batteries ...

47

User boresight calibration precision for large-format head-up displays  

Science Conference Proceedings (OSTI)

The postural sway in 24 subjects performing a boresight calibration task on a large format head-up display is studied to estimate the impact of human limits on boresight calibration precision and ultimately on static registration errors. The dependent ... Keywords: augmented reality, boresight, calibration, line of sight, postural sway

Magnus Axholt; Stephen Peterson; Stephen R. Ellis

2008-10-01T23:59:59.000Z

48

Non-linearity of large-scale structure formation in the Universe  

E-Print Network (OSTI)

In the standard picture of cosmological structure formation, the Universe we see today is evolved under the gravitational instability from tiny random fluctuations. In this talk I discuss the onset of non-linearity in the large scale structure formation of the Universe when the linear perturbation theory break downs. Using 1D Zel'dovich Approximation which provides an exact solution for density evolution, I illustrate two effects: mode spawning and mode merging and their connection to mode coupling. Those mode couplings (quadratic, cubic >...etc.) from gravitational clustering are in fact what the polyspectra (bispectrum, trispectrum...etc.) are meant to measure.

Lung-Yih Chiang

2005-08-17T23:59:59.000Z

49

Non-linearity of large-scale structure formation in the Universe  

E-Print Network (OSTI)

In the standard picture of cosmological structure formation, the Universe we see today is evolved under the gravitational instability from tiny random fluctuations. In this talk I discuss the onset of non-linearity in the large scale structure formation of the Universe when the linear perturbation theory break downs. Using 1D Zel'dovich Approximation which provides an exact solution for density evolution, I illustrate two effects: mode spawning and mode merging and their connection to mode coupling. Those mode couplings (quadratic, cubic >...etc.) from gravitational clustering are in fact what the polyspectra (bispectrum, trispectrum...etc.) are meant to measure.

Chiang, L Y

2005-01-01T23:59:59.000Z

50

Program on Technology Innovation: Formation of Large-Particle Ash in Coal-Fired Boilers Study  

Science Conference Proceedings (OSTI)

This project is a follow-on study of large particle ash (LPA) formation mechanisms in combustion systems equipped with selective catalytic reduction (SCR) catalyst systems for nitrogen oxide reduction. In an earlier study, the chemical and physical properties of LPA were examined, and potential origins were identified. LPA samples, along with fireside deposits and coals from selected utility boilers, were characterized in order to find the root cause or the origin of the LPA ...

2012-08-21T23:59:59.000Z

51

Program on Technology Innovation: Formation of Large Particle Ash in Coal-Fired Boilers  

Science Conference Proceedings (OSTI)

The objective of this project was to obtain a better understanding of the process that underlies the formation of large particle ash (LPA) in coal-fired boilers. As an approach, sample sets of coal, fireside ash deposits, and LPA were collected from selected boilers identified by the Electric Power Research Institute (EPRI) and were characterized using scanning electron microscopy (SEM) and x-ray microanalysis techniques. The coals were characterized to determine the abundance, size, and composition of t...

2010-02-08T23:59:59.000Z

52

EXTENDED STAR FORMATION IN THE INTERMEDIATE-AGE LARGE MAGELLANIC CLOUD STAR CLUSTER NGC 2209  

SciTech Connect

We present observations of the 1 Gyr old star cluster NGC 2209 in the Large Magellanic Cloud made with the GMOS imager on the Gemini South Telescope. These observations show that the cluster exhibits a main-sequence turnoff that spans a broader range in luminosity than can be explained by a single-aged stellar population. This places NGC 2209 amongst a growing list of intermediate-age (1-3 Gyr) clusters that show evidence for extended or multiple epochs of star formation of between 50 and 460 Myr in extent. The extended main-sequence turnoff observed in NGC 2209 is a confirmation of the prediction in Keller et al. made on the basis of the cluster's large core radius. We propose that secondary star formation is a defining feature of the evolution of massive star clusters. Dissolution of lower mass clusters through evaporation results in only clusters that have experienced secondary star formation surviving for a Hubble time, thus providing a natural connection between the extended main-sequence turnoff phenomenon and the ubiquitous light-element abundance ranges seen in the ancient Galactic globular clusters.

Keller, Stefan C.; Mackey, A. Dougal; Da Costa, Gary S. [Research School of Astronomy and Astrophysics, Australian National University, Canberra (Australia)

2012-12-10T23:59:59.000Z

53

SUPERGIANT SHELLS AND MOLECULAR CLOUD FORMATION IN THE LARGE MAGELLANIC CLOUD  

Science Conference Proceedings (OSTI)

We investigate the influence of large-scale stellar feedback on the formation of molecular clouds in the Large Magellanic Cloud (LMC). Examining the relationship between H I and {sup 12}CO(J = 1-0) in supergiant shells (SGSs), we find that the molecular fraction in the total volume occupied by SGSs is not enhanced with respect to the rest of the LMC disk. However, the majority of objects ({approx}70% by mass) are more molecular than their local surroundings, implying that the presence of a supergiant shell does on average have a positive effect on the molecular gas fraction. Averaged over the full SGS sample, our results suggest that {approx}12%-25% of the molecular mass in supergiant shell systems was formed as a direct result of the stellar feedback that created the shells. This corresponds to {approx}4%-11% of the total molecular mass of the galaxy. These figures are an approximate lower limit to the total contribution of stellar feedback to molecular cloud formation in the LMC, and constitute one of the first quantitative measurements of feedback-triggered molecular cloud formation in a galactic system.

Dawson, J. R.; Dickey, John M. [School of Mathematics and Physics, University of Tasmania, Sandy Bay Campus, Churchill Avenue, Sandy Bay, TAS 7005 (Australia)] [School of Mathematics and Physics, University of Tasmania, Sandy Bay Campus, Churchill Avenue, Sandy Bay, TAS 7005 (Australia); McClure-Griffiths, N. M. [Australia Telescope National Facility, CSIRO Astronomy and Space Science, Marsfield NSW 2122 (Australia)] [Australia Telescope National Facility, CSIRO Astronomy and Space Science, Marsfield NSW 2122 (Australia); Wong, T. [Astronomy Department, University of Illinois, Urbana, IL 61801 (United States)] [Astronomy Department, University of Illinois, Urbana, IL 61801 (United States); Hughes, A. [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117, Heidelberg (Germany)] [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117, Heidelberg (Germany); Fukui, Y. [Department of Physics and Astrophysics, Nagoya University, Chikusa-ku, Nagoya (Japan)] [Department of Physics and Astrophysics, Nagoya University, Chikusa-ku, Nagoya (Japan); Kawamura, A., E-mail: joanne.dawson@utas.edu.au [National Astronomical Observatory of Japan, Tokyo 181-8588 (Japan)

2013-01-20T23:59:59.000Z

54

Microstructural Modeling and Design of Rechargeable Lithium-Ion Batteries  

E-Print Network (OSTI)

. The cathode architectures and materials have a large influence on the performance of lithium-ion batteries battery design. The cathode of a lithium-ion battery is a large contributor to its overall performance power density and energy density of lithium-ion batteries. 1.3 Basic Ideal Cathode Structure

García, R. Edwin

55

Test results of lithium pool-air reaction suppression systems  

Science Conference Proceedings (OSTI)

Engineered reaction suppression systems were demonstrated to be effective in suppressing lithium pool-air reactions for lithium quantities up to 100 kg. Lithium pool-air reaction suppression system tests were conducted to evaluate suppression system effectiveness for potential use in fusion facilities in mitigating consequences of postulated lithium spills. Small-scale perforated and sacrificial cover plate suppression systems with delayed inert gas purging proved effective in controlling the lithium-air interaction for lithium quantities near 15 kg at initial temperatures up to 450/sup 0/C. A large-scale suppression system with a sacrificial cover, a diverter plate, an inert gas atmosphere, and remotely retrievable catch pans proved effective in controlling lithium pool-air interaction for a 100-kg lithium discharge at an initial temperature of 550/sup 0/C. This suppression system limited the maximum pool temperature to about 600/sup 0/C less than that expected for a similar lithium pool-air reaction without a suppression system. Lithium aerosol release from this large-scale suppression system was a factor of about 10,000 less than that expected for a lithium pool-air reaction with no suppression system. Remote retrieval techniques for lithium cleanup, such as (1) in-place lithium siphoning and overhead crane dismantling, and (2) lithium catch pan removal by use of an overhead crane, were demonstrated as part of this large-scale test.

Jeppson, D.W.

1987-02-01T23:59:59.000Z

56

Modulational instability, wave breaking and formation of large scale dipoles in the atmosphere  

E-Print Network (OSTI)

In the present Letter we use the Direct Numerical Simulation (DNS) of the Navier-Stokes equation for a two-phase flow (water and air) to study the dynamics of the modulational instability of free surface waves and its contribution to the interaction between ocean and atmosphere. If the steepness of the initial wave is large enough, we observe a wave breaking and the formation of large scale dipole structures in the air. Because of the multiple steepening and breaking of the waves under unstable wave packets, a train of dipoles is released and propagate in the atmosphere at a height comparable with the wave length. The amount of energy dissipated by the breaker in water and air is considered and, contrary to expectations, we observe that the energy dissipation in air is larger than the one in the water. Possible consequences on the wave modelling and on the exchange of aerosols and gases between air and water are discussed.

Iafrati, A; Onorato, M

2012-01-01T23:59:59.000Z

57

Modulational instability, wave breaking and formation of large scale dipoles in the atmosphere  

E-Print Network (OSTI)

In the present Letter we use the Direct Numerical Simulation (DNS) of the Navier-Stokes equation for a two-phase flow (water and air) to study the dynamics of the modulational instability of free surface waves and its contribution to the interaction between ocean and atmosphere. If the steepness of the initial wave is large enough, we observe a wave breaking and the formation of large scale dipole structures in the air. Because of the multiple steepening and breaking of the waves under unstable wave packets, a train of dipoles is released and propagate in the atmosphere at a height comparable with the wave length. The amount of energy dissipated by the breaker in water and air is considered and, contrary to expectations, we observe that the energy dissipation in air is larger than the one in the water. Possible consequences on the wave modelling and on the exchange of aerosols and gases between air and water are discussed.

A. Iafrati; A. Babanin; M. Onorato

2012-08-27T23:59:59.000Z

58

Formation of large-scale structures in ablative Kelvin-Helmholtz instability  

SciTech Connect

In this research, we studied numerically nonlinear evolutions of the Kelvin-Helmholtz instability (KHI) with and without thermal conduction, aka, the ablative KHI (AKHI) and the classical KHI (CKHI). The second order thermal conduction term with a variable thermal conductivity coefficient is added to the energy equation in the Euler equations in the AKHI to investigate the effect of thermal conduction on the evolution of large and small scale structures within the shear layer which separate the fluids with different velocities. The inviscid hyperbolic flux of Euler equation is computed via the classical fifth order weighted essentially nonoscillatory finite difference scheme and the temperature is solved by an implicit fourth order finite difference scheme with variable coefficients in the second order parabolic term to avoid severe time step restriction imposed by the stability of the numerical scheme. As opposed to the CKHI, fine scale structures such as the vortical structures are suppressed from forming in the AKHI due to the dissipative nature of the second order thermal conduction term. With a single-mode sinusoidal interface perturbation, the results of simulations show that the growth of higher harmonics is effectively suppressed and the flow is stabilized by the thermal conduction. With a two-mode sinusoidal interface perturbation, the vortex pairing is strengthened by the thermal conduction which would allow the formation of large-scale structures and enhance the mixing of materials. In summary, our numerical studies show that thermal conduction can have strong influence on the nonlinear evolutions of the KHI. Thus, it should be included in applications where thermal conduction plays an important role, such as the formation of large-scale structures in the high energy density physics and astrophysics.

Wang, L. F. [SMCE, China University of Mining and Technology, Beijing 100083 (China); CAPT, Peking University, Beijing 100871 (China) and LCP, Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); Department of Mathematics, Hong Kong Baptist University, Kowloon Tong (Hong Kong); Ye, W. H.; He, X. T. [CAPT, Peking University, Beijing 100871 (China) and LCP, Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); Department of Physics, Zhejiang University, Hangzhou 310027 (China); Don, Wai-Sun [Department of Mathematics, Hong Kong Baptist University, Kowloon Tong (Hong Kong); Sheng, Z. M. [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190 (China) and Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); Li, Y. J. [SMCE, China University of Mining and Technology, Beijing 100083 (China)

2010-12-15T23:59:59.000Z

59

Lithium Local Pseudopotential Using  

E-Print Network (OSTI)

Lithium Local Pseudopotential Using DFT Sergio Orozco Student Advisor: Chen Huang Faculty Mentor Lithium LPS Test Lithium LPS #12;Density Functional Theory (DFT) Successful quantum mechanical approach (1979) #12;Building LPS for Lithium Create a LPS using NLPS density for Lithium Test LPS by comparing

Petta, Jason

60

Vessel-Spanning Bubble Formation in K-Basin Sludge Stored in Large-Diameter Containers  

DOE Green Energy (OSTI)

The K Basin sludge to be retrieved and stored in the large diameter containers (LDCs) contains some fraction of uranium metal that generates hydrogen gas, which introduces potential upset conditions. One postulated upset condition is a rising plug of sludge supported by a hydrogen bubble that is driven into the vent filters at the top of the container. In laboratory testing with actual K Basin sludge, vessel-spanning bubbles that lifted plugs of sludge were observed in 3-inch-diameter graduated cylinders. This report presents a series of analytical assessments performed by the Pacific Northwest National Laboratory to address the potential for the generation of a vessel spanning bubble in the LDCs. The assessments included the development and evaluation of static and dynamic bubble formation models over the projected range of K Basin sludge physical properties. Additionally, the theory of circular plates was extrapolated to examine conditions under which a plug of sludge would collapse and release a spanning bubble.

Terrones, Guillermo; Gauglitz, Phillip A.

2002-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "large format lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

"Buried-Anode" Technology Leads to Advanced Lithium Batteries (Fact Sheet)  

DOE Green Energy (OSTI)

A technology developed at the National Renewable Energy Laboratory has sparked a start-up company that has attracted funding from the Advanced Projects Research Agency-Energy (ARPA-E). Planar Energy, Inc. has licensed NREL's "buried-anode" technology and put it to work in solid-state lithium batteries. The company claims its large-format batteries can achieve triple the performance of today's lithium-ion batteries at half the cost, and if so, they could provide a significant boost to the emerging market for electric and plug-in hybrid vehicles.

Not Available

2011-02-01T23:59:59.000Z

62

Review of lithium-ion technology  

DOE Green Energy (OSTI)

The first practical use of graphite intercalation compounds (GIC) as battery anodes was reported in a 1981 patent by Basu in which a molten salt cell was described having a negative electrode that consisted of lithium intercalated in graphite. A second patent by Basu, issued in 1983, described an ambient temperature rechargeable system which also utilized lithium intercalated in graphite as the anode. Work in this area progressed at a low level, however, until interest was sparked in 1990 when Sony Corporation announced a new ``lithium-ion`` rechargeable cell containing a lithium ion intercalating carbon anode. These cells have the advantages of metallic lithium systems; i.e., high energy density, high voltage, and light weight, without the disadvantages of dendrite formation on charge and the safety considerations associated with metallic lithium. Materials other than carbon have been studied as intercalation anodes. Examples are Fe{sub 2}O{sub 3}, WO{sub 2} and TiS{sub 2}. Although these alternate anode materials are of interest academically and for specialty applications, they do not hold much promise for widespread general use due to their increased weight and lower cell voltage. Studies of cathode materials for lithium-ion systems have centered on the transition metal chalcogenides. A number of these materials are capable of reversibly intercalating lithium ions at a useful potential versus lithium. Both organic liquids and polymers are candidate electrolytes for this technology.

Levy, S.C.; Cieslak, W.R.

1993-12-31T23:59:59.000Z

63

STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES  

E-Print Network (OSTI)

material prepared by molten- salt synthesis. Journal ofthe sodium for lithium in a molten salt. 13 The large ionic

Wilcox, James D.

2010-01-01T23:59:59.000Z

64

Lithium Balance | Open Energy Information  

Open Energy Info (EERE)

navigation, search Name Lithium Balance Place Copenhagen, Denmark Product Lithium ion battery developer. References Lithium Balance1 LinkedIn Connections CrunchBase Profile No...

65

Lithium Iron Phosphate Composites for Lithium Batteries | Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

Lithium Iron Phosphate Composites for Lithium Batteries Technology available for licensing: Inexpensive, electrochemically active phosphate compounds with high functionality for...

66

Molten salt lithium cells  

DOE Patents (OSTI)

Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400 to 500/sup 0/C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell which may be operated at temperatures between about 100 to 170/sup 0/C. The cell is comprised of an electrolyte, which preferably includes lithium nitrate, and a lithium or lithium alloy electrode.

Raistrick, I.D.; Poris, J.; Huggins, R.A.

1980-07-18T23:59:59.000Z

67

Molten salt lithium cells  

DOE Patents (OSTI)

Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

Raistrick, Ian D. (Menlo Park, CA); Poris, Jaime (Portola Valley, CA); Huggins, Robert A. (Stanford, CA)

1983-01-01T23:59:59.000Z

68

Molten salt lithium cells  

DOE Patents (OSTI)

Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

Raistrick, Ian D. (Menlo Park, CA); Poris, Jaime (Portola Valley, CA); Huggins, Robert A. (Stanford, CA)

1982-02-09T23:59:59.000Z

69

Ab initio Molecular Dynamics Simulations of the Initial Stages of Solid-electrolyte Interphase Formation on Lithium Ion Battery Graphitic Anodes  

E-Print Network (OSTI)

The decomposition of ethylene carbonate (EC) during the initial growth of solid-electrolyte interphase (SEI) films at the solvent-graphitic anode interface is critical to lithium ion battery operations. Ab initio molecular dynamics simulations of explicit liquid EC/graphite interfaces are conducted to study these electrochemical reactions. We show that carbon edge terminations are crucial at this stage, and that achievable experimental conditions can lead to surprisingly fast EC breakdown mechanisms, yielding decomposition products seen in experiments but not previously predicted.

Leung, Kevin; 10.1039/B925853A

2010-01-01T23:59:59.000Z

70

Cyclic plasticity and shakedown in high-capacity electrodes of lithium-ion batteries Laurence Brassart, Kejie Zhao, Zhigang Suo  

E-Print Network (OSTI)

Cyclic plasticity and shakedown in high-capacity electrodes of lithium-ion batteries Laurence for lithium-ion batteries. Upon absorbing a large amount of lithium, the electrode swells greatly rights reserved. 1. Introduction Rechargeable lithium-ion batteries are energy-storage systems of choice

Suo, Zhigang

71

Proceedings ol'tlie 1999 Particle Accelerator Conl'erencc,New York, 1999 THE DESIGN OF A IJQUID LITHIUM LENS  

E-Print Network (OSTI)

LITHIUM LENS FOR A MUON COLLIDER* A. Hassancin, J. Norem", C. Reed, ANL; R. Palmer, BNL; G. Silvestrov, T a multistage liquid lithium lens. This system uses a large (-0.5 MA) pulsed current through liquid lithium to I'ociis the bcam while energy loss in the lithium rcmovcs iiiomeiitmii which will lie replaced by linacs. The beam

Harilal, S. S.

72

Intermetallic insertion anodes for lithium batteries.  

DOE Green Energy (OSTI)

Binary intermetallic compounds containing lithium, or lithium alloys, such as Li{sub x}Al, Li{sub x}Si and Li{sub x}Sn have been investigated in detail in the past as negative electrode materials for rechargeable lithium batteries. It is generally acknowledged that the major limitation of these systems is the large volumetric expansion that occurs when lithium reacts with the host metal. Such large increases in volume limit the practical use of lithium-tin electrodes in electrochemical cells. It is generally recognized that metal oxide electrodes, MO{sub y}, in lithium-ion cells operate during charge and discharge by means of a reversible lithium insertion/extraction process, and that the cells offer excellent cycling behavior when the crystallographic changes to the unit cell parameters and unit cell volume of the Li{sub x}MO{sub y} electrode are kept to a minimum. An excellent example of such an electrode is the spinel Li{sub 4}Ti{sub 5}O{sub 12}, which maintains its cubic symmetry without any significant change to the lattice parameter (and hence unit cell volume) during lithium insertion to the rock-salt composition Li{sub 7}Ti{sub 5}O{sub 12}. This spinel electrode is an example of a ternary Li{sub x}MO{sub y} system in which a binary MO{sub y} framework provides a stable host structure for lithium. With this approach, the authors have turned their attention to exploring ternary intermetallic systems Li{sub x}MM{prime} in the hope of finding a system that is not subject to the high volumetric expansion that typifies many binary systems. In this paper, the authors present recent data of their investigations of lithium-copper-tin and lithium-indium-antimonide electrodes in lithium cells. The data show that lithium can be inserted reversibly into selected intermetallic compounds with relatively small expansion of the lithiated intermetallic structures.

Thackeray, M. M.; Vaughey, J.; Johnson, C. S.; Kepler, K. D.

1999-11-12T23:59:59.000Z

73

Inhibition of Lithium Dendrites by Fumed Silica-Based Composite Electrolytes  

E-Print Network (OSTI)

Inhibition of Lithium Dendrites by Fumed Silica-Based Composite Electrolytes Xiang-Wu Zhang State University, Raleigh, North Carolina 27695-7905, USA Lithium dendrite formation is investigated via in situ microscopy in a liquid electrolyte containing polyethylene glycol dimethyl ether lithium bis

Khan, Saad A.

74

Radar Echo Structure, Air Motion and Hail Formation in a Large Stationary Multicellular Thunderstorm  

Science Conference Proceedings (OSTI)

Observations from aircraft, Doppler radars, surface mesonetwork, upper air network and surveillance radar are used to describe the structure and evolution of a large rain and hailstorm that occurred on 22 June 1976 in northeastern Colorado. In ...

L. J. Miller; J. C. Fankhauser

1983-10-01T23:59:59.000Z

75

Layered carbon lattices and their influence on the nature of lithium bonding in lithium intercalated carbon anodes.  

DOE Green Energy (OSTI)

Ab initio molecular orbital calculations have been used to investigate the nature of lithium bonding in stage 1 lithium intercalated carbon anodes. This has been approximated by using layered carbon lattices such as coronene, (C{sub 24}H{sub 12}),anthracene, and anthracene substituted with boron. With two coronene carbon lattices forming a sandwich structure and intercalated with either 2, 3, 4 or 6 six lithiums, it has been found that the predominant mode of bonding for the lithium is at the carbon edge sites as opposed to bonding at interior carbon hexagon sites. Formation of all structures is thermodynamically allowed except for the two lithium case in which there is repulsion between the lattices. The optimized structure with six lithiums gives a reasonable approximation for the stage 1 lithium intercalated carbon anode. In this case the lithium to carbon ratio is 1:8 versus 1:6 occurring in the stage 1 graphite. The coronene lattices are eclipsed with a separation of 4.03 {angstrom}. However, there is a slight ruffling of the lattice. Separation between adjacent lithiums is either 3.32 {angstrom} or 2.98 {angstrom}. Even though the separation between lithiums is very small, composition of the molecular orbitals suggests that there is no lithium cluster formation. The highest occupied molecular orbitals are composed of a combination of lithium and carbon orbitals. In contrast, in the C{sub 60} fullerene lattice with three and five lithiums intercalated, there are molecular orbitals composed only of lithiums, indicative of cluster formation. For anthracene and boron substituted anthracene, lithium bonding takes place within the carbon hexagon sites. The separation between lithiums in a sandwich type structure with two anthracenes in the eclipsed conformation is 5.36 {angstrom}. The effect of boron in a carbon lattice has been evaluated by comparing the difference in behavior of a single anthracene lattice reacting with a dilithium cluster as compared to a 1, 4, 5, 8-tetraboroanthracene lattice. The effect of boron substitution is to increases lattice flexibility by allowing the lattice to twist and lithium to bond at adjacent hexagon sites. The thermodynamic feasibility of the reaction between the dilithium cluster and the boron substituted anthracene lattice is enhanced.

Scanlon, L.G.

1998-05-27T23:59:59.000Z

76

electrodes in lithium ion batteries  

E-Print Network (OSTI)

Nickel oxide (NiO) nanotubes have been produced for the first time via a template processing method. The synthesis involved a two step chemical reaction in which nickel hydroxide (Ni(OH)2) nanotubes were firstly formed within the walls of an anodic aluminium oxide (AAO) template. The template was then dissolved away using concentrated NaOH, and the freed nanotubes were converted to NiO by heat treatment in air at 350 ? C. Individual nanotubes measured 60 ?m in length with a 200 nm outer diameter and a wall thickness of 20–30 nm. The NiO nanotube powder was used in Li-ion cells for assessment of the lithium storage ability. Preliminary testing indicates that the cells demonstrate controlled and sustainable lithium diffusion after the formation of an SEI. Reversible capacities in the 300 mAh g ?1 range were typical.

S. A. Needham; G. X. Wang; H. K. Liu

2006-01-01T23:59:59.000Z

77

Method of recycling lithium borate to lithium borohydride through diborane  

DOE Patents (OSTI)

This invention provides a method for the recycling of lithium borate to lithium borohydride which can be reacted with water to generate hydrogen for utilization as a fuel. The lithium borate by-product of the hydrogen generation reaction is reacted with hydrogen chloride and water to produce boric acid and lithium chloride. The boric acid and lithium chloride are converted to lithium borohydride through a diborane intermediate to complete the recycle scheme.

Filby, Evan E. (Rigby, ID)

1976-01-01T23:59:59.000Z

78

2012 Jonathan G. Lange IMPROVING LITHIUM-ION BATTERY POWER AND ENERGY DENSITIES USING  

E-Print Network (OSTI)

1 ©2012 Jonathan G. Lange #12;1 IMPROVING LITHIUM-ION BATTERY POWER AND ENERGY DENSITIES USING ABSTRACT Lithium-ion batteries are commonly used as energy storage devices in a variety of applications. The cathode architectures and materials have a large influence on the performance of lithium-ion batteries

Braun, Paul

79

Nanostructured lithium-aluminum alloy electrodes for lithium-ion batteries.  

DOE Green Energy (OSTI)

Electrodeposited aluminum films and template-synthesized aluminum nanorods are examined as negative electrodes for lithium-ion batteries. The lithium-aluminum alloying reaction is observed electrochemically with cyclic voltammetry and galvanostatic cycling in lithium half-cells. The electrodeposition reaction is shown to have high faradaic efficiency, and electrodeposited aluminum films reach theoretical capacity for the formation of LiAl (1 Ah/g). The performance of electrodeposited aluminum films is dependent on film thickness, with thicker films exhibiting better cycling behavior. The same trend is shown for electron-beam deposited aluminum films, suggesting that aluminum film thickness is the major determinant in electrochemical performance regardless of deposition technique. Synthesis of aluminum nanorod arrays on stainless steel substrates is demonstrated using electrodeposition into anodic aluminum oxide templates followed by template dissolution. Unlike nanostructures of other lithium-alloying materials, the electrochemical performance of these aluminum nanorod arrays is worse than that of bulk aluminum.

Hudak, Nicholas S.; Huber, Dale L.

2010-12-01T23:59:59.000Z

80

LARGE-SCALE STAR-FORMATION-DRIVEN OUTFLOWS AT 1 < z < 2 IN THE 3D-HST SURVEY  

SciTech Connect

We present evidence of large-scale outflows from three low-mass (log(M {sub *}/M {sub Sun }) {approx} 9.75) star-forming (SFR > 4 M {sub Sun} yr{sup -1}) galaxies observed at z = 1.24, z = 1.35, and z = 1.75 in the 3D-HST Survey. Each of these galaxies is located within a projected physical distance of 60 kpc around the sight line to the quasar SDSS J123622.93+621526.6, which exhibits well-separated strong (W {sup {lambda}2796} {sub r} {approx}> 0.8 A) Mg II absorption systems matching precisely to the redshifts of the three galaxies. We derive the star formation surface densities from the H{alpha} emission in the WFC3 G141 grism observations for the galaxies and find that in each case the star formation surface density well exceeds 0.1 M {sub Sun} yr{sup -1} kpc{sup -2}, the typical threshold for starburst galaxies in the local universe. From a small but complete parallel census of the 0.65 < z < 2.6 galaxies with H {sub 140} {approx}< 24 proximate to the quasar sight line, we detect Mg II absorption associated with galaxies extending to physical distances of 130 kpc. We determine that the W{sub r} > 0.8 A Mg II covering fraction of star-forming galaxies at 1 < z < 2 may be as large as unity on scales extending to at least 60 kpc, providing early constraints on the typical extent of starburst-driven winds around galaxies at this redshift. Our observations additionally suggest that the azimuthal distribution of W{sub r} > 0.4 A Mg II absorbing gas around star-forming galaxies may evolve from z {approx} 2 to the present, consistent with recent observations of an increasing collimation of star-formation-driven outflows with time from z {approx} 3.

Lundgren, Britt F.; Van Dokkum, Pieter; Bezanson, Rachel; Momcheva, Ivelina; Nelson, Erica; Skelton, Rosalind E.; Wake, David; Whitaker, Katherine [Astronomy Department, Yale University, New Haven, CT 06511 (United States); Brammer, Gabriel [European Southern Observatory, Alonso de Cordova 3107, Casilla 19001, Vitacura, Santiago (Chile); Franx, Marijn; Fumagalli, Mattia; Labbe, Ivo; Patel, Shannon [Leiden Observatory, Leiden University, NL-2300 RA Leiden (Netherlands); Da Cunha, Elizabete; Rix, Hans Walter; Schmidt, Kasper [Max Planck Institute for Astronomy (MPIA), Koenigstuhl 17, D-69117, Heidelberg (Germany); Erb, Dawn K. [Department of Physics, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201 (United States); Fan Xiaohui [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Kriek, Mariska [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Marchesini, Danilo [Physics and Astronomy Department, Tufts University, Medford, MA 02155 (United States); and others

2012-11-20T23:59:59.000Z

Note: This page contains sample records for the topic "large format lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Lithium purification technique  

DOE Patents (OSTI)

A method for purifying liquid lithium to remove unwanted quantities of nitrogen or aluminum. The method involves precipitation of aluminum nitride by adding a reagent to the liquid lithium. The reagent will be either nitrogen or aluminum in a quantity adequate to react with the unwanted quantity of the impurity to form insoluble aluminum nitride. The aluminum nitride can be mechanically separated from the molten liquid lithium.

Keough, R.F.; Meadows, G.E.

1984-01-10T23:59:59.000Z

82

Lithium purification technique  

DOE Patents (OSTI)

A method for purifying liquid lithium to remove unwanted quantities of nitrogen or aluminum. The method involves precipitation of aluminum nitride by adding a reagent to the liquid lithium. The reagent will be either nitrogen or aluminum in a quantity adequate to react with the unwanted quantity of the impurity to form insoluble aluminum nitride. The aluminum nitride can be mechanically separated from the molten liquid lithium.

Keough, Robert F. (Richland, WA); Meadows, George E. (Richland, WA)

1985-01-01T23:59:59.000Z

83

Optimization of Lithium Titanate Electrodes  

NLE Websites -- All DOE Office Websites (Extended Search)

Optimization of Lithium Titanate Electrodes Title Optimization of Lithium Titanate Electrodes Publication Type Journal Article Year of Publication 2006 Authors Christensen, John,...

84

Lithium-Based Electrochromic Mirrors  

NLE Websites -- All DOE Office Websites (Extended Search)

Lithium-Based Electrochromic Mirrors Title Lithium-Based Electrochromic Mirrors Publication Type Conference Paper LBNL Report Number LBNL-52870 Year of Publication 2003 Authors...

85

Effect of anode film resistance on the charge/discharge capacity of a lithium-ion battery  

DOE Green Energy (OSTI)

Lithium-ion batteries are prone to failure, because both their capacity and rate capability decrease with cycling. Side reactions, which decrease the cell's cyclable lithium content, can be responsible for capacity fade. An increase in cyclable lithium content is also possible, but is limited by the initial overall lithium content. Formation of a solid electrolyte interphase film on the carbonaceous anode not only consumes cyclable lithium, but also increases the anode resistance, thus reducing the rate capability of the cell, as demonstrated via computer simulation of a lithium-ion cell. Simulations also suggest that the use of cutoff potentials may not effectively prevent undesired irreversible side reactions on overcharge or overdischarge.

Christensen, J.; Newman, J.

2003-04-10T23:59:59.000Z

86

Anomalous Discharge Product Distribution in Lithium-Air Cathodes: A Three Dimensional View  

SciTech Connect

Using neutron tomographic imaging we report for the first time three dimensional spatial distribution of lithium product distribution in electrochemically discharged Lithium-Air cathodes. Neutron imaging finds a non-uniform lithium product distribution across the electrode thickness; the lithium species concentration being higher near the edges of the Li-air electrode and relatively uniform in the center of the electrode. The experimental neutron images were analyzed in context of results obtained from 3D modeling of the spatial lithium product distribution using a kinetically coupled diffusion based transport model that accounts for the dynamical reaction rate dependence on the discharge product formation, porosity changes and mass transfer.

Nanda, Jagjit [ORNL; Allu, Srikanth [ORNL; Bilheux, Hassina Z [ORNL; Dudney, Nancy J [ORNL; Pannala, Sreekanth [ORNL; Veith, Gabriel M [ORNL; Voisin, Sophie [ORNL; Walker, Lakeisha MH [ORNL; Archibald, Richard K [ORNL

2012-01-01T23:59:59.000Z

87

Lithium Diisopropylamide-Mediated Ortholithiations: Lithium Chloride Catalysis  

E-Print Network (OSTI)

Lithium Diisopropylamide-Mediated Ortholithiations: Lithium Chloride Catalysis Lekha Gupta, 2008 Ortholithiations of a range of arenes mediated by lithium diisopropylamide (LDA) in THF at -78 °C protocols with unpurified commercial samples of n-butyl- lithium to prepare LDA or commercially available

Collum, David B.

88

Lithium Hexamethyldisilazide: A View of Lithium Ion Solvation  

E-Print Network (OSTI)

Lithium Hexamethyldisilazide: A View of Lithium Ion Solvation through a Glass-Bottom Boat BRETT L and reactivities, we were drawn to lithium hexamethyldisilazide (LiHMDS; (Me3Si)2NLi) by its promi- nence principles of lithium ion coordination chemistry.2 Understanding how solvation influences organolithium

Collum, David B.

89

Phosphazene Based Additives for Improvement of Safety and Battery Lifetimes in Lithium-Ion Batteries  

DOE Green Energy (OSTI)

There need to be significant improvements made in lithium-ion battery technology, principally in the areas of safety and useful lifetimes to truly enable widespread adoption of large format batteries for the electrification of the light transportation fleet. In order to effect the transition to lithium ion technology in a timely fashion, one promising next step is through improvements to the electrolyte in the form of novel additives that simultaneously improve safety and useful lifetimes without impairing performance characteristics over wide temperature and cycle duty ranges. Recent efforts in our laboratory have been focused on the development of such additives with all the requisite properties enumerated above. We present the results of the study of novel phosphazene based electrolytes additives.

Mason K Harrup; Kevin L Gering; Harry W Rollins; Sergiy V Sazhin; Michael T Benson; David K Jamison; Christopher J Michelbacher

2011-10-01T23:59:59.000Z

90

AN ABUNDANCE OF LITHIUM  

E-Print Network (OSTI)

Keith Evans, a geologist by profession, first became involved in the lithium business in the early 1970’s when, on behalf of Selection Trust Ltd., was asked to evaluate the future potential of Bikita Minerals in what, at that time, was Southern Rhodesia (later Zimbabwe). Selection Trust was the majority owner of the operation which, prior to the imposition of United Nations sanctions, had been the dominant producer of lithium ores for direct usage in the glass and ceramics industry. Subsequently, he joined Lithium Corporation of America, the then leading lithium chemical producer and later moved to Amax Exploration. On behalf of Amax and a Chilean partner he negotiated with Corfo, a Chilean government entity, the rights to evaluate and develop that part of the Salar de Atacama that had not been leased to the Foote Mineral Company. He was responsible for all aspects of the evaluation but when Amax decided not to proceed with the project it was acquired by Sociedad Quimica y Minera (SQM) and the company is now the world’s largest lithium chemicals producer. Throughout his career in the lithium industry it was his responsibility to monitor industry developments particularly in respect of new resources and he has continued as a consultant in a In 1976 a National Research Council Panel estimated that Western World lithium reserves and resources totaled 10.6 million tonnes as elemental lithium. Subsequent discoveries, particularly in brines in the southern Andes and the plateaus of western China and Tibet have increased the tonnages significantly. Geothermal brines and lithium bearing clays add to the total. This current estimate totals 28.4 million tonnes Li equivalent to more than 150.0 million tonnes of lithium carbonate of which nearly 14.0 million tonnes lithium (about 74.0 million tonnes of carbonate) are at active or proposed operations. This can be compared with current demand for lithium chemicals which approximates to 84,000 tonnes as lithium carbonate equivalents (16,000 tonnes Li). Concerns regarding lithium availability for hybrid or electric vehicle batteries or other foreseeable applications are unfounded.

R. Keith Evans

2008-01-01T23:59:59.000Z

91

Cathode material for lithium batteries  

DOE Patents (OSTI)

A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

Park, Sang-Ho; Amine, Khalil

2013-07-23T23:59:59.000Z

92

Lithium metal oxide electrodes for lithium batteries  

DOE Patents (OSTI)

An uncycled electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula Li.sub.(2+2x)/(2+x)M'.sub.2x/(2+x)M.sub.(2-2x)/(2+x)O.sub.2-.delta., in which 0.ltoreq.x<1 and .delta. is less than 0.2, and in which M is a non-lithium metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. Methods of preconditioning the electrodes are disclosed as are electrochemical cells and batteries containing the electrodes.

Thackeray, Michael M. (Naperville, IL); Kim, Jeom-Soo (Naperville, IL); Johnson, Christopher S. (Naperville, IL)

2008-01-01T23:59:59.000Z

93

Improving lithium-ion battery power and energy densities using novel cathode architectures and materials.  

E-Print Network (OSTI)

??Lithium-ion batteries are commonly used as energy storage devices in a variety of applications. The cathode architectures and materials have a large influence on the… (more)

Lange, Jonathan

2012-01-01T23:59:59.000Z

94

3D thermal-electrochemical lithium-ion battery computational modeling.  

E-Print Network (OSTI)

??The thesis presents a modeling framework for simulating three dimensional effects in lithium-ion batteries. This is particularly important for understanding the performance of large scale… (more)

Gerver, Rachel Ellen

2010-01-01T23:59:59.000Z

95

Block copolymer electrolytes for lithium batteries  

E-Print Network (OSTI)

Ethylene Carbonate for Lithium Ion Battery Use. Journal oflithium atoms in lithium-ion battery electrolyte. Chemicalcapacity fading of a lithium-ion battery cycled at elevated

Hudson, William Rodgers

2011-01-01T23:59:59.000Z

96

Transporting & Shipping Hazardous Materials at LBNL: Lithium...  

NLE Websites -- All DOE Office Websites (Extended Search)

Lithium Batteries Lithium batteries are considered hazardous materials when shipped by air. Notify Shipping for any shipments that include lithium batteries. Note: If you need to...

97

Solid Solution Lithium Alloy Cermet Anodes  

E-Print Network (OSTI)

Solid Solution Lithium Alloy Cermet Anodes Thomas J.94720 USA Abstract Lithium-magnesium solid solution alloysHeating mixtures of lithium nitride and magnesium provides a

Richardson, Thomas J.; Chen, Guoying

2006-01-01T23:59:59.000Z

98

Lithium Insertion Chemistry of Some Iron Vanadates  

E-Print Network (OSTI)

in A. Nazri, G.Pistoia (Eds. ), Lithium batteries, Science &structure materials in lithium cells, for a lower limitLithium Insertion Chemistry of Some Iron Vanadates Sébastien

Patoux, Sebastien; Richardson, Thomas J.

2008-01-01T23:59:59.000Z

99

Two Studies Reveal Details of Lithium-Battery Function  

NLE Websites -- All DOE Office Websites (Extended Search)

Two Studies Reveal Details of Lithium-Battery Function Print Two Studies Reveal Details of Lithium-Battery Function Print Our way of life is deeply intertwined with battery technologies that have enabled a mobile revolution powering cell phones, laptops, medical devices, and cars. As conventional lithium-ion batteries approach their theoretical energy-storage limits, new technologies are emerging to address the long-term energy-storage improvements needed for mobile systems, electric vehicles in particular. Battery performance depends on the dynamics of evolving electronic and chemical states that, despite advances in material synthesis and structural probes, remain elusive and largely unexplored. At Beamlines 8.0.1 and 9.3.2, researchers studied lithium-ion and lithium-air batteries, respectively, using soft x-ray spectroscopy techniques. The detailed information they obtained about the evolution of electronic and chemical states will be indispensable for understanding and optimizing better battery materials.

100

Two Studies Reveal Details of Lithium-Battery Function  

NLE Websites -- All DOE Office Websites (Extended Search)

Two Studies Reveal Details of Lithium-Battery Function Print Two Studies Reveal Details of Lithium-Battery Function Print Our way of life is deeply intertwined with battery technologies that have enabled a mobile revolution powering cell phones, laptops, medical devices, and cars. As conventional lithium-ion batteries approach their theoretical energy-storage limits, new technologies are emerging to address the long-term energy-storage improvements needed for mobile systems, electric vehicles in particular. Battery performance depends on the dynamics of evolving electronic and chemical states that, despite advances in material synthesis and structural probes, remain elusive and largely unexplored. At Beamlines 8.0.1 and 9.3.2, researchers studied lithium-ion and lithium-air batteries, respectively, using soft x-ray spectroscopy techniques. The detailed information they obtained about the evolution of electronic and chemical states will be indispensable for understanding and optimizing better battery materials.

Note: This page contains sample records for the topic "large format lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Lithium Ion Accomplishments  

NLE Websites -- All DOE Office Websites (Extended Search)

Lithium ion Battery Commercialization Lithium ion Battery Commercialization Johnson Controls-Saft Advanced Power Solutions, of Milwaukee, Wisconsin: Johnson Controls-Saft (JCS) will supply lithium-ion batteries to Mercedes for their S Class Hybrid to be introduced in October 2009. Technology developed with DOE support (the VL6P cell) will be used in the S Class battery. In May 2006, the Johnson Controls-Saft Joint Venture was awarded a 24 month $14.4 million contract by the DOE/USABC to develop a 40kW Li ion HEV battery system offering improved safety, low temperature performance, and cost. JCS has reported a 40% cost reduction of the 40kW system being developed in their DOE/USABC contract while maintaining performance. Lithium Ion Battery Material Commercialization Argonne National Laboratory has licensed cathode materials and associated processing

102

Printable lithium batteries.  

E-Print Network (OSTI)

??Printable lithium iron phosphate (LiFePO4) cathodes and porous aerogel / polymer separators have been designed, constructed, and tested. The cathodes consist of LiFePO4, PVDF binder,… (more)

Fenton, Kyle

2011-01-01T23:59:59.000Z

103

Lithium battery management system  

SciTech Connect

Provided is a system for managing a lithium battery system having a plurality of cells. The battery system comprises a variable-resistance element electrically connected to a cell and located proximate a portion of the cell; and a device for determining, utilizing the variable-resistance element, whether the temperature of the cell has exceeded a predetermined threshold. A method of managing the temperature of a lithium battery system is also included.

Dougherty, Thomas J. (Waukesha, WI)

2012-05-08T23:59:59.000Z

104

APPARATUS FOR THE PRODUCTION OF LITHIUM METAL  

DOE Patents (OSTI)

Methods and apparatus for the production of high-purity lithium from lithium halides are described. The apparatus is provided for continuously contacting a molten lithium halide with molten barium, thereby forming lithium metal and a barium halide, establishing separate layers of these reaction products and unreacted barium and lithium halide, and continuously withdrawing lithium and barium halide from the reaction zone. (AEC)

Baker, P.S.; Duncan, F.R.; Greene, H.B.

1961-08-22T23:59:59.000Z

105

Computer-Aided Optimization of Macroscopic Design Factors for Lithium-Ion Cell Performance and Life (Presentation)  

DOE Green Energy (OSTI)

Electric-drive vehicles enabled by power- and energy-dense batteries promise to improve vehicle efficiency and help reduce society's dependence on fossil fuels. Next generation plug-in hybrid vehicles and battery electric vehicles may also enable vehicles to be powered by electricity generated from clean, renewable resources; however, to increase the commercial viability of such vehicles, the cost, performance and life of the vehicles batteries must be further improved. This work illustrates a virtual design process to optimize the performance and life of large-format lithium ion batteries. Beginning with material-level kinetic and transport properties, the performance and life of multiple large-format cell designs are evaluated, demonstrating the impact of macroscopic design parameters such as foil thickness, tab location, and cell size and shape under various cycling conditions. Challenges for computer-aided engineering of large-format battery cells, such as competing requirements and objectives, are discussed.

Smith, K.; Kim, G. H.; Pesaran, A.

2010-04-01T23:59:59.000Z

106

LITHIUM LITERATURE REVIEW: LITHIUM'S PROPERTIES AND INTERACTIONS  

Office of Scientific and Technical Information (OSTI)

HEDL-TME 78-15 HEDL-TME 78-15 uc-20 LITHIUM LITERATURE REVIEW: LITHIUM'S PROPERTIES AND INTERACTIONS Hanf ord Engineering Development Laboratory -~ - - , . .. . D.W. Jeppson J.L. Ballif W.W. Yuan B.E. Chou - - - . - . - -- r - N O T l C E n ~ h u mpon w prepared as an account of work iponrored by the United States Government. Neither the Unitcd States nor the United Stater Department of Energy. nor any of their employees, nor any of then contractor^, subcontractors. or their employees, maker any warranty, cxprcu or Implied. or anumcs any legal liability or rcrponabllity for the accuracy. cornplctcncs or uvfulnes of any information. apparatus, product or p r o a s ditclorcd. or rcpments that its u s would not infringe pnvatcly owned nghts. April 1978 HANFORD ENGINEERING DEVELOPMENT LABORATORY

107

Lithium Methyl Carbonate as a Reaction Product of Metallic Lithium and Dimethyl Carbonate  

E-Print Network (OSTI)

of chemically synthesized lithium methylcarbonate (CH 3 OCOmolecular structures of lithium methyl carbonate (CH 3 OCO 2FTIR study also suggests that lithium methyl carbonate has

Zhuang, Guorong V.; Yang, Hui; Ross Jr., Philip N.; Xu, Kang; Jow, T. Richard

2005-01-01T23:59:59.000Z

108

Rechargeable thin-film lithium batteries  

SciTech Connect

Rechargeable thin-film batteries consisting of lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have recently been developed. The batteries, which are typically less than 6-{mu}m thick, can be fabricated to any specified size, large or small, onto a variety of substrates including ceramics, semiconductors, and plastics. The cells that have been investigated include Li-TiS{sub 2}, Li-V{sub 2}O{sub 5}, and Li-Li{sub x}Mn{sub 2}O{sub 4}, with open circuit voltages at full charge of about 2.5, 3.6, and 4.2, respectively. The development of these batteries would not have been possible without the discovery of a new thin-film lithium electrolyte, lithium phosphorus oxynitride, that is stable in contact with metallic lithium at these potentials. Deposited by rf magnetron sputtering of Li{sub 3}PO{sub 4} in N{sub 2}, this material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46} and a conductivity at 25{degrees}C of 2 {mu}S/cm. The maximum practical current density obtained from the thin-film cells is limited to about 100 {mu}A/cm{sup 2} due to a low diffusivity of Li{sup +} ions in the cathodes. In this work, the authors present a short review of their work on rechargeable thin-film lithium batteries.

Bates, J.B.; Gruzalski, G.R.; Dudney, N.J.; Luck, C.F.; Yu, Xiaohua

1993-08-01T23:59:59.000Z

109

It's Elemental - The Element Lithium  

NLE Websites -- All DOE Office Websites (Extended Search)

(Helium) The Periodic Table of Elements Next Element (Beryllium) Beryllium The Element Lithium Click for Isotope Data 3 Li Lithium 6.941 Atomic Number: 3 Atomic Weight: 6.941...

110

Phostech Lithium | Open Energy Information  

Open Energy Info (EERE)

Phostech Lithium Jump to: navigation, search Name Phostech Lithium Place St-Bruno-de-Montarville, Quebec, Canada Zip J3V 6B7 Sector Hydro Product String representation "Exclusive...

111

Lithium Polarization Spectroscopy: Making Precision Plasma Current Measurements in the DIII-D National Fusion Facility  

SciTech Connect

Due to several favorable atomic properties (including a simple spectral structure, the existence of a visible resonance line, large excitation cross section, and ease of beam formation), beams of atomic lithium have been used for many years to diagnose various plasma parameters. Using techniques of active (beam-based) spectroscopy, lithium beams can provide localized measurements of plasma density, ion temperature and impurity concentration, plasma fluctuations, and intrinsic magnetic fields. In this paper we present recent results on polarization spectroscopy from the LIBEAM diagnostic, a 30 keV, multi-mA lithium beam system deployed on the DIII-D National Fusion Facility tokamak. In particular, by utilizing the Zeeman splitting and known polarization characteristics of the collisionally excited 670.8 nm Li resonance line we are able to measure accurately the spatio-temporal dependence of the edge current density, a parameter of basic importance to the stability of high performance tokamaks. We discuss the basic atomic beam performance, spectral lineshape filtering, and polarization analysis requirements that were necessary to attain such measurements. Observations made under a variety of plasma conditions have demonstrated the close relationship between the edge current and plasma pressure, as expected from neoclassical theory.

Thomas, D. M. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States)

2007-08-02T23:59:59.000Z

112

Phenomenological theory of a single domain wall in uniaxial trigonal ferroelectrics: Lithium niobate and lithium tantalate  

E-Print Network (OSTI)

Phenomenological theory of a single domain wall in uniaxial trigonal ferroelectrics: Lithium niobate and lithium tantalate David A. Scrymgeour and Venkatraman Gopalan Department of Materials Science, lithium niobate and lithium tantalate. The contributions to the domain- wall energy from polarization

Gopalan, Venkatraman

113

Synthesis and Electrochemical Performance of a Lithium Titanium Phosphate Anode for Aqueous Lithium-Ion Batteries  

E-Print Network (OSTI)

Synthesis and Electrochemical Performance of a Lithium Titanium Phosphate Anode for Aqueous Lithium** Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA Lithium cells that use organic electrolytes. The equilibrium reaction potential of lithium titanium phosphate

Cui, Yi

114

Lithium K(1s) synchrotron NEXAFS spectra of lithium-ion battery...  

NLE Websites -- All DOE Office Websites (Extended Search)

Lithium K(1s) synchrotron NEXAFS spectra of lithium-ion battery cathode, anode and electrolyte materials Title Lithium K(1s) synchrotron NEXAFS spectra of lithium-ion battery...

115

The Role of Ate Complexes in the Lithium-Sulfur, Lithium-Selenium and Lithium-Tellurium Exchange Reactions  

E-Print Network (OSTI)

The Role of Ate Complexes in the Lithium-Sulfur, Lithium-Selenium and Lithium-Tellurium Exchange/Se exchange was substantially faster than exchange of the lithium reagents with the ate complex. Therefore, these ate complexes are not on the actual Li/Se exchange pathway. Introduction. ± The lithium

Reich, Hans J.

116

Princeton Plasma Physics Lab - Lithium  

NLE Websites -- All DOE Office Websites (Extended Search)

lithium Nearly everybody knows about lithium Nearly everybody knows about lithium - a light, silvery alkali metal - used in rechargeable batteries powering everything from laptops to hybrid cars. What may not be so well known is the fact that researchers hoping to harness the energy released in fusion reactions also have used lithium to coat the walls of donut-shaped tokamak reactors. Lithium, it turns out, may help the plasmas fueling fusion reactions to retain heat for longer periods of time. This could improve the chances of producing useful energy from fusion. en COLLOQUIUM: The Lithium Tokamak eXperiment (LTX) http://www.pppl.gov/events/colloquium-lithium-tokamak-experiment-ltx

117

Cu2Sb thin film electrodes prepared by pulsed laser deposition f or lithium batteries  

DOE Green Energy (OSTI)

Thin films of Cu2Sb, prepared on stainless steel and copper substrates with a pulsed laser deposition technique at room temperature, have been evaluated as electrodes in lithium cells. The electrodes operate by a lithium insertion/copper extrusion reaction mechanism, the reversibility of which is superior when copper substrates are used, particularly when electrochemical cycling is restricted to the voltage range 0.65-1.4 V vs. Li/Li+. The superior performance of Cu2Sb films on copper is attributed to the more active participation of the extruded copper in the functioning of the electrode. The continual and extensive extrusion of copper on cycling the cells leads to the isolation of Li3Sb particles and a consequent formation of Sb. Improved cycling stability of both types of electrodes was obtained when cells were cycled between 0.65 and 1.4 V. A low-capacity lithium-ion cell with Cu2Sb and LiNi0.8Co0.15Al0.05O2 electrodes, laminated from powders, shows excellent cycling stability over the voltage range 3.15 - 2.2 V, the potential difference corresponding to approximately 0.65-1.4 V for the Cu2Sb electrode vs. Li/Li+. Chemical self-discharge of lithiated Cu2Sb electrodes by reaction with the electrolyte was severe when cells were allowed to relax on open circuit after reaching a lower voltage limit of 0.1 V. The solid electrolyte interphase (SEI) layer formed on Cu2Sb electrodes after cells had been cycled between 1.4 and 0.65 V vs. Li/Li+ was characterized by Fourier-transform infrared spectroscopy; the SEI layer contributes to the large irreversible capacity loss on the initial cycle of these cells. The data contribute to a better understanding of the electrochemical behavior of intermetallic electrodes in rechargeable lithium batteries.

Song, Seung-Wan; Reade, Ronald P.; Cairns, Elton J.; Vaughey, Jack T.; Thackeray, Michael M.; Striebel, Kathryn A.

2003-08-01T23:59:59.000Z

118

Micro-and nanoscale domain engineering in lithium niobate and lithium tantalate  

E-Print Network (OSTI)

Micro- and nanoscale domain engineering in lithium niobate and lithium tantalate Vladimir Ya. Shur investigation of the domain evolution in lithium niobate and lithium tantalate during backswitched electric sources based on quasi-phase matching.11 Lithium niobate LiNbO3 (LN) and lithium tantalate LiTaO3 (LT

Byer, Robert L.

119

Lithium disulfide battery  

DOE Patents (OSTI)

Disclosed is a negative electrode-limited secondary electrochemical cell having dense FeS/sub 2/ positive electrode operating exclusively on the upper plateau, a Li alloy negative electrode and a suitable lithium-containing electrolyte. The electrolyte preferably is 25 mole % LiCl, 38 mole % LiBr and 37 mole % KBr. The cell may be operated isothermally.

Kaun, T.D.

1986-05-29T23:59:59.000Z

120

Lithium ion conducting electrolytes  

DOE Patents (OSTI)

A liquid, predominantly lithium-conducting, ionic electrolyte having exceptionally high conductivity at temperatures of 100.degree. C. or lower, including room temperature, and comprising the lithium salts selected from the group consisting of the thiocyanate, iodide, bromide, chloride, perchlorate, acetate, tetrafluoroborate, perfluoromethane sulfonate, perfluoromethane sulfonamide, tetrahaloaluminate, and heptahaloaluminate salts of lithium, with or without a magnesium-salt selected from the group consisting of the perchlorate and acetate salts of magnesium. Certain of the latter embodiments may also contain molecular additives from the group of acetonitrile (CH.sub.3 CN) succinnonitrile (CH.sub.2 CN).sub.2, and tetraglyme (CH.sub.3 --O--CH.sub.2 --CH.sub.2 --O--).sub.2 (or like solvents) solvated to a Mg.sup.+2 cation to lower the freezing point of the electrolyte below room temperature. Other particularly useful embodiments contain up to about 40, but preferably not more than about 25, mol percent of a long chain polyether polymer dissolved in the lithium salts to provide an elastic or rubbery solid electrolyte of high ambient temperature conductivity and exceptional 100.degree. C. conductivity. Another embodiment contains up to about but not more than 10 mol percent of a molecular solvent such as acetone.

Angell, C. Austen (Tempe, AZ); Liu, Changle (Tempe, AZ)

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "large format lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Lithium disulfide battery  

SciTech Connect

A negative electrode limited secondary electrochemical cell having dense FeS.sub.2 positive electrode operating exclusively on the upper plateau, a Li alloy negative electrode and a suitable lithium-containing electrolyte. The electrolyte preferably is 25 mole percent LiCl, 38 mole percent LiBr and 37 mole percent KBr. The cell may be operated isothermally.

Kaun, Thomas D. (New Lenox, IL)

1988-01-01T23:59:59.000Z

122

LITHIUM LENS (I)  

E-Print Network (OSTI)

Abstract. Technical/Engineering aspects of Lithium Lens (LL) considered. LL dimensions and parameters adopted for undulator based positron source for International Linear Collider. Sealing technique for windows represented in this publication also. This publication is a part of preparation work for numerical modeling of LL. OVERVIEW Usage of Lithium Lens (LL) for positron collection was suggested years ago [1]-[4]. Lithium lens with solid Lithium is in exploitation for decades now. Usage of LL for antiproton collection is also a well developed topic [5]-[11]. Naturally, usage of LL for positron collection in a scheme with undulator [13], developed in Novosibirsk, included LL from the very beginning [14]-[15]. From the other hand usage of LL for positron collection still not a widely accepted idea, so Novosibirsk lens remains the only one in operation. In resent times we applied some efforts to implement LL into ILC positron source [16]-[21]. Development of positron source for ILC as it is now in baseline design described in [22]. Latest results on practical test undulator-based positron source demonstrated positron polarization ~ 80 % and electron polarization ~90% respectively obtained with Tungsten target [23]. Also interesting looks a possibility for implementation of LL for muon collider [24]-[25]. System with Liquid Lithium is under consideration for Fusion Materials Irradiation studies [26]. Current publication is the first one in series dedicated to demonstration of benefits from potential usage of LL in International Linear Collider. Support for this investigation obtained from ILC GDE Regional Directorship of America.

unknown authors

2009-01-01T23:59:59.000Z

123

Side Reactions in Lithium-Ion Batteries  

E-Print Network (OSTI)

Model for Aging of Lithium-Ion Battery Cells. Journal of TheSalts Formed on the Lithium-Ion Battery Negative Electrodeion batteries In a lithium ion battery, positively charged

Tang, Maureen Han-Mei

2012-01-01T23:59:59.000Z

124

Advances in lithium-ion batteries  

E-Print Network (OSTI)

current reviews of the lithium ion battery literature byof view of the lithium ion battery scientist and engineer,lithium ion batteries. The chapter on aging summarizes the effects of the chemistry on the battery

Kerr, John B.

2003-01-01T23:59:59.000Z

125

Design and Simulation of Lithium Rechargeable Batteries  

E-Print Network (OSTI)

The LiNiOiCarbon Lithium-Ion Battery," S. S. lonics, 69,238-the mid-1980's, the lithium-ion battery based on a carboncommercialization of the lithium-ion battery, several other

Doyle, C.M.

2010-01-01T23:59:59.000Z

126

UNDERSTANDING DEGRADATION AND LITHIUM DIFFUSION IN LITHIUM ION BATTERY ELECTRODES.  

E-Print Network (OSTI)

??Lithium-ion batteries with higher capacity and longer cycle life than that available today are required as secondary energy sources for a wide range of emerging… (more)

Li, Juchuan

2012-01-01T23:59:59.000Z

127

Paper-Based Lithium-Ion Battery Nojan Aliahmad, Mangilal Agarwal, Sudhir Shrestha, and Kody Varahramyan  

E-Print Network (OSTI)

Paper-Based Lithium-Ion Battery Nojan Aliahmad, Mangilal Agarwal, Sudhir Shrestha, and Kody Indianapolis (IUPUI), Indianapolis, IN 46202 Lithium-ion batteries have a wide range of applications including present day portable consumer electronics and large-scale energy storage. Realization of these batteries

Zhou, Yaoqi

128

Lithium As Plasma Facing Component for Magnetic Fusion Research  

SciTech Connect

The use of lithium in magnetic fusion confinement experiments started in the 1990's in order to improve tokamak plasma performance as a low-recycling plasma-facing component (PFC). Lithium is the lightest alkali metal and it is highly chemically reactive with relevant ion species in fusion plasmas including hydrogen, deuterium, tritium, carbon, and oxygen. Because of the reactive properties, lithium can provide strong pumping for those ions. It was indeed a spectacular success in TFTR where a very small amount (~ 0.02 gram) of lithium coating of the PFCs resulted in the fusion power output to improve by nearly a factor of two. The plasma confinement also improved by a factor of two. This success was attributed to the reduced recycling of cold gas surrounding the fusion plasma due to highly reactive lithium on the wall. The plasma confinement and performance improvements have since been confirmed in a large number of fusion devices with various magnetic configurations including CDX-U/LTX (US), CPD (Japan), HT-7 (China), EAST (China), FTU (Italy), NSTX (US), T-10, T-11M (Russia), TJ-II (Spain), and RFX (Italy). Additionally, lithium was shown to broaden the plasma pressure profile in NSTX, which is advantageous in achieving high performance H-mode operation for tokamak reactors. It is also noted that even with significant applications (up to 1,000 grams in NSTX) of lithium on PFCs, very little contamination (< 0.1%) of lithium fraction in main fusion plasma core was observed even during high confinement modes. The lithium therefore appears to be a highly desirable material to be used as a plasma PFC material from the magnetic fusion plasma performance and operational point of view. An exciting development in recent years is the growing realization of lithium as a potential solution to solve the exceptionally challenging need to handle the fusion reactor divertor heat flux, which could reach 60 MW/m2 . By placing the liquid lithium (LL) surface in the path of the main divertor heat flux (divertor strike point), the lithium is evaporated from the surface. The evaporated lithium is quickly ionized by the plasma and the ionized lithium ions can provide a strongly radiative layer of plasma ("radiative mantle"), thus could significantly reduce the heat flux to the divertor strike point surfaces, thus protecting the divertor surface. The protective effects of LL have been observed in many experiments and test stands. As a possible reactor divertor candidate, a closed LL divertor system is described. Finally, it is noted that the lithium applications as a PFC can be quite flexible and broad. The lithium application should be quite compatible with various divertor configurations, and it can be also applied to protecting the presently envisioned tungsten based solid PFC surfaces such as the ones for ITER. Lithium based PFCs therefore have the exciting prospect of providing a cost effective flexible means to improve the fusion reactor performance, while providing a practical solution to the highly challenging divertor heat handling issue confronting the steadystate magnetic fusion reactors.

Masayuki Ono

2012-09-10T23:59:59.000Z

129

Age spreads in clusters and associations: the lithium test  

E-Print Network (OSTI)

We report the evidence that several low-mass stars (lithium abundances well below the interstellar value. Due to time-dependent depletion, our result implies stellar ages greater than ~5 Myr, suggesting that star formation has been proceeding for a long time in these systems.

Francesco Palla; Sofia Randich

2004-12-09T23:59:59.000Z

130

"Radiative Liquid Lithium (metal) Divertor" Inventor..-- Masayuki...  

NLE Websites -- All DOE Office Websites (Extended Search)

"Radiative Liquid Lithium (metal) Divertor" Inventor..-- Masayuki Ono The invention utilizes liquid lithium as a radiative material. The radiative process greatly reduces the...

131

Improving the Performance of Lithium Manganese Phosphate  

NLE Websites -- All DOE Office Websites (Extended Search)

Improving the Performance of Lithium Manganese Phosphate Title Improving the Performance of Lithium Manganese Phosphate Publication Type Journal Article Year of Publication 2009...

132

American Lithium Energy Corp | Open Energy Information  

Open Energy Info (EERE)

San Marcos, California Zip 92069 Product California-based developer of lithium ion battery technology. References American Lithium Energy Corp1 LinkedIn Connections...

133

Lithium-Ion Battery Issues  

NLE Websites -- All DOE Office Websites (Extended Search)

Lithium-Ion Battery Issues IEA Workshop on Battery Recycling Hoboken, Belgium September 26-27, 2011 Linda Gaines Center for Transportation Research Argonne National Laboratory...

134

Lithium Diffusion in Graphitic Carbon  

NLE Websites -- All DOE Office Websites (Extended Search)

Volume 1 Start Page 1176 Issue 8 Pagination 1176-1180 Keywords anode, diffusion, graphene, lithium ion battery, transport Abstract Graphitic carbon is currently considered the...

135

Thin-film rechargeable lithium batteries  

SciTech Connect

Small thin-film rechargeable cells have been fabricated with a lithium phosphorus oxyniuide electrolyte, Li metal anode, and Li{sub 1-x}Mn{sub 2}O{sub 4} as the cathode film. The cathode films were fabricated by several different techniques resulting in both crystalline and amorphous films. These were compared by observing the cell discharge behavior. Estimates have been made for the scale-up of such a thin-film battery to meet the specifications for the electric vehicle application. The specific energy, energy density, and cycle life are expected to meet the USABC mid-term criteria. However, the areas of the thin-films needed to fabricate such a cell are very large. The required areas could be greatly reduced by operating the battery at temperatures near 100{degrees}C or by enhancing the lithium ion transport rate in the cathode material.

Dudney, N.J.; Bates, J.B.; Lubben, D.

1994-11-01T23:59:59.000Z

136

Lithium Rechargeable Batteries  

DOE Green Energy (OSTI)

In order to obviate the deficiencies of currently used electrolytes in lithium rechargeable batteries, there is a compelling need for the development of solvent-free, highly conducting solid polymer electrolytes (SPEs). The problem will be addressed by synthesizing a new class of block copolymers and plasticizers, which will be used in the formulation of highly conducting electrolytes for lithium-ion batteries. The main objective of this Phase-I effort is to determine the efficacy and commercial prospects of new specifically designed SPEs for use in electric and hybrid electric vehicle (EV/HEV) batteries. This goal will be achieved by preparing the SPEs on a small scale with thorough analyses of their physical, chemical, thermal, mechanical and electrochemical properties. SPEs will play a key role in the formulation of next generation lithium-ion batteries and will have a major impact on the future development of EVs/HEVs and a broad range of consumer products, e.g., computers, camcorders, cell phones, cameras, and power tools.

Robert Filler, Zhong Shi and Braja Mandal

2004-10-21T23:59:59.000Z

137

Lithium Ion Cell Development for Photovoltaic Energy Storage Applications  

Science Conference Proceedings (OSTI)

The overall project goal is to reduce the cost of home and neighborhood photovoltaic storage systems by reducing the single largest cost component â?? the energy storage cells. Solar power is accepted as an environmentally advantaged renewable power source. Its deployment in small communities and integrated into the grid, requires a safe, reliable and low cost energy storage system. The incumbent technology of lead acid cells is large, toxic to produce and dispose of, and offer limited life even with significant maintenance. The ideal PV storage battery would have the safety and low cost of lead acid but the performance of lithium ion chemistry. Present lithium ion batteries have the desired performance but cost and safety remain the two key implementation barriers. The purpose of this project is to develop new lithium ion cells that can meet PVES cost and safety requirements using A123Systems phosphate-based cathode chemistries in commercial PHEV cell formats. The cost target is a cell design for a home or neighborhood scale at <$25/kWh. This DOE program is the continuation and expansion of an initial MPSC (Michigan Public Service Commission) program towards this goal. This program further pushes the initial limits of some aspects of the original program â?? even lower cost anode and cathode actives implemented at even higher electrode loadings, and as well explores new avenues of cost reduction via new materials â?? specifically our higher voltage cathode. The challenge in our materials development is to achieve parity in the performance metrics of cycle life and high temperature storage, and to produce quality materials at the production scale. Our new cathode material, M1X, has a higher voltage and so requires electrolyte reformulation to meet the high temperature storage requirements. The challenge of thick electrode systems is to maintain adequate adhesion and cycle life. The composite separator has been proven in systems having standard loading electrodes; the challenge with this material will be to maintain proven performance when this composite is coated onto a thicker electrode; as well the high temperature storage must meet application requirements. One continuing program challenge was the lack of specific performance variables for this PV application and so the low power requirements of PHEV/EV transportation markets were again used.

Susan Babinec

2012-02-08T23:59:59.000Z

138

Lithium As Plasma Facing Component for Magnetic Fusion Research  

Science Conference Proceedings (OSTI)

The use of lithium in magnetic fusion confinement experiments started in the 1990's in order to improve tokamak plasma performance as a low-recycling plasma-facing component (PFC). Lithium is the lightest alkali metal and it is highly chemically reactive with relevant ion species in fusion plasmas including hydrogen, deuterium, tritium, carbon, and oxygen. Because of the reactive properties, lithium can provide strong pumping for those ions. It was indeed a spectacular success in TFTR where a very small amount (~ 0.02 gram) of lithium coating of the PFCs resulted in the fusion power output to improve by nearly a factor of two. The plasma confinement also improved by a factor of two. This success was attributed to the reduced recycling of cold gas surrounding the fusion plasma due to highly reactive lithium on the wall. The plasma confinement and performance improvements have since been confirmed in a large number of fusion devices with various magnetic configurations including CDX-U/LTX (US), CPD (Japan), HT-7 (China), EAST (China), FTU (Italy), NSTX (US), T-10, T-11M (Russia), TJ-II (Spain), and RFX (Italy). Additionally, lithium was shown to broaden the plasma pressure profile in NSTX, which is advantageous in achieving high performance H-mode operation for tokamak reactors. It is also noted that even with significant applications (up to 1,000 grams in NSTX) of lithium on PFCs, very little contamination (fusion plasma core was observed even during high confinement modes. The lithium therefore appears to be a highly desirable material to be used as a plasma PFC material from the magnetic fusion plasma performance and operational point of view. An exciting development in recent years is the growing realization of lithium as a potential solution to solve the exceptionally challenging need to handle the fusion reactor divertor heat flux, which could reach 60 MW/m2 . By placing the liquid lithium (LL) surface in the path of the main divertor heat flux (divertor strike point), the lithium is evaporated from the surface. The evaporated lithium is quickly ionized by the plasma and the ionized lithium ions can provide a strongly radiative layer of plasma ("radiative mantle"), thus could significantly reduce the heat flux to the divertor strike point surfaces, thus protecting the divertor surface. The protective effects of LL have been observed in many experiments and test stands. As a possible reactor divertor candidate, a closed LL divertor system is described. Finally, it is noted that the lithium applications as a PFC can be quite flexible and broad. The lithium application should be quite compatible with various divertor configurations, and it can be also applied to protecting the presently envisioned tungsten based solid PFC surfaces such as the ones for ITER. Lithium based PFCs therefore have the exciting prospect of providing a cost effective flexible means to improve the fusion reactor performance, while providing a practical solution to the highly challenging divertor heat handling issue confronting the steadystate magnetic fusion reactors.

Masayuki Ono

2012-09-10T23:59:59.000Z

139

Composition dependence of lithium diffusivity in lithium niobate at high temperature  

E-Print Network (OSTI)

Composition dependence of lithium diffusivity in lithium niobate at high temperature D. H. Jundt on the diffusivity of lithium in lithium niobate at 1100 "C in the crystallographic z direction over the composition range from 48.38 to 49.85 mol % L&O. A vapor transport technique was applied to produce a lithium

Fejer, Martin M.

140

Solid lithium-ion electrolyte  

DOE Patents (OSTI)

The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li.sub.2 O--CeO.sub.2 --SiO.sub.2 system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications.

Zhang, Ji-Guang (Golden, CO); Benson, David K. (Golden, CO); Tracy, C. Edwin (Golden, CO)

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "large format lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Solid lithium-ion electrolyte  

DOE Patents (OSTI)

The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li{sub 2}O--CeO{sub 2}--SiO{sub 2} system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications. 12 figs.

Zhang, J.G.; Benson, D.K.; Tracy, C.E.

1998-02-10T23:59:59.000Z

142

Overcharge Protection for the New Generation of Lithium Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Overcharge Protection for the New Generation of Lithium Batteries Overcharge Protection for the New Generation of Lithium Batteries Speaker(s): Thomas Richardson Date: January 18, 2001 - 12:00pm Location: Bldg 90 Seminar Host/Point of Contact: Satkartar K. Kinney Lithium batteries supplied with cellular telephones and other personal electronic devices provide unprecedented power and capacities in very small formats. They are able to deliver such high performance because they incorporate highly reactive materials in both the positive and negative electrodes, resulting in individual cell potentials of nearly 4 V. Exposure to high temperatures or abusive treatment including overcharging can cause catastrophic failure of these batteries, resulting in gas venting, fire, or even explosion. Mechanical and electronic safety devices are employed to

143

ELLIPSOMETRY OF SURFACE LAYERS ON LEAD AND LITHIUM  

E-Print Network (OSTI)

Surface Layers on Lead and Lithium By Richard Dudley Peterssulfuric acid and and lithium to water, Acid concentrationsbeen observed in the reaction of lithium with water vapor. i

Peters, Richard Dudley

2011-01-01T23:59:59.000Z

144

Lithium niobate explosion monitor  

DOE Patents (OSTI)

Monitoring explosive devices is accomplished with a substantially z-cut lithium niobate crystal in abutment with the explosive device. Upon impact by a shock wave from detonation of the explosive device, the crystal emits a current pulse prior to destruction of the crystal. The current pulse is detected by a current viewing transformer and recorded as a function of time in nanoseconds. In order to self-check the crystal, the crystal has a chromium film resistor deposited thereon which may be heated by a current pulse prior to detonation. This generates a charge which is detected by a charge amplifier.

Bundy, Charles H. (Clearwater, FL); Graham, Robert A. (Los Lunas, NM); Kuehn, Stephen F. (Albuquerque, NM); Precit, Richard R. (Albuquerque, NM); Rogers, Michael S. (Albuquerque, NM)

1990-01-01T23:59:59.000Z

145

Lithium electric dipole polarizability  

Science Conference Proceedings (OSTI)

The electric dipole polarizability of the lithium atom in the ground state is calculated including relativistic and quantum electrodynamics corrections. The obtained result {alpha}{sub E}=164.0740(5) a.u. is in good agreement with the less accurate experimental value of 164.19(1.08) a.u. The small uncertainty of about 3 parts per 10{sup 6} comes from the approximate treatment of quantum electrodynamics corrections. Our theoretical result can be considered as a benchmark for more general atomic structure methods and may serve as a reference value for the relative measurement of polarizabilities of the other alkali-metal atoms.

Puchalski, M.; KePdziera, D.; Pachucki, K. [Faculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, PL-60-780 Poznan (Poland); Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, PL-87-100 Torun (Poland); Faculty of Physics, University of Warsaw, Hoza 69, PL-00-681 Warsaw (Poland)

2011-11-15T23:59:59.000Z

146

Method of recycling lithium borate to lithium borohydride through methyl borate  

DOE Patents (OSTI)

This invention provides a method for the recycling of lithium borate to lithium borohydride which can be reacted with water to generate hydrogen for utilization as a fuel. The lithium borate by-product of the hydrogen generation reaction is reacted with hydrogen chloride and water to produce boric acid and lithium chloride. The boric acid and lithium chloride are converted to lithium borohydride through a methyl borate intermediate to complete the recycle scheme.

Filby, Evan E. (Rigby, ID)

1977-01-01T23:59:59.000Z

147

Lithium ion conducting ionic electrolytes  

DOE Patents (OSTI)

A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100.degree. C. or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors.

Angell, C. Austen (Mesa, AZ); Xu, Kang (Tempe, AZ); Liu, Changle (Tulsa, OK)

1996-01-01T23:59:59.000Z

148

A Lithium Superionic Sulfide Cathode for Lithium-Sulfur Batteries  

SciTech Connect

This work presents a facile synthesis approach for core-shell structured Li2S nanoparticles, which have Li2S as the core and Li3PS4 as the shell. This material functions as lithium superionic sulfide (LSS) cathode for long-lasting, energy-efficient lithium-sulfur (Li-S) batteries. The LSS has an ionic conductivity of 10-7 S cm-1 at 25 oC, which is 6 orders of magnitude higher than that of bulk Li2S (~10-13 S cm-1). The high lithium-ion conductivity of LSS imparts an excellent cycling performance to all-solid Li-S batteries, which also promises safe cycling of high-energy batteries with metallic lithium anodes.

Lin, Zhan [ORNL; Liu, Zengcai [ORNL; Dudney, Nancy J [ORNL; Liang, Chengdu [ORNL

2013-01-01T23:59:59.000Z

149

Cyanoethylated Compounds as Additives in Lithium/Lithium Ion Batteries  

DOE Patents (OSTI)

The power loss of lithium/lithium ion battery cells is significantly reduced, especially at low temperatures, when about 1% by weight of an additive is incorporated in the electrolyte layer of the cells. The usable additives are organic solvent soluble cyanoethylated polysaccharides and poly(vinyl alcohol). The power loss decrease results primarily from the decrease in the charge transfer resistance at the interface between the electrolyte and the cathode.

Nagasubramanian, Ganesan

1998-05-08T23:59:59.000Z

150

Cyanoethylated compounds as additives in lithium/lithium batteries  

SciTech Connect

The power loss of lithium/lithium ion battery cells is significantly reduced, especially at low temperatures, when about 1% by weight of an additive is incorporated in the electrolyte layer of the cells. The usable additives are organic solvent soluble cyanoethylated polysaccharides and poly(vinyl alcohol). The power loss decrease results primarily from the decrease in the charge transfer resistance at the interface between the electrolyte and the cathode.

Nagasubramanian, Ganesan (Albuquerque, NM)

1999-01-01T23:59:59.000Z

151

Lithium Abundances in Wide Binaries with Solar-Type Twin Components  

E-Print Network (OSTI)

We present high-resolution spectroscopic observations of the \\ion{Li}{1} resonance line in a sample of 62 stars that belong to 31 common-proper motion pairs with twin F or G-type components. Photospheric abundances of lithium were derived by spectral synthesis analysis. For seven of the pairs, we have measured large lithium abundance differences. Eleven other pairs have components with similar lithium abundances. We cannot determine if the remaining 13 pairs have lithium differences because we did not detect the \\ion{Li}{1} lines, and hence we can only provide upper limits to the abundances of both stars. Our results demonstrate that twin stars do not always share the same lithium abundances. Lithium depletion in solar-type stars does not only depend on age, mass, and metallicity. This result is consistent with the spread in lithium abundances among solar-type stars in the solar-age open cluster M67. Our stars are brighter than the M67 members of similar spectral type, making them good targets for detailed follow-up studies that could shed light on the elusive mechanism responsible for the depletion of lithium during the main-sequence evolution of the Sun and solar-type stars.

Eduardo L. Martin; Gibor Basri; Yakiv Pavlenko; Yuri Lyubchik

2002-06-27T23:59:59.000Z

152

Feature - Lithium-air Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Develop Lithium-Air Battery Li-air Li-air batteries hold the promise of increasing the energy density of Li-ion batteries by as much as five to 10 times. But that potential will...

153

Lithium Technology Corporation | Open Energy Information  

Open Energy Info (EERE)

Corporation Corporation Jump to: navigation, search Name Lithium Technology Corporation Place Plymouth Meeting, Pennsylvania Zip PA 19462 Sector Vehicles Product Pennsylvania-based lithium secondary battery company manufacturing rechargeable batteries for plug-in and hybrid vehicles and for custom military and industrial applications. References Lithium Technology Corporation[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Lithium Technology Corporation is a company located in Plymouth Meeting, Pennsylvania . References ↑ "Lithium Technology Corporation" Retrieved from "http://en.openei.org/w/index.php?title=Lithium_Technology_Corporation&oldid=348412"

154

Lithium hydride and lithium amide for hydrogen storage J. Engbk, G. Nielsen, I. Chorkendorff  

E-Print Network (OSTI)

Lithium hydride and lithium amide for hydrogen storage J. Engbæk, G. Nielsen, I. Chorkendorff 1 interest. Lithium amid has a high hydrogen storage capability; 10.4wt.% hydrogen. In this study surface reactions of thin films of lithium with hydrogen and ammonia is studied under well controlled conditions

Mosegaard, Klaus

155

Lithium Ion Solvation: Amine and Unsaturated Hydrocarbon Solvates of Lithium Hexamethyldisilazide (LiHMDS)  

E-Print Network (OSTI)

Lithium Ion Solvation: Amine and Unsaturated Hydrocarbon Solvates of Lithium Hexamethyldisilazide, and 13C NMR spectroscopic studies of 6Li-15N labeled lithium hexamethyldisilazide ([6Li,15N]- Li ligand structure and lithium amide aggregation state is a complex and sensitive function of amine alkyl

Collum, David B.

156

The structural design of electrode materials for high energy lithium batteries.  

Science Conference Proceedings (OSTI)

Lithium batteries are used to power a diverse range of applications from small compact devices, such as smart cards and cellular telephones to large heavy duty devices such as uninterrupted power supply units and electric- and hybrid-electric vehicles. This paper briefly reviews the approaches to design advanced materials to replace the lithiated graphite and LiCoO{sub 2} electrodes that dominate today's lithium-ion batteries in order to increase their energy and safety. The technological advantages of lithium batteries are placed in the context of water-based- and high-temperature battery systems.

Thackeray, M.; Chemical Sciences and Engineering Division

2007-01-01T23:59:59.000Z

157

STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES  

E-Print Network (OSTI)

as cathode materials for lithium ion battery. ElectrochimicaCapacity, High Rate Lithium-Ion Battery Electrodes Utilizinghours. 1.4 Lithium Ion Batteries Lithium battery technology

Wilcox, James D.

2010-01-01T23:59:59.000Z

158

Primary and secondary ambient temperature lithium batteries  

Science Conference Proceedings (OSTI)

These proceedings collect papers on the subject of batteries. Topics include: lithium-oxygen batteries, lithium-sulphur batteries, metal-metal oxide batteries, metal-nonmetal batteries, spacecraft power supplies, electrochemistry, and battery containment materials.

Gabano, J.P.; Takehara, Z.; Bro, P.

1988-01-01T23:59:59.000Z

159

Protective lithium ion conducting ceramic coating for lithium metal anodes and associate method  

SciTech Connect

A battery structure including a cathode, a lithium metal anode and an electrolyte disposed between the lithium anode and the cathode utilizes a thin-film layer of lithium phosphorus oxynitride overlying so as to coat the lithium anode and thereby separate the lithium anode from the electrolyte. If desired, a preliminary layer of lithium nitride may be coated upon the lithium anode before the lithium phosphorous oxynitride is, in turn, coated upon the lithium anode so that the separation of the anode and the electrolyte is further enhanced. By coating the lithium anode with this material lay-up, the life of the battery is lengthened and the performance of the battery is enhanced.

Bates, John B. (Oak Ridge, TN)

1994-01-01T23:59:59.000Z

160

Lithium depletion and the rotational history of exoplanet host stars  

E-Print Network (OSTI)

Israelian et al. (2004) reported that exoplanet host stars are lithium depleted compared to solar-type stars without detected massive planets, a result recently confirmed by Gonzalez (2008). We investigate whether enhanced lithium depletion in exoplanet host stars may result from their rotational history. We have developed rotational evolution models for slow and fast solar-type rotators from the pre-main sequence (PMS) to the age of the Sun and compare them to the distribution of rotational periods observed for solar-type stars between 1 Myr and 5 Gyr. We show that slow rotators develop a high degree of differential rotation between the radiative core and the convective envelope, while fast rotators evolve with little core-envelope decoupling. We suggest that strong differential rotation at the base of the convective envelope is responsible for enhanced lithium depletion in slow rotators. We conclude that lithium-depleted exoplanet host stars were slow rotators on the zero-age main sequence (ZAMS) and argue that slow rotation results from a long lasting star-disk interaction during the PMS. Altogether, this suggests that long-lived disks (> 5 Myr) may be a necessary condition for massive planet formation/migration.

Jerome Bouvier

2008-08-28T23:59:59.000Z

Note: This page contains sample records for the topic "large format lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

QUANTIFYING THE SIGNIFICANCE OF THE MAGNETIC FIELD FROM LARGE-SCALE CLOUD TO COLLAPSING CORE: SELF-SIMILARITY, MASS-TO-FLUX RATIO, AND STAR FORMATION EFFICIENCY  

SciTech Connect

Dust polarization observational results are analyzed for the high-mass star formation region W51 from the largest parent cloud ({approx}2 pc, James Clerk Maxwell Telescope) to the large-scale envelope ({approx}0.5 pc, BIMA array) down to the collapsing core e2 ({approx}60 mpc, Submillimeter Array). Magnetic field and dust emission gradient orientations reveal a correlation which becomes increasingly more tight with higher resolution. The previously developed polarization-intensity-gradient method is applied in order to quantify the magnetic field significance. This technique provides a way to estimate the local magnetic field force compared to gravity without the need of any mass or field strength measurements, solely making use of measured angles which reflect the geometrical imprint of the various forces. All three data sets clearly show regions with distinct features in the field-to-gravity force ratio. Azimuthally averaged radial profiles of this force ratio reveal a transition from a field dominance at larger distances to a gravity dominance closer to the emission peaks. Normalizing these profiles to a characteristic core scale points toward self-similarity. Furthermore, the polarization-intensity-gradient method is linked to the mass-to-flux ratio, providing a new approach to estimate the latter one without mass and field strength inputs. A transition from a magnetically supercritical to a subcritical state as a function of distance from the emission peak is found for the e2 core. Finally, based on the measured radius-dependent field-to-gravity force ratio we derive a modified star formation efficiency with a diluted gravity force. Compared to a standard (free-fall) efficiency, the observed field is capable of reducing the efficiency down to 10% or less.

Koch, Patrick M.; Ho, Paul T. P. [Academia Sinica, Institute of Astronomy and Astrophysics, Taipei, Taiwan (China); Tang, Ya-Wen, E-mail: pmkoch@asiaa.sinica.edu.tw [Observatoire Aquitain des Sciences de l'Univers, Universite de Bordeaux, 2 rue de l'Observatoire, BP 89, F-33271 Floirac Cedex (France)

2012-03-01T23:59:59.000Z

162

Conductive lithium storage electrode  

DOE Patents (OSTI)

A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, and have values such that x, plus y(1-a) times a formal valence or valences of M', plus ya times a formal valence or valence of M'', is equal to z times a formal valence of the XD.sub.4, X.sub.2D.sub.7, or DXD.sub.4 group; or a compound comprising a composition (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z (A.sub.1-aM''.sub.a).sub.xM'.sub.y(X.sub.2D.sub.7).sub.z and have values such that (1-a).sub.x plus the quantity ax times the formal valence or valences of M'' plus y times the formal valence or valences of M' is equal to z times the formal valence of the XD.sub.4, X.sub.2D.sub.7 or DXD.sub.4 group. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001lithium phosphate that can intercalate lithium or hydrogen. The compound can be used in an electrochemical device including electrodes and storage batteries and can have a gravimetric capacity of at least about 80 mAh/g while being charged/discharged at greater than about C rate of the compound.

Chiang, Yet-Ming (Framingham, MA); Chung, Sung-Yoon (Incheon, KR); Bloking, Jason T. (Mountain View, CA); Andersson, Anna M. (Vasteras, SE)

2012-04-03T23:59:59.000Z

163

Conductive lithium storage electrode  

Science Conference Proceedings (OSTI)

A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, and have values such that x, plus y(1-a) times a formal valence or valences of M', plus ya times a formal valence or valence of M'', is equal to z times a formal valence of the XD.sub.4, X.sub.2D.sub.7, or DXD.sub.4 group; or a compound comprising a composition (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z (A.sub.1-aM''.sub.a).sub.xM'.sub.y(X.sub.2D.sub.7).sub.z and have values such that (1-a).sub.x plus the quantity ax times the formal valence or valences of M'' plus y times the formal valence or valences of M' is equal to z times the formal valence of the XD.sub.4, X.sub.2D.sub.7 or DXD.sub.4 group. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001lithium phosphate that can intercalate lithium or hydrogen. The compound can be used in an electrochemical device including electrodes and storage batteries and can have a gravimetric capacity of at least about 80 mAh/g while being charged/discharged at greater than about C rate of the compound.

Chiang, Yet-Ming (Framingham, MA); Chung, Sung-Yoon (Incheon, KR); Bloking, Jason T. (Mountain View, CA); Andersson, Anna M. (Vasteras, SE)

2012-04-03T23:59:59.000Z

164

Conductive lithium storage electrode  

DOE Patents (OSTI)

A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, and have values such that x, plus y(1-a) times a formal valence or valences of M', plus ya times a formal valence or valence of M'', is equal to z times a formal valence of the XD.sub.4, X.sub.2D.sub.7, or DXD.sub.4 group; or a compound comprising a composition (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z(A.sub.1-aM''.sub.a).s- ub.xM'.sub.y(X.sub.2D.sub.7).sub.z and have values such that (1-a).sub.x plus the quantity ax times the formal valence or valences of M'' plus y times the formal valence or valences of M' is equal to z times the formal valence of the XD.sub.4, X.sub.2D.sub.7 or DXD.sub.4 group. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001lithium phosphate that can intercalate lithium or hydrogen. The compound can be used in an electrochemical device including electrodes and storage batteries and can have a gravimetric capacity of at least about 80 mAh/g while being charged/discharged at greater than about C rate of the compound.

Chiang, Yet-Ming (Framingham, MA); Chung, Sung-Yoon (Seoul, KR); Bloking, Jason T. (Cambridge, MA); Andersson, Anna M. (Uppsala, SE)

2008-03-18T23:59:59.000Z

165

Graphene Fabrication and Lithium Ion Batteries Applications  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2013 TMS Annual Meeting & Exhibition. Symposium , Nanostructured Materials for Lithium Ion Batteries and for Supercapacitors.

166

Intermetallic electrodes for lithium batteries - Energy ...  

This invention relates to intermetallic negative electrode compounds for non-aqueous, electrochemical lithium cells and batteries. More specifically, ...

167

Electrochemical Shock of Lithium Battery Materials - Programmaster ...  

Science Conference Proceedings (OSTI)

Symposium, Mesoscale Computational Materials Science of Energy Materials. Presentation Title, Electrochemical Shock of Lithium Battery Materials. Author(s) ...

168

Morphological Evolution of Lithium Iron Phosphate Cathodes  

Science Conference Proceedings (OSTI)

Atomic Scale Modeling of Point Defects in Materials: Coupling Ab Initio and Elasticity Approaches ... Electrochemical Shock of Lithium Battery Materials.

169

Terahertz Properties of Lithium Iron Phosphate Glasses  

Science Conference Proceedings (OSTI)

Presentation Title, Terahertz Properties of Lithium Iron Phosphate Glasses ... Field Assisted Viscous Flow and Crystallization in a Sodium Aluminosilicate Glass.

170

Ionic liquids for rechargeable lithium batteries  

E-Print Network (OSTI)

M. Armand, “Room temperature molten salts as lithium batteryZ. Suarez, “Ionic liquid (molten salt) phase organometallic

Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz, John; Newman, John

2008-01-01T23:59:59.000Z

171

Solid Lithium Ion Conducting Electrolytes Suitable for ...  

Batteries with solid lithium ion conducting electrolytes would ... The invention is cost-effective and suitable for manufacturing solid electrolyte ...

172

Dendrite Growth Prevention Technology for Lithium Metal ...  

Search PNNL. PNNL Home; About; Research; Publications; Jobs; News; Contacts; Dendrite Growth Prevention Technology for Lithium Metal Batteries. ...

173

Solid composite electrolytes for lithium batteries  

DOE Patents (OSTI)

Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a ceramic-ceramic composite electrolyte is provided containing lithium nitride and lithium phosphate. The ceramic-ceramic composite is also preferably annealed and exhibits an activation energy of about 0.1 eV.

Kumar, Binod (Dayton, OH); Scanlon, Jr., Lawrence G. (Fairborn, OH)

2000-01-01T23:59:59.000Z

174

Lithium metal oxide electrodes for lithium cells and batteries  

DOE Patents (OSTI)

A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2 M'O.sub.3 in which 0

Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Amine, Khalil (Downers Grove, IL); Kim, Jaekook (Naperville, IL)

2004-01-13T23:59:59.000Z

175

Strengthened lithium for x-ray blast windows  

Science Conference Proceedings (OSTI)

Lithium's high x-ray transparency makes it an attractive material for windows intended to protect soft x-ray diagnostics in high energy density experiments. Pure lithium is soft and weak, but lithium mixed with lithium hydride powder becomes harder and stronger, in principle without any additional x-ray absorption. A comparison with the standard material for x-ray windows, beryllium, suggests that lithium or lithium strengthened by lithium hydride may well be an excellent option for such windows.

Pereira, N. R. [Ecopulse Inc., P.O. Box 528, Springfield, Virginia 22150 (United States); Imam, M. A. [Materials Science and Technology Division, Naval Research Laboratory, Washington, DC 20375 (United States)

2008-05-15T23:59:59.000Z

176

Lithium Abundances in Wide Binaries with Solar-Type Twin Components  

E-Print Network (OSTI)

We present high-resolution spectroscopic observations of the \\ion{Li}{1} resonance line in a sample of 62 stars that belong to 31 common-proper motion pairs with twin F or G-type components. Photospheric abundances of lithium were derived by spectral synthesis analysis. For seven of the pairs, we have measured large lithium abundance differences. Eleven other pairs have components with similar lithium abundances. We cannot determine if the remaining 13 pairs have lithium differences because we did not detect the \\ion{Li}{1} lines, and hence we can only provide upper limits to the abundances of both stars. Our results demonstrate that twin stars do not always share the same lithium abundances. Lithium depletion in solar-type stars does not only depend on age, mass, and metallicity. This result is consistent with the spread in lithium abundances among solar-type stars in the solar-age open cluster M67. Our stars are brighter than the M67 members of similar spectral type, making them good targets for detailed fo...

Martín, E L; Pavlenko, Ya V; Lyubchik, Y; Martin, Eduardo L.; Basri, Gibor; Pavlenko, Yakiv; Lyubchik, Yuri

2002-01-01T23:59:59.000Z

177

Thin-film Lithium Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Thin-Film Battery with Lithium Anode Courtesy of Oak Ridge National Laboratory, Materials Science and Technology Division Thin-Film Lithium Batteries Resources with Additional Information The Department of Energy's 'Oak Ridge National Laboratory (ORNL) has developed high-performance thin-film lithium batteries for a variety of technological applications. These batteries have high energy densities, can be recharged thousands of times, and are only 10 microns thick. They can be made in essentially any size and shape. Recently, Teledyne licensed this technology from ORNL to make batteries for medical devices including electrocardiographs. In addition, new "textured" cathodes have been developed which have greatly increased the peak current capability of the batteries. This greatly expands the potential medical uses of the batteries, including transdermal applications for heart regulation.'

178

Lithium ion rechargeable systems studies  

Science Conference Proceedings (OSTI)

Lithium ion systems, although relatively new, have attracted much interest worldwide. Their high energy density, long cycle life and relative safety, compared with metallic lithium rechargeable systems, make them prime candidates for powering portable electronic equipment. Although lithium ion cells are presently used in a few consumer devices, e.g., portable phones, camcorders, and laptop computers, there is room for considerable improvement in their performance. Specific areas that need to be addressed include: (1) carbon anode--increase reversible capacity, and minimize passivation; (2) cathode--extend cycle life, improve rate capability, and increase capacity. There are several programs ongoing at Sandia National Laboratories which are investigating means of achieving the stated objectives in these specific areas. This paper will review these programs.

Levy, S.C.; Lasasse, R.R.; Cygan, R.T.; Voigt, J.A.

1995-02-01T23:59:59.000Z

179

Composite electrodes for lithium batteries.  

DOE Green Energy (OSTI)

The stability of composite positive and negative electrodes for rechargeable lithium batteries is discussed. Positive electrodes with spinel-type structures that are derived from orthorhombic-LiMnO{sub 2} and layered-MnO{sub 2} are significantly more stable than standard spinel Li[Mn{sub 2}]O{sub 4} electrodes when cycled electrochemically over both the 4-V and 3-V plateaus in lithium cells. Transmission electron microscope data of cycled electrodes have indicated that a composite domain structure accounts for this greater electrochemical stability. The performance of composite Cu{sub x}Sn materials as alternative negative electrodes to amorphous SnO{sub x} electrodes for lithium-ion batteries is discussed in terms of the importance of the concentration of the electrochemically inactive copper component in the electrode.

Hackney, S. A.; Johnson, C. S.; Kahaian, A. J.; Kepler, K. D.; Shao-Horn, Y.; Thackeray, M. M.; Vaughey, J. T.

1999-02-03T23:59:59.000Z

180

Novel carbonaceous materials for lithium secondary batteries  

DOE Green Energy (OSTI)

Carbonaceous materials have been synthesized using pillared clays (PILCs) as templates. The PILC was loaded with organic materials such as pyrene in the liquid and vapor phase, styrene in the vapor phase, trioxane, ethylene and propylene. The samples were then pyrolyzed at 700 C in an inert atmosphere, followed by dissolution of the inorganic template by conventional demineralization methods. X-ray powder diffraction of the carbons showed broad d{sub 002} peaks in the diffraction pattern, indicative of a disordered or turbostratic system. N{sub 2} BET surface areas of the carbonaceous materials range from 10 to 100 m{sup 2}/g. There is some microporosity (r < 1 nm) in the highest surface area carbons. Most of the surface area, however, comes from a mixture of micro and mesopores with radii of 2--5 nm. Electrochemical studies were performed on these carbons. Button cells were fabricated with capacity- limiting carbon pellets electrodes as the cathode a/nd metallic lithium foil as the anode. Large reversible capacities (up to 850 mAh/g) were achieved for most of the samples. The irreversible capacity loss was less than 180 mAh/g after the first cycle, suggesting that these types of carbon materials are very stable to lithium insertion and de-insertion reactions.

Sandi, G.; Winans, R.E.; Carrado, K.A.; Johnson, C.S.

1997-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "large format lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Thin-film rechargeable lithium batteries  

SciTech Connect

Thin-film rechargeable lithium batteries using ceramic electrolyte and cathode materials have been fabricated by physical deposition techniques. The lithium phosphorous oxynitride electrolyte has exceptional electrochemical stability and a good lithium conductivity. The lithium insertion reaction of several different intercalation materials, amorphous V{sub 2}O{sub 5}, amorphous LiMn{sub 2}O{sub 4}, and crystalline LiMn{sub 2}O{sub 4} films, have been investigated using the completed cathode/electrolyte/lithium thin-film battery.

Dudney, N.J.; Bates, J.B.; Lubben, D. [Oak Ridge National Lab., TN (United States). Solid State Div.

1995-06-01T23:59:59.000Z

182

Thin-film Rechargeable Lithium Batteries  

DOE R&D Accomplishments (OSTI)

Thin film rechargeable lithium batteries using ceramic electrolyte and cathode materials have been fabricated by physical deposition techniques. The lithium phosphorous oxynitride electrolyte has exceptional electrochemical stability and a good lithium conductivity. The lithium insertion reaction of several different intercalation materials, amorphous V{sub 2}O{sub 5}, amorphous LiMn{sub 2}O{sub 4}, and crystalline LiMn{sub 2}O{sub 4} films, have been investigated using the completed cathode/electrolyte/lithium thin film battery.

Dudney, N. J.; Bates, J. B.; Lubben, D.

1995-06-00T23:59:59.000Z

183

Imaging Lithium Air Electrodes | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Neutron Imaging Reveals Lithium Distribution in Lithium-Air Electrodes Neutron Imaging Reveals Lithium Distribution in Lithium-Air Electrodes Agatha Bardoel - January 01, 2013 Image produced by neutron-computed tomography. The next step in revolutionizing electric vehicle capacity Research Contacts: Hassina Bilheux, Jagjit Nanda, and S. Pannala Using neutron-computed tomography, researchers at the CG-1D neutron imaging instrument at Oak Ridge National Laboratory's High Flux Isotope Reactor (HFIR) have successfully mapped the three-dimensional spatial distribution of lithium products in electrochemically discharged lithium-air cathodes. Lithium-air chemistry promises very high-energy density that, if successful, would revolutionize the world of electric vehicles by extending their range to 500 miles or more. The high-energy density comes from

184

Investigation of CO2 plume behavior for a large-scale pilot test of geologic carbon storage in a saline formation  

SciTech Connect

The hydrodynamic behavior of carbon dioxide (CO{sub 2}) injected into a deep saline formation is investigated, focusing on trapping mechanisms that lead to CO{sub 2} plume stabilization. A numerical model of the subsurface at a proposed power plant with CO{sub 2} capture is developed to simulate a planned pilot test, in which 1,000,000 metric tons of CO{sub 2} is injected over a four-year period, and the subsequent evolution of the CO{sub 2} plume for hundreds of years. Key measures are plume migration distance and the time evolution of the partitioning of CO{sub 2} between dissolved, immobile free-phase, and mobile free-phase forms. Model results indicate that the injected CO{sub 2} plume is effectively immobilized at 25 years. At that time, 38% of the CO{sub 2} is in dissolved form, 59% is immobile free phase, and 3% is mobile free phase. The plume footprint is roughly elliptical, and extends much farther up-dip of the injection well than down-dip. The pressure increase extends far beyond the plume footprint, but the pressure response decreases rapidly with distance from the injection well, and decays rapidly in time once injection ceases. Sensitivity studies that were carried out to investigate the effect of poorly constrained model parameters permeability, permeability anisotropy, and residual CO{sub 2} saturation indicate that small changes in properties can have a large impact on plume evolution, causing significant trade-offs between different trapping mechanisms.

Doughty, C.

2009-04-01T23:59:59.000Z

185

Lithium-loaded liquid scintillators  

DOE Patents (OSTI)

The invention is directed to a liquid scintillating composition containing (i) one or more non-polar organic solvents; (ii) (lithium-6)-containing nanoparticles having a size of up to 10 nm and surface-capped by hydrophobic molecules; and (iii) one or more fluorophores. The invention is also directed to a liquid scintillator containing the above composition.

Dai, Sheng (Knoxville, TN); Kesanli, Banu (Mersin, TR); Neal, John S. (Knoxville, TN)

2012-05-15T23:59:59.000Z

186

Anode material for lithium batteries  

DOE Patents (OSTI)

Primary and secondary Li-ion and lithium-metal based electrochemical cell systems. The suppression of gas generation is achieved through the addition of an additive or additives to the electrolyte system of respective cell, or to the cell itself whether it be a liquid, a solid- or plasticized polymer electrolyte system. The gas suppression additives are primarily based on unsaturated hydrocarbons.

Belharouak, Ilias (Westmont, IL); Amine, Khalil (Downers Grove, IL)

2012-01-31T23:59:59.000Z

187

Anode material for lithium batteries  

DOE Patents (OSTI)

Primary and secondary Li-ion and lithium-metal based electrochemical cell system. The suppression of gas generation is achieved through the addition of an additive or additives to the electrolyte system of respective cell, or to the cell itself whether it be a liquid, a solid- or plastized polymer electrolyte system. The gas suppression additives are primarily based on unsaturated hydrocarbons.

Belharouak, Ilias (Bolingbrook, IL); Amine, Khalil (Downers Grove, IL)

2008-06-24T23:59:59.000Z

188

Anode material for lithium batteries  

DOE Patents (OSTI)

Primary and secondary Li-ion and lithium-metal based electrochemical cell systems. The suppression of gas generation is achieved through the addition of an additive or additives to the electrolyte system of respective cell, or to the cell itself whether it be a liquid, a solid- or plasticized polymer electrolyte system. The gas suppression additives are primarily based on unsaturated hydrocarbons.

Belharouak, Ilias (Bolingbrook, IL); Amine, Khalil (Oak Brook, IL)

2011-04-05T23:59:59.000Z

189

Commercial Aluminum-Lithium Alloys  

Science Conference Proceedings (OSTI)

Table 8   Typical physical properties of selected aluminum-lithium alloys...-742 Elastic modulus, GPa (10 6 psi) 76 (11.0) 75 (10.9) 77 (11.2) Poisson's ratio 0.34 � � (a) Measured per ASTM G 60

190

Lithium Ephedrate-Mediated Addition of a Lithium Acetylide to a Ketone: Solution Structures and Relative Reactivities of Mixed  

E-Print Network (OSTI)

Lithium Ephedrate-Mediated Addition of a Lithium Acetylide to a Ketone: Solution Structures-1301 ReceiVed April 30, 1997. ReVised Manuscript ReceiVed NoVember 26, 1997 Abstract: Addition of lithiumLi and 13C NMR spectroscopies reveal lithium cyclopropylacetylide in THF to be a dimer

Collum, David B.

191

Upward-facing Lithium Flash Evaporator for NSTX-U  

SciTech Connect

NSTX plasma performance has been significantly enhanced by lithium conditioning [1]. To date, the lower divertor and passive plates have been conditioned by downward facing lithium evaporators (LITER) as appropriate for lower null plasmas. The higher power operation expected from NSTX-U requires double null plasma operation in order to distribute the heat flux between the upper and lower divertors making it desirable to coat the upper divertor region with Li as well. An upward aiming LITER (U-LITER) is presently under development and will be inserted into NSTX-U using a horizontal probe drive located in a 6" upper midplane port. In the retracted position the evaporator will be loaded with up to 300 mg of Li granules utilizing one of the calibrated NSTX Li powder droppers[2]. The evaporator will then be inserted into the vessel in a location within the shadow of the RF limiters and will remain in the vessel during the discharge. About 10 seconds before a discharge, it will be rapidly heated and the lithium completely evaporated onto the upper divertor, thus avoiding the complication of a shutter that prevents evaporation during the shot when the diagnostic shutters are open. The minimal time interval between the evaporation and the start of the discharge will avoid the passivation of the lithium by residual gases and enable the study of the conditioning effects of un-passivated Li surfaces [3]. Two methods are being investigated to accomplish the rapid (few second) heating of the lithium. A resistive method relies on passing a large current through a Li filled crucible. A second method requires using a 3 kW e-beam gun to heat the Li. In this paper the evaporator systems will be described and the pros and cons of each heating method will be discussed.

Roquemore, A. L.

2013-07-09T23:59:59.000Z

192

Assessment of Response to Lithium Maintenance Treatment in Bipolar Disorder: A Consortium on Lithium  

E-Print Network (OSTI)

Assessment of Response to Lithium Maintenance Treatment in Bipolar Disorder: A Consortium on Lithium Genetics (ConLiGen) Report Mirko Manchia1 , Mazda Adli2 , Nirmala Akula3 , Raffaella Ardau4 , Jean

Recanati, Catherine

193

Ab initio screening of lithium diffusion rates in transition metal oxide cathodes for lithium ion batteries  

E-Print Network (OSTI)

A screening metric for diffusion limitations in lithium ion battery cathodes is derived using transition state theory and common materials properties. The metric relies on net activation barrier for lithium diffusion. ...

Moore, Charles J. (Charles Jacob)

2012-01-01T23:59:59.000Z

194

Preliminary design and analysis of a process for the extraction of lithium from seawater  

DOE Green Energy (OSTI)

The U.S. demand for lithium by the industrial sector and by a fusion power economy in the future is discussed. For a one million MW(e) CTR (D-T fuel cycle) economy, growing into the beginning of the next century (the years 2000 to 2030), the cumulative demand for lithium is estimated to range from (0.55 to 4.7) x 10/sup 7/ to 1.0 x 10/sup 9/ kg. Present estimates of the available U.S. supply are 6.9 x 10/sup 8/ kg of lithium from mineral resources and 4.0 x 10/sup 9/ kg of lithium from concentrated natural brines. There is, however, a vast supply of lithium in seawater: 2.5 x 10/sup 14/ kg. A preliminary process design for the extraction of lithium from seawater is presented: seawater is first evaporated by solar energy to increase the concentration of lithium and to decrease the concentration of other cations in the bittern which then passes into a Dowex-50 ion exchange bed for cation adsorption. Lithium ions are then eluted with dilute hydrochloric acid forming an aqueous lithium chloride which is subsequently concentrated and electrolyzed. The energy requirement for lithium extraction varies between 0.08 and 2.46 kWh(e)/gm for a range of production rates varying between 10/sup 4/ and 10/sup 8/ kg/y; this is small compared to the energy produced from the use of lithium in a CTR having a value of 3400 kWh(e)/g Li. Production cost of the process is estimated to be in the range of 2.2 to 3.2 cents/g Li. As a basis for the process design, it is recommended that a phase equilibria study of the solid--liquid crystallization processes of seawater be conducted. Uncertainties exist in the operation of large solar ponds for concentrating large quantities of seawater. A search for a highly selective adsorbent or extractant for Li from low concentration aqueous solutions should be made. Other physical separation processes such as using membranes should be investigated. 9 tables. (DLC)

Steinberg, M.; Dang, V.D.

1975-09-01T23:59:59.000Z

195

Visualization of Charge Distribution in a Lithium Battery Electrode  

E-Print Network (OSTI)

of a Lithium-Polymer Battery. J. Power Sources 2006, 163,of a Lithium-Polymer Battery. J. Power Sources 2008, 180,Up of a Lithium-Ion Polymer Battery. J. Power Sources 2009,

Liu, Jun

2010-01-01T23:59:59.000Z

196

Imaging Lithium Atoms at Sub-Angstrom Resolution  

E-Print Network (OSTI)

110] orientation for LiCoO 2 without lithium atoms ( upper)and with lithium atoms (lower). Images are simulated at 0.9ÅHorn LBNL-56646 resolution of lithium ions in LiCoO 2 . Fall

O'Keefe, Michael A.; Shao-Horn, Yang

2005-01-01T23:59:59.000Z

197

Lithium Diisopropylamide: Oligomer Structures at Low Ligand Concentrations  

E-Print Network (OSTI)

Lithium Diisopropylamide: Oligomer Structures at Low Ligand Concentrations Jennifer L. Rutherford-dimensional 6Li and 15N NMR spectroscopic studies of lithium diisopropylamide (LDA) solvated ligand concentrations are discussed. Introduction Spectroscopic studies of lithium amides at low ligand

Collum, David B.

198

DEFECTS, PHASE TRANSFORMATIONS AND MAGNETIC PROPERTIES OF LITHIUM FERRITE  

E-Print Network (OSTI)

Crystal Fine-Structure: . Lithium Ferrite (Li 20.Fe 0 )1I,J. Dih, Electrical Conductivity in Lithium Ferrite and LeadMagnetic Properties of Lithium Ferrite Raja Kishore Mishra

Mishra, Raja Kishore

2011-01-01T23:59:59.000Z

199

Lithium Research Status and PlansLithium Research Status and Plans Charles H. Skinner, PPPL  

E-Print Network (OSTI)

retention with lithium results (FY09 Joule Milestone) · Plans for LLD commissioning · LLD pumping · Impurity

Princeton Plasma Physics Laboratory

200

Lithium borate cluster salts as novel redox shuttles for overcharge protection of lithium-ion cells.  

DOE Green Energy (OSTI)

Redox shuttle is a promising mechanism for intrinsic overcharge protection in lithium-ion cells and batteries. Two lithium borate cluster salts are reported to function as both the main salt for a nonaqueous electrolyte and the redox shuttle for overcharge protection. Lithium borate cluster salts with a tunable redox potential are promising candidates for overcharge protection for most positive electrodes in state-of-the-art lithium-ion cells.

Chen, Z.; Liu, J.; Jansen, A. N.; Casteel, B.; Amine, K.; GirishKumar, G.; Air Products and Chemicals, Inc.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "large format lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Lithium Metal Oxide Electrodes For Lithium Cells And Batteries  

DOE Patents (OSTI)

A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2 M'O.sub.3 in which 0

Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Amine, Khalil (Downers Grove, IL); Kim, Jaekook (Naperville, IL)

2004-01-20T23:59:59.000Z

202

Lithium metal oxide electrodes for lithium cells and batteries  

DOE Patents (OSTI)

A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2M'O.sub.3 in which 0

Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Amine, Khalil (Oakbrook, IL)

2008-12-23T23:59:59.000Z

203

Effects of Carbonate Solvents and Lithium Salts on Morphology and Coulombic Efficiency of Lithium Electrode  

SciTech Connect

The application of lithium (Li) metal anode in rechargeable batteries is hindered by Li dendrite growth during Li deposition and low Li Coulombic efficiency (CE), where the nonaqueous electrolyte plays a critical role. In this work, the effects of different carbonate solvents and Li salts on Li deposition morphology and CE were systematically investigated. Typically cyclic carbonates are found to favor the formation of uniform Li film and improve Li CE than linear carbonates do. Several specific cyclic carbonates that are conventionally used as solid electrolyte interface formation additives in Li ion batteries can also improve the CE of Li anode. Furthermore, among the nine electrolyte salts studied, LiAsF6 and LiBOB lead to the highest CE for Li anode. LiBOB also leads to much smoother Li morphology than other salts do. Considering the better safety of LiBOB as compared to LiAsF6, LiBOB is a promising Li salt for rechargeable Li metal batteries with high CE. By combining the best electrolyte solvent/salt that can lead to high Li CE and novel electrolyte additives that can prevent dendrite formation, it is possible to find an electrolyte that not only prevents Li dendrite formation but also lead to high CE during Li deposition/stripping processes.

Ding, Fei; Xu, Wu; Chen, Xilin; Zhang, Jian; Engelhard, Mark H.; Zhang, Yaohui; Johnson, Bradley R.; Crum, Jarrod V.; Blake, Thomas A.; Liu, Xingjiang; Zhang, Jiguang

2013-09-04T23:59:59.000Z

204

Lithium-aluminum-iron electrode composition  

DOE Patents (OSTI)

A negative electrode composition is presented for use in a secondary electrochemical cell. The cell also includes an electrolyte with lithium ions such as a molten salt of alkali metal halides or alkaline earth metal halides that can be used in high-temperature cells. The cell's positive electrode contains a a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent in an alloy of aluminum-iron. Various binary and ternary intermetallic phases of lithium, aluminum and iron are formed. The lithium within the intermetallic phase of Al.sub.5 Fe.sub.2 exhibits increased activity over that of lithium within a lithium-aluminum alloy to provide an increased cell potential of up to about 0.25 volt.

Kaun, Thomas D. (Mokena, IL)

1979-01-01T23:59:59.000Z

205

Electrode materials and lithium battery systems  

DOE Patents (OSTI)

A material comprising a lithium titanate comprising a plurality of primary particles and secondary particles, wherein the average primary particle size is about 1 nm to about 500 nm and the average secondary particle size is about 1 .mu.m to about 4 .mu.m. In some embodiments the lithium titanate is carbon-coated. Also provided are methods of preparing lithium titanates, and devices using such materials.

Amine, Khalil (Downers Grove, IL); Belharouak, Ilias (Westmont, IL); Liu, Jun (Naperville, IL)

2011-06-28T23:59:59.000Z

206

Layered Electrodes for Lithium Cells and Batteries | Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

Layered Electrodes for Lithium Cells and Batteries Technology available for licensing: Layered lithium metal oxide compounds for ultra-high-capacity, rechargeable cathodes...

207

Electrode Structures and Surfaces for Lithium Batteries | Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrode Structures and Surfaces for Lithium Batteries Technology available for licensing: lithium-metal-oxide electrode materials with modified surfaces to protect the materials...

208

Modeling the Performance of Lithium-Ion Batteries and Capacitors...  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling the Performance of Lithium-Ion Batteries and Capacitors during Hybird Electric-Vehicle Operation Title Modeling the Performance of Lithium-Ion Batteries and Capacitors...

209

High-rate capable organic radical cathodes for lithium rechargeable...  

NLE Websites -- All DOE Office Websites (Extended Search)

High-rate capable organic radical cathodes for lithium rechargeable batteries Title High-rate capable organic radical cathodes for lithium rechargeable batteries Publication Type...

210

Nanostructured Materials for Lithium Ion Batteries and for ...  

Science Conference Proceedings (OSTI)

Mar 6, 2013 ... Nanostructured Materials for Lithium Ion Batteries and for ... to control capacity loss and enhance energy efficiency of lithium-ion batteries.

211

Calorimetric Investigation of the Lithium–Manganese–Oxygen ...  

Science Conference Proceedings (OSTI)

Presentation Title, Calorimetric Investigation of the Lithium–Manganese–Oxygen Cathode Material System for Lithium Ion Batteries. Author(s), Damian M. Cupid, ...

212

Studies On Electrode Materials For Lithium-Ion Batteries.  

E-Print Network (OSTI)

??In the early 1970s, research carried out on rechargeable lithium batteries at the Exxon Laboratories in the US established that lithium ions can be intercalated… (more)

Palale, Suresh

2006-01-01T23:59:59.000Z

213

Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Celebrates Expansion of Lithium-Ion Battery Production in North Carolina Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production in North Carolina July 26, 2011 -...

214

Expanded North Carolina Lithium Facility Opens, Boosting U.S...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Expanded North Carolina Lithium Facility Opens, Boosting U.S. Production of a Key Manufacturing Material Expanded North Carolina Lithium Facility Opens, Boosting U.S. Production of...

215

Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) DOE's Energy Storage...

216

NANOTUBE COMPOSITE ANODE MATERIALS SUITABLE FOR LITHIUM ION ...  

The present invention provides a composite material suitable for use in an anode for a lithium ion battery, the composite material comprising a layer of a lithium ...

217

Lithium Tokamak Experiment (LTX) | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Lithium Tokamak Experiment (LTX) The Lithium Tokamak Experiment (LTX) produced its first plasma in September, 2008. The new device will continue the promising, innovative work...

218

Optimizing the Performance of Lithium Titanate Spinal Paired...  

NLE Websites -- All DOE Office Websites (Extended Search)

Optimizing the Performance of Lithium Titanate Spinal Paired with Activated Carbon or Iron Phosphate Title Optimizing the Performance of Lithium Titanate Spinal Paired with...

219

Itochu Takes Equity Stake in Lithium Resources Development Company ...  

California is unique because of its high content of lithium. Simbol has made . tremendous progress in developing a technology to extract lithium from this

220

Lithium-Ion Batteries: Examining Material Demand and Recycling ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Use of vehicles with electric drive, which could reduce our oil dependence, will depend on lithium–ion batteries. But is there enough lithium?

Note: This page contains sample records for the topic "large format lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Nanocomposite Carbon/Tin Anodes for Lithium Ion Batteries  

Ceramic-Metal Composites for Electrodes of Lithium Ion Batteries, IB-2253; Lower Cost Lithium Ion Batteries from Aluminum Substituted Cathode ...

222

Overcharge Protection for 4 V Lithium Batteries at High Rates...  

NLE Websites -- All DOE Office Websites (Extended Search)

Overcharge Protection for 4 V Lithium Batteries at High Rates and Low Temperature Title Overcharge Protection for 4 V Lithium Batteries at High Rates and Low Temperature...

223

ABAA - 6th International Conference on Advanced Lithium Batteries...  

NLE Websites -- All DOE Office Websites (Extended Search)

of lithium batteries for transportation applications, organizers from U.S.A., Japan and Korea jointly initiated the International Conference on Advanced Lithium Batteries for...

224

Available Technologies: Lower Cost Lithium Ion Batteries from ...  

Lower Cost Lithium Ion Batteries from ... Although lithium ion batteries are the most promising candidates for plug-in hybrid electric vehicles, the u ...

225

Self-Regulating, Nonflamable Rechargeable Lithium Batteries ...  

Rechargeable lithium batteries are superior to other rechargeable batteries due to their ability to store more energy per unit size and weight and to operate at ...

226

Nanopower: Avoiding Electrolyte Failure in Nanoscale Lithium ...  

Science Conference Proceedings (OSTI)

... most of which is the battery itself—which ... wide—solid-state lithium ion batteries to see just ... cathode material, electrolyte, and anode materials with ...

2012-04-11T23:59:59.000Z

227

Surface Modification Agents for Lithium Batteries  

Increased safety and life of lithium-ion batteries, ... Electric and plug-in hybrid electric vehicles; Portable electronic devices; Medical devices; and

228

Ternary compound electrode for lithium cells  

DOE Patents (OSTI)

Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and of light weight. One type of lithium-based cell utilizes a molten salt electrolyte and normally is operated in the temperature range of about 350 to 500/sup 0/C. Such high temperature operation accelerates corrosion problems. The present invention provides an electrochemical cell in which lithium is the electroactive species. The cell has a positive electrode which includes a ternary compound generally represented as Li-M-O, wherein M is a transition metal. Corrosion of the inventive cell is considerably reduced.

Raistrick, I.D.; Godshall, N.A.; Huggins, R.A.

1980-07-30T23:59:59.000Z

229

Lithium-Ion Batteries: Possible Materials Issues  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne, IL Abstract The transition to plug-in hybrid vehicles and possibly pure battery electric vehicles will depend on the successful development of lithium-ion batteries....

230

High Energy Density Secondary Lithium Batteries  

High Energy Density Secondary Lithium Batteries Note: The technology described above is an early stage opportunity. Licensing rights to this intellectual property may

231

Cycling Degradation of Lithium Iron Phosphate Cells  

Science Conference Proceedings (OSTI)

Abstract Scope, Significant improvement of electronic conductivity of lithium iron ... commercialization in many applications especially in plug-in electric vehicles.

232

Layered Electrodes for Lithium Cells and Batteries  

AV AILABLE FOR LICENSING Layered lithium metal oxide compounds for ultra-high capacity, rechargeable cathodes. The Invention High-capacity, rechargeable cathodes made ...

233

Ternary compound electrode for lithium cells  

DOE Patents (OSTI)

Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and of light weight. One type of lithium-based cell utilizes a molten salt electrolyte and normally is operated in the temperature range of about 350.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems. The present invention provides an electrochemical cell in which lithium is the electroactive species. The cell has a positive electrode which includes a ternary compound generally represented as Li-M-O, wherein M is a transition metal. Corrosion of the inventive cell is considerably reduced.

Raistrick, Ian D. (Menlo Park, CA); Godshall, Ned A. (Stanford, CA); Huggins, Robert A. (Stanford, CA)

1982-01-01T23:59:59.000Z

234

Do primordial Lithium abundances imply there's no Dark Energy?  

E-Print Network (OSTI)

Explaining the well established observation that the expansion rate of the universe is apparently accelerating is one of the defining scientific problems of our age. Within the standard model of cosmology, the repulsive 'dark energy' supposedly responsible has no explanation at a fundamental level, despite many varied attempts. A further important dilemma in the standard model is the Lithium problem, which is the substantial mismatch between the theoretical prediction for 7-Li from Big Bang Nucleosynthesis and the value that we observe today. This observation is one of the very few we have from along our past worldline as opposed to our past lightcone. By releasing the untested assumption that the universe is homogeneous on very large scales, both apparent acceleration and the Lithium problem can be easily accounted for as different aspects of cosmic inhomogeneity, without causing problems for other cosmological phenomena such as the cosmic microwave background. We illustrate this in the context of a void model.

Marco Regis; Chris Clarkson

2010-03-04T23:59:59.000Z

235

LITHIUM-BASED ELECTROCHROMIC MIRRORS  

NLE Websites -- All DOE Office Websites (Extended Search)

870 870 rd Presented at the 203 Meeting of the Electrochemical Society, April 28-30, 2003 in Paris, France and published in the Proceedings. Lithium-Based Electrochromic Mirrors Thomas J. Richardson and Jonathan L. Slack Lawrence Berkeley National Laboratory April 2003 This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, State and Community Programs, Office of Building Research and Standards of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. LITHIUM-BASED ELECTROCHROMIC MIRRORS Thomas J. Richardson* and Jonathan L. Slack Building Technologies Department Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Berkeley, California 94720, USA

236

Solid polymer electrolyte lithium batteries  

DOE Patents (OSTI)

This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).

Alamgir, Mohamed (Dedham, MA); Abraham, Kuzhikalail M. (Needham, MA)

1993-01-01T23:59:59.000Z

237

Solid polymer electrolyte lithium batteries  

DOE Patents (OSTI)

This invention pertains to Lithium batteries using Li ion (Li[sup +]) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride). 3 figures.

Alamgir, M.; Abraham, K.M.

1993-10-12T23:59:59.000Z

238

Lithium battery safety and reliability  

DOE Green Energy (OSTI)

Lithium batteries have been used in a variety of applications for a number of years. As their use continues to grow, particularly in the consumer market, a greater emphasis needs to be placed on safety and reliability. There is a useful technique which can help to design cells and batteries having a greater degree of safety and higher reliability. This technique, known as fault tree analysis, can also be useful in determining the cause of unsafe behavior and poor reliability in existing designs.

Levy, S.C.

1991-01-01T23:59:59.000Z

239

Lithium batteries for pulse power  

DOE Green Energy (OSTI)

New designs of lithium batteries having bipolar construction and thin cell components possess the very low impedance that is necessary to deliver high-intensity current pulses. The R D and understanding of the fundamental properties of these pulse batteries have reached an advanced level. Ranges of 50--300 kW/kg specific power and 80--130 Wh/kg specific energy have been demonstrated with experimental high-temperature lithium alloy/transition-metal disulfide rechargeable bipolar batteries in repeated 1- to 100-ms long pulses. Other versions are designed for repetitive power bursts that may last up to 20 or 30 s and yet may attain high specific power (1--10 kW/kg). Primary high-temperature Li-alloy/FeS{sub 2} pulse batteries (thermal batteries) are already commercially available. Other high-temperature lithium systems may use chlorine or metal-oxide positive electrodes. Also under development are low-temperature pulse batteries: a 50-kW Li/SOCl{sub 2} primary batter and an all solid-state, polymer-electrolyte secondary battery. Such pulse batteries could find use in commercial and military applications in the near future. 21 refs., 8 figs.

Redey, L.

1990-01-01T23:59:59.000Z

240

Influence of corannulene's curved carbon lattice (C{sub 20}H{sub 10}) on lithium intercalation.  

DOE Green Energy (OSTI)

Ab initio molecular orbital calculations have been used to investigate the influence of corannulene's curved carbon lattice (C{sub 20}H{sub 10}) on lithium intercalation. This has been approximated by investigating the reaction of lithium atoms with either the corannulene molecule directly or with a sandwich structure formed from two corannulene molecules. In the first case, one corannulene molecule, three, six and seven lithiums have been used to form Li{sub 3}(C{sub 20}H{sub 10}), Li{sub 6}(C{sub 20}H{sub 10}) and Li{sub 7}(C{sub 20}H{sub 10}). The last complex has a lithium to carbon ratio of 1:2.86 indicative of a high capacity lithium carbon anode versus the 1:6 ratio found in stage 1 lithium intercalated graphite. The change in Gibbs energy for formation of Li{sub 3}(C{sub 20}H{sub 10}) with a multiplicity of 4 (3 unpaired electrons) is -4.75 kcal/mole. However, when a multiplicity of 2 is used (1 unpaired electron), the change in Gibbs energy is -8.49 kcal/mole. The change in Gibbs energy for formation of Li{sub 6}(C{sub 20}H{sub 10}) and Li{sub 7}(C{sub 20}H{sub 10}) (multiplicity of 2) are -26.48 and -26.47 kcal/mole, respectively. In all the lithium corannulene complexes described, each complex has a molecular orbital composed only of lithium orbitals, indicative of lithium cluster formation. However, in the formation of Li{sub 3}(C{sub 20}H{sub 10}) with three lithium atoms intercalated between two corannulene carbon lattices, there are no molecular orbitals indicative of lithium cluster formation. The multiplicity for this chemical system is 4 and the corannulene lattices are stacked one over the other like saucers. The corannulene carbon lattices are separated by approximately 4.5 {angstrom}. The separations between lithiums are 3.13, 3.60 and 3.79 {angstrom}. These results are in contrast to those found in the Li{sub 3}C{sub 60} endohedral complex with a multiplicity of 4. In this complex there is a molecular orbital composed only of lithium orbitals. The calculated results in this investigation suggest that the carbon lattice stacking configuration is important for lithium cluster formation. For Li{sub 6}(C{sub 20}H{sub 10}), a transition state intermediate complex has been found through the geometry optimization process. Optimization of this structure results in a complex which is 13.42 kcal/mole more stable. These preliminary results indicate that the energy of activation for the removal of one lithium from this complex is on the order of 13.42 kcal/mole or 0.58 eV.

Scanlon, L. G.

1998-06-08T23:59:59.000Z

Note: This page contains sample records for the topic "large format lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Retention/Diffusivity Studies in Free-Surface Flowing Liquid Lithium  

DOE Green Energy (OSTI)

FLIRE was designed to measure the hydrogen and helium retention and diffusivity in a flowing stream of liquid lithium, and it has accomplished these goals. Retention coefficients for helium in the flowing liquid stream were 0.1-2% for flow speeds of 44 cm/s and implantation energies between 500 and 2000 eV. The energy dependence of retention is linear for the energy range considered, as expected, and the dependence of retention on flow velocity fits the expected square-root of flow speed dependence. Estimates of the helium diffusion coefficient in the flowing lithium stream were {approx} 4 x 10{sup -7} cm{sup 2}/s, and are independent of implantation energy. This value is much lower than expected, which could be due to several factors, such as mixing, bubble formation or surface film formation. In the case of hydrogen, long term retention and release mechanisms are of greatest importance, since this relates to tritium inventory in flowing lithium PFCs for fusion applications. The amount of hydride formation was measured for flowing lithium exposed to neutral deuterium gas. Thermal desorption spectroscopy (TDS) measurements indicate that the hydride concentration was between 0.1 and 0.2% over a wide range of pressures (6.5 x 10{sup -5} to 1 Torr). This result implies that the deuterium absorption rate is limited by the surface dissociation rate, since deuterium (hydrogen/tritium) is absorbed in its atomic form, not its molecular form.

R.A. Stubbers; G.H. Miley; M. Nieto; W. Olczak; D.N. Ruzic; A. Hassanein

2004-12-14T23:59:59.000Z

242

Current status of the liquid lithium target  

E-Print Network (OSTI)

cycle Flexible tubes Oil pump Heat exchanger Oil chamber Inside the lab Outside the lab #12;Elect irradiations), Internal Report DSM/DAPNIA/SPhN, CEA Saclay (Dec 2003) 10 #12;Liquid lithium loop EM pump loop Water direction #12;15 Be Trap Heat Exchanger Cross Section Design to remove ~12 kW Lithium tank #12;Oil

McDonald, Kirk

243

Transparent lithium-ion batteries , Sangmoo Jeongb  

E-Print Network (OSTI)

Transparent lithium-ion batteries Yuan Yanga , Sangmoo Jeongb , Liangbing Hua , Hui Wua , Seok Woo in capillaries. Adv Mater 8:245­247. 24. Kim DK, et al. (2008) Spinel LiMn2O4 nanorods as lithium ion battery voltage window. For example, LiCoO2 and graphite, the most common cathode and anode in Li-ion batteries

Cui, Yi

244

A Pentafluorophenylboron Oxalate Additive in Non-aqueous Electrolytes 3 for Lithium Batteries  

DOE Green Energy (OSTI)

A novel compound named pentafluorophenylboron oxalate (PFPBO) has been synthesized. PFPBO has a unique molecular structure containing a boron atom center with electron deficiency and an oxalate group. It is found that when PFPBO is used as additive, the solubility of lithium fluoride (LiF) or lithium oxide (Li{sub 2}O, Li{sub 2}O{sub 2}) in propylene carbonate (PC) and dimethyl carbonate (DMC) solvents can be increased dramatically. The new electrolytes show high ionic conductivity, high lithium ion transference number and good compatibility with LiMn{sub 2}O{sub 4} cathode and MCMB anode. PFPBO was synthesized with the designed structure to act as a bi-functional additive: boron-based anion receptor (BBAR) additive and stable solid electrolyte interphase (SEI) formation additive in PC-based electrolytes. The results show it does possess these two desired functionalities.

Yang, X.Q.; Li, L.F.; Lee, H.S.; Li, H.; Huang, X.J.

2009-12-01T23:59:59.000Z

245

An Investigation of the Influence of Droplet Number Concentration and Giant Aerosol Particles upon Supercooled Large Drop Formation in Wintertime Stratiform Clouds  

Science Conference Proceedings (OSTI)

Supercooled large drops (SLD) can be a significant hazard for aviation. Past studies have shown that warm-rain processes are prevalent, or even dominant, in stratiform clouds containing SLD, but the primary factors that control SLD production are ...

Sonia Lasher-Trapp; Sarah Anderson-Bereznicki; Ashley Shackelford; Cynthia H. Twohy; James G. Hudson

2008-10-01T23:59:59.000Z

246

Sisyphus Cooling of Lithium  

E-Print Network (OSTI)

Laser cooling to sub-Doppler temperatures by optical molasses is thought to be inhibited in atoms with unresolved, near-degenerate hyperfine structure in the excited state. We demonstrate that such cooling is possible in one to three dimensions, not only near the standard D2 line for laser cooling, but over a range extending to the D1 line. Via a combination of Sisyphus cooling followed by adiabatic expansion, we reach temperatures as low as 40 \\mu K, which corresponds to atomic velocities a factor of 2.6 above the limit imposed by a single photon recoil. Our method requires modest laser power at a frequency within reach of standard frequency locking methods. It is largely insensitive to laser power, polarization and detuning, magnetic fields, and initial hyperfine populations. Our results suggest that optical molasses should be possible with all alkali species.

Paul Hamilton; Geena Kim; Trinity Joshi; Biswaroop Mukherjee; Daniel Tiarks; Holger Müller

2013-08-08T23:59:59.000Z

247

Office of Technology Transfer Composite Electrodes for Rechargeable Lithium-  

E-Print Network (OSTI)

of this technology. Page 6 Lithium-ion Batteries Could Hold the Key to 100-MPG Hybrids Lithium-ion batteries are a promising alternative to the nickel metal hydride batteries used in current-generation HEVs. Lithium-ion batteries pack more power and energy into a smaller battery package. But there's work to do before lithium-ion

Kemner, Ken

248

Lithium-Assisted Electrochemical Welding in Silicon Nanowire Battery Electrodes  

E-Print Network (OSTI)

-healing, interfacial lithium diffusivity, in situ TEM, lithium-ion battery Silicon is an auspicious candidate to replace today's widely utilized graphitic anodes in lithium ion batteries because its specific energy evidence of facile transport of lithium ions, which are both desirable properties for enhanced battery

Li, Teng

249

Intense Lithium Streams in Tokamaks 1 Leonid E. Zakharov,  

E-Print Network (OSTI)

Intense Lithium Streams in Tokamaks 1 Leonid E. Zakharov, Princeton University, Princeton Plasma. Temperature of the streams. 2. Lithium jets. 3. Injection into vacuum chamber. 4. Propulsion inside the vacuum chamber. 5. Stability of the lithium streams. 6. Expulsion of the lithium. 7. Summary. PRINCETON PLASMA

Zakharov, Leonid E.

250

Lithium Reagents DOI: 10.1002/anie.200603038  

E-Print Network (OSTI)

Lithium Reagents DOI: 10.1002/anie.200603038 Lithium Diisopropylamide: Solution Kinetics Keywords: kinetics · lithium diisopropylamide · metalation · solvent effects · synthesis design D. B: lithium diiso- propylamide (LDA). LDA has played a profound role in organic synthesis, serving as the base

Collum, David B.

251

NSTX Liquid Lithium Divertor (LLD) Design Status and Plans  

E-Print Network (OSTI)

NSTX Liquid Lithium Divertor (LLD) Design Status and Plans Office of Science H. W. Kugel, PPPL Design Status and Plans (Kugel) 2July 28, 2008 Motivation for NSTX Lithium Research · NSTX research with solid lithium is aimed initially towards using liquid lithium to control density, edge collisionality

Princeton Plasma Physics Laboratory

252

Lithium Lorentz Force Accelerator Thruster (LiLFA)  

E-Print Network (OSTI)

Lithium Lorentz Force Accelerator Thruster (LiLFA) Adam Coulon Princeton University Electric #12;LiLFA Thruster · Lithium vapor ionizes in the electric field · A current evolves in the plasma and Control System Position Sensing Detector #12;Lithium Reservoir Argon Flow Copper Water Flow Piston/Lithium

Petta, Jason

253

Impact of Lithium Availability on Vehicle Electrification (Presentation)  

DOE Green Energy (OSTI)

This presentation discusses the relationship between electric drive vehicles and the availability of lithium.

Neubauer, J.

2011-07-01T23:59:59.000Z

254

Surface-Modified Active Materials for Lithium Ion Battery Electrodes  

lithium ion battery electrodes that lowers binder cost without sacrificing performance and reliability.

255

ORIGIN OF LITHIUM ENRICHMENT IN K GIANTS  

Science Conference Proceedings (OSTI)

In this Letter, we report on a low-resolution spectroscopic survey for Li-rich K giants among 2000 low-mass (M {=}3.2) were discovered. A significant finding is that there is a concentration of Li-rich K giants at the luminosity of the clump or red horizontal branch. This new finding is partly a consequence of the fact that our low-resolution survey is the first large survey to include giants well below and above the red giant branch (RGB) bump and clump locations in the H-R diagram. Origin of the lithium enrichment may be plausibly attributed to the conversion of {sup 3}He via {sup 7}Be to {sup 7}Li by the Cameron-Fowler mechanism but the location for the onset of the conversion is uncertain. Two possible opportunities to effect this conversion are discussed: the bump in the first ascent of the RGB and the He-core flash at the tip of the RGB. The finite luminosity spread of the Li-rich giants serves to reject the idea that Li enhancement is, in general, a consequence of a giant swallowing a large planet.

Kumar, Yerra Bharat; Reddy, Bacham E. [Indian Institute of Astrophysics, Bengaluru 560034 (India); Lambert, David L. [McDonald Observatory, University of Texas, Austin, TX 78712 (United States)

2011-03-20T23:59:59.000Z

256

Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics  

E-Print Network (OSTI)

Lithium-Ion Polymer Battery ..Performance of Lithium-Ion Polymer Battery Introduction Assolid state lithium-ion (Li-ion) battery were adhesively

Kang, Jin Sung

2012-01-01T23:59:59.000Z

257

Performance of Lithium Ion Cell Anode Graphites Under Various Cycling Conditions  

E-Print Network (OSTI)

CA 94720 Performance of Lithium Ion Cell Anode Graphitesevaluated (in coin cells with lithium counter electrodes) asanode materials for lithium-ion cells intended for use in

Ridgway, Paul

2010-01-01T23:59:59.000Z

258

J. Am. Chem. SOC.1991, 113,9575-9585 9575 Mixed Aggregation of Lithium Enolates and Lithium Halides  

E-Print Network (OSTI)

J. Am. Chem. SOC.1991, 113,9575-9585 9575 Mixed Aggregation of Lithium Enolates and Lithium Halides with Lithium 2,2,6,6-Tetramethylpiperidide(LiTMP) Patricia L. Hall, James H. Gilchrist, Aidan T. Harrison]-lithiumdi-tert-butylamide and conformationally locked [6Li]-lithium2,2,4,6,6-pentamethylpiperidide shed further light

Collum, David B.

259

Process for recovering tritium from molten lithium metal  

DOE Patents (OSTI)

Lithium tritide (LiT) is extracted from molten lithium metal that has been exposed to neutron irradiation for breeding tritium within a thermonuclear or fission reactor. The extraction is performed by intimately contacting the molten lithium metal with a molten lithium salt, for instance, lithium chloride - potassium chloride eutectic to distribute LiT between the salt and metal phases. The extracted tritium is recovered in gaseous form from the molten salt phase by a subsequent electrolytic or oxidation step.

Maroni, Victor A. (Naperville, IL)

1976-01-01T23:59:59.000Z

260

Threshold concentrations in zinc-doped lithium niobate crystals and their structural conditionality  

SciTech Connect

On the basis of precise X-ray diffraction study of lithium niobate single crystals of congruent composition and four zinc-doped (at 2.8, 5.2, 7.6, and 8.2 mol %) crystals, structural conditionality of the threshold concentrations of the dopant has been established. At these concentrations, the mechanism of zinc incorporation into crystal changes. As the zinc concentration increases, this element first substitutes excess niobium, localized in lithium positions, with a simultaneous decrease in the number of vacancies in these positions. Then zinc substitutes lithium with formation of new lithium vacancies. When a certain limit on the number of vacancies is reached, zinc begins to substitute niobium in its main positions. This process is naturally accompanied by a decrease in the number of vacancies to their complete disappearance and formation of a self-compensating crystal. The character of the dependence of the crystal physical properties on the dopant concentration changes specifically when the impurity concentration passes through the threshold values.

Chernaya, T. S.; Volk, T. R.; Verin, I. A.; Simonov, V. I., E-mail: simonov@ns.crys.ras.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

2008-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "large format lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Lithium abundances in exoplanet-hosts stars  

E-Print Network (OSTI)

Exoplanet-host stars (EHS) are known to present surface chemical abundances different from those of stars without any detected planet (NEHS). EHS are, on the average, overmetallic compared to the Sun. The observations also show that, for cool stars, lithium is more depleted in EHS than in NEHS. The overmetallicity of EHS may be studied in the framework of two different scenarii. We have computed main sequence stellar models with various masses, metallicities and accretion rates. The results show different profiles for the lithium destruction according to the scenario. We compare these results to the spectroscopic observations of lithium.

M. Castro; S. Vauclair; O. Richard; N. C. Santos

2008-03-20T23:59:59.000Z

262

Electrolytic method for the production of lithium using a lithium-amalgam electrode  

DOE Patents (OSTI)

A method for recovering lithium from its molten amalgam by electrolysis of the amalgam in an electrolytic cell containing as a molten electrolyte a fused-salt consisting essentially of a mixture of two or more alkali metal halides, preferably alkali metal halides selected from lithium iodide, lithium chloride, potassium iodide and potassium chloride. A particularly suitable molten electrolyte is a fused-salt consisting essentially of a mixture of at least three components obtained by modifying an eutectic mixture of LiI-KI by the addition of a minor amount of one or more alkali metal halides. The lithium-amalgam fused-salt cell may be used in an electrolytic system for recovering lithium from an aqueous solution of a lithium compound, wherein electrolysis of the aqueous solution in an aqueous cell in the presence of a mercury cathode produces a lithium amalgam. The present method is particularly useful for the regeneration of lithium from the aqueous reaction products of a lithium-water-air battery.

Cooper, John F. (Castro Valley, CA); Krikorian, Oscar H. (Danville, CA); Homsy, Robert V. (Oakland, CA)

1979-01-01T23:59:59.000Z

263

Lithium Diisopropylamide-Mediated Ortholithiation and Anionic Fries Rearrangement of Aryl Carbamates: Role of  

E-Print Network (OSTI)

Lithium Diisopropylamide-Mediated Ortholithiation and Anionic Fries Rearrangement of Aryl of the lithium diisopropylamide (LDA)-mediated anionic Fries rearrangements of aryl carbamates are described, an LDA-lithium phenolate mixed dimer, and homoaggregated lithium phenolates. The highly insoluble

Collum, David B.

264

Lithium Loaded Glass Fiber Neutron Detector Tests  

Science Conference Proceedings (OSTI)

Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world and, thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Four technologies have been identified as being currently commercially available, potential alternative neutron detectors to replace the use of 3He in RPMs. Reported here are the results of tests of the lithium-loaded glass fibers option. This testing measured the neutron detection efficiency and gamma ray rejection capabilities of a small system manufactured by Nucsafe (Oak Ridge, TN).

Ely, James H.; Erikson, Luke E.; Kouzes, Richard T.; Lintereur, Azaree T.; Stromswold, David C.

2009-11-12T23:59:59.000Z

265

Nanostructured lithium nickel manganese oxides for lithium-ion batteries.  

DOE Green Energy (OSTI)

Nanostructured lithium nickel manganese oxides were investigated as advanced positive electrode materials for lithium-ion batteries designated to power plug-in hybrid electric vehicles and all-electric vehicles. The investigation included material characterization and electrochemical testing. In cell tests, the Li{sub 1.375}Ni{sub 0.25}Mn{sub 0.75}O{sub 2.4375} composition achieved high capacity (210 mAh g{sup -1}) at an elevated rate (230 mA g{sup -1}), which makes this material a promising candidate for high energy density Li-ion batteries, as does its being cobalt-free and uncoated. The material has spherical morphology with nanoprimary particles embedded in micrometer-sized secondary particles, possesses a multiphase character (spinel and layered), and exhibits a high packing density (over 2 g cm{sup -3}) that is essential for the design of high energy density positive electrodes. When combined with the Li{sub 4}Ti{sub 5}O{sub 12} stable anode, the cell showed a capacity of 225 mAh g{sup -1} at the C/3 rate (73 mA g{sup -1}) with no capacity fading for 200 cycles. Other chemical compositions, Li{sub (1+x)}Ni{sub 0.25}Mn{sub 0.75}O{sub (2.25+x/2)} (0.32 {le} x {le} 0.65), were also studied, and the relationships among their structural, morphological, and electrochemical properties are reported.

Deng, H.; Belharouak, I.; Cook, R. E.; Wu, H.; Sun, Y.-K.; Amine, K.; Hanyang Univ.

2010-02-25T23:59:59.000Z

266

A Material Change: Bringing Lithium Production Back to America | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Material Change: Bringing Lithium Production Back to America A Material Change: Bringing Lithium Production Back to America A Material Change: Bringing Lithium Production Back to America June 29, 2012 - 5:34pm Addthis The Rockwood Lithium manufacturing facility in Kings Mountain, North Carolina. | Photo courtesy of Rockwood Lithium. The Rockwood Lithium manufacturing facility in Kings Mountain, North Carolina. | Photo courtesy of Rockwood Lithium. Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs Between 1980 and 2009, the global demand for lithium has tripled. This metal is a key material in a number of growing industries -- including advanced vehicle batteries and consumer electronics. But more specifically, lithium-ion batteries are a vital component in electric vehicles and other rechargeable batteries for consumer electronics, and are used to produce

267

A rapid method for the determination of lithium transference numbers  

DOE Green Energy (OSTI)

Lithium ion-conducting polymer electrolytes are of increasing interest for use in lithium-polymer batteries. Lithium transference numbers, the net fraction of current carried by lithium in a cell, are key figures of merit for potential lithium battery electrolytes. The authors describe the Electrophoretic NMR (ENMR) method for the determination of lithium ion transference numbers (T{sub Li}). The work presented is a proof-of-concept of the application of the ENMR method to lithium ion transference measurements for several different lithium salts in gelled electrolytes. The NMR method allows accurate determination of T{sub Li} values, as indicated by the similarity of T{sub Li} in the gelled electrolytes to those in aqueous electrolyte solutions at low salt concentration. Based on calculated tradeoffs of various experimental parameters, they also discuss some conclusions concerning the range of applicability of the method to other electrolytes with lower lithium mobility.

Zawodzinski, T.A. Jr.; Dai, H.; Sanderson, S.; Davey, J.; Uribe, F. [Los Alamos National Lab., NM (United States). Electronics Materials and Device Research Group

1997-05-01T23:59:59.000Z

268

Separation and Capture of CO2 from Large Stationary Sources and Sequestration in Geological Formations: A Summary of the 2003 Critical Review  

Science Conference Proceedings (OSTI)

Increasing amounts of carbon dioxide (CO2) in the atmosphere, and the resulting global warming effect, is a major air quality concern. CO2 is the most abundant greenhouse gas emitted by fossil-fuel combustion for power generation, transportation, and heating. Reducing worldwide emissions of CO2 will require many mitigation measures, including reductions in energy consumption, more efficient use of available energy, renewable energy sources, and carbon sequestration. The feasibility of capturing CO2 from large point sources and subsequent geological sequestration is the subject of this year’s Critical Review.

White, C.M.; Strazisar, B.R.; Granite, E.J.; Hoffman, J.S.; Pennline, H.W.

2003-06-01T23:59:59.000Z

269

Passivation of Aluminum in Lithium-ion Battery Electrolytes with LiBOB  

E-Print Network (OSTI)

of Aluminum in Lithium-ion Battery Electrolytes with LiBOBin commercially available lithium-ion battery electrolytes,

Zhang, Xueyuan; Devine, Thomas M.

2008-01-01T23:59:59.000Z

270

Categorical Exclusion 4497: Lithium Wet Chemistry Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8/2012 07:36 8/2012 07:36 8655749041 ENVIRONMENTAL COMPL U.S. Department of Energy Categorical Exclusion Detennination Form Proposed Action Tills: Lithium W@t Chemistry Project (4597) Program or Fi~ld Oftke: Y-12 Site Office L&cationfs) (CiWLCount:r/State): Oak Ridge, Anderson County; Tennessee Proposed Action Description: PAGE 03/04 r: :;: :: !: s .a : brnl, i ~ y. : $ ~-rtl~il : t·:~::;J The proposed action is to develop a small lithium wet chemistry operation for the following purposes: (1) to capture wet chemistry operations, (2) to provide processing path for Lithium materials such as machine dust, (3) to provide lithium based materials, and (4) to produce the littlium hydroxide needed to support production. CategQrj~l Exclusion(s) Applied

271

Argonne Transportation - Lithium Battery Technology Patents  

NLE Websites -- All DOE Office Websites (Extended Search)

Awarded Lithium Battery Technology Patents Awarded Lithium Battery Technology Patents "Composite-structure" material is a promising battery electrode for electric vehicles Argonne National Laboratory has been granted two U.S. patents (U.S. Pat. 6,677,082 and U.S. Pat. 6,680,143) on new "composite-structure" electrode materials for rechargeable lithium-ion batteries. Electrode compositions of this type are receiving worldwide attention. Such electrodes offer superior cost and safety features over state-of-the-art LiCoO2 electrodes that power conventional lithium-ion batteries. Moreover, they demonstrate outstanding cycling stability and can be charged and discharged at high rates, making them excellent candidates to replace LiCoO2 for consumer electronic applications and hybrid electric vehicles.

272

Towards Safer Lithium-Ion Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Towards Safer Lithium-Ion Batteries Towards Safer Lithium-Ion Batteries Speaker(s): Guoying Chen Date: October 25, 2007 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Venkat Srinivasan Safety problems associated with rechargeable lithium batteries are now well recognized. Recent spectacular fires involving cell phones, laptops, and (here at LBNL) AA cells have made the news. These events are generally caused by overcharging and subsequent development of internal shorts. Before these batteries can be used in vehicle applications, improvement in cell safety is a must. We have been active in the area of lithium battery safety for many years. For example, a versatile, inexpensive overcharge protection approach developed in our laboratory, uses an electroactive polymer to act as a reversible, self-actuating, low resistance internal

273

Solid State Thin Film Lithium Microbatteries  

E-Print Network (OSTI)

Solid state thin film lithium microbatteries fabricated by pulsed-laser deposition (PLD) are suggested. During deposition the following process parameters must be considered, which are laser energy and fluence, laser pulse ...

Shi, Z.

274

It's Elemental - Isotopes of the Element Lithium  

NLE Websites -- All DOE Office Websites (Extended Search)

Periodic Table of Elements Next Element (Beryllium) Beryllium Isotopes of the Element Lithium Click for Main Data Most of the isotope data on this site has been obtained from...

275

NSTX Plasma Response to Lithium Coated Divertor  

SciTech Connect

NSTX experiments have explored lithium evaporated on a graphite divertor and other plasma facing components in both L- and H- mode confinement regimes heated by high-power neutral beams. Improvements in plasma performance have followed these lithium depositions, including a reduction and eventual elimination of the HeGDC time between discharges, reduced edge neutral density, reduced plasma density, particularly in the edge and the SOL, increased pedestal electron and ion temperature, improved energy confinement and the suppression of ELMs in the H-mode. However, with improvements in confinement and suppression of ELMs, there was a significant secular increase in the effective ion charge Zeff and the radiated power in H-mode plasmas as a result of increases in the carbon and medium-Z metallic impurities. Lithium itself remained at a very low level in the plasma core, <0.1%. Initial results are reported from operation with a Liquid Lithium Divertor (LLD) recently installed.

H.W. Kugel, M.G. Bell, J.P. Allain, R.E. Bell, S. Ding, S.P. Gerhardt, M.A. Jaworski, R. Kaita, J. Kallman, S.M. Kaye, B.P. LeBlanc, R. Maingi, R. Majeski, R. Maqueda, D.K. Mansfield, D. Mueller, R. Nygren, S.F. Paul, R. Raman, A.L. Roquemore, S.A. Sabbagh, H. Schneider, C.H. Skinner, V.A. Soukhanovskii, C.N. Taylor, J.R. Timberlak, W.R. Wampler, L.E. Zakharov, S.J. Zweben, and the NSTX Research Team

2011-01-21T23:59:59.000Z

276

Lithium-ion batteries : an unexpected advance.  

DOE Green Energy (OSTI)

The discovery that the electronic conductivity of LiFePO{sub 4} can be increased by eight orders of magnitude may have a profound impact on the next generation of lithium-ion batteries.

Thackeray, M. M.; Chemical Engineering

2002-10-01T23:59:59.000Z

277

Investigation of Interactions between Lithium Iron Phosphate ...  

Science Conference Proceedings (OSTI)

In this talk, we present an application of a particle-level model to simulate experiments that involve two isotopes of lithium, 6Li and 7Li. By measuring the 6Li and ...

278

Layered electrodes for lithium cells and batteries  

DOE Patents (OSTI)

Lithium metal oxide compounds of nominal formula Li.sub.2MO.sub.2, in which M represents two or more positively charged metal ions, selected predominantly and preferably from the first row of transition metals are disclosed herein. The Li.sub.2MO.sub.2 compounds have a layered-type structure, which can be used as positive electrodes for lithium electrochemical cells, or as a precursor for the in-situ electrochemical fabrication of LiMO.sub.2 electrodes. The Li.sub.2MO.sub.2 compounds of the invention may have additional functions in lithium cells, for example, as end-of-discharge indicators, or as negative electrodes for lithium cells.

Johnson, Christopher S. (Naperville, IL); Thackeray, Michael M. (Naperville, IL); Vaughey, John T. (Elmhurst, IL); Kahaian, Arthur J. (Chicago, IL); Kim, Jeom-Soo (Naperville, IL)

2008-04-15T23:59:59.000Z

279

Lithium Droplet Injector......Inventors ..--..Lane Roquemore...  

NLE Websites -- All DOE Office Websites (Extended Search)

of edge-localized plasma modes, and replenishing lithium coatings of plasma facing components during a plasma operations of a fusion reactor. No.: M-848 Inventor(s): A. L Roquemore...

280

NSTX Plasma Response to Lithium Coated Divertor  

Science Conference Proceedings (OSTI)

NSTX experiments have explored lithium evaporated on a graphite divertor and other plasma facing components in both L- and H- mode confinement regimes heated by high-power neutral beams. Improvements in plasma performance have followed these lithium depositions, including a reduction and eventual elimination of the HeGDC time between discharges, reduced edge neutral density, reduced plasma density, particularly in the edge and the SOL, increased pedestal electron and ion temperature, improved energy confinement and the suppression of ELMs in the H-mode. However, with improvements in confinement and suppression of ELMs, there was a significant secular increase in the effective ion charge Zeff and the radiated power in H-mode plasmas as a result of increases in the carbon and medium-Z metallic impurities. Lithium itself remained at a very low level in the plasma core, Lithium Divertor (LLD) recently installed.

H.W. Kugel, M.G. Bell, J.P. Allain, R.E. Bell, S. Ding, S.P. Gerhardt, M.A. Jaworski, R. Kaita, J. Kallman, S.M. Kaye, B.P. LeBlanc, R. Maingi, R. Majeski, R. Maqueda, D.K. Mansfield, D. Mueller, R. Nygren, S.F. Paul, R. Raman, A.L. Roquemore, S.A. Sabbagh, H. Schneider, C.H. Skinner, V.A. Soukhanovskii, C.N. Taylor, J.R. Timberlak, W.R. Wampler, L.E. Zakharov, S.J. Zweben, and the NSTX Research Team

2011-01-21T23:59:59.000Z

Note: This page contains sample records for the topic "large format lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Probing Primordial and Pre-Galactic Lithium with High Velocity Clouds  

E-Print Network (OSTI)

The pre-Galactic abundance of lithium offers a unique window into non-thermal cosmological processes. The primordial Li abundance is guaranteed to be present and probes big bang nucleosynthesis (BBN), while an additional Li component is likely to have been produced by cosmic rays accelerated in large scale structure formation. Pre-Galactic Li currently can only be observed in low metallicity Galactic halo stars, but abundance measurements are plagued with systematic uncertainties due to modeling of stellar atmospheres and convection. We propose a new site for measuring pre-Galactic Li: low-metallicity, high-velocity clouds (HVCs) which are likely to be extragalactic gas accreted onto the Milky Way, and which already have been found to have deuterium abundances consistent with primordial. A Li observation in such an HVC would provide the first extragalactic Li measurement, and could shed new light on the apparent discrepancy between BBN predictions and halo star Li abundance determinations. Furthermore, HVC Li could at the same time test for the presence of non-primordial Li due to cosmic rays. The observability of elemental and isotopic Li abundances is discussed, and candidate sites identified.

Tijana Prodanovic; Brian D. Fields

2004-12-09T23:59:59.000Z

282

Design and simulation of lithium rechargeable batteries  

DOE Green Energy (OSTI)

Lithium -based rechargeable batteries that utilize insertion electrodes are being considered for electric-vehicle applications because of their high energy density and inherent reversibility. General mathematical models are developed that apply to a wide range of lithium-based systems, including the recently commercialized lithium-ion cell. The modeling approach is macroscopic, using porous electrode theory to treat the composite insertion electrodes and concentrated solution theory to describe the transport processes in the solution phase. The insertion process itself is treated with a charge-transfer process at the surface obeying Butler-Volmer kinetics, followed by diffusion of the lithium ion into the host structure. These models are used to explore the phenomena that occur inside of lithium cells under conditions of discharge, charge, and during periods of relaxation. Also, in order to understand the phenomena that limit the high-rate discharge of these systems, we focus on the modeling of a particular system with well-characterized material properties and system parameters. The system chosen is a lithium-ion cell produced by Bellcore in Red Bank, NJ, consisting of a lithium-carbon negative electrode, a plasticized polymer electrolyte, and a lithium-manganese-oxide spinel positive electrode. This battery is being marketed for consumer electronic applications. The system is characterized experimentally in terms of its transport and thermodynamic properties, followed by detailed comparisons of simulation results with experimental discharge curves. Next, the optimization of this system for particular applications is explored based on Ragone plots of the specific energy versus average specific power provided by various designs.

Doyle, C.M.

1995-08-01T23:59:59.000Z

283

Electrochemical modeling of lithium polymer batteries.  

SciTech Connect

An electrochemical model for lithium polymer cells was developed and a parameter set for the model was measured using a series of laboratory experiments. Examples are supplied to demonstrate the capabilities of the electrochemical model to obtain the concentration, current, and potential distributions in lithium polymer cells under complex cycling protocols. The modeling results are used to identify processes that limit cell performance and for optimizing cell design. Extension of the electrochemical model to examine two-dimensional studies is also described.

Dees, D. W.; Battaglia, V. S.; Belanger, A.; Chemical Engineering; Inst. de recherche d' Hydro-Quebec

2002-08-22T23:59:59.000Z

284

Rechargeable lithium-ion cell  

DOE Patents (OSTI)

The invention relates to a rechargeable lithium-ion cell, a method for its manufacture, and its application. The cell is distinguished by the fact that it has a metallic housing (21) which is electrically insulated internally by two half shells (15), which cover electrode plates (8) and main output tabs (7) and are composed of a non-conductive material, where the metallic housing is electrically insulated externally by means of an insulation coating. The cell also has a bursting membrane (4) which, in its normal position, is located above the electrolyte level of the cell (1). In addition, the cell has a twisting protection (6) which extends over the entire surface of the cover (2) and provides centering and assembly functions for the electrode package, which comprises the electrode plates (8).

Bechtold, Dieter (Bad Vilbel, DE); Bartke, Dietrich (Kelkheim, DE); Kramer, Peter (Konigstein, DE); Kretzschmar, Reiner (Kelkheim, DE); Vollbert, Jurgen (Hattersheim, DE)

1999-01-01T23:59:59.000Z

285

Electrode for a lithium cell  

SciTech Connect

This invention relates to a positive electrode for an electrochemical cell or battery, and to an electrochemical cell or battery; the invention relates more specifically to a positive electrode for a non-aqueous lithium cell or battery when the electrode is used therein. The positive electrode includes a composite metal oxide containing AgV.sub.3O.sub.8 as one component and one or more other components consisting of LiV.sub.3O.sub.8, Ag.sub.2V.sub.4O.sub.11, MnO.sub.2, CF.sub.x, AgF or Ag.sub.2O to increase the energy density of the cell, optionally in the presence of silver powder and/or silver foil to assist in current collection at the electrode and to improve the power capability of the cell or battery.

Thackeray, Michael M. (Naperville, IL); Vaughey, John T. (Elmhurst, IL); Dees, Dennis W. (Downers Grove, IL)

2008-10-14T23:59:59.000Z

286

Lithium Hectorite Clay as the Ionic Conductor in LiCoO2 Cathodes  

E-Print Network (OSTI)

Lithium Hectorite Clay as the Ionic Conductor in LiCoO2 Cathodes Michael W. Riley,* Peter S. Fedkiw Carolina 27695-7905, USA Cathodes based on LiCoO2 that contain various lithium-conducting species lithium hectorite, lithium Laponite, and lithium- exchanged Nafion are studied in conjunction with lithium metal

Khan, Saad A.

287

DOI: 10.1002/chem.200((......)) Deprotonative Metalation of Functionalized Aromatics using Mixed Lithium-  

E-Print Network (OSTI)

using Mixed Lithium- Cadmium, Lithium-Indium, and Lithium-Zinc Species Katia Snégaroff,[a] Jean similarly dideprotonated at room temperature. The aromatic lithium cadmates thus obtained were involved · cadmium · lithium · cross-coupling · ab initio calculations Introduction Lithium bases

Paris-Sud XI, Université de

288

SOLID STATE NMR STUDY SUPPORTING THE LITHIUM VACANCY DEFECT MODEL IN CONGRUENT LITHIUM  

E-Print Network (OSTI)

@ Pergamon SOLID STATE NMR STUDY SUPPORTING THE LITHIUM VACANCY DEFECT MODEL IN CONGRUENT LITHIUM Nouember 1993; accepted I March 1994) Abstract-e3Nb and 7Li wideline- as well as MAS-NMR measurements were could be reduced to 0.6kHz by using MAS-NMR with a rotational lrequency of 4000Hz, thsre was no second 7

Bluemel, Janet

289

Elipsometry of surface layers on lead and lithium  

DOE Green Energy (OSTI)

An automatic self-compensating ellipsometer was used to study anodic and corrosion films on lead exposed to sulfuric acid and lithium to water. Acid concentrations were 1.3, 3.1 and 5 M. Anodic current densities for lead ranged from 0.01 mA/cm/sup 2/ to 1.3 mA/cm/sup 2/, and mass transport conditions included free convection and forced convection. Scanning electron micrographs of the resulting surfaces were also made. A computer interpretation of ellipsometer measurements assumes the formation of up to six layers and applies a continuous mass balance. Seven to nine parameters describing the mechanism and structure of surface layers are derived by multidimensional fitting of the measurements. A solution mechanism of film formation on lead is indicated by the dependence of film properties on factors that influence the interfacial concentration of reaction products. A colloidal or polymerized phase of PbSO/sub 4/ suspended in the solution is postulated on the basis of observed mass balances and interfacial solution refractive indices. Kinetic parameters describing the corrosion of lead, evaluated from ellipsometer measurements, are consistent with those reported in the literature. The lead electrode was found to be protected from corrosion during an open circuit potential of -.6 V vs Hg/HgSO/sub 4/ (basic sulfate). Cathodic reduction of PbSO/sub 4/ films terminates with the onset of H2 evolution before complete conversion of the sulfate. Changes in kinetic parameters of cathodic electrode reactions which result in preferred H2 evolution are indicated by this observation. The formation of optically absorbing films was observed in the reaction of lithium with water vapor. 44 figures, 16 tables.

Peters, R.D.

1978-10-01T23:59:59.000Z

290

Reducing Foreign Lithium Dependence through Co-Production of Lithium from Geothermal Brine  

NLE Websites -- All DOE Office Websites (Extended Search)

Foreign Lithium Dependence through Co-Production of Lithium from Foreign Lithium Dependence through Co-Production of Lithium from Geothermal Brine Kerry Klein 1 , Linda Gaines 2 1 New West Technologies LLC, Washington, DC, USA 2 Center for Transportation Research, Argonne National Laboratory, Argonne, IL, USA KEYWORDS Mineral extraction, zinc, silica, strategic metals, Imperial Valley, lithium ion batteries, electric- drive vehicles, battery recycling ABSTRACT Following a 2009 investment of $32.9 billion in renewable energy and energy efficiency research through the American Recovery and Reinvestment Act, President Obama in his January 2011 State of the Union address promised deployment of one million electric vehicles by 2015 and 80% clean energy by 2035. The United States seems poised to usher in its bright energy future,

291

Low hole polaron migration barrier in lithium peroxide  

E-Print Network (OSTI)

We present computational evidence of polaronic hole trapping and migration in lithium peroxide (Li[subscript 2]O[subscript 2]), a material of interest in lithium-air batteries. We find that the hole forms in the ?* antibonding ...

Ong, Shyue Ping

292

A Lithium Getter Pump System ---- nventors Richard Majeski, Eugene...  

NLE Websites -- All DOE Office Websites (Extended Search)

A Lithium Getter Pump System ---- nventors Richard Majeski, Eugene Kearns, and John Schmitt This invention is a device to pump volatile gases that bond to lithium in a high vacuum...

293

Materials Challenges and Opportunities of Lithium Ion Battery ...  

Science Conference Proceedings (OSTI)

... Lithium ion batteries have revolutionized the portable electronics market, ... Cost, safety, and energy and power densities are some of the major issues in ... Analysis of Cycling Induced Fatigue in Electrode Materials for Lithium Ion Batteries.

294

Chemical Lithium Intercalation into Nano-Structured Anatase and  

Science Conference Proceedings (OSTI)

The evolution of lithium intercalation into nano-structured TiO2 is studied by 6Li NMR, XRD and TEM studies. The intercalation of lithium into rutile  ...

295

Lithium--water--air battery project: progress during the months of May--July  

DOE Green Energy (OSTI)

The abstract is included of a published report which outlines the potential role of metal/air fuel cells in automotive transportation. The energy and dolar cost of metal/air fuel cell systems is estimated, with emphasis given to the energy and dollar cost of aluminum production. Only aluminum, lithium, and (possibly) calcium are capable of providing the power for a full-performance electric vehicle, while aluminum is most favorable from the standpoint of economics. The electrochemistry of the calcium electrode appears to be similar to that of lithium, although the use of an aggressive anion (chloride) is necessary to prevent rapid passivation of the anode. Faradaic efficiencies were found to approach 100 percent close to the diffusion-limited dissolution conditions, as in the case of lithium. However, electrode polarizations of about 1.5 V under such conditions would produce an energy efficiency of discharge of about 40 percent. The two-stage electrolysis process, proposed for the efficient production of lithium, was subjected to further experimental verification. Faradaic efficiencies exceeding 95 percent were obtained for the formation of Li(Hg) from aqueous LiOH at temperatures up to 56/sup 0/C at 75 mA/cm/sup 2/. Concentrations of Li in Hg were obtained which exceeded the liquidus solubility limit by a factor of four without serious loss of efficiency. The solubility of mercury in the candidate fused salt was determined and found to be acceptably low: 250 ppM. 5 figures, 3 tables.

Cooper, J.F.; Hosmer, P.K.; Krikorian, O.

1977-08-16T23:59:59.000Z

296

Modeling of Transport in Lithium Ion Battery Electrodes  

E-Print Network (OSTI)

Lithium ion battery systems are promising solutions to current energy storage needs due to their high operating voltage and capacity. Numerous efforts have been conducted to model these systems in order to aid the design process and avoid expensive and time consuming prototypical experiments. Of the numerous processes occurring in these systems, solid state transport in particular has drawn a large amount of attention from the research community, as it tends to be one of the rate limiting steps in lithium ion battery performance. Recent studies have additionally indicated that purposeful design of battery electrodes using 3D microstructures offers new freedoms in design, better use of available cell area, and increased battery performance. The following study is meant to serve as a first principles investigation into the behaviors of 3D electrode architectures by monitoring concentration and cycle behaviors under realistic operating conditions. This was accomplished using computational tools to model the solid state diffusion behavior in several generated electrode morphologies. Developed computational codes were used to generate targeted structures under prescribed conditions of particle shape, size, and overall morphology. The diffusion processes in these morphologies were simulated under conditions prescribed from literature. Primary results indicate that parameters usually employed to describe electrode geometry, such as volume to surface area ratio, cannot be solely relied upon to predict or characterize performance. Additionally, the interaction between particle shapes implies some design aspects that may be exploited to improve morphology behavior. Of major importance is the degree of particle isolation and overlap in 3D architectures, as these govern gradient development and lithium depletion within the electrode structures. The results of this study indicate that there are optimum levels of these parameters, and so purposeful design must make use of these behaviors.

Martin, Michael

2012-05-01T23:59:59.000Z

297

Negative Electrodes Improve Safety in Lithium Cells and Batteries...  

NLE Websites -- All DOE Office Websites (Extended Search)

Negative Electrodes Improve Safety in Lithium Cells and Batteries Technology available for licensing: Enhanced stability at a lower cost negativeelectrodes...

298

High Rate Performing lithium-ion Batteries - Programmaster.org  

Science Conference Proceedings (OSTI)

Symposium, Nanostructured Materials for Rechargeable Batteries and for Supercapacitors, II. Presentation Title, High Rate Performing lithium-ion Batteries.

299

Ceramic-Metal Composites for Electrodes of Lithium Ion ...  

Ceramic-Metal Composites for Electrodes of Lithium Ion Batteries ... Applications and Industries. Anodes for primary and secondary (rechargeable) ...

300

Lithium based electrochemical cell systems having a degassing agent  

SciTech Connect

A lithium based electrochemical cell system includes a positive electrode; a negative electrode; an electrolyte; and a degassing agent.

Hyung, Yoo-Eup (Naperville, IL); Vissers, Donald R. (Naperville, IL); Amine, Khalil (Downers Grove, IL)

2012-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "large format lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Methods for making lithium vanadium oxide electrode materials  

DOE Patents (OSTI)

A method of making vanadium oxide formulations is presented. In one method of preparing lithium vanadium oxide for use as an electrode material, the method involves: admixing a particulate form of a lithium compound and a particulate form of a vanadium compound; jet milling the particulate admixture of the lithium and vanadium compounds; and heating the jet milled particulate admixture at a temperature below the melting temperature of the admixture to form lithium vanadium oxide.

Schutts, Scott M. (Menomonie, WI); Kinney, Robert J. (Woodbury, MN)

2000-01-01T23:59:59.000Z

302

Conductive Binder for Lithium Ion Battery Electrode - IB-2643 ...  

The Berkeley Lab electrode technology contributes to improved battery safety by circumventing lithium metal dendrite ... Scalable manufacturing using ...

303

Lower Cost Lithium Ion Batteries From Aluminum Substituted ...  

Lower Cost Lithium Ion Batteries From Aluminum Substituted Cathode Materials Lawrence Berkeley National Laboratory. Contact LBL About This Technology

304

Multilayer Graphene-Silicon Structures for Lithium Ion Battery ...  

Automotive industry: electric vehicles, hybrid electric vehicles; High performance lithium ion battery manufacturers; Aerospace industry, for lightweight power storage;

305

Non-Cross-Linked Gel Polymer Electrolytes for Lithium Ion ...  

Rechargeable lithium ion batteries for cellular phones, laptop computers and other consumer electronics; Batteries for electrically-powered vehicles;

306

Gamma-Free Neutron Detector Based upon Lithium Phosphate Nanoparticles  

Science Conference Proceedings (OSTI)

A gamma-free neutron-sensitive scintillator is needed to enhance radiaition sensing and detection for nonproliferation applications. Such a scintillator would allow very large detectors to be placed at the perimeter of spent-fuel storage facilities at commercial nuclear power plants, so that any movement of spontaneously emitted neutrons from spent nuclear fuel or weapons grade plutonium would be noted in real-time. This task is to demonstrate that the technology for manufacturing large panels of fluor-doped plastic containing lithium-6 phosphate nanoparticles can be achieved. In order to detect neutrons, the nanoparticles must be sufficiently small so that the plastic remains transparent. In this way, the triton and alpha particles generated by the capture of the neutron will result in a photon burst that can be coupled to a wavelength shifting fiber (WLS) producing an optical signal of about ten nanoseconds duration signaling the presence of a neutron emitting source.

Steven Wallace

2007-08-28T23:59:59.000Z

307

The Inside Story of the Lithium Ion Battery  

E-Print Network (OSTI)

The Inside Story of the Lithium Ion Battery John Dunning, Research Scholar in Residence Daniel. #12;Separator Cathode:Anode: e-e- Li++e-+C6LiC6 Li+ Lithium-ion battery e- Binder Conductive additives with charging and discharging a lithium ion battery · Research available devices · Test device to verify

Sze, Lawrence

308

Accelerated Degradation Assessment of 18650 Lithium-Ion Batteries  

Science Conference Proceedings (OSTI)

Power fade of lithium cells due to accelerated factors of temperature and charging-discharging rate was assessed. A lithium-ion battery aging model for predicting the power fade of 18650-size cells was applied, and then statistically accelerated degradation ... Keywords: accelerated degradation test, lithium-ion battery aging, power fade, state of charge (SOC)

Kuan-Jung Chung; Chueh-Chien Hsiao

2012-06-01T23:59:59.000Z

309

Virus-Enabled Silicon Anode for Lithium-Ion Batteries  

E-Print Network (OSTI)

Virus-Enabled Silicon Anode for Lithium-Ion Batteries Xilin Chen, Konstantinos Gerasopoulos emerged as one of the most promising next-generation anode materials for lithium-ion batteries due to its with remarkable cycling stability. KEYWORDS: silicon anode · lithium-ion battery · Tobacco mosaic virus · physical

Ghodssi, Reza

310

Thin liquid lithium targets for high power density  

E-Print Network (OSTI)

Thin liquid lithium targets for high power density applications: heavy ion beam strippers and beta Hilton Malmö City #12;Outline Liquid Lithium Stripper idea for FRIB Brief theory of film stability Thickness measurement results Next Steps Beta-beams 2 #12;Liquid Lithium Stripper for FRIB: Advantages

McDonald, Kirk

311

Lithium Diisopropylamide-Mediated Enolization: Catalysis by Hemilabile Ligands  

E-Print Network (OSTI)

Lithium Diisopropylamide-Mediated Enolization: Catalysis by Hemilabile Ligands Antonio Ramirez of a lithium diisopropylamide (LDA)-mediated ester enolization. Hemilabile amino ether MeOCH2CH2NMe2, binding-based catalysis are thwarted by the occlusion of the catalyst on the lithium salt products and byproducts (eq 1

Collum, David B.

312

Proposal on Lithium Wall Experiment (LWX) on PBXM 1  

E-Print Network (OSTI)

Proposal on Lithium Wall Experiment (LWX) on PBX­M 1 Leonid E. Zakharov, Princeton University; OUTLINE 1. Mini­conference on Lithium walls and low recycling regime. 2. PBX­M Capabilities. 3. Motivation "Lithium covered walls and low recycling regimes in toka­ maks". APS meeting, October 23­27, 2000, Quebec

Zakharov, Leonid E.

313

Lithium intercalated graphite : experimental Compton profile for stage one  

E-Print Network (OSTI)

L-301 Lithium intercalated graphite : experimental Compton profile for stage one G. Loupias, J différence des profils Compton est compatible avec un transfert total de l'électron de conduction du lithium électronique due à l'insertion. Abstract. 2014 Electron momentum distribution of the first stage lithium

Paris-Sud XI, Université de

314

Temperature dependence of the dielectric response of lithium niobate  

E-Print Network (OSTI)

Temperature dependence of the dielectric response of lithium niobate D. Xue, K. Betzler*, H. Hesse The dielectric response of lithium niobate is quantitatively calculated for different temperatures. Using of lithium niobate at 1.064 mm increases remarkably with increasing temperature. q 2001 Elsevier Science Ltd

Osnabrück, Universität

315

Lithium acetate transformation of yeast Maitreya Dunham August 2004  

E-Print Network (OSTI)

Lithium acetate transformation of yeast Maitreya Dunham August 2004 Original protocol from Katja until the OD600 is around 0.7-0.8 (~7 hours). Spin down the cells. Resuspend in 5 ml lithium acetate mix. Spin. Resuspend in 0.5 ml lithium acetate mix. Transfer to an eppendorf tube. Incubate 60 minutes

Dunham, Maitreya

316

The Lithium-Ion Cell: Model, State Of Charge Estimation  

E-Print Network (OSTI)

The Lithium-Ion Cell: Model, State Of Charge Estimation and Battery Management System Tutor degradation mechanisms of a Li-ion cell based on LiCoO2", Journal of Power Sources #12;Lithium ions and e and Y. Fuentes. Computer simulations of a lithium-ion polymer battery and implications for higher

Schenato, Luca

317

Lithium Diisopropylamide Solvated by Hexamethylphosphoramide: Substrate-Dependent  

E-Print Network (OSTI)

Lithium Diisopropylamide Solvated by Hexamethylphosphoramide: Substrate-Dependent Mechanisms-1301 Received February 9, 2006; E-mail: dbc6@cornell.edu Abstract: Lithium diisopropylamide of lithium-ion solvation at a molecular level of resolution.5 Our interest in HMPA stems from studies

Collum, David B.

318

Lithium Insertion In Silicon Nanowires: An ab Initio Study  

E-Print Network (OSTI)

Lithium Insertion In Silicon Nanowires: An ab Initio Study Qianfan Zhang, Wenxing Zhang, Wenhui Wan, and § School of Physics, Peking University, Beijing 100871, China ABSTRACT The ultrahigh specific lithium ion opportunities for energy storage. However, a systematic theoretical study on lithium insertion in SiNWs remains

Cui, Yi

319

RECOVERY AND SEPARATION OF LITHIUM VALUES FROM SALVAGE SOLUTIONS  

DOE Patents (OSTI)

Lithium values can be recovered from an aqueous basic solution by reacting the values with a phosphate salt soluble in the solution, forming an aqueous slurry of the resultant aqueous insoluble lithium phosphate, contacting the slurry with an organic cation exchange resin in the acid form until the slurry has been clarified, and thereafter recovering lithium values from the resin. (AEC)

Hansford, D.L.; Raabe, E.W.

1963-08-20T23:59:59.000Z

320

RESONANT FARADAY ROTATION IN A HOT LITHIUM VAPOR  

E-Print Network (OSTI)

RESONANT FARADAY ROTATION IN A HOT LITHIUM VAPOR By SCOTT RUSSELL WAITUKAITIS A Thesis Submitted: #12;Abstract I describe a study of Faraday rotation in a hot lithium vapor. I begin by dis- cussing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 The Lithium Oven and Solenoid . . . . . . . . . . . . . . . . . 7 3 Theoretical Framework

Cronin, Alex D.

Note: This page contains sample records for the topic "large format lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Use of Lithium Hexafluoroisopropoxide as a Mild Base for  

E-Print Network (OSTI)

Use of Lithium Hexafluoroisopropoxide as a Mild Base for Horner-Wadsworth-Emmons Olefination The weak base lithium 1,1,1,3,3,3-hexafluoroisopropoxide (LiHFI) is shown to be highly effective of base-sensitive substrates, leading to the discovery that lithium 1,1,1,3,3,3-hexafluoroisopropoxide (Li

322

Liquid Lithium Wall Experiments in CDX-U R. Majeski,  

E-Print Network (OSTI)

Liquid Lithium Wall Experiments in CDX-U R. Kaita, a R. Majeski, a S. Luckhardt, b R. Doerner, b M ABSTRACT The concept of a flowing lithium first wall for a fusion reactor may lead to a significant advance is intensely heated and well diagnosed, and an extensive liquid lithium plasma-facing surface will be used

323

Development of Whispering Gallery Mode Resonators in Lithium Niobate  

E-Print Network (OSTI)

Development of Whispering Gallery Mode Resonators in Lithium Niobate A thesis submitted in partial for the production of lithium niobate Whispering Gallery Mode Resonators (WGMRs) to be used in the generation in the form of a disk with a rounded edge. I have fabricated a lithium niobate WGMR with surface imperfections

Novikova, Irina

324

Version 1.0 Lithium hyper ne splitting  

E-Print Network (OSTI)

Version 1.0 Lithium hyper#12;ne splitting Krzysztof Pachucki #3; Institute of Theoretical Physics approach for the calculation of relativistic m#11; 6 corrections to the lithium ground state hyper#12;ne problem. We will concentrate on lithium as the simplest alkali-metal atom, for which several precise

Pachucki, Krzysztof

325

Tracking the lithium isotopic evolution of the mantle using carbonatites  

E-Print Network (OSTI)

Tracking the lithium isotopic evolution of the mantle using carbonatites Ralf Halama a,, William F. © 2007 Elsevier B.V. All rights reserved. Keywords: lithium isotopes; carbonatites; mantle geochemistry 1. Introduction Lithium (Li) is an incompatible element that is typi- cally enriched 10 to 50-fold in crustal

Mcdonough, William F.

326

Mechanical Properties of Lithium-Ion Battery Separator Materials  

E-Print Network (OSTI)

facing Li-ion batteries · Increase energy & power density · Decrease cost · Increase operating lifeMechanical Properties of Lithium-Ion Battery Separator Materials Patrick Sinko B.S. Materials and motivation ­ Why study lithium-ion batteries? ­ Lithium-ion battery fundamentals ­ Why study the mechanical

Petta, Jason

327

Internal Rotation, Mixing and Lithium Abundances  

E-Print Network (OSTI)

Lithium is an excellent tracer of mixing in stars as it is destroyed (by nuclear reactions) at a temperature around $\\sim 2.5\\times 10^6$ K. The lithium destruction zone is typically located in the radiative region of a star. If the radiative regions are stable, the observed surface value of lithium should remain constant with time. However, comparison of the meteoritic and photospheric Li abundances in the Sun indicate that the surface abundance of Li in the Sun has been depleted by more than two orders of magnitude. This is not predicted by solar models and is a long standing problem. Observations of Li in open clusters indicate that Li depletion is occurring on the main sequence. Furthermore, there is now compelling observational evidence that a spread of lithium abundances is present in nearly identical stars. This suggests that some transport process is occurring in stellar radiative regions. Helioseismic inversions support this conclusion, for they suggest that standard solar models need to be modified below the base of the convection zone. There are a number of possible theoretical explanations for this transport process. The relation between Li abundances, rotation rates and the presence of a tidally locked companion along with the observed internal rotation in the Sun indicate that the mixing is most likely induced by rotation. The current status of non-standard (particularly rotational) stellar models which attempt to account for the lithium observations are reviewed.

Brian Chaboyer

1998-03-10T23:59:59.000Z

328

Device for packaging a lithium battery  

Science Conference Proceedings (OSTI)

Battery packing construction is described for packaging at least one lithium battery, the lithium battery including a solid polymer electrolyte in electrical contact with an anode of lithium or a lithium alloy and a cathode containing at least one metallic salt, the device comprising a first metallic foil having a first continuous band of plastic film bonded thereto by means of a thermoset adhesive along entire peripheral edges of the first metallic foil, a second metallic foil having a second continuous band of plastic film bonded thereto by means of a thermoset adhesive along entire peripheral edges of the second metallic foil, the first and second metallic foils disposed over one another with the first and second plastic films arranged adjacent one another in facing relationship, the lithium battery being sandwiched between the first and the second metallic foils in space inside the first and the second continuous bands of plastic film with the anode in contact with one metallic foil and the cathode in contact with the other metallic foil, the first and second continuous bands of plastic film being imperviously heat-sealed together to prevent any outside substance to contact the battery.

Duval, M.; Giguere, Y.

1993-07-13T23:59:59.000Z

329

Evaporated lithium surface coatings in NSTX.  

Science Conference Proceedings (OSTI)

Two lithium evaporators were used to evaporate more than 100 g of lithium on to the NSTX lower divertor region. Prior to each discharge, the evaporators were withdrawn behind shutters, where they also remained during the subsequent HeGDC applied for periods up to 9.5 min. After the HeGDC, the shutters were opened and the LITERs were reinserted to deposit lithium on the lower divertor target for 10 min, at rates of 10-70 mg/min, prior to the next discharge. The major improvements in plasma performance from these lithium depositions include: (1) plasma density reduction as a result of lithium deposition; (2) suppression of ELMs; (3) improvement of energy confinement in a low-triangularity shape; (4) improvement in plasma performance for standard, high-triangularity discharges; (5) reduction of the required HeGDC time between discharges; (6) increased pedestal electron and ion temperature; (7) reduced SOL plasma density; and (8) reduced edge neutral density.

Zakharov, L. (Princeton Plasma Physics Laboratory, Princeton, NJ); Gates, D. (Princeton Plasma Physics Laboratory, Princeton, NJ); Menard, J. (Princeton Plasma Physics Laboratory, Princeton, NJ); Maingi, R. (Oak Ridge National Laboratory, Oak Ridge, TN); Schneider, H. (Princeton Plasma Physics Laboratory, Princeton, NJ); Mueller, D. (Princeton Plasma Physics Laboratory, Princeton, NJ); Wampler, William R.; Roquemore, A. L. (Princeton Plasma Physics Laboratory, Princeton, NJ); Kallman, Jeffrey K. (Princeton Plasma Physics Laboratory, Princeton, NJ); Sabbagh, S. (Columbia University, New York, NY); LeBlanc, B. (Princeton Plasma Physics Laboratory, Princeton, NJ); Raman, R. (University of Washington, Seattle, WA); Ono, M. (Princeton Plasma Physics Laboratory, Princeton, NJ); Wilgren, J. (Oak Ridge National Laboratory, Oak Ridge, TN); Allain, J.P. (Purdue University, West Lafayette, IN); Timberlake, J. (Princeton Plasma Physics Laboratory, Princeton, NJ); Stevenson, T. (Princeton Plasma Physics Laboratory, Princeton, NJ); Ross, P. W. (Princeton Plasma Physics Laboratory, Princeton, NJ); Majeski, R. (Princeton Plasma Physics Laboratory, Princeton, NJ); Kugel, Henry W. (Princeton Plasma Physics Laboratory, Princeton, NJ); Skinner, C. H. (Princeton Plasma Physics Laboratory, Princeton, NJ); Gerhardt, S. (Princeton Plasma Physics Laboratory, Princeton, NJ); Paul, S. (Princeton Plasma Physics Laboratory, Princeton, NJ); Bell, R. (Princeton Plasma Physics Laboratory, Princeton, NJ); Kaye, S. M. (Princeton Plasma Physics Laboratory, Princeton, NJ); Kaita, R. (Princeton Plasma Physics Laboratory, Princeton, NJ); Soukhanovskii, V. (Lawrence Livermore National Laboratory, Livermore, CA); Bell, Michael G. (Princeton Plasma Physics Laboratory, Princeton, NJ); Mansfield, D. (Princeton Plasma Physics Laboratory, Princeton, NJ)

2008-08-01T23:59:59.000Z

330

Experimental studies of processing conditions for liquid lithium and solid lithium alloy fusion blankets  

DOE Green Energy (OSTI)

A 50-gallon-capacity liquid lithium loop (Lithium Processing Test Loop, LPTL) has been constructed and brought into operation at the Argonne National Laboratory. This system contains experimental assemblies to study (a) lithium processing technology based on molten salt extraction, cold trapping, and getting trapping and (b) on-line hydrogen monitoring. An efficient electrolytic method, employing a porous sparged electrode, has been developed to recover hydrogen isotopes from the types of molten salts (e.g., LiF-LiCl-LiBr) selected for use in the salt-processing system on the LPTL. This method, when tested under realistic conditions, has demonstrated the potential for recovering tritium (from lithium) at the sub-wppm level. Results of cold-trap tests on the LPTL and of getter-trap tests on both the LPTL and a much smaller lithium loop have provided some evidence that these types of processing methods can be used to control oxygen and nitrogen levels in lithium. Studies of the hydridation of solid Li-Al and Li-Pb alloys have provided data on activity coefficients and phase boundary locations for these binary systems as functions of temperature and composition. The Sieverts' constants for dilute hydrogen solutions in LiAl (in wppm/Torr/sup 1/2/) were found to be 10/sup 3/ to 10/sup 4/ times smaller than those for hydrogen in pure lithium at the same temperature.

Weston, J. R.; Calaway, W. F.; Yonco, R. M.; Veleckis, E.; Maroni, V. A.

1978-01-01T23:59:59.000Z

331

Spinel electrodes for rechargeable lithium batteries.  

DOE Green Energy (OSTI)

This paper gives a historical account of the development of spinel electrodes for rechargeable lithium batteries. Research in the late 1970's and early 1980's on high-temperature . Li/Fe{sub 3}O{sub 4} cells led to the evaluation of lithium spinels Li[B{sub 2}]X{sub 4} at room temperature (B = metal cation). This work highlighted the importance of the [B{sub 2}]X{sub 4}spinel framework as a host electrode structure and the ability to tailor the cell voltage by selection of different B cations. Examples of lithium-ion cells that operate with spinel anode/spinel cathode couples are provided. Particular attention is paid to spinels within the solid solution system Li{sub 1+x}Mn{sub 2-x}O{sub 4} (0 {le} x {le} 0.33).

Thackeray, M. M.

1999-11-10T23:59:59.000Z

332

Characterization of lithium phosphorous oxynitride thin films  

DOE Green Energy (OSTI)

Electrical and electrochemical properties of an amorphous thin-film lithium electrolyte, lithium phosphorous oxynitride (Lipon), have been studied with emphasis on the stability window vs Li metal and the behavior of the Li/Lipon interface. Ion conductivity of Lipon exhibits Arrhenius behavior at {minus}26 to +140 C, with a conductivity of 1.7 {times} 10{sup {minus}6}S/cm at 25 C and an activity energy of 0.50 {plus_minus} 0.01 eV. A stability window of 5.5 V was observed with respect to a Li{sup +}/Li reference, and no detectable reaction or degradation was evident at the Li/Lipon interface upon lithium cycling.

Yu, Xiaohua; Bates, J.B.; Jellison, G.E. Jr.

1996-01-01T23:59:59.000Z

333

Lithium metal reduction of plutonium oxide to produce plutonium metal  

DOE Patents (OSTI)

A method is described for the chemical reduction of plutonium oxides to plutonium metal by the use of pure lithium metal. Lithium metal is used to reduce plutonium oxide to alpha plutonium metal (alpha-Pu). The lithium oxide by-product is reclaimed by sublimation and converted to the chloride salt, and after electrolysis, is removed as lithium metal. Zinc may be used as a solvent metal to improve thermodynamics of the reduction reaction at lower temperatures. Lithium metal reduction enables plutonium oxide reduction without the production of huge quantities of CaO--CaCl.sub.2 residues normally produced in conventional direct oxide reduction processes.

Coops, Melvin S. (Livermore, CA)

1992-01-01T23:59:59.000Z

334

Electrolytic orthoborate salts for lithium batteries  

DOE Patents (OSTI)

Orthoborate salts suitable for use as electrolytes in lithium batteries and methods for making the electrolyte salts are provided. The electrolytic salts have one of the formulae (I). In this formula anionic orthoborate groups are capped with two bidentate chelating groups, Y1 and Y2. Certain preferred chelating groups are dibasic acid residues, most preferably oxalyl, malonyl and succinyl, disulfonic acid residues, sulfoacetic acid residues and halo-substituted alkylenes. The salts are soluble in non-aqueous solvents and polymeric gels and are useful components of lithium batteries in electrochemical devices.

Angell, Charles Austen (Mesa, AZ); Xu, Wu (Tempe, AZ)

2008-01-01T23:59:59.000Z

335

Lithium intercalation in porous carbon anodes  

DOE Green Energy (OSTI)

Carbon foams derived from the phase separation of polyacrylonitrile/solvent mixtures were investigated as lithium intercalation anodes for rechargeable lithium-ion batteries. The carbon foams have a bulk density of 0.35--0.5 g/cm{sup 3}, low surface area (< 50 m{sup 2}/g), and an average cell size of 5--10 {mu}m. Polyacrylonitrile-based carbon foams doped with phosphoric acid had capacity as high as 450 mAh/g. Carbon capacity increased with increasing phosphoric acid concentration in the doping solution. The doped porous carbon anodes exhibited good cyclability and excellent coulombic efficiency.

Tran, T.D.; Pekala, R.W. [Lawrence Livermore National Lab., CA (United States). Chemistry and Materials Science Dept.; Mayer, S.T. [Polystor Corp., Livermore, CA (United States)

1994-11-23T23:59:59.000Z

336

Polymeric electrolytes for ambient temperature lithium batteries  

DOE Green Energy (OSTI)

A new type of highly conductive Li{sup +} polymer electrolyte, referred to as the Innovision polymer electrolyte, is completely amorphous at room temperature and has an ionic conductivity in the range of 10{sup {minus}3} S/cm. This report discusses the electrochemical characteristics (lithium oxidation and reduction), conductivity, and physical properties of Innovision electrolytes containing various dissolved salts. These electrolytes are particularly interesting since they appear to have some of the highest room-temperature lithium ion conductivities yet observed among polymer electrolytes. 13 refs. 11 figs., 2 tabs.

Farrington, G.C. (Pennsylvania Univ., Philadelphia, PA (United States). Dept. of Materials Science and Engineering)

1991-07-01T23:59:59.000Z

337

Solid composite electrolytes for lithium batteries  

DOE Patents (OSTI)

Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a polymer-ceramic composite electrolyte containing poly(ethylene oxide), lithium tetrafluoroborate and titanium dioxide is provided in the form of an annealed film having a room temperature conductivity of from 10.sup.-5 S cm.sup.-1 to 10.sup.-3 S cm.sup.-1 and an activation energy of about 0.5 eV.

Kumar, Binod (Dayton, OH); Scanlon, Jr., Lawrence G. (Fairborn, OH)

2001-01-01T23:59:59.000Z

338

Lithium-based Technologies | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

Lithium-based Technologies Lithium-based Technologies Lithium-based Technologies Y-12's 60 years of rich lithium operational history and expertise make it the clear choice for deployment of new lithium-based technologies and capabilities. There is no other U.S. site, government or commercial, that comes close to the breadth of Y-12's lithium expertise and capabilities. The Y-12 National Security Complex supplies lithium, in unclassified forms, to customers worldwide through the DOE Office of Science, Isotope Business Office. Historically, the typical order of 6Li was only gram quantities used in research and development. However, over the past three years demand has increased steadily with typical orders of around 10-20 kg each. Such increase in demand is a direct result of the use of

339

Lithium pellet production (LiPP): A device for the production of small spheres of lithium  

SciTech Connect

With lithium as a fusion material gaining popularity, a method for producing lithium pellets relatively quickly has been developed for NSTX. The Lithium Pellet Production device is based on an injector with a sub-millimeter diameter orifice and relies on a jet of liquid lithium breaking apart into small spheres via the Plateau-Rayleigh instability. A prototype device is presented in this paper and for a pressure difference of {Delta}P= 5 Torr, spheres with diameters between 0.91 < D < 1.37 mm have been produced with an average diameter of D= 1.14 mm, which agrees with the developed theory. Successive tests performed at Princeton Plasma Physics Laboratory with Wood's metal have confirmed the dependence of sphere diameter on pressure difference as predicted.

Fiflis, P.; Andrucyzk, D.; McGuire, M.; Curreli, D.; Ruzic, D. N. [Center for Plasma Material Interactions, Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Roquemore, A. L. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States)

2013-06-15T23:59:59.000Z

340

Lithium Polysulfidophosphates: A Family of Lithium-Conducting Sulfur-Rich Compounds for Lithium-Sulfur Batteries  

SciTech Connect

Given the great potential for improving the energy density of state-of-the-art lithium-ion batteries by a factor of 5, a breakthrough in lithium-sulfur (Li-S) batteries will have a dramatic impact in a broad scope of energy related fields. Conventional Li-S batteries that use liquid electrolytes are intrinsically short-lived with low energy efficiency. The challenges stem from the poor electronic and ionic conductivities of elemental sulfur and its discharge products. We report herein lithium polysulfidophosphates (LPSP), a family of sulfur-rich compounds, as the enabler of long-lasting and energy-efficient Li-S batteries. LPSP have ionic conductivities of 3.0 10-5 S cm-1 at 25 oC, which is 8 orders of magnitude higher than that of Li2S (~10-13 S cm-1). The high Li-ion conductivity of LPSP is the salient characteristic of these compounds that impart the excellent cycling performance to Li-S batteries. In addition, the batteries are configured in an all-solid state that promises the safe cycling of high-energy batteries with metallic lithium anodes.

Lin, Zhan [ORNL; Liu, Zengcai [ORNL; Fu, Wujun [ORNL; Dudney, Nancy J [ORNL; Liang, Chengdu [ORNL

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "large format lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Guidance on the use of Lithium Batteries in NERC Version 1.0 8th  

E-Print Network (OSTI)

a lithium or lithium ion battery fire. · Use plenty of water as a fine spray to swamp and wash away spiltGuidance on the use of Lithium Batteries in NERC Version 1.0 8th March 2007 1. Introduction Lithium. There are several types of lithium batteries but they are all high energy power sources and all are potentially

Edinburgh, University of

342

24 JOM May 1998 The lightest of all metals, lithium is used  

E-Print Network (OSTI)

24 JOM · May 1998 Overview Lithium The lightest of all metals, lithium is used in a variety- nesium, and as the anode in rechargeable lithium ion batteries. All of the world's pri- mary lithium is produced by molten salt electrolysis. This article reviews the current technology for lithium extraction

Sadoway, Donald Robert

343

NMR Spectroscopic Investigations of Mixed Aggregates Underlying Highly Enantioselective 1,2-Additions of Lithium  

E-Print Network (OSTI)

,2-Additions of Lithium Cyclopropylacetylide to Quinazolinones Rodney L. Parsons, Jr.,*, Joseph M. Fortunak Abstract: The solution structures of mixed aggregates derived from lithium alkoxides and lithium acetylides that mixtures of lithium cyclopropylacetylide (RCCLi), a (+)-carene-derived amino alkoxide (R*OLi), and lithium

Collum, David B.

344

Transition to ELM-free improved H-mode by lithium deposition on NSTX graphite divertor surfaces  

SciTech Connect

Lithium evaporated onto plasma facing components in the NSTX lower divertor has made dramatic improvements in discharge performance. As lithium accumulated, plasmas previously exhibiting robust Type 1 ELMs gradually transformed into discharges with intermittent ELMs and finally into continuously evolving ELM-free discharges. During this sequence, other discharge parameters changed in a complicated manner. As the ELMs disappeared, energy confinement improved and remarkable changes in edge and scrape-off layer plasma properties were observed. These results demonstrate that active modification of plasma surface interactions can preempt large ELMs.

Mansfield, D K; Kugel, H W; Maingi, R; Bell, M G; Bell, R; Kaita, R; Kallman, J; Kaye, S; LeBlanc, B; Mueller, D; Paul, S; Raman, R; Roquemore, A L; Sabbagh, S; Schneider, H; Skinner, C H; Soukhanovskii, V A; Timberlake, J; Wilgen, J; Zakharov, L

2009-02-17T23:59:59.000Z

345

Transition to ELM-free Improved H-mode by Lithium Deposition on NSTX Graphite Divertor Surfaces  

SciTech Connect

Lithium evaporated onto plasma facing components in the NSTX lower divertor has made dramatic improvements in discharge performance. As lithium accumulated, plasmas previously exhibiting robust Type 1 ELMs gradually transformed into discharges with intermittent ELMs and finally into continuously evolving ELM-free discharges. During this sequence, other discharge parameters changed in a complicated manner. As the ELMs disappeared, energy confinement improved and remarkable changes in edge and scrape-off layer plasma properties were observed. These results demonstrate that active modification of plasma surface interactions can preempt large ELMs.

Mansfield, D. K.; Kugel, H. W.; Maingi, R.; Bell, M. G.; Bell, R.; Kaita, R.; Kallman, J.; Kaye, S.; LeBlanc, B.; Mueller, D.; Paul, S.; Raman, R.; Roquemore, L.; Sabbagh, S.; Schneider, H.; Skinner, C. H.; Soukhanovskii, V.; Timberlake, J.; J. Wilgen,,; Zakharov, L.

2009-05-14T23:59:59.000Z

346

Electrothermal Analysis of Lithium Ion Batteries  

DOE Green Energy (OSTI)

This report presents the electrothermal analysis and testing of lithium ion battery performance. The objectives of this report are to: (1) develop an electrothermal process/model for predicting thermal performance of real battery cells and modules; and (2) use the electrothermal model to evaluate various designs to improve battery thermal performance.

Pesaran, A.; Vlahinos, A.; Bharathan, D.; Duong, T.

2006-03-01T23:59:59.000Z

347

THE DIFFUSION OF LITHIUM IN ALUMINUM  

SciTech Connect

The diffusion of lithium in aluminum was measured at various temperatures with diffusion couples of aluminum-LiAl. The activation energy, E, is 33.3 kcal/mol, and the diffusion factor, Do, is 4.5 cm{sup2}/sec. (auth)

Costas, L. P.

1963-02-28T23:59:59.000Z

348

Thin-film rechargeable lithium batteries  

SciTech Connect

Rechargeable thin-films batteries with lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have been fabricated and characterized. The cathodes include TiS{sub 2}, the {omega} phase of V{sub 2}O{sub 5}, and the cubic spinel Li{sub x}Mn{sub 2}O{sub 4} with open circuit voltages at full charge of about 2.5 V, 3.7 V, and 4.2 V, respectively. The development of these robust cells, which can be cycled thousands of times, was possible because of the stability of the amorphous lithium electrolyte, lithium phosphorus oxynitride. This material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46} and a conductivity at 25 C of 2 {mu}S/cm. Thin-film cells have been cycled at 100% depth of discharge using current densities of 2 to 100 {mu}A/cm{sup 2}. The polarization resistance of the cells is due to the slow insertion rate of Li{sup +} ions into the cathode. Chemical diffusion coefficients for Li{sup +} ions in the three types of cathodes have been estimated from the analysis of ac impedance measurements.

Bates, J.B.; Gruzalski, G.R.; Dudney, N.J.; Luck, C.F.; Yu, X.

1993-11-01T23:59:59.000Z

349

Rechargeable thin-film lithium batteries  

Science Conference Proceedings (OSTI)

Rechargeable thin-film batteries consisting of lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have been fabricated and characterized. These include Li-TiS{sub 2}, Li-V{sub 2}O{sub 5}, and Li-Li{sub x}Mn{sub 2}O{sub 4} cells with open circuit voltages at full charge of about 2.5 V, 3.7 V, and 4.2 V, respectively. The realization of these robust cells, which can be cycled thousands of times, was possible because of the stability of the amorphous lithium electrolyte, lithium phosphorus oxynitride. This material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46}and a conductivity at 25 C of 2 {mu}S/cm. The thin-film cells have been cycled at 100% depth of discharge using current densities of 5 to 100 {mu}A/cm{sup 2}. Over most of the charge-discharge range, the internal resistance appears to be dominated by the cathode, and the major source of the resistance is the diffusion of Li{sup +} ions from the electrolyte into the cathode. Chemical diffusion coefficients were determined from ac impedance measurements.

Bates, J.B.; Gruzalski, G.R.; Dudney, N.J.; Luck, C.F.; Yu, X.

1993-09-01T23:59:59.000Z

350

Ionic liquids for rechargeable lithium batteries  

SciTech Connect

We have investigated possible anticipated advantages of ionic-liquid electrolytes for use in lithium-ion batteries. Thermal stabilities and phase behavior were studied by thermal gravimetric analysis and differential scanning calorimetry. The ionic liquids studied include various imidazoliumTFSI systems, pyrrolidiniumTFSI, BMIMPF{sub 6}, BMIMBF{sub 4}, and BMIMTf. Thermal stabilities were measured for neat ionic liquids and for BMIMBF{sub 4}-LiBF{sub 4}, BMIMTf-LiTf, BMIMTFSI-LiTFSI mixtures. Conductivities have been measured for various ionic-liquid lithium-salt systems. We show the development of interfacial impedance in a Li|BMIMBF{sub 4} + LiBF{sub 4}|Li cell and we report results from cycling experiments for a Li|BMIMBF{sub 4} + 1 mol/kg LIBF{sub 4}|C cell. The interfacial resistance increases with time and the ionic liquid reacts with the lithium electrode. As expected, imidazolium-based ionic liquids react with lithium electrodes. We seek new ionic liquids that have better chemical stabilities.

Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz,John; Newman, John

2005-09-29T23:59:59.000Z

351

Thin-film Rechargeable Lithium Batteries  

DOE R&D Accomplishments (OSTI)

Rechargeable thin films batteries with lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have been fabricated and characterized. The cathodes include TiS{sub 2}, the {omega} phase of V{sub 2}O{sub 5}, and the cubic spinel Li{sub x}Mn{sub 2}O{sub 4} with open circuit voltages at full charge of about 2.5 V, 3.7 V, and 4.2 V, respectively. The development of these robust cells, which can be cycled thousands of times, was possible because of the stability of the amorphous lithium electrolyte, lithium phosphorus oxynitride. This material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46} and a conductivity at 25 C of 2 {mu}S/cm. Thin film cells have been cycled at 100% depth of discharge using current densities of 2 to 100 {mu}A/cm{sup 2}. The polarization resistance of the cells is due to the slow insertion rate of Li{sup +} ions into the cathode. Chemical diffusion coefficients for Li{sup +} ions in the three types of cathodes have been estimated from the analysis of ac impedance measurements.

Bates, J. B.; Gruzalski, G. R.; Dudney, N. J.; Luck, C. F.; Yu, X.

1993-11-00T23:59:59.000Z

352

Lithium in LP 944-20  

E-Print Network (OSTI)

We present a new estimate of the lithium abundance in the atmosphere of the brown dwarf LP 944-20. Our analysis is based on a self-consistent analysis of low, intermediate and high resolution optical and near-infrared spectra. We obtain log N(Li) = 3.25 +/-0.25 using fits of our synthetic spectra to the Li I resonance line doublet profiles observed with VLT/UVES and AAT/SPIRAL. This lithium abundance is over two orders of magnitude larger than previous estimates in the literature. In order to obtain good fits of the resonance lines of K I and Rb I and better fits to the TiO molecular absorption around the Li I resonance line, we invoke a semi-empirical model atmosphere with the dusty clouds located above the photosphere. The lithium abundance, however, is not changed by the effects of the dusty clouds. We discuss the implications of our estimate of the lithium abundance in LP 944-20 for the understanding of the properties of this benchmark brown dwarf.

Ya. V. Pavlenko; H. R. A. Jones; E. L. Martin; E. Guenther; M. A. Kenworthy; M. R. Zapatero Osorio

2007-07-04T23:59:59.000Z

353

Lithium Depletion of Nearby Young Stellar Associations  

E-Print Network (OSTI)

We estimate cluster ages from lithium depletion in five pre-main-sequence groups found within 100 pc of the Sun: TW Hydrae Association, Eta Chamaeleontis Cluster, Beta Pictoris Moving Group, Tucanae-Horologium Association and AB Doradus Moving Group. We determine surface gravities, effective temperatures and lithium abundances for over 900 spectra through least squares fitting to model-atmosphere spectra. For each group, we compare the dependence of lithium abundance on temperature with isochrones from pre-main-sequence evolutionary tracks to obtain model dependent ages. We find that the Eta Chamaelontis Cluster and the TW Hydrae Association are the youngest, with ages of 12+/-6 Myr and 12+/-8 Myr, respectively, followed by the Beta Pictoris Moving Group at 21+/-9 Myr, the Tucanae-Horologium Association at 27+/-11 Myr, and the AB Doradus Moving Group at an age of at least 45 Myr (where we can only set a lower limit since the models -- unlike real stars -- do not show much lithium depletion beyond this age). Here, the ordering is robust, but the precise ages depend on our choice of both atmospheric and evolutionary models. As a result, while our ages are consistent with estimates based on Hertzsprung-Russell isochrone fitting and dynamical expansion, they are not yet more precise. Our observations do show that with improved models, much stronger constraints should be feasible: the intrinsic uncertainties, as measured from the scatter between measurements from different spectra of the same star, are very low: around 10 K in effective temperature, 0.05 dex in surface gravity, and 0.03 dex in lithium abundance.

Erin Mentuch; Alexis Brandeker; Marten H. van Kerkwijk; Ray Jayawardhana; Peter H. Hauschildt

2008-08-26T23:59:59.000Z

354

Implications of NSTX Lithium Results for Magnetic Fusion Research  

Science Conference Proceedings (OSTI)

Lithium wall coating techniques have been experimentally explored on NSTX for the last five years. The lithium experimentation on NSTX started with a few milligrams of lithium injected into the plasma as pellets and it has evolved to a lithium evaporation system which can evaporate up to ~ 100 g of lithium onto the lower divertor plates between lithium reloadings. The unique feature of the lithium research program on NSTX is that it can investigate the effects of lithium in H-mode divertor plasmas. This lithium evaporation system thus far has produced many intriguing and potentially important results; the latest of these are summarized in a companion paper by H. Kugel. In this paper, we suggest possible implications and applications of the NSTX lithium results on the magnetic fusion research which include electron and global energy confinement improvements, MHD stability enhancement at high beta, ELM control, H-mode power threshold reduction, improvements in radio frequency heating and non-inductive plasma start-up performance, innovative divertor solutions and improved operational efficiency.

M. Ono, M.G. Bell, R.E. Bell, R. Kaita, H.W. Kugel, B.P. LeBlanc, J.M. Canik, S. Diem, S.P.. Gerhardt, J. Hosea, S. Kaye, D. Mansfield, R. Maingi, J. Menard, S. F. Paul, R. Raman, S.A. Sabbagh, C.H. Skinner, V. Soukhanovskii, G. Taylor, and the NSTX Research Team

2010-01-14T23:59:59.000Z

355

Synthesis and Characterization of Simultaneous Electronic and Ionic Conducting Block Copolymers for Lithium Battery Electrodes  

E-Print Network (OSTI)

9 Figure 1.9. Schematic of a traditional lithium-ion batterythan traditional lithium-ion battery batteries. OrganicBattery Design A lithium-ion battery consists of a negative

Patel, Shrayesh

2013-01-01T23:59:59.000Z

356

Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles  

E-Print Network (OSTI)

for vehicle applications. 2 Lithium-ion battery chemistriesThe lithium-ion battery technology used for consumerfrom EIG Figure 4: Lithium-ion battery modules for testing

Burke, Andrew; Miller, Marshall

2009-01-01T23:59:59.000Z

357

Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles  

E-Print Network (OSTI)

Miller, M. , Emerging Lithium-ion Battery Technologies forMid-size Full (1) Lithium-ion battery with an energy densitypresent study. The lithium-ion battery technology used for

Burke, Andrew

2009-01-01T23:59:59.000Z

358

Better Lithium-Ion Batteries Are On The Way From Berkeley Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Lithium-Ion Batteries A Better Lithium-ion Battery on the Way Simulations Reveal How New Polymer Absorbs Eight Times the Lithium of Current Designs September 23, 2011 Paul Preuss,...

359

Solid state thin film battery having a high temperature lithium alloy anode  

SciTech Connect

An improved rechargeable thin-film lithium battery involves the provision of a higher melting temperature lithium anode. Lithium is alloyed with a suitable solute element to elevate the melting point of the anode to withstand moderately elevated temperatures.

Hobson, David O. (Oak Ridge, TN)

1998-01-01T23:59:59.000Z

360

Variational Calculations on the Lithium Atom The electronic structure of lithium is 1s22s1. The hydrogenic 1s and 2s orbitals are as follows  

E-Print Network (OSTI)

Variational Calculations on the Lithium Atom The electronic structure of lithium is 1s22s1 = If these orbitals are used the variational expression for the lithium atom energy is given below. Nuclear charge: Z 3:= Seed value for : Z:= Define variational integral for lithium: E ( ) 2 2 Z - 5 8 + 2 8 + Z 4

Rioux, Frank

Note: This page contains sample records for the topic "large format lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Lithium 2,2,6,6-Tetramethylpiperidide and Lithium 2,2,4,6,6-Pentamethylpiperidide: Influence of TMEDA and Related  

E-Print Network (OSTI)

Lithium 2,2,6,6-Tetramethylpiperidide and Lithium 2,2,4,6,6-Pentamethylpiperidide: Influence,2,6,6-tetramethylpiperidide (LiTMP) and the conformationally locked (but otherwise isostructural) lithium 2 and conformational preferences of lithium 2,2,6,6-tetramethylpiperidide (LiTMP) in the solid state studied by Lappert

Collum, David B.

362

Variational Calculations on the Lithium Atom The electronic structure of lithium is 1s 22s1. The hydrogenic 1s and 2s orbitals are as follows  

E-Print Network (OSTI)

Variational Calculations on the Lithium Atom The electronic structure of lithium is 1s 22s1 = If these orbitals are used the variational expression for the lithium atom energy is given below. Nuclear charge: Z 3:= Seed value for : Z:= Define variational integral for lithium: E ( ) 2 2 Z - 5 8 + 2 8 + Z 4

Rioux, Frank

363

Polymers with Tailored Electronic Structure for High Capacity Lithium  

NLE Websites -- All DOE Office Websites (Extended Search)

Polymers with Tailored Electronic Structure for High Capacity Lithium Polymers with Tailored Electronic Structure for High Capacity Lithium Battery Electrodes Title Polymers with Tailored Electronic Structure for High Capacity Lithium Battery Electrodes Publication Type Journal Article Year of Publication 2011 Authors Liu, Gao, Shidi Xun, Nenad Vukmirovic, Xiangyun Song, Paul Olalde-Velasco, Honghe Zheng, Vince S. Battaglia, Linwang Wang, and Wanli Yang Journal Advanced Materials Volume 23 Start Page 4679 Issue 40 Pagination 4679 - 4683 Date Published 10/2011 Keywords binders, conducting polymers, density funcational theory, lithium batteries, X-ray spectroscopy Abstract A conductive polymer is developed for solving the long-standing volume change issue in lithium battery electrodes. A combination of synthesis, spectroscopy and simulation techniques tailors the electronic structure of the polymer to enable in situ lithium doping. Composite anodes based on this polymer and commercial Si particles exhibit 2100 mAh g-1 in Si after 650 cycles without any conductive additive.

364

Lithium In Tufas Of The Great Basin- Exploration Implications For  

Open Energy Info (EERE)

In Tufas Of The Great Basin- Exploration Implications For In Tufas Of The Great Basin- Exploration Implications For Geothermal Energy And Lithium Resources Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Lithium In Tufas Of The Great Basin- Exploration Implications For Geothermal Energy And Lithium Resources Details Activities (8) Areas (4) Regions (0) Abstract: Lithium/magnesium, lithium/sodium, and to a lesser extent, potassium/magnesium ratios in calcium carbonate tufa columns provide a fingerprint for distinguishing tufa columns formed from thermal spring waters versus those formed from non-thermal spring waters. These ratios form the basis of the Mg/Li, Na/Li, and K/Mg fluid geothermometers commonly used in geothermal exploration, which are based on the fact that at elevated temperatures, due to mineral-fluid equilibria, lithium

365

METHOD FOR PRODUCING ISOTOPIC METHANES FROM LITHIUM CARBONATE AND LITHIUM HYDRIDE  

DOE Patents (OSTI)

A process is descrlbed for the production of methane and for the production of methane containing isotopes of hydrogen and/or carbon. Finely divided lithium hydrlde and litldum carbonate reactants are mixed in intimate contact and subsequently compacted under pressures of from 5000 to 60,000 psl. The compacted lithium hydride and lithium carbenate reactunts are dispised in a gas collecting apparatus. Subsequently, the compact is heated to a temperature in the range 350 to 400 deg C whereupon a solid-solid reaction takes place and gaseous methane is evolved. The evolved methane is contaminated with gaseous hydrogen and a very small amount of CO/sub 2/; however, the desired methane product is separated from sald impurities by well known chemical processes, e.g., condensation in a cold trap. The product methane contalns isotopes of carbon and hydrogen, the Isotopic composition being determined by the carbon isotopes originally present In the lithium carbonate and the hydrogen isotopes originally present in the lithium hydride.

Frazer, J.W.

1959-10-27T23:59:59.000Z

366

Solid lithium ion conducting electrolytes and methods of preparation  

SciTech Connect

A composition comprised of nanoparticles of lithium ion conducting solid oxide material, wherein the solid oxide material is comprised of lithium ions, and at least one type of metal ion selected from pentavalent metal ions and trivalent lanthanide metal ions. Solution methods useful for synthesizing these solid oxide materials, as well as precursor solutions and components thereof, are also described. The solid oxide materials are incorporated as electrolytes into lithium ion batteries.

Narula, Chaitanya K; Daniel, Claus

2013-05-28T23:59:59.000Z

367

Lithium: Measurement of Young's Modulus and Yield Strength  

Science Conference Proceedings (OSTI)

The Lithium Collection Lens is used for anti-proton collection. In analyzing the structural behavior during operation, various material properties of lithium are often needed. properties such as density, coefficient of thermal expansion, thermal conductivity, specific heat, compressability, etc.; are well known. However, to the authors knowledge there is only one published source for Young's Modulus. This paper reviews the results from the testing of Young's Modulus and the yield strength of lithium at room temperature.

Ryan P Schultz

2002-11-07T23:59:59.000Z

368

Model for the Fabrication of Tailored Materials for Lithium-Ion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Model for the Fabrication of Tailored Materials for Lithium-Ion Batteries Technology available for licensing: Safe, stable and high-capacity cathodes for lithium-ion batteries...

369

Transition-metal oxides, sulphide and sulphur composites for lithium batteries.  

E-Print Network (OSTI)

??Lithium batteries are important energy storage systems and can make energy storage and usage more efficient than with previous solutions. Moreover, among the lithium batteries,… (more)

Lu, Lin

2012-01-01T23:59:59.000Z

370

TransForum v8n2 - Advanced Lithium Battery Conference  

NLE Websites -- All DOE Office Websites (Extended Search)

lithium batteries for transportation applications, organizers from the U.S., Japan and Korea jointly initiated the conference. Among available battery technologies, lithium-ion...

371

Simple Lithium Is Good For Many Surprises | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

and even superconductivity at 17K. Nevertheless, the overall picture of the lithium phase diagram remained patchy, motivating a systematic study by researchers from The...

372

Solid-State Reaction Synthesis and Mechanism of Lithium Silicates  

Science Conference Proceedings (OSTI)

Lithium silicates, Li4SiO4 and Li2SiO3, are recommended by many ITER research teams as the first ...

373

Electrode Materials for Rechargeable Lithium-Ion Batteries: A...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrode Materials for Rechargeable Lithium-Ion Batteries: A New Synthetic Approach Technology available for licensing: New high-energy cathode materials for use in rechargeable...

374

Novel Redox Shuttles for Overcharge Protection of Lithium-Ion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Novel Redox Shuttles for Overcharge Protection of Lithium-Ion Batteries Technology available for licensing: Electrolytes containing novel redox shuttles (electron transporters) for...

375

Intermetallic Electrodes Improve Safety and Performance in Lithium...  

NLE Websites -- All DOE Office Websites (Extended Search)

Intermetallic Electrodes Improve Safety and Performance in Lithium-Ion Batteries Technology available for licensing: A new class of intermetallic material that can be used as a...

376

Surface Modification Agents for Lithium-Ion Batteries | Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

Surface Modification Agents for Lithium-Ion Batteries Technology available for licensing: A process to modify the surface of the active material used in an electrochemical device...

377

Novel Redox Shuttles for Overcharge Protection of Lithium-Ion ...  

Increases the safety of lithium-ion batteries; ... Electric and plug-in hybrid electric vehicles; Portable electronic devices; Medical devices; and

378

Materials and Processing for Lithium-Ion Batteries (Originally  

Science Conference Proceedings (OSTI)

... safe and reliable lithium ion batteries will soon be on board hybrid electric and electric vehicles and connected to solar cells and windmills. However, safety of ...

379

Global Lithium Availability: A Constraint for Electric Vehicles.  

E-Print Network (OSTI)

??There is disagreement on whether the supply of lithium is adequate to support a future global fleet of electric vehicles. We report a comprehensive analysis… (more)

Medina, Pablo

2010-01-01T23:59:59.000Z

380

CUBICON Materials that Outperform Lithium-Ion Batteries  

and high-energy system applications has resulted in substantial research and development activities. Lithium-ion batteries are a chief contender ...

Note: This page contains sample records for the topic "large format lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Polymer Electrolytes for Rechargeable Lithium/Sulfur Batteries.  

E-Print Network (OSTI)

??With the rapid development of portable electronics, hybrid-electric and electric cars, there is great interest in utilization of sulfur as cathodes for rechargeable lithium batteries.… (more)

Zhao, Yan

2013-01-01T23:59:59.000Z

382

High Capacity Lithium-Ion Battery Characterization for Vehicular Applications.  

E-Print Network (OSTI)

?? A lithium-ion battery is one of the key research topics in energy storage technologies. Major characterization tests such as static capacity, open circuit voltage… (more)

Ahmed, Sazzad Hossain

2012-01-01T23:59:59.000Z

383

How use nanostructured materials effectively in rechargeable lithium ...  

Science Conference Proceedings (OSTI)

Presentation Title, How use nanostructured materials effectively in rechargeable lithium/sulfur battery. Author(s), Sheng Shui Zhang. On-Site Speaker (Planned) ...

384

Lithium-Ion Batteries: When Mechanics Meets Chemistry  

Science Conference Proceedings (OSTI)

Symposium, Fatigue and Fracture of Thin Films and Nanomaterials. Presentation Title, Lithium-Ion Batteries: When Mechanics Meets Chemistry. Author(s), Joost ...

385

Experimental Cell for Neutron Reflection on Lithium Manganese ...  

Science Conference Proceedings (OSTI)

Presentation Title, Experimental Cell for Neutron Reflection on Lithium Manganese Oxide to Study the Electrode/Electrolyte Interface. Author(s), Brian Kitchen.

386

Structural micro-porous carbon anode for rechargeable lithium ...  

A secondary battery having a rechargeable lithium-containing anode, a cathode and a separator positioned between the cathode and anode with an organic ...

387

High Energy Density Lithium Capacitors Using Carbon-Carbon ...  

Science Conference Proceedings (OSTI)

We demonstrate a lithium capacitor which is capable of achieving high energy ... 3D Nanostructured Bicontinuous Electrodes: Path to Ultra-High Power and ...

388

High Power Performance Lithium Ion Battery - Energy Innovation Portal  

... “Optimization of Acetylene Black Conductive Additive and Polyvinylidene Fluoride Composition for high Power Rechargeable Lithium-Ion Cells,” The 211th ...

389

Lithium Diffusion in Graphitic Carbon and Implications for the...  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon and Implications for the Rate Capability of Anodes Title Lithium Diffusion in Graphitic Carbon and Implications for the Rate Capability of Anodes Publication Type Journal...

390

"Stationary Flowing Liquid Lithium System For Pumping Out Atomic...  

NLE Websites -- All DOE Office Websites (Extended Search)

Stationary Flowing Liquid Lithium System For Pumping Out Atomic Hydrogen Isotopes and Ions" Leonid E. Zakharov and Charles Gentile The system is comprised of a stationary closed...

391

Edge Turbulence Velocity Changes with Lithium Coating on NSTX  

SciTech Connect

Lithium coating improves energy confinement and eliminates edge localized modes in NSTX, but the mechanism of this improvement is not yet well understood. We used the gas-puff-imaging (GPI) diagnostic on NSTX to measure the changes in edge turbulence which occurred during a scan with variable lithium wall coating, in order to help understand the reason for the confinement improvement with lithium. There was a small increase in the edge turbulence poloidal velocity and a decrease in the poloidal velocity fluctuation level with increased lithium. The possible effect of varying edge neutral density on turbulence damping was evaluated for these cases in NSTX. __________________________________________________

A. Cao, S.J. Zweben, D.P. Stotler, M. Bell, A. Diallo, S.M. Kaye and B. LeBlanc

2012-08-10T23:59:59.000Z

392

Calorimetric Studies of Lithium Ion Cells and Their Constructing ...  

Science Conference Proceedings (OSTI)

Commercial Lithium-ion pouch cells, several types of 18650 cylindrical cells and coin cells were cycled at different charge and discharge rates. Heat capacities ...

393

ABAA - 6th International Conference on Advanced Lithium Batteries...  

NLE Websites -- All DOE Office Websites (Extended Search)

Directions to Argonne National Laboratory The 6th International Conference on Advanced Lithium Batteries for Automotive Applications will be held at the U.S. Department of Energy's...

394

Improved Lithium-Loaded Liquid Scintillators for Neutron Detection  

A liquid scintillator with a substantially increased lithium weight was developed byORNL researchers. Scintillators are widely used for the detection ...

395

Argonne CNM News: Hollow Iron Oxide Nanoparticles for Lithium...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hollow Iron Oxide Nanoparticles for Lithium-Ion Battery Applications Hollow iron oxide nanoparticles Transmission electron micrograph of hollow iron oxide nanoparticles....

396

Vacuum Attachment for Collection of Lithium Powder ---- Inventor...  

NLE Websites -- All DOE Office Websites (Extended Search)

Vacuum Attachment for Collection of Lithium Powder ---- Inventor(s) Hans Schneider and Stephan Jurczynski The Vacuum Attachment is part of an integrated system designed to collect...

397

Anodes Improve Safety and Performance in Lithium-ion Batteries ...  

Rechargeable lithium-ion batteries have become the battery of choice for everything from cell phones to electric cars, but there is still much room ...

398

Students race lithium ion battery powered cars in Pantex competition...  

National Nuclear Security Administration (NNSA)

skip to the main content Facebook Flickr RSS Twitter YouTube Students race lithium ion battery powered cars in Pantex competition | National Nuclear Security Administration Our...

399

NIST: Neutron Imaging of Lithium and Alkaline Batteries  

Science Conference Proceedings (OSTI)

... the figure are tomographic slices through two different AA batteries after the ... imaging has been used to study a wound prismatic lithium-ion battery. ...

2013-07-23T23:59:59.000Z

400

Solid Electrolyte Developed for Safer Lithium-Ion Batteries  

Science Conference Proceedings (OSTI)

Feb 19, 2013 ... Today's lithium-ion batteries rely on a liquid electrolyte to conduct ions between the negatively charged anode and positive cathode.

Note: This page contains sample records for the topic "large format lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Nanostructured Materials for Lithium Ion Batteries and for ...  

Science Conference Proceedings (OSTI)

Mar 5, 2013 ... Since lithium sources are concentrated in only few countries and sodium is available worldwide, there is interest to develop a Na-ion battery ...

402

Lithium-Ion Batteries: Examining Material Demand and Recycling...  

NLE Websites -- All DOE Office Websites (Extended Search)

ISSUES Linda Gaines and Paul Nelson Argonne National Laboratory, Argonne, IL Keywords: battery materials, lithium, recycling Abstract Use of vehicles with electric drive, which...

403

Observation of Lithium Ions at Atomic Resolution Using an ...  

Science Conference Proceedings (OSTI)

Presentation Title, Observation of Lithium Ions at Atomic Resolution Using an ... at atomic resolution in several important electrode materials for Li-ion batteries.

404

Nuclear Magnetism and Superconductivity: Investigations on Lithium and Rhodium.  

E-Print Network (OSTI)

??This thesis describes low temperature experiments on lithium. The experiments concentrate on investigating low temperature phase transitions of two subsystems in this metal: its nuclear… (more)

Juntunen, Kirsi

2005-01-01T23:59:59.000Z

405

Nuclear magnetism and superconductivity : investigations on lithium and rhodium.  

E-Print Network (OSTI)

??This thesis describes low temperature experiments on lithium. The experiments concentrate on investigating low temperature phase transitions of two subsystems in this metal: its nuclear… (more)

Juntunen, Kirsi

2005-01-01T23:59:59.000Z

406

Overcharge Protection for 4 V Lithium Batteries at High Rates ...  

Overcharge Protection for 4 V Lithium Batteries at High Rates ... chloroform and casting the solution onto a stainless steel mesh cur- ... Thermotron Industries, Inc. .

407

Novel Electrolyte Enables Stable Graphite Anodes in Lithium Ion Batteries  

Berkeley Lab researchers led by Gao Liu have developed an improved lithium ion battery electrolyte containing a solvent that remains liquid at typical ...

408

Available Technologies: Lithium / Sulfur Cells with Long Cycle ...  

A team of Berkeley Lab battery researchers led by Elton Cairns has invented an advanced lithium/sulfur (Li/S) cell that, for the first time, offers ...

409

Nanostructured Sulfur Electrodes for Long-Life Lithium Batteries  

Berkeley Lab researcher Elton Cairns has developed a technology that addresses limitations of developing a commercial-grade lithium / sulfur battery. ...

410

Negative Electrodes Improve Safety in Lithium Cells and Batteries  

To help improve the stability and safety of lithium-ion batteries, Argonne researchers have developed a new intermetallic structure type that can be ...

411

NREL Evaluates Secondary Uses for Lithium Ion Vehicle Batteries  

NREL Evaluates Secondary Uses for Lithium Ion Vehicle Batteries ... of PHEVs and EVs is limited by the current high cost of Li-ion batteries.

412

Nanotube composite anode materials improve lithium-ion battery ...  

Rechargeable lithium-ion batteries are a critical technology for many applications, ... while simultaneously providing enhanced stability at a lower c ...

413

Advanced Lithium Ion Battery Materials for Fast Charging and ...  

Advanced Lithium Ion Battery Materials for Fast Charging and Improved Safety Technology Summary ... a great low cost substitute for cobalt, were

414

Surface-Modified Active Materials for Lithium Ion Battery ...  

Berkeley Lab researcher Gao Liu has developed a new fabrication technique for lithium ion battery electrodes that lowers binder cost without ...

415

The UC Davis Emerging Lithium Battery Test Project  

E-Print Network (OSTI)

cell (Altairnano data) Battery cost considerations It is ofnot dominate the total battery cost. Note that in generala detailed lithium battery cost model that is applicable to

Burke, Andy; Miller, Marshall

2009-01-01T23:59:59.000Z

416

Lithium In Tufas Of The Great Basin- Exploration Implications...  

Open Energy Info (EERE)

In Tufas Of The Great Basin- Exploration Implications For Geothermal Energy And Lithium Resources Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper:...

417

Hybrid Aluminum-Lithium Ion Battery having Enhanced Power Density  

Hybrid Aluminum-Lithium Ion Battery having Enhanced Power Density Note: The technology described above is an early stage opportunity. Licensing rights to this ...

418

Neutron Imaging Reveals Lithium Distribution - ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

imaging instrument at Oak Ridge National Laboratory's High Flux Isotope Reactor (HFIR) have successfully mapped the three-dimensional spatial distribution of lithium...

419

Nanostructured Anodes for Lithium-Ion Batteries - Energy ...  

New Anodes for Lithium-ion Batteries Increase Energy Density Four-Fold Savannah River Nuclear Solutions (SRNS), managing contractor of the Savannah River Site (SRS ...

420

Anodes Improve Safety and Performance in Lithium-ion Batteries ...  

Rechargeable lithium-ion batteries have become the battery of choice for everything from cell phones to electric cars, but there is still much room for improvement.

Note: This page contains sample records for the topic "large format lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

The 2nd International Symposium on Lithium Applications for Fusion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Princeton, New Jersey, USA The 2nd International Symposium on Lithium Applications for Fusion devices The purpose of this symposium is to bring together scientists and engineers...

422

Deuterium Uptake in Magnetic Fusion Devices with Lithium Conditioned...  

NLE Websites -- All DOE Office Websites (Extended Search)

Deuterium Uptake in Magnetic Fusion Devices with Lithium Conditioned Carbon Walls American Fusion News Category: U.S. Universities Link: Deuterium Uptake in Magnetic Fusion Devices...

423

Available Technologies: High Power Performance Lithium Ion Battery  

Cell 1, which has the highest binder (PVDF) to acetylene black ratio, displays the most favorable discharge ASI. Lithium ion batteries with high power ...

424

Manganese oxide composite electrodes for lithium batteries  

DOE Patents (OSTI)

An activated electrode for a non-aqueous electrochemical cell is disclosed with a precursor thereof a lithium metal oxide with the formula xLi.sub.2MnO.sub.3.(1-x)LiMn.sub.2-yM.sub.yO.sub.4 for 0.5lithium and lithia, from the precursor. A cell and battery are also disclosed incorporating the disclosed positive electrode.

Johnson, Christopher S. (Naperville, IL); Kang, Sun-Ho (Naperville, IL); Thackeray, Michael M. (Naperville, IL)

2009-12-22T23:59:59.000Z

425

Manganese oxide composite electrodes for lithium batteries  

DOE Patents (OSTI)

An activated electrode for a non-aqueous electrochemical cell is disclosed with a precursor of a lithium metal oxide with the formula xLi.sub.2MnO.sub.3.(1-x)LiMn.sub.2-yM.sub.yO.sub.4 for 0lithium and lithia, from the precursor. A cell and battery are also disclosed incorporating the disclosed positive electrode.

Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Li, Naichao (Croton on Hudson, NY)

2007-12-04T23:59:59.000Z

426

Batteries - Beyond Lithium Ion Breakout session  

NLE Websites -- All DOE Office Websites (Extended Search)

BEYOND LITHIUM ION BREAKOUT BEYOND LITHIUM ION BREAKOUT Breakout Session #1 - Discussion of Performance Targets and Barriers Comments on the Achievability of the Targets * 1 - Zn-Air possible either w/ or w/o electric-hybridization; also possible with a solid electrolyte variant * 2 - Multivalent systems (e.g Mg), potentially needing hybrid-battery * 3 - Advanced Li-ion with hybridization @ cell / molecular level for high-energy and high- power * 4 - MH-air, Li-air, Li-S, all show promise * 5 - High-energy density (e.g. Na-metal ) flow battery can meet power and energy goals * 6 - Solid-state batteries (all types) * 7 - New cathode chemistries (beyond S) to increase voltage * 8 - New high-voltage non-flammable electrolytes (both li-ion and beyond li-ion) * 9 - Power to energy ratio of >=12 needed for fast charge (10 min)  So liquid refill capable

427

Phosphate-stabilized Lithium intercalation compounds  

DOE Green Energy (OSTI)

Four manganese and iron phosphates with alluaudite or fillowite structures have been prepared by solid state reactions: Na2FeMn2(PO4)3, LiNaFeMn2(PO4)3, NaFe3(PO4)3, and Na2Mn3(PO4)3. LixNa2-xFeMn2(PO4)3 with x close to 2 was prepared from Na2FeMn2(PO4)3 by molten salt ion exchange. These materials are similar in stoichiometry to the phospho-olivines LiFe(Mn)PO4, but have a more complex structure that can accommodate mixed transition metal oxidation states. They are of interest as candidates for lithium battery cathodes because of their somewhat higher electronic conductivity, high intercalant ion mobility, and ease of preparation. Their performance as intercalation electrodes in non-aqueous lithium cells was, however, poor.

Richardson, Thomas J.

2002-07-22T23:59:59.000Z

428

High expansion, lithium corrosion resistant sealing glasses  

DOE Patents (OSTI)

Glass compositions containing CaO, Al.sub.2 O.sub.3, B.sub.2 O.sub.3, SrO and BaO in various combinations of mole % are provided. These compositions are capable of forming stable glass-to-metal seals with pin materials of 446 Stainless Steel and Alloy-52 rather than molybdenum, for use in harsh chemical environments, specifically in lithium batteries.

Brow, Richard K. (Albuquerque, NM); Watkins, Randall D. (Albuquerque, NM)

1991-01-01T23:59:59.000Z

429

Electronic Structure of Lithium Battery Materials  

SciTech Connect

Lithium batteries are important as the power source for portable electronic devices and could also be used in hybrid vehicles with improvements in capacity. We have used first principles calculations of electronic structure to determine how charge is redistributed as Li is added or removed. In the final of year of the project we have examined Lix(NiMn)0.5O2 and Lix(NiMnCo)0.333O2 cathode materials in more detail. As lithium is removed electrons are removed from the valence band which is mainly Oxygen 2p states at the top of the band. There is very little change in the charge state of the transition element ions in either case. These results are confirmed by electron energy loss spectroscopy which shows a pre-peak on the oxygen K edge as lithium is removed, but no changes in the transition metal L edges. We have also investigated the LixFePO4 cathode material which is less costly than the LixCoO2 used at present and is also less damaging to the environment. In this case we find that as lithium is removed there is a change in charge state of iron while electrons are removed from oxygen 2p states at the top of the valence band. Again this is confirmed by the pre-peak on the oxygen K edge observed in electron energy loss spectroscopy and by the high resolution multiplet structure observed on the iron L edge which agrees with our calculations.

Dr. Peter Rez

2007-12-02T23:59:59.000Z

430

Technical Specification for a Transportable Lithium-Ion Energy Storage System for Grid Support Using Commercially Available Lithium- Ion Technology  

Science Conference Proceedings (OSTI)

The impressive global scale of lithium-ion battery production and investment in R&D is driving cost reduction and performance improvements that could make lithium-ion technology desirable for certain grid-scale storage applications in the near term. Although many stationary grid market applications can be configured using lithium-ion batteries, Electric Power Research Institute (EPRI) research identified a 1-MW, 2-hour containerized substation grid support storage system as a key electric utility product...

2012-07-31T23:59:59.000Z

431

Nanostructures and Lithium Electrochemical Reactivity of Lithium Titanites and Titanium Oxides: A Review  

SciTech Connect

Being inherently safe and chemically compatible with the electrolyte, titanium oxidebased materials, including both Li-titanites and various TiO2-polymorphs, are considered alternatives to carbonaceous anodes in Li-ion batteries. Given the commercial success of the spinel lithium titanites, TiO2-polymorphs, in particular in nanostructured forms, have been fabricated and investigated for the applications. Nanostructuring leads to increased reaction areas, shortened Li+ diffusion and potentially enhanced solubility/capacity. Integration with an electron conductive second phase into the TiO2-based nanostructures eases the electron transport, resulting in further improved lithium electrochemical activity and the overall electrochemical performance. This paper reviews structural characteristics and Li-electrochemical reactivity, along with synthetic approaches, of nanostructures and nano-composites based on lithium titanites and TiO2-polymorphs that include rutile, anatase, bronze and brookite.

Yang, Zhenguo; Choi, Daiwon; Kerisit, Sebastien N.; Rosso, Kevin M.; Wang, Donghai; Zhang, Jiguang; Graff, Gordon L.; Liu, J.

2009-07-15T23:59:59.000Z

432

Gel electrolyte for lithium-ion batteries.  

DOE Green Energy (OSTI)

The electrochemical performance of gel electrolytes based on crosslinked poly[ethyleneoxide-co-2-(2-methoxyethyoxy)ethyl glycidyl ether-co-allyl glycidyl ether] was investigated using graphite/Li{sub 1.1}[Ni{sub 1/3}Mn{sub 1/3}Co{sub 1/3}]{sub 0.9}O{sub 2} lithium-ion cells. It was found that the conductivity of the crosslinked gel electrolytes was as high as 5.9 mS/cm at room temperature, which is very similar to that of the conventional organic carbonate liquid electrolytes. Moreover, the capacity retention of lithium-ion cells comprising gel electrolytes was also similar to that of cells with conventional electrolytes. Despite of the high conductivity of the gel electrolytes, the rate capability of lithium-ion cells comprising gel electrolytes is inferior to that of the conventional cells. The difference was believed to be caused by the poor wettability of gel electrolytes on the electrode surfaces.

Chen, Z.; Zhang, L. Z.; West, R.; Amine, K.; Chemical Sciences and Engineering Division; Univ. of Wisconsin-Madison

2008-03-10T23:59:59.000Z

433

THE SUPER LITHIUM-RICH RED GIANT RAPID ROTATOR G0928+73.2600: A CASE FOR PLANET ACCRETION?  

Science Conference Proceedings (OSTI)

We present the discovery of a super lithium-rich K giant star, G0928+73.2600. This red giant (T {sub eff} = 4885 K and log g = 2.65) is a fast rotator with a projected rotational velocity of 8.4 km s{sup -1} and an unusually high lithium abundance of A(Li) = 3.30 dex. Although the lack of a measured parallax precludes knowing the exact evolutionary phase, an isochrone-derived estimate of its luminosity places the star on the Hertzsprung-Russell diagram in a location that is not consistent with either the red bump on the first ascent of the red giant branch or with the second ascent on the asymptotic giant branch, the two evolutionary stages where lithium-rich giant stars tend to cluster. Thus, even among the already unusual group of lithium-rich giant stars, G0928+73.2600 is peculiar. Using {sup 12}C/{sup 13}C as a tracer for mixing-more mixing leads to lower {sup 12}C/{sup 13}C-we find {sup 12}C/{sup 13}C = 28, which is near the expected value for standard first dredge-up mixing. We can therefore conclude that 'extra' deep mixing has not occurred. Regardless of the ambiguity of the evolutionary stage, the extremely large lithium abundance and the rotational velocity of this star are unusual, and we speculate that G0928+73.2600 has been enriched in both lithium and angular momentum from a sub-stellar companion.

Carlberg, Joleen K.; Majewski, Steven R.; Rood, Robert T. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Smith, Verne V.; Cunha, Katia, E-mail: jkm9n@virginia.ed [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States)

2010-11-01T23:59:59.000Z

434

Investigating the First-Cycle Irreversibility of Lithium Metal Oxide Cathodes for Li Batteries  

DOE Green Energy (OSTI)

Layered lithium metal oxide cathodes typically exhibit irreversibility during the first cycle in lithium cells when cycled in conventional voltage ranges (e.g., 3-4.3 V vs. Li+/Li). In this work, we have studied the first-cycle irreversibility of lithium cells containing various layered cathode materials using galvanostatic cycling and in situ synchrotron X-ray diffraction. When cycled between 3.0 and 4.3 V vs. Li+/Li, the cells containing LiCoO2, LiNi0.8Co0.15Al0.05O2, and Li1.048(Ni1/3Co1/3Mn1/3)0.952O2 as cathodes showed initial coulombic efficiencies of 98.0, 87.0, and 88.6%, respectively, at relatively slow current (8 mA/g). However, the 'lost capacity' could be completely recovered by discharging the cells to low voltages (<2 V vs Li+/Li). During this deep discharge, the same cells exhibited voltage plateaus at 1.17, 1.81, and 1.47 V, respectively, which is believed to be associated with formation of a Li2MO2-like phase (M = Ni, Co, Mn) on the oxide particle surface due to very sluggish lithium diffusion in LieMO2 with {var_epsilon}{yields} 1 (i.e., near the end of discharge). The voltage relaxation curve and in situ X-ray diffraction patterns, obtained from a Li/Li1.048(Ni1/3Co1/3Mn1/3)0.952O2 cell, showed that the oxide cathode reversibly returned to its original state [i.e., Li1.048(Ni1/3Co1/3Mn1/3)0.952O2] during relaxation following the deep discharge to achieve 100% cycle efficiency.

Kang,S.; Yoon , W.; Nam, K.; Yang, X.; Abraham, D.

2008-01-01T23:59:59.000Z

435

Chemical overcharge protection of lithium and lithium-ion secondary batteries  

DOE Patents (OSTI)

This invention features the use of redox reagents, dissolved in non-aqueous electrolytes, to provide overcharge protection for cells having lithium metal or lithium-ion negative electrodes (anodes). In particular, the invention features the use of a class of compounds consisting of thianthrene and its derivatives as redox shuttle reagents to provide overcharge protection. Specific examples of this invention are thianthrene and 2,7-diacetyl thianthrene. One example of a rechargeable battery in which 2,7-diacetyl thianthrene is used has carbon negative electrode (anode) and spinet LiMn{sub 2}O{sub 4} positive electrode (cathode). 8 figs.

Abraham, K.M.; Rohan, J.F.; Foo, C.C.; Pasquariello, D.M.

1999-01-12T23:59:59.000Z

436

Chemical overcharge protection of lithium and lithium-ion secondary batteries  

DOE Patents (OSTI)

This invention features the use of redox reagents, dissolved in non-aqueous electrolytes, to provide overcharge protection for cells having lithium metal or lithium-ion negative electrodes (anodes). In particular, the invention features the use of a class of compounds consisting of thianthrene and its derivatives as redox shuttle reagents to provide overcharge protection. Specific examples of this invention are thianthrene and 2,7-diacetyl thianthrene. One example of a rechargeable battery in which 2,7-diacetyl thianthrene is used has carbon negative electrode (anode) and spinet LiMn.sub.2 O.sub.4 positive electrode (cathode).

Abraham, Kuzhikalail M. (Needham, MA); Rohan, James F. (Cork City, IE); Foo, Conrad C. (Dedham, MA); Pasquariello, David M. (Pawtucket, RI)

1999-01-01T23:59:59.000Z

437

Thin film method of conducting lithium-ions  

DOE Patents (OSTI)

The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li.sub.2 O--CeO.sub.2 --SiO.sub.2 system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications.

Zhang, Ji-Guang (Golden, CO); Benson, David K. (Golden, CO); Tracy, C. Edwin (Golden, CO)

1998-11-10T23:59:59.000Z

438

Atomic resolution of Lithium Ions in LiCoO  

SciTech Connect

LiCoO2 is the most common lithium storage material for lithium rechargeable batteries, used widely to power portable electronic devices such as laptop computers. Lithium arrangements in the CoO2 framework have a profound effect on the structural stability and electrochemical properties of LixCoO2 (0 < x < 1), however, probing lithium ions has been difficult using traditional X-ray and neutron diffraction techniques. Here we have succeeded in simultaneously resolving columns of cobalt, oxygen, and lithium atoms in layered LiCoO2 battery material using experimental focal series of LiCoO2 images obtained at sub-Angstrom resolution in a mid-voltage transmission electron microscope. Lithium atoms are the smallest and lightest metal atoms, and scatter electrons only very weakly. We believe our observations of lithium to be the first by electron microscopy, and that they show promise to direct visualization of the ordering of lithium and vacancy in LixCoO2.

Shao-Horn, Yang; Croguennec, Laurence; Delmas, Claude; Nelson, Chris; O' Keefe, Michael A.

2003-03-18T23:59:59.000Z

439

Liquid surface skimmer apparatus for molten lithium and method  

DOE Patents (OSTI)

This invention relates to an apparatus for separating two fluids having different specific gravities. The invention also relates to a method for using the separating apparatus of the present invention. This invention particularly relates to the skimming of molten lithium metal from the surface of a fused salt electrolyte in the electrolytic production of lithium metal from a mixed fused salt.

Robinson, Samuel C. (Knoxville, TN); Pollard, Roy E. (Maryville, TN); Thompson, William F. (Oak Ridge, TN); Stark, Marshall W. (Gastonia, NC); Currin, Jr., Robert T. (Salisbury, NC)

1995-01-01T23:59:59.000Z

440

Thin film method of conducting lithium-ions  

DOE Patents (OSTI)

The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li{sub 2}O-CeO{sub 2}-SiO{sub 2} system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications. 12 figs.

Zhang, J.G.; Benson, D.K.; Tracy, C.E.

1998-11-10T23:59:59.000Z

Note: This page contains sample records for the topic "large format lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Description: Lithium batteries are used daily in our work  

E-Print Network (OSTI)

with batteries from the same package or with the same expiration date. Avoid at all costs batteries that haveDescription: Lithium batteries are used daily in our work activities from flashlights, cell phones containing one SureFire 3-volt non-rechargeable 123 lithium battery and one Interstate 3-volt non

442

Lithium aluminum/iron sulfide battery having lithium aluminum and silicon as negative electrode  

SciTech Connect

A method of making a negative electrode, the electrode made thereby and a secondary electrochemical cell using the electrode. Silicon powder is mixed with powdered electroactive material, such as the lithium-aluminum eutectic, to provide an improved electrode and cell.

Gilbert, Marian (Flossmoor, IL); Kaun, Thomas D. (New Lenox, IL)

1984-01-01T23:59:59.000Z

443

A Better Anode Design to Improve Lithium-Ion Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

A Better Anode Design to Improve A Better Anode Design to Improve Lithium-Ion Batteries A Better Anode Design to Improve Lithium-Ion Batteries Print Friday, 23 March 2012 13:53 Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab scientists has designed a new kind of anode that absorbs eight times the lithium of current designs, and has maintained its greatly increased energy capacity after more than a year of testing and many hundreds of charge-discharge cycles. Cyclical Science Succeeds

444

Toxicity of materials used in the manufacture of lithium batteries  

DOE Green Energy (OSTI)

The growing interest in battery systems has led to major advances in high-energy and/or high-power-density lithium batteries. Potential applications for lithium batteries include radio transceivers, portable electronic instrumentation, emergency locator transmitters, night vision devices, human implantable devices, as well as uses in the aerospace and defense programs. With this new technology comes the use of new solvent and electrolyte systems in the research, development, and production of lithium batteries. The goal is to enhance lithium battery technology with the use of non-hazardous materials. Therefore, the toxicity and health hazards associated with exposure to the solvents and electrolytes used in current lithium battery research and development is evaluated and described.

Archuleta, M.M.

1994-05-01T23:59:59.000Z

445

China Lithium Energy Electric Vehicle Investment Group CLEEVIG | Open  

Open Energy Info (EERE)

Investment Group CLEEVIG Investment Group CLEEVIG Jump to: navigation, search Name China Lithium Energy Electric Vehicle Investment Group (CLEEVIG) Place Beijing, China Zip 100101 Product Beijing-based investment company with a focus on Electric Vehicle R&D. References China Lithium Energy Electric Vehicle Investment Group (CLEEVIG)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. China Lithium Energy Electric Vehicle Investment Group (CLEEVIG) is a company located in Beijing, China . References ↑ "[ China Lithium Energy Electric Vehicle Investment Group (CLEEVIG)]" Retrieved from "http://en.openei.org/w/index.php?title=China_Lithium_Energy_Electric_Vehicle_Investment_Group_CLEEVIG&oldid=343507

446

1 Kinetics of Initial Lithiation of Crystalline Silicon Electrodes of 2 Lithium-Ion Batteries  

E-Print Network (OSTI)

1 Kinetics of Initial Lithiation of Crystalline Silicon Electrodes of 2 Lithium-Ion Batteries 3 the lithiated silicon phase. 20 KEYWORDS: Lithium-ion batteries, silicon, kinetics, plasticity 21 Lithium-ion by the National Science Foundation 648through a grant on Lithium-ion Batteries (CMMI-1031161). 649This work

Liu, X. Shirley

447

Stochastic model of lithium ion conduction in poly,,ethylene oxide... L. Gitelman,1  

E-Print Network (OSTI)

as described above. III. THE CONDUCTIVITY The basic electrochemistry of the lithium ion battery in- volves only the transfer of lithium ions between the two insertion electrodes. Typical lithium ion battery consistsStochastic model of lithium ion conduction in poly,,ethylene oxide... L. Gitelman,1 A. Averbuch,2,a

Averbuch, Amir

448

Local Electromechanical Response at a Single Ferroelectric Domain Wall in Lithium Niobate  

E-Print Network (OSTI)

Local Electromechanical Response at a Single Ferroelectric Domain Wall in Lithium Niobate DAVID A electromechanical response across a single ferroelectric domain wall in congruent lithium niobate at room in the crystal, which interact with the domain wall. I. INTRODUCTION FERROELECTRIC lithium niobate and lithium

Gopalan, Venkatraman

449

Measurement of lithium isotope ratios by quadrupole-ICP-MS: application to seawater and natural carbonates  

E-Print Network (OSTI)

Measurement of lithium isotope ratios by quadrupole-ICP-MS: application to seawater and natural method for lithium isotope ratio (7 Li/6 Li) determinations with low total lithium consumption ( lithium from all matrix elements using small volume resin (2 ml/3.4 meq AG 50W-X8) and low volume elution

Weston, Ken

450

17 Years of Lithium Brown Dwarfs 10/21/12Ringberg Brown Dwarfs 1  

E-Print Network (OSTI)

17 Years of Lithium Brown Dwarfs 10/21/12Ringberg Brown Dwarfs 1 #12;The Keck Search for Lithium 10/21/12Ringberg Brown Dwarfs 2 Lithium was not seen in objects which should have been comfortably into the brown "lithium dating". This adjustment in age meant that the inferred mass of PPl 15 rose to near the substellar

Joergens, Viki

451

Optimization of lithium target for epithermal neutrons generation B. Bayanov, V. Belov, V. Kindyukb  

E-Print Network (OSTI)

Optimization of lithium target for epithermal neutrons generation B. Bayanov, V. Belov, V. Kindyukb of the facility is lithium target, that produces neutrons via threshold 7 Li(p,n)7 Be reaction at 25 kW proton carrier flow and lithium layer temperature are shown. Calculation showed that the lithium target could run

Taskaev, Sergey Yur'evich

452

SnO{sub 2}/ZnO composite structure for the lithium-ion battery electrode  

SciTech Connect

In this article, SnO{sub 2}/ZnO composite structures have been synthesized by two steps hydrothermal method and investigated their lithium storage capacity as compared with pure ZnO. It has been found that these composite structures combining the large specific surface area, stability and catalytic activity of SnO{sub 2} micro-crystals, demonstrate the higher initial discharge capacity of 1540 mA h g{sup -1} with a Coulombic efficiency of 68% at a rate of 120 mA h g{sup -1} between 0.02 and 2 V and found much better than that of any previously reported ZnO based composite anodes. In addition, a significantly enhanced cycling performance, i.e., a reversible capacity of 497 mA h g{sup -1} is retained after 40 cycles. The improved lithium storage capacity and cycle life is attributed to the addition of SnO{sub 2} structure, which act as good electronic conductors and better accommodation of the large volume change during lithiation/delithiation process. - Graphical abstract: SnO{sub 2}/ZnO composite structures demonstrate the improved lithium storage capacity and cycle life as compared with pure ZnO nanostructure. Highlights: Black-Right-Pointing-Pointer Synthesis of SnO{sub 2}/ZnO composite structures by two steps hydrothermal approach. Black-Right-Pointing-Pointer Investigation of lithium storage capacity. Black-Right-Pointing-Pointer Excellent lithium storage capacity and cycle life of SnO{sub 2}/ZnO composite structures.

Ahmad, Mashkoor, E-mail: mashkoorahmad2003@yahoo.com [Beijing National Center for Electron Microscopy, The State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Advanced Material, China Iron and Steel Research Institute Group, Department of Material Science and Engineering, Tsinghua University, Beijing 100084 (China) [Beijing National Center for Electron Microscopy, The State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Advanced Material, China Iron and Steel Research Institute Group, Department of Material Science and Engineering, Tsinghua University, Beijing 100084 (China); Nanomaterial Research Group, Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan); Yingying, Shi [Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)] [Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Sun, Hongyu [Beijing National Center for Electron Microscopy, The State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Advanced Material, China Iron and Steel Research Institute Group, Department of Material Science and Engineering, Tsinghua University, Beijing 100084 (China)] [Beijing National Center for Electron Microscopy, The State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Advanced Material, China Iron and Steel Research Institute Group, Department of Material Science and Engineering, Tsinghua University, Beijing 100084 (China); Shen, Wanci [Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)] [Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Zhu, Jing, E-mail: jzhu@mail.tsinghua.edu.cn [Beijing National Center for Electron Microscopy, The State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Advanced Material, China Iron and Steel Research Institute Group, Department of Material Science and Engineering, Tsinghua University, Beijing 100084 (China)] [Beijing National Center for Electron Microscopy, The State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Advanced Material, China Iron and Steel Research Institute Group, Department of Material Science and Engineering, Tsinghua University, Beijing 100084 (China)

2012-12-15T23:59:59.000Z

453

Lithium Ethylene Dicarbonate Identified as the Primary Product of Chemical and Electrochemical Reduction of EC in EC:EMC/1.2M LiPF6 Electrolyte  

E-Print Network (OSTI)

spectrum of synthetic lithium ethylene dicarbonate. Figureformula and structure of lithium ethylene dicarbonate (A)efficiency (Q a /Q c ) for lithium deposition on the Ni

Zhuang, Guorong V.; Xu, Kang; Yang, Hui; Jow, T. Richard; Ross Jr., Philip N.

2005-01-01T23:59:59.000Z

454

Designer carbons as potential anodes for lithium secondary batteries  

DOE Green Energy (OSTI)

Carbons are the material of choice for lithium secondary battery anodes. Our objective is to use designed synthesis to produce a carbon with a predictable structure. The approach is to pyrolyze aromatic hydrocarbons within a pillared clay. Results from laser desorption mass spectrometry, scanning tunneling microscopy, X-ray diffraction, and small angle neutron scattering suggest that we have prepared disordered, porous sheets of carbon, free of heteroatoms. One of the first demonstrations of template-directed carbon formation was reported by Tomita and co-workers, where polyacrylonitrile was carbonized at 700{degrees}C yielding thin films with relatively low surface areas. More recently, Schwarz has prepared composites using polyfurfuryl alcohol and pillared clays. In the study reported here, aromatic hydrocarbons and polymers which do not contain heteroatoms are being investigated. The alumina pillars in the clay should act as acid sites to promote condensation similar to the Scholl reaction. In addition, these precursors should readily undergo thermal polymerization, such as is observed in the carbonization of polycyclic aromatic hydrocarbons.

Winans, R.E.; Carrado, K.A.; Thiyagarajan, P. [and others

1995-07-01T23:59:59.000Z

455

Long life lithium batteries with stabilized electrodes  

DOE Patents (OSTI)

The present invention relates to non-aqueous electrolytes having electrode stabilizing additives, stabilized electrodes, and electrochemical devices containing the same. Thus the present invention provides electrolytes containing an alkali metal salt, a polar aprotic solvent, and an electrode stabilizing additive. In some embodiments the additives include a substituted or unsubstituted cyclic or spirocyclic hydrocarbon containing at least one oxygen atom and at least one alkenyl or alkynyl group. When used in electrochemical devices with, e.g., lithium manganese oxide spinel electrodes or olivine or carbon-coated olivine electrodes, the new electrolytes provide batteries with improved calendar and cycle life.

Amine, Khalil (Downers Grove, IL); Liu, Jun (Naperville, IL); Vissers, Donald R. (Naperville, IL); Lu, Wenquan (Darien, IL)

2009-03-24T23:59:59.000Z

456

Surface modifications for carbon lithium intercalation anodes  

SciTech Connect

A prefabricated carbon anode containing predetermined amounts of passivating film components is assembled into a lithium-ion rechargeable battery. The modified carbon anode enhances the reduction of the irreversible capacity loss during the first discharge of a cathode-loaded cell. The passivating film components, such as Li.sub.2 O and Li.sub.2 CO.sub.3, of a predetermined amount effective for optimal passivation of carbon, are incorporated into carbon anode materials to produce dry anodes that are essentially free of battery electrolyte prior to battery assembly.

Tran, Tri D. (Livermore, CA); Kinoshita, Kimio (Cupertino, CA)

2000-01-01T23:59:59.000Z

457

Lithium-ion Energy Storage Market Opportunities  

Science Conference Proceedings (OSTI)

Lithium-ion (Li-ion) batteries have garnered major investment in R&D and manufacturing as the initial chemistry of choice for the electric transportation industry. This report presents granular cost/benefit analysis for Li-ion based energy storage systems for utility and customer-side of the meter stationary applications. Li-ion batteries have desirable performance characteristics with the potential for kW- and MW-scale systems with flexible functionality to address multiple benefit streams from a single...

2010-12-31T23:59:59.000Z

458

Double Photoionization of excited Lithium and Beryllium  

SciTech Connect

We present total, energy-sharing and triple differential cross sections for one-photon, double ionization of lithium and beryllium starting from aligned, excited P states. We employ a recently developed hybrid atomic orbital/ numerical grid method based on the finite-element discrete-variable representation and exterior complex scaling. Comparisons with calculated results for the ground-state atoms, as well as analogous results for ground-state and excited helium, serve to highlight important selection rules and show some interesting effects that relate to differences between inter- and intra-shell electron correlation.

Yip, Frank L.; McCurdy, C. William; Rescigno, Thomas N.

2010-05-20T23:59:59.000Z

459

File Formats  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Page Home Page File Formats MODIS Product Subsets Output Data File Format Descriptions The MODIS product subsets for North America and Worldwide are available in several formats, which are described in the following text. MODIS Land Product ASCII Data Image Data Files in ASCII Grid Format QC-Filtered Data and Statistics Generated for this Request Land Cover Data in ASCII Grid Format Statistical Data for MODIS Land Products in Comma Separated Format Underlying BRDF Parameters Used in Generating this Request (available with Albedo MOD43B and MCD43B only) MODIS Land Product ASCII Data Description of File File Content: Data as read from MODIS Land Product HDF-EOS data files. These data are the starting point for deriving the other subset data products. Data Type: As indicated by Land Product Code (e.g., MOD15A2).

460

Lithium-Ion Battery Teacher Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Lithium Ion Battery Teacher Workshop Lithium Ion Battery Teacher Workshop 2012 2 2 screw eyes 2 No. 14 rubber bands 2 alligator clips 1 plastic gear font 2 steel axles 4 nylon spacers 2 Pitsco GT-R Wheels 2 Pitsco GT-F Wheels 2 balsa wood sheets 1 No. 280 motor Also: Parts List 3 Tools Required 1. Soldering iron 2. Hobby knife or coping saw 3. Glue gun 4. Needlenose pliers 5. 2 C-clamps 6. Ruler 4 1. Using a No. 2 pencil, draw Line A down the center of a balsa sheet. Making the Chassis 5 2. Turn over the balsa sheet and draw Line B ¾ of an inch from one end of the sheet. Making the Chassis 6 3. Draw a 5/8" x ½" notch from 1" from the top of the sheet. Making the Chassis 7 4. Draw Line C 2 ½" from the other end of the same sheet of balsa. Making the Chassis 8 5. Using a sharp utility knife or a coping saw, cut

Note: This page contains sample records for the topic "large format lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Hierarchically Structured Materials for Lithium Batteries  

SciTech Connect

Lithium-ion battery (LIB) is one of the most promising power sources to be deployed in electric vehicles (EV), including solely battery powered vehicles, plug-in hybrid electric vehicles, and hybrid electrical vehicles. With the increasing demand on devices of high energy densities (>500 Wh/kg) , new energy storage systems, such as lithium-oxygen (Li-O2) batteries and other emerging systems beyond the conventional LIB also attracted worldwide interest for both transportation and grid energy storage applications in recent years. It is well known that the electrochemical performances of these energy storage systems depend not only on the composition of the materials, but also on the structure of electrode materials used in the batteries. Although the desired performances characteristics of batteries often have conflict requirements on the micro/nano-structure of electrodes, hierarchically designed electrodes can be tailored to satisfy these conflict requirements. This work will review hierarchically structured materials that have been successfully used in LIB and Li-O2 batteries. Our goal is to elucidate 1) how to realize the full potential of energy materials through the manipulation of morphologies, and 2) how the hierarchical structure benefits the charge transport, promotes the interfacial properties, prolongs the electrode stability and battery lifetime.

Xiao, Jie; Zheng, Jianming; Li, Xiaolin; Shao, Yuyan; Zhang, Jiguang

2013-09-25T23:59:59.000Z

462

Synthesis of polycrystalline SnO{sub 2} nanotubes on carbon nanotube template for anode material of lithium-ion battery  

Science Conference Proceedings (OSTI)

Polycrystalline tin oxide nanotubes have been prepared by a layer-by-layer technique on carbon nanotubes template. Firstly, the surface of carbon nanotubes was modified by polyelectrolyte. Then, a uniform layer of tin oxide nanoparticles was formed on the positive charged surface of carbon nanotubes via a redox process. At last, the polycrystalline tin oxide nanotubes were synthesized after calcination at 650 deg. C in air for 3 h. The as-synthesized polycrystalline nanotubes with large surface area exhibit finer lithium storage capacity and cycling performance, which shows the potentially interesting application in lithium-ion battery.

Du Ning; Zhang Hui; Chen Bindi; Ma Xiangyang; Huang Xiaohua; Tu Jiangping [State Key Lab of Silicon Materials and Department of Material Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Yang Deren [State Key Lab of Silicon Materials and Department of Material Science and Engineering, Zhejiang University, Hangzhou 310027 (China)], E-mail: mseyang@zju.edu.cn

2009-01-08T23:59:59.000Z

463

Atomic hydrogen adsorption on lithium-doped graphite surfaces  

SciTech Connect

The effects of lithium doping of pristine and defective graphite surfaces on hydrogen adsorption are studied by the first-principles Plane-Wave Density Functional Theory. The surface defects are simulated by a single atomic vacancy. The DFT calculation is corrected for long-range effects through semi-empirical London terms for each constituent of the system. The lithium doping of the graphite surfaces notably reinforces hydrogen atom binding. Qualitative comparison with experimental results is given using the lithium 1s energy level shifts induced by the atomic vacancy and/or hydrogen trapping.

Allouche, Alain [CNRS/Univ. de Provence (France); Krstic, Predrag S [ORNL

2012-01-01T23:59:59.000Z

464

Carbon fiber paper cathodes for lithium ion batteries  

Science Conference Proceedings (OSTI)

A novel lithium ion battery cathode structure was produced which has the potential for excellent capacity retention and good thermal management. In these cathodes, the active cathode material (lithium iron phosphate) was carbon bonded to a thermally and electrically conductive carbon fiber paper (CFP) support. Electrochemical testing was performed on Swagelok cells consisting of CFP cathodes and lithium anodes. High specific energy, near-theoretical capacity, and good cycling performance were demonstrated for 0.11 mm and 0.37 mm thick CFP cathodes.

Kercher, Andrew K [ORNL; Kiggans, Jim [ORNL; Dudney, Nancy J [ORNL

2010-01-01T23:59:59.000Z

465

Lithium-Air Battery: High Performance Cathodes for Lithium-Air Batteries  

SciTech Connect

BEEST Project: Researchers at Missouri S&T are developing an affordable lithium-air (Li-Air) battery that could enable an EV to travel up to 350 miles on a single charge. Today’s EVs run on Li-Ion batteries, which are expensive and suffer from low energy density compared with gasoline. This new Li-Air battery could perform as well as gasoline and store 3 times more energy than current Li-Ion batteries. A Li-Air battery uses an air cathode to breathe oxygen into the battery from the surrounding air, like a human lung. The oxygen and lithium react in the battery to produce electricity. Current Li-Air batteries are limited by the rate at which they can draw oxygen from the air. The team is designing a battery using hierarchical electrode structures to enhance air breathing and effective catalysts to accelerate electricity production.

2010-08-01T23:59:59.000Z

466

Quantifying Cell-to-Cell Variations in Lithium Ion Batteries  

DOE Green Energy (OSTI)

Lithium ion batteries have conventionally been manufactured in small capacities but large volumes for consumer electronics applications. More recently, the industry has seen a surge in the individual cell capacities, as well as the number of cells used to build modules and packs. Reducing cell-to-cell and lot-to-lot variations has been identified as one of the major means to reduce the rejection rate when building the packs as well as to improve pack durability. The tight quality control measures have been passed on from the pack manufactures to the companies building the individual cells and in turn to the components. This paper identifies a quantitative procedure utilizing impedance spectroscopy, a commonly used tool, to determine the effects of material variability on the cell performance, to compare the relative importance of uncertainties in the component properties, and to suggest a rational procedure to set quality control specifications for the various components of a cell, that will reduce cell-to-cell variability, while preventing undue requirements on uniformity that often result in excessive cost of manufacturing but have a limited impact on the cells performance.

Santhanagopalan, S.; White, R. E.

2012-01-01T23:59:59.000Z

467

Crown Ethers in Nonaqueous Electrolytes for Lithium/Air Batteries  

SciTech Connect

The effects of three crown ethers, 12-crown-4, 15-crown-5, and 18-crown-6, as additives and co-solvents in non-aqueous electrolytes on the cell performance of primary Li/air batteries operated in a dry air environment were investigated. Crown ethers have large effects on the discharge performance of non-aqueous electrolytes in Li/air batteries. A small amount (normally less than 10% by weight or volume in electrolytes) of 12-Crown-4 and 15-crown-5 reduces the battery performance and a minimum discharge capacity appears at the crown ether content of ca. 5% in the electrolytes. However, when the content increases to about 15%, both crown ethers improve the capacity of Li/air cells by about 28% and 16%, respectively. 15-Crown-5 based electrolytes even show a maximum discharge capacity in the crown ether content range from 10% to 15%. On the other hand, the increase of 18-crown-6 amount in the electrolytes continuously lowers of the cell performance. The different battery performances of these three crown ethers in electrolytes are explained by the combined effects from the electrolytes’ contact angle, oxygen solubility, viscosity, ionic conductivity, and the stability of complexes formed between crown ether molecules and lithium ions.

Xu, Wu; Xiao, Jie; Wang, Deyu; Zhang, Jian; Zhang, Jiguang

2010-02-04T23:59:59.000Z

468

Lithium Polymer (LiPo) Battery Usage Lithium polymer batteries are now being widely used in hobby and UAV applications. They work  

E-Print Network (OSTI)

Lithium Polymer (LiPo) Battery Usage 1 Lithium polymer batteries are now being widely used in hobby nickel metal and ni-cad batteries. But with this increase in battery life come potential hazards. Use batteries with a battery charger specifically designed for lithium polymer batteries. As an example, you

Langendoen, Koen

469

Lithium-Sulfur Batteries: Development of High Energy Lithium-Sulfur Cells for Electric Vehicle Applications  

SciTech Connect

BEEST Project: Sion Power is developing a lithium-sulfur (Li-S) battery, a potentially cost-effective alternative to the Li-Ion battery that could store 400% more energy per pound. All batteries have 3 key parts—a positive and negative electrode and an electrolyte—that exchange ions to store and release electricity. Using different materials for these components changes a battery’s chemistry and its ability to power a vehicle. Traditional Li-S batteries experience adverse reactions between the electrolyte and lithium-based negative electrode that ultimately limit the battery to less than 50 charge cycles. Sion Power will sandwich the lithium- and sulfur-based electrode films around a separator that protects the negative electrode and increases the number of charges the battery can complete in its lifetime. The design could eventually allow for a battery with 400% greater storage capacity per pound than Li-Ion batteries and the ability to complete more than 500 recharge cycles.

2010-10-01T23:59:59.000Z

470

Comparison of H-Mode Plasmas Diverted to Solid and Liquid Lithium Surfaces  

SciTech Connect

Experiments were conducted with a Liquid Lithium Divertor (LLD) in NSTX. Among the goals was to use lithium recoating to sustain deuterium (D) retention by a static liquid lithium surface, approximating the ability of flowing liquid lithium to maintain chemical reactivity. Lithium evaporators were used to deposit lithium on the LLD surface. Improvements in plasma edge conditions were similar to those with lithiated graphite plasma-facing components (PFCs), including an increase in confinement over discharges without lithiumcoated PFCs and ELM reduction during H-modes. With the outer strike point on the LLD, the D retention in the LLD was about the same as that for solid lithium coatings on graphite, or about two times that achieved without lithium PFC coatings. There were also indications of contamination of the LLD surface, possibly due erosion and redeposition of carbon from PFCs. Flowing lithium may thus be needed for chemically active PFCs during long-pulse operation.

R. Kaita, et. al.

2012-07-20T23:59:59.000Z

471

Students race lithium ion battery powered cars in Pantex competition |  

NLE Websites -- All DOE Office Websites (Extended Search)

race lithium ion battery powered cars in Pantex competition | race lithium ion battery powered cars in Pantex competition | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Students race lithium ion battery powered cars ... Students race lithium ion battery powered cars in Pantex competition Posted By Greg Cunningham, Pantex Public Affairs

472

Composite Electrodes for Rechargeable Lithium-Ion Batteries ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Composite Electrodes for Rechargeable Lithium-Ion Batteries Technology available for licensing: Electrodes having composite xLi2M'O3(1-x)LiMO2 structures in which an...

473

Rechargeable lithium battery energy storage systems for vehicular applications.  

E-Print Network (OSTI)

??Batteries are used on-board vehicles for broadly two applications – starting-lighting-ignition (SLI) and vehicle traction. This thesis examines the suitability of the rechargeable lithium battery… (more)

HURIA, TARUN

2012-01-01T23:59:59.000Z

474

Ab-initio study of cathode materials for lithium batteries  

E-Print Network (OSTI)

Using first principles calculations the effect of electronic structure on the stability of positive electrode materials for lithium rechargeable batteries is investigated. The investigation focuses upon lithiated ?-NaFeO? ...

Reed, John Stuart, 1968-

2003-01-01T23:59:59.000Z

475

Lithium sulfide compositions for battery electrolyte and battery electrode coatings  

Science Conference Proceedings (OSTI)

Methods of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electroytes are composed of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li.sub.2S), a first shell of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7, and a second shell including one or .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.

Liang, Chengdu; Liu, Zengcai; Fu, Wunjun; Lin, Zhan; Dudney, Nancy J; Howe, Jane Y; Rondinone, Adam J

2013-12-03T23:59:59.000Z

476

Cosmic ray lithium isotope measurement with AMS-01  

E-Print Network (OSTI)

The AMS-01 detector measured charged cosmic rays during 10 days on the Space Shuttle Discovery in 1998 and collected 108 events. By identifying 8349 Lithium and 22709 Carbon nuclei from the raw data, this thesis presents ...

Zhou, Feng, Ph. D. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

477

Process for manufacturing a lithium alloy electrochemical cell  

DOE Patents (OSTI)

A process for manufacturing a lithium alloy, metal sulfide cell tape casts slurried alloy powders in an organic solvent containing a dissolved thermoplastic organic binder onto casting surfaces. The organic solvent is then evaporated to produce a flexible tape removable adhering to the casting surface. The tape is densified to increase its green strength and then peeled from the casting surface. The tape is laminated with a separator containing a lithium salt electrolyte and a metal sulfide electrode to form a green cell. The binder is evaporated from the green cell at a temperature lower than the melting temperature of the lithium salt electrolyte. Lithium alloy, metal sulfide and separator powders may be tape cast.

Bennett, William R. (North Olmstead, OH)

1992-10-13T23:59:59.000Z

478

The UC Davis Emerging Lithium Battery Test Project  

E-Print Network (OSTI)

Chemistries for Plug-in Hybrid Vehicles, EVS-24, Stavanger,for plug-in hybrid vehicles. By emerging lithium batterychemistries for plug-in hybrid vehicle applications. The

Burke, Andy; Miller, Marshall

2009-01-01T23:59:59.000Z

479

Overcharge Protection for the New Generation of Lithium Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Overcharge Protection for the New Generation of Lithium Batteries Speaker(s): Thomas Richardson Date: January 18, 2001 - 12:00pm Location: Bldg 90 Seminar HostPoint of Contact:...

480

Performance and Characterization of Lithium-Ion Type Polymer...  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance and Characterization of Lithium-Ion Type Polymer Batteries Speaker(s): Myung D. Cho Date: January 18, 2002 - 12:00pm Location: Bldg. 90 Seminar HostPoint of Contact:...

Note: This page contains sample records for the topic "large format lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Metal hydrides: Relevant Materials for Lithium-ion Batteries ...  

Science Conference Proceedings (OSTI)

Reactivity of MgH2 with lithium is a reversible conversion reaction (reversible capacity of 1500 mAh/g) generalized to many hydrides as: MHx + xLi+ + xe- ? M + ...

482

Design and Optimization of Lithium-ion Batteries for Vehicular...  

NLE Websites -- All DOE Office Websites (Extended Search)

Design and Optimization of Lithium-ion Batteries for Vehicular Applications Speaker(s): Venkat Srinivasan Date: September 16, 2003 - 12:00pm Location: Bldg. 90 Seminar HostPoint...

483

Electron-nuclear entanglement in the cold lithium gas  

E-Print Network (OSTI)

We study the ground-state entanglement and thermal entanglement in the hyperfine interaction of the lithium atom. We give the relationship between the entanglement and both temperature and external magnetic fields.

Guo-Qiang Zhu; Jun-Wen Mao; You-Quan Li

2005-04-14T23:59:59.000Z

484

Two Studies Reveal Details of Lithium-Battery Function  

NLE Websites -- All DOE Office Websites (Extended Search)

YouTube: AdvancedLightSource Home Research Areas Two Studies Reveal Details of Lithium-Battery Function Print Our way of life is deeply intertwined with battery technologies that...

485

A Better Anode Design to Improve Lithium-Ion Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy....

486

Effect of Lithium PFC Coatings on NSTX Density Control  

Science Conference Proceedings (OSTI)

Lithium coatings on the graphite plasma facing components (PFCs) in NSTX are being investigated as a tool for density profile control and reducing the recycling of hydrogen isotopes. Repeated lithium pellet injection into Center Stack Limited and Lower Single Null Ohmic Helium Discharges were used to coat graphite surfaces that had been pre-conditioned with Ohmic Helium Discharges of the same shape to reduce their contribution to hydrogen isotope recycling. The following deuterium NBI reference discharges exhibited a reduction in density by a factor of about 3 for limited and 2 for diverted plasmas respectively, and peaked density profiles. Recently, a lithium evaporator has been used to apply thin coatings on conditioned and unconditioned PFCs. Effects on the plasma density and the impurities were obtained by pre-conditioning the PFCs with ohmic helium discharges, and performing the first deuterium NBI discharge as soon as possible after applying the lithium coating.

Kugel, H W; Bell, M G; Bush, C; Gates, D; Gray, T; Kaita, R; Leblanc, B; Maingi, R; Majeski, R; Mansfield, D; Mueller, D; Raman, R; Roquemore, A L; Sabbagh, S; Skinner, C H; Soukhanovskii, V; Stevenson, T; Zakharov, L

2006-08-21T23:59:59.000Z

487

Three-Dimensional Lithium-Ion Battery Model (Presentation)  

DOE Green Energy (OSTI)

Nonuniform battery physics can cause unexpected performance and life degradations in lithium-ion batteries; a three-dimensional cell performance model was developed by integrating an electrode-scale submodel using a multiscale modeling scheme.

Kim, G. H.; Smith, K.

2008-05-01T23:59:59.000Z

488

Tritium diffusion in lithium oxide solid breeder materials  

DOE Green Energy (OSTI)

A review of data of tritium diffusion in Li/sub 2/O is presented. Also diffusion coefficients in Li/sub 2/O of tritium, lithium, oxygen, hydrogen, and deuterium are given. (MOW)

Shearer, J.A.; Tam, S.W.; Johnson, C.E.

1983-01-01T23:59:59.000Z

489

Improvement in Plasma Performance with Lithium Coatings in NSTX  

Science Conference Proceedings (OSTI)

Lithium as a plasma-facing material has attractive features, including a reduction in the recycling of hydrogenic species and the potential for withstanding high heat and neutron fluxes in fusion reactors. Dramatic effects on plasma performance with lithium-coated plasma-facing components (PFC's) have been demonstrated on many fusion devices, including TFTR, T-11M, and FT-U. Using a liquid-lithium-filled tray as a limiter, the CDX-U device achieved very significant enhancement in the confinement time of ohmically heated plasmas. The recent NSTX experiments reported here have demonstrated, for the first time, significant and recurring benefits of lithium PFC coatings on divertor plasma performance in both L- and H- mode regimes heated by neutral beams.

Kaita, R

2009-02-17T23:59:59.000Z

490

Improvement in Plasma Performance with Lithium Coatings in NSTX  

Science Conference Proceedings (OSTI)

Lithium as a plasma-facing material has attractive features, including a reduction in the recycling of hydrogenic species and the potential for withstanding high heat and neutron fluxes in fusion reactors. Dramatic effects on plasma performance with lithium-coated plasma-facing components (PFCOs) have been demonstrated on many fusion devices, including TFTR, [1] T-11M, [2] and FT-U. [3] Using a liquid-lithium-filled tray as a limiter, the CDX-U device achieved very significant enhancement in the confinement time of ohmically heated plasmas. [4] The recent NSTX experiments reported here have demonstrated, for the first time, significant and recurring benefits of lithium PFC coatings on divertor plasma performance in both L- and H- mode regimes heated by neutral beams.

Kaita, R; Ahn, J -W; Allain, J P; Bell, M G; Bell, R; Boedo, J; Bush, C; Mansfield, D; Menard, J; Mueller, D; Ono, M; Paul, S; Raman, R; Roquemore, A L; Ross, P W; Sabbagh, S; Schneider, H; Skinner, C H; Soukhanovskii, V; Stevenson, T; Stotler, D; Timberlake, J; Wampler, W R; Wilgen, J B

2008-09-12T23:59:59.000Z

491

Solid-state Inorganic Lithium-Ion Conductors  

A research team at the University of Colorado Boulder led by Se-Hee Lee has developed an advanced single step, high energy ball milling system for preparation of electrodes for use in a solid state lithium-ion battery.

492

Low-Cost Phosphate Compounds Enhance Lithium Battery Performance  

Argonne National Laboratory has developed a series of inexpensive, electrochemically active phosphate compounds that are highly functional when used in high-power and high-energy lithium batteries.  

493

NREL: News - Solar and Lithium Ion Car Race Winners Announced  

NLE Websites -- All DOE Office Websites (Extended Search)

913 Solar and Lithium Ion Car Race Winners Announced May 18, 2013 Ninety-seven teams from 28 Colorado schools participated in today's car competitions hosted by the U.S. Department...

494

Performance and Characterization of Lithium-Ion Type Polymer Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance and Characterization of Lithium-Ion Type Polymer Batteries Performance and Characterization of Lithium-Ion Type Polymer Batteries Speaker(s): Myung D. Cho Date: January 18, 2002 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Frank McLarnon A new process for the preparation of lithium-polymer batteries with crosslinked gel-polymer electrolyte will be introduced. The new process employs a thermal crosslinking method rather than cell lamination, and is termed "lithium ion type polymer battery (ITPB)". This thermal crosslinking process has many advantages over the standard lamination method, such as fusing the polymer into the electrodes and better adhesion between the electrolyte and electrodes. The new method results in improved high-temperature stability and a simpler process, as well as the improved

495

Theoretical Studies of Hydrogen Effects on Lithium-based Ceramics ...  

Science Conference Proceedings (OSTI)

Presentation Title, Theoretical Studies of Hydrogen Effects on Lithium-based Ceramics for Tritium-breeding Application in Fusion Reactor ... in Energy Materials: Some Examples in Hydrogen Storage, Thermoelectrics and Nuclear Materials.

496

Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles  

E-Print Network (OSTI)

technology is a lithium-ion battery using lithium titanateof lithium-ion batteries of various chemistries Batterylithium-ion batteries were 20-22 kg and in the zinc-air battery,

Burke, Andy; Zhao, Hengbing

2010-01-01T23:59:59.000Z

497

Sputter deposition and characterization of lithium cobalt oxide thin films and their applications in thin-film rechargeable lithium batteries  

DOE Green Energy (OSTI)

Li Co oxide thin films were deposited by rf magnetron sputtering of a LiCoO{sub 2} target in a 3:1 Ar/O{sub 2} mixture gas. From proton-induced gamma-ray emission analysis and Rutherford backscattering spectrometry, the average composition of these films was determined to be Li{sub 1.15}CoO{sub 2.16}. X-ray powder diffraction patterns of films annealed in air at 500-700 C were consistent with regular rhombohedral structure of crystalline LiCoO{sub 2}. Discharge curves of thin film lithium cells with amoprohous LiCoO{sub 2} showed no obvious structural transition between 4.2 and 1.5 V. Shape of discharge curves of cells with polycrystalline cathodes were consistent with a two-phase voltage plateau at {similar_to}3.9 V with a relatively large capacity and two additional smaller plateaus at higher voltages. Cells with the 700 C annealed cathodes showed a capacity loss of {similar_to} after 1000 cycles between 4.2 and 3.0 V.

Wang, B.; Bates, J.B.; Luck, C.F.; Sales, B.C.; Zuhr, R.A. [Oak Ridge National Lab., TN (United States); Robertson, J.D. [Kentucky Univ., Lexington, KY (United States). Dept. of Chemistry

1996-01-01T23:59:59.000Z

498

Advances in lithium-ion battery research and technology.  

Science Conference Proceedings (OSTI)

The lithium-ion battery market has undergone trememdous growth ever since Sony Corporation introduced the first commercial cell in 1990. In less than a decade, the field has become a front-runner in rechargeable battery technology. Sales of lithium-ion cells exceeded 400 million units in 1999, and the market is expected to exceed 1.1 billion units valued at more than $4 billion by 2005.

Abraham, D. P.; Chemical Engineering

2002-03-01T23:59:59.000Z

499

Chloromethyl chlorosulfate as a voltage delay inhibitor in lithium cells  

DOE Patents (OSTI)

Chloromethyl chlorosulfate (CMCS) is used as a passive film growth inhibitor in electrochemical cells to minimize voltage delay and low-voltage discharge. Film growth on lithium anodes is significantly diminished when CMCS is added to SOCl.sub.2 and SO.sub.2 Cl.sub.2 electrolytes of lithium batteries. The CMCS also has the effect of extending the shelf-life of Li/SOCl.sub.2 and Li/SO.sub.2 Cl.sub.2 batteries.

Delnick, Frank M. (Albuquerque, NM)

1993-01-01T23:59:59.000Z

500

Chloromethyl chlorosulfate as a voltage delay inhibitor in lithium cells  

DOE Patents (OSTI)

Chloromethyl chlorosulfate (CMCS) is used as a passive film growth inhibitor in electrochemical cells to minimize voltage delay and low-voltage discharge. Film growth on lithium anodes is significantly diminished when CMCS is added to SOCl[sub 2] and SO[sub 2]Cl[sub 2] electrolytes of lithium batteries. The CMCS also has the effect of extending the shelf-life of Li/SOCl[sub 2] and Li/SO[sub 2]Cl[sub 2] batteries.

Delnick, F.M.

1993-04-13T23:59:59.000Z