National Library of Energy BETA

Sample records for laptop stealth phone

  1. ATLAS diboson excesses from the stealth doublet model (Journal...

    Office of Scientific and Technical Information (OSTI)

    ATLAS diboson excesses from the stealth doublet model Title: ATLAS diboson excesses from the stealth doublet model Authors: Chao, Wei Search DOE PAGES for author "Chao, Wei" Search...

  2. User Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proposals for beam time User publications database Guest logistics and parking Loan of laptop, stealth phone and projector Logisitics for the annual users' meeting ALS Experiment...

  3. Stealth Dark Matter: Dark scalar baryons through the Higgs portal

    SciTech Connect (OSTI)

    Appelquist, T.; Brower, R. C.; Buchoff, M. I.; Fleming, G. T.; Jin, X. -Y.; Kiskis, J.; Kribs, G. D.; Neil, E. T.; Osborn, J. C.; Rebbi, C.; Rinaldi, E.; Schaich, D.; Schroeder, C.; Syritsyn, S.; Vranas, P.; Weinberg, E.; Witzel, O.

    2015-10-23

    We present a new model of "Stealth Dark Matter": a composite baryonic scalar of an SU(ND) strongly coupled theory with even ND ≥ 4. All mass scales are technically natural, and dark matter stability is automatic without imposing an additional discrete or global symmetry. Constituent fermions transform in vectorlike representations of the electroweak group that permit both electroweak-breaking and electroweak-preserving mass terms. This gives a tunable coupling of stealth dark matter to the Higgs boson independent of the dark matter mass itself. We specialize to SU(4), and investigate the constraints on the model from dark meson decay, electroweak precision measurements, basic collider limits, and spin-independent direct detection scattering through Higgs exchange. We exploit our earlier lattice simulations that determined the composite spectrum as well as the effective Higgs coupling of stealth dark matter in order to place bounds from direct detection, excluding constituent fermions with dominantly electroweak-breaking masses. A lower bound on the dark baryon mass mB ≳ 300 GeV is obtained from the indirect requirement that the lightest dark meson not be observable at LEP II. Furthermore, we briefly survey some intriguing properties of stealth dark matter that are worthy of future study, including collider studies of dark meson production and decay; indirect detection signals from annihilation; relic abundance estimates for both symmetric and asymmetric mechanisms; and direct detection through electromagnetic polarizability, a detailed study of which will appear in a companion paper.

  4. Stealth Dark Matter: Dark scalar baryons through the Higgs portal

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Appelquist, T.; Brower, R. C.; Buchoff, M. I.; Fleming, G. T.; Jin, X. -Y.; Kiskis, J.; Kribs, G. D.; Neil, E. T.; Osborn, J. C.; Rebbi, C.; et al

    2015-10-23

    We present a new model of "Stealth Dark Matter": a composite baryonic scalar of an SU(ND) strongly coupled theory with even ND ≥ 4. All mass scales are technically natural, and dark matter stability is automatic without imposing an additional discrete or global symmetry. Constituent fermions transform in vectorlike representations of the electroweak group that permit both electroweak-breaking and electroweak-preserving mass terms. This gives a tunable coupling of stealth dark matter to the Higgs boson independent of the dark matter mass itself. We specialize to SU(4), and investigate the constraints on the model from dark meson decay, electroweak precision measurements,more » basic collider limits, and spin-independent direct detection scattering through Higgs exchange. We exploit our earlier lattice simulations that determined the composite spectrum as well as the effective Higgs coupling of stealth dark matter in order to place bounds from direct detection, excluding constituent fermions with dominantly electroweak-breaking masses. A lower bound on the dark baryon mass mB ≳ 300 GeV is obtained from the indirect requirement that the lightest dark meson not be observable at LEP II. Furthermore, we briefly survey some intriguing properties of stealth dark matter that are worthy of future study, including collider studies of dark meson production and decay; indirect detection signals from annihilation; relic abundance estimates for both symmetric and asymmetric mechanisms; and direct detection through electromagnetic polarizability, a detailed study of which will appear in a companion paper.« less

  5. Detecting Stealth Dark Matter Directly through Electromagnetic Polarizability

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Appelquist, T.; Berkowitz, E.; Brower, R. C.; Buchoff, M. I.; Fleming, G. T.; Jin, X. Y.; Kiskis, J.; Kribs, G. D.; Neil, E. T.; Osborn, J. C.; et al

    2015-10-23

    We calculate the spin-independent scattering cross section for direct detection that results from the electromagnetic polarizability of a composite scalar “stealth baryon” dark matter candidate, arising from a dark SU(4) confining gauge theory—“stealth dark matter.” In the nonrelativistic limit, electromagnetic polarizability proceeds through a dimension-7 interaction leading to a very small scattering cross section for dark matter with weak-scale masses. This represents a lower bound on the scattering cross section for composite dark matter theories with electromagnetically charged constituents. We carry out lattice calculations of the polarizability for the lightest “baryon” states in SU(3) and SU(4) gauge theories using themore » background field method on quenched configurations. We find the polarizabilities of SU(3) and SU(4) to be comparable (within about 50%) normalized to the stealth baryon mass, which is suggestive for extensions to larger SU(N) groups. The resulting scattering cross sections with a xenon target are shown to be possibly detectable in the dark matter mass range of about 200–700 GeV, where the lower bound is from the existing LUX constraint while the upper bound is the coherent neutrino background. Significant uncertainties in the cross section remain due to the more complicated interaction of the polarizablity operator with nuclear structure; however, the steep dependence on the dark matter mass, 1/m6B, suggests the observable dark matter mass range is not appreciably modified. We highlight collider searches for the mesons in the theory as well as the indirect astrophysical effects that may also provide excellent probes of stealth dark matter.« less

  6. Detecting Stealth Dark Matter Directly through Electromagnetic Polarizability

    SciTech Connect (OSTI)

    Appelquist, T.; Berkowitz, E.; Brower, R. C.; Buchoff, M. I.; Fleming, G. T.; Jin, X. Y.; Kiskis, J.; Kribs, G. D.; Neil, E. T.; Osborn, J. C.; Rebbi, C.; Rinaldi, E.; Schaich, D.; Schroeder, C.; Syritsyn, S.; Vranas, P.; Weinberg, E.; Witzel, O.

    2015-10-23

    We calculate the spin-independent scattering cross section for direct detection that results from the electromagnetic polarizability of a composite scalar “stealth baryon” dark matter candidate, arising from a dark SU(4) confining gauge theory—“stealth dark matter.” In the nonrelativistic limit, electromagnetic polarizability proceeds through a dimension-7 interaction leading to a very small scattering cross section for dark matter with weak-scale masses. This represents a lower bound on the scattering cross section for composite dark matter theories with electromagnetically charged constituents. We carry out lattice calculations of the polarizability for the lightest “baryon” states in SU(3) and SU(4) gauge theories using the background field method on quenched configurations. We find the polarizabilities of SU(3) and SU(4) to be comparable (within about 50%) normalized to the stealth baryon mass, which is suggestive for extensions to larger SU(N) groups. The resulting scattering cross sections with a xenon target are shown to be possibly detectable in the dark matter mass range of about 200–700 GeV, where the lower bound is from the existing LUX constraint while the upper bound is the coherent neutrino background. Significant uncertainties in the cross section remain due to the more complicated interaction of the polarizablity operator with nuclear structure; however, the steep dependence on the dark matter mass, 1/m6B, suggests the observable dark matter mass range is not appreciably modified. We highlight collider searches for the mesons in the theory as well as the indirect astrophysical effects that may also provide excellent probes of stealth dark matter.

  7. Cell Phone Detection Techniques

    SciTech Connect (OSTI)

    Pratt, Richard M.; Bunch, Kyle J.; Puzycki, David J.; Slaugh, Ryan W.; Good, Morris S.; McMakin, Douglas L.

    2007-10-01

    A team composed of Rick Pratt, Dave Puczyki, Kyle Bunch, Ryan Slaugh, Morris Good, and Doug McMakin teamed together to attempt to exploit cellular telephone features and detect if a person was carrying a cellular telephone into a Limited Area. The cell phones electromagnetic properties were measured, analyzed, and tested in over 10 different ways to determine if an exploitable signature exists. The method that appears to have the most potential for success without adding an external tag is to measure the RF spectrum, not in the cell phone band, but between 240 and 400MHz. Figures 1- 7 show the detected signal levels from cell phones from three different manufacturers.

  8. Preventing Laptop Fires and Thermal Runaway | U.S. DOE Office of Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (SC) Preventing Laptop Fires and Thermal Runaway Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events DOE Announcements Publications History Contact BES Home 12.05.12 Stories of Discovery & Innovation: Preventing Laptop Fires and Thermal Runaway Print Text Size: A A A Subscribe FeedbackShare Page Researchers point to "self-healing" materials as a potential means of improving lithium ion battery safety.

  9. Could 135,000 Laptops Help Solve the Energy Challenge? | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Could 135,000 Laptops Help Solve the Energy Challenge? Could 135,000 Laptops Help Solve the Energy Challenge? November 30, 2010 - 12:00am Addthis Washington, D.C. - U.S Energy Secretary Steven Chu today announced the largest ever awards of the Department's supercomputing time to 57 innovative research projects - using computer simulations to perform virtual experiments that in most cases would be impossible or impractical in the natural world. Utilizing two world-leading

  10. TTO Phone List | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TTO Phone List TTO Phone List TTO Phone List Revised 04/02/2014 TTO Phone List Revised 04-02-14.docx (23.97 KB) More Documents & Publications Technology Transfer Reporting Form Vehicle Technologies Office Merit Review 2015: High Energy High Power Battery Exceeding PHEV-40 Requirements Technical Standards Managers Contact List

  11. Lights on: Dye dequenching reveals polymersome fusion with polymer, lipid and stealth lipid vesicles

    SciTech Connect (OSTI)

    Henderson, Ian M.; Collins, Aaron M.; Quintana, Hope A.; Montaño, Gabriel A.; Martinez, Julio A.; Paxton, Walter F.

    2015-12-13

    In this study, we develop a quantitative dye dequenching technique for the measurement of polymersome fusion, using it to characterize the salt mediated, mechanically-induced fusion of polymersomes with polymer, lipid, and so-called stealth lipid vesicles. While dye dequenching has been used to quantitatively explore liposome fusion in the past, this is the first use of dye dequenching to measure polymersome fusion of which we are aware. In addition to providing quantitative results, dye dequenching is ideal for detecting fusion in instances where DLS results would be ambiguous, such as low yield levels and size ranges outside the capabilities of DLS. The dye chosen for this study was a cyanine derivative, 1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine iodide (DiR), which proved to provide excellent data on the extent of polymersome fusion. Using this technique, we have shown the limited fusion capabilities of polymersome/liposome heterofusion, notably DOPC vesicles fusing with polymersomes at half the efficiency of polymersome homofusion and DPPC vesicles showing virtually no fusion. In addition to these key heterofusion experiments, we determined the broad applicability of dye dequenching in measuring kinetic rates of polymersome fusion; and showed that even at elevated temperatures or over multiple weeks' time, no polymersome fusion occurred without agitation. Stealth liposomes formed from DPPC and PEO-functionalized lipid, however, fused with polymersomes and stealth liposomes with relatively high efficiency, lending support to our hypothesis that the response of the PEO corona to salt is a key factor in the fusion process. This last finding suggests that although the conjugation of PEO to lipids increases vesicle biocompatibility and enables their longer circulation times, it also renders the vesicles subject to destabilization under high salt and shear (e.g. in the circulatory system) that may lead to, in this case, fusion.

  12. Lights on: Dye dequenching reveals polymersome fusion with polymer, lipid and stealth lipid vesicles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Henderson, Ian M.; Collins, Aaron M.; Quintana, Hope A.; Montaño, Gabriel A.; Martinez, Julio A.; Paxton, Walter F.

    2015-12-13

    In this study, we develop a quantitative dye dequenching technique for the measurement of polymersome fusion, using it to characterize the salt mediated, mechanically-induced fusion of polymersomes with polymer, lipid, and so-called stealth lipid vesicles. While dye dequenching has been used to quantitatively explore liposome fusion in the past, this is the first use of dye dequenching to measure polymersome fusion of which we are aware. In addition to providing quantitative results, dye dequenching is ideal for detecting fusion in instances where DLS results would be ambiguous, such as low yield levels and size ranges outside the capabilities of DLS.more » The dye chosen for this study was a cyanine derivative, 1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine iodide (DiR), which proved to provide excellent data on the extent of polymersome fusion. Using this technique, we have shown the limited fusion capabilities of polymersome/liposome heterofusion, notably DOPC vesicles fusing with polymersomes at half the efficiency of polymersome homofusion and DPPC vesicles showing virtually no fusion. In addition to these key heterofusion experiments, we determined the broad applicability of dye dequenching in measuring kinetic rates of polymersome fusion; and showed that even at elevated temperatures or over multiple weeks' time, no polymersome fusion occurred without agitation. Stealth liposomes formed from DPPC and PEO-functionalized lipid, however, fused with polymersomes and stealth liposomes with relatively high efficiency, lending support to our hypothesis that the response of the PEO corona to salt is a key factor in the fusion process. This last finding suggests that although the conjugation of PEO to lipids increases vesicle biocompatibility and enables their longer circulation times, it also renders the vesicles subject to destabilization under high salt and shear (e.g. in the circulatory system) that may lead to, in this case, fusion.« less

  13. Preventing Laptop Fires and "Thermal Runaway" | U.S. DOE Office of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Prevent Counter NNSA Releases New Nuclear Prevent, Counter, and Respond Report Comprehensive Overview of NNSA's Nonproliferation and Anti-terror Strategy WASHINGTON, D.C. - The National Nuclear Security Administration (NNSA) released its report on NNSA's efforts to prevent nuclear proliferation and terrorism, Prevent, Counter, and Respond-A Strategic Plan to Reduce Global Science (SC)

    Preventing Laptop Fires and "Thermal Runaway" News News Home Featured Articles 2016 2015 2014

  14. Mobile phone and my health

    SciTech Connect (OSTI)

    Surducan, Aneta; Dabala, Dana; Neamtu, Camelia Surducan, Vasile Surducan, Emanoil

    2013-11-13

    The interaction of the microwave radiation emitted by mobile phones with the user's body is analyzed from the International Commission on Non-Ionizing Radiation Protection (ICNIRP) recommendations perspective as a correlation between the specific absorption ratio (SAR) of the mobile phone and the call duration. The relative position of the cell phone to the user's body, the dielectric properties of the exposed body parts, the SAR value and the call duration are considered in the local body temperature rise due to the microwave heating effect. The recommended local temperature rise limit in the human body is evaluated according to standards. The aim of this study is to disseminate information to young people, especially high school students, about the microwave thermal effects on the human body, to make them aware of the environmental electromagnetic pollution and to offer them a simple method of biological self protection.

  15. CB-EMIS CELL PHONE CLIENT

    Energy Science and Technology Software Center (OSTI)

    2007-01-02

    The cell phone software allows any Java enabled cell phone to view sensor and meteorological data via an internet connection using a secure connection to the CB-EMIS Web Service. Users with appropriate privileges can monitor the state of the sensors and perform simple maintenance tasks remotely. All sensitive data is downloaded from the web service, thus protecting sensitive data in the event a cell phone is lost.

  16. Property:Incentive/Cont3Phone | Open Energy Information

    Open Energy Info (EERE)

    Cont3Phone Jump to: navigation, search Property Name IncentiveCont3Phone Property Type String Pages using the property "IncentiveCont3Phone" Showing 25 pages using this property....

  17. Property:OutagePhoneNumber | Open Energy Information

    Open Energy Info (EERE)

    OutagePhoneNumber Jump to: navigation, search Property Name OutagePhoneNumber Property Type String Description An outage hotline or 24-hour customer service number Note: uses...

  18. The new phone books are here! | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The new phone books are here In the days of Google search, you may not get as excited as Navin R. Johnson (Steve Martin's character in "The Jerk") that the new phone books are...

  19. Phone List | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Phone List SLAC Site Office (SSO) SSO Home About Organization Chart .pdf file (155KB) Phone List Jobs Projects Contract Management NEPA Documents Contact Information SLAC Site Office U.S. Department of Energy Bldg 41, M/S 08A 2575 Sand Hill Road Menlo Park, CA 94025 P: (650) 926-2505 About Phone List Print Text Size: A A A FeedbackShare Page Name Office Phone Other Phone Bazzell, Kevin (650) 926-2513 C: (510) 292-0586 Burke, Patrick (650) 926-8573 C:(510) 459-3184 / BSO: (510) 486-7203 Golan,

  20. Austin Energy Dials Down Home Energy Use With Smart Phones |...

    Energy Savers [EERE]

    Austin Energy Dials Down Home Energy Use With Smart Phones bbrnstoriesaustinenergy9-2-14.jpg Better Buildings Residential Network member Austin Energy used summer's ...

  1. Property:Incentive/ContPhone | Open Energy Information

    Open Energy Info (EERE)

    Type String Pages using the property "IncentiveContPhone" Showing 25 pages using this property. (previous 25) (next 25) 3 30% Business Tax Credit for Solar (Vermont) + (802)...

  2. Phone Numbers for Beam Lines and Other Services | Stanford Synchrotron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Lightsource Phone Numbers for Beam Lines and Other Services The local area code for SSRL is 650. All numbers listed below should be dialed as 650-926-xxxx from other area codes. When calling an onsite location from within SSRL simply dial the 4-digit extension. When calling an offsite number within the 650 area code dial, dial 9 plus the 7-digit number. To call a number in another area code dial 9-1-area code - phone number. Beam Lines Beam Line Extension 1-4 5214 1-5 5215 2-1 5221

  3. Other Contracting Authority NNSA ORGANIZATION HCA LIMIT PHONE NUMBER

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Other Contracting Authority NNSA ORGANIZATION HCA LIMIT PHONE NUMBER NNSA HQ, NA-63, Deputy Director, Office of Acquisition and Supply Management Barbara H. Stearrett > $25M 202-586-7439 NNSA Service Center, Associate Director, Office of Business Services, Albuquerque, NM Donald J. Garcia < or equal to $25M 505-845-5878 Site offices do not have any HCA authority. NNSA SITE OFFICE CO NAME PHONE M&O CONTRACTOR NAME Bettis/Knolls Atomic Power Laboratory Mark Dickinson 202-781-6237 Bechtel

  4. Forensic analysis of the microbiome of phones and shoes

    SciTech Connect (OSTI)

    Lax, Simon; Hampton-Marcell, Jarrad T.; Gibbons, Sean M.; Colares, Geórgia Barguil; Smith, Daniel; Eisen, Jonathan A.; Gilbert, Jack A.

    2015-05-12

    Background: Microbial interaction between human-associated objects and the environments we inhabit may have forensic implications, and the extent to which microbes are shared between individuals inhabiting the same space may be relevant to human health and disease transmission. In this study, two participants sampled the front and back of their cell phones, four different locations on the soles of their shoes, and the floor beneath them every waking hour over a 2-day period. A further 89 participants took individual samples of their shoes and phones at three different scientific conferences. Results: Samples taken from different surface types maintained significantly different microbial community structures. The impact of the floor microbial community on that of the shoe environments was strong and immediate, as evidenced by Procrustes analysis of shoe replicates and significant correlation between shoe and floor samples taken at the same time point. Supervised learning was highly effective at determining which participant had taken a given shoe or phone sample, and a Bayesian method was able to determine which participant had taken each shoe sample based entirely on its similarity to the floor samples. Both shoe and phone samples taken by conference participants clustered into distinct groups based on location, though much more so when an unweighted distance metric was used, suggesting sharing of low-abundance microbial taxa between individuals inhabiting the same space. In conclusion, correlations between microbial community sources and sinks allow for inference of the interactions between humans and their environment.

  5. Forensic analysis of the microbiome of phones and shoes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lax, Simon; Hampton-Marcell, Jarrad T.; Gibbons, Sean M.; Colares, Geórgia Barguil; Smith, Daniel; Eisen, Jonathan A.; Gilbert, Jack A.

    2015-05-12

    Background: Microbial interaction between human-associated objects and the environments we inhabit may have forensic implications, and the extent to which microbes are shared between individuals inhabiting the same space may be relevant to human health and disease transmission. In this study, two participants sampled the front and back of their cell phones, four different locations on the soles of their shoes, and the floor beneath them every waking hour over a 2-day period. A further 89 participants took individual samples of their shoes and phones at three different scientific conferences. Results: Samples taken from different surface types maintained significantly differentmore » microbial community structures. The impact of the floor microbial community on that of the shoe environments was strong and immediate, as evidenced by Procrustes analysis of shoe replicates and significant correlation between shoe and floor samples taken at the same time point. Supervised learning was highly effective at determining which participant had taken a given shoe or phone sample, and a Bayesian method was able to determine which participant had taken each shoe sample based entirely on its similarity to the floor samples. Both shoe and phone samples taken by conference participants clustered into distinct groups based on location, though much more so when an unweighted distance metric was used, suggesting sharing of low-abundance microbial taxa between individuals inhabiting the same space. In conclusion, correlations between microbial community sources and sinks allow for inference of the interactions between humans and their environment.« less

  6. MENTEE QUESTIONNAIRE Name: Title: Email: Office Phone Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MENTEE QUESTIONNAIRE Name: Title: Email: Office Phone Number: Office Address: Why are you interested in the mentoring program? (This information will be included with the invitation to your potential mentor.) What goals do you want to work on during your participation in the mentoring program? Is there someone you would like to be your mentor? Yes No If yes, please list their name and any other possible mentors in order of preference: Expectations of the Mentoring Program How long? 6-months

  7. Estimation of retired mobile phones generation in China: A comparative study on methodology

    SciTech Connect (OSTI)

    Li, Bo; Yang, Jianxin; Lu, Bin; Song, Xiaolong

    2015-01-15

    Highlights: • The sales data of mobile phones in China was revised by considering the amount of smuggled and counterfeit mobile phones. • The estimation of retired mobile phones in China was made by comparing some relevant methods. • The advanced result of estimation can help improve the policy-making. • The method suggested in this paper can be also used in other countries. • Some discussions on methodology are also conducted in order for the improvement. - Abstract: Due to the rapid development of economy and technology, China has the biggest production and possession of mobile phones around the world. In general, mobile phones have relatively short life time because the majority of users replace their mobile phones frequently. Retired mobile phones represent the most valuable electrical and electronic equipment (EEE) in the main waste stream because of such characteristics as large quantity, high reuse/recovery value and fast replacement frequency. Consequently, the huge amount of retired mobile phones in China calls for a sustainable management system. The generation estimation can provide fundamental information to construct the sustainable management system of retired mobile phones and other waste electrical and electronic equipment (WEEE). However, the reliable estimation result is difficult to get and verify. The priority aim of this paper is to provide proper estimation approach for the generation of retired mobile phones in China, by comparing some relevant methods. The results show that the sales and new method is in the highest priority in estimation of the retired mobile phones. The result of sales and new method shows that there are 47.92 million mobile phones retired in 2002, and it reached to 739.98 million in China in 2012. It presents an increasing tendency with some fluctuations clearly. Furthermore, some discussions on methodology, such as the selection of improper approach and error in the input data, are also conducted in order to

  8. ORISE: Contact Us - phone numbers, email addresses, shipping addresses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oak Ridge Institute for Science Education Contact Us Employee Phone Directory Enter the name of the person you are looking for: To use this directory, you must know the full last name of the employee. Last Name:* First Name: Search (*required field) General Information Communications Oak Ridge Institute for Science and Education MC-100-44 P.O. Box 117 Oak Ridge, TN 37831-0117 Work: (865) 576-3146 Fax: (865) 241-2923 communications@orau.org ORISE Director's Office Andy Page, Director Oak Ridge

  9. MENTOR QUESTIONNAIRE Name: Title: Email: Office Phone Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MENTOR QUESTIONNAIRE Name: Title: Email: Office Phone Number: Office Address: is interested in this program because: Are you willing to act as a mentor for ? Yes No Expectations of the Mentoring Program How long? 6-months minimum commitment. Are you willing to commit to the 6-months minimum timeframe? Yes No How much time? You decide with your mentee; 1-4 hours/month is recommended. Please return completed form to Ames Lab Human Resources, 105 TASF. Are you willing to commit 1-4 hours per month

  10. Special Workshop: Building Location Aware Apps on the iPhone

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Special Workshop: Building Location Aware Apps on the iPhone Special Workshop: Building Location Aware Apps on the iPhone WHEN: Jul 17, 2015 11:00 AM - 2:00 PM WHERE: Time Out Pizzeria 1350 Central Ave, Los Alamos, USA SPEAKER: Mike Ham CONTACT: Jessica Privette 505 667-0375 CATEGORY: Bradbury INTERNAL: Calendar Login iPhone App Development Class Event Description Learn to build an iPhone app that uses U.S. Global Positioning System (GPS) data! This three-hour course will cover how to build an

  11. U-239: Apple iPhone SMS Processing Flaw Lets Remote Users Spoof SMS Source

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addresses | Department of Energy 39: Apple iPhone SMS Processing Flaw Lets Remote Users Spoof SMS Source Addresses U-239: Apple iPhone SMS Processing Flaw Lets Remote Users Spoof SMS Source Addresses August 20, 2012 - 7:00am Addthis PROBLEM: Apple iPhone SMS Processing Flaw Lets Remote Users Spoof SMS Source Addresses PLATFORM: Version(s): 6 beta 4 and prior versions ABSTRACT: A remote user can spoof SMS source addresses. Reference LINKS: SecurityTracker Alert ID: 1027410 Apple.com PCMag.com

  12. OSTIblog Articles in the smart phone Topic | OSTI, US Dept of...

    Office of Scientific and Technical Information (OSTI)

    smart phone Topic OSTI and Social Media: A Great Way to "Share" DOE STI by Nena Moss 08 ... smartphone-toting consumers drive new paths to DOE research using new social media tools. ...

  13. Special Workshop: Building Location Aware Apps on the iPhone

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    build and run an app: 1. A modern Apple computer with wifi running the xCode program (free download), 2. An iPhone with a charging cable. However, these items are not required....

  14. Metallic glass could make your next cell phone harder to break

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metallic glass could make your next cell phone harder to break Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit Metallic glass could make your next cell phone harder to break Lab researcher works to rearrange the atoms in metals June 20, 2014 New insights to changing the atomic structure of metals New insights to changing the atomic structure of metals Contact Linda Anderman Email Metal and glass objects are all

  15. Lab Phone Numbers - Center for Plasma in the Laboratory and Astrophysics -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    UW Madison Physics Department Lab Phone Numbers UW Madison Center for Plasma in the Laboratory and Astrophysics Lab Phone Numbers CPLA Home - Experiments Madison Symmetric Torus Madsion Dynamo Experiment Rotating Wall Machine Plasma-Couette Experiment Madison Plasma Dynamo Experiment - Theory Groups MHD Turbulence Transport in Fusion Devices Plasma Astrophysics RFP Theory - Multi-Institutional Centers Center for Magnetic Self Organization Center for Theory and Computation Center for Momentum

  16. T-670: Skype Input Validation Flaw in 'mobile phone' Profile Entry Permits Cross-Site Scripting Attacks

    Broader source: Energy.gov [DOE]

    The software does not properly filter HTML code from user-supplied input in the The "mobile phone" profile entry before displaying the input.

  17. Thermal decomposition of electronic wastes: Mobile phone case and other parts

    SciTech Connect (OSTI)

    Molto, Julia; Egea, Silvia; Conesa, Juan Antonio; Font, Rafael

    2011-12-15

    Highlights: > Pyrolysis and combustion of different parts of mobile phones produce important quantities of CO and CO{sub 2}. > Naphthalene is the most abundant PAH obtained in the thermal treatment of mobile phones. > Higher combustion temperature increases the chlorinated species evolved. - Abstract: Pyrolysis and combustion runs at 850 {sup o}C in a horizontal laboratory furnace were carried out on different parts of a mobile phone (printed circuit board, mobile case and a mixture of both materials). The analyses of the carbon oxides, light hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), polychlorodibenzo-p-dioxin, polychlorodibenzofurans (PCDD/Fs), and dioxin-like PCBs are shown. Regarding semivolatile compounds, phenol, styrene, and its derivatives had the highest yields. In nearly all the runs the same PAHs were identified, naphthalene being the most common component obtained. Combustion of the printed circuit board produced the highest emission factor of PCDD/Fs, possibly due to the high copper content.

  18. Austin Energy Dials Down Home Energy Use With Smart Phones | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Austin Energy Dials Down Home Energy Use With Smart Phones Austin Energy Dials Down Home Energy Use With Smart Phones bbrn_stories_austin_energy_9-2-14.jpg Better Buildings Residential Network member Austin Energy used summer's unpredictable weather patterns as an opportunity to remind Austin, Texas, residents of its Power PartnerSM Thermostat incentive. Customers can receive an $85 rebate for one of several "smart" thermostats that they can control remotely from a smart

  19. Effects of Cell Phone Radiofrequency Signal Exposure on Brain Glucos Metabolism

    SciTech Connect (OSTI)

    Volkow, N.D.; Wang, G.; Volkow, N.D.; Tomasi, D.; Wang, G.-J.; Vaska, P.; Fowler, J.S.; Telang, F.; Alexoff, D.; Logan, J.; Wong, C.

    2011-03-01

    The dramatic increase in use of cellular telephones has generated concern about possible negative effects of radiofrequency signals delivered to the brain. However, whether acute cell phone exposure affects the human brain is unclear. To evaluate if acute cell phone exposure affects brain glucose metabolism, a marker of brain activity. Randomized crossover study conducted between January 1 and December 31, 2009, at a single US laboratory among 47 healthy participants recruited from the community. Cell phones were placed on the left and right ears and positron emission tomography with ({sup 18}F)fluorodeoxyglucose injection was used to measure brain glucose metabolism twice, once with the right cell phone activated (sound muted) for 50 minutes ('on' condition) and once with both cell phones deactivated ('off' condition). Statistical parametric mapping was used to compare metabolism between on and off conditions using paired t tests, and Pearson linear correlations were used to verify the association of metabolism and estimated amplitude of radiofrequency-modulated electromagnetic waves emitted by the cell phone. Clusters with at least 1000 voxels (volume >8 cm{sup 3}) and P < .05 (corrected for multiple comparisons) were considered significant. Brain glucose metabolism computed as absolute metabolism ({micro}mol/100 g per minute) and as normalized metabolism (region/whole brain). Whole-brain metabolism did not differ between on and off conditions. In contrast, metabolism in the region closest to the antenna (orbitofrontal cortex and temporal pole) was significantly higher for on than off conditions (35.7 vs 33.3 {micro}mol/100 g per minute; mean difference, 2.4 [95% confidence interval, 0.67-4.2]; P = .004). The increases were significantly correlated with the estimated electromagnetic field amplitudes both for absolute metabolism (R = 0.95, P < .001) and normalized metabolism (R = 0.89; P < .001). In healthy participants and compared with no exposure, 50-minute

  20. California Geothermal Power Plant to Help Meet High Lithium Demand...

    Broader source: Energy.gov (indexed) [DOE]

    phones, laptops, and even some electric vehicles? The U.S. Department of Energy's Geothermal Technologies Program (GTP) is working with California's Simbol Materials to develop...

  1. Chapter_15_Outprocessing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... government property, including laptop computers, cell phones, pagers, Blackberries, RSA tokens, etc. * Returning government-issued credit cards * Returning parking permit. ...

  2. E One Moli Energy Corporation | Open Energy Information

    Open Energy Info (EERE)

    Corporation Place: Tainan, Taiwan Sector: Vehicles Product: They make rechargeable Lithium Ion batteries for cell phones, laptop computers, higher-power batteries for power...

  3. UniBatt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Zip: 29500 Product: Start-up company specializing in the development of innovative batteries for mobile electronic devices such as: laptops, cellular phones, PDAs, etc....

  4. Agency Points of Contact for Tribal Consultation Agency Point of Contact Email and Phone

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agency Points of Contact for Tribal Consultation Agency Point of Contact Email and Phone Department of the Interior Sarah Harris Chief of Staff to the Assist Secretary - Indian Affairs Tribalconsultation@bia.gov (202) 208-7163 Department of Justice Tracy Toulou Director, Office of Tribal Justice OTJ@usdoj.gov (202) 514-8812 Department of State Reta Lewis Special Representative for Global Intergovernmental Affairs tribalconsultation@state.gov (202) 647-7710 Department of the Treasury Alexander

  5. OSTIblog Articles in the smart phone Topic | OSTI, US Dept of Energy Office

    Office of Scientific and Technical Information (OSTI)

    of Scientific and Technical Information smart phone Topic OSTI and Social Media: A Great Way to "Share" DOE STI by Nena Moss 08 Jul, 2014 in OSTI's mission is to advance science and sustain technological creativity by making R&D findings available and useful to DOE researchers and the public. As part of this commitment to America's science and technology future, we strive to place information in consumers' hands, specifically, at their fingertips. Rapidly changing technology

  6. Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone

    SciTech Connect (OSTI)

    Jha, Manis Kumar, E-mail: mkjha@nmlindia.org; Kumari, Anjan; Jha, Amrita Kumari; Kumar, Vinay; Hait, Jhumki; Pandey, Banshi Dhar

    2013-09-15

    Graphical abstract: Recovery of valuable metals from scrap batteries of mobile phone. - Highlights: Recovery of Co and Li from spent LIBs was performed by hydrometallurgical route. Under the optimum condition, 99.1% of lithium and 70.0% of cobalt were leached. The mechanism of the dissolution of lithium and cobalt was studied. Activation energy for lithium and cobalt were found to be 32.4 kJ/mol and 59.81 kJ/mol, respectively. After metal recovery, residue was washed before disposal to the environment. - Abstract: In view of the stringent environmental regulations, availability of limited natural resources and ever increasing need of alternative energy critical elements, an environmental eco-friendly leaching process is reported for the recovery of lithium and cobalt from the cathode active materials of spent lithium-ion batteries of mobile phones. The experiments were carried out to optimize the process parameters for the recovery of lithium and cobalt by varying the concentration of leachant, pulp density, reductant volume and temperature. Leaching with 2 M sulfuric acid with the addition of 5% H{sub 2}O{sub 2} (v/v) at a pulp density of 100 g/L and 75 C resulted in the recovery of 99.1% lithium and 70.0% cobalt in 60 min. H{sub 2}O{sub 2} in sulfuric acid solution acts as an effective reducing agent, which enhance the percentage leaching of metals. Leaching kinetics of lithium in sulfuric acid fitted well to the chemical controlled reaction model i.e. 1 ? (1 ? X){sup 1/3} = k{sub c}t. Leaching kinetics of cobalt fitted well to the model ash diffusion control dense constant sizes spherical particles i.e. 1 ? 3(1 ? X){sup 2/3} + 2(1 ? X) = k{sub c}t. Metals could subsequently be separated selectively from the leach liquor by solvent extraction process to produce their salts by crystallization process from the purified solution.

  7. The Citizen Cyberscience Lectures - 1) Mobile phones and Africa: a success story 2) Citizen Problem Solving

    SciTech Connect (OSTI)

    2009-10-28

    Mobile phones and Africa: a success story Dr. Mo Ibrahim, Mo Ibrahim Foundation Citizen Problem Solving Dr. Alpheus Bingham, InnoCentive The Citizen Cyberscience Lectures are hosted by the partners of the Citizen Cyberscience Centre, CERN, The UN Institute of Training and Research and the University of Geneva. The goal of the Lectures is to provide an inspirational forum for participants from the various international organizations and academic institutions in Geneva to explore how information technology is enabling greater citizen participation in tackling global development challenges as well as global scientific research. The first Citizen Cyberscience Lectures will welcome two speakers who have both made major innovative contributions in this area. Dr. Mo Ibrahim, founder of Celtel International, one of Africa’s most successful mobile network operators, will talk about “Mobile phones and Africa: a success story”. Dr. Alpheus Bingham, founder of InnoCentive, a Web-based community that solves industrial R&D; challenges, will discuss “Citizen Problem Solving”. The Citizen Cyberscience Lectures are open and free of charge. Participants from outside CERN must register by sending an email to Yasemin.Hauser@cern.ch BEFORE the 23rd october to be able to access CERN. THE LECTURES Mobile phones and Africa: a success story Dr. Mo Ibrahim, Mo Ibrahim Foundation Abstract The introduction of mobile phones into Africa changed the continent, enabling business and the commercial sector, creating directly and indirectly, millions of jobs. It enriched the social lives of many people. Surprisingly, it supported the emerging civil society and advanced the course of democracy Bio Dr Mo Ibrahim is a global expert in mobile communications with a distinguished academic and business career. In 1998, Dr Ibrahim founded Celtel International to build and operate mobile networks in Africa. Celtel became one of Africa’s most successful companies with operations in 15 countries

  8. The Citizen Cyberscience Lectures - 1) Mobile phones and Africa: a success story 2) Citizen Problem Solving

    ScienceCinema (OSTI)

    None

    2011-10-06

    Mobile phones and Africa: a success story Dr. Mo Ibrahim, Mo Ibrahim Foundation Citizen Problem Solving Dr. Alpheus Bingham, InnoCentive The Citizen Cyberscience Lectures are hosted by the partners of the Citizen Cyberscience Centre, CERN, The UN Institute of Training and Research and the University of Geneva. The goal of the Lectures is to provide an inspirational forum for participants from the various international organizations and academic institutions in Geneva to explore how information technology is enabling greater citizen participation in tackling global development challenges as well as global scientific research. The first Citizen Cyberscience Lectures will welcome two speakers who have both made major innovative contributions in this area. Dr. Mo Ibrahim, founder of Celtel International, one of Africa?s most successful mobile network operators, will talk about ?Mobile phones and Africa: a success story?. Dr. Alpheus Bingham, founder of InnoCentive, a Web-based community that solves industrial R&D; challenges, will discuss ?Citizen Problem Solving?. The Citizen Cyberscience Lectures are open and free of charge. Participants from outside CERN must register by sending an email to Yasemin.Hauser@cern.ch BEFORE the 23rd october to be able to access CERN. THE LECTURES Mobile phones and Africa: a success story Dr. Mo Ibrahim, Mo Ibrahim Foundation Abstract The introduction of mobile phones into Africa changed the continent, enabling business and the commercial sector, creating directly and indirectly, millions of jobs. It enriched the social lives of many people. Surprisingly, it supported the emerging civil society and advanced the course of democracy Bio Dr Mo Ibrahim is a global expert in mobile communications with a distinguished academic and business career. In 1998, Dr Ibrahim founded Celtel International to build and operate mobile networks in Africa. Celtel became one of Africa?s most successful companies with operations in 15 countries, covering more

  9. Material flows of mobile phones and accessories in Nigeria: Environmental implications and sound end-of-life management options

    SciTech Connect (OSTI)

    Osibanjo, Oladele Nnorom, Innocent Chidi

    2008-02-15

    Presently, Nigeria is one of the fastest growing Telecom markets in the world. The country's teledensity increased from a mere 0.4 in 1999 to 10 in 2005 following the liberalization of the Telecom sector in 2001. More than 25 million new digital mobile lines have been connected by June 2006. Large quantities of mobile phones and accessories including secondhand and remanufactured products are being imported to meet the pent-up demand. This improvement in mobile telecom services resulted in the preference of mobile telecom services to fixed lines. Consequently, the contribution of fixed lines decreased from about 95% in year 2000 to less than 10% in March 2005. This phenomenal progress in information technology has resulted in the generation of large quantities of electronic waste (e-waste) in the country. Abandoned fixed line telephone sets estimated at 120,000 units are either disposed or stockpiled. Increasing quantities of waste mobile phones estimated at 8 million units by 2007, and accessories will be generated. With no material recovery facility for e-waste and/or appropriate solid waste management infrastructure in place, these waste materials end up in open dumps and unlined landfills. These practices create the potential for the release of toxic metals and halocarbons from batteries, printed wiring boards, liquid crystal display and plastic housing units. This paper presents an overview of the developments in the Nigerian Telecom sector, the material in-flow of mobile phones, and the implications of the management practices for wastes from the Telecom sector in the country.

  10. The future of batteries: Q&A with the director of the national...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Now, the laboratory's semiannual science magazine. Everywhere you look, you see lithium-ion batteries. They're in your laptop, your cell phone, your power tools, maybe...

  11. Staying Informed | Department of Energy

    Energy Savers [EERE]

    If you have power, charge your cell phones, laptops, and other mobile devices so they'll have the maximum amount of battery power stored in the event of a power outage. These ...

  12. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good...

  13. The Breakthrough Behind the Chevy Volt Battery

    DOE R&D Accomplishments [OSTI]

    Lerner, Louise

    2011-03-28

    A revolutionary breakthrough cathode for lithium-ion batteries—the kind in your cell phone, laptop and new hybrid cars—makes them last longer, run more safely and perform better than batteries currently on the market.

  14. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good ...

  15. "Name","Work Phone","Contact","E-Mail","Location","Manager Group Name"

    Office of Scientific and Technical Information (OSTI)

    "Name","Work Phone","Contact","E-Mail","Location","Manager Group Name" ", TBD","","","","Lawrence Berkeley National Laboratory","STI Managers" ", TBD","","","","Savannah River Operations Office","Technical Information Officers" ", TBD","","","","Office of Environmental

  16. Addresses and Phone Numbers | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Additions to natural gas in underground storage to be nearly 50% higher this summer Although it's still spring, natural gas supply companies and utilities are already preparing for next winter and are building their inventories of natural gas to meet future heating demand. About 2.1 trillion cubic feet of natural gas will be added to gas inventories in underground storage over the summer months to get ready for the winter heating season, which starts November 1. That is significantly higher than

  17. Next-Generation Power Electronics: Reducing Energy Waste and Powering the Future

    Broader source: Energy.gov [DOE]

    From unleashing more powerful and energy-efficient laptops, cell phones and motors, to shrinking utility-scale inverters from 8,000 pound substations to the size of a suitcase, wide bandgap semiconductors could be one of the keys to our clean energy future.

  18. Plastic Bags to Batteries: A Green Chemistry Solution

    ScienceCinema (OSTI)

    None

    2013-04-19

    Plastic bags are the scourge of roadsides, parking lots and landfills. But chemistry comes to the rescue! At Argonne National Laboratory, Vilas Pol has found a way to not only recycle plastic bags--but make them into valuable batteries for cell phones and laptops.

  19. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Phone System

  20. Could 135,000 Laptops Help Solve the Energy Challenge? | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    blood vessels to better predict and understand the rupture of aneurysms, sickle cell anemia and cerebral malaria. Simulating Large Regional Earthquakes Principal Investigator:...

  1. Preventing Laptop Fires and Thermal Runaway | U.S. DOE Office...

    Office of Science (SC) Website

    Researchers point to "self-healing" materials as a potential means of improving lithium ion battery safety. This work, featured in the Office of Science's Stories of Discovery & ...

  2. Solid State eBurner for Supplying Power to Laptops, Cellphones...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... fuel storage, fuel dispensing and system cooling * Critical parameters can be manipulated ... Date Patent 7,696,668 Patent 7,696,668 Solid state transport-based thermoelectric ...

  3. California Geothermal Power Plant to Help Meet High Lithium Demand |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy California Geothermal Power Plant to Help Meet High Lithium Demand California Geothermal Power Plant to Help Meet High Lithium Demand September 20, 2012 - 1:15pm Addthis Ever wonder how we get the materials for the advanced batteries that power our cell phones, laptops, and even some electric vehicles? The U.S. Department of Energy's Geothermal Technologies Program (GTP) is working with California's Simbol Materials to develop technologies that extract battery materials

  4. Dispelling a Misconception About Mg-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dispelling a Misconception About Mg-Ion Batteries Dispelling a Misconception About Mg-Ion Batteries Simulations Run at NERSC Provide a Path to Better Designs October 16, 2014 Contact: Lynn Yarris, lcyarris@lbl.gov, +1 510.486.5375 Lithium (Li)-ion batteries serve us well, powering our laptops, tablets, cell phones and a host of other gadgets and devices. However, for future automotive applications, we will need rechargeable batteries with significant increases in energy density, reductions in

  5. Two Studies Reveal Details of Lithium-Battery Function

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two Studies Reveal Details of Lithium-Battery Function Print Our way of life is deeply intertwined with battery technologies that have enabled a mobile revolution powering cell phones, laptops, medical devices, and cars. As conventional lithium-ion batteries approach their theoretical energy-storage limits, new technologies are emerging to address the long-term energy-storage improvements needed for mobile systems, electric vehicles in particular. Battery performance depends on the dynamics of

  6. Two Studies Reveal Details of Lithium-Battery Function

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two Studies Reveal Details of Lithium-Battery Function Print Our way of life is deeply intertwined with battery technologies that have enabled a mobile revolution powering cell phones, laptops, medical devices, and cars. As conventional lithium-ion batteries approach their theoretical energy-storage limits, new technologies are emerging to address the long-term energy-storage improvements needed for mobile systems, electric vehicles in particular. Battery performance depends on the dynamics of

  7. Two Studies Reveal Details of Lithium-Battery Function

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two Studies Reveal Details of Lithium-Battery Function Print Our way of life is deeply intertwined with battery technologies that have enabled a mobile revolution powering cell phones, laptops, medical devices, and cars. As conventional lithium-ion batteries approach their theoretical energy-storage limits, new technologies are emerging to address the long-term energy-storage improvements needed for mobile systems, electric vehicles in particular. Battery performance depends on the dynamics of

  8. Two Studies Reveal Details of Lithium-Battery Function

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two Studies Reveal Details of Lithium-Battery Function Print Our way of life is deeply intertwined with battery technologies that have enabled a mobile revolution powering cell phones, laptops, medical devices, and cars. As conventional lithium-ion batteries approach their theoretical energy-storage limits, new technologies are emerging to address the long-term energy-storage improvements needed for mobile systems, electric vehicles in particular. Battery performance depends on the dynamics of

  9. Two Studies Reveal Details of Lithium-Battery Function

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two Studies Reveal Details of Lithium-Battery Function Two Studies Reveal Details of Lithium-Battery Function Print Wednesday, 27 February 2013 00:00 Our way of life is deeply intertwined with battery technologies that have enabled a mobile revolution powering cell phones, laptops, medical devices, and cars. As conventional lithium-ion batteries approach their theoretical energy-storage limits, new technologies are emerging to address the long-term energy-storage improvements needed for mobile

  10. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecular Foundry Scientists Discover Surprising New Properties in a 2-D Semiconductor In the world of semiconductors, impurities and defects can be a good thing. They modify the properties of materials such as silicon, and scientists can exploit these properties to develop better transistors for laptops, smart phones, and solar cells. Recently, a new class of semiconductor was discovered that is only three atoms thick and which extends in a two-dimensional plane, similar to graphene. These 2-D

  11. Newsletter Jan draft 010512.pub

    Energy Savers [EERE]

    Green Holidays Fuel Cell Lights Up Festivities at Secretary Chu's Holiday Party For the first time ever, DOE's annual holiday party featured lights powered by a clean, efficient fuel cell. The portable fuel cell, made by Trulite, generates roughly 150 watts of power and is a clean energy solution for recharging laptops, cell phones, and other everyday low-energy demand appliances. The use of a clean, renewable technology at DOE's headquarters was appreciated by DOE employees. "It's great to

  12. Property:Phone | Open Energy Information

    Open Energy Info (EERE)

    + Alaska Department of Natural Resources + 907.269.8629 + Alaska Division of Oil and Gas + 907.269.8769 + Alaska Division of Oil and Gas + 907.269.8776 + Arizona Corporation...

  13. Property:PhoneNumber | Open Energy Information

    Open Energy Info (EERE)

    + 757-787-9750 800-431-2632 + A.J. Rose Manufacturing Company + 440-934-2859 + A.O. Smith + 414-359-4000 + A1 Sun, Inc. + (510) 526-5715 + A10 Power + 415-729-4A10 or...

  14. NAME ORGANIZATION E-MAIL PHONE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (865) 574-2105 (Alternate) Miller, Ruth Oak Ridge Nat'l Laboratory ... Ashley, Tom CWI, Idaho Cleanup Project thomas.ashley@icp.doe.gov (208) 360-3552 McGary, ...

  15. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab scientists has designed a new kind of anode that absorbs eight times the lithium of

  16. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab scientists has designed a new kind of anode that absorbs eight times the lithium of

  17. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab scientists has designed a new kind of anode that absorbs eight times the lithium of

  18. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab scientists has designed a new kind of anode that absorbs eight times the lithium of

  19. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab scientists has designed a new kind of anode that absorbs eight times the lithium of

  20. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab scientists has designed a new kind of anode that absorbs eight times the lithium of

  1. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Better Anode Design to Improve Lithium-Ion Batteries A Better Anode Design to Improve Lithium-Ion Batteries Print Friday, 23 March 2012 13:53 Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab

  2. Phone List | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Phishing Is As Quick As Clicking One Click Too Many Phishing Is As Quick As Clicking One Click Too Many February 6, 2015 - 12:59pm Addthis There are all sorts of impersonators working to obtain our personal information. Phishing is a malicious attempt to collect personal and/or financial information for illegal purposes by masquerading as an email from a trustworthy entity. Phishing has proven to be an effective method of attack in that its success is dependent on the awareness of the user.

  3. Forensic analysis of the microbiome of phones and shoes (Journal...

    Office of Scientific and Technical Information (OSTI)

    are shared between individuals inhabiting the same space may be relevant to human health and disease transmission. In this study, two participants sampled the front and back...

  4. Property:RAPID/Contact/ID1/Phone | Open Energy Information

    Open Energy Info (EERE)

    Alaska Department of Environmental Conservation + 907.269.3066 + Alaska Department of Natural Resources + 907.269.8629 + Alaska Division of Oil and Gas + 907.269.8769 + Arizona...

  5. Property:Incentive/Cont2Phone | Open Energy Information

    Open Energy Info (EERE)

    + 601-961-5134 + Air Emissions Reduction Assistance Program (Iowa) + 515-281-8468 + Air Pollution Control (Indiana) + (317) 439-0759 + Air Pollution Control Fees (Ohio) +...

  6. Smart Phone Technologies Reduce Risks to Eagles from Wind Turbines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Eagles are Making Wind Turbines Safer for Birds PNNL Reviews Wildlife-Interaction Monitoring for Offshore Wind Farms - Technology Hybrids Show Best Potential Mitigating Wind-Radar ...

  7. Global GPS Phones Market Size, Segmentation, Demand Forecast...

    Open Energy Info (EERE)

    we deeply analyzed the world's main region market conditions that including the product price, profit, capacity, production, capacity utilization, supply, demand and industry...

  8. Property:Incentive/ContPhone2 | Open Energy Information

    Open Energy Info (EERE)

    - Commercial Solutions Program (Texas) + (713) 320-1772 + AEP Texas Central Company - ENERGY STAR New Home Program (Texas) + (713) 320-1772 + AEP Texas Central Company - SCORE...

  9. Forensic analysis of the microbiome of phones and shoes

    Office of Scientific and Technical Information (OSTI)

    Georgia Barguil Colares4, Daniel Smith1,5, Jonathan A Eisen6,7,8 and Jack A ... Genome Biol. 2013, 14. doi:10.1186gb-2013-14-2-202. 2. Lax S, Smith DP, Hampton-Marcell ...

  10. Inner heliospheric evolution of a 'STEALTH' CME derived from multi-view imaging and multipoint in situ observations. I. Propagation to 1 AU

    SciTech Connect (OSTI)

    Nieves-Chinchilla, T.; Vourlidas, A.; Stenborg, G.; Savani, N. P.; Koval, A.; Szabo, A.; Jian, L. K.

    2013-12-10

    Coronal mass ejections (CMEs) are the main driver of space weather. Therefore, a precise forecasting of their likely geo-effectiveness relies on an accurate tracking of their morphological and kinematical evolution throughout the interplanetary medium. However, single viewpoint observations require many assumptions to model the development of the features of CMEs. The most common hypotheses were those of radial propagation and self-similar expansion. The use of different viewpoints shows that, at least for some cases, those assumptions are no longer valid. From radial propagation, typical attributes that can now be confirmed to exist are over-expansion and/or rotation along the propagation axis. Understanding the 3D development and evolution of the CME features will help to establish the connection between remote and in situ observations, and hence help forecast space weather. We present an analysis of the morphological and kinematical evolution of a STEREO-B-directed CME on 2009 August 25-27. By means of a comprehensive analysis of remote imaging observations provided by the SOHO, STEREO, and SDO missions, and in situ measurements recorded by Wind, ACE, and MESSENGER, we prove in this paper that the event exhibits signatures of deflection, which are usually associated with changes in the direction of propagation and/or also with rotation. The interaction with other magnetic obstacles could act as a catalyst of deflection or rotation effects. We also propose a method to investigate the change of the CME tilt from the analysis of height-time direct measurements. If this method is validated in further work, it may have important implications for space weather studies because it will allow for inference of the interplanetary counterpart of the CME's orientation.

  11. University of Delaware | CCEI Leadership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Leadership {Image} {Name} - {Affiliation} {Title} {Location} Phone: {Phone} {Email}

  12. Pre-decisional - For Discussion Purposes Only Energy Efficiency...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NWEC Van Ashton, Idaho Falls, phone Larry Blaufus, Clark Public Utilities, phone Kathy Grey, EWEB, phone Robert Salberg, Cowlitz PUD, phone Ron Mitchell, Benton REA, phone Sandra...

  13. Lignin Based Carbon Materials for Energy Storage Applications

    SciTech Connect (OSTI)

    Chatterjee, Sabornie; Saito, Tomonori; Rios, Orlando; Johs, Alexander

    2014-01-01

    The implementation of Li-ion battery technology into electric and hybrid electric vehicles and portable electronic devices such as smart phones, laptops and tablets, creates a demand for efficient, economic and sustainable materials for energy storage. However, the high cost and long processing time associated with manufacturing battery-grade anode and cathode materials are two big constraints for lowering the total cost of batteries and environmentally friendly electric vehicles. Lignin, a byproduct of the pulp and paper industry and biorefinery, is one of the most abundant and inexpensive natural biopolymers. It can be efficiently converted to low cost carbon fibers with optimal properties for use as anode materials. Recent developments in the preparation of lignin precursors and conversion to carbon fiber-based anode materials have created a new class of anode materials with excellent electrochemical characteristics suitable for immediate use in existing Li- or Na-ion battery technologies.

  14. Microsoft Word - Current Contact Information2.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Information: Name: Date: Z Number: Home Phone: ( ) Cell Phone: ( ) Work Phone: ( ) Mailing Address: Street or PO Box Apt...

  15. "Name","Work Phone","Contact","E-Mail","Location","Manager Group...

    Office of Scientific and Technical Information (OSTI)

    ...r@nrel.gov","National Renewable Energy Laboratory","STI Managers" "Fish, Marsha","(509) 372-9384","","marsha.fish@wch-rcc.com","Washington Closure Hanford","STI Managers" "Foust, ...

  16. Clean Cities Launches iPhone App for Alternative Fueling Station...

    Broader source: Energy.gov (indexed) [DOE]

    The app draws information from Clean Cities' Alternative Fuels Data Center (AFDC), which houses the most comprehensive, up-to-date database of alternative fueling stations in the ...

  17. New Find-a-Car App Brings Fuel Economy Right to Your Phone

    Broader source: Energy.gov [DOE]

    With more car buyers than ever using the Internet to research their future vehicles, accessing information on fuel economy needs to be simple and convenient. To make searching easier on mobile...

  18. Phone Log: Spoke to: C.V. Chung I Date/Time: 5/29/14

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    L (CONTR) - TOT-D1TT-2 Subject: FW: Request for WECC Maps - by non-profit org Hello Kim: One of my staff members received this third-party request from WECC for a "BPA...

  19. "Name","Work Phone","Contact","E-Mail","Location","Manager Group...

    Office of Scientific and Technical Information (OSTI)

    ... Ridge Office","Technical Information Officers" "Smith, Tania","(202) 586-5008","","tania.smith@em.doe.gov","Office of Environmental Management","Headquarters" ...

  20. Phone Directory | OSTI, US Dept of Energy Office of Scientific and

    Office of Scientific and Technical Information (OSTI)

    Technical Information OSTI Staff Search First Name Enter First Name Filter Here Last Name Enter Last Name Filter Here Apply

  1. Space Heaters, Computers, Cell Phone Chargers: How Plugged In AreCommercial Buildings?

    SciTech Connect (OSTI)

    Sanchez, Marla; Webber, Carrie; Brown, Richard; Busch, John; Pinckard, Margaret; Roberson, Judy

    2007-02-28

    Evidenceof electric plug loads in commercial buildings isvisible everyday: space heaters, portable fans, and the IT technician'stwo monitors connected to one PC. The Energy Information Administrationestimates that office and miscellaneous equipment together will consume2.18 quads in 2006, nearly 50 percent of U.S. commercial electricity use.Although the importance of commercial plug loads is documented, its verynature (diverse product types, products not installed when buildinginitially constructed, and products often hidden in closets) makes itdifficult to accurately count and categorize the end use.We auditedsixteen buildings in three cities (San Francisco, Atlanta, Pittsburgh)including office, medical and education building types. We inventoriedthe number and types of office and miscellaneous electric equipment aswell as estimated total energy consumption due to these product types. Intotal, we audited approximately 4,000 units of office equipment and 6,000units of miscellaneous equipment and covered a diverse range of productsranging from electric pencil sharpeners with a unit energy consumption(UEC) of 1 kWh/yr to a kiln with a UEC of 7,000 kWh/yr. Our paperpresents a summary of the density and type of plug load equipment foundas well as the estimated total energy consumption of the equipment.Additionally, we present equipment trends observed and provide insightsto how policy makers can target energy efficiency for this growing enduse.

  2. ORISE: Contact information for REAC/TS - phone numbers, e-mail

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us Radiation Emergency Assistance CenterTraining Site staff contact information Emergency Number 865.576.1005 (Ask for REACTS) Nicholas Dainiak, M.D., FACP Medical and...

  3. Metallic glass could make your next cell phone harder to break

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (such as metallic glass) are for recreational purposes. Imhoff pointed out that sports are often early adopters of new materials technology because even the slightest...

  4. Long-range, full-duplex, modulated-reflector cell phone for voice/data transmission

    DOE Patents [OSTI]

    Neagley, Daniel L.; Briles, Scott D.; Coates, Don M.; Freund, Samuel M.

    2002-01-01

    A long-range communications apparatus utilizing modulated-reflector technology is described. The apparatus includes an energy-transmitting base station and remote units that do not emit radiation in order to communicate with the base station since modulated-reflector technology is used whereby information is attached to an RF carrier wave originating from the base station which is reflected by the remote unit back to the base station. Since the remote unit does not emit radiation, only a low-power power source is required for its operation. Information from the base station is transmitted to the remote unit using a transmitter and receiver, respectively. The range of such a communications system is determined by the properties of a modulated-reflector half-duplex link.

  5. U-239: Apple iPhone SMS Processing Flaw Lets Remote Users Spoof...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U-165: Apple iOS Bugs Let Remote Users Execute Arbitrary Code and Spoof Address Bar URLs T-676: Apple iOS Certificate Chain Validation Flaw Lets Certain Remote Users Access or ...

  6. Clean Cities Launches iPhone App for Alternative Fueling Station Locations

    Broader source: Energy.gov [DOE]

    The new app helps users find stations offering electricity, natural gas, propane, and other alternative fuels.

  7. 3610 N. 44th Street, Suite 250, Phoenix, AZ 85018 ● Phone...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    www.sunzia.net October 17, 2013 Transmitted via electronic mail to juliea.smith@hq.doe.gov and christopher.lawrence@hq.doe.gov Subject: SunZia Southwest Transmission ...

  8. Tetra Sun | Open Energy Information

    Open Energy Info (EERE)

    Sun Place: Saratoga, California Sector: Solar Product: California-based stealth mode solar startup focusing on development of back surface passivisation for lower cost PV...

  9. Modular Wind | Open Energy Information

    Open Energy Info (EERE)

    Signal Hill, California Sector: Wind energy Product: California-based wind turbine blade designer in stealth mode. References: Modular Wind1 This article is a stub. You can...

  10. Advanced RenewableEnergy Company ARC Energy | Open Energy Information

    Open Energy Info (EERE)

    (ARC Energy) Place: Nashua, New Hampshire Product: New Hampshire-based stealth mode LED substrate manufacture equipment provider which aims to lower the cost of LEDs....

  11. EnerVault | Open Energy Information

    Open Energy Info (EERE)

    Sunnyvale, California Zip: 94089 Product: California-based stealth mode redox flow battery power storage systems developer. Coordinates: 32.780338, -96.547405 Show Map...

  12. Search for: All records | DOE PAGES

    Office of Scientific and Technical Information (OSTI)

    XML (limit 5000) Have feedback or suggestions for a way to improve these results? ATLAS diboson excesses from the stealth doublet model Chao, Wei Full Text Available February...

  13. Integrated Photovoltaics | Open Energy Information

    Open Energy Info (EERE)

    Photovoltaics Jump to: navigation, search Name: Integrated Photovoltaics Place: Sunnyvale, California Product: California-based stealth mode PV startup. Coordinates: 32.780338,...

  14. Topanga Technologies | Open Energy Information

    Open Energy Info (EERE)

    Technologies Place: Canoga Park, California Zip: 91303 Product: Stealth-mode high-intensity discharge (HID) lighting technology developer. References: Topanga Technologies1...

  15. Siluria Technologies | Open Energy Information

    Open Energy Info (EERE)

    California-based stealth-mode company engaged in development of biological nanotechnology-enabled products for clean energy products such as solar cells and light emitting...

  16. Svaya Nanotechnologies | Open Energy Information

    Open Energy Info (EERE)

    Svaya Nanotechnologies Place: Sunnyvale, California Zip: 94085 Product: Stealth nanotechnology startup developing self-assembling, molecular-scale films useful in the PV...

  17. POLICY FLASH 2016-03

    Broader source: Energy.gov [DOE]

    OMB Category Management Policy 15-1: Improving the Acquisition and Management of Common Information Technology: Laptops and Desktops

  18. Instructions for Using Virtual Private Network (VPN)

    Broader source: Energy.gov [DOE]

    Virtual Private Network (VPN) provides access to network drives and is recommended for use only from a EITS provided laptop.

  19. AN ADVANCED CALIBRATION PROCEDURE FOR COMPLEX IMPEDANCE SPECTRUM MEASUREMENTS OF ADVANCED ENERGY STORAGE DEVICES

    SciTech Connect (OSTI)

    William H. Morrison; Jon P. Christophersen; Patrick Bald; John L. Morrison

    2012-06-01

    With the increasing demand for electric and hybrid electric vehicles and the explosion in popularity of mobile and portable electronic devices such as laptops, cell phones, e-readers, tablet computers and the like, reliance on portable energy storage devices such as batteries has likewise increased. The concern for the availability of critical systems in turn drives the availability of battery systems and thus the need for accurate battery health monitoring has become paramount. Over the past decade the Idaho National Laboratory (INL), Montana Tech of the University of Montana (Tech), and Qualtech Systems, Inc. (QSI) have been developing the Smart Battery Status Monitor (SBSM), an integrated battery management system designed to monitor battery health, performance and degradation and use this knowledge for effective battery management and increased battery life. Key to the success of the SBSM is an in-situ impedance measurement system called the Impedance Measurement Box (IMB). One of the challenges encountered has been development of an accurate, simple, robust calibration process. This paper discusses the successful realization of this process.

  20. Hardware Architecture for Measurements for 50-V Battery Modules

    SciTech Connect (OSTI)

    Patrick Bald; Evan Juras; Jon P. Christophersen; William Morrison

    2012-06-01

    Energy storage devices, especially batteries, have become critical for several industries including automotive, electric utilities, military and consumer electronics. With the increasing demand for electric and hybrid electric vehicles and the explosion in popularity of mobile and portable electronic devices such as laptops, cell phones, e-readers, tablet computers and the like, reliance on portable energy storage devices such as batteries has likewise increased. Because many of the systems these batteries integrated into are critical, there is an increased need for an accurate in-situ method of monitoring battery state-of-health. Over the past decade the Idaho National Laboratory (INL), Montana Tech of the University of Montana (Tech), and Qualtech Systems, Inc. (QSI) have been developing the Smart Battery Status Monitor (SBSM), an integrated battery management system designed to monitor battery health, performance and degradation and use this knowledge for effective battery management and increased battery life. Key to the success of the SBSM is an in-situ impedance measurement system called the Impedance Measurement Box (IMB). One of the challenges encountered has been development of a compact IMB system that will perform rapid accurate measurements of a battery impedance spectrum working with higher voltage batteries of up to 300 volts. This paper discusses the successful realization of a system that will work up to 50 volts.

  1. ESnet's LHCONE Service

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    or CMS Target Install Date: University Technical Contact Name Email Phone University NOC Contact Name Email Phone University Security Contact Name Email Phone ESnet LHCONE...

  2. Sunlight Photonics | Open Energy Information

    Open Energy Info (EERE)

    Photonics Place: South Plainfield, New Jersey Zip: 7080 Product: New Jersey-based stealth thin-film PV maker. References: Sunlight Photonics1 This article is a stub. You can help...

  3. APRIL 2011 NNSA News Viewable.pmd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... A B-2A Spirit Stealth Bomber from the 509th Bomber Wing, operating out of Whiteman Air Force Base, delivered and released the B61-11 JTA at the NNSA's Tonopah Test Range in Nevada. ...

  4. Eclectic Energy Limited | Open Energy Information

    Open Energy Info (EERE)

    Energy Limited Place: Nottinghamshire, United Kingdom Zip: NG21 9PR Sector: Wind energy Product: Design, manufacture D400, StealthGen micro wind, DuoGen wind and water...

  5. Solaren Corporation | Open Energy Information

    Open Energy Info (EERE)

    Beach, California Zip: 90266 Sector: Solar Product: Southern California-based stealth start-up company that intends to develop a project to beam solar power to Earth from...

  6. STATISTICAL STUDY OF CORONAL MASS EJECTIONS WITH AND WITHOUT DISTINCT LOW CORONAL SIGNATURES

    SciTech Connect (OSTI)

    Ma, S.; Attrill, G. D. R.; Golub, L.; Lin, J.

    2010-10-10

    Taking advantage of the two viewpoints of the STEREO spacecraft, we present a statistical study of coronal mass ejections (CMEs) with and without distinct low coronal signatures (LCSs) from 2009 January 1 to August 31. During this period, the lines of sight from STEREO A and B are almost perpendicular and nearly a quarter of the Sun was observed by both. We identified 34 CMEs that originated from around this area and find that (1) about 1 out of 3 CMEs that were studied during 8 months of solar minimum activity are stealth CMEs; a CME is stealth if no distinct LCS (such as coronal dimming, coronal wave, filament eruption, flare, post-eruptive arcade) can be found on the disk. (2) The speeds of the stealth CMEs without LCSs are typically below 300 km s{sup -1}. Comparing with the slow CMEs with LCSs, the stealth CMEs did not show any clear differences in their velocity and acceleration evolution. (3) The source regions of the stealth CMEs are usually located in the quiet Sun rather than active regions. Detailed study indicates that more than half of the stealth CMEs in this paper showed some faint change of the coronal structures (likely parts of flux ropes) when they could be observed over the solar limb before or during the CME evolution. Finally, we note that space weather detection systems based on LCSs totally independent of coronagraph data may fail to detect a significant proportion of CMEs.

  7. Lensless Imaging of Whole Biological Cells with Soft X-Rays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    extremely fast, and with current computing power reconstructions can even be done on a laptop computer. The detector currently being used is unable to capture all necessary...

  8. PROHIBITED PURCHASES for the Ames Laboratory Purchase Card

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    have been determined to be prohibited: Equipment Computing Devices (e.g. desktop, laptop, tablets, thin clients, mini-PCs) Servers Copiers Monitors Printers...

  9. TotalView | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    can significantly improve the GUI response. Download the RDC and install it on your laptop or workstation: http:www.roguewave.comproductstotalviewremote-display-client.aspx...

  10. CES | OpenEI Community

    Open Energy Info (EERE)

    The highlights of this year's show were OLED TVs, ultra-thin laptops, tablets, and smartphones. However, a few smart grid-related technologies were making an impression....

  11. home automation | OpenEI Community

    Open Energy Info (EERE)

    The highlights of this year's show were OLED TVs, ultra-thin laptops, tablets, and smartphones. However, a few smart grid-related technologies were making an impression....

  12. electronics | OpenEI Community

    Open Energy Info (EERE)

    The highlights of this year's show were OLED TVs, ultra-thin laptops, tablets, and smartphones. However, a few smart grid-related technologies were making an impression....

  13. Greenbutton datacustodian documentation | OpenEI Community

    Open Energy Info (EERE)

    Greenbutton datacustodian documentation Home > Groups > Green Button Applications Hi, I was able to bring up the greenbutton datacustodian project on my laptop at localhost:8080...

  14. Fact #916: March 14, 2016 Fuel Savings/Emissions Reduction was...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    These systems provide power for cab heating and cooling, powering lifts, welding equipment, power tools, laptops and other equipment while the main truck engine is shut down. Fact ...

  15. Boston Power | Open Energy Information

    Open Energy Info (EERE)

    Massachusetts Zip: 01581 3961 Sector: Vehicles Product: Start-up developing a battery for laptop computers and electric vehicles. Coordinates: 42.283096, -71.600318...

  16. Microsoft Word - Final Report 01-02-08.doc

    Broader source: Energy.gov (indexed) [DOE]

    Department's Oak Ridge National Laboratory (ORNL) had brought an unclassified laptop computer into a Y-12 Limited Area without following proper protocols; Imnediately thereafter,...

  17. Princeton Plasma Physics Lab - Lithium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lithium Nearly everybody knows about lithium - a light, silvery alkali metal - used in rechargeable batteries powering everything from laptops to hybrid cars. What may not be so...

  18. U.S. Postal Service BlueEarth Program - Personal Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laptops, notebooks, and netbooks Computer towers, hard drives, small servers, and portable disk drives Inkjet and laser printing cartridges COMING SOON Printers, fax machines, ...

  19. National Atmospheric Release Advisory Center | National Nuclear...

    National Nuclear Security Administration (NNSA)

    ... links using the internet, and using web tools implemented by NARAC. Emergency ... website by using a standard web browser run on standard desktop and laptop computers. ...

  20. Quantifying socio-economic indicators in developing countries from mobile phone communication data: applications to Côte d’Ivoire

    SciTech Connect (OSTI)

    Mao, Huina; Shuai, Xin; Ahn, Yong -Yeol; Bollen, Johan

    2015-10-13

    The widespread adoption of mobile devices that record the communications, social relations, and movements of billions of individuals in great detail presents unique opportunities for the study of social structures and human dynamics at very large scales. This is particularly the case for developing countries where social and economic data can be hard to obtain and is often too sparse for real-time analytics. In this paper, we leverage mobile call log data from Côte d’Ivoire to analyze the relations between its nation-wide communications network and the socio-economic dynamics of its regional economies. We introduce the CallRank indicator to quantify the relative importance of an area on the basis of call records, and show that a region’s ratio of in- and out-going calls can predict its income level. We detect a communication divide between rich and poor regions of Côte d’Ivoire, which corresponds to existing socio-economic data. Our results demonstrate the potential of mobile communication data to monitor the economic development and social dynamics of low-income developing countries in the absence of extensive econometric and social data. Finally, our work may support efforts to stimulate sustainable economic development and to reduce poverty and inequality.

  1. Quantifying socio-economic indicators in developing countries from mobile phone communication data: applications to Côte d’Ivoire

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mao, Huina; Shuai, Xin; Ahn, Yong -Yeol; Bollen, Johan

    2015-10-13

    The widespread adoption of mobile devices that record the communications, social relations, and movements of billions of individuals in great detail presents unique opportunities for the study of social structures and human dynamics at very large scales. This is particularly the case for developing countries where social and economic data can be hard to obtain and is often too sparse for real-time analytics. In this paper, we leverage mobile call log data from Côte d’Ivoire to analyze the relations between its nation-wide communications network and the socio-economic dynamics of its regional economies. We introduce the CallRank indicator to quantify themore » relative importance of an area on the basis of call records, and show that a region’s ratio of in- and out-going calls can predict its income level. We detect a communication divide between rich and poor regions of Côte d’Ivoire, which corresponds to existing socio-economic data. Our results demonstrate the potential of mobile communication data to monitor the economic development and social dynamics of low-income developing countries in the absence of extensive econometric and social data. Finally, our work may support efforts to stimulate sustainable economic development and to reduce poverty and inequality.« less

  2. PNNL: Publications: Calendar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CISCO Phone Screens iPhone 4 & 4S iPhone 5, 5S, & 5C iPhone 6 iPhone 6 Plus Samsung Galaxy S3 Samsung Galaxy S4 & S5 Tablet Wallpaper Tablet Wallpaper iPad 1, 2, & 1st Gen. Mini...

  3. U.S. Department of Energy

    Office of Environmental Management (EM)

    ... Phone: (404) 894-4960 Fax : (404) 894-9320 www.catea.org CHI Centers 10501 New Hampshire Avenue Silver Spring, MD 20903 Phone 1: (301) 445-3350 Phone 2: (301) 439-5366 Fax ...

  4. Feedback | DOE PAGES

    Office of Scientific and Technical Information (OSTI)

    Email Contact us by phone Phone Phone (865) 241-5275 Contact us in writing Mail U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge,TN ...

  5. Feedback | Geothermal

    Office of Scientific and Technical Information (OSTI)

    Contact us by phone Phone Phone 865-241-6435 Contact us in writing Mail U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge,TN 37831

  6. Feedback | DOE Patents

    Office of Scientific and Technical Information (OSTI)

    Contact us by phone Phone Phone 865-241-6435 Contact us in writing Mail U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge,TN 37831

  7. Contact Us | Geothermal

    Office of Scientific and Technical Information (OSTI)

    Contact us by phone Phone Phone 865-241-6435 Contact us in writing Mail U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge,TN 37831

  8. Contact Us | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Don Hillebrand Division Director Phone. 630.252.6502 Jim Miller Deputy Division Director Phone. 630.252.3425 Sandy Davis Assistant Division Director Phone. 630.252.8259 Ann...

  9. ARM TR-008

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Avenue Denver, CO 80208 Phone: (303) 871-2238 murcray@ram.phys.du.edu Primary Contacts: Art Dybdahl Phone: (303) 871-3389 adybdahl@du.edu Joe Landry Phone: (303) 871-4351...

  10. Triangle Universities Nuclear Laboratory : 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First Name: Middle Name: Last Name: Institution: Title: E-Mail: Work Phone: Cell Phone: TUNLFEL Sponsor (REQUIRED): Extent of your visit: Visitor: Short Term (less than 1...

  11. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    coming to SSRL) before beam time. Spokesperson: Institution: Email: Degree: Work Phone: Fax: Principal Investigator: Email: Work Phone: Collaborators: Institution: (if...

  12. Ex Parte Memo_September 25, 2013_RF TP Comments (00019688).DOC

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kido, DOE Detlef Westphalen, Navigant Jennifer Cleary, AHAM Mark Drake, Electrolux Home Products (phone) Bill Brown, GE Appliances (phone) Maxwell Wilband, LG Electronics USA

  13. Microsoft Word - EODchecklist1.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Employee Orientation FORMS CHECKLIST EOD Date: Employee Name: Organization: HR Specialist: Phone Number: Admin Contact: Phone Number: New Employee Orientation Forms to be ...

  14. Triangle Universities Nuclear Laboratory : 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Professor NGCSU Office : TUNL 323 Phone : 919-660-2617 richard.prior@ung.edu Purcell, James Professor Emeritus NGCSU Office : TUNL 420 Phone : 919-660-2627...

  15. 02-10-05.cdr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... have at least three means of communication, and WIPP trucks have four: CB, satellite phone, cell phone and TRANSCOM. "Our drivers also learned what to look for when ...

  16. TTW 6-26-06

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Each underground cache will contain a mine phone with a selector switch. Redundant phone ... The address, which many viewed via satellite, covered some key accomplishments and several ...

  17. University of Delaware | CCEI Principal Investigators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Principal Investigators Image Name - Affiliation Title Email Phone: Phone Research Interests: ResearchInterests Profile ResearchGroupWebsite BACK TO TOP

  18. Virtual Private Network (VPN) | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Instructions for using a Cryptocard Download the VPN Client VPN client downloads (login required) Instructions AnyConnect Client For laptop or desktop For mobile devices IpSec ...

  19. Boston Power GP Batteries JV | Open Energy Information

    Open Energy Info (EERE)

    Taiwan-based JV that produces Sonata rechargeable Li-ion batteries for laptop computers. References: Boston Power & GP Batteries JV1 This article is a stub. You can help...

  20. Git

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    you are about to create and any other "clones" of it you have, perhaps on your laptop. Call the repository you are about to create the SG-repository, for "Science Gateway...

  1. Other Matters - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    109); no coins necessary. Top What kind of internet access is there? Should I bring my laptop? Wi-Fi is free for a guest's first seven days on campus; lecture notes will be...

  2. ARM - Education Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Those who visited the poster and kiosk were able to go through the kiosk software at a laptop to go through the kiosk software and gave their suggestions on how to make it better....

  3. Sector4 FAQs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    data home? I hear a horn coming from 4-ID-A; whats going on? How can I print from my laptop? After you leave: Posted by: Becki Gagnon ( gagnon@aps.anl.gov) Content by: Jonathan...

  4. NREL-Energy Assessment Training Course | Open Energy Information

    Open Energy Info (EERE)

    are asked to bring a laptop, a calculator and a notebook. Attendees are asked to have Microsoft Excel, Word, and eQuest, (a free energy modeling software program) loaded onto their...

  5. Las Vegas | OpenEI Community

    Open Energy Info (EERE)

    show. The highlights of this year's show were OLED TVs, ultra-thin laptops, tablets, and smartphones. However, a few smart grid-related technologies were making an impression....

  6. The Consumer Electronics Show round-up | OpenEI Community

    Open Energy Info (EERE)

    The highlights of this year's show were OLED TVs, ultra-thin laptops, tablets, and smartphones. However, a few smart grid-related technologies were making an impression. There...

  7. Chapter 1

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -i Chapter 1 Revision History as of 2-12-16: Subsection Date Changed To LSSO Badges ... brings a personal or government laptop computer into an HQ building, protective force ...

  8. ParaView Red Blood Cell Tutorial | Argonne Leadership Computing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The examples can easily be run on a laptop, using the example data set provided. Tour of ... The data is available for download here (27MB compressed, 39MB uncompressed): Data set ...

  9. Home Office and Electronics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laptops are far more efficient than desktop computers, especially ENERGY STAR qualified models. Use Smart Power Strips to Save Energy. 2 of 2 Use Smart Power Strips to Save Energy. ...

  10. HyEnergy Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    Texas Zip: 78730 Product: Developer of the FlatStack Fuel Cell System, a hybrid batteryfuel cell family providing lightweight and low cost power for devices such as laptop...

  11. Wind for Schools Portal Motion Chart | Open Energy Information

    Open Energy Info (EERE)

    this analytical feature on a browser that has Flash, such as a laptop or desktop computer. Retrieved from "http:en.openei.orgwindex.php?titleWindforSchoolsPortalMotio...

  12. OSTIblog Posts by Cathey Daniels | OSTI, US Dept of Energy Office...

    Office of Scientific and Technical Information (OSTI)

    That now you can learn about OSTI tools and services on our OSTI YouTube site launched in June? Read more... Mixing Science.gov, Coffee, and a Laptop Personal Perspectives ...

  13. OSTI, US Dept of Energy, Office of Scientific and Technical Informatio...

    Office of Scientific and Technical Information (OSTI)

    Mixing Science.gov, Coffee, and a Laptop by Cathey Daniels on Wed, Dec 5, 2007 Yesterday ... Happily, my job is community outreach for OSTI which hosts Science.gov. So, armed with a ...

  14. Audit Report: IG-0768

    Office of Environmental Management (EM)

    In the past three years, the Department has spent more than 400 million on IT hardware to ... account for over 1,400 laptops either lost, stolen or misplaced over the past six years. ...

  15. Batteries

    Broader source: Energy.gov [DOE]

    From consumer electronics to laptops to vehicles, batteries are an important part of our everyday life. Learn about the Energy Department's innovative research and development in different energy storage options.

  16. SSRL HEADLINES April 2006

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of amorphous silicon - the semiconductor used in low-cost electronics such as photovoltaic cells for solar power and thin-film transistors used in flat screen laptops and TVs. ...

  17. Research for new UAV capabilities

    SciTech Connect (OSTI)

    Canavan, G.H.; Leadabrand, R.

    1996-07-01

    This paper discusses research for new Unmanned Aerial Vehicles (UAV) capabilities. Findings indicate that UAV performance could be greatly enhanced by modest research. Improved sensors and communications enhance near term cost effectiveness. Improved engines, platforms, and stealth improve long term effectiveness.

  18. Microsoft Word - Metrology Req form411.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metrology Request Form ( Scanning Electron Microscopy, Optical Profilometry,) Personal Contact Information : Date: Name: Phone :...

  19. Department of Energy (DOE) OpenNet documents

    Office of Scientific and Technical Information (OSTI)

    Forgot My User Name Name: Address: Email: Phone: GET MY USER NAME

  20. Suppression of Tin Whiskers in Lead-Free Solder - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (pacemakers) Transportation (Avionics, Satellite, Automotive) Technology Status ... *Name: *Email Address: Phone Number: Organization: Position: Other ...

  1. Software speeds detection of diseases and cancer-treatment targets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Software speeds detection of diseases Software speeds detection of diseases and cancer-treatment targets The Lab has released an updated version of software that is now capable of identifying DNA from viruses and all parts of the Tree of Life. December 1, 2014 With Sequedex, a laptop computer can analyze DNA sequences faster than any current DNA sequencer can create them. With Sequedex, a laptop computer can analyze DNA sequences faster than any current DNA sequencer can create them. Contact

  2. Critical Decision 0 (CD-0) ESAAB and PMRC Brief Template | Department of

    Energy Savers [EERE]

    Energy Could 135,000 Laptops Help Solve the Energy Challenge? Could 135,000 Laptops Help Solve the Energy Challenge? November 30, 2010 - 12:00am Addthis Washington, D.C. - U.S Energy Secretary Steven Chu today announced the largest ever awards of the Department's supercomputing time to 57 innovative research projects - using computer simulations to perform virtual experiments that in most cases would be impossible or impractical in the natural world. Utilizing two world-leading

  3. BPA-2012-01387-FOIA Correspondence

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FOIA request. You requested: Phone records for October 20, 2008 from BPA Substation Port Angeles, WA, between the hours of 7 - 10 a.m. for the phone numbers 360-457-4565 and...

  4. BPA-2012-01387-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 U.S.C. 552. You requested: Phone records for October 20, 2008 from BPA Substation Port Angeles, WA, between the hours of 7 - 10 a.m. for the phone numbers 360-457-4565 and...

  5. https://sweis.nv.doe.gov/References/RE%20WM%20activities%20at...

    National Nuclear Security Administration (NNSA)

    ... And enjoy the holidays. G.W. Roles| SAIC Nuclear Engineer | ILPSG phone: 301-353-8354 | ... G.W. Roles| SAIC Nuclear Engineer | ILPSG phone: 301-353-8354 | fax 301-428-3713 mobile: ...

  6. Microsoft Outlook - Memo Style

    National Nuclear Security Administration (NNSA)

    And enjoy the holidays. G.W. Roles| SAIC Nuclear Engineer | ILPSG phone: 301-353-8354 | ... G.W. Roles| SAIC Nuclear Engineer | ILPSG phone: 301-353-8354 | fax 301-428-3713 3 mobile: ...

  7. FY2002 SSRLUO Executive Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    08544 Phone: 609-258-5848 E-mail: smyneni@princeton.edu Nicholas Pingitore University of Texas at El Paso Environmental & Geosciences El Paso, TX 79968-0555 Phone: 915-747-5754...

  8. Derived Annual Estimates

    U.S. Energy Information Administration (EIA) Indexed Site

    robert.adler@eia.doe.gov Robert Adler Survey Manager Phone: 202-586-1134 Fax: (202) 586-0018 thomas.lorenz@eia.doe.gov Thomas Lorenz Operations Research Analyst Phone: 202-586-3442...

  9. Beamline 11.0.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (510) 486-7696 Spokesperson Joachim Sthr Stanford Synchrotron Radiation Laboratory Phone: (650) 926-2570 Fax: (650) 926-4100 Beamline phone (510) 495-2010 Website http:...

  10. Jefferson Lab - Search

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    90 en Phone Book https:www.jlab.orgphone-book-0

    PHONE BOOK - STAFF SEARCH


    Search by : Name...

  11. Research Affiliates | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engel Gregory Engel Research Affiliate E-mail: gsengel@uchicago.edu Phone: 773.834.0818 Harry Frank Harry Frank Research Affiliate E-mail: harry.frank@uconn.edu Phone: 860.486.2844...

  12. Triangle Universities Nuclear Laboratory : 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transition Duke Office : FEL 143 Phone : 919-660-2646 vrathbone@fel.duke.edu Swift, Gary R&D Engineer III Duke Office : FEL 207 Phone : 919-660-2668 swift@fel.duke.edu...

  13. Environment/Health/Safety (EHS): Report an Accident or Incident

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    or 9-911 immediately or the emergency number on your desk phone if off site. Please stay on the line until it is answered. If calling from a cellular phone, call 911 and be...

  14. Form 540.1-2_REV A_

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Middle, Last, Suffix: PI Phone: ext. PI Fax: PI Address: PI email: BUSINESS OFFICER (BO) BO Name Prefix, First, Middle, Last, Suffix: BO Phone: ext. BO Fax: BO Address: BO...

  15. Beamline 9.0.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    it University of Oregon Phone: (541) 346-4742 Fax: (541) 346-3422 Local contact David Shapiro Advanced Light Source, Berkeley Lab Phone: (510) 486-7628 Fax: (510) 486-7696...

  16. Triangle Universities Nuclear Laboratory : 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Room 421, TUNL Phone : (919) 660 - 2698 Email : datacomp@tunl.duke.edu REU Program Rhonda Simmons 158 Phillips Hall, UNC-CH Phone : (919) 843 - 2629 Email : reu@tunl.duke.edu...

  17. DOE Zero Energy Ready Home High-Performance Home Sales Training...

    Energy Savers [EERE]

    ... For instance, a smart phone is introduced, costs 600 vs. 6 for a normal cell phone, and ... All the innovations that it's forecasting about zero energy ready, and of course, you're ...

  18. Contact Us | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us Contact Us Division Director Supratik Guha Phone: 630-252-7740 Deputy Division Director Director, Nano Design Works Andreas Roelofs Phone: 630.252.2504 Fax: 630.252.6866...

  19. Contact Us | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us Contact Us Postdoctoral Program Lead Kristene (Tina) Henne Phone: 630.252.2907 E-mail: khenne@anl.gov Administrative Support Kathy Eggers Phone: 630.252.6034 E-mail:...

  20. Steering Committee | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Robert E. Blankenship DirectorPrincipal Investigator E-mail: blankenship@wustl.edu Phone: ... Phone: 314-935-3168 Neil Hunter Neil Hunter Theme 2 LeaderPrincipal ...

  1. Beamline 12.3.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    view it Life Sciences Division, Berkeley Lab Phone: (510) 486-8179 Fax: (510) 486-5298 Jane Tanamachi Life Sciences Division, Berkeley Lab Phone: (510) 495-22404 Fax: (510)...

  2. Agenda for the December 15-16, 2015 - Technical Exchange Meeting...

    Office of Environmental Management (EM)

    Join WebEx meeting Meeting number: 995 974 834 Meeting password: Meeting1 Join by phone ... Join WebEx meeting Meeting number: 995 028 603 Meeting password: Meeting1 Join by phone ...

  3. Contact Us | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    For general information about the Department of Energy: Phone: 202-586-5000 For more information about information technology and the OCIO: Phone: 202-586-0166 Fax: 202-586-7966 ...

  4. Operations Committee | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manager, Research Administration and Operations E-mail: kmosley@wustl.edu Phone: 314-935-3168 Dan Allen Dan Allen Multimedia Specialist E-mail: danallen@wustl.edu Phone: ...

  5. User Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    number from a lab phone call 9-425-1251 and after the beeps key in your call back number, press "" and hang up. From a cell phone, call 510-425-1251 If you are unable to reach a...

  6. The MicroBooNE Experiment - Collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact MicroBooNE Spokespeople: Bonnie Fleming, Yale email: bonnie.fleming(AT)yale.edu phone: (203) 432-3235 Sam Zeller, FNAL email: gzeller(AT)fnal.gov phone: (630) 840-6879 Collaboration Members

  7. Beamline 6.3.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    address is being protected from spambots. You need JavaScript enabled to view it Advanced Light Source, Berkeley Lab Phone: (510) 486-5926 Beamline phone number (510) 495-2062...

  8. University of Delaware | CCEI Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CCEI Staff Jeff Everhart Analytical Chemist Phone: (302) 831-6066 Email: Send email Location:368 ISE Lab Cindy King Administrative Assistant Phone: (302) 831-1628 Email: Send email ...

  9. Information on DOE O 420.1C, Facility Safety | Department of...

    Energy Savers [EERE]

    FAQS DOE O 420.1B1C Crosswalk Matrix Roll-out Briefing Slides Contact Pranab Guha | Phone: 301-903-7089 Garrett Smith, Director | Phone: 301-903-7440 Jim O'Brien, Director | ...

  10. FOIA Contacts | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Phone: 202-586-5955 Fax: 202-586-0575 FOIA Web Page: http:energy.govmanagement... Poli A. Marmolejos FOIA Appeals Officer Phone: 202-287-1400 Appeals Contact Web Page: ...

  11. More About NNSA's Naval Reactors Office | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) More About NNSA's Naval Reactors Office The Naval Nuclear Propulsion Program provides militarily effective nuclear propulsion plants and ensures their safe, reliable and long-lived operation. This mission requires the combination of fully trained U.S. Navy men and women with ships that excel in endurance, stealth, speed, and independence from supply chains. The Naval Nuclear Propulsion Program provides militarily effective nuclear propulsion plants and ensures their

  12. Powering the Nuclear Navy | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Programs Powering the Nuclear Navy The Naval Nuclear Propulsion Program provides militarily effective nuclear propulsion plants and ensures their safe, reliable and long-lived operation. This mission requires the combination of fully trained U.S. Navy men and women with ships that excel in endurance, stealth, speed, and independence from supply chains. The Naval Nuclear Propulsion Program provides militarily effective nuclear propulsion plants and ensures their safe, reliable and

  13. Public Affairs | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Public Affairs The Naval Nuclear Propulsion Program provides militarily effective nuclear propulsion plants and ensures their safe, reliable and long-lived operation. This mission requires the combination of fully trained U.S. Navy men and women with ships that excel in endurance, stealth, speed, and independence from supply chains. The Naval Nuclear Propulsion Program provides militarily effective nuclear propulsion plants and ensures their safe, reliable and long-lived operation. This mission

  14. Public Affairs | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Public Affairs The Naval Nuclear Propulsion Program provides militarily effective nuclear propulsion plants and ensures their safe, reliable and long-lived operation. This mission requires the combination of fully trained U.S. Navy men and women with ships that excel in endurance, stealth, speed, and independence from supply chains. The Naval Nuclear Propulsion Program provides militarily effective nuclear propulsion plants and ensures their safe, reliable and long-lived operation. This mission

  15. Marina Gorelenkova | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Marina Gorelenkova Computational Project Engineer, Plasma Physics Laboratory. Contact Information Phone: 609-243-2137 Email: mgorelen@pppl.gov

  16. Adena Energy and Environmental Consulting, LLC | Open Energy...

    Open Energy Info (EERE)

    auditsweatherization; Engineeringarchitecturaldesign; Trainining and education Phone Number: 740-947-4934 Website: www.adenaenergyconsulting.com Coordinates:...

  17. Weatherking Heating & Air conditioning | Open Energy Information

    Open Energy Info (EERE)

    wholesale;Engineeringarchitecturaldesign;Installation;Investmentfinances;Maintenance and repair; Retail product sales and distribution Phone Number: 330-908-0281...

  18. Dovetail Solar and Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind energy Product: Consulting; Engineeringarchitecturaldesign;Installation; Maintenance and repair; Retail product sales and distribution;Trainining and education Phone...

  19. Third Sun Solar and Wind Power | Open Energy Information

    Open Energy Info (EERE)

    power production; Engineeringarchitecturaldesign;Installation;Investmentfinances;Maintenance and repair; Retail product sales and distribution Phone Number: 740-597-3111...

  20. JUGENHEIMER INDUSTRIAL SUPPLIES INC | Open Energy Information

    Open Energy Info (EERE)

    energy transmission and distribution; Engineeringarchitecturaldesign;Installation; Maintenance and repair;Manufacturing; Retail product sales and distribution Phone Number:...

  1. Bold Alternatives | Open Energy Information

    Open Energy Info (EERE)

    Energy provider: power production; Engineeringarchitecturaldesign;Installation; Maintenance and repair; Retail product sales and distribution;Trainining and education Phone...

  2. Great Lakes WIND Network | Open Energy Information

    Open Energy Info (EERE)

    Energy provider: energy transmission and distribution; Investmentfinances;Maintenance and repair;Manufacturing; Research and development; Trainining and education Phone...

  3. Renewable Energy Nongovernmental Organization Network (RENOVE...

    Open Energy Info (EERE)

    Nongovernmental Organization Network (RENOVE) Jump to: navigation, search Name: Renewable Energy Nongovernmental Organization Network (RENOVE) Place: Brasilia, Brazil Phone Number:...

  4. CENNATEK | Open Energy Information

    Open Energy Info (EERE)

    Address: 1086 Modeland Road, Bldg. 1010 Place: Sarnia, Ontario, Canada Sector: Bioenergy, Biofuels, Biomass, Efficiency, Renewable Energy, Services Phone Number:...

  5. change_address_111609

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CHANGE OF ADDRESS and EMERGENCY NOTIFICATION TO: HUMAN RESOURCES DATE: Z# Social Security # Print First Name Print Middle Name or Initial Print Last Name (Currently in Payroll System) Complete appropriate changes: NAME CHANGE: Print Name Change to ADDRESS CHANGE: Mailing Address City State Zip TELEPHONE NUMBER CHANGE: FROM Area Code and # TO Area Code and # Cell Area Code and # Home phone Message phone EMERGENCY NOTIFICATION CHANGE: Name Relationship Day Phone Evening Phone Address City State

  6. BPA-2012-00676-FOIA Request

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    *** FO1.A OFFICE TILTS DATE: DUE DATE: Name: Francisco Carvalho Organization: University Professor Address: Phone: FAX: Email: Description of...

  7. Webmaster

    Broader source: Energy.gov [DOE]

    The Bioenergy Technologies Office always welcomes your feedback and suggestions. Contact us via mail, phone or email.

  8. UNCLASSIFIED UNCLASSIFIED Nuclear Materials Management & Safeguards System

    National Nuclear Security Administration (NNSA)

    UNCLASSIFIED Nuclear Materials Management & Safeguards System CONTACT INFORMATION UPDATE REPORTING IDENTIFICATION SYMBOL (RIS) RIS: Address: Facility Name: CONTACTS Name Email: Phone/Fax Name Email: Phone/Fax Name Email: Phone/Fax Name Email: Phone/Fax Return Via Mail To: U.S Department Of Energy ATTN: NMMSS Staff NA-73, GTN 1000 Independence Avenue, SW Washington, DC 20585-1290 Return Via Fax To: 301-903-1998 Return Via E-Mail To: NMMSS@nnsa.doe.gov

  9. John C Lacenere | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    John C Lacenere Head, Electrical Engineering Power Branch Contact Information Phone: 609-243-3308 Email: lacenere@pppl.gov

  10. Jifeng Sun | Solid State Solar Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jifeng Sun Researchers Jifeng Sun Postdoctoral Researcher, University of Missouri Phone: 850-274-7138 Email: sunjif@missouri

  11. PNNL: Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contacts Have a Question or Comment? Please use our feedback form. We would love to hear from you. Looking for a Staff Member at PNNL? Use our searchable staff directory to find staff contact information. Information returned includes staff name and telephone number. Phone Numbers and Addresses View our phone and address book for mailing addresses and important phone numbers

  12. Computer usage and national energy consumption: Results from a field-metering study

    SciTech Connect (OSTI)

    Desroches, Louis-Benoit; Fuchs, Heidi; Greenblatt, Jeffery; Pratt, Stacy; Willem, Henry; Claybaugh, Erin; Beraki, Bereket; Nagaraju, Mythri; Price, Sarah; Young, Scott

    2014-12-01

    The electricity consumption of miscellaneous electronic loads (MELs) in the home has grown in recent years, and is expected to continue rising. Consumer electronics, in particular, are characterized by swift technological innovation, with varying impacts on energy use. Desktop and laptop computers make up a significant share of MELs electricity consumption, but their national energy use is difficult to estimate, given uncertainties around shifting user behavior. This report analyzes usage data from 64 computers (45 desktop, 11 laptop, and 8 unknown) collected in 2012 as part of a larger field monitoring effort of 880 households in the San Francisco Bay Area, and compares our results to recent values from the literature. We find that desktop computers are used for an average of 7.3 hours per day (median = 4.2 h/d), while laptops are used for a mean 4.8 hours per day (median = 2.1 h/d). The results for laptops are likely underestimated since they can be charged in other, unmetered outlets. Average unit annual energy consumption (AEC) for desktops is estimated to be 194 kWh/yr (median = 125 kWh/yr), and for laptops 75 kWh/yr (median = 31 kWh/yr). We estimate national annual energy consumption for desktop computers to be 20 TWh. National annual energy use for laptops is estimated to be 11 TWh, markedly higher than previous estimates, likely reflective of laptops drawing more power in On mode in addition to greater market penetration. This result for laptops, however, carries relatively higher uncertainty compared to desktops. Different study methodologies and definitions, changing usage patterns, and uncertainty about how consumers use computers must be considered when interpreting our results with respect to existing analyses. Finally, as energy consumption in On mode is predominant, we outline several energy savings opportunities: improved power management (defaulting to low-power modes after periods of inactivity as well as power scaling), matching the rated power

  13. PNNL: Publications: Calendar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Not sure how to set the images as your wallpaper? View the instructions for Laptops/Desktops Science as Art Downloadable Materials The 12 images and the stories behind them can be downloaded and used as a 2016 wallpaper calendar on desktop and laptop computers. Several resolutions and device-specific versions have been provided for your convenience. Each set of images is provided in *.zip format or may be downloaded individually (.png files). You may need to right-click and choose "Save

  14. #LabChat: Extreme Circumstances, Unique Solutions, June 28 at 1pm EDT |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Extreme Circumstances, Unique Solutions, June 28 at 1pm EDT #LabChat: Extreme Circumstances, Unique Solutions, June 28 at 1pm EDT June 27, 2012 - 2:31pm Addthis The simple, portable device identifies materials through their characteristic energy signals as unique as fingerprints. The three detectors are housed in a thermos-sized container that is connected to a laptop computer. The device issues a signal turning the laptop display bright red when nuclear material of

  15. Air-Breathing Fuel Cell Stack - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air-Breathing Fuel Cell Stack Los Alamos National Laboratory Contact LANL About This Technology Air-breathing passive fuel cell stack Air-breathing passive fuel cell stack Technology Marketing SummaryLANL has developed a fuel cell for portable power applications in laptop computers, toys, and other appliances with low-power demand.DescriptionThe increasing number of portable electronic devices on the market today-from laptop computers to remote-controlled toys-is creating a demand for improved,

  16. Triangle Universities Nuclear Laboratory : 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Busch, Matthew Engineer/Designer Duke Office : FEL 112 Phone : (919) 660-2694 mbusch@fel.duke.edu Calisto, Tom R&D Engineer II Duke Office : PHY 012 Phone : (919) 660-2956 tc203@tunl.duke.edu Carlin, Bret Electronics Supervisor Duke Office : PHY 02 Phone : (919) 660-2544 carlin@tunl.duke.edu Dunham, John Accelerator Technician Duke Office : PHY 04 Phone : (919) 660-2542 dunham@tunl.duke.edu Emamian, Mark R&D Engineer III Duke Office : FEL 208 Phone : (919) 660-2649 me@fel.duke.edu

  17. Triangle Universities Nuclear Laboratory : 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bartram, Chelsea Graduate Student UNC-CH Office : PHY 03 Phone : (919) 660-2540 chelsea.bartram@gmail.com Beard, Adrian Associate in Research NC A&T Office : Phone : a08beard@yahoo.com Combs, Dustin Graduate Student NCSU Office : PHY 08 Phone : (919) 660-2537 dccombs@ncsu.edu Cooper, Andrew Graduate Student UNC-CH Office : TUNL 302 Phone : (919) 660-2606 alcooper@live.unc.edu Cumberbatch, Laurie Graduate Student Duke Office : TUNL 428 Phone : (919) 660-2639 cumberba@tunl.duke.edu Dermigny,

  18. Low-cost flexible packaging for high-power Li-Ion HEV batteries.

    SciTech Connect (OSTI)

    Jansen, A. N.; Amine, K.; Henriksen, G. L.

    2004-06-18

    Batteries with various types of chemistries are typically sold in rigid hermetically sealed containers that, at the simplest level, must contain the electrolyte while keeping out the exterior atmosphere. However, such rigid containers can have limitations in packaging situations where the form of the battery is important, such as in hand-held electronics like personal digital assistants (PDAs), laptops, and cell phones. Other limitations exist as well. At least one of the electrode leads must be insulated from the metal can, which necessitates the inclusion of an insulated metal feed-through in the containment hardware. Another limitation may be in hardware and assembly cost, such as exists for the lithium-ion batteries that are being developed for use in electric vehicles (EVs) and hybrid electric vehicles (HEVs). The large size (typically 10-100 Ah) of these batteries usually results in electric beam or laser welding of the metal cap to the metal can. The non-aqueous electrolyte used in these batteries are usually based on flammable solvents and therefore require the incorporation of a safety rupture vent to relieve pressure in the event of overcharging or overheating. Both of these features add cost to the battery. Flexible packaging provides an alternative to the rigid container. A common example of this is the multi-layered laminates used in the food packaging industry, such as for vacuum-sealed coffee bags. However, flexible packaging for batteries does not come without concerns. One of the main concerns is the slow egress of the electrolyte solvent through the face of the inner laminate layer and at the sealant edge. Also, moisture and air could enter from the outside via the same method. These exchanges may be acceptable for brief periods of time, but for the long lifetimes required for batteries in electric/hybrid electric vehicles, batteries in remote locations, and those in satellites, these exchanges are unacceptable. Argonne National Laboratory (ANL

  19. Flexible low-cost packaging for lithium ion batteries.

    SciTech Connect (OSTI)

    Jansen, A. N.; Amine, K.; Chaiko, D. J.; Henriksen, G. L.; Chemical Engineering

    2004-01-01

    Batteries with various types of chemistries are typically sold in rigid hermetically sealed containers that, at the simplest level, must contain the electrolyte while keeping out the exterior atmosphere. However, such rigid containers can have limitations in packaging situations where the form of the battery is important, such as in hand-held electronics like personal digital assistants (PDAs), laptops, and cell phones. Other limitations exist as well. At least one of the electrode leads must be insulated from the metal can, which necessitates the inclusion of an insulated metal feed-through in the containment hardware. Another limitation may be in hardware and assembly cost, such as exists for the lithium-ion batteries that are being developed for use in electric vehicles (EVs) and hybrid electric vehicles (HEVs). The large size (typically 10-100 Ah) of these batteries usually results in electric beam or laser welding of the metal cap to the metal can. The non-aqueous electrolyte used in these batteries are usually based on flammable solvents and therefore require the incorporation of a safety rupture vent to relieve pressure in the event of overcharging or overheating. Both of these features add cost to the battery. Flexible packaging provides an alternative to the rigid container. A common example of this is the multi-layered laminates used in the food packaging industry, such as for vacuum-sealed coffee bags. However, flexible packaging for batteries does not come without concerns. One of the main concerns is the slow egress of the electrolyte solvent through the face of the inner laminate layer and at the sealant edge. Also, moisture and air could enter from the outside via the same method. These exchanges may be acceptable for brief periods of time, but for the long lifetimes required for batteries in electric/hybrid electric vehicles, batteries in remote locations, and those in satellites, these exchanges are unacceptable. Argonne National Laboratory (ANL

  20. 3D World Building System

    ScienceCinema (OSTI)

    None

    2014-02-26

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  1. FOIA Contacts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contacts FOIA Contacts FOIA REQUESTER SERVICE CENTERS, FOIA PUBLIC LIASONS, AND FOIA OFFICERS DOE Headquarters (HQ) FOIA Requester Service Center 1000 Independence Avenue, SW Washington, DC 20585 Phone: 202-586-5955 Fax: 202-586-0575 FOIA Web Page: http://energy.gov/management/office-management/operational-management/freedom-information-act Ingrid A. Kolb Chief FOIA Officer Kevin T. Hagerty FOIA Public Liaison Phone: 202-586-5955 Alexander C. Morris FOIA Officer Phone: 202-586-3159 Poli A.

  2. C:\Forms\DOE F 1500.6.cdr

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 (2-91) U.S. Department of Energy (See Reverse for Instructions and Privacy Act Statement) Employee Name(s): Old Duty Station: New Duty Station: Change of Station Authorization No: Reporting Date: Provide following information if requesting Home Purchase Service: Please check services interested in obtaining: Office Phone Number I prefer to be contacted by relocation service company at (Phone - & Area Code) (time of day) Employee Signature Date Home Phone Number a. Address of Residence to

  3. ALSO: BUILDING A BETTER MICROSYSTEM SPRAY IT AGAIN, SAM VR Tool Helps Prepare for Terrorist Attacks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1999 - 2000 ALSO: BUILDING A BETTER MICROSYSTEM SPRAY IT AGAIN, SAM VR Tool Helps Prepare for Terrorist Attacks A QUARTERLY RESEARCH & DEVELOPMENT JOURNAL VOLUME 1, NO. 4 Z MACHINE Providing Clues to Astronomical Mysteries S A N D I A T E C H N O L O G Y [ From atop a 25-foot ladder, Sandian Larry Shipers examines a pair of cameras that provide feedback to a computer system that controls Sandia's automated painting system for the F-117 Nighthawk, also known as Stealth. The system sprays a

  4. Appalachian Advanced Energy Association | Open Energy Information

    Open Energy Info (EERE)

    search Name: Appalachian Advanced Energy Association Address: 4 E. Hunter St. Place: Logan, Ohio Zip: 43138 Sector: Efficiency, Renewable Energy, Services Phone Number:...

  5. City of Mountain View, Missouri (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    View Place: Missouri Phone Number: (417) 934-2601 Website: mountainviewmo.comindex.phpg Facebook: https:www.facebook.comCityOfMountainViewMissouri Outage Hotline: (877)...

  6. Icon Solar Power, LLC | Open Energy Information

    Open Energy Info (EERE)

    Sector: Geothermal energy, Solar Product: String representation "Agriculture;Bus ... g and education" is too long. Phone Number: 513-396-7777 Website: www.iconsolarpower.com...

  7. Bluewater | Open Energy Information

    Open Energy Info (EERE)

    Address: Marsstraat 33 Place: Hoofddorp Zip: 2132 Region: Netherlands Sector: Marine and Hydrokinetic Year Founded: 1978 Phone Number: +31 (0)23 568 2800 Website:...

  8. Able Technologies | Open Energy Information

    Open Energy Info (EERE)

    Address: 330 Audubon Road Place: Englewood Zip: 7631 Region: United States Sector: Marine and Hydrokinetic Phone Number: 201-569-2842 Website: www.abletechnologiesllc.com This...

  9. Harvest Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy Address: 220 Park Crest Place: Newport Coast Region: United States Sector: Marine and Hydrokinetic Year Founded: 2008 Phone Number: 949-940-8825 This company is listed...

  10. angiemcg | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    angiemcg Ames Laboratory Profile Angela Mcguigan Secretary II Simulation, Modeling, & Decision Science 1620 Howe Phone Number: 515-294-8060 Email Address: angiemcg...