A Bme Solution Of The Stochastic Three-Dimensional Laplace Equation...
Solution Of The Stochastic Three-Dimensional Laplace Equation Representing A Geothermal Field Subject To Site-Specific Information Abstract This work develops a model of the...
Expansion solution of Laplace`s equation: Technique and application to hollow beam gun design
Jackson, R.H.; Taccetti, J.M.
1996-12-31
This paper presents a flexible algorithm for the general calculation of expansion solutions to Laplace`s equation. The limiting factor in application of the technique is shown to be series truncation error and not errors in calculating numerical derivatives. Application of the algorithm to the accurate computation of arbitrary magnetic fields in cylindrical geometry from on-axis or coil data will be presented. For an ideal current loop, magnetic field accuracies of better than 0.01% of the exact elliptic integral solution can be obtained out to approximately 70--80% of the loop radius. Accuracy improves dramatically for radii closer to the axis. Results also is shown for thin current disks, thin solenoids and thick coils. Other aspects of the technique is illustrated by application to the design of a coil system for a hollow beam electron gun. With some reasonable assumptions about the overlay of the electron trajectories and the magnetic flux contours, it is possible to generate an estimate for the on-axis profile of the gun magnetic field. The expansion technique can then be applied to calculate the off-axis field and its impact on the trajectories without assuming any particular coil system. The initial estimate can then be refined and retested. Finally, an optimization technique is used to develop a coil system which closely reproduces the refined field. The results of carrying out this set of calculations on a 150 kV, 20 A hollow electron gun design for an FEL experiment is reported.
Shao, Yan-Lin Faltinsen, Odd M.
2014-10-01
We propose a new efficient and accurate numerical method based on harmonic polynomials to solve boundary value problems governed by 3D Laplace equation. The computational domain is discretized by overlapping cells. Within each cell, the velocity potential is represented by the linear superposition of a complete set of harmonic polynomials, which are the elementary solutions of Laplace equation. By its definition, the method is named as Harmonic Polynomial Cell (HPC) method. The characteristics of the accuracy and efficiency of the HPC method are demonstrated by studying analytical cases. Comparisons will be made with some other existing boundary element based methods, e.g. Quadratic Boundary Element Method (QBEM) and the Fast Multipole Accelerated QBEM (FMA-QBEM) and a fourth order Finite Difference Method (FDM). To demonstrate the applications of the method, it is applied to some studies relevant for marine hydrodynamics. Sloshing in 3D rectangular tanks, a fully-nonlinear numerical wave tank, fully-nonlinear wave focusing on a semi-circular shoal, and the nonlinear wave diffraction of a bottom-mounted cylinder in regular waves are studied. The comparisons with the experimental results and other numerical results are all in satisfactory agreement, indicating that the present HPC method is a promising method in solving potential-flow problems. The underlying procedure of the HPC method could also be useful in other fields than marine hydrodynamics involved with solving Laplace equation.
Energy Science and Technology Software Center (OSTI)
2008-10-05
Laplace is a electric field driven flow simulation program for detailed device design support. Transport processes include electrokinesis, dielectrophoresis, and diffusion. Laplace solves for the electric field in a microfluidic system and the liquid and particle flow that is produced by the electric field for the primary purpose of microfluidic design development and simulation. Laplace allows you to visualize the flow by tracking tracer particles, viewing flow streamlines, etc. Laplace can make movies of simulatedmore » particle motion to allow you to test and share the behavior of microfuidic designs. The electric field is calculated using an iterative linear solver and particle motion is solved by finite difference, finite-displacement simulation of particle trajectories. Laplace uses a bitmapped picture or drawing of a microsystem to infer the geometry. The channel depth is everywhere proportional to the magnitude of the blue channel of the image: 0 (black) = zero depth, or no channel, 256 (saturated blue) = deepest channel, and intermediate values correspond to intermediate depths. Laplace automatically applies various boundary conditions (applied voltage or current) to ports, where channels cross the edge of the image.« less
Laplace-Runge-Lenz vector for arbitrary spin
Nikitin, A. G.
2013-12-15
A countable set of superintegrable quantum mechanical systems is presented which admit the dynamical symmetry with respect to algebra so(4). This algebra is generated by the Laplace-Runge-Lenz vector generalized to the case of arbitrary spin. The presented systems describe neutral particles with non-trivial multipole momenta. Their spectra can be found algebraically like in the case of hydrogen atom. Solutions for the systems with spins 1/2 and 1 are presented explicitly, solutions for spin 3/2 can be expressed via solutions of an ordinary differential equation of first order. A more extended version of this paper including detailed calculations is published as an e-print arXiv:1308.4279.
Laplace plane modifications arising from solar radiation pressure
Rosengren, Aaron J.; Scheeres, Daniel J.
2014-05-01
The dynamical effects of solar radiation pressure (SRP) in the solar system have been rigorously studied since the early 1900s. This non-gravitational perturbation plays a significant role in the evolution of dust particles in circumplanetary orbits, as well as in the orbital motion about asteroids and comets. For gravitationally dominated orbits, SRP is negligible and the resulting motion is largely governed by the oblateness of the primary and the attraction of the Sun. The interplay between these gravitational perturbations gives rise to three mutually perpendicular planes of equilibrium for circular satellite orbits. The classical Laplace plane lies between the equatorial and orbital planes of the primary, and is the mean reference plane about whose axis the pole of a satellite's orbit precesses. From a previously derived solution for the secular motion of an orbiter about a small body in a SRP dominated environment, we find that SRP acting alone will cause an initially circular orbit to precess around the pole of the primary's heliocentric orbital plane. When the gravitational and non-gravitational perturbations act in concert, the resulting equilibrium planes turn out to be qualitatively different, in some cases, from those obtained without considering the radiation pressure. The warping of the surfaces swept out by the modified equilibria as the semi-major axis varies depends critically on the cross-sectional area of the body exposed. These results, together with an adiabatic invariance argument on Poynting-Robertson drag, provide a natural qualitative explanation for the initial albedo dichotomy of Saturn's moon, Iapetus.
Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]
2011-03-01
This standard, DOE-STD-1063, Facility Representatives, defines the duties, responsibilities and qualifications for Department of Energy (DOE) Facility Representatives, based on facility hazard classification; risks to workers, the public, and the environment; and the operational activity level. This standard provides the guidance necessary to ensure that DOEs hazardous nuclear and non-nuclear facilities have sufficient staffing of technically qualified facility representatives (FRs) to provide day-to-day oversight of contractor operations.
Office of Environmental Management (EM)
DOE-STD-1063-2006 April 2006 Superseding DOE-STD-1063-2000 March 2000 DOE STANDARD FACILITY REPRESENTATIVES U.S. Department of Energy AREA MGMT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-STD-1063-2006 ii Available on the Department of Energy Technical Standards Program web site at http://www.eh.doe.gov/techstds/ DOE-STD-1063-2006 iii FOREWORD 1. This Department of Energy standard is approved for use by
Office of Environmental Management (EM)
063-2011 February 2011 Superseding DOE-STD-1063-2006 April 2006 DOE STANDARD FACILITY REPRESENTATIVES U.S. Department of Energy AREA MGMT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-STD-1063-2011 ii Available on the Department of Energy Technical Standards Program Web site at http://www.hss.doe.gov/nuclearsafety/ns/techstds/ DOE-STD-1063-2011 iii FOREWORD 1. This Department of Energy (DOE) standard is
Temme, N.M.
1987-11-01
The analytical approach of Temme (1983 and 1985), based on uniform asymptotic expansions, is extended to an additional class of incomplete Laplace integrals. The terminology is introduced; the construction of the formal series is explained; representations for the remainders are derived; the asymptotic nature of the expansions is explored; and error bounds are determined. Numerical results are presented for the case of the incomplete beta function. 14 references.
Sadybekov, Makhmud A.; Torebek, Berikbol T.; Turmetov, Batirkhan Kh.
2014-08-20
The paper is devoted to the investigation of questions about constructing the explicit form of the Greens function of the Robin problem. For constructing this function we use the representation of the fundamental solution of the Laplace equation in the form of a series. An integral representation of the Green function is obtained and for some values of the parameters, the problem is presented in elementary functions.
TEC Working Group Member Organizations Representatives | Department...
Office of Environmental Management (EM)
Member Organizations Representatives TEC Working Group Member Organizations Representatives PDF icon TEC MEMBER ORGANIZATION REPRESENTATIVES TOPIC GROUP PARTICIPATION February 2006...
Authorizing Official Designated Representative (AODR) | Department...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Designated Representative (AODR) Authorizing Official Designated Representative (AODR) student-849822960720.jpg The Authorizing Official Designated Representative (AODR) provides...
Relativistic Guiding Center Equations
White, R. B.; Gobbin, M.
2014-10-01
In toroidal fusion devices it is relatively easy that electrons achieve relativistic velocities, so to simulate runaway electrons and other high energy phenomena a nonrelativistic guiding center formalism is not sufficient. Relativistic guiding center equations including flute mode time dependent field perturbations are derived. The same variables as used in a previous nonrelativistic guiding center code are adopted, so that a straightforward modifications of those equations can produce a relativistic version.
Parallel Multigrid Equation Solver
Energy Science and Technology Software Center (OSTI)
2001-09-07
Prometheus is a fully parallel multigrid equation solver for matrices that arise in unstructured grid finite element applications. It includes a geometric and an algebraic multigrid method and has solved problems of up to 76 mullion degrees of feedom, problems in linear elasticity on the ASCI blue pacific and ASCI red machines.
Property Representatives Lists - HQ | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Property Representatives Lists - HQ Property Representatives Lists - HQ These are the current lists of Headquarters Property Representatives. If you have any questions please contact: Ellen Hall, Office of Logistics Operations, (301) 903-2613. PDF icon Authorized Property Pass Signers List and Accountable Property Representatives List, Effective December 2, 2015 More Documents & Publications Directory Listings AU Functional Area Points of Contact by Office Directors Customer Services
Flavored quantum Boltzmann equations
Cirigliano, Vincenzo; Lee, Christopher; Ramsey-Musolf, Michael J.; Tulin, Sean [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545 (United States); Center for Theoretical Physics, University of California, and Theoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, California, 94720 (United States); Department of Physics, University of Wisconsin-Madison, 1150 University Avenue, Madison, Wisconsin, 53706 (United States) and Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California, 91125 (United States); Theory Group, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, V6T 2A3 (Canada)
2010-05-15
We derive from first principles, using nonequilibrium field theory, the quantum Boltzmann equations that describe the dynamics of flavor oscillations, collisions, and a time-dependent mass matrix in the early universe. Working to leading nontrivial order in ratios of relevant time scales, we study in detail a toy model for weak-scale baryogenesis: two scalar species that mix through a slowly varying time-dependent and CP-violating mass matrix, and interact with a thermal bath. This model clearly illustrates how the CP asymmetry arises through coherent flavor oscillations in a nontrivial background. We solve the Boltzmann equations numerically for the density matrices, investigating the impact of collisions in various regimes.
Nazari-Golshan, A.; Nourazar, S. S.; Department of Mechanical Engineering, Amirkabir University of Technology, Tehran
2013-10-15
The time fractional modified Korteweg-de Vries (TFMKdV) equation is solved to study the nonlinear propagation of small but finite amplitude dust ion-acoustic (DIA) solitary waves in un-magnetized dusty plasma with trapped electrons. The plasma is composed of a cold ion fluid, stationary dust grains, and hot electrons obeying a trapped electron distribution. The TFMKdV equation is derived by using the semi-inverse and Agrawal's methods and then solved by the Laplace Adomian decomposition method. Our results show that the amplitude of the DIA solitary waves increases with the increase of time fractional order ?, the wave velocity v{sub 0}, and the population of the background free electrons ?. However, it is vice-versa for the deviation from isothermality parameter b, which is in agreement with the result obtained previously.
Facility Representative Program Outstanding at ID
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
June 19, 2007 Facility Representative Program Outstanding at ID Idaho's three DOE Complex-wide Facility Representative of the Year (FROTY) recipients at this year's conference pose for a photo shoot with Elvis. L to R: Dary Newbry 2005 FROTY, Bob Seal 2006 FROTY, Bob Knighten 2004 FROTY Facility representatives (FRs) are the eyes and ears of the federal government at the Idaho National Laboratory. They oversee the people, processes, facilities and systems that ensure safety at INL facilities.
DOE RL Contracting Officer Representatives - Hanford Site
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Officer Representatives DOE-RL Contracts/Procurements RL Contracts & Procurements Home Prime Contracts Current Solicitations Other Sources DOE RL Contracting Officers DOE RL Contracting Officer Representatives DOE RL Contracting Officer Representatives Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size CO/COR Contract Number Company Acronym Limitations CAROSINO, ROBERT M DE-AC06-08RL14788 CPRC DE-AC06-08RL14788, CH2M HILL PLATEAU REMEDIATION COMPANY (CHPRC),
Facility Representative Qualification Equivalencies Based on Previous
Office of Environmental Management (EM)
Experience | Department of Energy Facility Representative Qualification Equivalencies Based on Previous Experience Facility Representative Qualification Equivalencies Based on Previous Experience The referenced document has been used by the Department of Energy, Idaho Operations Office (DOE-ID) to grant equivalencies to candidates undergoing qualification as a Facility Representative (FR) using the FR Functional Area Qualification Standards (FAQS). Since the generation of the referenced
Facility Representative of the Year Award
Broader source: Energy.gov [DOE]
The Facility Representative Award Program is a special award designed to recognize superior or exemplary service by a Facility Representative over a period of one year. This special award program has been established in accordance with the requirements of Department of Energy (DOE) Order 331.1C, Employee Performance Management and Recognition Program.
A Least-Squares Transport Equation Compatible with Voids
Hansen, Jon [Texas A & M Univ., College Station, TX (United States). Dept. of Nuclear Engineering; Peterson, Jacob [Texas A & M Univ., College Station, TX (United States). Dept. of Nuclear Engineering; Morel, Jim [Texas A & M Univ., College Station, TX (United States). Dept. of Nuclear Engineering; Ragusa, Jean [Texas A & M Univ., College Station, TX (United States). Dept. of Nuclear Engineering; Wang, Yaqi [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2014-12-01
Standard second-order self-adjoint forms of the transport equation, such as the even-parity, odd-parity, and self-adjoint angular flux equation, cannot be used in voids. Perhaps more important, they experience numerical convergence difficulties in near-voids. Here we present a new form of a second-order self-adjoint transport equation that has an advantage relative to standard forms in that it can be used in voids or near-voids. Our equation is closely related to the standard least-squares form of the transport equation with both equations being applicable in a void and having a nonconservative analytic form. However, unlike the standard least-squares form of the transport equation, our least-squares equation is compatible with source iteration. It has been found that the standard least-squares form of the transport equation with a linear-continuous finite-element spatial discretization has difficulty in the thick diffusion limit. Here we extensively test the 1D slab-geometry version of our scheme with respect to void solutions, spatial convergence rate, and the intermediate and thick diffusion limits. We also define an effective diffusion synthetic acceleration scheme for our discretization. Our conclusion is that our least-squares S_{n} formulation represents an excellent alternative to existing second-order S_{n} transport formulations
Facility Representative Program, Criteria & Review Approach Documents
Broader source: Energy.gov [DOE]
This page provides Criteria Review and Approach Documents (CRADS) to assist Facility Representatives. Please submit your CRADS for posting by sending them to the HQ FR Program Manager. Please include the subject, date, and a contact person.
Advisory Board Seats New Student Representatives
Broader source: Energy.gov [DOE]
The Oak Ridge Site Specific Advisory Board (ORSSAB) welcomed two new student representatives at its May meeting. Gracie Hall and Julia Riley will serve on the board through April 2014.
Incentives for the Department's Facility Representative Program,
Office of Environmental Management (EM)
12/17/1998 | Department of Energy Incentives for the Department's Facility Representative Program, 12/17/1998 Incentives for the Department's Facility Representative Program, 12/17/1998 The Department's Revised Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 93-3 has once again underscored the Department's commitment to maintaining the technical capability necessary to safely manage and operate our defense nuclear facilities. Attracting and retaining highly
Menikoff, Ralph
2015-12-15
The JWL equation of state (EOS) is frequently used for the products (and sometimes reactants) of a high explosive (HE). Here we review and systematically derive important properties. The JWL EOS is of the Mie-Grueneisen form with a constant Grueneisen coefficient and a constants specific heat. It is thermodynamically consistent to specify the temperature at a reference state. However, increasing the reference state temperature restricts the EOS domain in the (V, e)-plane of phase space. The restrictions are due to the conditions that P ? 0, T ? 0, and the isothermal bulk modulus is positive. Typically, this limits the low temperature regime in expansion. The domain restrictions can result in the P-T equilibrium EOS of a partly burned HE failing to have a solution in some cases. For application to HE, the heat of detonation is discussed. Example JWL parameters for an HE, both products and reactions, are used to illustrate the restrictions on the domain of the EOS.
Point model equations for neutron correlation counting: Extension of Böhnel's equations to any order
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Favalli, Andrea; Croft, Stephen; Santi, Peter
2015-06-15
Various methods of autocorrelation neutron analysis may be used to extract information about a measurement item containing spontaneously fissioning material. The two predominant approaches being the time correlation analysis (that make use of a coincidence gate) methods of multiplicity shift register logic and Feynman sampling. The common feature is that the correlated nature of the pulse train can be described by a vector of reduced factorial multiplet rates. We call these singlets, doublets, triplets etc. Within the point reactor model the multiplet rates may be related to the properties of the item, the parameters of the detector, and basic nuclearmore » data constants by a series of coupled algebraic equations – the so called point model equations. Solving, or inverting, the point model equations using experimental calibration model parameters is how assays of unknown items is performed. Currently only the first three multiplets are routinely used. In this work we develop the point model equations to higher order multiplets using the probability generating functions approach combined with the general derivative chain rule, the so called Faà di Bruno Formula. Explicit expression up to 5th order are provided, as well the general iterative formula to calculate any order. This study represents the first necessary step towards determining if higher order multiplets can add value to nondestructive measurement practice for nuclear materials control and accountancy.« less
Data structures and apparatuses for representing knowledge
Hohimer, Ryan E; Thomson, Judi R; Harvey, William J; Paulson, Patrick R; Whiting, Mark A; Tratz, Stephen C; Chappell, Alan R; Butner, Robert S
2014-02-18
Data structures and apparatuses to represent knowledge are disclosed. The processes can comprise labeling elements in a knowledge signature according to concepts in an ontology and populating the elements with confidence values. The data structures can comprise knowledge signatures stored on computer-readable media. The knowledge signatures comprise a matrix structure having elements labeled according to concepts in an ontology, wherein the value of the element represents a confidence that the concept is present in an information space. The apparatus can comprise a knowledge representation unit having at least one ontology stored on a computer-readable medium, at least one data-receiving device, and a processor configured to generate knowledge signatures by comparing datasets obtained by the data-receiving devices to the ontologies.
Facility Representative Functional Area Qualification Standard
Office of Environmental Management (EM)
DOE-STD-1151-2010 October 2010 DOE STANDARD FACILITY REPRESENTATIVE FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1151-2010 ii This document is available on the Department of Energy Office of Health, Safety and Security Approved DOE Technical Standards Web Site at
house of representatives | National Nuclear Security Administration
National Nuclear Security Administration (NNSA)
house of representatives | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working
Yucca Mountain Climate Technical Support Representative
Sharpe, Saxon E
2007-10-23
The primary objective of Project Activity ORD-FY04-012, Yucca Mountain Climate Technical Support Representative, was to provide the Office of Civilian Radioactive Waste Management (OCRWM) with expertise on past, present, and future climate scenarios and to support the technical elements of the Yucca Mountain Project (YMP) climate program. The Climate Technical Support Representative was to explain, defend, and interpret the YMP climate program to the various audiences during Site Recommendation and License Application. This technical support representative was to support DOE management in the preparation and review of documents, and to participate in comment response for the Final Environmental Impact Statement, the Site Recommendation Hearings, the NRC Sufficiency Comments, and other forums as designated by DOE management. Because the activity was terminated 12 months early and experience a 27% reduction in budget, it was not possible to complete all components of the tasks as originally envisioned. Activities not completed include the qualification of climate datasets and the production of a qualified technical report. The following final report is an unqualified summary of the activities that were completed given the reduced time and funding.
PWR representative behavior during a LOCA
Allison, C.M.
1981-01-01
To date, there has been substantial analytical and experimental effort to define the margins between design basis loss-of-coolant accident (LOCA) behavior and regulatory limits on maximum fuel rod cladding temperature and deformation. As a result, there is extensive documentation on the modeling of fuel rod behavior in test reactors and design basis LOCA's. However, modeling of that behavior using representative, non-conservative, operating histories is not nearly as well documented in the public literature. Therefore, the objective of this paper is (a) to present calculations of LOCA induced behavior for Pressurized Water Reactor (PWR) core representative fuel rods, and (b) to discuss the variability in those calculations given the variability in fuel rod condition at the initiation of the LOCA. This analysis was limited to the study of changes in fuel rod behavior due to different power operating histories. The other two important parameters which affect that behavior, initial fuel rod design and LOCA coolant conditions were held invarient for all of the representative rods analyzed.
Friedmann equations from entropic force
Cai Ronggen; Cao Liming; Ohta, Nobuyoshi
2010-03-15
In this paper, by use of the holographic principle together with the equipartition law of energy and the Unruh temperature, we derive the Friedmann equations of a Friedmann-Robertson-Walker universe.
Entropic corrections to Einstein equations
Hendi, S. H. [Physics Department, College of Sciences, Yasouj University, Yasouj 75914 (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of); Sheykhi, A. [Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of); Department of Physics, Shahid Bahonar University, P.O. Box 76175-132, Kerman (Iran, Islamic Republic of)
2011-04-15
Considering the general quantum corrections to the area law of black hole entropy and adopting the viewpoint that gravity interprets as an entropic force, we derive the modified forms of Modified Newtonian dynamics (MOND) theory of gravitation and Einstein field equations. As two special cases we study the logarithmic and power-law corrections to entropy and find the explicit form of the obtained modified equations.
Illite Dissolution Rates and Equation (100 to 280 dec C)
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Carroll, Susan
2014-10-17
The objective of this suite of experiments was to develop a useful kinetic dissolution expression for illite applicable over an expanded range of solution pH and temperature conditions representative of subsurface conditions in natural and/or engineered geothermal reservoirs. Using our new data, the resulting rate equation is dependent on both pH and temperature and utilizes two specific dissolution mechanisms (a neutral and a basic mechanism). The form of this rate equation should be easily incorporated into most existing reactive transport codes for to predict rock-water interactions in EGS shear zones.
Illite Dissolution Rates and Equation (100 to 280 dec C)
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Carroll, Susan
2014-10-17
The objective of this suite of experiments was to develop a useful kinetic dissolution expression for illite applicable over an expanded range of solution pH and temperature conditions representative of subsurface conditions in natural and/or engineered geothermal reservoirs. Using our new data, the resulting rate equation is dependent on both pH and temperature and utilizes two specific dissolution mechanisms (a “neutral” and a “basic” mechanism). The form of this rate equation should be easily incorporated into most existing reactive transport codes for to predict rock-water interactions in EGS shear zones.
Illite Dissolution Rates and Equation (100 to 280 dec C)
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Carroll, Susan
The objective of this suite of experiments was to develop a useful kinetic dissolution expression for illite applicable over an expanded range of solution pH and temperature conditions representative of subsurface conditions in natural and/or engineered geothermal reservoirs. Using our new data, the resulting rate equation is dependent on both pH and temperature and utilizes two specific dissolution mechanisms (a neutral and a basic mechanism). The form of this rate equation should be easily incorporated into most existing reactive transport codes for to predict rock-water interactions in EGS shear zones.
Thermodynamically constrained correction to ab initio equations of state
French, Martin; Mattsson, Thomas R.
2014-07-07
We show how equations of state generated by density functional theory methods can be augmented to match experimental data without distorting the correct behavior in the high- and low-density limits. The technique is thermodynamically consistent and relies on knowledge of the density and bulk modulus at a reference state and an estimation of the critical density of the liquid phase. We apply the method to four materials representing different classes of solids: carbon, molybdenum, lithium, and lithium fluoride. It is demonstrated that the corrected equations of state for both the liquid and solid phases show a significantly reduced dependence of the exchange-correlation functional used.
Microsoft Word - SEC J_Appendix S- Contracting Officer's Representative_s_
National Nuclear Security Administration (NNSA)
J, Page 1 SECTION J APPENDIX S CONTRACTING OFFICER REPRESENTATIVES The following individuals are designated as CORs for the Kansas City Plant Contract. Each is limited to the specific areas listed by his/her name. Contracting Officer Representatives Name Location Limited Area of Responsibility Shoulta, Jeffrey L. KCSO Production & Quality Management Hoopes, Patrick T. KCSO Environment, Safety and Health; Facilities Management; Security and Information Systems Schmidt, Robert E. KCSO Project
Ordinary Differential Equation System Solver
Energy Science and Technology Software Center (OSTI)
1992-03-05
LSODE is a package of subroutines for the numerical solution of the initial value problem for systems of first order ordinary differential equations. The package is suitable for either stiff or nonstiff systems. For stiff systems the Jacobian matrix may be treated in either full or banded form. LSODE can also be used when the Jacobian can be approximated by a band matrix.
1998 Annual Facility Representative Workshop Attendees | Department of
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Energy 998 Annual Facility Representative Workshop Attendees 1998 Annual Facility Representative Workshop Attendees 1998 Annual Facility Representative Workshop Attendees PDF icon 1998 Annual Facility Representative Workshop Attendees More Documents & Publications 1999 Annual Facility Representative Workshop Attendees FTCP Members DOE ISM Champions - 2012
Representativeness-based Sampling Network Design for the State...
Office of Scientific and Technical Information (OSTI)
Representativeness-based Sampling Network Design for the State of Alaska Citation Details In-Document Search Title: Representativeness-based Sampling Network Design for the State...
Representativeness based Sampling Network Design for the State...
Office of Scientific and Technical Information (OSTI)
Representativeness based Sampling Network Design for the State of Alaska Title: Representativeness-based Sampling Network Design for the State of Alaska Authors: Forrest M. Hoffman...
Representativeness-Based Sampling Network Design for the State...
Office of Scientific and Technical Information (OSTI)
Journal Article: Representativeness-Based Sampling Network Design for the State of Alaska Citation Details In-Document Search Title: Representativeness-Based Sampling Network...
3Q CY2005 (PDF), Facility Representative Program Performance...
Office of Environmental Management (EM)
3Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report 3Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report...
1Q CY2000 (PDF), Facility Representative Program Performance...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Q CY2000 (PDF), Facility Representative Program Performance Indicators Quarterly Report 1Q CY2000 (PDF), Facility Representative Program Performance Indicators Quarterly Report...
Equation of State Project Overview
Crockett, Scott
2015-09-11
A general overview of the Equation of State (EOS) Project will be presented. The goal is to provide the audience with an introduction of what our more advanced methods entail (DFT, QMD, etc.. ) and how these models are being utilized to better constrain the thermodynamic models. These models substantially reduce our regions of interpolation between the various thermodynamic limits. I will also present a variety example of recent EOS work.
Facility Representative Program ID Selects FR of the Year
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Facility Representative Program ID Selects FR of the Year John Martin DOE-ID Facility Representative John Martin DOE-ID Facility Representative of the Year. John Martin was selected as DOE-ID's Facility Representative of the Year and the office's nominee for the 2007 DOE Facility Representative of the Year Award. John was selected from an exceptional field of candidates to represent DOE-ID at the Facility Representative Annual Workshop in Las Vegas this May. Each year the Department of Energy
Nguyen, Dang Van; Li, Jing-Rebecca; Grebenkov, Denis; Le Bihan, Denis
2014-04-15
The complex transverse water proton magnetization subject to diffusion-encoding magnetic field gradient pulses in a heterogeneous medium can be modeled by the multiple compartment BlochTorrey partial differential equation (PDE). In addition, steady-state Laplace PDEs can be formulated to produce the homogenized diffusion tensor that describes the diffusion characteristics of the medium in the long time limit. In spatial domains that model biological tissues at the cellular level, these two types of PDEs have to be completed with permeability conditions on the cellular interfaces. To solve these PDEs, we implemented a finite elements method that allows jumps in the solution at the cell interfaces by using double nodes. Using a transformation of the BlochTorrey PDE we reduced oscillations in the searched-for solution and simplified the implementation of the boundary conditions. The spatial discretization was then coupled to the adaptive explicit RungeKuttaChebyshev time-stepping method. Our proposed method is second order accurate in space and second order accurate in time. We implemented this method on the FEniCS C++ platform and show time and spatial convergence results. Finally, this method is applied to study some relevant questions in diffusion MRI.
Germanium multiphase equation of state
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Crockett, Scott D.; Lorenzi-Venneri, Giulia De; Kress, Joel D.; Rudin, Sven P.
2014-05-07
A new SESAME multiphase germanium equation of state (EOS) has been developed using the best available experimental data and density functional theory (DFT) calculations. The equilibrium EOS includes the Ge I (diamond), the Ge II (β-Sn) and the liquid phases. The foundation of the EOS is based on density functional theory calculations which are used to determine the cold curve and the Debye temperature. Results are compared to Hugoniot data through the solid-solid and solid-liquid transitions. We propose some experiments to better understand the dynamics of this element
Universal equation for Efimov states
Braaten, Eric; Hammer, H.-W.; Kusunoki, M.
2003-02-01
Efimov states are a sequence of shallow three-body bound states that arise when the two-body scattering length is large. Efimov showed that the binding energies of these states can be calculated in terms of the scattering length and a three-body parameter by solving a transcendental equation involving a universal function of one variable. We calculate this universal function using effective field theory and use it to describe the three-body system of {sup 4}He atoms. We also extend Efimov's theory to include the effects of deep two-body bound states, which give widths to the Efimov states.
Product equation of state for polysulfone
Ticknor, Christopher
2015-09-30
Here we review the new polysulfone product equation of state (EOS) made with magpie, a chemical equilibrium code.
The equation of state of nuclear matter
Gandolfi, Stefano; Carlson, Joseph Allen
2015-06-30
A brief status report of research on equation of state (EOS) of nuclear matter is provided, along with two graphs.
Boundary conditions for the subdiffusion equation
Shkilev, V. P.
2013-04-15
The boundary conditions for the subdiffusion equations are formulated using the continuous-time random walk model, as well as several versions of the random walk model on an irregular lattice. It is shown that the boundary conditions for the same equation in different models have different forms, and this difference considerably affects the solutions of this equation.
Equation determines pressure drop in coiled tubing
Yang, Y.S.
1995-12-04
A single equation can determine the pressure drop in wells with laminar, transitional, and turbulent incompressible fluid flow in coiled tubing or other steel tubulars. The single equation is useful, especially in computer-aided design and operations. The equation is derived and illustrated by an example.
FACILITY REPRESENTATIVE PROGRAM STATUS, 6/21/1999
Broader source: Energy.gov [DOE]
Since September, 1993, the Office of Field Management has served as the Department’s corporate advocate for the Facility Representative Program. The Facility Representative (FR) is a critical...
1999 FACILITY REPRESENTATIVE CONFERENCE June 21 – 25, 1999
Broader source: Energy.gov [DOE]
The Department of Energy will host the Facility Representative Annual Meeting on June 21-25, 1999 at the Alexis Park Hotel in Las Vegas, Nevada. The meeting will give Facility Representatives and...
1Q CY2000 (PDF), Facility Representative Program Performance Indicators
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Quarterly Report | Department of Energy Q CY2000 (PDF), Facility Representative Program Performance Indicators Quarterly Report 1Q CY2000 (PDF), Facility Representative Program Performance Indicators Quarterly Report "The Facility Representative Program Performance Indicators (PIs) Quarterly Report is attached, covering the period from January 2000 to March 2000. Data for these indicators are gathered by the Field elements quarterly per the Facility Representatives Standard, DOE-STD-1
4Q CY2000 (PDF), Facility Representative Program Performance Indicators
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Quarterly Report | Department of Energy 4Q CY2000 (PDF), Facility Representative Program Performance Indicators Quarterly Report 4Q CY2000 (PDF), Facility Representative Program Performance Indicators Quarterly Report "The Facility Representative Program Performance Indicators Quarterly Report is attached, covering the period from October to December 2000. Data for these indicators are gathered by the Field elements quarterly per the Facility Representatives Standard, 063, and reported
FAQS Reference Guide - Facility Representative | Department of Energy
Office of Environmental Management (EM)
Facility Representative FAQS Reference Guide - Facility Representative This reference guide addresses the competency statements in the October 2010 edition of DOE-STD-1151-2010, Facility Representative Functional Area Qualification Standard. PDF icon Facility Representative Qualification Standard Reference Guide, October 2010 More Documents & Publications DOE-HDBK-1018/2-93 DOE-HDBK-1018/1-93 DOE-STD-1161-2008
Office of Departmental Representative to DNFSB | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Departmental Representative to DNFSB Office of Departmental Representative to DNFSB Mission The Department Representative to the Defense Nuclear Facilities Safety Board (DNFSB) provides effective cross-organizational leadership in resolving DNFSB-related technical and management issues necessary to ensure public health and safety. Functions Represents the Secretary and the Associate Deputy Secretary in regular and continuing interactions with the DNFSB(and/or also referred to as Board). Advises
Boltzmann equation solver adapted to emergent chemical non-equilibrium
Birrell, Jeremiah; Wilkening, Jon; Rafelski, Johann
2015-01-15
We present a novel method to solve the spatially homogeneous and isotropic relativistic Boltzmann equation. We employ a basis set of orthogonal polynomials dynamically adapted to allow for emergence of chemical non-equilibrium. Two time dependent parameters characterize the set of orthogonal polynomials, the effective temperature T(t) and phase space occupation factor ?(t). In this first paper we address (effectively) massless fermions and derive dynamical equations for T(t) and ?(t) such that the zeroth order term of the basis alone captures the particle number density and energy density of each particle distribution. We validate our method and illustrate the reduced computational cost and the ability to easily represent final state chemical non-equilibrium by studying a model problem that is motivated by the physics of the neutrino freeze-out processes in the early Universe, where the essential physical characteristics include reheating from another disappearing particle component (e{sup }-annihilation)
Real-time and imaginary-time quantum hierarchal Fokker-Planck equations
Office of Scientific and Technical Information (OSTI)
(Journal Article) | SciTech Connect Real-time and imaginary-time quantum hierarchal Fokker-Planck equations Citation Details In-Document Search Title: Real-time and imaginary-time quantum hierarchal Fokker-Planck equations We consider a quantum mechanical system represented in phase space (referred to hereafter as "Wigner space"), coupled to a harmonic oscillator bath. We derive quantum hierarchal Fokker-Planck (QHFP) equations not only in real time but also in imaginary time,
Scalable Equation of State Capability
Epperly, T W; Fritsch, F N; Norquist, P D; Sanford, L A
2007-12-03
The purpose of this techbase project was to investigate the use of parallel array data types to reduce the memory footprint of the Livermore Equation Of State (LEOS) library. Addressing the memory scalability of LEOS is necessary to run large scientific simulations on IBM BG/L and future architectures with low memory per processing core. We considered using normal MPI, one-sided MPI, and Global Arrays to manage the distributed array and ended up choosing Global Arrays because it was the only communication library that provided the level of asynchronous access required. To reduce the runtime overhead using a parallel array data structure, a least recently used (LRU) caching algorithm was used to provide a local cache of commonly used parts of the parallel array. The approach was initially implemented in a isolated copy of LEOS and was later integrated into the main trunk of the LEOS Subversion repository. The approach was tested using a simple test. Testing indicated that the approach was feasible, and the simple LRU caching had a 86% hit rate.
Darboux transformation for the NLS equation
Aktosun, Tuncay; Mee, Cornelis van der
2010-03-08
We analyze a certain class of integral equations associated with Marchenko equations and Gel'fand-Levitan equations. Such integral equations arise through a Fourier transformation on various ordinary differential equations involving a spectral parameter. When the integral operator is perturbed by a finite-rank perturbation, we explicitly evaluate the change in the solution in terms of the unperturbed quantities and the finite-rank perturbation. We show that this result provides a fundamental approach to derive Darboux transformations for various systems of ordinary differential operators. We illustrate our theory by providing the explicit Darboux transformation for the Zakharov-Shabat system and show how the potential and wave function change when a simple discrete eigenvalue is added to the spectrum, and thus we also provide a one-parameter family of Darboux transformations for the nonlinear Schroedinger equation.
CNS represented at inaugural Energetics Consortium | Y-12 National Security
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Complex CNS represented at ... CNS represented at inaugural Energetics Consortium Posted: February 16, 2016 - 6:53pm CNS was well represented at the first National Energetic Materials Consortium. About 70 university researchers and government and industry experts from across the country, including Consolidated Nuclear Security employees, joined forces at the first ever National Energetic Materials Consortium hosted by Texas Tech University. Pantex's Christopher Young said, "There are a
The Representative Concentration Pathways: An Overview (Journal Article) |
Office of Scientific and Technical Information (OSTI)
SciTech Connect The Representative Concentration Pathways: An Overview Citation Details In-Document Search Title: The Representative Concentration Pathways: An Overview This paper summarizes the development process and main characteristics of the Representative Concentration Pathways (RCPs), a set of four new scenarios developed for the climate modeling community as a basis for long-term and near-term modeling experiments. The four RCPs together span the range of year 2100 radiative forcing
CRAD, NNSA - Facility Representatives (FR) | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Facility Representatives (FR) CRAD, NNSA - Facility Representatives (FR) CRAD for Facility Representatives (FR). Criteria Review and Approach Documents (CRADs) that can be used to conduct a well-organized and thorough assessment of elements of safety and health programs. CRADs consist of a Performance Objective that identifies the expectation(s) or requirement(s) to be verified, which reflect the complete scope of the assessment; Criteria that provide specifics by which the performance
Departmental Representative to the Defense Nuclear Facilities Safety Board
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
(DNFSB) | Department of Energy Departmental Representative to the Defense Nuclear Facilities Safety Board (DNFSB) Departmental Representative to the Defense Nuclear Facilities Safety Board (DNFSB) The Office of the Departmental Representative ensures effective cross-organizational leadership and coordination to resolve DNFSB-identified technical and management issues as we work to ensure the health, safety, and security of the workers, public, and environment. This web site is an important
UESC Training for Utility Representatives | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
UESC Training for Utility Representatives UESC Training for Utility Representatives January 27, 2016 11:00AM to 1:00PM EST Webinar covers utility energy service contracts (UESC), which allow utilities to provide their Federal agencies with comprehensive energy and water efficiency improvements and demand-reduction services. To enter into a UESC, Federal staff, as well as utility representatives, must understand the legal parameters, contracting requirements, financing options, and other aspects
DOE/Advisory Board Recognize Service of Student Representatives |
Office of Environmental Management (EM)
Department of Energy DOE/Advisory Board Recognize Service of Student Representatives DOE/Advisory Board Recognize Service of Student Representatives April 16, 2014 - 12:58pm Addthis The Oak Ridge Site Specific Advisory Board (ORSSAB) and the U.S. Department of Energy's (DOE) Oak Ridge Office recognized outgoing student representatives Gracie Hall and Julia Riley at the April board meeting. ORSSAB is a federally chartered citizens' panel that provides recommendations to the DOE Oak Ridge
Appointment of Contracting Officers and Contracting Officer Representatives
Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]
2004-04-21
The Order established procedures governing the selection, appointment and termination of Department of Energy contracting officers and contracting officer representatives. Supersedes DOE O 541.1A.
Dr. Kelli Joseph, NYISO Representing the ISO-RTO Council
Broader source: Energy.gov (indexed) [DOE]
Kelli Joseph, NYISO Representing the ISO-RTO Council July 28, 2014 DOE Quadrennial Energy Review Gas Electric Interdependencies: Coordination Efforts, Regional Issues, and...
On April 25, 2013, several representatives of energy efficiency...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Representing compressor manufacturers were Jordan Doria, Mark Krisa, Rob Haseley (Ingersoll Rand), Wayne Perry, Werner Rauer, Stephen Horne and Waheed Chaudury (Kaeser), Gary ...
The generalized SchrdingerLangevin equation
Bargueo, Pedro; Miret-Arts, Salvador
2014-07-15
In this work, for a Brownian particle interacting with a heat bath, we derive a generalization of the so-called SchrdingerLangevin or Kostin equation. This generalization is based on a nonlinear interaction model providing a state-dependent dissipation process exhibiting multiplicative noise. Two straightforward applications to the measurement process are then analyzed, continuous and weak measurements in terms of the quantum Bohmian trajectory formalism. Finally, it is also shown that the generalized uncertainty principle, which appears in some approaches to quantum gravity, can be expressed in terms of this generalized equation. -- Highlights: We generalize the Kostin equation for arbitrary systembath coupling. This generalization is developed both in the Schrdinger and Bohmian formalisms. We write the generalized Kostin equation for two measurement problems. We reformulate the generalized uncertainty principle in terms of this equation.
Statistically designed study of the variables and parameters of carbon dioxide equations of state
Donohue, M.D.; Naiman, D.Q.; Jin, Gang; Loehe, J.R.
1991-05-01
Carbon dioxide is used widely in enhanced oil recovery (EOR) processes to maximize the production of crude oil from aging and nearly depleted oil wells. Carbon dioxide also is encountered in many processes related to oil recovery. Accurate representations of the properties of carbon dioxide, and its mixtures with hydrocarbons, play a critical role in a number of enhanced oil recovery operations. One of the first tasks of this project was to select an equation of state to calculate the properties of carbon dioxide and its mixtures. The equations simplicity, accuracy, and reliability in representing phase behavior and thermodynamic properties of mixtures containing carbon dioxide with hydrocarbons at conditions relevant to enhanced oil recovery were taken into account. We also have determined the thermodynamic properties that are important to enhanced oil recovery and the ranges of temperature, pressure and composition that are important. We chose twelve equations of state for preliminary studies to be evaluated against these criteria. All of these equations were tested for pure carbon dioxide and eleven were tested for pure alkanes and their mixtures with carbon dioxide. Two equations, the ALS equation and the ESD equation, were selected for detailed statistical analysis. 54 refs., 41 figs., 36 tabs.
Utility Energy Service Contracts Training for Utility Representatives
Broader source: Energy.gov [DOE]
This webinar targets Federal staff, as well as utility representatives, and provides an understanding of the legal parameters, contracting requirements, financing options, and other aspects of utility energy service contracts (UESC).
Department of Defense Representatives Visit Hanford to Benchmark Safety
Broader source: Energy.gov [DOE]
RICHLAND, Wash., December 16, 2005, Representatives of the Department of Defense's (DoD's) Voluntary Protection Program Center of Excellence (VPP CX) working to reduce injuries at selected (DoD)...
Changes to the Facility Representative Program, 10/26/1999
Broader source: Energy.gov [DOE]
Effective October 1, 1999, the Deputy Secretary tasked this office to manage the Facility Representative Program. We look forward to working with you in continuing and improving this very important...
Appointment of Contracting Officers and Contracting Officer Representatives
Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]
1996-04-30
To establish procedures governing the selection, appointment, and termination of contracting officers and for the appointment of contracting officer representatives. Cancels DOE Order 4200.4A. Canceled by DOE O 541.1A.
Radionuclide Interaction and Transport in Representative Geologic Media |
Department of Energy Radionuclide Interaction and Transport in Representative Geologic Media Radionuclide Interaction and Transport in Representative Geologic Media The report presents information related to the development of a fundamental understanding of disposal-system performance in a range of environments for potential wastes that could arise from future nuclear fuel cycle alternatives. It addresses selected aspects of the development of computational modeling capability for the
FAQS Job Task Analyses - Facility Representative | Department of Energy
Office of Environmental Management (EM)
Facility Representative FAQS Job Task Analyses - Facility Representative FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies. PDF icon FAQS JTA -
Equator Appliance: ENERGY STAR Referral (EZ 3720)
Broader source: Energy.gov [DOE]
DOE referred Equator Appliance clothes washer EZ 3720 to EPA, brand manager of the ENERGY STAR program, for appropriate action after DOE testing revealed that the model does not meet ENERGY STAR requirements.
Coherency Does Not Equate to Stability
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
BES Programs Highlight Coherency Does Not Equate to Stability As-grown nanotwin (NT) copper (A) SEM image. (B) An edge-on inverse pole figure orientation mapping (IPFOM) image,...
Representing the thermal state in time-dependent density functional theory
Modine, N. A.; Hatcher, R. M.
2015-05-28
Classical molecular dynamics (MD) provides a powerful and widely used approach to determining thermodynamic properties by integrating the classical equations of motion of a system of atoms. Time-Dependent Density Functional Theory (TDDFT) provides a powerful and increasingly useful approach to integrating the quantum equations of motion for a system of electrons. TDDFT efficiently captures the unitary evolution of a many-electron state by mapping the system into a fictitious non-interacting system. In analogy to MD, one could imagine obtaining the thermodynamic properties of an electronic system from a TDDFT simulation in which the electrons are excited from their ground state by a time-dependent potential and then allowed to evolve freely in time while statistical data are captured from periodic snapshots of the system. For a variety of systems (e.g., many metals), the electrons reach an effective state of internal equilibrium due to electron-electron interactions on a time scale that is short compared to electron-phonon equilibration. During the initial time-evolution of such systems following electronic excitation, electron-phonon interactions should be negligible, and therefore, TDDFT should successfully capture the internal thermalization of the electrons. However, it is unclear how TDDFT represents the resulting thermal state. In particular, the thermal state is usually represented in quantum statistical mechanics as a mixed state, while the occupations of the TDDFT wavefunctions are fixed by the initial state in TDDFT. We work to address this puzzle by (A) reformulating quantum statistical mechanics so that thermodynamic expectations can be obtained as an unweighted average over a set of many-body pure states and (B) constructing a family of non-interacting (single determinant) TDDFT states that approximate the required many-body states for the canonical ensemble.
Pierantozzi, T.; Vazquez, L.
2005-11-01
Through fractional calculus and following the method used by Dirac to obtain his well-known equation from the Klein-Gordon equation, we analyze a possible interpolation between the Dirac and the diffusion equations in one space dimension. We study the transition between the hyperbolic and parabolic behaviors by means of the generalization of the D'Alembert formula for the classical wave equation and the invariance under space and time inversions of the interpolating fractional evolution equations Dirac like. Such invariance depends on the values of the fractional index and is related to the nonlocal property of the time fractional differential operator. For this system of fractional evolution equations, we also find an associated conserved quantity analogous to the Hamiltonian for the classical Dirac case.
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Maddalena, Damian; Hoffman, Forrest; Kumar, Jitendra; Hargrove, William
Sampling networks rarely conform to spatial and temporal ideals, often comprised of network sampling points which are unevenly distributed and located in less than ideal locations due to access constraints, budget limitations, or political conflict. Quantifying the global, regional, and temporal representativeness of these networks by quantifying the coverage of network infrastructure highlights the capabilities and limitations of the data collected, facilitates upscaling and downscaling for modeling purposes, and improves the planning efforts for future infrastructure investment under current conditions and future modeled scenarios. The work presented here utilizes multivariate spatiotemporal clustering analysis and representativeness analysis for quantitative landscape characterization and assessment of the Fluxnet, RAINFOR, and ForestGEO networks. Results include ecoregions that highlight patterns of bioclimatic, topographic, and edaphic variables and quantitative representativeness maps of individual and combined networks.
Maddalena, Damian; Hoffman, Forrest; Kumar, Jitendra; Hargrove, William
2014-08-01
Sampling networks rarely conform to spatial and temporal ideals, often comprised of network sampling points which are unevenly distributed and located in less than ideal locations due to access constraints, budget limitations, or political conflict. Quantifying the global, regional, and temporal representativeness of these networks by quantifying the coverage of network infrastructure highlights the capabilities and limitations of the data collected, facilitates upscaling and downscaling for modeling purposes, and improves the planning efforts for future infrastructure investment under current conditions and future modeled scenarios. The work presented here utilizes multivariate spatiotemporal clustering analysis and representativeness analysis for quantitative landscape characterization and assessment of the Fluxnet, RAINFOR, and ForestGEO networks. Results include ecoregions that highlight patterns of bioclimatic, topographic, and edaphic variables and quantitative representativeness maps of individual and combined networks.
WIPP Representative Selected For National Environmental Justice Advisory Board
Broader source: Energy.gov [DOE]
CARLSBAD, N.M. – Organizers say no similar opportunity or conference exists in America. In April, representatives from federal and state agencies, local governments, tribes, communities, business, academia and other groups will gather in Washington, D.C. for the 2012 National Environmental Justice Conference and Training Program.
Appointment of Contracting Officers and Contracting Officer's Representatives
Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]
2000-10-27
To establish procedures governing the selection, appointment, and termination of contracting officers and for the appointment of contracting officer's representatives. To ensure that only trained and qualified procurement and financial assistance professionals, within the scope of this Order, serve as contracting officers. Cancels DOE O 541.1. Canceled by DOE O 541.1B.
DOE Representative to World Institute of Nuclear Safety (WINS) | National
National Nuclear Security Administration (NNSA)
Nuclear Security Administration Representative to World Institute of Nuclear Safety (WINS) | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters
Gamba, Irene M.; Haack, Jeffrey R.
2014-08-01
We present the formulation of a conservative spectral method for the Boltzmann collision operator with anisotropic scattering cross-sections. The method is an extension of the conservative spectral method of Gamba and Tharkabhushanam [17,18], which uses the weak form of the collision operator to represent the collisional term as a weighted convolution in Fourier space. The method is tested by computing the collision operator with a suitably cut-off angular cross section and comparing the results with the solution of the Landau equation. We analytically study the convergence rate of the Fourier transformed Boltzmann collision operator in the grazing collisions limit to the Fourier transformed Landau collision operator under the assumption of some regularity and decay conditions of the solution to the Boltzmann equation. Our results show that the angular singularity which corresponds to the Rutherford scattering cross section is the critical singularity for which a grazing collision limit exists for the Boltzmann operator. Additionally, we numerically study the differences between homogeneous solutions of the Boltzmann equation with the Rutherford scattering cross section and an artificial cross section, which give convergence to solutions of the Landau equation at different asymptotic rates. We numerically show the rate of the approximation as well as the consequences for the rate of entropy decay for homogeneous solutions of the Boltzmann equation and Landau equation.
Equation of State from Lattice QCD Calculations (Conference)...
Office of Scientific and Technical Information (OSTI)
Conference: Equation of State from Lattice QCD Calculations Citation Details In-Document Search Title: Equation of State from Lattice QCD Calculations You are accessing a...
Modeling Dynamic Ductility: An Equation of State for Porous Metals...
Office of Scientific and Technical Information (OSTI)
Dynamic Ductility: An Equation of State for Porous Metals Citation Details In-Document Search Title: Modeling Dynamic Ductility: An Equation of State for Porous Metals You are...
An analysis of representative heating load lines for residential HSPF ratings
Rice, C. Keith; Shen, Bo; Shrestha, Som S.
2015-07-01
This report describes an analysis to investigate representative heating loads for single-family detached homes using current EnergyPlus simulations (DOE 2014a). Hourly delivered load results are used to determine binned load lines using US Department of Energy (DOE) residential prototype building models (DOE 2014b) developed by Pacific Northwest National Laboratory (PNNL). The selected residential single-family prototype buildings are based on the 2006 International Energy Conservation Code (IECC 2006) in the DOE climate regions. The resulting load lines are compared with the American National Standards Institute (ANSI)/Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Standard 210/240 (AHRI 2008) minimum and maximum design heating requirement (DHR) load lines of the heating seasonal performance factor (HSPF) ratings procedure for each region. The results indicate that a heating load line closer to the maximum DHR load line, and with a lower zero load ambient temperature, is more representative of heating loads predicted for EnergyPlus prototype residential buildings than the minimum DHR load line presently used to determine HSPF ratings. An alternative heating load line equation was developed and compared to binned load lines obtained from the EnergyPlus simulation results. The effect on HSPF of the alternative heating load line was evaluated for single-speed and two-capacity heat pumps, and an average HSPF reduction of 16% was found. The alternative heating load line relationship is tied to the rated cooling capacity of the heat pump based on EnergyPlus autosizing, which is more representative of the house load characteristics than the rated heating capacity. The alternative heating load line equation was found to be independent of climate for the six DOE climate regions investigated, provided an adjustable zero load ambient temperature is used. For Region IV, the default DOE climate region used for HSPF ratings, the higher load line results in an ~28% increase in delivered heating load and an ~52% increase in the estimated heating operating cost over that given in the AHRI directory (AHRI 2014).
Processes, data structures, and apparatuses for representing knowledge
Hohimer, Ryan E. (West Richland, WA); Thomson, Judi R. (Guelph, CA); Harvey, William J. (Richland, WA); Paulson, Patrick R. (Pasco, WA); Whiting, Mark A. (Richland, WA); Tratz, Stephen C. (Richland, WA); Chappell, Alan R. (Seattle, WA); Butner, R. Scott (Richland, WA)
2011-09-20
Processes, data structures, and apparatuses to represent knowledge are disclosed. The processes can comprise labeling elements in a knowledge signature according to concepts in an ontology and populating the elements with confidence values. The data structures can comprise knowledge signatures stored on computer-readable media. The knowledge signatures comprise a matrix structure having elements labeled according to concepts in an ontology, wherein the value of the element represents a confidence that the concept is present in an information space. The apparatus can comprise a knowledge representation unit having at least one ontology stored on a computer-readable medium, at least one data-receiving device, and a processor configured to generate knowledge signatures by comparing datasets obtained by the data-receiving devices to the ontologies.
Howard University Researchers Represented in the E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Howard University Researchers Represented in the E-print Network Researcher/Research Institution Web page Eckberg, William R. - Department of Biology, Howard University http://www.biology.howard.edu/ Faculty/FacultyBios/Eckberg.htm Hindman, Neil - Department of Mathematics, Howard University http://mysite.verizon.net/nhindman/ Sitaraman, Sankar - Department of Mathematics, Howard University http://nature-lover.net/math/R/rp.html
Solves the Multigroup Neutron Diffusion Equation
Energy Science and Technology Software Center (OSTI)
1995-06-23
GNOMER is a program which solves the multigroup neutron diffusion equation in 1D, 2D and 3D cartesian geometry. The program is designed to calculate the global core power distributions (with thermohydraulic feedbacks), as well as power distribution and homogenized cross sections over a fuel assembly.
Single-point representative sampling with shrouded probes
McFarland, A.R.; Rodgers, J.C.
1993-08-01
The Environmental Protection Agency (EPA) prescribed methodologies for sampling radionuclides in air effluents from stacks and ducts at US Department of Energy (DOE) facilities. Requirements include use of EPA Method 1 for the location of sampling sites and use of American National Standards Institute (ANSI) N13.1 for guidance in design of sampling probes and the number of probes at a given site. Application of ANSI N13.1 results in sampling being performed with multiprobe rakes that have as many as 20 probes. There can be substantial losses of aerosol particles in such sampling that will degrade the quality of emission estimates from a nuclear facility. Three alternate methods, technically justified herein, are proposed for effluent sampling. First, a shrouded aerosol sampling probe should replace the sharp-edged elbowed-nozzle recommended by ANSI. This would reduce the losses of aerosol particles in probes and result in the acquisition of more representative aerosol samples. Second, the rakes of multiple probes that are intended to acquire representative samples through spatial coverage should be replaced by a single probe located where contaminant mass and fluid momentum are both well mixed. A representative sample can be obtained from a well-mixed flow. Some effluent flows will need to be engineered to achieve acceptable mixing. Third, sample extraction should be performed at a constant flow rate through a suitable designed shrouded probe rather than at a variable flow rate through isokinetic probes. A shrouded probe is shown to have constant sampling characteristics over a broad range of stack velocities when operated at a fixed flow rate.
DOE-STD-1063-2000 - Facility Representatives
Office of Environmental Management (EM)
NOT MEASUREMENT SENSITIVE DOE-STD-1063-2000 March 2000 Superseding DOE-STD-1063-97 October 1997 DOE STANDARD FACILITY REPRESENTATIVES U.S. Department of Energy AREA MGMT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available
Representing the thermal state in time-dependent density functional theory
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Modine, N. A.; Hatcher, R. M.
2015-05-28
Classical molecular dynamics (MD) provides a powerful and widely used approach to determining thermodynamic properties by integrating the classical equations of motion of a system of atoms. Time-Dependent Density Functional Theory (TDDFT) provides a powerful and increasingly useful approach to integrating the quantum equations of motion for a system of electrons. TDDFT efficiently captures the unitary evolution of a many-electron state by mapping the system into a fictitious non-interacting system. In analogy to MD, one could imagine obtaining the thermodynamic properties of an electronic system from a TDDFT simulation in which the electrons are excited from their ground state bymore »a time-dependent potential and then allowed to evolve freely in time while statistical data are captured from periodic snapshots of the system. For a variety of systems (e.g., many metals), the electrons reach an effective state of internal equilibrium due to electron-electron interactions on a time scale that is short compared to electron-phonon equilibration. During the initial time-evolution of such systems following electronic excitation, electron-phonon interactions should be negligible, and therefore, TDDFT should successfully capture the internal thermalization of the electrons. However, it is unclear how TDDFT represents the resulting thermal state. In particular, the thermal state is usually represented in quantum statistical mechanics as a mixed state, while the occupations of the TDDFT wave functions are fixed by the initial state in TDDFT. Two key questions involve (1) reformulating quantum statistical mechanics so that thermodynamic expectations can be obtained as an unweighted average over a set of many-body pure states and (2) constructing a family of non-interacting (single determinant) TDDFT states that approximate the required many-body states for the canonical ensemble. In Section II, we will address these questions by first demonstrating that thermodynamic expectations can be evaluated by averaging over certain many-body pure states, which we will call thermal states, and then constructing TDDFT states that approximate these thermal states. In Section III, we will present some numerical tests of the resulting theory, and in Section IV, we will summarize our main results and discuss some possible future directions for this work.« less
Representing the thermal state in time-dependent density functional theory
Modine, N. A.; Hatcher, R. M.
2015-05-28
Classical molecular dynamics (MD) provides a powerful and widely used approach to determining thermodynamic properties by integrating the classical equations of motion of a system of atoms. Time-Dependent Density Functional Theory (TDDFT) provides a powerful and increasingly useful approach to integrating the quantum equations of motion for a system of electrons. TDDFT efficiently captures the unitary evolution of a many-electron state by mapping the system into a fictitious non-interacting system. In analogy to MD, one could imagine obtaining the thermodynamic properties of an electronic system from a TDDFT simulation in which the electrons are excited from their ground state by a time-dependent potential and then allowed to evolve freely in time while statistical data are captured from periodic snapshots of the system. For a variety of systems (e.g., many metals), the electrons reach an effective state of internal equilibrium due to electron-electron interactions on a time scale that is short compared to electron-phonon equilibration. During the initial time-evolution of such systems following electronic excitation, electron-phonon interactions should be negligible, and therefore, TDDFT should successfully capture the internal thermalization of the electrons. However, it is unclear how TDDFT represents the resulting thermal state. In particular, the thermal state is usually represented in quantum statistical mechanics as a mixed state, while the occupations of the TDDFT wave functions are fixed by the initial state in TDDFT. Two key questions involve (1) reformulating quantum statistical mechanics so that thermodynamic expectations can be obtained as an unweighted average over a set of many-body pure states and (2) constructing a family of non-interacting (single determinant) TDDFT states that approximate the required many-body states for the canonical ensemble. In Section II, we will address these questions by first demonstrating that thermodynamic expectations can be evaluated by averaging over certain many-body pure states, which we will call thermal states, and then constructing TDDFT states that approximate these thermal states. In Section III, we will present some numerical tests of the resulting theory, and in Section IV, we will summarize our main results and discuss some possible future directions for this work.
The quasicontinuum Fokker-Plank equation
Alexander, Francis J
2008-01-01
We present a regularized Fokker-Planck equation with more accurate short-time and high-frequency behavior for continuous-time, discrete-state systems. The regularization preserves crucial aspects of state-space discreteness lost in the standard Kramers-Moyal expansion. We apply the method to a simple example of biochemical reaction kinetics and to a two-dimensional symmetric random walk, and suggest its application to more complex systerns.
Development of surface mine cost estimating equations
Not Available
1980-09-26
Cost estimating equations were developed to determine capital and operating costs for five surface coal mine models in Central Appalachia, Northern Appalachia, Mid-West, Far-West, and Campbell County, Wyoming. Engineering equations were used to estimate equipment costs for the stripping function and for the coal loading and hauling function for the base case mine and for several mines with different annual production levels and/or different overburden removal requirements. Deferred costs were then determined through application of the base case depreciation schedules, and direct labor costs were easily established once the equipment quantities (and, hence, manpower requirements) were determined. The data points were then fit with appropriate functional forms, and these were then multiplied by appropriate adjustment factors so that the resulting equations yielded the model mine costs for initial and deferred capital and annual operating cost. (The validity of this scaling process is based on the assumption that total initial and deferred capital costs are proportional to the initial and deferred costs for the primary equipment types that were considered and that annual operating cost is proportional to the direct labor costs that were determined based on primary equipment quantities.) Initial capital costs ranged from $3,910,470 in Central Appalachia to $49,296,785; deferred capital costs ranged from $3,220,000 in Central Appalachia to $30,735,000 in Campbell County, Wyoming; and annual operating costs ranged from $2,924,148 in Central Appalachia to $32,708,591 in Campbell County, Wyoming. (DMC)
Defining And Characterizing Sample Representativeness For DWPF Melter Feed Samples
Shine, E. P.; Poirier, M. R.
2013-10-29
Representative sampling is important throughout the Defense Waste Processing Facility (DWPF) process, and the demonstrated success of the DWPF process to achieve glass product quality over the past two decades is a direct result of the quality of information obtained from the process. The objective of this report was to present sampling methods that the Savannah River Site (SRS) used to qualify waste being dispositioned at the DWPF. The goal was to emphasize the methodology, not a list of outcomes from those studies. This methodology includes proven methods for taking representative samples, the use of controlled analytical methods, and data interpretation and reporting that considers the uncertainty of all error sources. Numerous sampling studies were conducted during the development of the DWPF process and still continue to be performed in order to evaluate options for process improvement. Study designs were based on use of statistical tools applicable to the determination of uncertainties associated with the data needs. Successful designs are apt to be repeated, so this report chose only to include prototypic case studies that typify the characteristics of frequently used designs. Case studies have been presented for studying in-tank homogeneity, evaluating the suitability of sampler systems, determining factors that affect mixing and sampling, comparing the final waste glass product chemical composition and durability to that of the glass pour stream sample and other samples from process vessels, and assessing the uniformity of the chemical composition in the waste glass product. Many of these studies efficiently addressed more than one of these areas of concern associated with demonstrating sample representativeness and provide examples of statistical tools in use for DWPF. The time when many of these designs were implemented was in an age when the sampling ideas of Pierre Gy were not as widespread as they are today. Nonetheless, the engineers and statisticians used carefully thought out designs that systematically and economically provided plans for data collection from the DWPF process. Key shared features of the sampling designs used at DWPF and the Gy sampling methodology were the specification of a standard for sample representativeness, an investigation that produced data from the process to study the sampling function, and a decision framework used to assess whether the specification was met based on the data. Without going into detail with regard to the seven errors identified by Pierre Gy, as excellent summaries are readily available such as Pitard [1989] and Smith [2001], SRS engineers understood, for example, that samplers can be biased (Gy�s extraction error), and developed plans to mitigate those biases. Experiments that compared installed samplers with more representative samples obtained directly from the tank may not have resulted in systematically partitioning sampling errors into the now well-known error categories of Gy, but did provide overall information on the suitability of sampling systems. Most of the designs in this report are related to the DWPF vessels, not the large SRS Tank Farm tanks. Samples from the DWPF Slurry Mix Evaporator (SME), which contains the feed to the DWPF melter, are characterized using standardized analytical methods with known uncertainty. The analytical error is combined with the established error from sampling and processing in DWPF to determine the melter feed composition. This composition is used with the known uncertainty of the models in the Product Composition Control System (PCCS) to ensure that the wasteform that is produced is comfortably within the acceptable processing and product performance region. Having the advantage of many years of processing that meets the waste glass product acceptance criteria, the DWPF process has provided a considerable amount of data about itself in addition to the data from many special studies. Demonstrating representative sampling directly from the large Tank Farm tanks is a difficult, if not unsolvable enterprise due to limited accessibility. However, the consistency and the adequacy of sampling and mixing at SRS could at least be studied under the controlled process conditions based on samples discussed by Ray and others [2012a] in Waste Form Qualification Report (WQR) Volume 2 and the transfers from Tanks 40H and 51H to the Sludge Receipt and Adjustment Tank (SRAT) within DWPF. It is important to realize that the need for sample representativeness becomes more stringent as the material gets closer to the melter, and the tanks within DWPF have been studied extensively to meet those needs.
The Korarchaeota: Archaeal orphans representing an ancestral lineage of life
Elkins, James G.; Kunin, Victor; Anderson, Iain; Barry, Kerrie; Goltsman, Eugene; Lapidus, Alla; Hedlund, Brian; Hugenholtz, Phil; Kyrpides, Nikos; Graham, David; Keller, Martin; Wanner, Gerhard; Richardson, Paul; Stetter, Karl O.
2007-05-01
Based on conserved cellular properties, all life on Earth can be grouped into different phyla which belong to the primary domains Bacteria, Archaea, and Eukarya. However, tracing back their evolutionary relationships has been impeded by horizontal gene transfer and gene loss. Within the Archaea, the kingdoms Crenarchaeota and Euryarchaeota exhibit a profound divergence. In order to elucidate the evolution of these two major kingdoms, representatives of more deeply diverged lineages would be required. Based on their environmental small subunit ribosomal (ss RNA) sequences, the Korarchaeota had been originally suggested to have an ancestral relationship to all known Archaea although this assessment has been refuted. Here we describe the cultivation and initial characterization of the first member of the Korarchaeota, highly unusual, ultrathin filamentous cells about 0.16 {micro}m in diameter. A complete genome sequence obtained from enrichment cultures revealed an unprecedented combination of signature genes which were thought to be characteristic of either the Crenarchaeota, Euryarchaeota, or Eukarya. Cell division appears to be mediated through a FtsZ-dependent mechanism which is highly conserved throughout the Bacteria and Euryarchaeota. An rpb8 subunit of the DNA-dependent RNA polymerase was identified which is absent from other Archaea and has been described as a eukaryotic signature gene. In addition, the representative organism possesses a ribosome structure typical for members of the Crenarchaeota. Based on its gene complement, this lineage likely diverged near the separation of the two major kingdoms of Archaea. Further investigations of these unique organisms may shed additional light onto the evolution of extant life.
Simulating a Nationally Representative Housing Sample Using EnergyPlus
Hopkins, Asa S.; Lekov, Alex; Lutz, James; Rosenquist, Gregory; Gu, Lixing
2011-03-04
This report presents a new simulation tool under development at Lawrence Berkeley National Laboratory (LBNL). This tool uses EnergyPlus to simulate each single-family home in the Residential Energy Consumption Survey (RECS), and generates a calibrated, nationally representative set of simulated homes whose energy use is statistically indistinguishable from the energy use of the single-family homes in the RECS sample. This research builds upon earlier work by Ritchard et al. for the Gas Research Institute and Huang et al. for LBNL. A representative national sample allows us to evaluate the variance in energy use between individual homes, regions, or other subsamples; using this tool, we can also evaluate how that variance affects the impacts of potential policies. The RECS contains information regarding the construction and location of each sampled home, as well as its appliances and other energy-using equipment. We combined this data with the home simulation prototypes developed by Huang et al. to simulate homes that match the RECS sample wherever possible. Where data was not available, we used distributions, calibrated using the RECS energy use data. Each home was assigned a best-fit location for the purposes of weather and some construction characteristics. RECS provides some detail on the type and age of heating, ventilation, and air-conditioning (HVAC) equipment in each home; we developed EnergyPlus models capable of reproducing the variety of technologies and efficiencies represented in the national sample. This includes electric, gas, and oil furnaces, central and window air conditioners, central heat pumps, and baseboard heaters. We also developed a model of duct system performance, based on in-home measurements, and integrated this with fan performance to capture the energy use of single- and variable-speed furnace fans, as well as the interaction of duct and fan performance with the efficiency of heating and cooling equipment. Comparison with RECS revealed that EnergyPlus did not capture the heating-side behavior of heat pumps particularly accurately, and that our simple oil furnace and boiler models needed significant recalibration to fit with RECS. Simulating the full RECS sample on a single computer would take many hours, so we used the 'cloud computing' services provided by Amazon.com to simulate dozens of homes at once. This enabled us to simulate the full RECS sample, including multiple versions of each home to evaluate the impact of marginal changes, in less than 3 hours. Once the tool was calibrated, we were able to address several policy questions. We made a simple measurement of the heat replacement effect and showed that the net effect of heat replacement on primary energy use is likely to be less than 5%, relative to appliance-only measures of energy savings. Fuel switching could be significant, however. We also evaluated the national and regional impacts of a variety of 'overnight' changes in building characteristics or occupant behavior, including lighting, home insulation and sealing, HVAC system efficiency, and thermostat settings. For example, our model shows that the combination of increased home insulation and better sealed building shells could reduce residential natural gas use by 34.5% and electricity use by 6.5%, and a 1 degree rise in summer thermostat settings could save 2.1% of home electricity use. These results vary by region, and we present results for each U.S. Census division. We conclude by offering proposals for future work to improve the tool. Some proposed future work includes: comparing the simulated energy use data with the monthly RECS bill data; better capturing the variation in behavior between households, especially as it relates to occupancy and schedules; improving the characterization of recent construction and its regional variation; and extending the general framework of this simulation tool to capture multifamily housing units, such as apartment buildings.
Canonical equations of ideal magnetic hydrodynamics
Gorskii, V.B.
1987-07-01
Ideal magnetohydrodynamics is used to consider a general class of adiabatic flow in magnetic liquids. Two invariants of the canonical equations of motion--Hamiltonian and Lagrangian--are determined in terms of the canonical variables by using the approximate variational formulations. The resulting model describes adiabatic three-dimensional flow of a nonviscous compressible liquid with ideal electric conductivity and zero heat conductivity. A Clebsch transformation is used to arrive at a form of the Lagrange-Cauchy integral for a vortex flow.
Solving the Schroedinger equation using Smolyak interpolants
Avila, Gustavo; Carrington, Tucker Jr.
2013-10-07
In this paper, we present a new collocation method for solving the Schroedinger equation. Collocation has the advantage that it obviates integrals. All previous collocation methods have, however, the crucial disadvantage that they require solving a generalized eigenvalue problem. By combining Lagrange-like functions with a Smolyak interpolant, we device a collocation method that does not require solving a generalized eigenvalue problem. We exploit the structure of the grid to develop an efficient algorithm for evaluating the matrix-vector products required to compute energy levels and wavefunctions. Energies systematically converge as the number of points and basis functions are increased.
Sandia Equation of State Model Library
Energy Science and Technology Software Center (OSTI)
2013-08-29
The software provides a general interface for querying thermodynamic states of material models along with implementation of both general and specific equation of state models. In particular, models are provided for the IAPWS-IF97 and IAPWS95 water standards as well as the associated water standards for viscosity, thermal conductivity, and surface tension. The interface supports implementation of models in a variety of independent variable spaces. Also, model support routines are included that allow for coupling ofmore » models and determination and representation of phase boundaries.« less
Equation of state in ( 2 + 1 )-flavor QCD (Journal Article) ...
Office of Scientific and Technical Information (OSTI)
Journal Article: Equation of state in ( 2 + 1 )-flavor QCD Citation Details In-Document Search Title: Equation of state in ( 2 + 1 )-flavor QCD Authors: Bazavov, A. ; Bhattacharya,...
Propagation of ultra-short solitons in stochastic Maxwell's equations
Kurt, Levent; Schfer, Tobias
2014-01-15
We study the propagation of ultra-short short solitons in a cubic nonlinear medium modeled by nonlinear Maxwell's equations with stochastic variations of media. We consider three cases: variations of (a) the dispersion, (b) the phase velocity, (c) the nonlinear coefficient. Using a modified multi-scale expansion for stochastic systems, we derive new stochastic generalizations of the short pulse equation that approximate the solutions of stochastic nonlinear Maxwell's equations. Numerical simulations show that soliton solutions of the short pulse equation propagate stably in stochastic nonlinear Maxwell's equations and that the generalized stochastic short pulse equations approximate the solutions to the stochastic Maxwell's equations over the distances under consideration. This holds for both a pathwise comparison of the stochastic equations as well as for a comparison of the resulting probability densities.
A Reconstructed Discontinuous Galerkin Method for the Euler Equations...
Office of Scientific and Technical Information (OSTI)
Resource Relation: Journal Name: Communications in Computational Physics; Journal Volume: ... least-squares reconstruction; compressible Euler equations; Discontinuous Galerkin methods
Differential form of the Skornyakov-Ter-Martirosyan Equations
Pen'kov, F. M.; Sandhas, W.
2005-12-15
The Skornyakov-Ter-Martirosyan three-boson integral equations in momentum space are transformed into differential equations. This allows us to take into account quite directly the Danilov condition providing self-adjointness of the underlying three-body Hamiltonian with zero-range pair interactions. For the helium trimer the numerical solutions of the resulting differential equations are compared with those of the Faddeev-type AGS equations.
The tunneling solutions of the time-dependent Schroedinger equation for a square-potential barrier
Elci, A.; Hjalmarson, H. P.
2009-10-15
The exact tunneling solutions of the time-dependent Schroedinger equation with a square-potential barrier are derived using the continuous symmetry group G{sub S} for the partial differential equation. The infinitesimal generators and the elements for G{sub S} are represented and derived in the jet space. There exist six classes of wave functions. The representative (canonical) wave functions for the classes are labeled by the eigenvalue sets, whose elements arise partially from the reducibility of a Lie subgroup G{sub LS} of G{sub S} and partially from the separation of variables. Each eigenvalue set provides two or more time scales for the wave function. The ratio of two time scales can act as the duration of an intrinsic clock for the particle motion. The exact solutions of the time-dependent Schroedinger equation presented here can produce tunneling currents that are orders of magnitude larger than those produced by the energy eigenfunctions. The exact solutions show that tunneling current can be quantized under appropriate boundary conditions and tunneling probability can be affected by a transverse acceleration.
The Raychaudhuri equation in homogeneous cosmologies
Albareti, F.D.; Cembranos, J.A.R.; Cruz-Dombriz, A. de la; Dobado, A. E-mail: cembra@fis.ucm.es E-mail: dobado@fis.ucm.es
2014-03-01
In this work we address the issue of studying the conditions required to guarantee the Focusing Theorem for both null and timelike geodesic congruences by using the Raychaudhuri equation. In particular we study the case of Friedmann-Robertson-Walker as well as more general Bianchi Type I spacetimes. The fulfillment of the Focusing Theorem is mandatory in small scales since it accounts for the attractive character of gravity. However, the Focusing Theorem is not satisfied at cosmological scales due to the measured negative deceleration parameter. The study of the conditions needed for congruences convergence is not only relevant at the fundamental level but also to derive the viability conditions to be imposed on extended theories of gravity describing the different expansion regimes of the universe. We illustrate this idea for f(R) gravity theories.
Equations determine coiled tubing collapse pressure
Avakov, V.; Taliaferro, W.
1995-07-24
A set of equations has been developed for calculating pipe collapse pressure for oval tubing such as coiled tubing. When coiled tubing is placed onto a reel, the tubing is forced into an oval shape and never again returns to perfect roundness because the coiling process exceeds the plasticity limits of the tubing. Straightening the tubing for the trip into the well does not restore roundness. The consequence of this physical property is that all coiled tubing collapse pressure calculations should be made considering oval tubing, not round tubing. Tubing collapse can occur when formation pressure against the coiled tubing exceeds the collapse resistance inherent in the coiled tubing. As coiled tubing becomes more oval in shape, it becomes more oval in shape, it becomes more susceptible to collapse from outside pressure.
Tailored Marketing for Low-income and Under-Represented Population...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Tailored Marketing for Low-income and Under-Represented Population Segments (201) Tailored Marketing for Low-income and Under-Represented Population Segments (201) Better Buildings ...
Assessment of UF6 Equation of State
Brady, P; Chand, K; Warren, D; Vandersall, J
2009-02-11
A common assumption in the mathematical analysis of flows of compressible fluids is to treat the fluid as a perfect gas. This is an approximation, as no real fluid obeys the perfect gas relationships over all temperature and pressure conditions. An assessment of the validity of treating the UF{sub 6} gas flow field within a gas centrifuge with perfect gas relationships has been conducted. The definition of a perfect gas is commonly stated in two parts: (1) the gas obeys the thermal equation of state, p = {rho}RT (thermally perfect), and, (2) the gas specific heats are constant (calorically perfect). Analysis indicates the thermally perfect assumption is valid for all flow conditions within the gas centrifuge, including shock fields. The low operating gas pressure is the primary factor in the suitability of the thermally perfect equation of state for gas centrifuge computations. UF{sub 6} is not calorically perfect, as the specific heats vary as a function of temperature. This effect is insignificant within the bulk of the centrifuge gas field, as gas temperatures vary over a narrow range. The exception is in the vicinity of shock fields, where temperature, pressure, and density gradients are large, and the variation of specific heats with temperature should be included in the technically detailed analyses. Results from a normal shock analysis incorporating variable specific heats is included herein, presented in the conventional form of shock parameters as a function of inlet Mach Number. The error introduced by assuming constant specific heats is small for a nominal UF{sub 6} shock field, such that calorically perfect shock relationships can be used for scaling and initial analyses. The more rigorous imperfect gas analysis should be used for detailed analyses.
Examination of Hydrate Formation Methods: Trying to Create Representative Samples
Kneafsey, T.J.; Rees, E.V.L.; Nakagawa, S.; Kwon, T.-H.
2011-04-01
Forming representative gas hydrate-bearing laboratory samples is important so that the properties of these materials may be measured, while controlling the composition and other variables. Natural samples are rare, and have often experienced pressure and temperature changes that may affect the property to be measured [Waite et al., 2008]. Forming methane hydrate samples in the laboratory has been done a number of ways, each having advantages and disadvantages. The ice-to-hydrate method [Stern et al., 1996], contacts melting ice with methane at the appropriate pressure to form hydrate. The hydrate can then be crushed and mixed with mineral grains under controlled conditions, and then compacted to create laboratory samples of methane hydrate in a mineral medium. The hydrate in these samples will be part of the load-bearing frame of the medium. In the excess gas method [Handa and Stupin, 1992], water is distributed throughout a mineral medium (e.g. packed moist sand, drained sand, moistened silica gel, other porous media) and the mixture is brought to hydrate-stable conditions (chilled and pressurized with gas), allowing hydrate to form. This method typically produces grain-cementing hydrate from pendular water in sand [Waite et al., 2004]. In the dissolved gas method [Tohidi et al., 2002], water with sufficient dissolved guest molecules is brought to hydrate-stable conditions where hydrate forms. In the laboratory, this is can be done by pre-dissolving the gas of interest in water and then introducing it to the sample under the appropriate conditions. With this method, it is easier to form hydrate from more soluble gases such as carbon dioxide. It is thought that this method more closely simulates the way most natural gas hydrate has formed. Laboratory implementation, however, is difficult, and sample formation is prohibitively time consuming [Minagawa et al., 2005; Spangenberg and Kulenkampff, 2005]. In another version of this technique, a specified quantity of gas is placed in a sample, then the sample is flooded with water and cooled [Priest et al., 2009]. We have performed a number of tests in which hydrate was formed and the uniformity of the hydrate formation was examined. These tests have primarily used a variety of modifications of the excess gas method to make the hydrate, although we have also used a version of the excess water technique. Early on, we found difficulties in creating uniform samples with a particular sand/ initial water saturation combination (F-110 Sand, {approx} 35% initial water saturation). In many of our tests we selected this combination intentionally to determine whether we could use a method to make the samples uniform. The following methods were examined: Excess gas, Freeze/thaw/form, Freeze/pressurize/thaw, Excess gas followed by water saturation, Excess water, Sand and kaolinite, Use of a nucleation enhancer (SnoMax), and Use of salt in the water. Below, each method, the underlying hypothesis, and our results are briefly presented, followed by a brief conclusion. Many of the hypotheses investigated are not our own, but were presented to us. Much of the data presented is from x-ray CT scanning our samples. The x-ray CT scanner provides a three-dimensional density map of our samples. From this map and the physics that is occurring in our samples, we are able to gain an understanding of the spatial nature of the processes that occur, and attribute them to the locations where they occur.
Real-time and imaginary-time quantum hierarchal Fokker-Planck equations
Tanimura, Yoshitaka
2015-04-14
We consider a quantum mechanical system represented in phase space (referred to hereafter as “Wigner space”), coupled to a harmonic oscillator bath. We derive quantum hierarchal Fokker-Planck (QHFP) equations not only in real time but also in imaginary time, which represents an inverse temperature. This is an extension of a previous work, in which we studied a spin-boson system, to a Brownian system. It is shown that the QHFP in real time obtained from a correlated thermal equilibrium state of the total system possesses the same form as those obtained from a factorized initial state. A modified terminator for the hierarchal equations of motion is introduced to treat the non-Markovian case more efficiently. Using the imaginary-time QHFP, numerous thermodynamic quantities, including the free energy, entropy, internal energy, heat capacity, and susceptibility, can be evaluated for any potential. These equations allow us to treat non-Markovian, non-perturbative system-bath interactions at finite temperature. Through numerical integration of the real-time QHFP for a harmonic system, we obtain the equilibrium distributions, the auto-correlation function, and the first- and second-order response functions. These results are compared with analytically exact results for the same quantities. This provides a critical test of the formalism for a non-factorized thermal state and elucidates the roles of fluctuation, dissipation, non-Markovian effects, and system-bath coherence. Employing numerical solutions of the imaginary-time QHFP, we demonstrate the capability of this method to obtain thermodynamic quantities for any potential surface. It is shown that both types of QHFP equations can produce numerical results of any desired accuracy. The FORTRAN source codes that we developed, which allow for the treatment of Wigner space dynamics with any potential form (TanimuranFP15 and ImTanimuranFP15), are provided as the supplementary material.
A Reconstructed Discontinuous Galerkin Method for the Euler Equations on
Office of Scientific and Technical Information (OSTI)
Arbitrary Grids (Journal Article) | SciTech Connect Reconstructed Discontinuous Galerkin Method for the Euler Equations on Arbitrary Grids Citation Details In-Document Search Title: A Reconstructed Discontinuous Galerkin Method for the Euler Equations on Arbitrary Grids A reconstruction-based discontinuous Galerkin (RDG(P1P2)) method, a variant of P1P2 method, is presented for the solution of the compressible Euler equations on arbitrary grids. In this method, an in-cell reconstruction,
Validity of ELTB Equation for Suitable Description of BEC
Kim, Dooyoung; Kim, Jinguanghao; Yoon, Jin-Hee
2005-10-17
The Bose-Einstein condensation (BEC) has been found for various alkali-metal gases such as 7Li, 87Rb, Na, and H. For the description of atoms in this condensate state, the Gross-Pitaevskii (GP) equation has been widely used. However, the GP equation contains the nonlinear term, which makes this equation hard to solve. Therefore, physical quantities are usually obtained numerically, and sometimes it is difficult to extract a physical meaning from the calculated results. The nuclear theory group at Purdue University in the U.S. developed a new simple equation, the equivalent linear two-body (ELTB) equation, using the hyper-radius coordinates and tested it for one-dimensional BEC system. Their results are consistent with the numerical values from the GP equation within 4.5%.We test the validity of the ELTB equation for three-dimensional BEC system by calculating the energies per particle and the wave functions for 87Rb gas and for 7Li gas. We use the quantum-mechanical variational method for the BEC energy. Our result for 87Rb gas agrees with a numerical calculation based on the GP equation, with a relative error of 12% over a wide range of N from 100 to 10,000. The relative distances between particles for 7Li gas are consistent within a relative error of 17% for N {<=} 1300. The relatively simple form of the ELTB equation, compared with the GP equation, enables us to treat the N-body system easily and efficiently. We conclude that the ELTB equation is a powerful equation for describing BEC system because it is easy to treat.
Renormalization group equations in a model of generalized hidden...
Office of Scientific and Technical Information (OSTI)
Title: Renormalization group equations in a model of ... is a low-energy effective theory of QCD including ... Language: English Subject: 72 PHYSICS OF ELEMENTARY ...
Nonparametric reconstruction of the dark energy equation of state...
Office of Scientific and Technical Information (OSTI)
Journal Article: Nonparametric reconstruction of the dark energy equation of state from diverse data sets Citation Details In-Document Search Title: Nonparametric reconstruction of ...
Scientists compose complex math equations to replicate behaviors...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Climate Models: Rob Jacob Scientists compose complex math equations to replicate behaviors ... It's math in action. A global model depends on submodels Submodels can be broken into two ...
Covariant functional diffusion equation for Polyakov's bosonic string
Botelho, L. C. L.
1989-07-15
I write a covariant functional diffusion equation for Polyakov's bosonic string with the string's world-sheet area playing the role of proper time.
Penetration equations Young, C.W. [Applied Research Associates...
Office of Scientific and Technical Information (OSTI)
45 MILITARY TECHNOLOGY, WEAPONRY, AND NATIONAL DEFENSE; EARTH PENETRATORS; EQUATIONS; NUCLEAR WEAPONS; SOILS; ICE; ROCKS; CONCRETES; PERMAFROST; SCALING LAWS In 1967, Sandia...
SCIENCE ON SATURDAY- "Disastrous Equations: The Role of Mathematics...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
On Saturday MBG Auditorium SCIENCE ON SATURDAY- "Disastrous Equations: The Role of Mathematics in Understanding Tsunami" Professor J. Douglas Wright, Associate Professor...
Adjoint Fokker-Planck equation and runaway electron dynamics...
Office of Scientific and Technical Information (OSTI)
2017 Title: Adjoint Fokker-Planck equation and runaway electron dynamics Authors: Liu, Chang 1 ; Brennan, Dylan P. 1 ; Bhattacharjee, Amitava 1 ; Boozer, Allen H. 2 + Show...
Slyusarchuk, V. E. E-mail: V.Ye.Slyusarchuk@NUWM.rv.ua
2014-06-01
The well-known theorems of Favard and Amerio on the existence of almost periodic solutions to linear and nonlinear almost periodic differential equations depend to a large extent on the H-classes and the requirement that the bounded solutions of these equations be separated. The present paper provides different conditions for the existence of almost periodic solutions. These conditions, which do not depend on the H-classes of the equations, are formulated in terms of a special functional on the set of bounded solutions of the equations under consideration. This functional is used, in particular, to test whether solutions are separated. Bibliography: 24 titles. (paper)
Stochastic differential equations and numerical simulation for pedestrians
Garrison, J.C.
1993-07-27
The mathematical foundation of the Ito interpretation of stochastic ordinary and partial differential equations is briefly explained. This provides the basis for a review of simple difference approximations to stochastic differential equations. An example arising in the theory of optical switching is discussed.
The modified equation for spinless particles and superalgebra
Sadeghi, J.; Rostami, M.; Sadeghi, Z.
2013-09-15
In this paper we consider modified wave equations for spinless particles in an external magnetic field. We consider 4-potentials which guarantee Lorentz' and Coulomb's conditions. The new variable for modified wave equation leads us to consider the associated Laguerre differential equation. We take advantage of the factorization method in Laguerre differential equation and solve the modified equation. In order to obtain the wave function, energy spectrum and its quantization, we will establish conditions for the orbital quantum number. We account such orbital quantum number and obtain the raising and lowering operators. If we want to have supersymmetry partners, we need to apply the shape invariance condition. This condition for the partner potential will help us find the limit of ? as ?=?(l)
U.S. Energy Secretary Steven Chu, U.S. Representatives Larson...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Steven Chu, U.S. Representatives Larson and Courtney to Visit Research Center in East Hartford U.S. Energy Secretary Steven Chu, U.S. Representatives Larson and Courtney to Visit ...
Josh Allen of Richland Operations Office Named 2014 Facility Representative of the Year
Broader source: Energy.gov [DOE]
Congratulations to Josh Allen, Richland Operations Office, the winner of the 2014 DOE Facility Representative of the Year Award!
BHR equations re-derived with immiscible particle effects
Schwarzkopf, John Dennis; Horwitz, Jeremy A.
2015-05-01
Compressible and variable density turbulent flows with dispersed phase effects are found in many applications ranging from combustion to cloud formation. These types of flows are among the most challenging to simulate. While the exact equations governing a system of particles and fluid are known, computational resources limit the scale and detail that can be simulated in this type of problem. Therefore, a common method is to simulate averaged versions of the flow equations, which still capture salient physics and is relatively less computationally expensive. Besnard developed such a model for variable density miscible turbulence, where ensemble-averaging was applied to the flow equations to yield a set of filtered equations. Besnard further derived transport equations for the Reynolds stresses, the turbulent mass flux, and the density-specific volume covariance, to help close the filtered momentum and continuity equations. We re-derive the exact BHR closure equations which include integral terms owing to immiscible effects. Physical interpretations of the additional terms are proposed along with simple models. The goal of this work is to extend the BHR model to allow for the simulation of turbulent flows where an immiscible dispersed phase is non-trivially coupled with the carrier phase.
The fundamental solution of the unidirectional pulse propagation equation
Babushkin, I.; Bergé, L.
2014-03-15
The fundamental solution of a variant of the three-dimensional wave equation known as “unidirectional pulse propagation equation” (UPPE) and its paraxial approximation is obtained. It is shown that the fundamental solution can be presented as a projection of a fundamental solution of the wave equation to some functional subspace. We discuss the degree of equivalence of the UPPE and the wave equation in this respect. In particular, we show that the UPPE, in contrast to the common belief, describes wave propagation in both longitudinal and temporal directions, and, thereby, its fundamental solution possesses a non-causal character.
New Dirac equation from the view point of particle
Ozaydin, Fatih; Altintas, Azmi Ali; Susam, Lidya Amon; Arik, Metin; Yarman, Tolga
2012-09-06
According to the classical approach, especially the Lorentz Invariant Dirac Equation, when particles are bound to each other, the interaction term appears as a quantity belonging to the 'field'. In this work, as a totally new approach, we propose to alter the rest masses of the particles due to their interaction, as much as their respective contributions to the static binding energy. Thus we re-write and solve the Dirac Equation for the hydrogen atom, and amazingly, obtain practically the same numerical results for the ground states, as those obtained from the Dirac Equation.
Exact solution of the self-consistent Vlasov equation
Morawetz, K.
1997-03-01
An analytical solution of the self-consistent Vlasov equation is presented. The time evolution is entirely determined by the initial distribution function. The largest Lyapunov exponent is calculated analytically. For special parameters of the potential a positive Lyapunov exponent is possible. This model may serve as a check for numerical codes solving self-consistent Vlasov equations. The here presented method is also applicable for any system with an analytical solution of the Hamilton equation for the form factor of the potential. {copyright} {ital 1997} {ital The American Physical Society}
Variational principles for eigenvalues of the Klein-Gordon equation
Langer, Matthias; Tretter, Christiane
2006-10-15
In this paper variational principles for eigenvalues of an abstract model of the Klein-Gordon equation with electromagnetic potential are established. They are used to characterize and estimate eigenvalues in cases where the essential spectrum has a gap around 0, even in the presence of complex eigenvalues. As a consequence, a comparison between eigenvalues of the Klein-Gordon equation in R{sup d} and eigenvalues of certain Schroedinger operators is obtained. The results are illustrated on examples including the Klein-Gordon equation with Coulomb and square-well potential.
Changing the Equation in STEM Education | Department of Energy
Office of Environmental Management (EM)
Equation in STEM Education Changing the Equation in STEM Education September 20, 2010 - 11:34am Addthis Katelyn Sabochik Editor's Note: This is a cross post of an announcement that the White House featured on its blog last week. Check out the video below for Secretary Chu's thoughts on how an education in math and science helps students understand the world and deal with the pressing issues of our time. Today, President Obama announced the launch of Change the Equation, a CEO-led effort to
Equator Appliance: ENERGY STAR Referral (EZ 3720 CEE)
Broader source: Energy.gov [DOE]
DOE referred the matter of Equator clothes washer model EZ 3720 CEE to the EPA for appropriate action after DOE testing showed that the model does not meet the ENERGY STAR specification.
Development of one-equation transition/turbulence models
Edwards, J.R.; Roy, C.J.; Blottner, F.G.; Hassan, H.A.
2000-01-14
This paper reports on the development of a unified one-equation model for the prediction of transitional and turbulent flows. An eddy viscosity--transport equation for nonturbulent fluctuation growth based on that proposed by Warren and Hassan is combined with the Spalart-Allmaras one-equation model for turbulent fluctuation growth. Blending of the two equations is accomplished through a multidimensional intermittency function based on the work of Dhawan and Narasimha. The model predicts both the onset and extent of transition. Low-speed test cases include transitional flow over a flat plate, a single element airfoil, and a multi-element airfoil in landing configuration. High-speed test cases include transitional Mach 3.5 flow over a 5{degree} cone and Mach 6 flow over a flared-cone configuration. Results are compared with experimental data, and the grid-dependence of selected predictions is analyzed.
Electrolux Gibson Air Conditioner and Equator Clothes Washer...
Broader source: Energy.gov (indexed) [DOE]
ENERGY STAR program has revealed that an Electrolux Gibson air conditioner (model GAH105Q2T1) and an Equator clothes washer (model EZ 3720 CEE), both of which claimed ENERGY STAR...
Solving the power flow equations: a monotone operator approach...
Office of Scientific and Technical Information (OSTI)
VA at www.ntis.gov. The AC power flow equations underlie all operational aspects of power systems. They are solved routinely in operational practice using the Newton-Raphson method...
Green Computing Helps in Zero Energy Equation - News Feature...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Green Computing Helps in Zero Energy Equation April 14, 2010 Photo of two men watching as a third man goes over blueprints in the data center of NREL's Research Support Facility. ...
Multibump solutions for quasilinear elliptic equations with critical growth
Liu, Jiaquan; Wang, Zhi-Qiang; Wu, Xian
2013-12-15
The current paper is concerned with constructing multibump solutions for a class of quasilinear Schrdinger equations with critical growth. This extends the classical results of Coti Zelati and Rabinowitz [Commun. Pure Appl. Math. 45, 12171269 (1992)] for semilinear equations as well as recent work of Liu, Wang, and Guo [J. Funct. Anal. 262, 40404102 (2012)] for quasilinear problems with subcritical growth. The periodicity of the potentials is used to glue ground state solutions to construct multibump bound state solutions.
Modeling Dynamic Ductility: An Equation of State for Porous Metals
Office of Scientific and Technical Information (OSTI)
(Conference) | SciTech Connect Conference: Modeling Dynamic Ductility: An Equation of State for Porous Metals Citation Details In-Document Search Title: Modeling Dynamic Ductility: An Equation of State for Porous Metals Enhanced heating from shock compression of a porous material can potentially suppress or delay cracking of the material on subsequent expansion. In this paper we quantify the expected enhanced heating in an experiment in which a sector of a thin cylindrical shell is driven
Nonparametric reconstruction of the dark energy equation of state from
Office of Scientific and Technical Information (OSTI)
diverse data sets (Journal Article) | SciTech Connect Journal Article: Nonparametric reconstruction of the dark energy equation of state from diverse data sets Citation Details In-Document Search Title: Nonparametric reconstruction of the dark energy equation of state from diverse data sets Authors: Holsclaw, Tracy ; Alam, Ujjaini ; Sansó, Bruno ; Lee, Herbie ; Heitmann, Katrin ; Habib, Salman ; Higdon, David Publication Date: 2011-10-03 OSTI Identifier: 1100881 Type: Publisher's Accepted
Notes on the Lumped Backward Master Equation for the Neutron
Office of Scientific and Technical Information (OSTI)
Extinction/Survival Probability (Technical Report) | SciTech Connect Technical Report: Notes on the Lumped Backward Master Equation for the Neutron Extinction/Survival Probability Citation Details In-Document Search Title: Notes on the Lumped Backward Master Equation for the Neutron Extinction/Survival Probability The expected or mean neutron number (or density) provides an adequate characterization of the neutron population and its dynamical excursions in most neutronic applications, in
Renormalization group equations in a model of generalized hidden local
Office of Scientific and Technical Information (OSTI)
symmetry and restoration of chiral symmetry (Journal Article) | SciTech Connect Renormalization group equations in a model of generalized hidden local symmetry and restoration of chiral symmetry Citation Details In-Document Search Title: Renormalization group equations in a model of generalized hidden local symmetry and restoration of chiral symmetry We study possible restoration patterns of chiral symmetry in a generalized hidden local symmetry model, which is a low-energy effective theory
Renormalization group functional equations (Journal Article) | SciTech
Office of Scientific and Technical Information (OSTI)
Connect group functional equations Citation Details In-Document Search Title: Renormalization group functional equations Authors: Curtright, Thomas L. ; Zachos, Cosmas K. Publication Date: 2011-03-16 OSTI Identifier: 1100055 Type: Publisher's Accepted Manuscript Journal Name: Physical Review D Additional Journal Information: Journal Volume: 83; Journal Issue: 6; Journal ID: ISSN 1550-7998 Publisher: American Physical Society Sponsoring Org: USDOE Country of Publication: United States
Equations for plutonium and americium-241 decay corrections (Technical
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Report) | SciTech Connect Equations for plutonium and americium-241 decay corrections Citation Details In-Document Search Title: Equations for plutonium and americium-241 decay corrections × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper
Stochastic finite element methods for partial differential equations with
Office of Scientific and Technical Information (OSTI)
random input data (Journal Article) | SciTech Connect Journal Article: Stochastic finite element methods for partial differential equations with random input data Citation Details In-Document Search Title: Stochastic finite element methods for partial differential equations with random input data Authors: Gunzburger, Max D [1] ; Webster, Clayton G [1] ; Zhang, Guannan [1] + Show Author Affiliations ORNL Publication Date: 2014-01-01 OSTI Identifier: 1159494 DOE Contract Number:
Secretary Chu to Join Representatives Lofgren and Honda at the SLAC
National Accelerator Laboratory | Department of Energy Representatives Lofgren and Honda at the SLAC National Accelerator Laboratory Secretary Chu to Join Representatives Lofgren and Honda at the SLAC National Accelerator Laboratory August 13, 2010 - 12:00am Addthis Washington, D.C. - On Monday, U.S. Energy Secretary Steven Chu will visit the SLAC National Accelerator Laboratory in Menlo Park, California. Secretary Chu will join Representatives Zoe Lofgren and Mike Honda and Stanford
Gregory H. Friedman: Before the U.S. House of Representatives Committee on
Office of Environmental Management (EM)
Energy and Commerce Subcommittee on Oversight and Investigations | Department of Energy U.S. House of Representatives Committee on Energy and Commerce Subcommittee on Oversight and Investigations Gregory H. Friedman: Before the U.S. House of Representatives Committee on Energy and Commerce Subcommittee on Oversight and Investigations May 1, 2002 Before the U.S. House of Representatives Committee on Energy and Commerce Subcommittee on Oversight and Investigations Statement of Gregory H.
Gregory H. Friedman: Before The U.S. House of Representatives Committee on
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Government Reform Subcommittee on the Federal Workforce and Agency Organization | Department of Energy The U.S. House of Representatives Committee on Government Reform Subcommittee on the Federal Workforce and Agency Organization Gregory H. Friedman: Before The U.S. House of Representatives Committee on Government Reform Subcommittee on the Federal Workforce and Agency Organization April 5 2005 Before The U.S. House of Representatives Committee on Government Reform Subcommittee on the
Gregory H. Friedman: Before the U.S. House Of Representatives Committee on
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Energy and Commerce Subcommittee on Oversight and Investigations | Department of Energy Of Representatives Committee on Energy and Commerce Subcommittee on Oversight and Investigations Gregory H. Friedman: Before the U.S. House Of Representatives Committee on Energy and Commerce Subcommittee on Oversight and Investigations May 1, 2003 Before the U.S. House Of Representatives Committee on Energy and Commerce Subcommittee on Oversight and Investigations Statement of Gregory H. Friedman,
Gregory H. Friedman: Before the U.S. House of Representatives Committee on
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Energy and Commerce Subcommittee on Oversight and Investigations | Department of Energy of Representatives Committee on Energy and Commerce Subcommittee on Oversight and Investigations Gregory H. Friedman: Before the U.S. House of Representatives Committee on Energy and Commerce Subcommittee on Oversight and Investigations February 26, 2003 Before the U.S. House of Representatives Committee on Energy and Commerce Subcommittee on Oversight and Investigations Statement of Gregory H. Friedman,
Herbert Richardson: Before The U.S. House of Representatives Committee on
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Energy and Commerce Subcommittee on Oversight and Investigations | Department of Energy Herbert Richardson: Before The U.S. House of Representatives Committee on Energy and Commerce Subcommittee on Oversight and Investigations Herbert Richardson: Before The U.S. House of Representatives Committee on Energy and Commerce Subcommittee on Oversight and Investigations March 4, 2004 Before The U.S. House of Representatives Committee on Energy and Commerce Subcommittee on Oversight and
4Q CY2006 (PDF), Facility Representative Program Performance Indicators Quarterly Report
Broader source: Energy.gov [DOE]
Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from October to December 2006. Data for these indicators are gathered by Field...
1Q CY2007 (PDF), Facility Representative Program Performance Indicators Quarterly Report
Broader source: Energy.gov [DOE]
Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from January to March 2007. Data for these indicators are gathered by Field elements...
4Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report
Broader source: Energy.gov [DOE]
Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from October to December 2005. Data for these indicators are gathered by Field...
2Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report
Broader source: Energy.gov [DOE]
Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from April to June 2005. Data for these indicators are gathered by Field elements...
3Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report
Broader source: Energy.gov [DOE]
Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from July to September 2005. Data for these indicators are gathered by Field...
1Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report
Broader source: Energy.gov [DOE]
Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from January to March 2005. Data for these indicators are gathered by Field elements...
3Q CY2006 (PDF), Facility Representative Program Performance Indicators Quarterly Report
Broader source: Energy.gov [DOE]
Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from July to September 2006. Data for these indicators are gathered by Field...
2Q CY2006 (PDF), Facility Representative Program Performance Indicators Quarterly Report
Broader source: Energy.gov [DOE]
Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from April to June 2006. Data for these indicators are gathered by Field elements...
4Q CY2007 (PDF), Facility Representative Program Performance Indicators Quarterly Report
Broader source: Energy.gov [DOE]
"Attached is the Facility Representative (FR) Program Performance Indicators QuarterlyReport covering the period from October to December 2007. Data for these indicators aregathered by Field...
4Q CY2008 (PDF), Facility Representative Program Performance Indicators Quarterly Report
Broader source: Energy.gov [DOE]
"Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from October to December 2008. Data for these indicators are gathered by Field...
2Q CY2012 (PDF), Facility Representative Program Performance Indicators Quarterly Report
Broader source: Energy.gov [DOE]
"This memorandum summarizes the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from April through June 2012. Data for these indicators were...
1Q CY2012 (PDF), Facility Representative Program Performance Indicators Quarterly Report
Broader source: Energy.gov [DOE]
This memorandum summarizes the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from January through March 2012. Data for these indicators were...
4Q CY2011 (PDF), Facility Representative Program Performance Indicators Quarterly Report
Broader source: Energy.gov [DOE]
"This memorandum summarizes the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from October through December 2011. Data for these indicators were...
3Q CY2007 (PDF), Facility Representative Program Performance Indicators Quarterly Report
Broader source: Energy.gov [DOE]
Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from July to September 2007. Data for these indicators are gathered by Field...
3Q CY2011 (PDF), Facility Representative Program Performance Indicators Quarterly Report
Broader source: Energy.gov [DOE]
This memorandum summarizes the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the Period July through September 2011. Data for these indicators were gathered...
4Q CY2010 (PDF), Facility Representative Program Performance Indicators Quarterly Report
Broader source: Energy.gov [DOE]
"This memorandum summarizes the highlights of the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period October through December 2010. Data for these...
3Q CY2010 (PDF), Facility Representative Program Performance Indicators Quarterly Report
Broader source: Energy.gov [DOE]
This memorandum summarizes the highlights of the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period of July through September 2010. Data for these...
4Q CY2002 (PDF), Facility Representative Program Performance Indicators Quarterly Report
Broader source: Energy.gov [DOE]
Attached is the Facility Representative Program Performance Indicators (Pis) Quarterly Report Covering the Period from October to December 2002. Data for these indicators are gathered by Field...
2Q CY2008 (PDF), Facility Representative Program Performance Indicators Quarterly Report
Broader source: Energy.gov [DOE]
Attached is the Facility Representative (FR) Program Performance Indicators QuarterlyReport covering the period from April to June 2008. Data for these indicators aregathered by Field elements...
1Q CY2011 (PDF), Facility Representative Program Performance Indicators Quarterly Report
Broader source: Energy.gov [DOE]
This memorandum summarizes the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the Period January through March 2011. Data for these indicators were gathered...
2Q CY2007 (PDF), Facility Representative Program Performance Indicators Quarterly Report
Broader source: Energy.gov [DOE]
Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from April to June 2007. Data for these indicators are gathered by field elements...
2Q CY2010 (PDF), Facility Representative Program Performance Indicators Quarterly Report
Broader source: Energy.gov [DOE]
This memorandum summarizes the highlight of, and announces the availablity on-line of, the Facility Representative (FR) Program Performance Indicators are gathered by Field elements quarterly per...
3Q CY2000 (PDF), Facility Representative Program Performance Indicators Quarterly Report
Broader source: Energy.gov [DOE]
The Facility Representative Program Indicators (Pis) Quarterly Report attached, covering the period from July to September 2000. Data for these indicators are gathered by the Field elements...
2Q CY2011 (PDF), Facility Representative Program Performance Indicators Quarterly Report
Broader source: Energy.gov [DOE]
"This memorandum summarizes the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period April through June 20 1 1. Data for these indicators were gathered...
Tailored Marketing for Low-income and Under-Represented Population Segments (201)
Broader source: Energy.gov [DOE]
Better Buildings Residential Network Peer Exchange Call Series: Tailored Marketing for Low-Income and Under-Represented Population Segments (201), call slides and discussion summary.
Bhaskaran-Nair, Kiran; Kowalski, Karol; Jarrell, Mark; Moreno, Juana; Shelton, William A.
2015-11-05
Polyacenes have attracted considerable attention due to their use in organic based optoelectronic materials. Polyacenes are polycyclic aromatic hydrocarbons composed of fused benzene rings. Key to understanding and design of new functional materials is an understanding of their excited state properties starting with their electron affinity (EA) and ionization potential (IP). We have developed a highly accurate and com- putationally e*fficient EA/IP equation of motion coupled cluster singles and doubles (EA/IP-EOMCCSD) method that is capable of treating large systems and large basis set. In this study we employ the EA/IP-EOMCCSD method to calculate the electron affinity and ionization potential of naphthalene, anthracene, tetracene, pentacene, hex- acene and heptacene. We have compared our results with other previous theoretical studies and experimental data. Our EA/IP results are in very good agreement with experiment and when compared with the other theoretical investigations our results represent the most accurate calculations as compared to experiment.
Bressloff, N.W.; Moss, J.B.; Rubini, P.A.
1997-01-01
The differential total absorptivity (DTA) solution to the radiative transfer equation, originally devised for combustion gases in the discrete transfer radiation model, is extended to mixtures of gaseous combustion products and soot. The method is compared to other solution techniques for representative mixtures across single lines of sight and across a layer bounded by solid walls. Intermediate soot loadings are considered such that the total radiance is not dominated by either the gaseous or soot components. The DTA solution is shown to yield excellent accuracy relative to a narrow-band solution, with a considerable saving in computational cost. Thus, explicit treatment of the source temperature dependence of absorption is successfully demonstrated without the need for spectral integration.
Optimization of High-order Wave Equations for Multicore CPUs
Energy Science and Technology Software Center (OSTI)
2011-11-01
This is a simple benchmark to guage the performance of a high-order isotropic wave equation grid. The code is optimized for both SSE and AVX and is parallelized using OpenMP (see Optimization section). Structurally, the benchmark begins, reads a few command-line parameters, allocates and pads the four arrays (current, last, next wave fields, and the spatially varying but isotropic velocity), initializes these arrays, then runs the benchmark proper. The code then benchmarks the naive, SSEmore » (if supported), and AVX (if supported implementations) by applying the wave equation stencil 100 times and taking the average performance. Boundary conditions are ignored and would noiminally be implemented by the user. THus, the benchmark measures only the performance of the wave equation stencil and not a full simulation. The naive implementation is a quadruply (z,y,x, radius) nested loop that can handle arbitrarily order wave equations. The optimized (SSE/AVX) implentations are somewhat more complex as they operate on slabs and include a case statement to select an optimized inner loop depending on wave equation order.« less
Handbook of Industrial Engineering Equations, Formulas, and Calculations
Badiru, Adedeji B; Omitaomu, Olufemi A
2011-01-01
The first handbook to focus exclusively on industrial engineering calculations with a correlation to applications, Handbook of Industrial Engineering Equations, Formulas, and Calculations contains a general collection of the mathematical equations often used in the practice of industrial engineering. Many books cover individual areas of engineering and some cover all areas, but none covers industrial engineering specifically, nor do they highlight topics such as project management, materials, and systems engineering from an integrated viewpoint. Written by acclaimed researchers and authors, this concise reference marries theory and practice, making it a versatile and flexible resource. Succinctly formatted for functionality, the book presents: Basic Math Calculations; Engineering Math Calculations; Production Engineering Calculations; Engineering Economics Calculations; Ergonomics Calculations; Facility Layout Calculations; Production Sequencing and Scheduling Calculations; Systems Engineering Calculations; Data Engineering Calculations; Project Engineering Calculations; and Simulation and Statistical Equations. It has been said that engineers make things while industrial engineers make things better. To make something better requires an understanding of its basic characteristics and the underlying equations and calculations that facilitate that understanding. To do this, however, you do not have to be computational experts; you just have to know where to get the computational resources that are needed. This book elucidates the underlying equations that facilitate the understanding required to improve design processes, continuously improving the answer to the age-old question: What is the best way to do a job?
Cluster virial expansion for the equation of state of partially ionized hydrogen plasma
Omarbakiyeva, Y. A.; Fortmann, C.; Ramazanov, T. S.; Roepke, G.
2010-08-15
We study the contribution of electron-atom interaction to the equation of state for partially ionized hydrogen plasma using the cluster-virial expansion. We use the Beth-Uhlenbeck approach to calculate the second virial coefficient for the electron-atom (bound cluster) pair from the corresponding scattering phase shifts and binding energies. Experimental scattering cross-sections as well as phase shifts calculated on the basis of different pseudopotential models are used as an input for the Beth-Uhlenbeck formula. By including Pauli blocking and screening in the phase shift calculation, we generalize the cluster-virial expansion in order to cover also near solid density plasmas. We present results for the electron-atom contribution to the virial expansion and the corresponding equation of state, i.e. pressure, composition, and chemical potential as a function of density and temperature. These results are compared with semiempirical approaches to the thermodynamics of partially ionized plasmas. Avoiding any ill-founded input quantities, the Beth-Uhlenbeck second virial coefficient for the electron-atom interaction represents a benchmark for other, semiempirical approaches.
Implementation of two-equation soot flamelet models for laminar diffusion flames
Carbonell, D.; Oliva, A.; Perez-Segarra, C.D.
2009-03-15
The two-equation soot model proposed by Leung et al. [K.M. Leung, R.P. Lindstedt, W.P. Jones, Combust. Flame 87 (1991) 289-305] has been derived in the mixture fraction space. The model has been implemented using both Interactive and Non-Interactive flamelet strategies. An Extended Enthalpy Defect Flamelet Model (E-EDFM) which uses a flamelet library obtained neglecting the soot formation is proposed as a Non-Interactive method. The Lagrangian Flamelet Model (LFM) is used to represent the Interactive models. This model uses direct values of soot mass fraction from flamelet calculations. An Extended version (E-LFM) of this model is also suggested in which soot mass fraction reaction rates are used from flamelet calculations. Results presented in this work show that the E-EDFM predict acceptable results. However, it overpredicts the soot volume fraction due to the inability of this model to couple the soot and gas-phase mechanisms. It has been demonstrated that the LFM is not able to predict accurately the soot volume fraction. On the other hand, the extended version proposed here has been shown to be very accurate. The different flamelet mathematical formulations have been tested and compared using well verified reference calculations obtained solving the set of the Full Transport Equations (FTE) in the physical space. (author)
Solving the Bateman equations in CASMO5 using implicit ode numerical methods for stiff systems
Hykes, J. M.; Ferrer, R. M.
2013-07-01
The Bateman equations, which describe the transmutation of nuclides over time as a result of radioactive decay, absorption, and fission, are often numerically stiff. This is especially true if short-lived nuclides are included in the system. This paper describes the use of implicit numerical methods for o D Es applied to the stiff Bateman equations, specifically employing the Backward Differentiation Formulas (BDF) form of the linear multistep method. As is true in other domains, using an implicit method removes or lessens the (sometimes severe) step-length constraints by which explicit methods must abide. To gauge its accuracy and speed, the BDF method is compared to a variety of other solution methods, including Runge-Kutta explicit methods and matrix exponential methods such as the Chebyshev Rational Approximation Method (CRAM). A preliminary test case was chosen as representative of a PWR lattice depletion step and was solved with numerical libraries called from a Python front-end. The Figure of Merit (a combined measure of accuracy and efficiency) for the BDF method was nearly identical to that for CRAM, while explicit methods and other matrix exponential approximations trailed behind. The test case includes 319 nuclides, in which the shortest-lived nuclide is {sup 98}Nb with a half-life of 2.86 seconds. Finally, the BDF and CRAM methods were compared within CASMO5, where CRAM had a FOM about four times better than BDF, although the BDF implementation was not fully optimized. (authors)
Properties of the Boltzmann equation in the classical approximation
Tanji, Naoto; Epelbaum, Thomas; Gelis, Francois; Wu, Bin
2014-12-30
We study the Boltzmann equation with elastic point-like scalar interactions in two different versions of the the classical approximation. Although solving numerically the Boltzmann equation with the unapproximated collision term poses no problem, this allows one to study the effect of the ultraviolet cutoff in these approximations. This cutoff dependence in the classical approximations of the Boltzmann equation is closely related to the non-renormalizability of the classical statistical approximation of the underlying quantum field theory. The kinetic theory setup that we consider here allows one to study in a much simpler way the dependence on the ultraviolet cutoff, since one has also access to the non-approximated result for comparison.
Properties of the Boltzmann equation in the classical approximation
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Epelbaum, Thomas; Gelis, François; Tanji, Naoto; Wu, Bin
2014-12-30
We examine the Boltzmann equation with elastic point-like scalar interactions in two different versions of the the classical approximation. Although solving numerically the Boltzmann equation with the unapproximated collision term poses no problem, this allows one to study the effect of the ultraviolet cutoff in these approximations. This cutoff dependence in the classical approximations of the Boltzmann equation is closely related to the non-renormalizability of the classical statistical approximation of the underlying quantum field theory. The kinetic theory setup that we consider here allows one to study in a much simpler way the dependence on the ultraviolet cutoff, since onemore » has also access to the non-approximated result for comparison.« less
Properties of the Boltzmann equation in the classical approximation
Epelbaum, Thomas; Gelis, François; Tanji, Naoto; Wu, Bin
2014-12-30
We examine the Boltzmann equation with elastic point-like scalar interactions in two different versions of the the classical approximation. Although solving numerically the Boltzmann equation with the unapproximated collision term poses no problem, this allows one to study the effect of the ultraviolet cutoff in these approximations. This cutoff dependence in the classical approximations of the Boltzmann equation is closely related to the non-renormalizability of the classical statistical approximation of the underlying quantum field theory. The kinetic theory setup that we consider here allows one to study in a much simpler way the dependence on the ultraviolet cutoff, since one has also access to the non-approximated result for comparison.
Non-stochastic matrix Schrdinger equation for open systems
Joubert-Doriol, Loc; Ryabinkin, Ilya G.; Izmaylov, Artur F.
2014-12-21
We propose an extension of the Schrdinger equation for a quantum system interacting with environment. This extension describes dynamics of a collection of auxiliary wavefunctions organized as a matrix m, from which the system density matrix can be reconstructed as ?{sup ^}=mm{sup }. We formulate a compatibility condition, which ensures that the reconstructed density satisfies a given quantum master equation for the system density. The resulting non-stochastic evolution equation preserves positive-definiteness of the system density and is applicable to both Markovian and non-Markovian system-bath treatments. Our formalism also resolves a long-standing problem of energy loss in the time-dependent variational principle applied to mixed states of closed systems.
Multi-time Schrdinger equations cannot contain interaction potentials
Petrat, Sren; Tumulka, Roderich
2014-03-15
Multi-time wave functions are wave functions that have a time variable for every particle, such as ?(t{sub 1},x{sub 1},...,t{sub N},x{sub N}). They arise as a relativistic analog of the wave functions of quantum mechanics but can be applied also in quantum field theory. The evolution of a wave function with N time variables is governed by N Schrdinger equations, one for each time variable. These Schrdinger equations can be inconsistent with each other, i.e., they can fail to possess a joint solution for every initial condition; in fact, the N Hamiltonians need to satisfy a certain commutator condition in order to be consistent. While this condition is automatically satisfied for non-interacting particles, it is a challenge to set up consistent multi-time equations with interaction. We prove for a wide class of multi-time Schrdinger equations that the presence of interaction potentials (given by multiplication operators) leads to inconsistency. We conclude that interaction has to be implemented instead by creation and annihilation of particles, which, in fact, can be done consistently [S. Petrat and R. Tumulka, Multi-time wave functions for quantum field theory, Ann. Physics (to be published)]. We also prove the following result: When a cut-off length ? > 0 is introduced (in the sense that the multi-time wave function is defined only on a certain set of spacelike configurations, thereby breaking Lorentz invariance), then the multi-time Schrdinger equations with interaction potentials of range ? are consistent; however, in the desired limit ? ? 0 of removing the cut-off, the resulting multi-time equations are interaction-free, which supports the conclusion expressed in the title.
Equations of state and phase diagrams of hydrogen isotopes
Urlin, V. D.
2013-11-15
A new form of the semiempirical equation of state proposed for the liquid phase of hydrogen isotopes is based on the assumption that its structure is formed by cells some of which contain hydrogen molecules and others contain hydrogen atoms. The values of parameters in the equations of state of the solid (molecular and atomic) phases as well as of the liquid phase of hydrogen isotopes (protium and deuterium) are determined. Phase diagrams, shock adiabats, isentropes, isotherms, and the electrical conductivity of compressed hydrogen are calculated. Comparison of the results of calculations with available experimental data in a wide pressure range demonstrates satisfactory coincidence.
Levinson theorem for the Dirac equation in D+1 dimensions
Gu Xiaoyan; Ma Zhongqi; Dong Shihai
2003-06-01
In terms of the generalized Sturm-Liouville theorem, the Levinson theorem for the Dirac equation with a spherically symmetric potential in D+1 dimensions is uniformly established as a relation between the total number of bound states and the sum of the phase shifts of the scattering states at E={+-}M with a given angular momentum. The critical case, where the Dirac equation has a half bound state, is analyzed in detail. A half bound state is a zero-momentum solution if its wave function is finite but does not decay fast enough at infinity to be square integrable.
Ideal solar cell equation in the presence of photon recycling
Lan, Dongchen Green, Martin A.
2014-11-07
Previous derivations of the ideal solar cell equation based on Shockley's p-n junction diode theory implicitly assume negligible effects of photon recycling. This paper derives the equation in the presence of photon recycling that modifies the values of dark saturation and light-generated currents, using an approach applicable to arbitrary three-dimensional geometries with arbitrary doping profile and variable band gap. The work also corrects an error in previous work and proves the validity of the reciprocity theorem for charge collection in such a more general case with the previously neglected junction depletion region included.
Equation of State measurements of hydrogen isotopes on Nova
Collins, G. W., LLNL
1997-11-01
High intensity lasers can be used to perform measurements of materials at extremely high pressures if certain experimental issues can be overcome. We have addressed those issues and used the Nova laser to shock-compress liquid deuterium and obtain measurements of density and pressure on the principal Hugoniot at pressures from 300 kbar to more than 2 Mbar. The data are compared with a number of equation of state models. The data indicate that the effect of molecular dissociation of the deuterium into a monatomic phase may have a significant impact on the equation of state near 1 Mbar.
Electrical conductivity and equation of state of liquid nitrogen, oxygen,
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
benzene, and 1-butene shocked to 60 GPa (Technical Report) | SciTech Connect Electrical conductivity and equation of state of liquid nitrogen, oxygen, benzene, and 1-butene shocked to 60 GPa Citation Details In-Document Search Title: Electrical conductivity and equation of state of liquid nitrogen, oxygen, benzene, and 1-butene shocked to 60 GPa × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and
Secretary Chu: China's Clean Energy Successes Represent a New "Sputnik
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Moment" for America | Department of Energy Chu: China's Clean Energy Successes Represent a New "Sputnik Moment" for America Secretary Chu: China's Clean Energy Successes Represent a New "Sputnik Moment" for America November 29, 2010 - 12:00am Addthis Washington, D.C. - In a speech at the National Press Club, U.S Energy Secretary Steven Chu said that the success of China and other countries in clean energy industries represents a new "Sputnik Moment" for the
DOE Orders Self-Study Program - DOE-STD-1063-2011, Facility Representatives
Office of Environmental Management (EM)
| Department of Energy 63-2011, Facility Representatives DOE Orders Self-Study Program - DOE-STD-1063-2011, Facility Representatives U.S. Department of Energy Orders Self-Study Program DOE-STD-1063-2011, Facility Representatives Familiar Level - August 2011 The familiar level of this module is divided into three sections. The first section addresses the purpose and scope of DOE-STD-1063-2011, the purpose of the FR program, and the duties, responsibilities, and authorities of FRs and other
3Q CY2003 (PDF), Facility Representative Program Performance Indicators Quarterly Report
Broader source: Energy.gov [DOE]
Attached is the Facility Representative Program Performance Indicators (PIs) Quarterly Report Covering the Period from July to September 2003. Data for these indicators are gathered by Field...
4Q CY2004 (PDF), Facility Representative Program Performance Indicators Quarterly Report
Broader source: Energy.gov [DOE]
Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report Covering the Period from October to December 2004. Data for these indicators are gathered by Field...
2Q CY2004 (PDF), Facility Representative Program Performance Indicators Quarterly Report
Broader source: Energy.gov [DOE]
Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report Covering the Period from April to June 2004. Data for these indicators are gathered by Field elements...
4Q CY2003 (PDF), Facility Representative Program Performance Indicators Quarterly Report
Broader source: Energy.gov [DOE]
Attached is the Facility Representative Program Performance Indicators (PIs) Quarterly Report Covering the Period from October to December 2003. Data for these indicators are gathered by Field...
3Q CY2004 (PDF), Facility Representative Program Performance Indicators Quarterly Report
Broader source: Energy.gov [DOE]
Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report Covering the Period from July to September 2004. Data for these indicators are gathered by Field...
1Q CY2006 (PDF), Facility Representative Program Performance Indicators Quarterly Report
Broader source: Energy.gov [DOE]
Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from January to March 2006. Data for these indicators are gathered by Field...
3Q CY2009 (PDF), Facility Representative Program Performance Indicators Quarterly Report
Broader source: Energy.gov [DOE]
Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from July to September 2009. Data for these indicators are gathered by Field...
4Q CY2009 (PDF), Facility Representative Program Performance Indicators Quarterly Report
Broader source: Energy.gov [DOE]
"Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from October to December 2009. Data for these indicators are gathered by Field...
1Q CY2009 (PDF), Facility Representative Program Performance Indicators Quarterly Report
Broader source: Energy.gov [DOE]
"Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from January to March 2009. Data for these indicators are gathered by Field...
1Q CY2010 (PDF), Facility Representative Program Performance Indicators Quarterly Report
Broader source: Energy.gov [DOE]
"Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from January to March2010. Data for these indicators are gathered by Field...
1Q CY2003 (PDF), Facility Representative Program Performance Indicators Quarterly Report
Broader source: Energy.gov [DOE]
Attached is the Facility Representative Program Performance Indicators (PIs) Quarterly Report Covering the Period from January to March 2003. Data for these indicators are gathered by Field...
2Q CY2000 (PDF), Facility Representative Program Performance Indicators Quarterly Report
Broader source: Energy.gov [DOE]
"The Facility Representative Program Performance Indicators (PIs) Quarterly Report is attached, covering the period from April 2000 to June 2000. Data for these indicators are gathered by the Field...
Gregory H. Friedman: Before the U.S. House Of Representatives...
Office of Environmental Management (EM)
Gregory H. Friedman: Before the U.S. House Of Representatives Committee on Energy and ... Statement of Gregory H. Friedman, Inspector General U.S. Department of Energy Request to ...
Gregory H. Friedman: Before the U.S. House of Representatives...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Gregory H. Friedman: Before the U.S. House of Representatives Committee on Energy and ... Statement of Gregory H. Friedman, Inspector General U.S. Department of Energy Testify on ...
2Q CY2009 (PDF), Facility Representative Program Performance Indicators Quarterly Report
Broader source: Energy.gov [DOE]
"Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from April to June 2009. Data for these indicators are gathered by Field elements...
2Q CY2003 (PDF), Facility Representative Program Performance Indicators Quarterly Report
Broader source: Energy.gov [DOE]
Attached is the Facility Representative Program Performance Indicators (PIs) Quarterly Report Covering the Period from April to June 2003. Data for these indicators are gathered by Field elements...
3Q C&2008 (PDF), Facility Representative Program Performance Indicators Quarterly Report
Broader source: Energy.gov [DOE]
"Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from July to September 2008. Data for these indicators aregathered by Field...
August 20, 2014 meeting with DOE representatives regarding the remand of
the DOE Direct Final Rule as it relates to efficiency standards for non-weatherized gas furnaces | Department of Energy August 20, 2014 meeting with DOE representatives regarding the remand of the DOE Direct Final Rule as it relates to efficiency standards for non-weatherized gas furnaces August 20, 2014 meeting with DOE representatives regarding the remand of the DOE Direct Final Rule as it relates to efficiency standards for non-weatherized gas furnaces This memorandum provides an overview
Gregory H. Friedman: Before the U.S. House of Representatives Committee on
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Energy and Commerce Subcommittee on Oversight and Investigations | Department of Energy Energy and Commerce Subcommittee on Oversight and Investigations Gregory H. Friedman: Before the U.S. House of Representatives Committee on Energy and Commerce Subcommittee on Oversight and Investigations April 5, 2005 Before the U.S. House of Representatives Committee on Energy and Commerce Subcommittee on Oversight and Investigations Statement of Gregory H. Friedman, Inspector General U.S. Department of
Gregory H. Friedman: Before the U.S. House of Representatives Committee on
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Government Reform | Department of Energy Government Reform Gregory H. Friedman: Before the U.S. House of Representatives Committee on Government Reform March 20, 2003 Before the U.S. House of Representatives Committee on Government Reform Statement of Gregory H. Friedman Inspector General, U.S. Department of Energy Request to testify on the Department of Energy's (Department) contract administration activities. The Department is one of the most contractor dependent agencies in the Federal
Solves Poisson's Equation in Axizymmetric Geometry on a Rectangular Mesh
Energy Science and Technology Software Center (OSTI)
1996-09-10
DATHETA4.0 computes the magnetostatic field produced by multiple point current sources in the presence of perfect conductors in axisymmetric geometry. DATHETA4.0 has an interactive user interface and solves Poisson''s equation using the ADI method on a rectangular finite-difference mesh. DATHETA4.0 uncludes models specific to applied-B ion diodes.
National Lab Uses OGJ Data to Develop Cost Equations
Brown, Daryl R.; Cabe, James E.; Stout, Tyson E.
2011-01-03
For the past 30 years, the Oil and Gas Journal (OGJ) has published data on the costs of onshore and offshore oil and gas pipelines and related equipment. This article describes the methodology employed and resulting equations developed for conceptual capital cost estimating of onshore pipelines. Also described are cost trends uncovered during the course of the analysis.
Development of a One-Equation Transition/Turbulence Model
EDWARDS,JACK R.; ROY,CHRISTOPHER J.; BLOTTNER,FREDERICK G.; HASSAN,HASSAN A.
2000-09-26
This paper reports on the development of a unified one-equation model for the prediction of transitional and turbulent flows. An eddy viscosity - transport equation for non-turbulent fluctuation growth based on that proposed by Warren and Hassan (Journal of Aircraft, Vol. 35, No. 5) is combined with the Spalart-Allmaras one-equation model for turbulent fluctuation growth. Blending of the two equations is accomplished through a multidimensional intermittence function based on the work of Dhawan and Narasimha (Journal of Fluid Mechanics, Vol. 3, No. 4). The model predicts both the onset and extent of transition. Low-speed test cases include transitional flow over a flat plate, a single element airfoil, and a multi-element airfoil in landing configuration. High-speed test cases include transitional Mach 3.5 flow over a 5{degree} cone and Mach 6 flow over a flared-cone configuration. Results are compared with experimental data, and the spatial accuracy of selected predictions is analyzed.
Dirac equation in low dimensions: The factorization method
Snchez-Monroy, J.A.; Quimbay, C.J.
2014-11-15
We present a general approach to solve the (1+1) and (2+1)-dimensional Dirac equations in the presence of static scalar, pseudoscalar and gauge potentials, for the case in which the potentials have the same functional form and thus the factorization method can be applied. We show that the presence of electric potentials in the Dirac equation leads to two KleinGordon equations including an energy-dependent potential. We then generalize the factorization method for the case of energy-dependent Hamiltonians. Additionally, the shape invariance is generalized for a specific class of energy-dependent Hamiltonians. We also present a condition for the absence of the Klein paradox (stability of the Dirac sea), showing how Dirac particles in low dimensions can be confined for a wide family of potentials. - Highlights: The low-dimensional Dirac equation in the presence of static potentials is solved. The factorization method is generalized for energy-dependent Hamiltonians. The shape invariance is generalized for energy-dependent Hamiltonians. The stability of the Dirac sea is related to the existence of supersymmetric partner Hamiltonians.
Topological horseshoes in travelling waves of discretized nonlinear wave equations
Chen, Yi-Chiuan; Chen, Shyan-Shiou; Yuan, Juan-Ming
2014-04-15
Applying the concept of anti-integrable limit to coupled map lattices originated from space-time discretized nonlinear wave equations, we show that there exist topological horseshoes in the phase space formed by the initial states of travelling wave solutions. In particular, the coupled map lattices display spatio-temporal chaos on the horseshoes.
Vorticity Preserving Flux Corrected Transport Scheme for the Acoustic Equations
Lung, Tyler B.; Roe, Phil; Morgan, Nathaniel R.
2012-08-15
Long term research goals are to develop an improved cell-centered Lagrangian Hydro algorithm with the following qualities: 1. Utilizes Flux Corrected Transport (FCT) to achieve second order accuracy with multidimensional physics; 2. Does not rely on the one-dimensional Riemann problem; and 3. Implements a form of vorticity control. Short term research goals are to devise and implement a 2D vorticity preserving FCT solver for the acoustic equations on an Eulerian mesh: 1. Develop a flux limiting mechanism for systems of governing equations with symmetric wave speeds; 2. Verify the vorticity preserving properties of the scheme; and 3. Compare the performance of the scheme to traditional MUSCL-Hancock and other algorithms.
Numerical solution of three-dimensional magnetic differential equations
Reiman, A.H.; Greenside, H.S.
1987-02-01
A computer code is described that solves differential equations of the form B . del f = h for a single-valued solution f, given a toroidal three-dimensional divergence-free field B and a single-valued function h. The code uses a new algorithm that Fourier decomposes a given function in a set of flux coordinates in which the field lines are straight. The algorithm automatically adjusts the required integration lengths to compensate for proximity to low order rational surfaces. Applying this algorithm to the Cartesian coordinates defines a transformation to magnetic coordinates, in which the magnetic differential equation can be accurately solved. Our method is illustrated by calculating the Pfirsch-Schlueter currents for a stellarator.
Quantum Markovian master equation for scattering from surfaces
Li, Haifeng; Shao, Jiushu; Azuri, Asaf; Pollak, Eli Alicki, Robert
2014-01-07
We propose a semi-phenomenological Markovian Master equation for describing the quantum dynamics of atom-surface scattering. It embodies the Lindblad-like structure and can describe both damping and pumping of energy between the system and the bath. It preserves positivity and correctly accounts for the vanishing of the interaction of the particle with the surface when the particle is distant from the surface. As a numerical test, we apply it to a model of an Ar atom scattered from a LiF surface, allowing for interaction only in the vertical direction. At low temperatures, we find that the quantum mechanical average energy loss is smaller than the classical energy loss. The numerical results obtained from the space dependent friction master equation are compared with numerical simulations for a discretized bath, using the multi-configurational time dependent Hartree methodology. The agreement between the two simulations is quantitative.
Scientists compose complex math equations to replicate behaviors of Earth
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
systems | Argonne National Laboratory Rob Jacob talks about climate models Climate Models: Rob Jacob Scientists compose complex math equations to replicate behaviors of Earth systems By Angela Hardin * December 16, 2015 Tweet EmailPrint Whenever news breaks about what Earth's climate is expected to be like decades into the future or how much rainfall various regions around the country or the world are likely to receive, those educated estimates are generated by a global climate model. But
Felix Bloch, Nuclear Induction, Bloch Equations, Bloch Theorem, Bloch
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
States Felix Bloch, Nuclear Induction, and Bloch Equations Resources with Additional Information Stressing "the importance both of demonstrating the neutron's magnetic moment and of determining its magnitude", Felix Bloch began his research on neutron physics at Stanford [University] in early 1936. "Using mostly X-ray and microwave equipment from the physics labs, he and Norris Bradbury ... built [a neutron] source ... . (Bloch later pointed out that this equipment was more
Higher order matrix differential equations with singular coefficient matrices
Fragkoulis, V. C.; Kougioumtzoglou, I. A.; Pantelous, A. A.; Pirrotta, A.
2015-03-10
In this article, the class of higher order linear matrix differential equations with constant coefficient matrices and stochastic process terms is studied. The coefficient of the highest order is considered to be singular; thus, rendering the response determination of such systems in a straightforward manner a difficult task. In this regard, the notion of the generalized inverse of a singular matrix is used for determining response statistics. Further, an application relevant to engineering dynamics problems is included.
WHAT THE SMART GRID MEANS TO YOU AND THE PEOPLE YOU REPRESENT. | Department
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
of Energy THE SMART GRID MEANS TO YOU AND THE PEOPLE YOU REPRESENT. WHAT THE SMART GRID MEANS TO YOU AND THE PEOPLE YOU REPRESENT. The U.S. Department of Energy (DOE) is charged under the Energy Independence and Security Act of 2007 (EISA 2007) with modernizing the nation's electricity grid to improve its reliability and efficiency. As part of this effort, DOE is also responsible for increasing awareness of our nation's Smart Grid. Building upon The Smart Grid: An Introduction, a
Dy-Mn-Si as a representative of family of 'Dy-Transition
Office of Scientific and Technical Information (OSTI)
Metal-Si' systems: Its isothermal sections, empirical rProd. Type: FTPules and new rare-earth manganese silicides (Journal Article) | SciTech Connect Dy-Mn-Si as a representative of family of 'Dy-Transition Metal-Si' systems: Its isothermal sections, empirical rProd. Type: FTPules and new rare-earth manganese silicides Citation Details In-Document Search Title: Dy-Mn-Si as a representative of family of 'Dy-Transition Metal-Si' systems: Its isothermal sections, empirical rProd. Type: FTPules
The Dy-Ni-Si system as a representative of the rare earth-Ni-Si
Office of Scientific and Technical Information (OSTI)
family: Its isothermal section and new rare-earth nickel silicides (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: The Dy-Ni-Si system as a representative of the rare earth-Ni-Si family: Its isothermal section and new rare-earth nickel silicides Citation Details In-Document Search Title: The Dy-Ni-Si system as a representative of the rare earth-Ni-Si family: Its isothermal section and new rare-earth nickel silicides The Dy-Ni-Si system has been
U.S. Energy Secretary Steven Chu, U.S. Representatives Larson and Courtney
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
to Visit Research Center in East Hartford | Department of Energy Steven Chu, U.S. Representatives Larson and Courtney to Visit Research Center in East Hartford U.S. Energy Secretary Steven Chu, U.S. Representatives Larson and Courtney to Visit Research Center in East Hartford February 3, 2011 - 12:00am Addthis WASHINGTON, DC - Tomorrow, Friday, February 4, U.S. Secretary of Energy Steven Chu will travel to East Hartford, Conn. to visit United Technologies Research Center, which has received
Fact #734: July 2, 2012 OPEC Countries Represent Less Than Half of U.S.
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Petroleum Imports | Department of Energy 4: July 2, 2012 OPEC Countries Represent Less Than Half of U.S. Petroleum Imports Fact #734: July 2, 2012 OPEC Countries Represent Less Than Half of U.S. Petroleum Imports Even though Saudi Arabia is the world's largest producer of petroleum, and OPEC countries produce much of the oil in the global market, the U.S. imports most of its oil from Canada, Mexico and other non-OPEC countries. Petroleum imports from Canada have been increasing since the
Time-periodic solutions of the Benjamin-Ono equation
Ambrose , D.M.; Wilkening, Jon
2008-04-01
We present a spectrally accurate numerical method for finding non-trivial time-periodic solutions of non-linear partial differential equations. The method is based on minimizing a functional (of the initial condition and the period) that is positive unless the solution is periodic, in which case it is zero. We solve an adjoint PDE to compute the gradient of this functional with respect to the initial condition. We include additional terms in the functional to specify the free parameters, which, in the case of the Benjamin-Ono equation, are the mean, a spatial phase, a temporal phase and the real part of one of the Fourier modes at t = 0. We use our method to study global paths of non-trivial time-periodic solutions connecting stationary and traveling waves of the Benjamin-Ono equation. As a starting guess for each path, we compute periodic solutions of the linearized problem by solving an infinite dimensional eigenvalue problem in closed form. We then use our numerical method to continue these solutions beyond the realm of linear theory until another traveling wave is reached (or until the solution blows up). By experimentation with data fitting, we identify the analytical form of the solutions on the path connecting the one-hump stationary solution to the two-hump traveling wave. We then derive exact formulas for these solutions by explicitly solving the system of ODE's governing the evolution of solitons using the ansatz suggested by the numerical simulations.
DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas Emissions
Broader source: Energy.gov [DOE]
WASHINGTON, D.C. – A representative of the Waste Isolation Pilot Plant (WIPP) near Carlsbad, N.M., on Tuesday received the Secretary of Energy’s Appreciation Award for her efforts to improve sustainability and reduce travel costs and the number of fleet vehicles.
Xu, Wei; Sun, Xin; Li, Dongsheng; Ryu, Seun; Khaleel, Mohammad A.
2013-02-01
Quantitative understanding of the evolving thermal-mechanical properties of a multi-phase material hinges upon the availability of quantitative statistically representative microstructure descriptions. Questions then arise as to whether a two-dimensional (2D) or a three-dimensional (3D) representative volume element (RVE) should be considered as the statistically representative microstructure. Although 3D models are more representative than 2D models in general, they are usually computationally expensive and difficult to be reconstructed. In this paper, we evaluate the accuracy of a 2D RVE in predicting the property degradations induced by different degradation mechanisms with the multiphase solid oxide fuel cell (SOFC) anode material as an example. Both 2D and 3D microstructure RVEs of the anodes are adopted to quantify the effects of two different degradation mechanisms: humidity-induced electrochemical degradation and phosphorus poisoning induced structural degradation. The predictions of the 2D model are then compared with the available experimental measurements and the results from the 3D model. It is found that the 2D model, limited by its inability of reproducing the realistic electrical percolation, is unable to accurately predict the degradation of thermo-electrical properties. On the other hand, for the phosphorus poisoning induced structural degradation, both 2D and 3D microstructures yield similar results, indicating that the 2D model is capable of providing computationally efficient yet accurate results for studying the structural degradation within the anodes.
Development and Application of Compatible Discretizations of Maxwell's Equations
White, D; Koning, J; Rieben, R
2005-05-27
We present the development and application of compatible finite element discretizations of electromagnetics problems derived from the time dependent, full wave Maxwell equations. We review the H(curl)-conforming finite element method, using the concepts and notations of differential forms as a theoretical framework. We chose this approach because it can handle complex geometries, it is free of spurious modes, it is numerically stable without the need for filtering or artificial diffusion, it correctly models the discontinuity of fields across material boundaries, and it can be very high order. Higher-order H(curl) and H(div) conforming basis functions are not unique and we have designed an extensible C++ framework that supports a variety of specific instantiations of these such as standard interpolatory bases, spectral bases, hierarchical bases, and semi-orthogonal bases. Virtually any electromagnetics problem that can be cast in the language of differential forms can be solved using our framework. For time dependent problems a method-of-lines scheme is used where the Galerkin method reduces the PDE to a semi-discrete system of ODE's, which are then integrated in time using finite difference methods. For time integration of wave equations we employ the unconditionally stable implicit Newmark-Beta method, as well as the high order energy conserving explicit Maxwell Symplectic method; for diffusion equations, we employ a generalized Crank-Nicholson method. We conclude with computational examples from resonant cavity problems, time-dependent wave propagation problems, and transient eddy current problems, all obtained using the authors massively parallel computational electromagnetics code EMSolve.
Fire Intensity Data for Validation of the Radiative Transfer Equation
Blanchat, Thomas K.; Jernigan, Dann A.
2016-01-01
A set of experiments and test data are outlined in this report that provides radiation intensity data for the validation of models for the radiative transfer equation. The experiments were performed with lightly-sooting liquid hydrocarbon fuels that yielded fully turbulent fires 2 m diameter). In addition, supplemental measurements of air flow and temperature, fuel temperature and burn rate, and flame surface emissive power, wall heat, and flame height and width provide a complete set of boundary condition data needed for validation of models used in fire simulations.
Real-time nonlinear optimization as a generalized equation.
Zavala, V. M.; Anitescu, M. (Mathematics and Computer Science)
2010-11-11
We establish results for the problem of tracking a time-dependent manifold arising in real-time optimization by casting this as a parametric generalized equation. We demonstrate that if points along a solution manifold are consistently strongly regular, it is possible to track the manifold approximately by solving a single linear complementarity problem (LCP) at each time step. We derive sufficient conditions guaranteeing that the tracking error remains bounded to second order with the size of the time step even if the LCP is solved only approximately. We use these results to derive a fast, augmented Lagrangian tracking algorithm and demonstrate the developments through a numerical case study.
CDF Solutions of Buckley-Leverett Equation with Uncertain Parameters
Wang, Peng; Tartakovsky, Daniel M.; Jarman, Kenneth D.; Tartakovsky, Alexandre M.
2013-01-15
The Buckley-Leverett (nonlinear advection) equation is often used to describe two-phase flow in porous media. We develop a new probabilistic method to quantify parametric uncertainty in the Buckley-Leverett model. Our approach is based on the concept of fine-grained cumulative density function (CDF) and provides a full statistical description of the system states. Hence, it enables one to obtain not only average system response but also the probability of rare events, which is critical for risk assessment. We obtain a closed-form, semi-analytical solution and test it against the results from Monte Carlo simulations.
Polytechnic Institute of New York University Researchers Represented in the E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Polytechnic Institute of New York University Researchers Represented in the E-print Network Researcher/Research Institution Web page Aronov, Boris - Department of Computer Science and Engineering, Polytechnic Institute of New York University http://cis.poly.edu/~aronov/research. html Brönnimann, Hervé - Department of Computer Science and Engineering, Polytechnic Institute of New York University http://photon.poly.edu/~hbr/publis. html Chiang, Yi-Jen - Department of Computer Science and
On October 20, 2011, representatives of Howe Corporation, Gade Environmental, an
October 20, 2011, representatives of Howe Corporation, Gade Environmental, and Beecon ProfServe met with DOE to discuss the proposed rules EERE-2010 BT-TP-0036 RIN 1904-AC38 Energy Efficiency Program for Certain Commercial and Industrial Equipment: Test Procedures for Commercial Ice Makers. The meeting was held at the request of Howe Corporation at the DOE offices in Washington DC. In attendance: Ari Altman, DOE Ashley Armstrong, DOE Robert Bittner, Beecon ProfServe John Cymbalsky, DOE Mary
WHAT THE SMART GRID MEANS TO YOU AND THE PEOPLE YOU REPRESENT.
Broader source: Energy.gov (indexed) [DOE]
REPRESENT. regulators consumer advocates environmental groups technology providers policymakers ONE of SIX SMART GRID STAKEHOLDER BOOKS A smarter grid can work harder and more efficiently to respond to the needs of all consumers, contain costs and enable clean-energy solutions at scale. regulators utilities 2 DISCLAIMER PRINTED IN THE UNITED STATES OF AMERICA. This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States
DOE-STD-1151-2002; Facility Representative Functional Area Qualification Standard
Office of Environmental Management (EM)
1151-2002 April 2002 DOE STANDARD FACILITY REPRESENTATIVE FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823.
100% MOX BWR experimental program design using multi-parameter representative
Blaise, P.; Fougeras, P.; Cathalau, S.
2012-07-01
A new multiparameter representative approach for the design of Advanced full MOX BWR core physics experimental programs is developed. The approach is based on sensitivity analysis of integral parameters to nuclear data, and correlations among different integral parameters. The representativeness method is here used to extract a quantitative relationship between a particular integral response of an experimental mock-up and the same response in a reference project to be designed. The study is applied to the design of the 100% MOX BASALA ABWR experimental program in the EOLE facility. The adopted scheme proposes an original approach to the problem, going from the initial 'microscopic' pin-cells integral parameters to the whole 'macroscopic' assembly integral parameters. This approach enables to collect complementary information necessary to optimize the initial design and to meet target accuracy on the integral parameters to be measured. The study has demonstrated the necessity of new fuel pins fabrication, fulfilling minimal costs requirements, to meet acceptable representativeness on local power distribution. (authors)
Charles Laverty
2005-10-01
UNIPROCESSOR PERFORMANCE ANALYSIS OF A REPRESENTATIVE WORKLOAD OF SANDIA NATIONAL LABORATORIES' SCIENTIFIC APPLICATIONS Master of Science in Electrical Engineering New Mexico State University Las Cruces, New Mexico, 2005 Dr. Jeanine Cook, Chair Throughout the last decade computer performance analysis has become absolutely necessary to maximum performance of some workloads. Sandia National Laboratories (SNL) located in Albuquerque, New Mexico is no different in that to achieve maximum performance of large scientific, parallel workloads performance analysis is needed at the uni-processor level. A representative workload has been chosen as the basis of a computer performance study to determine optimal processor characteristics in order to better specify the next generation of supercomputers. Cube3, a finite element test problem developed at SNL is a representative workload of their scientific workloads. This workload has been studied at the uni-processor level to understand characteristics in the microarchitecture that will lead to the overall performance improvement at the multi-processor level. The goal of studying vthis workload at the uni-processor level is to build a performance prediction model that will be integrated into a multi-processor performance model which is currently being developed at SNL. Through the use of performance counters on the Itanium 2 microarchitecture, performance statistics are studied to determine bottlenecks in the microarchitecture and/or changes in the application code that will maximize performance. From source code analysis a performance degrading loop kernel was identified and through the use of compiler optimizations a performance gain of around 20% was achieved.
Equations of state in the Fe-FeSi system at high pressures and...
Office of Scientific and Technical Information (OSTI)
SciTech Connect Search Results Journal Article: Equations of state in the Fe-FeSi system at high pressures and temperatures Citation Details In-Document Search Title: Equations of ...
A new high pressure and temperature equation of state of fcc...
Office of Scientific and Technical Information (OSTI)
A new high pressure and temperature equation of state of fcc cobalt Citation Details In-Document Search Title: A new high pressure and temperature equation of state of fcc cobalt...
The Equation of State of LLM-105 (2,6-diamino-3,5-dinitropyrazine...
Office of Scientific and Technical Information (OSTI)
Conference: The Equation of State of LLM-105 (2,6-diamino-3,5-dinitropyrazine-1-oxide) Citation Details In-Document Search Title: The Equation of State of LLM-105...
Validity of equation-of-motion approach to kondo problem in the...
Office of Scientific and Technical Information (OSTI)
Language: English Subject: 71; DECOUPLING; EQUATIONS OF MOTION; GREEN FUNCTION; IMPURITIES; INTERACTIONS; KONDO EFFECT; RENORMALIZATION; RESONANCE; SPIN; TEMPERATURE DEPENDENCE
Possible ambiguities in the equation of state for neutron stars
Cheoun, Myung-Ki; Miyatsu, Tsuyoshi; Ryu, C. Y.; Deliduman, Cemsinan; Gngr, Can; Kele?, Vildan; Kajino, Toshitaka; Mathews, Grant J.
2014-05-02
We addressed possible ambiguities on the properties of neutron stars (NSs) estimated in theoretical sides. First, roles of hyperons inside the NS are discussed through various relativistic mean field (RMF) theories. In particular, the extension of SU(6) spin-flavor symmetry to SU(3) flavor symmetry is shown to give rise to the increase of hyperon threshold density, similarly to the Fock term effects in RMF theories. As a result, about 2.0 solar mass is obtained with the hyperons. Second, the effect by the modified f(R) gravity, which leaves a room for the dark energy in the Einstein equation to be taken into account, is discussed for the NS in a strong magnetic field (MF). Our results show that the modified gravity with the Kaluza-Klein electro-magnetism theory expanded in terms of a length scale parameter may reasonably describe the NS in strong MF, so called magnetar. Even the super-soft equation of state is shown to be revived by the modified f(R) gravity.
Thermodynamics of the polaron master equation at finite bias
Krause, Thilo Brandes, Tobias; Schaller, Gernot; Esposito, Massimiliano
2015-04-07
We study coherent transport through a double quantum dot. Its two electronic leads induce electronic matter and energy transport and a phonon reservoir contributes further energy exchanges. By treating the system-lead couplings perturbatively, whereas the coupling to vibrations is treated non-perturbatively in a polaron-transformed frame, we derive a thermodynamic consistent low-dimensional master equation. When the number of phonon modes is finite, a Markovian description is only possible when these couple symmetrically to both quantum dots. For a continuum of phonon modes however, also asymmetric couplings can be described with a Markovian master equation. We compute the electronic current and dephasing rate. The electronic current enables transport spectroscopy of the phonon frequency and displays signatures of Franck-Condon blockade. For infinite external bias but finite tunneling bandwidths, we find oscillations in the current as a function of the internal bias due to the electron-phonon coupling. Furthermore, we derive the full fluctuation theorem and show its identity to the entropy production in the system.
Nonparametric reconstruction of the dark energy equation of state
Heitmann, Katrin; Holsclaw, Tracy; Alam, Ujjaini; Habib, Salman; Higdon, David; Sanso, Bruno; Lee, Herbie
2009-01-01
The major aim of ongoing and upcoming cosmological surveys is to unravel the nature of dark energy. In the absence of a compelling theory to test, a natural approach is to first attempt to characterize the nature of dark energy in detail, the hope being that this will lead to clues about the underlying fundamental theory. A major target in this characterization is the determination of the dynamical properties of the dark energy equation of state w. The discovery of a time variation in w(z) could then lead to insights about the dynamical origin of dark energy. This approach requires a robust and bias-free method for reconstructing w(z) from data, which does not rely on restrictive expansion schemes or assumed functional forms for w(z). We present a new non parametric reconstruction method for the dark energy equation of state based on Gaussian Process models. This method reliably captures nontrivial behavior of w(z) and provides controlled error bounds. We demollstrate the power of the method on different sets of simulated supernova data. The GP model approach is very easily extended to include diverse cosmological probes.
Tanimura, Yoshitaka
2014-07-28
For a system strongly coupled to a heat bath, the quantum coherence of the system and the heat bath plays an important role in the system dynamics. This is particularly true in the case of non-Markovian noise. We rigorously investigate the influence of system-bath coherence by deriving the reduced hierarchal equations of motion (HEOM), not only in real time, but also in imaginary time, which represents an inverse temperature. It is shown that the HEOM in real time obtained when we include the system-bath coherence of the initial thermal equilibrium state possess the same form as those obtained from a factorized initial state. We find that the difference in behavior of systems treated in these two manners results from the difference in initial conditions of the HEOM elements, which are defined in path integral form. We also derive HEOM along the imaginary time path to obtain the thermal equilibrium state of a system strongly coupled to a non-Markovian bath. Then, we show that the steady state hierarchy elements calculated from the real-time HEOM can be expressed in terms of the hierarchy elements calculated from the imaginary-time HEOM. Moreover, we find that the imaginary-time HEOM allow us to evaluate a number of thermodynamic variables, including the free energy, entropy, internal energy, heat capacity, and susceptibility. The expectation values of the system energy and system-bath interaction energy in the thermal equilibrium state are also evaluated.
Broader source: Energy.gov (indexed) [DOE]
Accountable Property Representatives/Property Pass Authorization 12/2/2015 Employee Authorized Organization Phone APR Primary Property Pass Signer PETEET, LISA J. ALL ORGS (202) 287-5496 √ AGEE, PATTIE M. EM-40 (202) 586-9417 √ AMES, RUSSELL SC-32 (202) 586-1082 √ √ ANDERSON, SUE EM-73 (301) 903-8368 √ √ ATKINSON-HYMAN, DEBRA PA-1 (202) 586-2461 √ √ AUGUSTYN, ANN HG-6 (202) 287-1528 √ BARLETT, DENNIS EE-3C (202) 586-0874 √ BARNES, CLAUDE GC-90 (202) 586-2957 √ √
W&M Student Elected to Represent American Physical Society's Graduate
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Student Forum | Jefferson Lab W&M Student Elected to Represent American Physical Society's Graduate Student Forum V Gray Valerie Gray, a graduate student at The College of William and Mary and a researcher at the Department of Energy's Thomas Jefferson National Accelerator Facility, was chosen this year by American Physical Society members as chair-elect for the APS Forum on Graduate Student Affairs. NEWPORT NEWS, VA, Aug. 8, 2014 - The old adage "If you want something done, give it
Sampling device for withdrawing a representative sample from single and multi-phase flows
Apley, Walter J. (Pasco, WA); Cliff, William C. (Richland, WA); Creer, James M. (Richland, WA)
1984-01-01
A fluid stream sampling device has been developed for the purpose of obtaining a representative sample from a single or multi-phase fluid flow. This objective is carried out by means of a probe which may be inserted into the fluid stream. Individual samples are withdrawn from the fluid flow by sampling ports with particular spacings, and the sampling parts are coupled to various analytical systems for characterization of the physical, thermal, and chemical properties of the fluid flow as a whole and also individually.
Accountable Property Representatives/Property Pass Authorization 3/7/2016 Employee Authorized Organization Phone APR Primary Property Pass Signer PETEET, LISA J. ALL ORGS (202) 287-5496 √ AGEE, PATTIE M. EM-40 (202) 586-9417 √ AMES, RUSSELL SC-32 (202) 586-1082 √ √ ANDERSON, SUE EM-73 (301) 903-8368 √ √ ATKINSON-HYMAN, DEBRA PA-1 (202) 586-2461 √ √ AUGUSTYN, ANN HG-6 (202) 287-1528 √ BARLETT, DENNIS EE-3C (202) 586-0874 √ BARNES, CLAUDE GC-90 (202) 586-2957 √ √
Facility Representatives, DOE-STD-1063-2011, Change Notice 1
Office of Environmental Management (EM)
STD-1063-2011 February 2011 Change Notice 1 March 2012 DOE STANDARD FACILITY REPRESENTATIVES U.S. Department of Energy AREA MGMT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1063-2011 ii Change Notice No. 1 March 2012 Table of Changes Available on the Department of Energy Technical Standards Program Web site at http://www.hss.doe.gov/nuclearsafety/ns/techstds/ Page/Section Change Foreword Update contact information and internet
On a hierarchy of nonlinearly dispersive generalized Korteweg - de Vries evolution equations
Christov, Ivan C.
2015-08-20
We propose a hierarchy of nonlinearly dispersive generalized Kortewegde Vries (KdV) evolution equations based on a modification of the Lagrangian density whose induced action functional the KdV equation extremizes. Two recent nonlinear evolution equations describing wave propagation in certain generalized continua with an inherent material length scale are members of the proposed hierarchy. Like KdV, the equations from the proposed hierarchy possess Hamiltonian structure. Unlike KdV, the solutions to these equations can be compact (i.e., they vanish outside of some open interval) and, in addition, peaked. Implicit solutions for these peaked, compact traveling waves (peakompactons) are presented.
On a hierarchy of nonlinearly dispersive generalized Korteweg - de Vries evolution equations
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Christov, Ivan C.
2015-08-20
We propose a hierarchy of nonlinearly dispersive generalized Korteweg–de Vries (KdV) evolution equations based on a modification of the Lagrangian density whose induced action functional the KdV equation extremizes. Two recent nonlinear evolution equations describing wave propagation in certain generalized continua with an inherent material length scale are members of the proposed hierarchy. Like KdV, the equations from the proposed hierarchy possess Hamiltonian structure. Unlike KdV, the solutions to these equations can be compact (i.e., they vanish outside of some open interval) and, in addition, peaked. Implicit solutions for these peaked, compact traveling waves (“peakompactons”) are presented.
Equation of State for Supercooled Water at Pressures up to 400 MPa
Holten, Vincent; Sengers, Jan V.; Anisimov, Mikhail A.
2014-12-01
An equation of state is presented for the thermodynamic properties of cold and supercooled water. It is valid for temperatures from the homogeneous ice nucleation temperature up to 300 K and for pressures up to 400 MPa, and can be extrapolated up to 1000 MPa. The equation of state is compared with experimental data for the density, expansion coefficient, isothermal compressibility, speed of sound, and heat capacity. Estimates for the accuracy of the equation are given. The melting curve of ice I is calculated from the phase-equilibrium condition between the proposed equation and an existing equation of state for ice I.
Polynomial solutions of the Monge-Ampre equation
Aminov, Yu A
2014-11-30
The question of the existence of polynomial solutions to the Monge-Ampre equation z{sub xx}z{sub yy}?z{sub xy}{sup 2}=f(x,y) is considered in the case when f(x,y) is apolynomial. It is proved that if f is apolynomial of the second degree, which is positive for all values of its arguments and has apositive squared part, then no polynomial solution exists. On the other hand, asolution which is not polynomial but is analytic in the whole of the x,y-plane is produced. Necessary and sufficient conditions for the existence of polynomial solutions of degree up to 4 are found and methods for the construction of such solutions are indicated. An approximation theorem is proved. Bibliography: 10 titles.
Levinson theorem for the Dirac equation in one dimension
Ma Zhongqi; Dong Shihai; Wang Luya
2006-07-15
The Levinson theorem for the (1+1)-dimensional Dirac equation with a symmetric potential is proved with the Sturm-Liouville theorem. The half-bound states at the energies E={+-}M, whose wave function is finite but does not decay at infinity fast enough to be square integrable, are discussed. The number n{sub {+-}} of bound states is equal to the sum of the phase shifts at the energies E={+-}M:{delta}{sub {+-}}(M)+{delta}{sub {+-}}(-M)=(n{sub {+-}}+a){pi}, where the subscript {+-} denotes the parity and the constant a is equal to -1/2 when no half-bound state occurs, to 0 when one half-bound state occurs at E=M or at E=-M, and to 1/2 when two half-bound states occur at both E={+-}M.
INTERACTING QUARK MATTER EQUATION OF STATE FOR COMPACT STARS
Fraga, Eduardo S.; Kurkela, Aleksi; Vuorinen, Aleksi
2014-02-01
Lattice quantum chromodynamics (QCD) studies of the thermodynamics of hot quark-gluon plasma demonstrate the importance of accounting for the interactions of quarks and gluons if one wants to investigate the phase structure of strongly interacting matter. Motivated by this observation and using state-of-the-art results from perturbative QCD, we construct a simple, effective equation of state (EOS) for cold quark matter that consistently incorporates the effects of interactions and furthermore includes a built-in estimate of the inherent systematic uncertainties. This goes beyond the MIT bag model description in a crucial way, yet leads to an EOS that is equally straightforward to use. We also demonstrate that, at moderate densities, our EOS can be made to smoothly connect to hadronic EOSs, with the two exhibiting very similar behavior near the matching region. The resulting hybrid stars are seen to have masses similar to those predicted by the purely nucleonic EOSs.
SESAME 7363: A new Li(6)D equation of state
Sheppard, Daniel Glen; Kress, Joel David; Crockett, Scott; Collins, Lee A.; Greeff, Carl William
2015-09-21
A new Equation of State (EOS) for Lithium 6 Deuteride (^{6}LiD) was created, sesame 7363. This EOS was released to the user community under “eos-developmental” as sesame 97363. The construction of this new EOS is a modification of a previously released EOS, sesame 7360^{1}. Sesame 7360 is too stiff (5-10% excess pressure) at high compressions and high temperatures (ρ = 4-110g/cm^{3}, T = 30-10,000 eV) compared to orbital-free density-functional theory. Sesame 7363 is softer and gives a better representation of the physics over this range without compromising the agreement with the experimental and simulation data that sesame 7360 was based on.
The isobaric multiplet mass equation for A?71 revisited
Lam, Yi Hua; Blank, Bertram; Smirnova, Nadezda A.; Bueb, Jean Bernard; Antony, Maria Susai
2013-11-15
Accurate mass determination of short-lived nuclides by Penning-trap spectrometers and progress in the spectroscopy of proton-rich nuclei have triggered renewed interest in the isobaric multiplet mass equation (IMME). The energy levels of the members of T=1/2,1,3/2, and 2 multiplets and the coefficients of the IMME are tabulated for A?71. The new compilation is based on the most recent mass evaluation (AME2011) and it includes the experimental results on energies of the states evaluated up to end of 2011. Taking into account the error bars, a significant deviation from the quadratic form of the IMME for the A=9,35 quartets and the A=32 quintet is observed.
Vapor-liquid equilibria for an R134a/lubricant mixture: Measurements and equation-of-state modeling
Huber, M.L.; Holcomb, C.D.; Outcalt, S.L.; Elliott, J.R.
2000-07-01
The authors measured bubble point pressures and coexisting liquid densities for two mixtures of R-134a and a polyolester (POE) lubricant. The mass fraction of the lubricant was approximately 9% and 12%, and the temperature ranged from 280 K to 355 K. The authors used the Elliott, Suresh, and Donohue (ESD) equation of state to model the bubble point pressure data. The bubble point pressures were represented with an average absolute deviation of 2.5%. A binary interaction parameter reduced the deviation to 1.4%. The authors also applied the ESD model to other R-134a/POE lubricant data in the literature. As the concentration of the lubricant increased, the performance of the model deteriorated markedly. However, the use of a single binary interaction parameter reduced the deviations significantly.
An estimated 5% of new protein structures solved today represent a new Pfam family
Mistry, Jaina; Kloppmann, Edda; Rost, Burkhard; Punta, Marco
2013-11-01
This study uses the Pfam database to show that the sequence redundancy of protein structures deposited in the PDB is increasing. The possible reasons behind this trend are discussed. High-resolution structural knowledge is key to understanding how proteins function at the molecular level. The number of entries in the Protein Data Bank (PDB), the repository of all publicly available protein structures, continues to increase, with more than 8000 structures released in 2012 alone. The authors of this article have studied how structural coverage of the protein-sequence space has changed over time by monitoring the number of Pfam families that acquired their first representative structure each year from 1976 to 2012. Twenty years ago, for every 100 new PDB entries released, an estimated 20 Pfam families acquired their first structure. By 2012, this decreased to only about five families per 100 structures. The reasons behind the slower pace at which previously uncharacterized families are being structurally covered were investigated. It was found that although more than 50% of current Pfam families are still without a structural representative, this set is enriched in families that are small, functionally uncharacterized or rich in problem features such as intrinsically disordered and transmembrane regions. While these are important constraints, the reasons why it may not yet be time to give up the pursuit of a targeted but more comprehensive structural coverage of the protein-sequence space are discussed.
Goffin, Mark A.; Baker, Christopher M.J.; Buchan, Andrew G.; Pain, Christopher C.; Eaton, Matthew D.; Smith, Paul N.
2013-06-01
This article presents a method for goal-based anisotropic adaptive methods for the finite element method applied to the Boltzmann transport equation. The neutron multiplication factor, k{sub eff}, is used as the goal of the adaptive procedure. The anisotropic adaptive algorithm requires error measures for k{sub eff} with directional dependence. General error estimators are derived for any given functional of the flux and applied to k{sub eff} to acquire the driving force for the adaptive procedure. The error estimators require the solution of an appropriately formed dual equation. Forward and dual error indicators are calculated by weighting the Hessian of each solution with the dual and forward residual respectively. The Hessian is used as an approximation of the interpolation error in the solution which gives rise to the directional dependence. The two indicators are combined to form a single error metric that is used to adapt the finite element mesh. The residual is approximated using a novel technique arising from the sub-grid scale finite element discretisation. Two adaptive routes are demonstrated: (i) a single mesh is used to solve all energy groups, and (ii) a different mesh is used to solve each energy group. The second method aims to capture the benefit from representing the flux from each energy group on a specifically optimised mesh. The k{sub eff} goal-based adaptive method was applied to three examples which illustrate the superior accuracy in criticality problems that can be obtained.
A Subbasin-based framework to represent land surface processes in an Earth System Model
Tesfa, Teklu K.; Li, Hongyi; Leung, Lai-Yung R.; Huang, Maoyi; Ke, Yinghai; Sun, Yu; Liu, Ying
2014-05-20
Realistically representing spatial heterogeneity and lateral land surface processes within and between modeling units in earth system models is important because of their implications to surface energy and water exchange. The traditional approach of using regular grids as computational units in land surface models and earth system models may lead to inadequate representation of lateral movements of water, energy and carbon fluxes, especially when the grid resolution increases. Here a new subbasin-based framework is introduced in the Community Land Model (CLM), which is the land component of the Community Earth System Model (CESM). Local processes are represented assuming each subbasin as a grid cell on a pseudo grid matrix with no significant modifications to the existing CLM modeling structure. Lateral routing of water within and between subbasins is simulated with the subbasin version of a recently-developed physically based routing model, Model for Scale Adaptive River Routing (MOSART). As an illustration, this new framework is implemented in the topographically diverse region of the U.S. Pacific Northwest. The modeling units (subbasins) are delineated from high-resolution Digital Elevation Model while atmospheric forcing and surface parameters are remapped from the corresponding high resolution datasets. The impacts of this representation on simulating hydrologic processes are explored by comparing it with the default (grid-based) CLM representation. In addition, the effects of DEM resolution on parameterizing topography and the subsequent effects on runoff processes are investigated. Limited model evaluation and comparison showed that small difference between the averaged forcing can lead to more significant difference in the simulated runoff and streamflow because of nonlinear horizontal processes. Topographic indices derived from high resolution DEM may not improve the overall water balance, but affect the partitioning between surface and subsurface runoff. More systematic analyses are needed to determine the relative merits of the subbasin representation compared to the commonly used grid-based representation, especially when land surface models are approaching higher resolutions.
Test plan for validation of the radiative transfer equation.
Ricks, Allen Joseph; Grasser, Thomas W.; Kearney, Sean Patrick; Jernigan, Dann A.; Blanchat, Thomas K.
2010-09-01
As the capabilities of numerical simulations increase, decision makers are increasingly relying upon simulations rather than experiments to assess risks across a wide variety of accident scenarios including fires. There are still, however, many aspects of fires that are either not well understood or are difficult to treat from first principles due to the computational expense. For a simulation to be truly predictive and to provide decision makers with information which can be reliably used for risk assessment the remaining physical processes must be studied and suitable models developed for the effects of the physics. A set of experiments are outlined in this report which will provide soot volume fraction/temperature data and heat flux (intensity) data for the validation of models for the radiative transfer equation. In addition, a complete set of boundary condition measurements will be taken to allow full fire predictions for validation of the entire fire model. The experiments will be performed with a lightly-sooting liquid hydrocarbon fuel fire in the fully turbulent scale range (2 m diameter).
Nuclear processing - a simple cost equation or a complex problem?
Banfield, Z.; Banford, A.W.; Hanson, B.C.; Scully, P.J.
2007-07-01
BNFL has extensive experience of nuclear processing plant from concept through to decommissioning, at all stages of the fuel cycle. Nexia Solutions (formerly BNFL's R and D Division) has always supported BNFL in development of concept plant, including the development of costed plant designs for the purpose of economic evaluation and technology selection. Having undertaken such studies over a number of years, this has enabled Nexia Solutions to develop a portfolio of costed plant designs for a broad range of nuclear processes, throughputs and technologies. This work has led to an extensive understanding of the relationship of the cost of nuclear processing plant, and how this can be impacted by scale of process, and the selection of design philosophy. The relationship has been seen to be non linear and so simplistic equations do not apply, the relationship is complex due to the variety of contributory factors. This is particularly evident when considering the scale of a process, for example how step changes in design occurs with increasing scale, how the applicability of technology options can vary with scale etc... This paper will explore the contributory factor of scale to nuclear processing plant costs. (authors)
Equations of state and phase transitions in stellar matter
Raduta, Ad. R. [IFIN-HH, Bucharest POB-MG 6 (Romania); Gulminelli, F.; Aymard, F. [CNRS, UMR6534, LPC and ENSICAEN, UMR6534, LPC, F-14050 Caen cedex (France); Oertel, M. [LUTH, CNRS, Observatoire de Paris, Universite Paris Diderot, 92195 Meudon (France); Margueron, J. [IPN, IN2P3-CNRS, Universite Paris-Sud, F-91406 Orsay cedex (France)
2014-05-09
Realistic description of core-collapsing supernovae evolution and structure of proto-neutron stars chiefly depends on microphysics input in terms of equations of state, chemical composition and weak interaction rates. At sub-saturation densities the main uncertainty comes from the symmetry energy. Within a nuclear statistical equilibrium (NSE) model with consistent treatment of clusterized and unbound components we investigate the meaning of symmetry energy in the case of dis-homogeneous systems, as the one thought to constitute the neutron star crust, and its sensitivity to the isovector properties of the effective interaction. At supra-saturation densities the situation is much more difficult because of the poor knowledge of nucleon-hyperon and hyperon-hyperon interactions and thermodynamic behavior in terms of phase transitions. Within a simple (np?) model we show that compressed baryonic matter with strangeness manifests a complex phase diagram with first and second order phase transitions. The fact that both are explored under strangeness chemical equilibrium and survive Coulomb suggests that they might have sizable consequences on star evolution. An example in this sense is the drastic reduction of the neutrino-mean free path in the vicinity of the critical point obtained within RPA which would lead to a less rapid star cooling.
Opal equation-of-state tables for astrophysical applications
Rogers, F.J.; Swenson, F.J.; Iglesias, C.A.
1996-01-01
OPAL opacities have recently helped to resolve a number of long-standing discrepancies between theory and observation. This success has made it important to provide the associated equation-of-state (EOS) data. The OPAL EOS is based on an activity expansion of the grand canonical partition function of the plasma in terms of its fundamental constituents (electrons and nuclei). The formation of composite particles and many-body effects on the internal bound states occur naturally in this approach. Hence, pressure ionization is a consequence of the theory. In contrast, commonly used approaches, all of which are based on minimization of free energy, are forced to assert the effect of the plasma on composite particles and must rely on an ad hoc treatment of pressure ionization. Another advantage of the OPAL approach is that it provides a systematic expansion in the Coulomb coupling parameter that includes subtle quantum effects generally not considered in other EOS calculations. Tables have been generated that provide pressure, internal energy, entropy, and a variety of derivative quantities. These tables cover a fairly broad range of conditions and compositions applicable to general stellar-evolution calculations for stars more massive than {approximately}0.8 {ital M}{sub {circle_dot}}. An interpolation code is provided along with the tables to facilitate their use. {copyright} {ital 1996 The American Astronomical Society.}
Wavevortex interactions in the nonlinear Schrdinger equation
Guo, Yuan Bhler, Oliver
2014-02-15
This is a theoretical study of wavevortex interaction effects in the two-dimensional nonlinear Schrdinger equation, which is a useful conceptual model for the limiting dynamics of superfluid quantum condensates at zero temperature. The particular wavevortex interaction effects are associated with the scattering and refraction of small-scale linear waves by the straining flows induced by quantized point vortices and, crucially, with the concomitant nonlinear back-reaction, the remote recoil, that these scattered waves exert on the vortices. Our detailed model is a narrow, slowly varying wavetrain of small-amplitude waves refracted by one or two vortices. Weak interactions are studied using a suitable perturbation method in which the nonlinear recoil force on the vortex then arises at second order in wave amplitude, and is computed in terms of a Magnus-type force expression for both finite and infinite wavetrains. In the case of an infinite wavetrain, an explicit asymptotic formula for the scattering angle is also derived and cross-checked against numerical ray tracing. Finally, under suitable conditions a wavetrain can be so strongly refracted that it collapses all the way onto a zero-size point vortex. This is a strong wavevortex interaction by definition. The conditions for such a collapse are derived and the validity of ray tracing theory during the singular collapse is investigated.
Equation of state and transport property measurements of warm dense matter.
Knudson, Marcus D.; Desjarlais, Michael Paul
2009-10-01
Location of the liquid-vapor critical point (c.p.) is one of the key features of equation of state models used in simulating high energy density physics and pulsed power experiments. For example, material behavior in the location of the vapor dome is critical in determining how and when coronal plasmas form in expanding wires. Transport properties, such as conductivity and opacity, can vary an order of magnitude depending on whether the state of the material is inside or outside of the vapor dome. Due to the difficulty in experimentally producing states near the vapor dome, for all but a few materials, such as Cesium and Mercury, the uncertainty in the location of the c.p. is of order 100%. These states of interest can be produced on Z through high-velocity shock and release experiments. For example, it is estimated that release adiabats from {approx}1000 GPa in aluminum would skirt the vapor dome allowing estimates of the c.p. to be made. This is within the reach of Z experiments (flyer plate velocity of {approx}30 km/s). Recent high-fidelity EOS models and hydrocode simulations suggest that the dynamic two-phase flow behavior observed in initial scoping experiments can be reproduced, providing a link between theory and experiment. Experimental identification of the c.p. in aluminum would represent the first measurement of its kind in a dynamic experiment. Furthermore, once the c.p. has been experimentally determined it should be possible to probe the electrical conductivity, opacity, reflectivity, etc. of the material near the vapor dome, using a variety of diagnostics. We propose a combined experimental and theoretical investigation with the initial emphasis on aluminum.
An asymptotic expansion of the solution of amatrix difference equation of general form
Sgibnev, M S
2014-12-31
An asymptotic expansion of the solution of an inhomogeneous matrix difference equation of general form is obtained. The case when there is no bound on the differences of the arguments is considered. The effect of the roots of the characteristic equation is taken into account. An integral estimate with asubmultiplicative weight is established for the remainder in terms of the submultiplicative moment of the free term of the equation. Bibliography: 14 titles.
Argonne OutLoud: Changing the bio-energy equation (April 12,...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Changing the bio-energy equation (April 12, 2012) Share Description Argonne OutLoud public lecture series. Episode 1: Argonomist Cristina Negri talks about phytoremediation for...
The thermal equation of state of (Mg, Fe)SiO[subscript 3] bridgmanite...
Office of Scientific and Technical Information (OSTI)
SciTech Connect Search Results Journal Article: The thermal equation of state of (Mg, Fe)SiOsubscript 3 bridgmanite (perovskite) and implications for lower mantle structures ...
Validity of equation-of-motion approach to kondo problem in the...
Office of Scientific and Technical Information (OSTI)
Subject: 71; DECOUPLING; EQUATIONS OF MOTION; GREEN FUNCTION; IMPURITIES; INTERACTIONS; KONDO EFFECT; RENORMALIZATION; RESONANCE; SPIN; TEMPERATURE DEPENDENCE Word Cloud More Like ...
A Novel Hyperbolization Procedure for The Two-Phase Six-Equation Flow Model
Office of Scientific and Technical Information (OSTI)
(Technical Report) | SciTech Connect Technical Report: A Novel Hyperbolization Procedure for The Two-Phase Six-Equation Flow Model Citation Details In-Document Search Title: A Novel Hyperbolization Procedure for The Two-Phase Six-Equation Flow Model We introduce a novel approach for the hyperbolization of the well-known two-phase six equation flow model. The six-equation model has been frequently used in many two-phase flow applications such as bubbly fluid flows in nuclear reactors. One
Wong's equations and the small x effective action in QCD (Journal Article)
Office of Scientific and Technical Information (OSTI)
| SciTech Connect Wong's equations and the small x effective action in QCD Citation Details In-Document Search Title: Wong's equations and the small x effective action in QCD We propose a new form for the small x effective action in QCD. This form of the effective action is motivated by Wong's equations for classical, colored particles in non-Abelian background fields. We show that the BFKL equation, which sums leading logarithms in x, is efficiently reproduced with this form of the action.
Clustering method and representative feeder selection for the California solar initiative
Broderick, Robert Joseph; Williams, Joseph R.; Munoz-Ramos, Karina
2014-02-01
The screening process for DG interconnection procedures needs to be improved in order to increase the PV deployment level on the distribution grid. A significant improvement in the current screening process could be achieved by finding a method to classify the feeders in a utility service territory and determine the sensitivity of particular groups of distribution feeders to the impacts of high PV deployment levels. This report describes the utility distribution feeder characteristics in California for a large dataset of 8,163 feeders and summarizes the California feeder population including the range of characteristics identified and most important to hosting capacity. The report describes the set of feeders that are identified for modeling and analysis as well as feeders identified for the control group. The report presents a method for separating a utilitys distribution feeders into unique clusters using the k-means clustering algorithm. An approach for determining the feeder variables of interest for use in a clustering algorithm is also described. The report presents an approach for choosing the feeder variables to be utilized in the clustering process and a method is identified for determining the optimal number of representative clusters.
A Control Chart Approach for Representing and Mining Data Streams with Shape Based Similarity
Omitaomu, Olufemi A
2014-01-01
The mining of data streams for online condition monitoring is a challenging task in several domains including (electric) power grid system, intelligent manufacturing, and consumer science. Considering a power grid application in which thousands of sensors, called the phasor measurement units, are deployed on the power grid network to continuously collect streams of digital data for real-time situational awareness and system management. Depending on design, each sensor could stream between ten and sixty data samples per second. The myriad of sensory data captured could convey deeper insights about sequence of events in real-time and before major damages are done. However, the timely processing and analysis of these high-velocity and high-volume data streams is a challenge. Hence, a new data processing and transformation approach, based on the concept of control charts, for representing sequence of data streams from sensors is proposed. In addition, an application of the proposed approach for enhancing data mining tasks such as clustering using real-world power grid data streams is presented. The results indicate that the proposed approach is very efficient for data streams storage and manipulation.
Dickerman, J.A.; Silverman, G.S.
1995-12-01
Sustainable development is a phrase that has come into common usage without benefit of clear definition or meaning. Usage very much reflects individual and group perspectives: foresters might consider sustainability in terms of maintaining ecological integrity as part of managing forests for wood harvesting, industry might emphasize pollution control, while government agencies may be looking for new ways to exploit resources on a more continuous basis. Perhaps the greatest commonality among groups considering these issues is that {open_quotes}sustainability{close_quotes} has not been attained but that it needs to occur. The National Association of Environmental Professionals (NAEP) agrees that it is critical to the health of the planet that sustainable development be actively pursued and implemented in international, national, regional, and local policies and practices. To contribute to this effort a {open_quotes}white paper{close_quotes} is being prepared. Its purpose is twofold: (1) to review the existing information from the NAEP Sustainable Development Working Group and the literature and through examination of these policies, to clarify the thinking, what is being done, and what is still needed; and (2) to develop a position and action plan. This action plan should direct NAEP`s actions in making a significant contribution to the national dialog. This paper presents the background and results of the review phase of this white paper development. Representative views on sustainable development policy and practice are presented from three perspectives: governmental agencies, industry, and other specialty groups.
Representing northern peatland microtopography and hydrology within the Community Land Model
Shi, X.; Thornton, P. E.; Ricciuto, D. M.; Hanson, P. J.; Mao, J.; Sebestyen, S. D.; Griffiths, N. A.; Bisht, G.
2015-02-20
Predictive understanding of northern peatland hydrology is a necessary precursor to understanding the fate of massive carbon stores in these systems under the influence of present and future climate change. Current models have begun to address microtopographic controls on peatland hydrology, but none have included a prognostic calculation of peatland water table depth for a vegetated wetland, independent of prescribed regional water tables. We introduce here a new configuration of the Community Land Model (CLM) which includes a fully prognostic water table calculation for a vegetated peatland. Our structural and process changes to CLM focus on modifications needed to represent the hydrologic cycle of bogs environment with perched water tables, as well as distinct hydrologic dynamics and vegetation communities of the raised hummock and sunken hollow microtopography characteristic of peatland bogs. The modified model was parameterized and independently evaluated against observations from an ombrotrophic raised-dome bog in northern Minnesota (S1-Bog), the site for the Spruce and Peatland Responses Under Climatic and Environmental Change experiment (SPRUCE). Simulated water table levels compared well with site-level observations. The new model predicts significant hydrologic changes in response to planned warming at the SPRUCE site. At present, standing water is commonly observed in bog hollows after large rainfall events during the growing season, but simulations suggest a sharp decrease in water table levels due to increased evapotranspiration under the most extreme warming level, nearly eliminating the occurrence of standing water in the growing season. Simulated soil energy balance was strongly influenced by reduced winter snowpack under warming simulations, with the warming influence on soil temperature partly offset by the loss of insulating snowpack in early and late winter. The new model provides improved predictive capacity for seasonal hydrological dynamics in northern peatlands, and provides a useful foundation for investigation of northern peatland carbon exchange.
Explicit solutions of the radiative transport equation in the P{sub 3} approximation
Liemert, André Kienle, Alwin
2014-11-01
Purpose: Explicit solutions of the monoenergetic radiative transport equation in the P{sub 3} approximation have been derived which can be evaluated with nearly the same computational effort as needed for solving the standard diffusion equation (DE). In detail, the authors considered the important case of a semi-infinite medium which is illuminated by a collimated beam of light. Methods: A combination of the classic spherical harmonics method and the recently developed method of rotated reference frames is used for solving the P{sub 3} equations in closed form. Results: The derived solutions are illustrated and compared to exact solutions of the radiative transport equation obtained via the Monte Carlo (MC) method as well as with other approximated analytical solutions. It is shown that for the considered cases which are relevant for biomedical optics applications, the P{sub 3} approximation is close to the exact solution of the radiative transport equation. Conclusions: The authors derived exact analytical solutions of the P{sub 3} equations under consideration of boundary conditions for defining a semi-infinite medium. The good agreement to Monte Carlo simulations in the investigated domains, for example, in the steady-state and time domains, as well as the short evaluation time needed suggests that the derived equations can replace the often applied solutions of the diffusion equation for the homogeneous semi-infinite medium.
A parametric approach to supersymmetric quantum mechanics in the solution of Schrdinger equation
Tezcan, Cevdet; Sever, Ramazan
2014-03-15
We study exact solutions of the Schrdinger equation for some potentials. We introduce a parametric approach to supersymmetric quantum mechanics to calculate energy eigenvalues and corresponding wave functions exactly. As an application we solve Schrdinger equation for the generalized Morse potential, modified Hulthen potential, deformed Rosen-Morse potential and Poschl-Teller potential. The method is simple and effective to get the results.
Symmetry operators for Dirac's equation on two-dimensional spin manifolds
Fatibene, Lorenzo; McLenaghan, Raymond G.; Smith, Shane N.; Rastelli, Giovanni
2009-05-15
It is shown that the second order symmetry operators for the Dirac equation on a general two-dimensional spin manifold may be expressed in terms of Killing vectors and valence 2 Killing tensors. The role of these operators in the theory of separation of variables for the Dirac equation is studied.
None
2010-12-29
The representative concentration pathway to be delivered is a scenario of atmospheric concentrations of greenhouse gases and other radiatively important atmospheric species, along with land-use changes, derived from the Global Change Assessment Model (GCAM). The particular representative concentration pathway (RCP) that the Joint Global Change Research Institute (JGCRI) has been responsible for is a not-to-exceed pathway that stabilizes at a radiative forcing of 4.5Wm-2 in the year 2100.
Nakatsuji, Hiroshi Nakashima, Hiroyuki
2015-02-28
The free-complement (FC) method is a general method for solving the Schrdinger equation (SE): The produced wave function has the potentially exact structure as the solution of the Schrdinger equation. The variables included are determined either by using the variational principle (FC-VP) or by imposing the local Schrdinger equations (FC-LSE) at the chosen set of the sampling points. The latter method, referred to as the local Schrdinger equation (LSE) method, is integral-free and therefore applicable to any atom and molecule. The purpose of this paper is to formulate the basic theories of the LSE method and explain their basic features. First, we formulate three variants of the LSE method, the AB, HS, and H{sup T}Q methods, and explain their properties. Then, the natures of the LSE methods are clarified in some detail using the simple examples of the hydrogen atom and the Hookes atom. Finally, the ideas obtained in this study are applied to solving the SE of the helium atom highly accurately with the FC-LSE method. The results are very encouraging: we could get the worlds most accurate energy of the helium atom within the sampling-type methodologies, which is comparable to those obtained with the FC-VP method. Thus, the FC-LSE method is an easy and yet a powerful integral-free method for solving the Schrdinger equation of general atoms and molecules.
Explicit Expressions for 3D Boundary Integrals in Potential Theory
Nintcheu Fata, Sylvain
2009-01-01
On employing isoparametric, piecewise linear shape functions over a flat triangular domain, exact expressions are derived for all surface potentials involved in the numerical solution of three-dimensional singular and hyper-singular boundary integral equations of potential theory. These formulae, which are valid for an arbitrary source point in space, are represented as analytic expressions over the edges of the integration triangle. They can be used to solve integral equations defined on polygonal boundaries via the collocation method or may be utilized as analytic expressions for the inner integrals in the Galerkin technique. Also, the constant element approximation can be directly obtained with no extra effort. Sample problems solved by the collocation boundary element method for the Laplace equation are included to validate the proposed formulae.
A Hydro-Economic Approach to Representing Water Resources Impacts in Integrated Assessment Models
Kirshen, Paul H.; Strzepek, Kenneth, M.
2004-01-14
Grant Number DE-FG02-98ER62665 Office of Energy Research of the U.S. Department of Energy Abstract Many Integrated Assessment Models (IAM) divide the world into a small number of highly aggregated regions. Non-OECD countries are aggregated geographically into continental and multiple-continental regions or economically by development level. Current research suggests that these large scale aggregations cannot accurately represent potential water resources-related climate change impacts. In addition, IAMs do not explicitly model the flow regulation impacts of reservoir and ground water systems, the economics of water supply, or the demand for water in economic activities. Using the International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT) model of the International Food Policy Research Institute (IFPRI) as a case study, this research implemented a set of methodologies to provide accurate representation of water resource climate change impacts in Integrated Assessment Models. There were also detailed examinations of key issues related to aggregated modeling including: modeling water consumption versus water withdrawals; ground and surface water interactions; development of reservoir cost curves; modeling of surface areas of aggregated reservoirs for estimating evaporation losses; and evaluating the importance of spatial scale in river basin modeling. The major findings include: - Continental or national or even large scale river basin aggregation of water supplies and demands do not accurately capture the impacts of climate change in the water and agricultural sector in IAMs. - Fortunately, there now exist gridden approaches (0.5 X 0.5 degrees) to model streamflows in a global analysis. The gridded approach to hydrologic modeling allows flexibility in aligning basin boundaries with national boundaries. This combined with GIS tools, high speed computers, and the growing availability of socio-economic gridded data bases allows assignment of demands to river basins to create hydro-economic zones that respect as much as possible both political and hydrologic integrity in different models. - To minimize pre-processing of data and add increased flexibility to modeling water resources and uses, it is recommended that water withdrawal demands be modeled, not consumptive requirements even though this makes the IAM more complex. - IAMs must consider changes in water availability for irrigation under climate change; ignoring them is more inaccurate than ignoring yield changes in crops under climate change. - Determining water availability and cost in river basins must include modeling streamflows, reservoirs and their operations, and ground water and its interaction with surface water. - Scale issues are important. The results from condensing demands and supplies in a large complex river basin to one node can be misleading for all uses under low flow conditions and instream flow uses under all conditions. Monthly is generally the most accurate scale for modeling river flows and demands. Challenges remain in integrating hydrologic units with political boundaries but the gridded approach to hydrologic modeling allows flexibility in aligning basin boundaries with political boundaries. - Using minimal reservoir cost data, it is possible to use basin topography to estimate reservoir storage costs. - Reservoir evaporation must be considered when assessing the usable water in a watershed. Several methods are available to estimate the relationship between aggregated storage surface area and storage volume. - For existing or future IAMs that can not use the appropriate aggregation for water, a water preprocessor may be required due the finer scale of hydrologic impacts.
Boyarinov, V. F.; Kondrushin, A. E.; Fomichenko, P. A.
2012-07-01
Finite-difference time-dependent equations of Surface Harmonics method have been obtained for plane geometry. Verification of these equations has been carried out by calculations of tasks from 'Benchmark Problem Book ANL-7416'. The capacity and efficiency of the Surface Harmonics method have been demonstrated by solution of the time-dependent neutron transport equation in diffusion approximation. The results of studies showed that implementation of Surface Harmonics method for full-scale calculations will lead to a significant progress in the efficient solution of the time-dependent neutron transport problems in nuclear reactors. (authors)
Error propagation equations for estimating the uncertainty in high-speed wind tunnel test results
Clark, E.L.
1994-07-01
Error propagation equations, based on the Taylor series model, are derived for the nondimensional ratios and coefficients most often encountered in high-speed wind tunnel testing. These include pressure ratio and coefficient, static force and moment coefficients, dynamic stability coefficients, and calibration Mach number. The error equations contain partial derivatives, denoted as sensitivity coefficients, which define the influence of free-steam Mach number, M{infinity}, on various aerodynamic ratios. To facilitate use of the error equations, sensitivity coefficients are derived and evaluated for five fundamental aerodynamic ratios which relate free-steam test conditions to a reference condition.
Imaginary Time Step Method to Solve the Dirac Equation with Nonlocal Potential
Zhang Ying [State Key Lab Nucl. Phys. and Tech., School of Physics, Peking University, Beijing 100871 (China); Liang Haozhao [State Key Lab Nucl. Phys. and Tech., School of Physics, Peking University, Beijing 100871 (China); Institut de Physique Nucleaire, IN2P3-CNRS and Universite Paris-Sud, F-91406 Orsay France (France); Meng Jie [State Key Lab Nucl. Phys. and Tech., School of Physics, Peking University, Beijing 100871 (China); Department of Physics, University of Stellenbosch, Stellenbosch (South Africa)
2009-08-26
The imaginary time step (ITS) method is applied to solve the Dirac equation with nonlocal potentials in coordinate space. Taking the nucleus {sup 12}C as an example, even with nonlocal potentials, the direct ITS evolution for the Dirac equation still meets the disaster of the Dirac sea. However, following the recipe in our former investigation, the disaster can be avoided by the ITS evolution for the corresponding Schroedinger-like equation without localization, which gives the convergent results exactly the same with those obtained iteratively by the shooting method with localized effective potentials.
A stochastic multi-symplectic scheme for stochastic Maxwell equations with additive noise
Hong, Jialin; Zhang, Liying
2014-07-01
In this paper we investigate a stochastic multi-symplectic method for stochastic Maxwell equations with additive noise. Based on the stochastic version of variational principle, we find a way to obtain the stochastic multi-symplectic structure of three-dimensional (3-D) stochastic Maxwell equations with additive noise. We propose a stochastic multi-symplectic scheme and show that it preserves the stochastic multi-symplectic conservation law and the local and global stochastic energy dissipative properties, which the equations themselves possess. Numerical experiments are performed to verify the numerical behaviors of the stochastic multi-symplectic scheme.
Daeva, S.G.; Setukha, A.V.
2015-03-10
A numerical method for solving a problem of diffraction of acoustic waves by system of solid and thin objects based on the reduction the problem to a boundary integral equation in which the integral is understood in the sense of finite Hadamard value is proposed. To solve this equation we applied piecewise constant approximations and collocation methods numerical scheme. The difference between the constructed scheme and earlier known is in obtaining approximate analytical expressions to appearing system of linear equations coefficients by separating the main part of the kernel integral operator. The proposed numerical scheme is tested on the solution of the model problem of diffraction of an acoustic wave by inelastic sphere.
New Improved Equations For Na-K, Na-Li And Sio2 Geothermometers...
Improved Equations For Na-K, Na-Li And Sio2 Geothermometers By Outlier Detection And Rejection Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...
Synthesis and equation of state of perovskite in the (Mg,Fe)...
Office of Scientific and Technical Information (OSTI)
Synthesis and equation of state of perovskite in the (Mg,Fe)subscript 3Alsubscript 2Si... in the (Mg,Fe)subscript 3Alsubscript 2Sisubscript 3Osubscript 12 system to 177 ...
Brett, Tobias Galla, Tobias
2014-03-28
We present a heuristic derivation of Gaussian approximations for stochastic chemical reaction systems with distributed delay. In particular, we derive the corresponding chemical Langevin equation. Due to the non-Markovian character of the underlying dynamics, these equations are integro-differential equations, and the noise in the Gaussian approximation is coloured. Following on from the chemical Langevin equation, a further reduction leads to the linear-noise approximation. We apply the formalism to a delay variant of the celebrated Brusselator model, and show how it can be used to characterise noise-driven quasi-cycles, as well as noise-triggered spiking. We find surprisingly intricate dependence of the typical frequency of quasi-cycles on the delay period.
Electrolux Gibson Air Conditioner and Equator Clothes Washer Fail DOE Energy Star Testing
Broader source: Energy.gov [DOE]
DOE testing in support of the ENERGY STAR program has revealed that an Electrolux Gibson air conditioner (model GAH105Q2T1) and an Equator clothes washer (model EZ 3720 CEE), both of which claimed...
Equation of state and phase diagram of Fe-16Si alloy as a candidate...
Office of Scientific and Technical Information (OSTI)
SciTech Connect Search Results Journal Article: Equation of state and phase diagram of Fe-16Si alloy as a candidate component of Earths core Citation Details In-Document Search ...
Effects of the Fe[superscript 3+] spin transition on the equation...
Office of Scientific and Technical Information (OSTI)
SciTech Connect Search Results Journal Article: Effects of the Fesuperscript 3+ spin transition on the equation of state of bridgmanite Citation Details In-Document Search Title: ...
Quasiparticle description of (2+1)- flavor lattice QCD equation of state
Chandra, Vinod; Ravishankar, V.
2011-10-01
A quasiparticle model has been employed to describe the (2+1)-flavor lattice QCD equation of state with physical quark masses. The interaction part of the equation of state has been mapped to the effective fugacities of otherwise noninteracting quasigluons and quasiquarks. The mapping is found to be exact for the equation of state. The model leads to nontrivial dispersion relations for quasipartons. The dispersion relations, effective quasiparticle number densities, and trace anomaly have been investigated employing the model. A virial expansion for the equation of state has further been obtained to investigate the role of interactions in quark-gluon plasma. Finally, Debye screening in quark-gluon plasma has been studied employing the model.
A Novel Hyperbolization Procedure for The Two-Phase Six-Equation...
Office of Scientific and Technical Information (OSTI)
A Novel Hyperbolization Procedure for The Two-Phase Six-Equation Flow Model Citation Details In-Document Search Title: A Novel Hyperbolization Procedure for The Two-Phase...
Symmetries of the triple degenerate DNLS equations for weakly nonlinear dispersive MHD waves
Webb, G. M.; Brio, M.; Zank, G. P.
1996-07-20
A formulation of Hamiltonian and Lagrangian variational principles, Lie point symmetries and conservation laws for the triple degenerate DNLS equations describing the propagation of weakly nonlinear dispersive MHD waves along the ambient magnetic field, in {beta}{approx}1 plasmas is given. The equations describe the interaction of the Alfven and magnetoacoustic modes near the triple umbilic point, where the fast magnetosonic, slow magnetosonic and Alfven speeds coincide and a{sub g}{sup 2}=V{sub A}{sup 2} where a{sub g} is the gas sound speed and V{sub A} is the Alfven speed. A discussion is given of the travelling wave similarity solutions of the equations, which include solitary wave and periodic traveling waves. Strongly compressible solutions indicate the necessity for the insertion of shocks in the flow, whereas weakly compressible, near Alfvenic solutions resemble similar, shock free travelling wave solutions of the DNLS equation.
Fully self-consistent solution of the Dyson equation using a...
Office of Scientific and Technical Information (OSTI)
Fully self-consistent solution of the Dyson equation using a plane-wave basis set This content will become publicly available on March 22, 2016 Prev Next Title: Fully...
Thermal equation of state and stability of (Mg[subscript 0.06...
Office of Scientific and Technical Information (OSTI)
SciTech Connect Search Results Journal Article: Thermal equation of state and stability of (Mgsubscript 0.06Fesubscript 0.94)O Citation Details In-Document Search Title: ...
ANALYSIS OF TWO-PHASE FLOW MODELS WITH TWO MOMENTUM EQUATIONS.
KROSHILIN,A.E.KROSHILIN,V.E.KOHUT,P.
2004-03-15
An analysis of the standard system of differential equations describing multi-speed flows of multi-phase media is performed. It is proved that the Cauchy problem, as posed in most best-estimate thermal-hydraulic codes, results in unstable solutions and potentially unreliable description of many physical phenomena. A system of equations, free from instability effects, is developed allowing more rigorous numerical modeling.
Equations of state in the Fe-FeSi system at high pressures and temperatures
Office of Scientific and Technical Information (OSTI)
(Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: Equations of state in the Fe-FeSi system at high pressures and temperatures Citation Details In-Document Search Title: Equations of state in the Fe-FeSi system at high pressures and temperatures Authors: Fischer, Rebecca A. ; Campbell, Andrew J. ; Caracas, Razvan ; Reaman, Daniel M. ; Heinz, Dion L. ; Dera, Przemyslaw ; Prakapenka, Vitali B. [1] ; UC) [2] ; Claude-Bernard) [2] + Show Author Affiliations
The thermal equation of state of (Mg, Fe)SiO[subscript 3] bridgmanite
Office of Scientific and Technical Information (OSTI)
(perovskite) and implications for lower mantle structures (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: The thermal equation of state of (Mg, Fe)SiO[subscript 3] bridgmanite (perovskite) and implications for lower mantle structures Citation Details In-Document Search Title: The thermal equation of state of (Mg, Fe)SiO[subscript 3] bridgmanite (perovskite) and implications for lower mantle structures Authors: Wolf, Aaron S. ; Jackson, Jennifer M. ; Dera,
Thermal equation of state and spin transition of magnesiosiderite at high
Office of Scientific and Technical Information (OSTI)
pressure and temperature (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: Thermal equation of state and spin transition of magnesiosiderite at high pressure and temperature Citation Details In-Document Search Title: Thermal equation of state and spin transition of magnesiosiderite at high pressure and temperature Authors: Liu, Jin ; Lin, Jung-Fu ; Mao, Zhu ; Prakapenka, Vitali B. Publication Date: 2014-01-02 OSTI Identifier: 1161497 DOE Contract Number:
Analytical continuation from bound to resonant states in the Dirac equation
Office of Scientific and Technical Information (OSTI)
with quadrupole-deformed potentials (Journal Article) | SciTech Connect Analytical continuation from bound to resonant states in the Dirac equation with quadrupole-deformed potentials Citation Details In-Document Search This content will become publicly available on August 27, 2016 Title: Analytical continuation from bound to resonant states in the Dirac equation with quadrupole-deformed potentials Authors: Xu, Xu-Dong ; Zhang, Shi-Sheng ; Signoracci, A. J. ; Smith, M. S. ; Li, Z. P.
Equations Governing Space-Time Variability of Liquid Water Path in Stratus Clouds
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Equations Governing Space-Time Variability of Liquid Water Path in Stratus Clouds K. Ivanova Pennsylvania State University University Park, Pennsylvania T. P. Ackerman Pacific Northwest National Laboratory Richland, Washington M. Ausloos University of Liège B-4000 Liège, Belgium Abstract We present a method on how to derive an underlying mathematical (statistical or model free) equation for a liquid water path (LWP) signal directly from empirical data. The evolution of the probability density
Hydrodynamic equations for electrons in graphene obtained from the maximum entropy principle
Barletti, Luigi
2014-08-15
The maximum entropy principle is applied to the formal derivation of isothermal, Euler-like equations for semiclassical fermions (electrons and holes) in graphene. After proving general mathematical properties of the equations so obtained, their asymptotic form corresponding to significant physical regimes is investigated. In particular, the diffusive regime, the Maxwell-Boltzmann regime (high temperature), the collimation regime and the degenerate gas limit (vanishing temperature) are considered.
A New 2D-Transport, 1D-Diffusion Approximation of the Boltzmann Transport equation
Larsen, Edward
2013-06-17
The work performed in this project consisted of the derivation, implementation, and testing of a new, computationally advantageous approximation to the 3D Boltz- mann transport equation. The solution of the Boltzmann equation is the neutron flux in nuclear reactor cores and shields, but solving this equation is difficult and costly. The new 2D/1D approximation takes advantage of a special geometric feature of typical 3D reactors to approximate the neutron transport physics in a specific (ax- ial) direction, but not in the other two (radial) directions. The resulting equation is much less expensive to solve computationally, and its solutions are expected to be sufficiently accurate for many practical problems. In this project we formulated the new equation, discretized it using standard methods, developed a stable itera- tion scheme for solving the equation, implemented the new numerical scheme in the MPACT code, and tested the method on several realistic problems. All the hoped- for features of this new approximation were seen. For large, difficult problems, the resulting 2D/1D solution is highly accurate, and is calculated about 100 times faster than a 3D discrete ordinates simulation.
Cari, C. Suparmi, A.
2014-09-30
Dirac equation of 3D harmonics oscillator plus trigonometric Scarf non-central potential for spin symmetric case is solved using supersymmetric quantum mechanics approach. The Dirac equation for exact spin symmetry reduces to Schrodinger like equation. The relativistic energy and wave function for spin symmetric case are simply obtained using SUSY quantum mechanics method and idea of shape invariance.
Construction Control Representative
Broader source: Energy.gov [DOE]
(See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Rocky Mountain Region Engineering and Construction Field Engineering, (J5600) 5555...
Santos, N. D.; Blaise, P.; Santamarina, A.
2013-07-01
The development of new types of reactor and the increase in the safety specifications and requirements induce an enhancement in both nuclear data knowledge and a better understanding of the neutronic properties of the new systems. This enhancement is made possible using ad hoc critical mock-up experiments. The main difficulty is to design these experiments in order to obtain the most valuable information. Its quantification is usually made by using representativity and transposition concepts. These theories enable to extract some information about a quantity of interest (an integral parameter) on a configuration, but generally a posteriori. This paper presents a more global approach of this theory, with the idea of optimizing the representativity of a new experiment, and its transposition a priori, based on a multiparametric approach. Using a quadratic sum, we show the possibility to define a global representativity which permits to take into account several quantities of interest at the same time. The maximization of this factor gives information about all quantities of interest. An optimization method of this value in relation to technological parameters (over-clad diameter, atom concentration) is illustrated on a high-conversion light water reactor MOX lattice case. This example tackles the problematic of plutonium experiment for the plutonium aging and a solution through the optimization of both the over-clad and the plutonium content. (authors)
Stability and error analysis of nodal expansion method for convection-diffusion equation
Deng, Z.; Rizwan-Uddin; Li, F.; Sun, Y.
2012-07-01
The development, and stability and error analyses of nodal expansion method (NEM) for one dimensional steady-state convection diffusion equation is presented. Following the traditional procedure to develop NEM, the discrete formulation of the convection-diffusion equation, which is similar to the standard finite difference scheme, is derived. The method of discrete perturbation analysis is applied to this discrete form to study the stability of the NEM. The scheme based on the NEM is found to be stable for local Peclet number less than 4.644. A maximum principle is proved for the NEM scheme, followed by an error analysis carried out by applying the Maximum principle together with a carefully constructed comparison function. The scheme for the convection diffusion equation is of second-order. Numerical experiments are carried and the results agree with the conclusions of the stability and error analyses. (authors)
Multi-time Schrödinger equations cannot contain interaction potentials
Petrat, Sören; Tumulka, Roderich
2014-03-15
Multi-time wave functions are wave functions that have a time variable for every particle, such as ϕ(t{sub 1},x{sub 1},...,t{sub N},x{sub N}). They arise as a relativistic analog of the wave functions of quantum mechanics but can be applied also in quantum field theory. The evolution of a wave function with N time variables is governed by N Schrödinger equations, one for each time variable. These Schrödinger equations can be inconsistent with each other, i.e., they can fail to possess a joint solution for every initial condition; in fact, the N Hamiltonians need to satisfy a certain commutator condition in order to be consistent. While this condition is automatically satisfied for non-interacting particles, it is a challenge to set up consistent multi-time equations with interaction. We prove for a wide class of multi-time Schrödinger equations that the presence of interaction potentials (given by multiplication operators) leads to inconsistency. We conclude that interaction has to be implemented instead by creation and annihilation of particles, which, in fact, can be done consistently [S. Petrat and R. Tumulka, “Multi-time wave functions for quantum field theory,” Ann. Physics (to be published)]. We also prove the following result: When a cut-off length δ > 0 is introduced (in the sense that the multi-time wave function is defined only on a certain set of spacelike configurations, thereby breaking Lorentz invariance), then the multi-time Schrödinger equations with interaction potentials of range δ are consistent; however, in the desired limit δ → 0 of removing the cut-off, the resulting multi-time equations are interaction-free, which supports the conclusion expressed in the title.
Charged annular disks and Reissner-Nordstroem type black holes from extremal dust
Lora-Clavijo, F. D.; Ospina-Henao, P. A.; Pedraza, J. F.
2010-10-15
We present the first analytical superposition of a charged black hole with an annular disk of extremal dust. In order to obtain the solutions, we first solve the Einstein-Maxwell field equations for sources that represent disklike configurations of matter in confomastatic spacetimes by assuming a functional dependence among the metric function, the electric potential, and an auxiliary function, which is taken as a solution of the Laplace equation. We then employ the Lord Kelvin inversion method applied to models of finite extension in order to obtain annular disks. The structures obtained extend to infinity, but their total masses are finite and all the energy conditions are satisfied. Finally, we observe that the extremal Reissner-Nordstroem black hole can be embedded into the center of the disks by adding a boundary term in the inversion.
Moawad, S. M.
2015-02-15
In this paper, we present a solution method for constructing exact analytic solutions to magnetohydrodynamics (MHD) equations. The method is constructed via all the trigonometric and hyperbolic functions. The method is applied to MHD equilibria with mass flow. Applications to a solar system concerned with the properties of coronal mass ejections that affect the heliosphere are presented. Some examples of the constructed solutions which describe magnetic structures of solar eruptions are investigated. Moreover, the constructed method can be applied to a variety classes of elliptic partial differential equations which arise in plasma physics.
High pressure and temperature equation of state and spectroscopic study of
Office of Scientific and Technical Information (OSTI)
CeO 2 (Journal Article) | DOE PAGES High pressure and temperature equation of state and spectroscopic study of CeO 2 « Prev Next » Title: High pressure and temperature equation of state and spectroscopic study of CeO 2 Authors: Jacobsen, M. K. ; Velisavljevic, N. ; Dattelbaum, D. M. ; Chellappa, R. S. ; Park, C. Publication Date: 2016-03-17 OSTI Identifier: 1242313 Grant/Contract Number: FG02-94ER14466; AC52-06NA25396; FG02-99ER45775; NA0001974; AC02-06CH11357 Type: Published Article
One-dimensional drift-flux model and constitutive equations for relative
Office of Scientific and Technical Information (OSTI)
motion between phases in various two-phase flow regimes (Technical Report) | SciTech Connect One-dimensional drift-flux model and constitutive equations for relative motion between phases in various two-phase flow regimes Citation Details In-Document Search Title: One-dimensional drift-flux model and constitutive equations for relative motion between phases in various two-phase flow regimes × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a
First-principles high-pressure unreacted equation of state and heat of
Office of Scientific and Technical Information (OSTI)
formation of crystal 2,6-diamino-3, 5-dinitropyrazine-1-oxide (LLM-105) (Journal Article) | SciTech Connect Journal Article: First-principles high-pressure unreacted equation of state and heat of formation of crystal 2,6-diamino-3, 5-dinitropyrazine-1-oxide (LLM-105) Citation Details In-Document Search Title: First-principles high-pressure unreacted equation of state and heat of formation of crystal 2,6-diamino-3, 5-dinitropyrazine-1-oxide (LLM-105) Authors: Manaa, M R ; Kuo, I W ; Fried, L
Effects of the Fe[superscript 3+] spin transition on the equation of state
Office of Scientific and Technical Information (OSTI)
of bridgmanite (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: Effects of the Fe[superscript 3+] spin transition on the equation of state of bridgmanite Citation Details In-Document Search Title: Effects of the Fe[superscript 3+] spin transition on the equation of state of bridgmanite Authors: Mao, Zhu ; Lin, Jung-Fu ; Yang, Jing ; Inoue, Toru ; Prakapenka, Vitali B. [1] ; UC) [2] ; CHPSTAR- China) [2] ; Ehime U) [2] + Show Author Affiliations (Texas) (
Equation of state and phase diagram of Fe-16Si alloy as a candidate
Office of Scientific and Technical Information (OSTI)
component of Earth's core (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: Equation of state and phase diagram of Fe-16Si alloy as a candidate component of Earth's core Citation Details In-Document Search Title: Equation of state and phase diagram of Fe-16Si alloy as a candidate component of Earth's core The outer core of the Earth contains several weight percent of one or more unknown light elements, which may include silicon. Therefore it is critical to
Thermal equation of state and stability of (Mg[subscript 0.06]Fe[subscript
Office of Scientific and Technical Information (OSTI)
0.94])O (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: Thermal equation of state and stability of (Mg[subscript 0.06]Fe[subscript 0.94])O Citation Details In-Document Search Title: Thermal equation of state and stability of (Mg[subscript 0.06]Fe[subscript 0.94])O Authors: Wicks, June K. ; Jackson, Jennifer M. ; Sturhahn, Wolfgang ; Zhuravlev, Kirill K. ; Tkachev, Sergey N. ; Prakapenka, Vitali B. [1] ; UC) [2] ; CIT) [2] + Show Author Affiliations
Constraining the equation of state of superhadronic matter from heavy-ion collisions
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Pratt, Scott; Sorensen, Paul; Sangaline, Evan; Wang, Hui
2015-05-19
The equation of state of QCD matter for temperatures near and above the quark-hadron transition (~165 MeV) is inferred within a Bayesian framework through the comparison of data from the Relativistic Heavy Ion Collider and from the Large Hadron Collider to theoretical models. State-of-the-art statistical techniques are applied to simultaneously analyze multiple classes of observables while varying 14 independent model parameters. Thus, the resulting posterior distribution over possible equations of state is consistent with results from lattice gauge theory.
Synthesis and equation of state of perovskite in the (Mg,Fe)[subscript
Office of Scientific and Technical Information (OSTI)
3]Al[subscript 2]Si[subscript 3]O[subscript 12] system to 177 GPa (Journal Article) | SciTech Connect Synthesis and equation of state of perovskite in the (Mg,Fe)[subscript 3]Al[subscript 2]Si[subscript 3]O[subscript 12] system to 177 GPa Citation Details In-Document Search Title: Synthesis and equation of state of perovskite in the (Mg,Fe)[subscript 3]Al[subscript 2]Si[subscript 3]O[subscript 12] system to 177 GPa Authors: Dorfman, Susannah M. ; Shieh, Sean R. ; Meng, Yue ; Prakapenka,
Arnold, J.; Kosson, D.S.; Garrabrants, A.; Meeussen, J.C.L.; Sloot, H.A. van der
2013-02-15
A robust numerical solution of the nonlinear Poisson-Boltzmann equation for asymmetric polyelectrolyte solutions in discrete pore geometries is presented. Comparisons to the linearized approximation of the Poisson-Boltzmann equation reveal that the assumptions leading to linearization may not be appropriate for the electrochemical regime in many cementitious materials. Implications of the electric double layer on both partitioning of species and on diffusive release are discussed. The influence of the electric double layer on anion diffusion relative to cation diffusion is examined.
Office of Environmental Management (EM)
3-97 October 1997 Supersedes DOE-STD-1063-93 DOE STANDARD ESTABLISHING AND MAINTAINING A FACILITY REPRESENTATIVE PROGRAM AT DOE FACILITIES U.S. Department of Energy AREA FACR Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; (423) 576-8401.
Banik, Sarmistha [BITS Pilani, Hyderabad Campus, Hyderabad-500078 (India); Hempel, Matthias [Departement Physik, Universitt Basel, Klingelbergstrasse 82, 4056 Basel (Switzerland); Bandyopadhyay, Debades [Astroparticle Physics and Cosmology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064 (India)
2014-10-01
We develop new hyperon equation of state (EoS) tables for core-collapse supernova simulations and neutron stars. These EoS tables are based on a density-dependent relativistic hadron field theory where baryon-baryon interaction is mediated by mesons, using the parameter set DD2 for nucleons. Furthermore, light and heavy nuclei along with interacting nucleons are treated in the nuclear statistical equilibrium model of Hempel and Schaffner-Bielich which includes excluded volume effects. Of all possible hyperons, we consider only the contribution of ?s. We have developed two variants of hyperonic EoS tables: in the np?? case the repulsive hyperon-hyperon interaction mediated by the strange ? meson is taken into account, and in the np? case it is not. The EoS tables for the two cases encompass a wide range of densities (10{sup 12} to ?1 fm{sup 3}), temperatures (0.1 to 158.48 MeV), and proton fractions (0.01 to 0.60). The effects of ? hyperons on thermodynamic quantities such as free energy per baryon, pressure, or entropy per baryon are investigated and found to be significant at higher densities. The cold, ?-equilibrated EoS (with the crust included self-consistently) results in a 2.1 M {sub ?} maximum mass neutron star for the np?? case, whereas that for the np? case is 1.95 M {sub ?}. The np?? EoS represents the first supernova EoS table involving hyperons that is directly compatible with the recently measured 2 M {sub ?} neutron stars.
FWAVE V1.0 a framework for finite difference wave equation modeling
Energy Science and Technology Software Center (OSTI)
2002-07-01
FWAVE provides a computation framework for the rapid prototyping and efficient use of finite difference wave equation solutions. The user provides single grid Fortran solver components that are integrated using opaque handles to C++ distributed data structures. Permits the scientific researcher to make of clusters and parallel computers by concentrating only on the numerical schemes.
A new three-equation model for the CO{sub 2} laser
Stanghini, M.; Basso, M.; Genesio, R.; Tesi, A.; Meucci, R.; Ciofini, M.
1996-07-01
Three rate equations describing the single-mode CO{sub 2} laser dynamics are derived by applying the theory of linear filters to an improved four-level model. The model is studied in the case of periodic modulations of the losses and compared with the outcome of an experiment, revealing a good agreement.
The Layzer-Irvine equation in theories with non-minimal coupling between matter and curvature
Bertolami, O.; Gomes, C. E-mail: claudio.gomes@fc.up.pt
2014-09-01
We derive the Layzer-Irvine equation for alternative gravitational theories with non-minimal coupling between curvature and matter for an homogeneous and isotropic Universe. As an application, we study the case of Abell 586, a relaxed and spherically symmetric galaxy cluster, assuming some matter density profiles.
Equation of state for high explosives detonation products with explicit polar and ionic species
Bastea, S; Glaesemann, K R; Fried, L E
2006-06-28
We introduce a new thermodynamic theory for detonation products that includes polar and ionic species. The new formalism extends the domain of validity of the previously developed EXP6 equation of state library and opens the possibility of new applications. We illustrate the scope of the new approach on PETN detonation properties and water ionization models.
The One and Two Loops Renormalization Group Equations in the Standard Model
Juarez W, S. Rebeca; Solis R, H. Gabriel; Kielanowski, P.
2006-01-06
In the context of the Standard Model (SM), we compare the analytical and the numerical solutions of the Renormalization Group Equations (RGE) for the relevant couplings to one and two loops. This information will be an important ingredient for the precise evaluation of boundary values on the physical Higgs Mass.
Cross, J. E.; Gregori, G. [Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Reville, B., E-mail: j.e.cross@physics.ox.ac.uk [Centre for Plasma Physics, Queen's University Belfast, University Road, Belfast BT7 1NN (United Kingdom)
2014-11-01
We introduce the equations of magneto-quantum-radiative hydrodynamics. By rewriting them in a dimensionless form, we obtain a set of parameters that describe scale-dependent ratios of characteristic hydrodynamic quantities. We discuss how these dimensionless parameters relate to the scaling between astrophysical observations and laboratory experiments.
Zhang, Zhongqiang; Yang, Xiu; Lin, Guang; Karniadakis, George Em
2013-03-01
We consider a piston with a velocity perturbed by Brownian motion moving into a straight tube filled with a perfect gas at rest. The shock generated ahead of the piston can be located by solving the one-dimensional Euler equations driven by white noise using the Stratonovich or Ito formulations. We approximate the Brownian motion with its spectral truncation and subsequently apply stochastic collocation using either sparse grid or the quasi-Monte Carlo (QMC) method. In particular, we first transform the Euler equations with an unsteady stochastic boundary into stochastic Euler equations over a fixed domain with a time-dependent stochastic source term. We then solve the transformed equations by splitting them up into two parts, i.e., a deterministic part and a stochastic part. Numerical results verify the StratonovichEuler and ItoEuler models against stochastic perturbation results, and demonstrate the efficiency of sparse grid and QMC for small and large random piston motions, respectively. The variance of shock location of the piston grows cubically in the case of white noise in contrast to colored noise reported in [1], where the variance of shock location grows quadratically with time for short times and linearly for longer times.
SciCADE 95: International conference on scientific computation and differential equations
1995-12-31
This report consists of abstracts from the conference. Topics include algorithms, computer codes, and numerical solutions for differential equations. Linear and nonlinear as well as boundary-value and initial-value problems are covered. Various applications of these problems are also included.
Group-invariant solutions of semilinear Schrdinger equations in multi-dimensions
Anco, Stephen C.; Feng, Wei; Department of Mathematics, Zhejiang University of Technology, Hangzhou 310014
2013-12-15
Symmetry group methods are applied to obtain all explicit group-invariant radial solutions to a class of semilinear Schrdinger equations in dimensions n ? 1. Both focusing and defocusing cases of a power nonlinearity are considered, including the special case of the pseudo-conformal power p = 4/n relevant for critical dynamics. The methods involve, first, reduction of the Schrdinger equations to group-invariant semilinear complex 2nd order ordinary differential equations (ODEs) with respect to an optimal set of one-dimensional point symmetry groups, and second, use of inherited symmetries, hidden symmetries, and conditional symmetries to solve each ODE by quadratures. Through Noether's theorem, all conservation laws arising from these point symmetry groups are listed. Some group-invariant solutions are found to exist for values of n other than just positive integers, and in such cases an alternative two-dimensional form of the Schrdinger equations involving an extra modulation term with a parameter m = 2?n ? 0 is discussed.
Glass, L.R.; Jones, T.D.; Easterly, C.E.; Walsh, P.J.
1990-10-01
It has been hypothesized that results from short-term bioassays will ultimately provide information that will be useful for human health hazard assessment. Historically, the validity of the short-term tests has been assessed using the framework of the epidemiologic/medical screens. In this context, the results of the carcinogen (long-term) bioassay is generally used as the standard. However, this approach is widely recognized as being biased and, because it employs qualitative data, cannot be used to assist in isolating those compounds which may represent a more significant toxicologic hazard than others. In contrast, the goal of this research is to address the problem of evaluating the utility of the short-term tests for hazard assessment using an alternative method of investigation. Chemicals were selected mostly from the list of carcinogens published by the International Agency for Research on Carcinogens (IARC); a few other chemicals commonly recognized as hazardous were included. Tumorigenicity and mutagenicity data on 52 chemicals were obtained from the Registry of Toxic Effects of Chemical Substances (RTECS) and were analyzed using a relative potency approach. The data were evaluated in a format which allowed for a comparison of the ranking of the mutagenic relative potencies of the compounds (as estimated using short-term data) vs. the ranking of the tumorigenic relative potencies (as estimated from the chronic bioassays). Although this was a preliminary investigation, it offers evidence that the short-term tests systems may be of utility in ranking the hazards represented by chemicals which may contribute to increased carcinogenesis in humans as a result of occupational or environmental exposures. 177 refs., 8 tabs.
Energy Science and Technology Software Center (OSTI)
2014-06-01
ARKode is part of a software family called SUNDIALS: SUite of Nonlinear and Differential/ALgebraic equation Solvers [1]. The ARKode solver library provides an adaptive-step time integration package for stiff, nonstiff and multi-rate systems of ordinary differential equations (ODEs) using Runge Kutta methods [2].
Equations of state and transport properties of mixtures in the warm dense regime
Hou, Yong; Dai, Jiayu; Kang, Dongdong; Ma, Wen; Yuan, Jianmin
2015-02-15
We have performed average-atom molecular dynamics to simulate the CH and LiH mixtures in the warm dense regime, and obtained equations of state and the ionic transport properties. The electronic structures are calculated by using the modified average-atom model, which have included the broadening of energy levels, and the ion-ion pair potentials of mixtures are constructed based on the temperature-dependent density functional theory. The ionic transport properties, such as ionic diffusion and shear viscosity, are obtained through the ionic velocity correlation functions. The equations of state and transport properties for carbon, hydrogen and lithium, hydrogen mixtures in a wide region of density and temperature are calculated. Through our computing the average ionization degree, average ion-sphere diameter and transition properties in the mixture, it is shown that transport properties depend not only on the ionic mass but also on the average ionization degree.
Observational constraints on dark energy with a fast varying equation of state
Felice, Antonio De; Nesseris, Savvas
2012-05-01
We place observational constraints on models with the late-time cosmic acceleration based on a number of parametrizations allowing fast transitions for the equation of state of dark energy. In addition to the model of Linder and Huterer where the dark energy equation of state w monotonically grows or decreases in time, we propose two new parametrizations in which w has an extremum. We carry out the likelihood analysis with the three parametrizations by using the observational data of supernovae type Ia, cosmic microwave background, and baryon acoustic oscillations. Although the transient cosmic acceleration models with fast transitions can give rise to the total chi square smaller than that in the ?-Cold-Dark-Matter (?CDM) model, these models are not favored over ?CDM when one uses the Akaike information criterion which penalizes the extra degrees of freedom present in the parametrizations.
Jin, Jinshuang; Li, Jun; Liu, Yu; Li, Xin-Qi; Yan, YiJing
2014-06-28
Beyond the second-order Born approximation, we propose an improved master equation approach to quantum transport under self-consistent Born approximation. The basic idea is to replace the free Green's function in the tunneling self-energy diagram by an effective reduced propagator under the Born approximation. This simple modification has remarkable consequences. It not only recovers the exact results for quantum transport through noninteracting systems under arbitrary voltages, but also predicts the challenging nonequilibrium Kondo effect. Compared to the nonequilibrium Green's function technique that formulates the calculation of specific correlation functions, the master equation approach contains richer dynamical information to allow more efficient studies for such as the shot noise and full counting statistics.
Validity of equation-of-motion approach to kondo problem in the large N limit
Zhu, Jian-xin; Ting, C S; Qi, Yunong
2008-01-01
The Anderson impurity model for Kondo problem is investigated for arbitrary orbit-spin degeneracy N of the magnetic impurity by the equation of motion method (EOM). By employing a new decoupling scheme, a self-consistent equation for the one-particle Green function is derived and numerically solved in the large-N approximation. For the particle-hole symmetric Anderson model with finite Coulomb interaction U, we show that the Kondo resonance at the impurity site exists for all N {>=} 2. The approach removes the pathology in the standard EOM for N = 2, and has the same level of applicability as non-crossing approximation. For N = 2, an exchange field splits the Kondo resonance into only two peaks, consist with the result from more rigorous numerical renormalization group (NRG) method. The temperature dependence of the Kondo resonance peak is also discussed.
The quantum equations of state of plasma under the influence of a weak magnetic field
Hussein, N. A.; Eisa, D. A.; Eldin, M. G.
2012-05-15
The aim of this paper is to calculate the magnetic quantum equations of state of plasma, the calculation is based on the magnetic binary Slater sum in the case of low density. We consider only the thermal equilibrium plasma in the case of n{lambda}{sub ab}{sup 3} Much-Less-Than 1, where {lambda}{sub ab}{sup 2}=( Planck-Constant-Over-Two-Pi {sup 2}/m{sub ab}KT) is the thermal De Broglie wave length between two particles. The formulas contain the contributions of the magnetic field effects. Using these results we compute the magnetization and the magnetic susceptibility. Our equation of state is compared with others.
Deterministic proton transport solving a one dimensional Fokker-Planck equation
Marr, D.; Prael, R.; Adams, K.; Alcouffe, R.
1997-10-01
The transport of protons through matter is characterized by many interactions which cause small deflections and slight energy losses. The few which are catastrophic or cause large angle scattering can be viewed as extinction for many applications. The transport of protons at this level of approximation can be described by a Fokker Planck Equation. This equation is solved using a deterministic multigroup differencing scheme with a highly resolved set of discrete ordinates centered around the beam direction which is adequate to properly account for deflections and energy losses due to multiple Coulomb scattering. Comparisons with LAHET for a large variety of problems ranging from 800 MeV protons on a copper step wedge to 10 GeV protons on a sandwich of material are presented. The good agreement with the Monte Carlo code shows that the solution method is robust and useful for approximate solutions of selected proton transport problems.
Grating formation by a high power radio wave in near-equator ionosphere
Singh, Rohtash; Sharma, A. K.; Tripathi, V. K.
2011-11-15
The formation of a volume grating in the near-equator regions of ionosphere due to a high power radio wave is investigated. The radio wave, launched from a ground based transmitter, forms a standing wave pattern below the critical layer, heating the electrons in a space periodic manner. The thermal conduction along the magnetic lines of force inhibits the rise in electron temperature, limiting the efficacy of heating to within a latitude of few degrees around the equator. The space periodic electron partial pressure leads to ambipolar diffusion creating a space periodic density ripple with wave vector along the vertical. Such a volume grating is effective to cause strong reflection of radio waves at a frequency one order of magnitude higher than the maximum plasma frequency in the ionosphere. Linearly mode converted plasma wave could scatter even higher frequency radio waves.
Manzini, Gianmarco; Cangiani, Andrea; Sutton, Oliver
2014-10-02
This document describes the conforming formulations for virtual element approximation of the convection-reaction-diffusion equation with variable coefficients. Emphasis is given to construction of the projection operators onto polynomial spaces of appropriate order. These projections make it possible the virtual formulation to achieve any order of accuracy. We present the construction of the internal and the external formulation. The difference between the two is in the way the projection operators act on the derivatives (laplacian, gradient) of the partial differential equation. For the diffusive regime we prove the well-posedness of the external formulation and we derive an estimate of the approximation error in the H^{1}-norm. For the convection-dominated case, the streamline diffusion stabilization (aka SUPG) is also discussed.
Talamo, Alberto
2013-05-01
This study presents three numerical algorithms to solve the time dependent neutron transport equation by the method of the characteristics. The algorithms have been developed taking into account delayed neutrons and they have been implemented into the novel MCART code, which solves the neutron transport equation for two-dimensional geometry and an arbitrary number of energy groups. The MCART code uses regular mesh for the representation of the spatial domain, it models up-scattering, and takes advantage of OPENMP and OPENGL algorithms for parallel computing and plotting, respectively. The code has been benchmarked with the multiplication factor results of a Boiling Water Reactor, with the analytical results for a prompt jump transient in an infinite medium, and with PARTISN and TDTORT results for cross section and source transients. The numerical simulations have shown that only two numerical algorithms are stable for small time steps.
Dynamical mass generation in unquenched QED using the Dyson-Schwinger equations
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Kızılersü, Ayse; Sizer, Tom; Pennington, Michael R.; Williams, Anthony G.; Williams, Richard
2015-03-13
We present a comprehensive numerical study of dynamical mass generation for unquenched QED in four dimensions, in the absence of four-fermion interactions, using the Dyson-Schwinger approach. We begin with an overview of previous investigations of criticality in the quenched approximation. To this we add an analysis using a new fermion-antifermion-boson interaction ansatz, the Kizilersu-Pennington (KP) vertex, developed for an unquenched treatment. After surveying criticality in previous unquenched studies, we investigate the performance of the KP vertex in dynamical mass generation using a renormalized fully unquenched system of equations. This we compare with the results for two hybrid vertices incorporating themore » Curtis-Pennington vertex in the fermion equation. We conclude that the KP vertex is as yet incomplete, and its relative gauge-variance is due to its lack of massive transverse components in its design.« less
Vortices at the magnetic equator generated by hybrid Alfvn resonant waves
Hiraki, Yasutaka
2015-01-15
We performed three-dimensional magnetohydrodynamic simulations of shear Alfvn waves in a full field line system with magnetosphere-ionosphere coupling and plasma non-uniformities. Feedback instability of the Alfvn resonant modes showed various nonlinear features under the field line cavities: (i) a secondary flow shear instability occurs at the magnetic equator, (ii) trapping of the ionospheric Alfvn resonant modes facilitates deformation of field-aligned current structures, and (iii) hybrid Alfvn resonant modes grow to cause vortices and magnetic oscillations around the magnetic equator. Essential features in the initial brightening of auroral arc at substorm onsets could be explained by the dynamics of Alfvn resonant modes, which are the nature of the field line system responding to a background rapid change.
Fast multiscale Gaussian beam methods for wave equations in bounded convex domains
Bao, Gang; Department of Mathematics, Michigan State University, East Lansing, MI 48824 ; Lai, Jun; Qian, Jianliang
2014-03-15
Motivated by fast multiscale Gaussian wavepacket transforms and multiscale Gaussian beam methods which were originally designed for pure initial-value problems of wave equations, we develop fast multiscale Gaussian beam methods for initial boundary value problems of wave equations in bounded convex domains in the high frequency regime. To compute the wave propagation in bounded convex domains, we have to take into account reflecting multiscale Gaussian beams, which are accomplished by enforcing reflecting boundary conditions during beam propagation and carrying out suitable reflecting beam summation. To propagate multiscale beams efficiently, we prove that the ratio of the squared magnitude of beam amplitude and the beam width is roughly conserved, and accordingly we propose an effective indicator to identify significant beams. We also prove that the resulting multiscale Gaussian beam methods converge asymptotically. Numerical examples demonstrate the accuracy and efficiency of the method.
On lower bounds for possible blow-up solutions to the periodic Navier-Stokes equation
Cortissoz, Jean C. Montero, Julio A. Pinilla, Carlos E.
2014-03-15
We show a new lower bound on the H{sup .3/2} (T{sup 3}) norm of a possible blow-up solution to the Navier-Stokes equation, and also comment on the extension of this result to the whole space. This estimate can be seen as a natural limiting result for Leray's blow-up estimates in L{sup p}(R{sup 3}), 3 < p < ?. We also show a lower bound on the blow-up rate of a possible blow-up solution of the Navier-Stokes equation in H{sup .5/2} (T{sup 3}), and give the corresponding extension to the case of the whole space.
Low-dimensional weakly interacting Bose gases: Nonuniversal equations of state
Astrakharchik, G. E.; Boronat, J.; Mazzanti, F.; Kurbakov, I. L.; Lozovik, Yu. E.
2010-01-15
The zero-temperature equation of state is analyzed in low-dimensional bosonic systems. We propose to use the concept of energy-dependent s-wave scattering length for obtaining estimations of nonuniversal terms in the energy expansion. We test this approach by making a comparison to exactly solvable one-dimensional problems and find that the generated terms have the correct structure. The applicability to two-dimensional systems is analyzed by comparing with results of Monte Carlo simulations. The prediction for the nonuniversal behavior is qualitatively correct and the densities, at which the deviations from the universal equation of state become visible, are estimated properly. Finally, the possibility of observing the nonuniversal terms in experiments with trapped gases is also discussed.
A fast, high-order solver for the GradShafranov equation
Pataki, Andras; Cerfon, Antoine J.; Freidberg, Jeffrey P.; Greengard, Leslie; ONeil, Michael
2013-06-15
We present a new fast solver to calculate fixed-boundary plasma equilibria in toroidally axisymmetric geometries. By combining conformal mapping with Fourier and integral equation methods on the unit disk, we show that high-order accuracy can be achieved for the solution of the equilibrium equation and its first and second derivatives. Smooth arbitrary plasma cross-sections as well as arbitrary pressure and poloidal current profiles are used as initial data for the solver. Equilibria with large Shafranov shifts can be computed without difficulty. Spectral convergence is demonstrated by comparing the numerical solution with a known exact analytic solution. A fusion-relevant example of an equilibrium with a pressure pedestal is also presented.
Solving the Discrete Boltzmann Equations on Non-Uniform Meshes | Argonne
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Leadership Computing Facility Discrete Boltzmann Equations on Non-Uniform Meshes Event Sponsor: Argonne Leadership Computing Facility Seminar Start Date: Feb 18 2016 - 10:30am Building/Room: Building 240/Room 4301 Location: Argonne National Laboratory Speaker(s): Saumil S. Patel Speaker(s) Title: The City College of New York The lattice Boltzmann method (LBM) is a mesoscopic approach to simulate fluid flow. Suitable for parallel computations, the LBM has efficiently simulated single-phase
Nonlinear periodic waves solutions of the nonlinear self-dual network equations
Laptev, Denis V. Bogdan, Mikhail M.
2014-04-15
The new classes of periodic solutions of nonlinear self-dual network equations describing the breather and soliton lattices, expressed in terms of the Jacobi elliptic functions have been obtained. The dependences of the frequencies on energy have been found. Numerical simulations of soliton lattice demonstrate their stability in the ideal lattice and the breather lattice instability in the dissipative lattice. However, the lifetime of such structures in the dissipative lattice can be extended through the application of ac driving terms.
Dvirny, A. I.; Slyn'ko, V. I. E-mail: vitstab@ukr.net
2014-06-01
Inverse theorems to Lyapunov's direct method are established for quasihomogeneous systems of differential equations with impulsive action. Conditions for the existence of Lyapunov functions satisfying typical bounds for quasihomogeneous functions are obtained. Using these results, we establish conditions for an equilibrium of a nonlinear system with impulsive action to be stable, using the properties of a quasihomogeneous approximation to the system. The results are illustrated by an example of a large-scale system with homogeneous subsystems. Bibliography: 30 titles. (paper)
Non-homogeneous solutions of a Coulomb Schrdinger equation as basis set for scattering problems
Del Punta, J. A.; Ambrosio, M. J.; Gasaneo, G.; Zaytsev, S. A.; Ancarani, L. U.
2014-05-15
We introduce and study two-body Quasi Sturmian functions which are proposed as basis functions for applications in three-body scattering problems. They are solutions of a two-body non-homogeneous Schrdinger equation. We present different analytic expressions, including asymptotic behaviors, for the pure Coulomb potential with a driven term involving either Slater-type or Laguerre-type orbitals. The efficiency of Quasi Sturmian functions as basis set is numerically illustrated through a two-body scattering problem.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Simple Empirical Equation to Calculate Cloud Optical Thickness from Shortwave Broadband Measurements J. C. Barnard and C. N. Long Pacific Northwest National Laboratory Richland, Washington Introduction Observational studies of shortwave cloud optical thickness, c , play an important role in determining how clouds affect climate. Accordingly, considerable effort has been, and continues to be expended to characterize the spatial and temporal distribution of c over the globe. This effort involves
CONTRACTOR REPORT SAND97-2426 Unlimited Release UC-705 Penetration Equations
Office of Scientific and Technical Information (OSTI)
CONTRACTOR REPORT SAND97-2426 Unlimited Release * UC-705 Penetration Equations C. W. Young Applied Research Associates, Inc. 4300 San Mateo Blvd. NE, Suite A-220 Albuquerque NM 871 10 Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000. Approved for public release; distribution
Non-perturbative effects for the Quark-Gluon Plasma equation of state
Begun, V. V. Gorenstein, M. I. Mogilevsky, O. A.
2012-07-15
The non-perturbative effects for the Quark-Gluon Plasma (QGP) equation of state (EoS) are considered. The modifications of the bag model EoS are constructed to satisfy the main qualitative features observed for the QGP EoS in the lattice QCD calculations. A quantitative comparison with the lattice results is done for the SU(3) gluon plasma and for the QGP with dynamical quarks. Our analysis advocates a negative value of the bag constant B.
SCIENCE ON SATURDAY- "Disastrous Equations: The Role of Mathematics in
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Understanding Tsunami" | Princeton Plasma Physics Lab 26, 2013, 9:30am Science On Saturday MBG Auditorium SCIENCE ON SATURDAY- "Disastrous Equations: The Role of Mathematics in Understanding Tsunami" Professor J. Douglas Wright, Associate Professor Department of Mathematics, Drexel University Presentation: PDF icon SOS26JAN2013_JDWright.pdf Science on Saturday is a series of lectures given by scientists, mathematicians, and other professionals involved in cutting-edge
NREL Compares State Solar Policies to Determine Equation for Solar Market
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Success - News Releases | NREL Compares State Solar Policies to Determine Equation for Solar Market Success December 11, 2014 Analysts at the Energy Department's National Renewable Energy Laboratory (NREL) have used statistical analyses and detailed case studies to better understand why solar market policies in certain states are more successful. Their findings indicate that while no standard formula for solar implementation exists, a combination of foundational policies and localized
THE GENERAL RELATIVISTIC EQUATIONS OF RADIATION HYDRODYNAMICS IN THE VISCOUS LIMIT
Coughlin, Eric R.; Begelman, Mitchell C. E-mail: mitch@jila.colorado.edu
2014-12-20
We present an analysis of the general relativistic Boltzmann equation for radiation, appropriate to the case where particles and photons interact through Thomson scattering, and derive the radiation energy-momentum tensor in the diffusion limit with viscous terms included. Contrary to relativistic generalizations of the viscous stress tensor that appear in the literature, we find that the stress tensor should contain a correction to the comoving energy density proportional to the divergence of the four-velocity, as well as a finite bulk viscosity. These modifications are consistent with the framework of radiation hydrodynamics in the limit of large optical depth, and do not depend on thermodynamic arguments such as the assignment of a temperature to the zeroth-order photon distribution. We perform a perturbation analysis on our equations and demonstrate that as long as the wave numbers do not probe scales smaller than the mean free path of the radiation, the viscosity contributes only decaying, i.e., stable, corrections to the dispersion relations. The astrophysical applications of our equations, including jets launched from super-Eddington tidal disruption events and those from collapsars, are discussed and will be considered further in future papers.
Discontinuous Galerkin solution of the Navier-Stokes equations on deformable domains
Persson, P.-O.; Bonet, J.; Peraire, J.
2009-01-13
We describe a method for computing time-dependent solutions to the compressible Navier-Stokes equations on variable geometries. We introduce a continuous mapping between a fixed reference configuration and the time varying domain, By writing the Navier-Stokes equations as a conservation law for the independent variables in the reference configuration, the complexity introduced by variable geometry is reduced to solving a transformed conservation law in a fixed reference configuration, The spatial discretization is carried out using the Discontinuous Galerkin method on unstructured meshes of triangles, while the time integration is performed using an explicit Runge-Kutta method, For general domain changes, the standard scheme fails to preserve exactly the free-stream solution which leads to some accuracy degradation, especially for low order approximations. This situation is remedied by adding an additional equation for the time evolution of the transformation Jacobian to the original conservation law and correcting for the accumulated metric integration errors. A number of results are shown to illustrate the flexibility of the approach to handle high order approximations on complex geometries.
Unified Einstein-Virasoro Master Equation in the General Non-Linear Sigma Model
Boer, J. de; Halpern, M.B.
1996-06-05
The Virasoro master equation (VME) describes the general affine-Virasoro construction $T=L^abJ_aJ_b+iD^a \\dif J_a$ in the operator algebra of the WZW model, where $L^ab$ is the inverse inertia tensor and $D^a $ is the improvement vector. In this paper, we generalize this construction to find the general (one-loop) Virasoro construction in the operator algebra of the general non-linear sigma model. The result is a unified Einstein-Virasoro master equation which couples the spacetime spin-two field $L^ab$ to the background fields of the sigma model. For a particular solution $L_G^ab$, the unified system reduces to the canonical stress tensors and conventional Einstein equations of the sigma model, and the system reduces to the general affine-Virasoro construction and the VME when the sigma model is taken to be the WZW action. More generally, the unified system describes a space of conformal field theories which is presumably much larger than the sum of the general affine-Virasoro construction and the sigma model with its canonical stress tensors. We also discuss a number of algebraic and geometrical properties of the system, including its relation to an unsolved problem in the theory of $G$-structures on manifolds with torsion.
Laurie, M.; Fourrez, S.; Fuetterer, M. A.; Lapetite, J. M.
2011-07-01
During irradiation tests at high temperature, failure of commercial Inconel 600 sheathed thermocouples is commonly encountered. To understand and remedy this problem, out-of-pile tests were performed with thermocouples in carburizing atmospheres which can be assumed to be at least locally representative for High Temperature Reactors. The objective was to screen those thermocouples which would consecutively be used under irradiation. Two such screening tests have been performed with a set of thermocouples embedded in graphite (mainly conventional Type N thermocouples and thermocouples with innovative sheaths) in a dedicated furnace with helium flushing. Performance indicators such as thermal drift, insulation and loop resistance were monitored and compared to those from conventional Type N thermocouples. Several parameters were investigated: niobium sleeves, bending, thickness, sheath composition, temperature as well as the chemical environment. After the tests, Scanning Electron Microscopy (SEM) examinations were performed to analyze possible local damage in wires and in the sheath. The present paper describes the two experiments, summarizes results and outlines further work, in particular to further analyze the findings and to select suitable thermocouples for qualification under irradiation. (authors)
Narlesky, Joshua E.; Stroud, Mary Ann; Smith, Paul Herrick; Wayne, David M.; Mason, Richard E.; Worl, Laura A.
2013-02-15
The Surveillance and Monitoring Program is a joint Los Alamos National Laboratory/Savannah River Site effort funded by the Department of Energy-Environmental Management to provide the technical basis for the safe, long-term storage (up to 50 years) of over 6 metric tons of plutonium stored in over 5,000 DOE-STD-3013 containers at various facilities around the DOE complex. The majority of this material is plutonium that is surplus to the nuclear weapons program, and much of it is destined for conversion to mixed oxide fuel for use in US nuclear power plants. The form of the plutonium ranges from relatively pure metal and oxide to very impure oxide. The performance of the 3013 containers has been shown to depend on moisture content and on the levels, types and chemical forms of the impurities. The oxide materials that present the greatest challenge to the storage container are those that contain chloride salts. Other common impurities include oxides and other compounds of calcium, magnesium, iron, and nickel. Over the past 15 years the program has collected a large body of experimental data on 54 samples of plutonium, with 53 chosen to represent the broader population of materials in storage. This paper summarizes the characterization data, moisture analysis, particle size, surface area, density, wattage, actinide composition, trace element impurity analysis, and shelf life surveillance data and includes origin and process history information. Limited characterization data on fourteen nonrepresentative samples is also presented.
Falder, J. T.; Stevens, J. A.; Jarvis, Matt J.; Bonfield, D. G.; Lacy, M.; Farrah, D.; Oliver, S.; Surace, J.; Mauduit, J.-C.; Gonzalez-Solares, E.; Afonso, J.; Cava, A.; Seymour, N.
2011-07-10
This paper presents a study of the environments of SDSS quasi-stellar objects (QSOs) in the Spitzer Extragalactic Representative Volume Survey (SERVS). We concentrate on the high-redshift QSOs as these have not been studied in large numbers with data of this depth before. We use the IRAC 3.6-4.5 {mu}m color of objects and ancillary r-band data to filter out as much foreground contamination as possible. This technique allows us to find a significant (>4{sigma}) overdensity of galaxies around QSOs in a redshift bin centered on z {approx} 2.0 and an (>2{sigma}) overdensity of galaxies around QSOs in a redshift bin centered on z {approx} 3.3. We compare our findings to the predictions of a semi-analytic galaxy formation model, based on the {Lambda}CDM MILLENNIUM simulation, and find for both redshift bins that the model predictions match well the source density we have measured from the SERVS data.
Herlemann, D. P. R.; Geissinger, O.; Ikeda-Ohtsubo, W.; Kunin, V.; Sun, H.; Lapidus, A.; Hugenholtz, P.; Brune, A.
2009-02-01
The candidate phylum Termite group 1 (TG1), is regularly 1 encountered in termite hindguts but is present also in many other habitats. Here we report the complete genome sequence (1.64 Mbp) of Elusimicrobium minutum strain Pei191{sup T}, the first cultured representative of the TG1 phylum. We reconstructed the metabolism of this strictly anaerobic bacterium isolated from a beetle larva gut and discuss the findings in light of physiological data. E. minutum has all genes required for uptake and fermentation of sugars via the Embden-Meyerhof pathway, including several hydrogenases, and an unusual peptide degradation pathway comprising transamination reactions and leading to the formation of alanine, which is excreted in substantial amounts. The presence of genes encoding lipopolysaccharide biosynthesis and the presence of a pathway for peptidoglycan formation are consistent with ultrastructural evidence of a Gram-negative cell envelope. Even though electron micrographs showed no cell appendages, the genome encodes many genes putatively involved in pilus assembly. We assigned some to a type II secretion system, but the function of 60 pilE-like genes remains unknown. Numerous genes with hypothetical functions, e.g., polyketide synthesis, non-ribosomal peptide synthesis, antibiotic transport, and oxygen stress protection, indicate the presence of hitherto undiscovered physiological traits. Comparative analysis of 22 concatenated single-copy marker genes corroborated the status of Elusimicrobia (formerly TG1) as a separate phylum in the bacterial domain, which was so far based only on 16S rRNA sequence analysis.
A Vorticity-Divergence Global Semi-Lagrangian Spectral Model for the Shallow Water Equations
Drake, JB
2001-11-30
The shallow water equations modeling flow on a sphere are useful for the development and testing of numerical algorithms for atmospheric climate and weather models. A new formulation of the shallow water equations is derived which exhibits an advective form for the vorticity and divergence. This form is particularly well suited for numerical computations using a semi-Lagrangian spectral discretization. A set of test problems, standard for the shallow water equations on a sphere, are solved and results compared with an Eulerian spectral model. The semi-Lagrangian transport method was introduced into atmospheric modeling by Robert, Henderson, and Turnbull. A formulation based on a three time level integration scheme in conjunction with a finite difference spatial discretization was studied by Ritchie. Two time level grid point schemes were derived by Bates et al. Staniforth and Cote survey developments of the application of semi-Lagrangian transport (SLT) methods for shallow water models and for numerical weather prediction. The spectral (or spherical harmonic transform) method when combined with a SLT method is particularly effective because it allows for long time steps avoiding the Courant-Friedrichs-Lewy (CFL) restriction of Eulerian methods, while retaining accurate (spectral) treatment of the spatial derivatives. A semi-implicit, semi-Lagrangian formulation with spectral spatial discretization is very effective because the Helmholz problem arising from the semi-implicit time integration can be solved cheaply in the course of the spherical harmonic transform. The combination of spectral, semi-Lagrangian transport with a semi-implicit time integration schemes was first proposed by Ritchie. A advective formulation using vorticity and divergence was introduced by Williamson and Olson. They introduce the vorticity and divergence after the application of the semi-Lagrangian discretization. The semi-Lagrangian formulation of Williamson and Olson and Bates et al. has the property that the metric terms of the advective form are treated discretely requiring a delicate spherical vector addition of terms at the departure point and arrival point. In their formulation, the metric terms associated with the advection operator do not appear explicitly. The spherical geometry associated with the combination of vector quantities at arrival and departure points treats the metric terms and is derived in Bates et al. The formulation derived in this paper avoids this vector addition. It is possible to do this because our formulation is based entirely on a scalar, advective form of the momentum equations. This new form is made possible by the generalization of a vector identity to spherical geometry. In Section 2 the standard form of the shallow water equations in spherical geometry are given. Section 3 presents the vector identities needed to derive an advective form of the vorticity and divergence equations. The semi-implicit time integration and semi-Lagrangian transport method are described in Section 4. The SLT interpolation scheme is described in Section 5. Section 6 completes the development of the discrete model with the description of the semi-implicit spectral equations. A discussion of results on several standard test problems is contained in Section 7.
Dixon, Robert L.; Boone, John M.; Kraft, Robert A.
2014-11-01
Purpose: With the increasing clinical use of shift-variant CT protocols involving tube current modulation (TCM), variable pitch or pitch modulation (PM), and variable aperture a(t), the interpretation of the scanner-reported CTDI{sub vol} is called into question. This was addressed for TCM in their previous paper published by Dixon and Boone [Med. Phys. 40, 111920 (14pp.) (2013)] and is extended to PM and concurrent TCM/PM as well as variable aperture in this work. Methods: Rigorous convolution equations are derived to describe the accumulated dose distributions for TCM, PM, and concurrent TCM/PM. A comparison with scanner-reported CTDI{sub vol} formulae clearly identifies the source of their differences with the traditional CTDI{sub vol}. Dose distribution simulations using the convolution are provided for a variety of TCM and PM scenarios including a helical shuttle used for perfusion studies (as well as constant mA)all having the same scanner-reported CTDI{sub vol}. These new convolution simulations for TCM are validated by comparison with their previous discrete summations. Results: These equations show that PM is equivalent to TCM if the pitch variation p(z) is proportional to 1/i(z), where i(z) is the local tube current. The simulations show that the local dose at z depends only weakly on the local tube current i(z) or local pitch p(z) due to scatter from all other locations along z, and that the local CTDI{sub vol}(z) or CTDI{sub vol} per slice do not represent a local dose but rather only a relative i(z) or p(z). The CTDI-paradigm does not apply to shift-variant techniques and the scanner-reported CTDI{sub vol} for the same lacks physical significance and relevance. Conclusions: While the traditional CTDI{sub vol} at constant tube current and pitch conveys useful information (the peak dose at the center of the scan length), CTDI{sub vol} for shift-variant techniques (TCM or PM) conveys no useful information about the associated dose distribution it purportedly represents. On the other hand, the total energy absorbed E (integral dose) as well as its surrogate DLP remain robust (invariant) with respect to shift-variance, depending only on the total mAs = ?i?t{sub 0} accumulated during the total beam-on time t{sub 0} and aperture a, where ?i? is the average current.
Gao, Yang; Fu, Joshua S.; Drake, John B.; Lamarque, J.-F.; Liu, Yang
2013-09-27
Dynamical downscaling was applied in this study to link the global climate-chemistry model Community Atmosphere Model (CAM-Chem) with the regional models: Weather Research and Forecasting (WRF) Model and Community Multi-scale Air Quality (CMAQ). Two Representative Concentration Pathway (RCP) scenarios (RCP 4.5 and RCP 8.5) were used to evaluate the climate impact on ozone concentrations in 2050s. Ozone concentrations in the lower-mid troposphere (surface to ~300 hPa), from mid- to high latitudes in the Northern Hemisphere (NH), show decreasing trends in RCP 4.5 between 2000s and 2050s, with the largest decrease of 4-10 ppbv occurring in the summer and the fall; and increasing trends (2-12 ppbv) in RCP 8.5 resulting from the increased methane emissions. In RCP 8.5, methane emissions increase by ~60% by the end of 2050s, accounting for more than 90% of ozone increases in summer and fall, and 60-80% in spring and winter. Under the RCP 4.5 scenario, in the summer when photochemical reactions are the most active, the large ozone precursor emissions reduction leads to the greatest decrease of downscaled surface ozone concentrations, ranging from 6 to 10 ppbv. However, a few major cities show ozone increases of 3 to 7 ppbv due to weakened NO titration. Under the RCP 8.5 scenario, in winter, downscaled ozone concentrations increase across nearly the entire continental US in winter, ranging from 3 to 10 ppbv due to increased methane emissions and enhanced stratosphere-troposphere exchange (STE). More intense heat waves are projected to occur by the end of 2050s in RCP 8.5, leading to more than 8 ppbv of the maximum daily 8-hour daily average (MDA8) ozone during the heat wave days than other days; this indicates the dramatic impact heat waves exert on high frequency ozone events.
Kyle, G. Page; Mueller, C.; Calvin, Katherine V.; Thomson, Allison M.
2014-02-28
This study assesses how climate impacts on agriculture may change the evolution of the agricultural and energy systems in meeting the end-of-century radiative forcing targets of the Representative Concentration Pathways (RCPs). We build on the recently completed ISI-MIP exercise that has produced global gridded estimates of future crop yields for major agricultural crops using climate model projections of the RCPs from the Coupled Model Intercomparison Project Phase 5 (CMIP5). For this study we use the bias-corrected outputs of the HadGEM2-ES climate model as inputs to the LPJmL crop growth model, and the outputs of LPJmL to modify inputs to the GCAM integrated assessment model. Our results indicate that agricultural climate impacts generally lead to an increase in global cropland, as compared with corresponding emissions scenarios that do not consider climate impacts on agricultural productivity. This is driven mostly by negative impacts on wheat, rice, other grains, and oil crops. Still, including agricultural climate impacts does not significantly increase the costs or change the technological strategies of global, whole-system emissions mitigation. In fact, to meet the most aggressive climate change mitigation target (2.6 W/m2 in 2100), the net mitigation costs are slightly lower when agricultural climate impacts are considered. Key contributing factors to these results are (a) low levels of climate change in the low-forcing scenarios, (b) adaptation to climate impacts, simulated in GCAM through inter-regional shifting in the production of agricultural goods, and (c) positive average climate impacts on bioenergy crop yields.
Ammar H Hakim
2011-10-20
In this Phase I project we have extended the BOUT++ code to solve edge fluid equations. We added a simple neutral fluid model, created a mesh generator as well as collected a set of difficult test problems for benchmarking edge codes. The work in this project should be useful as a starting point to build a complete set of edge fluid equations in BOUT++ that would enhance its ability to not only perform edge turbulence calculations, but also allow the coupled transport-turbulence equations evolved in an efficient manner.
Kordilla, Jannes; Pan, Wenxiao; Tartakovsky, Alexandre M.
2014-12-14
We propose a novel Smoothed Particle Hydrodynamics (SPH) discretization of the fully-coupled Landau-Lifshitz-Navier-Stokes (LLNS) and advection-diffusion equations. The accuracy of the SPH solution of the LLNS equations is demonstrated by comparing the scaling of velocity variance and self-diffusion coefficient with kinetic temperature and particle mass obtained from the SPH simulations and analytical solutions. The spatial covariance of pressure and velocity fluctuations are found to be in a good agreement with theoretical models. To validate the accuracy of the SPH method for the coupled LLNS and advection-diffusion equations, we simulate the interface between two miscible fluids. We study the formation of the so-called giant fluctuations of the front between light and heavy fluids with and without gravity, where the light fluid lays on the top of the heavy fluid. We find that the power spectra of the simulated concentration field is in good agreement with the experiments and analytical solutions. In the absence of gravity the the power spectra decays as the power -4 of the wave number except for small wave numbers which diverge from this power law behavior due to the effect of finite domain size. Gravity suppresses the fluctuations resulting in the much weaker dependence of the power spectra on the wave number. Finally the model is used to study the effect of thermal fluctuation on the Rayleigh-Taylor instability, an unstable dynamics of the front between a heavy fluid overlying a light fluid. The front dynamics is shown to agree well with the analytical solutions.
Optimal recovery of the solution of the heat equation from inaccurate data
Magaril-Il'yaev, G G; Osipenko, Konstantin Yu
2009-06-30
The problem of optimal recovery of the solution of the heat equation in the entire space at a fixed instant of time from inaccurate observations of this solution at some other instants of time is investigated. Explicit expressions for an optimal recovery method and its error are given. The solution of a similar problem with a priori information about the temperature distribution at some instants of time is also given. In all cases the optimal method uses information about at most two observations. Bibliography: 22 titles.
Stabilization of the solution of adoubly nonlinear parabolic equation
Andriyanova, R; Mukminov, F Kh
2013-09-30
The method of Galerkin approximations is employed to prove the existence of astrong global (in time) solution of adoubly nonlinear parabolic equation in an unbounded domain. The second integral identity is established for Galerkin approximations, and passing to the limit in it an estimate for the decay rate of the norm of the solution from below is obtained. The estimates characterizing the decay rate of the solution as x?? obtained here are used to derive an upper bound for the decay rate of the solution with respect to time; the resulting estimate is pretty close to the lower one. Bibliography: 17 titles.
Valilyev, O.V.; Paolucci, S.
1996-05-01
A dynamically adaptive multilevel structure of the algorithm provides a simple way to adapt computational refinements to local demands of the solution. High resolution computations are performed only in regions where sharp transitions occur. The scheme handles general boundary conditions. The method is applied to the solution of the one-dimensional Burgers equation with small viscosity, a moving shock problem, and a nonlinear thermoacoustic wave problem. The results indicate that the method is very accurate and efficient. 16 refs., 9 figs., 2 tab.
The role of electron equation of state in heating partition of protons in a collisionless plasma
Parashar, Tulasi N.; Vasquez, Bernard J.; Markovskii, Sergei A.
2014-02-15
One of the outstanding questions related to the solar wind is the heating of solar wind plasma. Addressing this question requires a self consistent treatment of the kinetic physics of a collisionless plasma. A hybrid code (with particle ions and fluid electrons) is one of the most convenient computational tools, which allows us to explore self consistent ion kinetics, while saving us computational time as compared to the full particle in cell codes. A common assumption used in hybrid codes is that of isothermal electrons. In this paper, we discuss the role that the equation of state for electrons could potentially play in determining the ion kinetics.
(U) A Gruneisen Equation of State for TPX. Application in FLAG
Fredenburg, David A.; Aslam, Tariq Dennis; Bennett, Langdon Stanford
2015-11-02
A Gruneisen equation of state (EOS) is developed for the polymer TPX (poly 4-methyl-1-pentene) within the LANL hydrocode FLAG. Experimental shock Hugoniot data for TPX is fit to a form of the Gruneisen EOS, and the necessary parameters for implementing the TPX EOS in FLAG are presented. The TPX EOS is further validated through one-dimensional simulations of recent double-shock experiments, and a comparison is made between the new Gruneisen EOS for TPX and the EOS representation for TPX used in the LANL Common Model.
Effects of bounded space in the solutions of time-space fractional diffusion equation
Allami, M. H. [Laser and Plasma Research Institute, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Shokri, B. [Laser and Plasma Research Institute, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Physics Department, Shahid Beheshti University, G.C., Tehran (Iran, Islamic Republic of)
2010-12-15
By using a recently proposed numerical method, the fractional diffusion equation with memory in a finite domain is solved for different asymmetry parameters and fractional orders. Some scaling laws are revisited in this condition, such as growth rate in a distance from pulse perturbation, the time when the perturbative peak reaches the other points, and advectionlike behavior as a result of asymmetry and memory. Conditions for negativity and instability of solutions are shown. Also up-hill transport and its time-space region are studied.
Validation of a zero-equation turbulence model for complex indoor airflow simulation
Srebric, J.; Chen, Q.; Glicksman, L.R.
1999-07-01
The design of an indoor environment requires a tool that can quickly predict the three-dimensional distributions of air velocity, temperature, and contaminant concentrations in the room on a desktop computer. This investigation has tested a zero-equation turbulence model for the prediction of the indoor environment in an office with displacement ventilation, with a heater and infiltration and with forced convection and a partition wall. The computed air velocity and temperature distributions agree well with the measured data. The computing time for each case is less than seven minutes on a PC Pentium II, 350 MHz.
Gligoric, Goran; Hadzievski, Ljupco; Maluckov, Aleksandra; Malomed, Boris A.
2009-05-15
The stability and collapse of fundamental unstaggered bright solitons in the discrete Schroedinger equation with the nonpolynomial on-site nonlinearity, which models a nearly one-dimensional Bose-Einstein condensate trapped in a deep optical lattice, are studied in the presence of the long-range dipole-dipole (DD) interactions. The cases of both attractive and repulsive contact and DD interaction are considered. The results are summarized in the form of stability-collapse diagrams in the parametric space of the model, which demonstrate that the attractive DD interactions stabilize the solitons and help to prevent the collapse. Mobility of the discrete solitons is briefly considered too.
Dissipation in a rotating frame: Master equation, effective temperature, and Lamb shift
Verso, Alvise; Ankerhold, Joachim
2010-02-15
Motivated by recent realizations of microwave-driven nonlinear resonators in superconducting circuits, the impact of environmental degrees of freedom is analyzed as seen from a rotating frame. A system plus reservoir model is applied to consistently derive in the weak coupling limit the master equation for the reduced density in the moving frame and near the first bifurcation threshold. The concept of an effective temperature is introduced to analyze to what extent a detailed balance relation exists. Explicit expressions are also found for the Lamb-shift. Results for ohmic baths are in agreement with experimental findings, while for structured environments population inversion is predicted that may qualitatively explain recent observations.
Hamiltonian field description of the one-dimensional Poisson-Vlasov equations
Morrison, P.J.
1981-07-01
The one-dimensional Poisson-Vlasov equations are cast into Hamiltonian form. A Poisson Bracket in terms of the phase space density, as sole dynamical variable, is presented. This Poisson bracket is not of the usual form, but possesses the commutator properties of antisymmetry, bilinearity, and nonassociativity by virtue of the Jacobi requirement. Clebsch potentials are seen to yield a conventional (canonical) formulation. This formulation is discretized by expansion in terms of an arbitrary complete set of basis functions. In particular, a wave field representation is obtained.
Field theory and weak Euler-Lagrange equation for classical particle-field systems
Qin, Hong; Burby, Joshua W; Davidson, Ronald C
2014-10-01
It is commonly believed that energy-momentum conservation is the result of space-time symmetry. However, for classical particle-field systems, e.g., Klimontovich-Maxwell and Klimontovich- Poisson systems, such a connection hasn't been formally established. The difficulty is due to the fact that particles and the electromagnetic fields reside on different manifolds. To establish the connection, the standard Euler-Lagrange equation needs to be generalized to a weak form. Using this technique, energy-momentum conservation laws that are difficult to find otherwise can be systematically derived.
Biondini, Gino; Kova?i?, Gregor
2014-03-15
The inverse scattering transform for the focusing nonlinear Schrdinger equation with non-zero boundary conditions at infinity is presented, including the determination of the analyticity of the scattering eigenfunctions, the introduction of the appropriate Riemann surface and uniformization variable, the symmetries, discrete spectrum, asymptotics, trace formulae and the so-called theta condition, and the formulation of the inverse problem in terms of a Riemann-Hilbert problem. In addition, the general behavior of the soliton solutions is discussed, as well as the reductions to all special cases previously discussed in the literature.
Stephani, H.
1988-07-01
The framework of Lie--Baecklund (or generalized) symmetries is used to give a unifying view of some of the known symmetries of Einstein's field equations for the vacuum or perfect fluid case (with a ..mu.. = p or a ..mu..+3p = 0 equation of state). These symmetries occur if space-time admits one or two Killing vectors (orthogonal or parallel, respectively, to the four-velocity in the perfect fluid case).
Time-local view of nonequilibrium statistical mechanics. II. Generalized Langevin equations
Der, R.
1987-01-01
On a semiphenomenological level, generalized Langevin equations are usually obtained by adding a random force (RF) term to macroscopic deterministic equations assumed to be known. Here this procedure is made rigorous by conveniently redefining the RF, which is shown to be colored noise weakly correlated with the observables at earlier times due to the finite lifetime of microscopic events. Corresponding fluctuation-dissipation theorems are derived. Explicit expressions for the spectral density of the fluctuations are obtained in a particularly simple form, with the deviation of the line shape from the Lorentzian being related most explicitly to the spectral density of the RF. Well-known low-frequency expressions and the Einstein relation of (generalized) Brownian motion theory are modified so as to include lifetime effects. New sum rules are obtained relating dissipative quantities to contour integrals (in the complex frequency domain) over spectral densities or corresponding response functions. The Heisenberg dynamics of a complete set of macroobservables is shown to be equivalent to a generalized Orstein-Uhlenbeck stochastic process which is a non-Markovian process due to the lifetime effects.
Roberts, Nathan V.; Demkowiz, Leszek; Moser, Robert
2015-11-15
The discontinuous Petrov-Galerkin methodology with optimal test functions (DPG) of Demkowicz and Gopalakrishnan [18, 20] guarantees the optimality of the solution in an energy norm, and provides several features facilitating adaptive schemes. Whereas Bubnov-Galerkin methods use identical trial and test spaces, Petrov-Galerkin methods allow these function spaces to differ. In DPG, test functions are computed on the fly and are chosen to realize the supremum in the inf-sup condition; the method is equivalent to a minimum residual method. For well-posed problems with sufficiently regular solutions, DPG can be shown to converge at optimal rates—the inf-sup constants governing the convergence are mesh-independent, and of the same order as those governing the continuous problem [48]. DPG also provides an accurate mechanism for measuring the error, and this can be used to drive adaptive mesh refinements. We employ DPG to solve the steady incompressible Navier-Stokes equations in two dimensions, building on previous work on the Stokes equations, and focusing particularly on the usefulness of the approach for automatic adaptivity starting from a coarse mesh. We apply our approach to a manufactured solution due to Kovasznay as well as the lid-driven cavity flow, backward-facing step, and flow past a cylinder problems.
Zakharov-Kuznetsov equation in a magnetized plasma with two temperature superthermal electrons
Saini, N. S. Chahal, B. S.; Bains, A. S.; Bedi, C.
2014-02-15
A nonlinear Zakharov-Kuznetsov (ZK) equation for ion-acoustic solitary waves (IASWs) in a magnetized plasmas containing kappa distributed cold and hot electrons is derived by using reductive perturbation method. From the solution of ZK equation, the characteristics of IASWs have been studied under the influence of various plasma parameters. Existence domain of physical parameters is determined. It has been observed that the present plasma system supports the existence of both positive as well as negative potential solitons. The combined effects of cold to hot electron temperature ratio (?), density ratio of cold electrons to ions (f), superthermality of cold and hot electrons (?{sub c},?{sub h}), strength of magnetic field (via ?{sub i}), and obliqueness (?) significantly influence the profile of IASWs. The physical parameters play a great role to modify the width and amplitude of the solitary structures. The stability analysis is also presented in this investigation and parametric range is determined to check the presence of stable and unstable solitons. The findings of this study are important to the physics of electrostatic wave structures in the Saturn's magnetosphere where two temperature electrons with kappa distribution exist.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Hu, S. X.; Collins, L. A.; Goncharov, V. N.; Kress, J. D.; McCrory, R. L.; Skupsky, S.
2015-10-14
Obtaining an accurate equation of state (EOS) of polystyrene (CH) is crucial to reliably design inertial confinement fusion (ICF) capsules using CH/CH-based ablators. Thus, with first-principles calculations, we have investigated the extended EOS of CH over a wide range of plasma conditions (ρ = 0.1 to 100 g/cm3 and T = 1,000 to 4,000,000 K). When compared with the widely used SESAME-EOS table, the first-principles equation of state (FPEOS) of CH has shown significant differences in the low-temperature regime, in which strong coupling and electron degeneracy play an essential role in determining plasma properties. Hydrodynamic simulations of cryogenic target implosionsmore » on OMEGA using the FPEOS table of CH have predicted ~5% reduction in implosion velocity and ~30% decrease in neutron yield in comparison with the usual SESAME simulations. This is attributed to the ~10% lower mass ablation rate of CH predicted by FPEOS. Simulations using CH-FPEOS show better agreement with measurements of Hugoniot temperature and scattered lights from ICF implosions.« less
Xiaodong Liu; Lijun Xuan; Hong Luo; Yidong Xia
2001-01-01
A reconstructed discontinuous Galerkin (rDG(P1P2)) method, originally introduced for the compressible Euler equations, is developed for the solution of the compressible Navier- Stokes equations on 3D hybrid grids. In this method, a piecewise quadratic polynomial solution is obtained from the underlying piecewise linear DG solution using a hierarchical Weighted Essentially Non-Oscillatory (WENO) reconstruction. The reconstructed quadratic polynomial solution is then used for the computation of the inviscid fluxes and the viscous fluxes using the second formulation of Bassi and Reay (Bassi-Rebay II). The developed rDG(P1P2) method is used to compute a variety of flow problems to assess its accuracy, efficiency, and robustness. The numerical results demonstrate that the rDG(P1P2) method is able to achieve the designed third-order of accuracy at a cost slightly higher than its underlying second-order DG method, outperform the third order DG method in terms of both computing costs and storage requirements, and obtain reliable and accurate solutions to the large eddy simulation (LES) and direct numerical simulation (DNS) of compressible turbulent flows.
Chilton, Sven; Chilton, Sven H.
2008-07-01
The WARP code is a robust electrostatic particle-in-cell simulation package used to model charged particle beams with strong space-charge forces. A fundamental operation associated with seeding detailed simulations of a beam transport channel is to generate initial conditions where the beam distribution is matched to the structure of a periodic focusing lattice. This is done by solving for periodic, matched solutions to a coupled set of ODEs called the Kapchinskij-Vladimirskij (KV) envelope equations, which describe the evolution of low-order beam moments subject to applied lattice focusing, space-charge defocusing, and thermal defocusing forces. Recently, an iterative numerical method was developed (Lund, Chilton, and Lee, Efficient computation of matched solutions to the KV envelope equations for periodic focusing lattices, Physical Review Special Topics-Accelerators and Beams 9, 064201 2006) to generate matching conditions in a highly flexible, convergent, and fail-safe manner. This method is extended and implemented in the WARP code as a Python package to vastly ease the setup of detailed simulations. In particular, the Python package accommodates any linear applied lattice focusing functions without skew coupling, and a more general set of beam parameter specifications than its predecessor. Lattice strength iteration tools were added to facilitate the implementation of problems with specific applied focusing strengths.
Chilton, Sven H.
2008-04-15
The WARP code is a robust electrostatic particle-in-cell simulation package used to model charged particle beams with strong space-charge forces. A fundamental operation associated with seeding detailed simulations of a beam transport channel is to generate initial conditions where the beam distribution is matched to the structure of a periodic focusing lattice. This is done by solving for periodic, matched solutions to a coupled set of ODEs called the Kapchinskij-Vladimirskij (KV) envelope equations, which describe the evolution of low-order beam moments subject to applied lattice focusing, space-charge defocusing, and thermal defocusing forces. Recently, an iterative numerical method was developed (Lund, Chilton, and Lee, Efficient computation of matched solutions to the KV envelope equations for periodic focusing lattices, Physical Review Special Topics-Accelerators and Beams 9, 064201 2006) to generate matching conditions in a highly flexible, convergent, and fail-safe manner. This method is extended and implemented in the WARP code as a Python package to vastly ease the setup of detailed simulations. In particular, the Python package accommodates any linear applied lattice focusing functions without skew coupling, and a more general set of beam parameter specifications than its predecessor. Lattice strength iteration tools were added to facilitate the implementation of problems with specific applied focusing strengths.
Huang, Lianjie; Simonetti, Francesco; Huthwaite, Peter; Rosenberg, Robert; Williamson, Michael
2010-01-01
Ultrasound image resolution and quality need to be significantly improved for breast microcalcification detection. Super-resolution imaging with the factorization method has recently been developed as a promising tool to break through the resolution limit of conventional imaging. In addition, wave-equation reflection imaging has become an effective method to reduce image speckles by properly handling ultrasound scattering/diffraction from breast heterogeneities during image reconstruction. We explore the capabilities of a novel super-resolution ultrasound imaging method and a wave-equation reflection imaging scheme for detecting breast microcalcifications. Super-resolution imaging uses the singular value decomposition and a factorization scheme to achieve an image resolution that is not possible for conventional ultrasound imaging. Wave-equation reflection imaging employs a solution to the acoustic-wave equation in heterogeneous media to backpropagate ultrasound scattering/diffraction waves to scatters and form images of heterogeneities. We construct numerical breast phantoms using in vivo breast images, and use a finite-difference wave-equation scheme to generate ultrasound data scattered from inclusions that mimic microcalcifications. We demonstrate that microcalcifications can be detected at full spatial resolution using the super-resolution ultrasound imaging and wave-equation reflection imaging methods.
Likhacheva, Anna Y.; Rashchenko, Sergey V.; Chanyshev, Artem D.; Litasov, Konstantin D.; Department of Geology and Geophysics, Novosibirsk State University, Novosibirsk 630090 ; Inerbaev, Talgat M.; Kilin, Dmitry S.
2014-04-28
In a wide range of P-T conditions, such fundamental characteristics as compressibility and thermoelastic properties remain unknown for most classes of organic compounds. Here we attempt to clarify this issue by the example of naphthalene as a model representative of polycyclic aromatic hydrocarbons (PAHs). The elastic behavior of solid naphthalene was studied by in situ synchrotron powder X-ray diffraction up to 13 GPa and 773 K and first principles computations to 20 GPa and 773 K. Fitting of the P-V experimental data to Vinet equation of state yielded T 0 = 8.4(3) GPa and T' = 7.2 (3) at V0 = 361 (3), whereas the thermal expansion coefficient was found to be extremely low at P > 3 GPa (about 10(-5) K(-1)), in agreement with theoretical estimation. Such a diminishing of thermal effects with the pressure increase clearly demonstrates a specific feature of the high-pressure behavior of molecular crystals like PAHs, associated with a low energy of intermolecular interactions.
Analysis of the Sultana-Dyer cosmological black hole solution of the Einstein equations
Faraoni, Valerio
2009-08-15
The Sultana-Dyer solution of general relativity representing a black hole embedded in a special cosmological background is analyzed. We find an expanding (weak) spacetime singularity instead of the reported conformal Killing horizon, which is covered by an expanding black hole apparent horizon (internal to a cosmological apparent horizon) for most of the history of the Universe. This singularity was naked early on. The global structure of the solution is studied as well.
Accelerating Time Integration for the Shallow Water Equations on the Sphere Using GPUs
Archibald, R.; Evans, K. J.; Salinger, A.
2015-06-01
The push towards larger and larger computational platforms has made it possible for climate simulations to resolve climate dynamics across multiple spatial and temporal scales. This direction in climate simulation has created a strong need to develop scalable time-stepping methods capable of accelerating throughput on high performance computing. This work details the recent advances in the implementation of implicit time stepping on a spectral element cube-sphere grid using graphical processing units (GPU) based machines. We demonstrate how solvers in the Trilinos project are interfaced with ACME and GPU kernels can significantly increase computational speed of the residual calculations in the implicit time stepping method for the shallow water equations on the sphere. We show the optimization gains and data structure reorganization that facilitates the performance improvements.
Wave chaos in the stadium: Statistical properties of short-wave solutions of the Helmholtz equation
McDonald, S.W.; Kaufman, A.N.
1988-04-15
We numerically investigate statistical properties of short-wavelength normal modes and the spectrum for the Helmholtz equation in a two-dimensional stadium-shaped region. As the geometrical optics rays within this boundary (billiards) are nonintegrable, this wave problem serves as a simple model for the study of quantum chaos. The local spatial correlation function
Three-dimensional nonlinear Schroedinger equation in electron-positron-ion magnetoplasmas
Sabry, R.; Moslem, W. M.; El-Shamy, E. F.; Shukla, P. K.
2011-03-15
Three-dimensional ion-acoustic envelope soliton excitations in electron-positron-ion magnetoplasmas are interpreted. This is accomplished through the derivation of three-dimensional nonlinear Schroedinger equation, where the nonlinearity is balancing with the dispersive terms. The latter contains both an external magnetic field besides the usual plasma parameter effects. Based on the balance between the nonlinearity and the dispersion terms, the regions for possible envelope solitons are investigated indicating that new regimes for modulational instability of envelope ion-acoustic waves could be obtained, which cannot exist in the unmagnetized case. This will allow us to establish additional new regimes, different from the usual unmagnetized plasma, for envelope ion-acoustic waves to propagate in multicomponent plasma that may be observed in space or astrophysics.
Equation-of-State Test Suite for the DYNA3D Code
Benjamin, Russell D.
2015-11-05
This document describes the creation and implementation of a test suite for the Equationof- State models in the DYNA3D code. A customized input deck has been created for each model, as well as a script that extracts the relevant data from the high-speed edit file created by DYNA3D. Each equation-of-state model is broken apart and individual elements of the model are tested, as well as testing the entire model. The input deck for each model is described and the results of the tests are discussed. The intent of this work is to add this test suite to the validation suite presently used for DYNA3D.
The fixed hypernode method for the solution of the many body Schroedinger equation
Pederiva, F; Kalos, M H; Reboredo, F; Bressanini, D; Guclu, D; Colletti, L; Umrigar, C J
2006-01-24
We propose a new scheme for an approximate solution of the Schroedinger equation for a many-body interacting system, based on the use of pairs of walkers. Trial wavefunctions for these pairs are combinations of standard symmetric and antisymmetric wavefunctions. The method consists in applying a fixed-node restriction in the enlarged space, and computing the energy of the antisymmetric state from the knowledge of the exact ground state energy for the symmetric state. We made two conjectures: first, that this fixed-hypernode energy is an upper bound to the true fermion energy; second that this bound would necessarily be lower than the usual fixed-node energy using the same antisymmetric trial function. The first conjecture is true, and is proved in this paper. The second is not, and numerical and analytical counterexamples are given. The question of whether the fixed-hypernode energy can be better than the usual bound remains open.
Leung Shingyu; Qian Jianliang
2010-11-20
We propose the backward phase flow method to implement the Fourier-Bros-Iagolnitzer (FBI)-transform-based Eulerian Gaussian beam method for solving the Schroedinger equation in the semi-classical regime. The idea of Eulerian Gaussian beams has been first proposed in . In this paper we aim at two crucial computational issues of the Eulerian Gaussian beam method: how to carry out long-time beam propagation and how to compute beam ingredients rapidly in phase space. By virtue of the FBI transform, we address the first issue by introducing the reinitialization strategy into the Eulerian Gaussian beam framework. Essentially we reinitialize beam propagation by applying the FBI transform to wavefields at intermediate time steps when the beams become too wide. To address the second issue, inspired by the original phase flow method, we propose the backward phase flow method which allows us to compute beam ingredients rapidly. Numerical examples demonstrate the efficiency and accuracy of the proposed algorithms.
Isothermal Multiphase Flash Calculations with the PC-SAFT Equation of State
Justo-Garcia, Daimler N.; Garcia-Sanchez, Fernando; Romero-Martinez, Ascencion
2008-03-05
A computational approach for isothermal multiphase flash calculations with the PC-SAFT (Perturbed-Chain Statistical Associating Fluid Theory) equation of state is presented. In the framework of the study of fluid phase equilibria of multicomponent systems, the general multiphase problem is the single most important calculation which consists of finding the correct number and types of phases and their corresponding equilibrium compositions such that the Gibbs energy of the system is a minimum. For solving this problem, the system Gibbs energy was minimized using a rigorous method for thermodynamic stability analysis to find the most stable state of the system. The efficiency and reliability of the approach to predict and calculate complex phase equilibria are illustrated by solving three typical problems encountered in the petroleum industry.
Relativistic equation of state at subnuclear densities in the Thomas-Fermi approximation
Zhang, Z. W.; Shen, H., E-mail: shennankai@gmail.com [School of Physics, Nankai University, Tianjin 300071 (China)
2014-06-20
We study the non-uniform nuclear matter using the self-consistent Thomas-Fermi approximation with a relativistic mean-field model. The non-uniform matter is assumed to be composed of a lattice of heavy nuclei surrounded by dripped nucleons. At each temperature T, proton fraction Y{sub p} , and baryon mass density ? {sub B}, we determine the thermodynamically favored state by minimizing the free energy with respect to the radius of the Wigner-Seitz cell, while the nucleon distribution in the cell can be determined self-consistently in the Thomas-Fermi approximation. A detailed comparison is made between the present results and previous calculations in the Thomas-Fermi approximation with a parameterized nucleon distribution that has been adopted in the widely used Shen equation of state.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Zhang, Yang; Chong, Edwin K. P.; Hannig, Jan; Estep, Donald
2013-01-01
We inmore » troduce a continuum modeling method to approximate a class of large wireless networks by nonlinear partial differential equations (PDEs). This method is based on the convergence of a sequence of underlying Markov chains of the network indexed by N , the number of nodes in the network. As N goes to infinity, the sequence converges to a continuum limit, which is the solution of a certain nonlinear PDE. We first describe PDE models for networks with uniformly located nodes and then generalize to networks with nonuniformly located, and possibly mobile, nodes. Based on the PDE models, we develop a method to control the transmissions in nonuniform networks so that the continuum limit is invariant under perturbations in node locations. This enables the networks to maintain stable global characteristics in the presence of varying node locations.« less
Accelerated molecular dynamics and equation-free methods for simulating diffusion in solids.
Deng, Jie; Zimmerman, Jonathan A.; Thompson, Aidan Patrick; Brown, William Michael; Plimpton, Steven James; Zhou, Xiao Wang; Wagner, Gregory John; Erickson, Lindsay Crowl
2011-09-01
Many of the most important and hardest-to-solve problems related to the synthesis, performance, and aging of materials involve diffusion through the material or along surfaces and interfaces. These diffusion processes are driven by motions at the atomic scale, but traditional atomistic simulation methods such as molecular dynamics are limited to very short timescales on the order of the atomic vibration period (less than a picosecond), while macroscale diffusion takes place over timescales many orders of magnitude larger. We have completed an LDRD project with the goal of developing and implementing new simulation tools to overcome this timescale problem. In particular, we have focused on two main classes of methods: accelerated molecular dynamics methods that seek to extend the timescale attainable in atomistic simulations, and so-called 'equation-free' methods that combine a fine scale atomistic description of a system with a slower, coarse scale description in order to project the system forward over long times.
Accelerating Time Integration for the Shallow Water Equations on the Sphere Using GPUs
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Archibald, R.; Evans, K. J.; Salinger, A.
2015-06-01
The push towards larger and larger computational platforms has made it possible for climate simulations to resolve climate dynamics across multiple spatial and temporal scales. This direction in climate simulation has created a strong need to develop scalable time-stepping methods capable of accelerating throughput on high performance computing. This work details the recent advances in the implementation of implicit time stepping on a spectral element cube-sphere grid using graphical processing units (GPU) based machines. We demonstrate how solvers in the Trilinos project are interfaced with ACME and GPU kernels can significantly increase computational speed of the residual calculations in themore » implicit time stepping method for the shallow water equations on the sphere. We show the optimization gains and data structure reorganization that facilitates the performance improvements.« less
A node-centered local refinement algorithm for poisson's equation in complex geometries
McCorquodale, Peter; Colella, Phillip; Grote, David P.; Vay, Jean-Luc
2004-05-04
This paper presents a method for solving Poisson's equation with Dirichlet boundary conditions on an irregular bounded three-dimensional region. The method uses a nodal-point discretization and adaptive mesh refinement (AMR) on Cartesian grids, and the AMR multigrid solver of Almgren. The discrete Laplacian operator at internal boundaries comes from either linear or quadratic (Shortley-Weller) extrapolation, and the two methods are compared. It is shown that either way, solution error is second order in the mesh spacing. Error in the gradient of the solution is first order with linear extrapolation, but second order with Shortley-Weller. Examples are given with comparison with the exact solution. The method is also applied to a heavy-ion fusion accelerator problem, showing the advantage of adaptivity.
Prediction of explosive cylinder tests using equations of state from the PANDA code
Kerley, G.I.; Christian-Frear, T.L.
1993-09-28
The PANDA code is used to construct tabular equations of state (EOS) for the detonation products of 24 explosives having CHNO compositions. These EOS, together with a reactive burn model, are used in numerical hydrocode calculations of cylinder tests. The predicted detonation properties and cylinder wall velocities are found to give very good agreement with experimental data. Calculations of flat plate acceleration tests for the HMX-based explosive LX14 are also made and shown to agree well with the measurements. The effects of the reaction zone on both the cylinder and flat plate tests are discussed. For TATB-based explosives, the differences between experiment and theory are consistently larger than for other compositions and may be due to nonideal (finite dimameter) behavior.
Shafii, Mohammad Ali Meidianti, Rahma Wildian, Fitriyani, Dian; Tongkukut, Seni H. J.; Arkundato, Artoto
2014-09-30
Theoretical analysis of integral neutron transport equation using collision probability (CP) method with quadratic flux approach has been carried out. In general, the solution of the neutron transport using the CP method is performed with the flat flux approach. In this research, the CP method is implemented in the cylindrical nuclear fuel cell with the spatial of mesh being conducted into non flat flux approach. It means that the neutron flux at any point in the nuclear fuel cell are considered different each other followed the distribution pattern of quadratic flux. The result is presented here in the form of quadratic flux that is better understanding of the real condition in the cell calculation and as a starting point to be applied in computational calculation.
A Singular Differential Equation Stemming from an Optimal Control Problem in Financial Economics
Brunovsky, Pavol; Cerny, Ales; Winkler, Michael
2013-10-15
We consider the ordinary differential equation x{sup 2} u'' = axu'+bu-c(u'-1){sup 2}, x Element-Of (0,x{sub 0}), with a Element-Of R, b Element-Of R , c>0 and the singular initial condition u(0)=0, which in financial economics describes optimal disposal of an asset in a market with liquidity effects. It is shown in the paper that if a+b<0 then no continuous solutions exist, whereas if a+b>0 then there are infinitely many continuous solutions with indistinguishable asymptotics near 0. Moreover, it is proved that in the latter case there is precisely one solution u corresponding to the choice x{sub 0}={infinity} which is such that 0{<=}u(x){<=}x for all x>0, and that this solution is strictly increasing and concave.
Higher-order time integration of Coulomb collisions in a plasma using Langevin equations
Dimits, A.M.; Cohen, B.I.; Caflisch, R.E.; Rosin, M.S.; Ricketson, L.F.
2013-06-01
The extension of Langevin-equation Monte-Carlo algorithms for Coulomb collisions from the conventional EulerMaruyama time integration to the next higher order of accuracy, the Milstein scheme, has been developed, implemented, and tested. This extension proceeds via a formulation of the angular scattering directly as stochastic differential equations in the fixed-frame spherical-coordinate velocity variables. Results from the numerical implementation show the expected improvement [O(?t) vs. O(?t{sup 1/2})] in the strong convergence rate both for the speed |v| and angular components of the scattering. An important result is that this improved convergence is achieved for the angular component of the scattering if and only if the area-integral terms in the Milstein scheme are included. The resulting Milstein scheme is of value as a step towards algorithms with both improved accuracy and efficiency. These include both algorithms with improved convergence in the averages (weak convergence) and multi-time-level schemes. The latter have been shown to give a greatly reduced cost for a given overall error level when compared with conventional Monte-Carlo schemes, and their performance is improved considerably when the Milstein algorithm is used for the underlying time advance versus the EulerMaruyama algorithm. A new method for sampling the area integrals is given which is a simplification of an earlier direct method and which retains high accuracy. This method, while being useful in its own right because of its relative simplicity, is also expected to considerably reduce the computational requirements for the direct conditional sampling of the area integrals that is needed for adaptive strong integration.
Callan-Symanzik equation and asymptotic freedom in the Marr-Shimamoto model
Scarfone, Leonard M.
2010-05-15
The exactly soluble nonrelativistic Marr-Shimamoto model was introduced in 1964 as an example of the Lee model with a propagator and a nontrivial vertex function. An exactly soluble relativistic version of this model, known as the Zachariasen model, has been found to be asymptotically free in terms of coupling constant renormalization at an arbitrary spacelike momentum and on the basis of exact solutions of the Gell-Mann-Low equations. This is accomplished with conventional cut-off regularization by setting up the Yukawa and Fermi coupling constants at Euclidean momenta in terms of on mass-shell couplings and then taking the asymptotic limit. In view of this background, it may be expected that an investigation of the nonrelativistic Marr-Shimamoto theory may also exhibit asymptotic freedom in view of its manifest mathematical similarity to that of the Zachariasen model. To prove this point, the present paper prefers to examine asymptotic freedom in the nonrelativistic Marr-Shimamoto theory using the powerful concepts of the renormalization group and the Callan-Symanzik equation, in conjunction with the specificity of dimensional regularization and on-shell renormalization. This approach is based on calculations of the Callan-Symanzik coefficients and determinations of the effective coupling constants. It is shown that the Marr-Shimamoto theory is asymptotically free for dimensions D<3 and for values of D>3 occurring in periodic intervals over the range of 0
(U) Equation of State and Compaction Modeling for CeO_{2}
Fredenburg, David A.; Chisolm, Eric D.
2014-10-20
Recent efforts have focused on developing a solid-liquid and three-phase equation of state (EOS) for CeO_{2}, while parallel experimental efforts have focused on obtaining high-fidelity Hugoniot measurements on CeO_{2} in the porous state. The current work examines the robustness of two CeO_{2} SESAME equations of state, a solid-liquid EOS, 96170, and a three-phase EOS, 96171, by validating the EOS against a suite of high-pressure shock compression experiments on initially porous CeO_{2}. At lower pressures compaction is considered by incorporating a two-term exponential form of the P-compaction model, using three separate definitions for ?(P). Simulations are executed spanning the partially compacted and fully compacted EOS regimes over the pressure range 0.5 - 109 GPa. Comparison of calculated Hugoniot results with those obtained experimentally indicate good agreement for all definitions of ?(P) with both the solid-liquid and three-phase EOS in the low-pressure compaction regime. At higher pressures the three-phase EOS does a better job at predicting the measured Hugoniot response, though at the highest pressures EOS 96171 predicts a less compliant response than is observed experimentally. Measured material velocity profiles of the shock-wave after it has transmitted through the powder are also compared with those simulated using with solid-liquid and three-phase EOS. Profiles lend insight into limits of the current experimental design, as well as the threshold conditions for the shock-induced phase transition in CeO_{2}.
Noise propagation in hybrid models of nonlinear systems: The GinzburgLandau equation
Taverniers, Sren; Alexander, Francis J.; Tartakovsky, Daniel M.
2014-04-01
Every physical phenomenon can be described by multiple models with varying degrees of fidelity. The computational cost of higher fidelity models (e.g., molecular dynamics simulations) is invariably higher than that of their lower fidelity counterparts (e.g., a continuum model based on differential equations). While the former might not be suitable for large-scale simulations, the latter are not universally valid. Hybrid algorithms provide a compromise between the computational efficiency of a coarse-scale model and the representational accuracy of a fine-scale description. This is achieved by conducting a fine-scale computation in subdomains where it is absolutely required (e.g., due to a local breakdown of a continuum model) and coupling it with a coarse-scale computation in the rest of a computational domain. We analyze the effects of random fluctuations generated by the fine-scale component of a nonlinear hybrid on the hybrid's overall accuracy and stability. Two variants of the time-dependent GinzburgLandau equation (GLE) and their discrete representations provided by a nearest-neighbor Ising model serve as a computational testbed. Our analysis shows that coupling these descriptions in a one-dimensional simulation leads to erroneous results. Adding a random source term to the GLE provides accurate prediction of the mean behavior of the quantity of interest (magnetization). It also allows the two GLE variants to correctly capture the strength of the microscale fluctuations. Our work demonstrates the importance of fine-scale noise in hybrid simulations, and suggests the need for replacing an otherwise deterministic coarse-scale component of the hybrid with its stochastic counterpart.
Exact solutions of (n+1)-dimensional Yang-Mills equations in curved space-time
Sanchez-Monroy, J.A.; Quimbay, C.J.
2012-09-15
In the context of a semiclassical approach where vectorial gauge fields can be considered as classical fields, we obtain exact static solutions of the SU(N) Yang-Mills equations in an (n+1)-dimensional curved space-time, for the cases n=1,2,3. As an application of the results obtained for the case n=3, we consider the solutions for the anti-de Sitter and Schwarzschild metrics. We show that these solutions have a confining behavior and can be considered as a first step in the study of the corrections of the spectra of quarkonia in a curved background. Since the solutions that we find in this work are valid also for the group U(1), the case n=2 is a description of the (2+1) electrodynamics in the presence of a point charge. For this case, the solution has a confining behavior and can be considered as an application of the planar electrodynamics in a curved space-time. Finally we find that the solution for the case n=1 is invariant under a parity transformation and has the form of a linear confining solution. - Highlights: Black-Right-Pointing-Pointer We study exact static confining solutions of the SU(N) Yang-Mills equations in an (n+1)-dimensional curved space-time. Black-Right-Pointing-Pointer The solutions found are a first step in the study of the corrections on the spectra of quarkonia in a curved background. Black-Right-Pointing-Pointer A expression for the confinement potential in low dimensionality is found.
Rare-event Simulation for Stochastic Korteweg-de Vries Equation
Xu, Gongjun; Lin, Guang; Liu, Jingchen
2014-01-01
An asymptotic analysis of the tail probabilities for the dynamics of a soliton wave $U(x,t)$ under a stochastic time-dependent force is developed. The dynamics of the soliton wave $U(x,t)$ is described by the Korteweg-de Vries Equation with homogeneous Dirichlet boundary conditions under a stochastic time-dependent force, which is modeled as a time-dependent Gaussian noise with amplitude $\\epsilon$. The tail probability we considered is $w(b) :=P(\\sup_{t\\in [0,T]} U(x,t) > b ),$ as $b\\rightarrow \\infty,$ for some constant $T>0$ and a fixed $x$, which can be interpreted as tail probability of the amplitude of water wave on shallow surface of a fluid or long internal wave in a density-stratified ocean. Our goal is to characterize the asymptotic behaviors of $w(b)$ and to evaluate the tail probability of the event that the soliton wave exceeds a certain threshold value under a random force term. Such rare-event calculation of $w(b)$ is very useful for fast estimation of the risk of the potential damage that could caused by the water wave in a density-stratified ocean modeled by the stochastic KdV equation. In this work, the asymptotic approximation of the probability that the soliton wave exceeds a high-level $b$ is derived. In addition, we develop a provably efficient rare-event simulation algorithm to compute $w(b)$. The efficiency of the algorithm only requires mild conditions and therefore it is applicable to a general class of Gaussian processes and many diverse applications.
Lehtikangas, O.; Tarvainen, T.; Kim, A.D.; Arridge, S.R.
2015-02-01
The radiative transport equation can be used as a light transport model in a medium with scattering particles, such as biological tissues. In the radiative transport equation, the refractive index is assumed to be constant within the medium. However, in biomedical media, changes in the refractive index can occur between different tissue types. In this work, light propagation in a medium with piece-wise constant refractive index is considered. Light propagation in each sub-domain with a constant refractive index is modeled using the radiative transport equation and the equations are coupled using boundary conditions describing Fresnel reflection and refraction phenomena on the interfaces between the sub-domains. The resulting coupled system of radiative transport equations is numerically solved using a finite element method. The approach is tested with simulations. The results show that this coupled system describes light propagation accurately through comparison with the Monte Carlo method. It is also shown that neglecting the internal changes of the refractive index can lead to erroneous boundary measurements of scattered light.
Moon, Seoksu; Bae, Choongsik; Abo-Serie, Essam
2010-02-15
Liquid film thickness inside two swirl injectors for direct injection (DI) gasoline engines was measured at different injection pressure conditions ranging from 2.0 to 7.0 MPa and then previous analytical and empirical equations were examined from the experimental results. Based on the evaluation, a new equation for the liquid film thickness inside the swirl injectors was introduced. A direct photography using two real scale transparent nozzles and a pulsed light source was employed to measure the liquid film thickness inside the swirl injectors. The error in the liquid film thickness measurement, generated from different refractive indices among transparent nozzle, fuel and air, was estimated and corrected based on the geometric optics. Two injectors which have different nozzle diameter and nozzle length were applied to introduce a more general empirical equation for the liquid film thickness inside the pressure swirl injectors. The results showed that the liquid film thickness remains constant at the injection pressures for direct injection gasoline engines while the ratio of nozzle length to nozzle diameter (L/D) shows significant effect on the liquid film thickness. The previously introduced analytical and empirical equations for relatively low injection pressure swirl injectors overestimated the effect of injection pressure at the operating range of high pressure swirl injectors and, in addition, the effect of L/D ratio and swirler geometry was rarely considered. A new empirical equation was suggested based on the experimental results by taking into account the effects of fuel properties, nozzle diameter, nozzle length and swirler geometry. (author)
Shadid, J.N.; Tuminaro, R.S.; Walker, H.F.
1997-02-01
The solution of the governing steady transport equations for momentum, heat and mass transfer in flowing fluids can be very difficult. These difficulties arise from the nonlinear, coupled, nonsymmetric nature of the system of algebraic equations that results from spatial discretization of the PDEs. In this manuscript the authors focus on evaluating a proposed nonlinear solution method based on an inexact Newton method with backtracking. In this context they use a particular spatial discretization based on a pressure stabilized Petrov-Galerkin finite element formulation of the low Mach number Navier-Stokes equations with heat and mass transport. The discussion considers computational efficiency, robustness and some implementation issues related to the proposed nonlinear solution scheme. Computational results are presented for several challenging CFD benchmark problems as well as two large scale 3D flow simulations.
Heydari, M.H.; Hooshmandasl, M.R.; Cattani, C.; Maalek Ghaini, F.M.
2015-02-15
Because of the nonlinearity, closed-form solutions of many important stochastic functional equations are virtually impossible to obtain. Thus, numerical solutions are a viable alternative. In this paper, a new computational method based on the generalized hat basis functions together with their stochastic operational matrix of It-integration is proposed for solving nonlinear stochastic It integral equations in large intervals. In the proposed method, a new technique for computing nonlinear terms in such problems is presented. The main advantage of the proposed method is that it transforms problems under consideration into nonlinear systems of algebraic equations which can be simply solved. Error analysis of the proposed method is investigated and also the efficiency of this method is shown on some concrete examples. The obtained results reveal that the proposed method is very accurate and efficient. As two useful applications, the proposed method is applied to obtain approximate solutions of the stochastic population growth models and stochastic pendulum problem.
McCorquodale, Peter; Ullrich, Paul A.; Johansen, Hans; Colella, Phillip
2015-06-16
We present a high-order finite-volume approach for solving the shallow-water equations on the sphere, using multiblock grids on the cubed-sphere. This approach combines a Runge--Kutta time discretization with a fourth-order accurate spatial discretization, and includes adaptive mesh refinement and refinement in time. Results of tests show fourth-order convergence for the shallow-water equations as well as for advection in a highly deformational flow. Hierarchical adaptive mesh refinement allows solution error to be achieved that is comparable to that obtained with uniform resolution of the most refined level of the hierarchy, but with many fewer operations.
Pilati, S.; Giorgini, S.; Sakkos, K.; Boronat, J.; Casulleras, J.
2006-10-15
By using exact path-integral Monte Carlo methods we calculate the equation of state of an interacting Bose gas as a function of temperature both below and above the superfluid transition. The universal character of the equation of state for dilute systems and low temperatures is investigated by modeling the interatomic interactions using different repulsive potentials corresponding to the same s-wave scattering length. The results obtained for the energy and the pressure are compared to the virial expansion for temperatures larger than the critical temperature. At very low temperatures we find agreement with the ground-state energy calculated using the diffusion Monte Carlo method.
An efficient permeability scaling-up technique applied to the discretized flow equations
Urgelli, D.; Ding, Yu
1997-08-01
Grid-block permeability scaling-up for numerical reservoir simulations has been discussed for a long time in the literature. It is now recognized that a full permeability tensor is needed to get an accurate reservoir description at large scale. However, two major difficulties are encountered: (1) grid-block permeability cannot be properly defined because it depends on boundary conditions; (2) discretization of flow equations with a full permeability tensor is not straightforward and little work has been done on this subject. In this paper, we propose a new method, which allows us to get around both difficulties. As the two major problems are closely related, a global approach will preserve the accuracy. So, in the proposed method, the permeability up-scaling technique is integrated in the discretized numerical scheme for flow simulation. The permeability is scaled-up via the transmissibility term, in accordance with the fluid flow calculation in the numerical scheme. A finite-volume scheme is particularly studied, and the transmissibility scaling-up technique for this scheme is presented. Some numerical examples are tested for flow simulation. This new method is compared with some published numerical schemes for full permeability tensor discretization where the full permeability tensor is scaled-up through various techniques. Comparing the results with fine grid simulations shows that the new method is more accurate and more efficient.
Entropy vs. energy waveform processing: A comparison based on the heat equation
Hughes, Michael S.; McCarthy, John E.; Bruillard, Paul J.; Marsh, Jon N.; Wickline, Samuel A.
2015-05-25
Virtually all modern imaging devices collect electromagnetic or acoustic waves and use the energy carried by these waves to determine pixel values to create what is basically an “energy” picture. However, waves also carry “information”, as quantified by some form of entropy, and this may also be used to produce an “information” image. Numerous published studies have demonstrated the advantages of entropy, or “information imaging”, over conventional methods. The most sensitive information measure appears to be the joint entropy of the collected wave and a reference signal. The sensitivity of repeated experimental observations of a slowly-changing quantity may be defined as the mean variation (i.e., observed change) divided by mean variance (i.e., noise). Wiener integration permits computation of the required mean values and variances as solutions to the heat equation, permitting estimation of their relative magnitudes. There always exists a reference, such that joint entropy has larger variation and smaller variance than the corresponding quantities for signal energy, matching observations of several studies. Moreover, a general prescription for finding an “optimal” reference for the joint entropy emerges, which also has been validated in several studies.
Entropy vs. energy waveform processing: A comparison based on the heat equation
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Hughes, Michael S.; McCarthy, John E.; Bruillard, Paul J.; Marsh, Jon N.; Wickline, Samuel A.
2015-05-25
Virtually all modern imaging devices collect electromagnetic or acoustic waves and use the energy carried by these waves to determine pixel values to create what is basically an “energy” picture. However, waves also carry “information”, as quantified by some form of entropy, and this may also be used to produce an “information” image. Numerous published studies have demonstrated the advantages of entropy, or “information imaging”, over conventional methods. The most sensitive information measure appears to be the joint entropy of the collected wave and a reference signal. The sensitivity of repeated experimental observations of a slowly-changing quantity may be definedmore » as the mean variation (i.e., observed change) divided by mean variance (i.e., noise). Wiener integration permits computation of the required mean values and variances as solutions to the heat equation, permitting estimation of their relative magnitudes. There always exists a reference, such that joint entropy has larger variation and smaller variance than the corresponding quantities for signal energy, matching observations of several studies. Moreover, a general prescription for finding an “optimal” reference for the joint entropy emerges, which also has been validated in several studies.« less
Equation of State Model Quality Study for Ti and Ti64.
Wills, Ann Elisabet; Sanchez, Jason James
2015-02-01
Titanium and the titanium alloy Ti64 (6% aluminum, 4% vanadium and the balance ti- tanium) are materials used in many technologically important applications. To be able to computationally investigate and design these applications, accurate Equations of State (EOS) are needed and in many cases also additional constitutive relations. This report describes what data is available for constructing EOS for these two materials, and also describes some references giving data for stress-strain constitutive models. We also give some suggestions for projects to achieve improved EOS and constitutive models. In an appendix, we present a study of the 'cloud formation' issue observed in the ALEGRA code. This issue was one of the motivating factors for this literature search of available data for constructing improved EOS for Ti and Ti64. However, the study shows that the cloud formation issue is only marginally connected to the quality of the EOS, and, in fact, is a physical behavior of the system in question. We give some suggestions for settings in, and improvements of, the ALEGRA code to address this computational di culty.
Wang, Wei; Shu, Chi-Wang; Yee, H.C.; Sjgreen, Bjrn
2012-01-01
A new high order finite-difference method utilizing the idea of Harten ENO subcell resolution method is proposed for chemical reactive flows and combustion. In reaction problems, when the reaction time scale is very small, e.g., orders of magnitude smaller than the fluid dynamics time scales, the governing equations will become very stiff. Wrong propagation speed of discontinuity may occur due to the underresolved numerical solution in both space and time. The present proposed method is a modified fractional step method which solves the convection step and reaction step separately. In the convection step, any high order shock-capturing method can be used. In the reaction step, an ODE solver is applied but with the computed flow variables in the shock region modified by the Harten subcell resolution idea. For numerical experiments, a fifth-order finite-difference WENO scheme and its anti-diffusion WENO variant are considered. A wide range of 1D and 2D scalar and Euler system test cases are investigated. Studies indicate that for the considered test cases, the new method maintains high order accuracy in space for smooth flows, and for stiff source terms with discontinuities, it can capture the correct propagation speed of discontinuities in very coarse meshes with reasonable CFL numbers.
An equation of state for partially ionized plasmas: The Coulomb contribution to the free energy
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Kilcrease, D. P.; Colgan, J.; Hakel, P.; Fontes, C. J.; Sherrill, M. E.
2015-06-20
We have previously developed an equation of state (EOS) model called ChemEOS (Hakel and Kilcrease, Atomic Processes in Plasmas, Eds., J. Cohen et al., AIP, 2004) for a plasma of interacting ions, atoms and electrons. It is based on a chemical picture of the plasma and is derived from an expression for the Helmholtz free energy of the interacting species. All other equilibrium thermodynamic quantities are then obtained by minimizing this free energy subject to constraints, thus leading to a thermodynamically consistent EOS. The contribution to this free energy from the Coulomb interactions among the particles is treated using themore » method of Chabrier and Potekhin (Phys. Rev. E 58, 4941 (1998)) which we have adapted for partially ionized plasmas. This treatment is further examined and is found to give rise to unphysical behavior for various elements at certain values of the density and temperature where the Coulomb coupling begins to become significant and the atoms are partially ionized. We examine the source of this unphysical behavior and suggest corrections that produce acceptable results. The sensitivity of the thermodynamic properties and frequency-dependent opacity of iron is examined with and without these corrections. Lastly, the corrected EOS is used to determine the fractional ion populations and level populations for a new generation of OPLIB low-Z opacity tables currently being prepared at Los Alamos National Laboratory with the ATOMIC code.« less
Techniques for Equation-of-State Measurements on a Three-Stage Light-Gas Gun
REINHART,WILLIAM D.; CHHABILDAS,LALIT C.; THORNHILL,T.G.
2000-09-14
Understanding high pressure behavior materials is necessary in order to address the physical processes associated with hypervelocity impact events related to space science applications including orbital debris impact and impact lethality. Until recently the highest-pressure states in materials have been achieved from impact loading techniques from two-stage light gas guns with velocity limitations of approximately 81cm/s. In this paper, techniques that are being developed and implemented to obtain the needed shock loading parameters (Hugoniot states) for material characterization studies, namely shock velocity and particle velocity, will be described at impact velocities up to 11 kds. The determination of equation-of-state (EOS) and thermodynamic states of materials in the regimes of extreme high pressures is now attainable utilizing the three-stage launcher. What is new in this report is that these techniques are being implemented for use at engagement velocities never before attained utilizing two-stage light-gas gun technology. The design and test methodologies used to determine Hugoniot states are described in this paper.
Generalized Dix equation and analytic treatment of normal-movement velocity for anisotropic media
Grechka, V.; Tsvankin, I.; Cohen, J.K.
1999-03-01
Despite the complexity of wave propagation in anisotropic media, reflection moveout on conventional common-midpoint (CMP) spreads is usually well described by the normal-moveout (NMO) velocity defined in the zero-offset limit. In their recent work, Grechka and Tsvankin showed that the azimuthal variation of NMO velocity around a fixed CMP location generally has an elliptical form (i.e., plotting the NMO velocity in each azimuthal direction produces an ellipse) and is determined by the spatial derivatives of the slowness vector evaluated at the CMP location. This formalism is used here to develop exact solutions for the NMO velocity in anisotropic media of arbitrary symmetry. The high accuracy of the NMO expressions is illustrated by comparison with ray-traced reflection traveltimes in piecewise-homogeneous, azimuthally anisotropic models. The authors also apply the generalized Dix equation to field data collected over a fractured reservoir and show that P-wave moveout can be used to find the depth-dependent fracture orientation and to evaluate the magnitude of azimuthal anisotropy.
Equation of state of bcc-Mo by static volume compression to 410 GPa
Akahama, Yuichi; Hirao, Naohisa; Ohishi, Yasuo; Singh, Anil K.
2014-12-14
Unit cell volumes of Mo and Pt have been measured simultaneously to ≈400 GPa by x-ray powder diffraction using a diamond anvil cell and synchrotron radiation source. The body-centered cubic (bcc) phase of Mo was found to be stable up to 410 GPa. The equation of state (EOS) of bcc-Mo was determined on the basis of Pt pressure scale. A fit of Vinet EOS to the volume compression data gave K{sub 0} = 262.3(4.6) GPa, K{sub 0}′ = 4.55(16) with one atmosphere atomic volume V{sub 0} = 31.155(24) A{sup 3}. The EOS was in good agreement with the previous ultrasonic data within pressure difference of 2.5%–3.3% in the multimegabar range, though the EOS of Mo proposed from a shock compression experiment gave lower pressure by 7.2%–11.3% than the present EOS. The agreement would suggest that the Pt pressure scale provides an accurate pressure value in an ultra-high pressure range.
Zhou, Zhennan
2014-09-01
In this paper, we approximate the semi-classical Schrdinger equation in the presence of electromagnetic field by the Hagedorn wave packets approach. By operator splitting, the Hamiltonian is divided into the modified part and the residual part. The modified Hamiltonian, which is the main new idea of this paper, is chosen by the fact that Hagedorn wave packets are localized both in space and momentum so that a crucial correction term is added to the truncated Hamiltonian, and is treated by evolving the parameters associated with the Hagedorn wave packets. The residual part is treated by a Galerkin approximation. We prove that, with the modified Hamiltonian only, the Hagedorn wave packets dynamics give the asymptotic solution with error O(?{sup 1/2}), where ? is the scaled Planck constant. We also prove that, the Galerkin approximation for the residual Hamiltonian can reduce the approximation error to O(?{sup k/2}), where k depends on the number of Hagedorn wave packets added to the dynamics. This approach is easy to implement, and can be naturally extended to the multidimensional cases. Unlike the high order Gaussian beam method, in which the non-constant cut-off function is necessary and some extra error is introduced, the Hagedorn wave packets approach gives a practical way to improve accuracy even when ? is not very small.
An equation of state for partially ionized plasmas: The Coulomb contribution to the free energy
Kilcrease, D. P.; Colgan, J.; Hakel, P.; Fontes, C. J.; Sherrill, M. E.
2015-06-20
We have previously developed an equation of state (EOS) model called ChemEOS (Hakel and Kilcrease, Atomic Processes in Plasmas, Eds., J. Cohen et al., AIP, 2004) for a plasma of interacting ions, atoms and electrons. It is based on a chemical picture of the plasma and is derived from an expression for the Helmholtz free energy of the interacting species. All other equilibrium thermodynamic quantities are then obtained by minimizing this free energy subject to constraints, thus leading to a thermodynamically consistent EOS. The contribution to this free energy from the Coulomb interactions among the particles is treated using the method of Chabrier and Potekhin (Phys. Rev. E 58, 4941 (1998)) which we have adapted for partially ionized plasmas. This treatment is further examined and is found to give rise to unphysical behavior for various elements at certain values of the density and temperature where the Coulomb coupling begins to become significant and the atoms are partially ionized. We examine the source of this unphysical behavior and suggest corrections that produce acceptable results. The sensitivity of the thermodynamic properties and frequency-dependent opacity of iron is examined with and without these corrections. Lastly, the corrected EOS is used to determine the fractional ion populations and level populations for a new generation of OPLIB low-Z opacity tables currently being prepared at Los Alamos National Laboratory with the ATOMIC code.
Equations of state of ice VI and ice VII at high pressure and high temperature
Bezacier, Lucile; Hanfland, Michael; Journaux, Baptiste; Perrillat, Jean-Philippe; Cardon, Herv; Daniel, Isabelle
2014-09-14
High-pressure H{sub 2}O polymorphs among which ice VI and ice VII are abundant in the interiors of large icy satellites and exo-planets. Knowledge of the elastic properties of these pure H{sub 2}O ices at high-temperature and high-pressure is thus crucial to decipher the internal structure of icy bodies. In this study we assess for the first time the pressure-volume-temperature (PVT) relations of both polycrystalline pure ice VI and ice VII at high pressures and temperatures from 1 to 9 GPa and 300 to 450 K, respectively, by using in situ synchrotron X-ray diffraction. The PVT data are adjusted to a second-order Birch-Murnaghan equation of state and give V{sub 0} = 14.17(2) cm{sup 3}?mol{sup ?1}, K{sub 0} = 14.05(23) GPa, and ?{sub 0} = 14.6(14) 10{sup ?5} K{sup ?1} for ice VI and V{sub 0} = 12.49(1) cm{sup 3}?mol{sup ?1}, K{sub 0} = 20.15(16) GPa, and ?{sub 0} = 11.6(5) 10{sup ?5} K{sup ?1} for ice VII.
Pusa, M.; Leppaenen, J.
2012-07-01
The Chebyshev Rational Approximation Method (CRAM) has been recently introduced by the authors for solving the burnup equations with excellent results. This method has been shown to be capable of simultaneously solving an entire burnup system with thousands of nuclides both accurately and efficiently. The method was prompted by an analysis of the spectral properties of burnup matrices and it can be characterized as the best rational approximation on the negative real axis. The coefficients of the rational approximation are fixed and have been reported for various approximation orders. In addition to these coefficients, implementing the method only requires a linear solver. This paper describes an efficient method for solving the linear systems associated with the CRAM approximation. The introduced direct method is based on sparse Gaussian elimination where the sparsity pattern of the resulting upper triangular matrix is determined before the numerical elimination phase. The stability of the proposed Gaussian elimination method is discussed based on considering the numerical properties of burnup matrices. Suitable algorithms are presented for computing the symbolic factorization and numerical elimination in order to facilitate the implementation of CRAM and its adoption into routine use. The accuracy and efficiency of the described technique are demonstrated by computing the CRAM approximations for a large test case with over 1600 nuclides. (authors)
Ono, M.; Wada, K.; Kitada, T.
2012-07-01
Simplified treatment of resonance elastic scattering model considering thermal motion of heavy nuclides and the energy dependence of the resonance cross section was implemented into NJOY [1]. In order to solve deterministic slowing down equation considering the effect of up-scattering without iterative calculations, scattering kernel for heavy nuclides is pre-calculated by the formula derived by Ouisloumen and Sanchez [2], and neutron spectrum in up-scattering term is expressed by NR approximation. To check the verification of the simplified treatment, the treatment is applied to U-238 for the energy range from 4 eV to 200 eV. Calculated multi-group capture cross section of U-238 is greater than that of conventional method and the increase of the capture cross sections is remarkable as the temperature becomes high. Therefore Doppler coefficient calculated in UO{sub 2} fuel pin is calculated more negative value than that on conventional method. The impact on Doppler coefficient is equivalent to the results of exact treatment of resonance elastic scattering reported in previous studies [2-7]. The agreement supports the validation of the simplified treatment and therefore this treatment is applied for other heavy nuclide to evaluate the Doppler coefficient in MOX fuel. The result shows that the impact of considering thermal agitation in resonance scattering in Doppler coefficient comes mainly from U-238 and that of other heavy nuclides such as Pu-239, 240 etc. is not comparable in MOX fuel. (authors)
Gonalves, W. C.; Sardella, E.; UNESP-Universidade Estadual Paulista, IPMet-Instituto de Pesquisas Meteorolgicas, CEP 17048-699 Bauru, SP ; Becerra, V. F.; Miloevi?, M. V.; Peeters, F. M.; Departamento de Fsica, Universidade Federal do Cear, 60455-900 Fortaleza, Cear
2014-04-15
The time-dependent Ginzburg-Landau formalism for (d + s)-wave superconductors and their representation using auxiliary fields is investigated. By using the link variable method, we then develop suitable discretization of these equations. Numerical simulations are carried out for a mesoscopic superconductor in a homogeneous perpendicular magnetic field which revealed peculiar vortex states.
Bazalii, B V; Degtyarev, S P
2013-07-31
An elliptic boundary-value problem for second-order equations with nonnegative characteristic form is investigated in the situation when there is a weak degeneracy on the boundary of the domain. A priori estimates are obtained for solutions and the problem is proved to be solvable in some weighted Hlder spaces. Bibliography: 18 titles.
Ita, B. I.; Anake, T. A.
2014-11-12
The Schrdinger equation with the interaction of inversely quadratic effective and Mie-type potential has been solved for any angular momentum quantum number l using the Nikiforov-Uvarov method. The bound state energy eigenvalues and the corresponding un-normalized eigenfunctions are obtained in terms of the Laguerre polynomials. Several cases of the potential are also considered and their eigen values obtained.
UESC Training for Utility Representatives
Broader source: Energy.gov [DOE]
Webinar covers utility energy service contracts (UESC), which allow utilities to provide their Federal agencies with comprehensive energy and water efficiency improvements and demand-reduction services.
FAQS Qualification Card Facility Representative
Broader source: Energy.gov [DOE]
A key element for the Departments Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA).
PSCAD Modules Representing PV Generator
Muljadi, E.; Singh, M.; Gevorgian, V.
2013-08-01
Photovoltaic power plants (PVPs) have been growing in size, and the installation time is very short. With the cost of photovoltaic (PV) panels dropping in recent years, it can be predicted that in the next 10 years the contribution of PVPs to the total number of renewable energy power plants will grow significantly. In this project, the National Renewable Energy Laboratory (NREL) developed a dynamic modeling of the modules to be used as building blocks to develop simulation models of single PV arrays, expanded to include Maximum Power Point Tracker (MPPT), expanded to include PV inverter, or expanded to cover an entire PVP. The focus of the investigation and complexity of the simulation determines the components that must be included in the simulation. The development of the PV inverter was covered in detail, including the control diagrams. Both the current-regulated voltage source inverter and the current-regulated current source inverter were developed in PSCAD. Various operations of the PV inverters were simulated under normal and abnormal conditions. Symmetrical and unsymmetrical faults were simulated, presented, and discussed. Both the three-phase analysis and the symmetrical component analysis were included to clarify the understanding of unsymmetrical faults. The dynamic model validation was based on the testing data provided by SCE. Testing was conducted at SCE with the focus on the grid interface behavior of the PV inverter under different faults and disturbances. The dynamic model validation covers both the symmetrical and unsymmetrical faults.
Program Analyst (Contracting Officer Representative)
Broader source: Energy.gov [DOE]
This position reports directly to the Office Director for PBPE. The incumbent of this position analyzes, evaluates and/or advises management on the effectiveness of complex and overarching EIA...
Boyarinov, V. F. Kondrushin, A. E. Fomichenko, P. A.
2014-12-15
Two-dimensional time-dependent finite-difference equations of the surface harmonics method (SHM) for the description of the neutron transport are derived for square-lattice reactors. These equations are implemented in the SUHAM-TD code. Verification of the derived equations and the developed code are performed by the example of known test problems, and the potential and efficiency of the SHM as applied to the solution of the time-dependent neutron transport equation in the diffusion approximation in two-dimensional geometry are demonstrated. These results show the substantial advantage of SHM over direct finite-difference modeling in computational costs.
Conditions for critical effects in the mass action kinetics equations for water radiolysis
Wittman, Richard S.; Buck, Edgar C.; Mausolf, Edward J.; McNamara, Bruce K.; Smith, Frances N.; Soderquist, Chuck Z.
2014-12-26
We report on a subtle global feature of the mass action kinetics equations for water radiolysis that results in predictions of a critical behavior in H2O2 and associated radical concentrations. While radiolysis kinetics has been studied extensively in the past, it is only in recent years that high speed computing has allowed the rapid exploration of the solution over widely varying dose and compositional conditions. We explore the radiolytic production of H2O2 under various externally fixed conditions of molecular H2 and O2 that have been regarded as problematic in the literature specifically, jumps in predicted concentrations, and inconsistencies between predictions and experiments have been reported for alpha radiolysis. We computationally map-out a critical concentration behavior for alpha radiolysis kinetics using a comprehensive set of reactions. We then show that all features of interest are accurately reproduced with 15 reactions. An analytical solution for steady-state concentrations of the 15 reactions reveals regions in [H2] and [O2] where the H2O2 concentration is not unique both stable and unstable concentrations exist. The boundary of this region can be characterized analytically as a function of G-values and rate constants independent of dose rate. Physically, the boundary can be understood as separating a region where a steady-state H2O2 concentration exists, from one where it does not exist without a direct decomposition reaction. We show that this behavior is consistent with reported alpha radiolysis data and that no such behavior should occur for gamma radiolysis. We suggest experiments that could verify or discredit a critical concentration behavior for alpha radiolysis and could place more restrictive ranges on G-values from derived relationships between them.
Conditions for critical effects in the mass action kinetics equations for water radiolysis
Wittman, Richard S.; Buck, Edgar C.; Mausolf, Edward J.; McNamara, Bruce K.; Smith, Frances N.; Soderquist, Chuck Z.
2014-11-25
We report on a subtle global feature of the mass action kinetics equations for water radiolysis that results in predictions of a critical behavior in H2O2 and associated radical concentrations. While radiolysis kinetics has been studied extensively in the past, it is only in recent years that high speed computing has allowed the rapid exploration of the solution over widely varying dose and compositional conditions. We explore the radiolytic production of H2O2 under various externally fixed conditions of molecular H2 and O2 that have been regarded as problematic in the literature specifically, jumps in predicted concentrations, and inconsistencies between predictions and experiments have been reported for alpha radiolysis. We computationally map-out a critical concentration behavior for alpha radiolysis kinetics using a comprehensive set of reactions. We then show that all features of interest are accurately reproduced with 15 reactions. An analytical solution for steady-state concentrations of the 15 reactions reveals regions in [H2] and [O2] where the H2O2 concentration is not unique both stable and unstable concentrations exist. The boundary of this region can be characterized analytically as a function of G-values and rate constants independent of dose rate. Physically, the boundary can be understood as separating a region where a steady-state H2O2 concentration exists, from one where it does not exist without a direct decomposition reaction. We show that this behavior is consistent with reported alpha radiolysis data and that no such behavior should occur for gamma radiolysis. We suggest experiments that could verify or discredit a critical concentration behavior for alpha radiolysis and could place more restrictive ranges on G-values from derived relationships between them.
High Temperature, high pressure equation of state density correlations and viscosity correlations
Tapriyal, D.; Enick, R.; McHugh, M.; Gamwo, I.; Morreale, B.
2012-07-31
Global increase in oil demand and depleting reserves has derived a need to find new oil resources. To find these untapped reservoirs, oil companies are exploring various remote and harsh locations such as deep waters in Gulf of Mexico, remote arctic regions, unexplored deep deserts, etc. Further, the depth of new oil/gas wells being drilled has increased considerably to tap these new resources. With the increase in the well depth, the bottomhole temperature and pressure are also increasing to extreme values (i.e. up to 500 F and 35,000 psi). The density and viscosity of natural gas and crude oil at reservoir conditions are critical fundamental properties required for accurate assessment of the amount of recoverable petroleum within a reservoir and the modeling of the flow of these fluids within the porous media. These properties are also used to design appropriate drilling and production equipment such as blow out preventers, risers, etc. With the present state of art, there is no accurate database for these fluid properties at extreme conditions. As we have begun to expand this experimental database it has become apparent that there are neither equations of state for density or transport models for viscosity that can be used to predict these fundamental properties of multi-component hydrocarbon mixtures over a wide range of temperature and pressure. Presently, oil companies are using correlations based on lower temperature and pressure databases that exhibit an unsatisfactory predictive capability at extreme conditions (e.g. as great as {+-} 50%). From the perspective of these oil companies that are committed to safely producing these resources, accurately predicting flow rates, and assuring the integrity of the flow, the absence of an extensive experimental database at extreme conditions and models capable of predicting these properties over an extremely wide range of temperature and pressure (including extreme conditions) makes their task even more daunting.
SESAME 96170, a solid-liquid equation of state for CeO2
Chisolm, Eric D.
2014-05-02
I describe an equation of state (EOS) for the low-pressure solid phase and liquid phase of cerium (IV) oxide, CeO_{2}. The models and parameters used to calculate the EOS are presented in detail, and I compare with data for the full-density crystal. Hugoniot data are available only for high-porosity powders, and I discuss difficulties in comparing with such data. I have constructed SESAME 96170, an EOS for cerium (IV) oxide that includes the ambient solid and liquid phases. The EOS extends over the full standard SESAME range, but should not be used at low temperatures and high densities because of the lack of a high-pressure solid phase. I have described the models used to compute the three terms of the EOS (cold curve, nuclear, and thermal electronic), and I have given the parameters used in the models. They were determined by comparison with experimental data at P = 1 atm, including the constant-pressure specific heat, coefficient of thermal expansion, and melting and boiling points. The EOS compares well with data in its intended range of validity, but the presence of high-frequency optical modes in its phonon spectrum limits the agreement of our models with thermal data. The next step is to construct a multiphase EOS that includes the low- and high-pressure solid phases and the liquid. The DAC data from Duclos will most strongly constrain the parameters of the high-pressure solid. A remaining issue is the comparison of the crystal-density EOS with experimental Hugoniot data, which are taken at much lower initial data because the samples are porous powders. A satisfactory means of modeling porosity, allowing comparison of theory and experiment, has not yet been produced.
R. A. Berry; R. Saurel; O. LeMetayer
2010-11-01
For the simulation of light water nuclear reactor coolant flows, general two-phase models (valid for all volume fractions) have been generally used which, while allowing for velocity disequilibrium, normally force pressure equilibrium between the phases (see, for example, the numerous models of this type described in H. Stdtke, Gasdynamic Aspects of Two-Phase Flow, Wiley-VCH, 2006). These equations are not hyperbolic, their physical wave dynamics are incorrect, and their solution algorithms rely on dubious truncation error induced artificial viscosity to render them numerically well posed over a portion of the computational spectrum. The inherent problems of the traditional approach to multiphase modeling, which begins with an averaged system of (ill-posed) partial differential equations (PDEs) which are then discretized to form a numerical scheme, are avoided by employing a new homogenization method known as the Discrete Equation Method (DEM) (R. Abgrall and R. Saurel, Discrete Equations for Physical and Numerical Compressible Multiphase Mixtures, J. Comp. Phys. 186, 361-396, 2003). This method results in well-posed hyperbolic systems, this property being important for transient flows. This also allows a clear treatment of non-conservative terms (terms involving interfacial variables and volume fraction gradients) permitting the solution of interface problems without conservation errors, this feature being important for the direct numerical simulation of two-phase flows. Unlike conventional methods, the averaged system of PDEs for the mixture are not used, and the DEM method directly obtains a well-posed discrete equation system from the single-phase conservation laws, producing a numerical scheme which accurately computes fluxes for arbitrary number of phases and solves non-conservative products. The method effectively uses a sequence of single phase Riemann problem solutions. Phase interactions are accounted for by Riemann solvers at each interface. Non-conservative terms are correctly approximated. Some of the closure relations missing from the traditional approach are automatically obtained. Lastly, the continuous equation system resulting from the discrete equations can be identified by taking the continuous limit with weak-wave assumptions. In this work, this approach is tested by constructing a DEM model for the flow of two compressible phases in 1-D ducts of spatially varying cross-section with explicit time integration. An analytical equation of state is included for both water vapor and liquid phases, and a realistic interphase mass transfer model is developed based on interphase heat transfer. A robust compliment of boundary conditions are developed and discussed. Though originally conceived as a first step toward implict time integration of the DEM method (to relieve time step size restrictions due to stiffness and to achieve tighter coupling of equations) in multidimensions, this model offers some unique capabilities for incorporation into next generation light water reactor safety analysis codes. We demonstrate, on a converging-diverging two-phase nozzle, that this well-posed, 2-pressure, 2-velocity DEM model can be integrated to a realistic and meaningful steady-state with both phases treated as compressible.
Conjugate heat and mass transfer in the lattice Boltzmann equation method
Li, LK; Chen, C; Mei, RW; Klausner, JF
2014-04-22
An interface treatment for conjugate heat and mass transfer in the lattice Boltzmann equation method is proposed based on our previously proposed second-order accurate Dirichlet and Neumann boundary schemes. The continuity of temperature (concentration) and its flux at the interface for heat (mass) transfer is intrinsically satisfied without iterative computations, and the interfacial temperature (concentration) and their fluxes are conveniently obtained from the microscopic distribution functions without finite-difference calculations. The present treatment takes into account the local geometry of the interface so that it can be directly applied to curved interface problems such as conjugate heat and mass transfer in porous media. For straight interfaces or curved interfaces with no tangential gradient, the coupling between the interfacial fluxes along the discrete lattice velocity directions is eliminated and thus the proposed interface schemes can be greatly simplified. Several numerical tests are conducted to verify the applicability and accuracy of the proposed conjugate interface treatment, including (i) steady convection-diffusion in a channel containing two different fluids, (ii) unsteady convection-diffusion in the channel, (iii) steady heat conduction inside a circular domain with two different solid materials, and (iv) unsteady mass transfer from a spherical droplet in an extensional creeping flow. The accuracy and order of convergence of the simulated interior temperature (concentration) field, the interfacial temperature (concentration), and heat (mass) flux are examined in detail and compared with those obtained from the "half-lattice division" treatment in the literature. The present analysis and numerical results show that the half-lattice division scheme is second-order accurate only when the interface is fixed at the center of the lattice links, while the present treatment preserves second-order accuracy for arbitrary link fractions. For curved interfaces, the present treatment yields second-order accurate interior and interfacial temperatures (concentrations) and first-order accurate interfacial heat (mass) flux. An increase of order of convergence by one degree is obtained for each of these three quantities compared with the half-lattice division scheme. The surface-averaged Sherwood numbers computed in test (iv) agree well with published results.
Thompson, K.G.
2000-11-01
In this work, we develop a new spatial discretization scheme that may be used to numerically solve the neutron transport equation. This new discretization extends the family of corner balance spatial discretizations to include spatial grids of arbitrary polyhedra. This scheme enforces balance on subcell volumes called corners. It produces a lower triangular matrix for sweeping, is algebraically linear, is non-negative in a source-free absorber, and produces a robust and accurate solution in thick diffusive regions. Using an asymptotic analysis, we design the scheme so that in thick diffusive regions it will attain the same solution as an accurate polyhedral diffusion discretization. We then refine the approximations in the scheme to reduce numerical diffusion in vacuums, and we attempt to capture a second order truncation error. After we develop this Upstream Corner Balance Linear (UCBL) discretization we analyze its characteristics in several limits. We complete a full diffusion limit analysis showing that we capture the desired diffusion discretization in optically thick and highly scattering media. We review the upstream and linear properties of our discretization and then demonstrate that our scheme captures strictly non-negative solutions in source-free purely absorbing media. We then demonstrate the minimization of numerical diffusion of a beam and then demonstrate that the scheme is, in general, first order accurate. We also note that for slab-like problems our method actually behaves like a second-order method over a range of cell thicknesses that are of practical interest. We also discuss why our scheme is first order accurate for truly 3D problems and suggest changes in the algorithm that should make it a second-order accurate scheme. Finally, we demonstrate 3D UCBL's performance on several very different test problems. We show good performance in diffusive and streaming problems. We analyze truncation error in a 3D problem and demonstrate robustness in a coarsely discretized problem that contains sharp boundary layers. We also examine eigenvalue and fixed source problems with mixed-shape meshes, anisotropic scattering and multi-group cross sections. Finally, we simulate the MOX fuel assembly in the Advance Test Reactor.
Guo Shimin; Wang Hongli; Mei Liquan
2012-06-15
By combining the effects of bounded cylindrical geometry, azimuthal and axial perturbations, the nonlinear dust acoustic waves (DAWs) in an unmagnetized plasma consisting of negatively charged dust grains, nonextensive ions, and nonextensive electrons are studied in this paper. Using the reductive perturbation method, a (3 + 1)-dimensional variable-coefficient cylindrical Korteweg-de Vries (KdV) equation describing the nonlinear propagation of DAWs is derived. Via the homogeneous balance principle, improved F-expansion technique and symbolic computation, the exact traveling and solitary wave solutions of the KdV equation are presented in terms of Jacobi elliptic functions. Moreover, the effects of the plasma parameters on the solitary wave structures are discussed in detail. The obtained results could help in providing a good fit between theoretical analysis and real applications in space physics and future laboratory plasma experiments where long-range interactions are present.
Sjostrom, Travis; Crockett, Scott
2015-09-02
The liquid regime equation of state of silicon dioxide SiO_{2} is calculated via quantum molecular dynamics in the density range of 5 to 15 g/cc and with temperatures from 0.5 to 100 eV, including the α-quartz and stishovite phase Hugoniot curves. Below 8 eV calculations are based on Kohn-Sham density functional theory (DFT), and above 8 eV a new orbital-free DFT formulation, presented here, based on matching Kohn-Sham DFT calculations is employed. Recent experimental shock data are found to be in very good agreement with the current results. Finally both experimental and simulation data are used in constructing a new liquid regime equation of state table for SiO_{2}.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Sjostrom, Travis; Crockett, Scott
2015-09-02
The liquid regime equation of state of silicon dioxide SiO2 is calculated via quantum molecular dynamics in the density range of 5 to 15 g/cc and with temperatures from 0.5 to 100 eV, including the α-quartz and stishovite phase Hugoniot curves. Below 8 eV calculations are based on Kohn-Sham density functional theory (DFT), and above 8 eV a new orbital-free DFT formulation, presented here, based on matching Kohn-Sham DFT calculations is employed. Recent experimental shock data are found to be in very good agreement with the current results. Finally both experimental and simulation data are used in constructing a newmore » liquid regime equation of state table for SiO2.« less
Not Available
1980-01-01
Seven witnesses representing rural electric utilities and cooperatives spoke at a June 4, 1980 hearing to discuss which inflationary factors are increasing rural electric rates. The Committee recognized that the problem is not unique to rural systems. In their testimony, the witnesses noted increasing urbanization of rural areas; the cost of generating plant construction, fuel, and operating expenses; general economic factors of inflation and high interest rates; and regulations as major contributing factors to utility requests for rate increases. The hearing record includes their testimony, additional material submitted for the record, and responses to questions from the subcommittee. (DCK)
Kirkham, Harold
2012-03-31
NERC has proposed a standard to use to specify clearances between vegetation and power lines. The purpose of the rule is to reduce the probability of flashover to a calculably low level. This report was commissioned by FERCs Office of Electrical Reliability. The scope of the study was analysis of the mathematics and documentation of the technical justification behind the application of the Gallet equation and the assumptions used in the technical reference paper
Ita, B. I.
2014-11-12
By using the Nikiforov-Uvarov (NU) method, the Schrdinger equation has been solved for the interaction of inversely quadratic Hellmann (IQHP) and inversely quadratic potential (IQP) for any angular momentum quantum number, l. The energy eigenvalues and their corresponding eigenfunctions have been obtained in terms of Laguerre polynomials. Special cases of the sum of these potentials have been considered and their energy eigenvalues also obtained.
Microsoft Word - NETL-TRS-5-2014_High-Temperature, High-Pressure Equation of State.20141003.docx
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
High-Temperature, High-Pressure Equation of State: Solidification of Hydrocarbons and Viscosity Measurement of Krytox Oil Using Rolling-Ball Viscometer 3 October 2014 Office of Fossil Energy NETL-TRS-5-2014 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility
Figueroa, C.; Brizuela, H.; Heluani, S. P.
2014-05-21
The backscattering coefficient is a magnitude whose measurement is fundamental for the characterization of materials with techniques that make use of particle beams and particularly when performing microanalysis. In this work, we report the results of an analytic method to calculate the backscattering and absorption coefficients of electrons in similar conditions to those of electron probe microanalysis. Starting on a five level states ladder model in 3D, we deduced a set of integro-differential coupled equations of the coefficients with a method know as invariant embedding. By means of a procedure proposed by authors, called method of convergence, two types of approximate solutions for the set of equations, namely complete and simple solutions, can be obtained. Although the simple solutions were initially proposed as auxiliary forms to solve higher rank equations, they turned out to be also useful for the estimation of the aforementioned coefficients. In previous reports, we have presented results obtained with the complete solutions. In this paper, we present results obtained with the simple solutions of the coefficients, which exhibit a good degree of fit with the experimental data. Both the model and the calculation method presented here can be generalized to other techniques that make use of different sorts of particle beams.
Kelly, Aaron; Markland, Thomas E.; Brackbill, Nora
2015-03-07
In this article, we show how Ehrenfest mean field theory can be made both a more accurate and efficient method to treat nonadiabatic quantum dynamics by combining it with the generalized quantum master equation framework. The resulting mean field generalized quantum master equation (MF-GQME) approach is a non-perturbative and non-Markovian theory to treat open quantum systems without any restrictions on the form of the Hamiltonian that it can be applied to. By studying relaxation dynamics in a wide range of dynamical regimes, typical of charge and energy transfer, we show that MF-GQME provides a much higher accuracy than a direct application of mean field theory. In addition, these increases in accuracy are accompanied by computational speed-ups of between one and two orders of magnitude that become larger as the system becomes more nonadiabatic. This combination of quantum-classical theory and master equation techniques thus makes it possible to obtain the accuracy of much more computationally expensive approaches at a cost lower than even mean field dynamics, providing the ability to treat the quantum dynamics of atomistic condensed phase systems for long times.
Li, Zhihui; Ma, Qiang; Wu, Junlin; Jiang, Xinyu; Zhang, Hanxin
2014-12-09
Based on the Gas-Kinetic Unified Algorithm (GKUA) directly solving the Boltzmann model equation, the effect of rotational non-equilibrium is investigated recurring to the kinetic Rykov model with relaxation property of rotational degrees of freedom. The spin movement of diatomic molecule is described by moment of inertia, and the conservation of total angle momentum is taken as a new Boltzmann collision invariant. The molecular velocity distribution function is integrated by the weight factor on the internal energy, and the closed system of two kinetic controlling equations is obtained with inelastic and elastic collisions. The optimization selection technique of discrete velocity ordinate points and numerical quadrature rules for macroscopic flow variables with dynamic updating evolvement are developed to simulate hypersonic flows, and the gas-kinetic numerical scheme is constructed to capture the time evolution of the discretized velocity distribution functions. The gas-kinetic boundary conditions in thermodynamic non-equilibrium and numerical procedures are studied and implemented by directly acting on the velocity distribution function, and then the unified algorithm of Boltzmann model equation involving non-equilibrium effect is presented for the whole range of flow regimes. The hypersonic flows involving non-equilibrium effect are numerically simulated including the inner flows of shock wave structures in nitrogen with different Mach numbers of 1.5-Ma-25, the planar ramp flow with the whole range of Knudsen numbers of 0.0009-Kn-10 and the three-dimensional re-entering flows around tine double-cone body.
Goffin, Mark A.; Buchan, Andrew G.; Dargaville, Steven; Pain, Christopher C.; Smith, Paul N.; Smedley-Stevenson, Richard P.
2015-01-15
A method for applying goal-based adaptive methods to the angular resolution of the neutral particle transport equation is presented. The methods are applied to an octahedral wavelet discretisation of the spherical angular domain which allows for anisotropic resolution. The angular resolution is adapted across both the spatial and energy dimensions. The spatial domain is discretised using an inner-element sub-grid scale finite element method. The goal-based adaptive methods optimise the angular discretisation to minimise the error in a specific functional of the solution. The goal-based error estimators require the solution of an adjoint system to determine the importance to the specified functional. The error estimators and the novel methods to calculate them are described. Several examples are presented to demonstrate the effectiveness of the methods. It is shown that the methods can significantly reduce the number of unknowns and computational time required to obtain a given error. The novelty of the work is the use of goal-based adaptive methods to obtain anisotropic resolution in the angular domain for solving the transport equation. -- Highlights: Wavelet angular discretisation used to solve transport equation. Adaptive method developed for the wavelet discretisation. Anisotropic angular resolution demonstrated through the adaptive method. Adaptive method provides improvements in computational efficiency.
Davis, M. J.; Kiefer, J. H.; Chemistry; Univ. of Illinois at Chicago
2002-05-08
We model recent experiments on the vibrational relaxation of oxirane in a shock tube. A master equation is developed which includes self-collisions of the oxirane, leading to a nonlinear master equation. This master equation is also applied to a more limited study of vibrational relaxation for cyclopropane in a shock tube. The time variation of the temperature dependence of the bath is also included in the calculations. Good agreement between the modeling and experiments are obtained through a fit to the energy transfer parameters. These fits demonstrate that self-collisions are dominant in promoting the relaxation even for mixtures of Kr and oxirane where the oxirane is 2% and 4% dilute. This dominance comes from two sources: (1) much larger energy transfer per collision for oxirane-oxirane collisions and (2) resonant energy transfer effects. For cyclopropane, some of the good fits show smaller energy transfer characteristics for self-collisions than buffer gas collisions. Even in these cases self-collisions are an important part of the energy transfer process through resonant energy transfer effects.
ARM - Publications: Science Team Meeting Documents: Characterization...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
at SIRTA Haeffelin, Martial Institut Pierre Simon Laplace Chepfer, Helene IPSL LMD, France Protat, A. Institut Pierre Simon Laplace Morille, Y. Institut Pierre Simon Laplace...
Not Available
1982-01-01
The exercise of corporate power and money as well as the effect on energy policy were the underlying issues in a hearing on the proposed merger of Mobil and Marathon oil companies. The use of capital in this way would deny funds for economic recovery and energy development at a time when the oil companies complain that they need more financial incentives. The companies' response in the direction of mergers suggest that deregulation and tax incentives are not developing solutions to energy supply, but are creating new problems. The witnesses included representatives of Ohio, DOE's Office of Competition, and independent oil jobbers and distributors, who argued against the merger. Additional letters and statement from the witnesses follow their testimony. (DCK)
Not Available
1980-01-01
In a report to the US House of Representatives Committee on Science and Technology, the Advisory Panel defines the most critical energy problem facing the US: obtaining a sufficient supply of liquid hydrocarbons for transportation fuel and for other applications where substitution would be difficult, costly, and time-consuming. Any substantial contribution from synthetic fuels must involve the use of coal, oil shale, and biomass, with the raw materials coming from as many different regions of the country as possible. The panel makes recommendations regarding (1) the emphasis of the Department of Energy's synthetic-fuel demonstration program, (2) implementation of a synthetic-fuel production program, and (3) mitigation of the environmental and socioeconomic impacts of synthetic-fuel production. The panel specifically maintains that federal assistance to commercial-scale projects should be available on a competitive basis to those organizations willing to take substantial marketing risks.
Not Available
1990-01-01
This bill was introduced into the U.S. House of Representatives on May 10, 1990 to amend the Internal Revenue Code of 1986. This bill reduces emissions of carbon dioxide by imposing a tax on certain fuels based on their carbon content. Separate sections are included which impose tax on coal, tax on petroleum, and tax on natural gas. The tax rate on coal will be $3.00 per ton for 1991, $6.00 per ton for 1992, $9.00 per ton for 1993, and $12 per ton for 1994. The tax rate on petroleum will be $.65 per barrel for 1991, $1.30 per barrel for 1992, $1.95 per barrel for 1993, and $2.60 per barrel for 1994. The tax rate on natural gas will be $.08 per MCF for 1991, $.16 per MCF for 1992, $.24 per MCF for 1993, and $.32 per MCF for 1994.
Beam position monitor sensitivity for low-[beta] beams
Shafer, R.E. )
1994-10-10
Design of a beam position monitor (BPM) which is sensitive to low velo charged particle beams is considered. Quantitative estimates are made for the corrections to the conventional approximations to solutions of the Laplace Equation in two-dimensions when a BPM is used to measure to position of low velocity (low-[beta]) beams. (AIP)
Bergmann, D.J.
1990-06-01
Several well known iterative methods for solving Poisson's equation, including Strongly Implicit Procedure and several preconditioned conjugate gradient methods are first applied to a problem with simple boundary conditions and a known solution. Then a problem with more complicated boundary conditions, similar to those encountered when modeling AVLIS plasmas, is solved. Differences in the solutions of the various methods are examined through the use of Fourier analysis. It was found that combinations of different iterative schemes will in some cases be the most efficient method of solution. 22 refs., 29 figs.
Guo, Shimin Mei, Liquan; Zhang, Zhengqiang
2015-05-15
Nonlinear propagation of ion-acoustic waves is investigated in a one-dimensional, unmagnetized plasma consisting of positive ions, negative ions, and nonthermal electrons featuring Tsallis distribution that is penetrated by a negative-ion-beam. The classical Gardner equation is derived to describe nonlinear behavior of ion-acoustic waves in the considered plasma system via reductive perturbation technique. We convert the classical Gardner equation into the time-fractional Gardner equation by Agrawal's method, where the time-fractional term is under the sense of Riesz fractional derivative. Employing variational iteration method, we construct solitary wave solutions of the time-fractional Gardner equation with initial condition which depends on the nonlinear and dispersion coefficients. The effect of the plasma parameters on the compressive and rarefactive ion-acoustic solitary waves is also discussed in detail.
Kashiwa, B. A.
2010-12-01
Abstract A thermodynamically consistent and fully general equationof state (EOS) for multifield applications is described. EOS functions are derived from a Helmholtz free energy expressed as the sum of thermal (fluctuational) and collisional (condensedphase) contributions; thus the free energy is of the MieGruneisen1 form. The phasecoexistence region is defined using a parameterized saturation curve by extending the form introduced by Guggenheim,2 which scales the curve relative to conditions at the critical point. We use the zerotemperature condensedphase contribution developed by Barnes,3 which extends the ThomasFermiDirac equation to zero pressure. Thus, the functional form of the EOS could be called MGGB (for Mie GruneisenGuggenheimBarnes). Substancespecific parameters are obtained by fitting the lowdensity energy to data from the Sesame4 library; fitting the zerotemperature pressure to the Sesame cold curve; and fitting the saturation curve and latent heat to laboratory data,5 if available. When suitable coexistence data, or Sesame data, are not available, then we apply the Principle of Corresponding States.2 Thus MGGB can be thought of as a numerical recipe for rendering the tabular Sesame EOS data in an analytic form that includes a proper coexistence region, and which permits the accurate calculation of derivatives associated with compressibility, expansivity, Joule coefficient, and specific heat, all of which are required for multifield applications. 1
Dyall, K.G.
1997-06-01
The introduction of relativistic terms into the nonrelativistic all-electron Schr{umlt o}dinger equation is achieved by the method of normalized elimination of the small component (ESC) within the matrix representation of the modified Dirac equation. In contrast to the usual method of ESC, the method presented retains the correct relativistic normalization, and permits the construction of a single matrix relating the large and small component coefficient matrices for an entire set of positive energy one-particle states, thus enabling the whole set to be obtained with a single diagonalization. This matrix is used to define a modified set of one- and two-electron integrals which have the same appearance as the nonrelativistic integrals, and to which they reduce in the limit {alpha}{r_arrow}0. The normalized method corresponds to a projection of the Dirac{endash}Fock matrix onto the positive energy states. Inclusion of the normalization reduces the discrepancy between the eigenvalues of the ESC approach and the Dirac eigenvalues for a model problem from order {alpha}{sup 2} to order {alpha}{sup 4}, providing a closer approximation to the original, uneliminated solutions. The transition between the nonrelativistic and relativistic limits is achieved by simply scaling the fine structure constant {alpha}. {copyright} {ital 1997 American Institute of Physics.}
Pelanti, Marica; Shyue, Keh-Ming
2014-02-15
We model liquidgas flows with cavitation by a variant of the six-equation single-velocity two-phase model with stiff mechanical relaxation of SaurelPetitpasBerry (Saurel et al., 2009) [9]. In our approach we employ phasic total energy equations instead of the phasic internal energy equations of the classical six-equation system. This alternative formulation allows us to easily design a simple numerical method that ensures consistency with mixture total energy conservation at the discrete level and agreement of the relaxed pressure at equilibrium with the correct mixture equation of state. Temperature and Gibbs free energy exchange terms are included in the equations as relaxation terms to model heat and mass transfer and hence liquidvapor transition. The algorithm uses a high-resolution wave propagation method for the numerical approximation of the homogeneous hyperbolic portion of the model. In two dimensions a fully-discretized scheme based on a hybrid HLLC/Roe Riemann solver is employed. Thermo-chemical terms are handled numerically via a stiff relaxation solver that forces thermodynamic equilibrium at liquidvapor interfaces under metastable conditions. We present numerical results of sample tests in one and two space dimensions that show the ability of the proposed model to describe cavitation mechanisms and evaporation wave dynamics.
Rocha, Carlos Murilo Romero; Morgon, Nelson Henrique; Custodio, Rogrio; Pereira, Douglas Henrique; Departamento de Cincias Exatas e Biotecnolgicas, Universidade Federal do Tocantins, Campus de Gurupi, 77410-530 Gurupi, Tocantins
2013-11-14
G3(MP2)//B3 theory was modified to incorporate compact effective potential (CEP) pseudopotentials, providing a theoretical alternative referred to as G3(MP2)//B3-CEP for calculations involving first-, second-, and third-row representative elements. The G3/05 test set was used as a standard to evaluate the accuracy of the calculated properties. G3(MP2)//B3-CEP theory was applied to the study of 247 standard enthalpies of formation, 104 ionization energies, 63 electron affinities, 10 proton affinities, and 22 atomization energies, comprising 446 experimental energies. The mean absolute deviations compared with the experimental data for all thermochemical results presented an accuracy of 1.4 kcal mol{sup ?1} for G3(MP2)//B3 and 1.6 kcal mol{sup ?1} for G3(MP2)//B3-CEP. Approximately 75% and 70% of the calculated properties are found with accuracy between 2 kcal mol{sup ?1} for G3(MP2)//B3 and G3(MP2)//B3-CEP, respectively. Considering a confidence interval of 95%, the results may oscillate between 4.2 kcal mol{sup ?1} and 4.6 kcal mol{sup ?1}, respectively. The overall statistical behavior indicates that the calculations using pseudopotential present similar behavior with the all-electron theory. Of equal importance to the accuracy is the CPU time, which was reduced by between 10% and 40%.
Cole, Jesse; Gieler, Brandon; Heisler, Devon; Palisoc, Maryknoll; Williams, Amanda; Dohnalkova, Alice; Ming, Hong; Yu, Tian T.; Dodsworth, Jeremy A.; Li, Wen J.; Hedlund, Brian P.
2013-08-15
Several closely-related, thermophilic, and cellulolytic bacterial strains, designated JKG1T, JKG2, JKG3, JKG4, and JKG5, were isolated from a cellulolytic enrichment (corn stover) incubated in the water column of Great Boiling Spring, NV. Strain JKG1T had cells of a diameter of 0.7 - 0.9 ?m and length of ~2.0 ?m that formed non-branched multicellular filaments reaching >300 ?m. Spores were not formed and dense liquid cultures were red. The temperature range for growth was 45-65 C, with an optimum of 55 C. The pH range for growth was 5.6-9.0, with an optimum of 7.5. JKG1T grew as an aerobic heterotroph, utilizing glucose, sucrose, xylose, arabinose, cellobiose, carboxymethylcellulose, filter paper, microcrystalline cellulose, xylan, starch, casamino acids, tryptone, peptone, yeast extract, acetate, citrate, lactate, pyruvate, and glycerol as sole carbon sources, and was not observed to photosynthesize. The cells stained Gram-negative. Phylogenetic analysis using 16S rRNA gene sequences placed the new isolates in the class Chloroflexia, but distant from other cultivated members, with the highest sequence identity of 82.5% to Roseiflexus castenholzii. The major quinone was menaquinone-9; no ubiquinones were detected. The major cellular fatty acids (>5%) were C18:0, anteiso-C17:0, iso-C18:0, and iso-C17:0. C16:0, iso-C16:0, and C17:0. The peptidoglycan amino acids were alanine, ornithine, glutamic acid, serine, and asparagine. Whole-cell sugars included mannose, rhamnose, glucose, galactose, ribose, arabinose, and xylose. Morphological, phylogenetic, and chemotaxonomic results suggest that JKG1T is representative of a new lineage within the class Chloroflexia, which we propose to designate Kallotenue papyrolyticum gen. nov., sp. nov., Kallotenuaceae fam. nov., Kallotenuales ord. nov.
Kimbrell, W.C.; Bassiouni, Z.A.; Bourgoyne, A.T.
1997-01-13
Significant innovations have been made in seismic processing and reservoir simulation. In addition, significant advances have been made in deviated and horizontal drilling technologies. Effective application of these technologies along with improved integrated resource management methods offer opportunities to significantly increase Gulf of Mexico production, delay platform abandonments, and preserve access to a substantial remaining oil target for both exploratory drilling and advanced recovery processes. In an effort to illustrate the impact that these new technologies and sources of information can have upon the estimates of recoverable oil in the Gulf of Mexico, additional and detailed data was collected for two previously studied reservoirs: a South March Island reservoir operated by Taylor Energy and Gulf of Mexico reservoir operated by Mobil, whose exact location has been blind-coded at their request, and an additional third representative reservoir in the Gulf of Mexico, the KEKF-1 reservoir in West Delta Block 84 Field. The new data includes reprocessed 2-D seismic data, newly acquired 3-D data, fluid data, fluid samples, pressure data, well test data, well logs, and core data/samples. The new data was used to refine reservoir and geologic characterization of these reservoirs. Further laboratory investigation also provided additional simulation input data in the form of PVT properties, relative permeabilities, capillary pressures, and water compatibility. Geologic investigations were also conducted to refine the models of mud-rich submarine fan architectures used by seismic analysts and reservoir engineers. These results were also used, in part, to assist in the recharacterization of these reservoirs.
Kim, Young-Min; Zhou, Ying; Gao, Yang; Fu, Joshua S.; Johnson, Brent; Huang, Cheng; Liu, Yang
2015-01-01
BACKGROUND: The spatial pattern of the uncertainty in climate air pollution health impact has rarely been studied due to the lack of high-resolution model simulations, especially under the latest Representative Concentration Pathways (RCPs). OBJECTIVES: We estimated county-level ozone (O3) and PM2.5 related excess mortality (EM) and evaluated the associated uncertainties in the continental United States in the 2050s under RCP4.5 and RCP8.5. METHODS: Using dynamically downscaled climate model simulations, we calculated changes in O3 and PM2.5 levels at 12 km resolution between the future (2057-2059) and present (2001-2004) under two RCP scenarios. Using concentration-response relationships in the literature and projected future populations, we estimated EM attributable to the changes in O3 and PM2.5. We finally analyzed the contribution of input variables to the uncertainty in the county-level EM estimation using Monte Carlo simulation. RESULTS: O3-related premature deaths in the continental U.S. were estimated to be 1,082 deaths/year under RCP8.5 (95% confidence interval (CI): -288 to 2,453), and -5,229 deaths/year under RCP4.5 (-7,212 to -3,246). Simulated PM2.5 changes resulted in a significant decrease in EM under the two RCPs. The uncertainty of O3-related EM estimates was mainly caused by RCP scenarios, whereas that of PM2.5-related EMs was mainly from concentration-response functions. CONCLUSION: EM estimates attributable to climate change-induced air pollution change as well as the associated uncertainties vary substantially in space, and so are the most influential input variables. Spatially resolved data is crucial to develop effective mitigation and adaptation policy.
Ticknor, Christopher; Collins, Lee A.; Kress, Joel D.
2015-08-04
We present simulations of a four component mixture of HCNO with orbital free molecular dynamics (OFMD). These simulations were conducted for 5200 eV with densities ranging between 0.184 and 36.8 g/cm^{3}. We extract the equation of state from the simulations and compare to average atom models. We found that we only need to add a cold curve model to find excellent agreement. In addition, we studied mass transport properties. We present fits to the self-diffusion and shear viscosity that are able to reproduce the transport properties over the parameter range studied. We compare these OFMD results to models based on the Coulomb coupling parameter and one-component plasmas.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Huang, Lei; Zuo, Chao; Idir, Mourad; Qu, Weijuan; Asundi, Anand
2015-04-21
A novel transport-of-intensity equation (TIE) based phase retrieval method is proposed with putting an arbitrarily-shaped aperture into the optical wavefield. In this arbitrarily-shaped aperture, the TIE can be solved under non-uniform illuminations and even non-homogeneous boundary conditions by iterative discrete cosine transforms with a phase compensation mechanism. Simulation with arbitrary phase, arbitrary aperture shape, and non-uniform intensity distribution verifies the effective compensation and high accuracy of the proposed method. Experiment is also carried out to check the feasibility of the proposed method in real measurement. Comparing to the existing methods, the proposed method is applicable for any types of phasemore » distribution under non-uniform illumination and non-homogeneous boundary conditions within an arbitrarily-shaped aperture, which enables the technique of TIE with hard aperture become a more flexible phase retrieval tool in practical measurements.« less
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Ticknor, Christopher; Collins, Lee A.; Kress, Joel D.
2015-08-04
We present simulations of a four component mixture of HCNO with orbital free molecular dynamics (OFMD). These simulations were conducted for 5–200 eV with densities ranging between 0.184 and 36.8 g/cm3. We extract the equation of state from the simulations and compare to average atom models. We found that we only need to add a cold curve model to find excellent agreement. In addition, we studied mass transport properties. We present fits to the self-diffusion and shear viscosity that are able to reproduce the transport properties over the parameter range studied. We compare these OFMD results to models based onmore » the Coulomb coupling parameter and one-component plasmas.« less