Sample records for landfills convert biogas

  1. IEA-Renewable Energy Technologies, Bioenergy Agreement Task 37: Energy from Biogas and Landfill Gas

    E-Print Network [OSTI]

    EFP-06 IEA- Renewable Energy Technologies, Bioenergy Agreement Task 37: Energy from Biogas-Bioenergy, Task 37- Energy from Biogas and Landfill Gas", via samarbejde, informationsudveksling, fælles analyser. biogas fra anaerob udrådning (AD) som en integreret gylle og affalds behandlings teknologi. Arbejdet

  2. Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulase C.TierIdaho County EmploysCNG

  3. 5th International Landfills Conference -Sardinia'95, Cagliari, 1995 DEVELOPMENT AND VALIDATION OF A METHOD FOR MEASURING BIOGAS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    OF A METHOD FOR MEASURING BIOGAS EMISSIONS USING A DYNAMIC CHAMBER Zbigniew POKRYSZKA, Christian TAUZIEDE biogas flow, designing a dynamic flux chamber. Preliminary bench tests revealed the necessity of defining gas releases. A mixture of gases (known as biogas) is produced from organic waste, and consists mainly

  4. Air Liquide - Biogas & Fuel Cells

    Broader source: Energy.gov (indexed) [DOE]

    Concept Landfill WWTP digester Biogas membrane Pipeline quality methane CH4 Pipeline Hydrogen Production To Fuel Cell Vehicles Stationary Fuel Cells With H2...

  5. Quebec Biogas Program (Quebec, Canada)

    Broader source: Energy.gov [DOE]

    In 2005, the Quebec government adopted a regulation aimed to minimize the impact of biogas from landfills. The Regulation is in respect to landfills and incineration of residual materials,...

  6. Economic Feasibility of Converting Landfill Gas to Natural Gas for Use as a Transportation Fuel in Refuse Trucks 

    E-Print Network [OSTI]

    Sprague, Stephen M.

    2011-02-22T23:59:59.000Z

    -to-energy (LFGTE) projects are underway in an attempt to curb emissions and make better use of this energy. The methane that is extracted from these landfills can be converted into a transportation fuel, sold as a pipeline-quality natural gas, operate turbines...

  7. Renewable Hydrogen Potential from Biogas in the United States

    SciTech Connect (OSTI)

    Saur, G.; Milbrandt, A.

    2014-07-01T23:59:59.000Z

    This analysis updates and expands upon previous biogas studies to include total potential and net availability of methane in raw biogas with respect to competing demands and includes a resource assessment of four sources of biogas: (1) wastewater treatment plants, including domestic and a new assessment of industrial sources; (2) landfills; (3) animal manure; and (4) a new assessment of industrial, institutional, and commercial sources. The results of the biogas resource assessment are used to estimate the potential production of renewable hydrogen from biogas as well as the fuel cell electric vehicles that the produced hydrogen might support.

  8. Biological Removal of Siloxanes from Landfill and Digester Gases

    E-Print Network [OSTI]

    Biological Removal of Siloxanes from Landfill and Digester Gases: Opportunities and Challenges S U) presents challenges for using landfill and digester gases as energy fuels because of the formation volatilize from waste at landfills and wastewater treatment plants (1). As a result, biogas produced

  9. Economic Feasibility of Converting Landfill Gas to Natural Gas for Use as a Transportation Fuel in Refuse Trucks

    E-Print Network [OSTI]

    Sprague, Stephen M.

    2011-02-22T23:59:59.000Z

    to global climate change, diesel-fueled refuse trucks are one of the most concentrated sources of health-threatening air pollution in most cities. The landfills that they ultimately place their waste in are the second largest source of human-related methane...

  10. Aerobic landfill bioreactor

    DOE Patents [OSTI]

    Hudgins, Mark P (Aiken, SC); Bessette, Bernard J (Aiken, SC); March, John (Winterville, GA); McComb, Scott T. (Andersonville, SC)

    2000-01-01T23:59:59.000Z

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  11. Aerobic landfill bioreactor

    DOE Patents [OSTI]

    Hudgins, Mark P (Aiken, SC); Bessette, Bernard J (Aiken, SC); March, John C (Winterville, GA); McComb, Scott T. (Andersonville, SC)

    2002-01-01T23:59:59.000Z

    The present invention includes a system of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  12. If current capacity were to be expanded so that all of the non-recycled municipal solid waste that is currently sent to U.S. landfills each year could instead be converted to energy, we could generate enough electricity

    E-Print Network [OSTI]

    If current capacity were to be expanded so that all of the non-recycled municipal solid waste at Columbia University assessed the energy value of municipal solid waste that is currently sent to U so that we could convert our non-recycled waste to alternative energy instead of landfilling it, we

  13. Renewable Energy 32 (2007) 12431257 Methane generation in landfills

    E-Print Network [OSTI]

    Columbia University

    2007-01-01T23:59:59.000Z

    dioxide. In his 2003 review of energy recovery from landfill gas, Willumsen [2,3] reported that as of 2001 followed by Germany and United Kingdom (Table 1). The capacity of most landfill gas-fuelled generators, close to Los Angeles California; the biogas is combusted in a steam boiler that powers a 50-MW turbine

  14. Biogas Potential on Long Island, New York: A Quantification Study

    SciTech Connect (OSTI)

    Mahajan, D.; Patel, S.; Tonjes, D.

    2011-08-25T23:59:59.000Z

    Biogas is the product of anaerobic digestion of waste, whether occurring spontaneously in landfills or under controlled conditions in digesters. Biogas is viewed as an important energy source in current efforts to reduce the use of fossil fuels and dependency on imported resources. Several studies on the assessment of biogas potential have been made at regional, national, and global scales. However, because it is not economically feasible to transport biogas feedstock over long distances, it is more appropriate to consider local waste sources for their potential to produce biogas. An assessment of the biogas potential on Long Island, based on the review of local landfills, wastewater treatment plants, solid waste generation and management, and agricultural waste, found that 234 x 10{sup 6} m{sup 3} of methane (CH{sub 4}) from biogas might be harvestable, although substantial barriers for complete exploitation exist. This number is equivalent to 2.52 TW-h of electricity, approximately 12% of fossil fuel power generation on Long Island. This work can serve as a template for other areas to rapidly create or approximate biogas potentials, especially for suburban U.S. locations that are not usually thought of as sources of renewable energy.

  15. Long term performance of boilers using landfill gas

    SciTech Connect (OSTI)

    Gulledge, J.; Cosulich, J.; Ahmed, S.L.

    1996-11-01T23:59:59.000Z

    The US EPA estimates that approximately 600 to 700 landfills produce sufficient gas for profitable energy production in the United States. The gas from these landfills could provide enough electricity for about 3 million homes. Yet, there are only about 120 operating landfill gas to energy facilities. A lack of information on successful projects may cause part of this shortfall. This paper provides information on 4 successful projects using landfill gas fired boilers, some of which have operated over a decade. Natural gas fired boilers can be easily converted to bum landfill gas. Several modifications to Districts` boilers, described in this paper, have resulted in many years of safe and corrosion free operation. Most of the modifications are minor. Conversion can be accomplished for under $100,000 in many cases. Information on the reliability and longevity of landfill gas supplies is also provided. Gas from a given landfill is generally available over 99.5% of the time with about 5 brief flow interruptions annually. Actual data from 3 landfills document the high availability of landfill gas. To show the longevity of landfill gas flows, data from the Palos Verdes Landfill are provided. The Palos Verdes Landfill closed in 1980. The Palos Verdes. Landfill Gas to Energy Facility is currently producing over 8 megawatts. Landfill gas pretreatment is not required for boilers. In cases where the landfill gas is being piped offsite, it is usually cost effective to dehydrate the landfill gas. Landfill gas bums cleaner than natural gas. NO{sub x} emissions from landfill gas fired boilers are lower because of the carbon dioxide in the landfill gas. Trace organic destruction efficiency is usually over 99% in landfill gas fired boilers. In addition, flare emissions are eliminated when landfill gas is used to displace fossil fuels in boilers.

  16. Biogas and Fuel Cells Workshop Summary Report: Proceedings from the Biogas and Fuel Cells Workshop, Golden, Colorado, June 11-13, 2012

    SciTech Connect (OSTI)

    Not Available

    2013-01-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) held a Biogas and Fuel Cells Workshop June 11-13, 2012, in Golden, Colorado, to discuss biogas and waste-to-energy technologies for fuel cell applications. The overall objective was to identify opportunities for coupling renewable biomethane with highly efficient fuel cells to produce electricity; heat; combined heat and power (CHP); or combined heat, hydrogen and power (CHHP) for stationary or motive applications. The workshop focused on biogas sourced from wastewater treatment plants (WWTPs), landfills, and industrial facilities that generate or process large amounts of organic waste, including large biofuel production facilities (biorefineries).

  17. Capturing, Purifying, and Liquefying Landfill Gas for Transportation Fuel

    E-Print Network [OSTI]

    landfill biomethane to liquefied natural gas for use as transportation fuel. The aim is to develop, and liquefaction of biomethane. The resulting liquefied natural gas will consist of cryogenically liquefied. This project will also serve as a model for similar facilities in California to use native biogas resources

  18. Greenhouse gas emissions in biogas production systems

    E-Print Network [OSTI]

    Dittert, Klaus; Senbayram, Mehmet; Wienforth, Babette; Kage, Henning; Muehling, Karl H

    2009-01-01T23:59:59.000Z

    from soils amended with biogas waste compared to otherCrutzen et al. 2008). Biogas production from organicamounts of fermentation effluent (biogas waste) remain after

  19. H2A Biomethane Model Documentation and a Case Study for Biogas From Dairy Farms

    SciTech Connect (OSTI)

    Saur, G.; Jalalzadeh, A.

    2010-12-01T23:59:59.000Z

    The new H2A Biomethane model was developed to estimate the levelized cost of biomethane by using the framework of the vetted original H2A models for hydrogen production and delivery. For biomethane production, biogas from sources such as dairy farms and landfills is upgraded by a cleanup process. The model also estimates the cost to compress and transport the product gas via the pipeline to export it to the natural gas grid or any other potential end-use site. Inputs include feed biogas composition and cost, required biomethane quality, cleanup equipment capital and operations and maintenance costs, process electricity usage and costs, and pipeline delivery specifications.

  20. Greenhouse gas emissions in biogas production systems

    E-Print Network [OSTI]

    Dittert, Klaus; Senbayram, Mehmet; Wienforth, Babette; Kage, Henning; Muehling, Karl H

    2009-01-01T23:59:59.000Z

    biogas waste) remain after fermentation which may serve as valuable nutrient source for agricultural

  1. Managing Manure with Biogas Recovery Systems

    E-Print Network [OSTI]

    Mukhtar, Saqib

    emissions and capture biogas--a useful source of energy. About Anaerobic Digestion Biogas recovery systems manure in an oxygen-free environment. One of the natural prod- ucts of anaerobic digestion is biogas Digestion Biogas recovery systems are a proven technology. Currently, more than 30 digester systems

  2. Optimizing the Design of Biomass Hydrogen Supply Chains Using Real-World Spatial Distributions: A Case Study Using California Rice Straw

    E-Print Network [OSTI]

    Parker, Nathan C

    2007-01-01T23:59:59.000Z

    Landfill Gas Waste Water Biogas Total 118 BCF/yr 16 BCF/yrConversion Efficiency 60% biogas Comment A conservative25% efficiency in converting to biogas and 60% efficiency in

  3. Optimizing the Design of Biomass Hydrogen Supply ChainsUsing Real-World Spatial Distributions: A Case Study Using California Rice Straw

    E-Print Network [OSTI]

    Parker, Nathan

    2007-01-01T23:59:59.000Z

    Landfill Gas Waste Water Biogas Total 118 BCF/yr 16 BCF/yrConversion Efficiency 60% biogas Comment A conservative25% efficiency in converting to biogas and 60% efficiency in

  4. Biogas and Fuel Cells Workshop Summary Report: Proceedings from...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summary Report: Proceedings from the Biogas and Fuel Cells Workshop, Golden, Colorado, June 11-13, 2012 Biogas and Fuel Cells Workshop Summary Report: Proceedings from the Biogas...

  5. Biomass: Biogas Generator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find Find MoreTechnical Report: BiomassInnovationBIOGAS

  6. University of Washington Montlake Landfill Oversight Committee

    E-Print Network [OSTI]

    Wilcock, William

    University of Washington Montlake Landfill Oversight Committee Montlake Landfill Project Guide Department with the review and approval of the Montlake Landfill Oversight Committee. #12;Montlake Landfill ...................................................................................................................................3 Figure 1 ­ Approximate Boundaries of the Montlake Landfill

  7. Feasibility study: utilization of landfill gas for a vehicle fuel system, Rossman's landfill, Clackamas County, Oregon

    SciTech Connect (OSTI)

    None

    1981-01-01T23:59:59.000Z

    In 1978, a landfill operator in Oregon became interested in the technical and economic feasibility of recovering the methane generated in the landfill for the refueling of vehicles. DOE awarded a grant for a site-specific feasibility study of this concept. This study investigated the expected methane yield and the development of a conceptual gas-gathering system; gas processing, compressing, and storage systems; and methane-fueled vehicle systems. Cost estimates were made for each area of study. The results of the study are presented. Reasoning that gasoline prices will continue to rise and that approximately 18,000 vehicles in the US have been converted to operate on methane, a project is proposed to use this landfill as a demonstration site to produce and process methane and to fuel a fleet (50 to 400) vehicles with the gas produced in order to obtain performance and economic data on the systems used from gas collection through vehicle operation. (LCL)

  8. Introduction to biogas production on the farm

    SciTech Connect (OSTI)

    Not Available

    1984-03-01T23:59:59.000Z

    A number of farmers, ranchers, and engineers received support from the US Department of Energy Appropriate Technology Small Grants Program to design, construct, and demonstrate biogas production systems. Many of these projects generated more than just biogas; grantees' work and results have contributed to a growing body of information about practical applications of this technology. This publication was developed to share some of that information, to answer the basic questions about biogas production, and to lead farmers to more information. Section I introduces biogas and the various components of a biogas production system, discusses the system's benefits and liabilities, and provides a brief checklist to determine if biogas production may be applicable to an individual's particular situation. Section II features descriptions of four biogas projects of various sizes. Section III provides sources of additional information including descriptions of other biogas production projects.

  9. Video Article Continuously-Stirred Anaerobic Digester to Convert Organic Wastes into

    E-Print Network [OSTI]

    Angenent, Lars T.

    Video Article Continuously-Stirred Anaerobic Digester to Convert Organic Wastes into Biogas: System@cornell.edu URL: http://www.jove.com/video/3978/ DOI: 10.3791/3978 Keywords: Anaerobic Digestion, Bioenergy, Biogas, Methane, Organic Waste, Methanogenesis, Energy Crops, Date Published: // Citation: Usack

  10. Biogas in Nepal--Retrospects and prospects

    SciTech Connect (OSTI)

    Sood, D.K.

    1983-12-01T23:59:59.000Z

    The tremendous need and potential of biogas in Nepal, supported by a very large cattle population, seems to be primarily limited by manpower and budgetary constraints and poor planning and implementation. Besides cooking and lighting, considerable potential, particularly at the rural level exists for biogas powered agro-processing applications such as rice hulling, oil expelling and flour grinding. Experience has shown that such applications, for which equipment is easily available, can be better served by community Biogas plants. The government of Nepal, with assistance from international organizations such as the Asian Development Bank, is strengthening the Biogas Company and taking other appropriate measures to disseminate and establish biogas on a firm footing.

  11. A finite element simulation of biological conversion processes in landfills

    SciTech Connect (OSTI)

    Robeck, M., E-mail: markus.robeck@uni-due.de [Department of Water and Waste Management, Building Sciences, University of Duisburg-Essen, Universitaetsstrasse 15, 45141 Essen (Germany); Ricken, T. [Institute of Mechanics/Computational Mechanics, Building Sciences, University of Duisburg-Essen, Universitaetsstrasse 15, 45141 Essen (Germany); Widmann, R. [Department of Water and Waste Management, Building Sciences, University of Duisburg-Essen, Universitaetsstrasse 15, 45141 Essen (Germany)

    2011-04-15T23:59:59.000Z

    Landfills are the most common way of waste disposal worldwide. Biological processes convert the organic material into an environmentally harmful landfill gas, which has an impact on the greenhouse effect. After the depositing of waste has been stopped, current conversion processes continue and emissions last for several decades and even up to 100 years and longer. A good prediction of these processes is of high importance for landfill operators as well as for authorities, but suitable models for a realistic description of landfill processes are rather poor. In order to take the strong coupled conversion processes into account, a constitutive three-dimensional model based on the multiphase Theory of Porous Media (TPM) has been developed at the University of Duisburg-Essen. The theoretical formulations are implemented in the finite element code FEAP. With the presented calculation concept we are able to simulate the coupled processes that occur in an actual landfill. The model's theoretical background and the results of the simulations as well as the meantime successfully performed simulation of a real landfill body will be shown in the following.

  12. Illinois Turning Landfill Trash into Future Cash

    Broader source: Energy.gov [DOE]

    Will County, Illinois officials yesterday formally broke ground on a new $7 million project (that includes $1 million of Energy Efficiency Conservation Block Grant funds) to turn methane gas from the Prairie View Landfill into electricity in a partnership with Waste Management. Will County will receive revenue from the sale of the gas created from decomposing garbage which will be harnessed and converted to generate 4.8 megawatts of green electrical power and used to power up to 8,000 homes. The future revenue generated from the sale of the gas and the sale of the electricity could reach $1 million annually.

  13. Controlling landfill closure costs

    SciTech Connect (OSTI)

    Millspaugh, M.P.; Ammerman, T.A. [Spectra Engineering, Latham, NY (United States)

    1995-05-01T23:59:59.000Z

    Landfill closure projects are significant undertakings typically costing well over $100,000/acre. Innovative designs, use of alternative grading and cover materials, and strong project management will substantially reduce the financial impact of a landfill closure project. This paper examines and evaluates the various elements of landfill closure projects and presents various measures which can be employed to reduce costs. Control measures evaluated include: the beneficial utilization of alternative materials such as coal ash, cement kiln dust, paper mill by-product, construction surplus soils, construction debris, and waste water treatment sludge; the appropriate application of Mandate Relief Variances to municipal landfill closures for reduced cover system requirements and reduced long-term post closure monitoring requirements; equivalent design opportunities; procurement of consulting and contractor services to maximize project value; long-term monitoring strategies; and grant loan programs. An analysis of closure costs under differing assumed closure designs based upon recently obtained bid data in New York State, is also provided as a means for presenting the potential savings which can be realized.

  14. BioGas Project Applications for Federal Agencies and Utilities

    Broader source: Energy.gov (indexed) [DOE]

    Alternate Energy Systems, Inc. Natural Gas Air Blenders for BioGas Installations BioGas Project Applications for Federal Agencies and Utilities Federal Utility Partnership...

  15. active biogas process: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wherein biogas is produced and utilized as a cooking fuel by the villagers. The two models studied are the Community Biogas plant established by SUMUL Dairy at Bhintbudrak...

  16. Expanding the Use of Biogas with Fuel Cell Technologies

    Broader source: Energy.gov (indexed) [DOE]

    Biogas Biogas Very High Efficiency Reduced CO 2 Emissions Reduced Oil Use Reduced Air Pollution Fuel Flexibility * up to 60% (electrical) * up to 70% (electrical, hybrid...

  17. Biogas Technologies and Integration with Fuel Cells

    Broader source: Energy.gov (indexed) [DOE]

    (150-170 PSIG) * High Pressure Compression * CNG Fueling station (3000 psig) * Absorption Chillers (5-10" w.c.) Alternative Biogas Utilization and Required Clean Up Full...

  18. Integrated Combined Heat and Power/Advanced Reciprocating Internal Combustion Engine System for Landfill Gas to Power Applications

    Broader source: Energy.gov [DOE]

    Landfill gas (LFG), composed largely of methane and carbon dioxide, is used in over 450 operational projects in 43 states. These projects convert a large source of greenhouse gases into a fuel that...

  19. Update on Hilo Landfill Leachate TUpdate on Hilo Landfill Leachate TUpdate on Hilo Landfill Leachate TUpdate on Hilo Landfill Leachate TUpdate on Hilo Landfill Leachate Treatment Studyreatment Studyreatment Studyreatment Studyreatment Study continued on p

    E-Print Network [OSTI]

    Update on Hilo Landfill Leachate TUpdate on Hilo Landfill Leachate TUpdate on Hilo Landfill Leachate TUpdate on Hilo Landfill Leachate TUpdate on Hilo Landfill Leachate Treatment Studyreatment, the County of Hawaii is considering an expansion of the South Hilo Sanitary Landfill (SHSL

  20. Landfill Gas Fueled HCCI Demonstration System

    E-Print Network [OSTI]

    Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

    2006-01-01T23:59:59.000Z

    USA ICEF2006-1578 LANDFILL GAS FUELED HCCI DEMONSTRATIONengine that runs on landfill gas. The project team led bygas and simulated landfill gas as a fuel source. This

  1. GEOSYNTHETIC REINFORCEMENT IN LANDFILL DESIGN: US PERSPECTIVES

    E-Print Network [OSTI]

    Zornberg, Jorge G.

    GEOSYNTHETIC REINFORCEMENT IN LANDFILL DESIGN: US PERSPECTIVES Jorge G. Zornberg1 , M. ASCE Abstract: Geosynthetic reinforcement in landfill applications in the US has involved conventional reinforced soil structures and veneer stabilization with reinforcements placed along the landfill slope

  2. Landfill Gas Fueled HCCI Demonstration System

    E-Print Network [OSTI]

    Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

    2006-01-01T23:59:59.000Z

    USA ICEF2006-1578 LANDFILL GAS FUELED HCCI DEMONSTRATIONengine that runs on landfill gas. The project team led bynatural gas and simulated landfill gas as a fuel source.

  3. Team Bug Bag Biogas For Nicaragua

    E-Print Network [OSTI]

    Demirel, Melik C.

    Team Bug Bag Biogas For Nicaragua Project Recap The task for Team Bug Bag was to create an anaerobic digester for the area of Tisma, Nicaragua that can be manufactured down in Nicaragua, be produced for under $100 (USD), and be able to produce biogas that could boil water for a thirty minute time period

  4. Biogas Production through the Syntrophic Acetate-Oxidising Pathway

    E-Print Network [OSTI]

    Biogas Production through the Syntrophic Acetate-Oxidising Pathway Characterisation and Detection Uppsala 2012 #12;Acta Universitatis agriculturae Sueciae 2012:45 #12;Biogas production through 1.1 Aims of the thesis 12 2 Biogas production 15 2.1 Biogas production in Europe 16 2.2 Substrate

  5. biogas for rural communities TD390 Supervised learning: Study report

    E-Print Network [OSTI]

    Sohoni, Milind

    0 biogas for rural communities TD390 Supervised learning: Study report Vaibhav Nasery Roll No. 08D highly successful rural biogas models wherein biogas is produced and utilized as a cooking fuel by the villagers. The two models studied are the Community Biogas plant established by SUMUL Dairy at Bhintbudrak

  6. Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production

    E-Print Network [OSTI]

    Di Camillo, Nicole G.

    2011-01-01T23:59:59.000Z

    Methane Digesters and Biogas Recovery-Masking theII. METHANE DIGESTERS AND BIOGAs RECOVERY- IN THE2011] METHANE DIGESTERS AND BIOGAS RECOVERY methane, and 64%

  7. Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production

    E-Print Network [OSTI]

    Di Camillo, Nicole G.

    2011-01-01T23:59:59.000Z

    DIGESTERS AND BIOGAS RECOVERY Digesters Do Not Address theMethane Digesters and Biogas Recovery-Masking theII. METHANE DIGESTERS AND BIOGAs RECOVERY- IN THE

  8. Liquid membrane purification of biogas

    SciTech Connect (OSTI)

    Majumdar, S.; Guha, A.K.; Lee, Y.T.; Papadopoulos, T.; Khare, S. (Stevens Inst. of Tech., Hoboken, NJ (United States). Dept. of Chemistry and Chemical Engineering)

    1991-03-01T23:59:59.000Z

    Conventional gas purification technologies are highly energy intensive. They are not suitable for economic removal of CO{sub 2} from methane obtained in biogas due to the small scale of gas production. Membrane separation techniques on the other hand are ideally suited for low gas production rate applications due to their modular nature. Although liquid membranes possess a high species permeability and selectivity, they have not been used for industrial applications due to the problems of membrane stability, membrane flooding and poor operational flexibility, etc. A new hollow-fiber-contained liquid membrane (HFCLM) technique has been developed recently. This technique overcomes the shortcomings of the traditional immobilized liquid membrane technology. A new technique uses two sets of hydrophobic, microporous hollow fine fibers, packed tightly in a permeator shell. The inter-fiber space is filled with an aqueous liquid acting as the membrane. The feed gas mixture is separated by selective permeation of a species through the liquid from one fiber set to the other. The second fiber set carries a sweep stream, gas or liquid, or simply the permeated gas stream. The objectives (which were met) of the present investigation were as follows. To study the selective removal of CO{sub 2} from a model biogas mixture containing 40% CO{sub 2} (the rest being N{sub 2} or CH{sub 4}) using a HFCLM permeator under various operating modes that include sweep gas, sweep liquid, vacuum and conventional permeation; to develop a mathematical model for each mode of operation; to build a large-scale purification loop and large-scale permeators for model biogas separation and to show stable performance over a period of one month.

  9. Waste to Energy: Biogas CHP

    E-Print Network [OSTI]

    Wagner, R.

    2011-01-01T23:59:59.000Z

    fuel to generate electricity, DWU?s Biogas has the potential to reduce the City of Dallas? total grid derived electricity consumption by almost 4% DWU 7% Reduction (30,000,000 kWh/Year) 430,000,000 kWh / Year 60% Reduction (30,000,000 kWh/Year...) 50,000,000 kWh / Year CITY 790,000,000 kWh/Year 4% Reduction (30,000,000 kWh / Year) SOUTHSIDE WWTP Benefits of the Project to the City ? The City will reduce its grid derived electricity needs by approximately 30,000,000 kWh per year...

  10. GWE Biogas | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFifeGEXA Corp. (New Jersey) JumpGREETGWE Biogas Jump to:

  11. Beam converter

    DOE Patents [OSTI]

    Poulsen, Peter

    2003-05-06T23:59:59.000Z

    A converter and method for converting electron energy to irradiative energy comprising foam and/or foil. Foam and foil optionally comprise a high-Z material, such as, but not limited to, tantalum.

  12. Methane emissions from MBT landfills

    SciTech Connect (OSTI)

    Heyer, K.-U., E-mail: heyer@ifas-hamburg.de; Hupe, K.; Stegmann, R.

    2013-09-15T23:59:59.000Z

    Highlights: • Compilation of methane generation potential of mechanical biological treated (MBT) municipal solid waste. • Impacts and kinetics of landfill gas production of MBT landfills, approach with differentiated half-lives. • Methane oxidation in the waste itself and in soil covers. • Estimation of methane emissions from MBT landfills in Germany. - Abstract: Within the scope of an investigation for the German Federal Environment Agency (“Umweltbundesamt”), the basics for the estimation of the methane emissions from the landfilling of mechanically and biologically treated waste (MBT) were developed. For this purpose, topical research including monitoring results regarding the gas balance at MBT landfills was evaluated. For waste treated to the required German standards, a methane formation potential of approximately 18–24 m{sup 3} CH{sub 4}/t of total dry solids may be expected. Monitoring results from MBT landfills show that a three-phase model with differentiated half-lives describes the degradation kinetics in the best way. This is due to the fact that during the first years of disposal, the anaerobic degradation processes still proceed relatively intensively. In addition in the long term (decades), a residual gas production at a low level is still to be expected. Most of the soils used in recultivation layer systems at German landfills show a relatively high methane oxidation capacity up to 5 l CH{sub 4}/(m{sup 2} h). However, measurements at MBT disposal sites indicate that the majority of the landfill gas (in particular at non-covered areas), leaves the landfill body via preferred gas emission zones (hot spots) without significant methane oxidation. Therefore, rather low methane oxidation factors are recommended for open and temporarily covered MBT landfills. Higher methane oxidation rates can be achieved when the soil/recultivation layer is adequately designed and operated. Based on the elaborated default values, the First Order Decay (FOD) model of the IPCC Guidelines for National Greenhouse Gas Inventories, 2006, was used to estimate the methane emissions from MBT landfills. Due to the calculation made by the authors emissions in the range of 60,000–135,000 t CO{sub 2-eq.}/a for all German MBT landfills can be expected. This wide range shows the uncertainties when the here used procedure and the limited available data are applied. It is therefore necessary to generate more data in the future in order to calculate more precise methane emission rates from MBT landfills. This is important for the overall calculation of the climate gas production in Germany which is required once a year by the German Government.

  13. LATERAL LANDFILL GAS MIGRATION: CHARACTERIZATION AND

    E-Print Network [OSTI]

    Boyer, Edmond

    LATERAL LANDFILL GAS MIGRATION: CHARACTERIZATION AND PRELIMINARY MODELING RESULTS O.BOUR*, E,UniversitéLaval, Sainte-Foy, Canada SUMMARY: Lateral landfill gas migration occurs in the surroundings of a MSW landfill complementary physical measures were used to build a conceptual model of lateral landfill gas migration

  14. Sour landfill gas problem solved

    SciTech Connect (OSTI)

    Nagl, G.; Cantrall, R. [Wheelabrator Clean Air Systems, Inc., Schaumburg, IL (United States)

    1996-05-01T23:59:59.000Z

    In Broward County, Fla., near Pompano Beach, Waste Management of North America (WMNA, a subsidiary of WMX Technologies, Oak Brook, IL) operates the Central Sanitary Landfill and Recycling Center, which includes the country`s largest landfill gas-to-energy plant. The landfill consists of three collection sites: one site is closed, one is currently receiving garbage, and one will open in the future. Approximately 9 million standard cubic feet (scf) per day of landfill gas is collected from approximately 300 wells spread over the 250-acre landfill. With a dramatic increase of sulfur-containing waste coming to a South Florida landfill following Hurricane Andrew, odors related to hydrogen sulfide became a serious problem. However, in a matter of weeks, an innovative desulfurization unit helped calm the landfill operator`s fears. These very high H{sub 2}S concentrations caused severe odor problems in the surrounding residential area, corrosion problems in the compressors, and sulfur dioxide (SO{sub 2}) emission problems in the exhaust gas from the turbine generators.

  15. annual international landfill: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    landfill waste slide, a 300,000 cubic yard landfill failure involving a geosynthetic clay liner, and a 100Landfill Instability and Its Implications for Operation, Construction,...

  16. Economic aspects of the rehabilitation of the Hiriya landfill

    SciTech Connect (OSTI)

    Ayalon, O. [Department of Natural Resources and Environmental Management and NRERC, Haifa University, 32000 Haifa (Israel)]. E-mail: agofira@tx.technion.ac.il; Becker, N. [Department of Natural Resources and Environmental Management and NRERC, Haifa University, 32000 Haifa (Israel); Department of Economics and Management, Tel Hai College and NRERC, University of Haifa, Haifa (Israel); Shani, E. [Dan Region Association of Towns, Sanitation and Waste Disposal (Israel)

    2006-07-01T23:59:59.000Z

    The Hiriya landfill, Israel's largest, operated from 1952 to 1998. The landfill, located in the heart of the Dan Region, developed over the years into a major landscape nuisance and environmental hazard. In 1998, the Israeli government decided to close the landfill, and in 2001 rehabilitation activities began at the site, including site investigations, engineering and scientific evaluations, and end-use planning. The purpose of the present research is to perform a cost-benefit analysis of engineering and architectural-landscape rehabilitation projects considered for the site. An engineering rehabilitation project is required for the reduction of environmental impacts such as greenhouse gas emissions, slope instability and leachate formation. An architectural-landscape rehabilitation project would consider improvements to the site to make it suitable for future end uses such as a public park. The findings reveal that reclamation is worthwhile only in the case of architectural-landscape rehabilitation of the landfill, converting it into a public park. Engineering rehabilitation alone was found to be unjustified, but is essential to enable the development of a public park.

  17. Electrical power obtained from burning landfill gas into a gas turbine generator: Experience after one year of operation

    SciTech Connect (OSTI)

    Fabbri, R.; Mignani, N.

    1998-07-01T23:59:59.000Z

    A typical example of a ``waste to energy'' concept can be found also in the landfill environment. The biogas derived by fermentation process is usually burnt into gas engines. This choice is usually due to the electric efficiency that is normally higher than gas turbine application and to the size that usually, almost in Italian landfill size, does not allow power higher than 1,000 kW. On the other side gas turbine applications, typically based on generator sets greater than 1,000 kW do not require special biogas pre-treatment; require less maintenance and have an extremely higher reliability. The paper describes an application of a gas turbine generator of 4,800 kW outlining the experiences collected after one year of operation. During this period, the system fulfilled the target of a total operating time greater than 8,000 hours. Description is done of the biogas compression system feeding the turbine and also of the subsystem adopted to reach the above mentioned target reliability.

  18. 5. oktober 2009 Precision control of biogas plants

    E-Print Network [OSTI]

    5. oktober 2009 Precision control of biogas plants Final report Henrik B. Møller, Anders M. Nielsen: "Precision control of biogas plants", J. Nr. 33031-0028, funded by EUDP 2005. The final report consists. Danish summary of the results: Det har været formålet at udvikle drift og design af biogas anlæg med

  19. Life Cycle Assessment of Biogas from Separated slurry

    E-Print Network [OSTI]

    Life Cycle Assessment of Biogas from Separated slurry Lorie Hamelin, Marianne Wesnæs and Henrik AND ALTERNATIVES 28 2.2.1 Reference Scenario (Scenario A) 28 2.2.2 Biogas from raw pig slurry and fibre fraction from chemical- mechanical separation (Scenario F) 29 2.2.3 Biogas from raw cow slurry and fibre

  20. Municipal Solid WasteMunicipal Solid Waste Landfills In CitiesLandfills In Cities

    E-Print Network [OSTI]

    Columbia University

    Municipal Solid WasteMunicipal Solid Waste Landfills In CitiesLandfills In Cities Arun to minimize public health and environmental impacts. Landfilling is the process by which residual solid waste is placed in a landfill. #12;Case in Supreme Court · Pathetic condition of Solid waste practices in India

  1. T2LBM Version 1.0: Landfill bioreactor model for TOUGH2

    E-Print Network [OSTI]

    Oldenburg, Curtis M.

    2001-01-01T23:59:59.000Z

    7 2. LANDFILL BIODEGRADATIONof methanogenic activities in a landfill bioreactor treatingmethane production from landfill bioreactor, J. Env. Eng. ,

  2. Turning waste into energy beats landfilling

    E-Print Network [OSTI]

    Columbia University

    Turning waste into energy beats landfilling By Christopher Hume The Hamilton Spectator (Nov 16, the fact remains that dumping garbage in a landfill site is far more environmentally destructive, damaging wrong with that picture: it describes landfill, where spontaneous combustion occurs regularly

  3. Fuel Cells on Bio-Gas (Presentation)

    SciTech Connect (OSTI)

    Remick, R. J.

    2009-03-04T23:59:59.000Z

    The conclusions of this presentation are: (1) Fuel cells operating on bio-gas offer a pathway to renewable electricity generation; (2) With federal incentives of $3,500/kW or 30% of the project costs, reasonable payback periods of less than five years can be achieved; (3) Tri-generation of electricity, heat, and hydrogen offers an alternative route to solving the H{sub 2} infrastructure problem facing fuel cell vehicle deployment; and (4) DOE will be promoting bio-gas fuel cells in the future under its Market Transformation Programs.

  4. Thermionic converter

    DOE Patents [OSTI]

    Fitzpatrick, G.O.

    1987-05-19T23:59:59.000Z

    A thermionic converter is set forth which includes an envelope having an electron collector structure attached adjacent to a wall. An electron emitter structure is positioned adjacent the collector structure and spaced apart from opposite wall. The emitter and collector structures are in a common chamber. The emitter structure is heated substantially only by thermal radiation. Very small interelectrode gaps can be maintained utilizing the thermionic converter whereby increased efficiency results. 10 figs.

  5. Bringing new life to old landfills

    SciTech Connect (OSTI)

    Rabasca, L.

    1996-01-01T23:59:59.000Z

    On the West Coast, Waste Management, Inc. is bringing new life to old landfills. The Bradley Landfill in Sun Valley, CA, just outside of Los Angeles, is being transformed into a recycling park, while a few hundred miles north, in the San Francisco Bay Area, an old landfill is now home to a transfer station and recycling center. WMI began transforming the landfill in the early 1990s.The first change was to process wood and green waste rather than landfilling it. In 1993, WMI added a sorting facility, and in 1994, after the Jan. 17 Northridge earthquake, the company added a construction and demolition debris (C and D) facility. There also is a landfill gas collection facility on the site. In the future, WMI hopes to add the following facilities: composting, railhaul, alternative fuels production, tire processing, and soil remediation. WMI also hopes several companies that use recycled materials as feedstock will build their plants at the landfill.

  6. Thermionic converter

    DOE Patents [OSTI]

    Fitzpatrick, Gary O. (Livermore, CA)

    1987-05-19T23:59:59.000Z

    A thermionic converter (10) is set forth which includes an envelope (12) having an electron collector structure (22) attached adjacent to a wall (16). An electron emitter structure (24) is positioned adjacent the collector structure (22) and spaced apart from opposite wall (14). The emitter (24) and collector (22) structures are in a common chamber (20). The emitter structure (24) is heated substantially only by thermal radiation. Very small interelectrode gaps (28) can be maintained utilizing the thermionic converter (10) whereby increased efficiency results.

  7. EA-1707: Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste Landfill, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the potential environmental impacts of closing the Nonradioactive Dangerous Waste Landfill and the Solid Waste Landfill. The Washington State Department of Ecology is a cooperating agency in preparing this EA.

  8. Biogas Potential in the United States (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-10-01T23:59:59.000Z

    Biogas has received increased attention as an alternative energy source in the United States. The factsheet provides information about the biogas (methane) potential from various sources in the country (by county and state) and estimates the power generation and transportation fuels production (renewable natural gas) potential from these biogas sources. It provides valuable information to the industry, academia and policy makers in support of their future decisions.

  9. Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production

    E-Print Network [OSTI]

    Di Camillo, Nicole G.

    2011-01-01T23:59:59.000Z

    Methane Digesters and Biogas Recovery-Masking theII. METHANE DIGESTERS AND BIOGAs RECOVERY- IN THEA. Digesters Have Received Attention for Their Potential to

  10. Techno-socio-economic study of bio-gas plants

    SciTech Connect (OSTI)

    Not Available

    1981-01-01T23:59:59.000Z

    This study covers technological, social and economic aspects of the biogas program in Chitawan, Nepal. Many interesting facts are revealed which may be useful for future planning of Nepalese biogas programs. Concerning the social aspects, only big farmers (having more than 4 bighas of land and more than 10 domestic animals) were found to have biogas plants. No farmer who had a biogas plant was illiterate. As for the technical aspects of the total gas ovens used in the area, 66% were of BTI design. Most of the ovens were of 0.45-m/sup 3/ capacity. The life of BTI ovens was found to be shorter than the life of ovens of other companies. BTI ovens are not useful when farmers have to use a big pot for cooking. All farmers of the area were found to be convinced of the utility of the biogas plant. With regard to the economic aspects of using biogas plants, farmers were able to save 53% of the total expenditure which they had been spending for fuel. Wood consumption was reduced to 50% by using biogas. The internal rate of return of a 2.8-m/sup 3/ biogas plant was found to be 14% assuming that the plant would last for 20 years. Most of the farmers in the area did not have biogas plants. The main reason given was that there were not enough capital and cattle to begin such an operation.

  11. anaerobic thermophilic biogas: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Korean food waste with high water contents (>80%). The hydrogen sulfide in the biogas was removed by a biological desulfurization equipment integrated in the horizontal...

  12. anaerobic biogas reactors: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Korean food waste with high water contents (>80%). The hydrogen sulfide in the biogas was removed by a biological desulfurization equipment integrated in the horizontal...

  13. Technology Overview Using Case Studies of Alternative Landfill Technologies

    E-Print Network [OSTI]

    Zornberg, Jorge G.

    Technology Overview Using Case Studies of Alternative Landfill Technologies and Associated Regulatory Topics Prepared by Interstate Technology & Regulatory Council Alternative Landfill Technologies of Alternative Landfill Technologies and Associated Regulatory Topics March 2003 Prepared by Interstate

  14. Renewable LNG: Update on the World's Largest Landfill Gas to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LNG: Update on the World's Largest Landfill Gas to LNG Plant Renewable LNG: Update on the World's Largest Landfill Gas to LNG Plant Success story about LNG from landfill gas....

  15. assessing landfill performance: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bhanpur Landfil Site CiteSeer Summary: The most common means for disposing of municipal solid waste is burial in a sanitary landfill. However, many landfill are underestimate the...

  16. Industrial Solid Waste Landfill Facilities (Ohio)

    Broader source: Energy.gov [DOE]

    This chapter of the law establishes that the Ohio Environmental Protection Agency provides rules and guidelines for landfills, including those that treat waste to generate electricity. The law...

  17. Climate balance of biogas upgrading systems

    SciTech Connect (OSTI)

    Pertl, A., E-mail: andreas.pertl@boku.ac.a [Institute of Waste Management, Department of Water, Atmosphere and Environment, University of Natural Resources and Applied Life Sciences, Vienna, Muthgasse 107, A-1190 Wien (Austria); Mostbauer, P.; Obersteiner, G. [Institute of Waste Management, Department of Water, Atmosphere and Environment, University of Natural Resources and Applied Life Sciences, Vienna, Muthgasse 107, A-1190 Wien (Austria)

    2010-01-15T23:59:59.000Z

    One of the numerous applications of renewable energy is represented by the use of upgraded biogas where needed by feeding into the gas grid. The aim of the present study was to identify an upgrading scenario featuring minimum overall GHG emissions. The study was based on a life-cycle approach taking into account also GHG emissions resulting from plant cultivation to the process of energy conversion. For anaerobic digestion two substrates have been taken into account: (1) agricultural resources and (2) municipal organic waste. The study provides results for four different upgrading technologies including the BABIU (Bottom Ash for Biogas Upgrading) method. As the transport of bottom ash is a critical factor implicated in the BABIU-method, different transport distances and means of conveyance (lorry, train) have been considered. Furthermore, aspects including biogas compression and energy conversion in a combined heat and power plant were assessed. GHG emissions from a conventional energy supply system (natural gas) have been estimated as reference scenario. The main findings obtained underlined how the overall reduction of GHG emissions may be rather limited, for example for an agricultural context in which PSA-scenarios emit only 10% less greenhouse gases than the reference scenario. The BABIU-method constitutes an efficient upgrading method capable of attaining a high reduction of GHG emission by sequestration of CO{sub 2}.

  18. Community Renewable Energy Success Stories: Landfill Gas-to-Energy...

    Broader source: Energy.gov (indexed) [DOE]

    Stories: Landfill Gas-to-Energy Projects Webinar (text version) Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects Webinar (text version) Below is the text...

  19. Tapping Landfill Gas to Provide Significant Energy Savings and...

    Office of Environmental Management (EM)

    Tapping Landfill Gas to Provide Significant Energy Savings and Greenhouse Gas Reductions - Case Study, 2013 Tapping Landfill Gas to Provide Significant Energy Savings and...

  20. CHP and Bioenergy for Landfills and Wastewater Treatment Plants...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Landfills and Wastewater Treatment Plants: Market Opportunities CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities This document explores...

  1. Characterization of landfill gas composition at the Fresh Kills municipal solid-waste landfill

    SciTech Connect (OSTI)

    Eklund, B.; Anderson, E.P.; Walker, B.L.; Burrows, D.B. [Radian International, LLC, Austin, TX (United States)] [Radian International, LLC, Austin, TX (United States)

    1998-08-01T23:59:59.000Z

    The most common disposal method in the US for municipal solid waste (MSW) is burial in landfills. Until recently, air emissions from these landfills were not regulated. Under the New Source Performance Standards and Emission Guidelines for MSW landfills, MSW operators are required to determine the nonmethane organic gas generation rate of their landfill through modeling and/or measurements. This paper summarizes speciated nonmethane organic compound (NMOC) measurement data collected during an intensive, short-term field program. Over 250 separate landfill gas samples were collected from emission sources at the Fresh Kills landfill in New York City and analyzed for approximately 150 different analytes. The average total NMOC value for the landfill was 438 ppmv (as hexane) versus the regulatory default value of 4,000 ppmv (as hexane). Over 70 individual volatile organic compounds (VOCs) were detected and quantified in the landfill gas samples. The typical gas composition for this landfill was determined as well as estimates of the spatial, temporal, and measurement variability in the gas composition. The data for NMOC show that the gas composition within the landfill is equivalent to the composition of the gas exiting the landfill through passive vents and through the soil cover.

  2. Capture and Utilisation of Landfill Gas

    E-Print Network [OSTI]

    Columbia University

    . In his 2003 review of energy recovery from landfill gas, Willumsen1 reported that as of 2001, there were thermal energy, or 20,000 tonnes of methane (CH4) per year. LANDFILLING OF MUNICIPAL SOLID WASTE 40 Austria 15 Switzerland 10 Norway 20 Denmark 21 Sweden 70 Finland 10 Poland 10 Czech Republic 5

  3. Recirculation of municipal landfill leachate

    E-Print Network [OSTI]

    Pinkowski, Brian Jude

    1987-01-01T23:59:59.000Z

    . Under the 1984 amendments to the Resource Conservation and Recovery Act (RCRA), land disposal of hazardous waste in new facilities cannot take place unless these three conditions are met: 1. There are no other means available for disposal, 2. Double... as it passes through the landfill and liners are used to stop the migration oF the leachate into the groundwater by acting as a barrier. Style of the Water Pollution Control Federation RCRA defines hazardous waste as "a solid waste, or combination of solid...

  4. Thermionic converter

    SciTech Connect (OSTI)

    Fitzpatrick, G.O.

    1987-05-19T23:59:59.000Z

    A thermionic converter is described comprising: an envelope having first and second walls spaced apart from one another. The envelope defines an enclosed chamber; an electron collector structure attached adjacent to the second wall; an electron emitter structure, located adjacent the collector structure and between the collector structure and the first wall. At least a respective one of the collector structure and the emitter structure comprise elements, each of the elements along with a respective other of the collector structure and the emitter structure defining interelectrode gaps at least when the emitter structure is above a selected temperature. The emitter structure is spaced a distance away from the first wall and is positioned to receive substantially only thermal radiation.

  5. Technoeconomic Analysis of Biomethane Production from Biogas and Pipeline Delivery (Presentation)

    SciTech Connect (OSTI)

    Jalalzadeh-Azar, A.

    2010-10-18T23:59:59.000Z

    This presentation summarizes "A Technoeconomic Analysis of Biomethane Production from Biogas and Pipeline Delivery".

  6. Biogas Opportunities Roadmap | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyandapproximately 10 wt%in Defense,Biogas Opportunities

  7. Biogas Production Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyandapproximately 10 wt%in Defense,Biogas

  8. German Biogas Association | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating AGeothermal/Exploration < Geothermal Jump to:GeprowindGerman Biogas

  9. Biogas Direct LCC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbonof AlternativeBioenergia Brasil S ABiogal CentroBiogas

  10. Biogas Technology Group Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbonof AlternativeBioenergia Brasil S ABiogalBiogas Nord

  11. Municipal Solid Waste Landfills The following Oklahoma landfills currently accept dead livestock. As each facility has different guidelines and

    E-Print Network [OSTI]

    Balasundaram, Balabhaskar "Baski"

    Municipal Solid Waste Landfills The following Oklahoma landfills currently accept dead livestock-581-3468 Garfield City of Enid Landfill 580-249-4917 Garvin Foster Waste Disposal Landfill 405-238-2012 Jackson City-436-1403 Call ahead, may limit qty. Pottawatomie Absolute Waste Solutions 405-598-3893 Call ahead Seminole

  12. Sustainable use of California biomass resources can help meet state and national bioenergy targets

    E-Print Network [OSTI]

    Jenkins, Bryan M; Williams, Robert B; Gildart, Martha C; Kaffka, Stephen R.; Hartsough, Bruce; Dempster, Peter G

    2009-01-01T23:59:59.000Z

    waste in landfills, or biogas from municipal wastewaterheat for industrial uses. Biogas potential from landfills,Bio]gas-to-liquids (GTL) Gas Biogas Biomethane Compressed

  13. T2LBM Version 1.0: Landfill bioreactor model for TOUGH2

    E-Print Network [OSTI]

    Oldenburg, Curtis M.

    2001-01-01T23:59:59.000Z

    activities in a landfill bioreactor treating the organicproduction from landfill bioreactor, J. Env. Eng. , August,Version 1.0: Landfill Bioreactor Model for TOUGH2 Curtis M.

  14. Multiphase Modeling of Flow, Transport, and Biodegradation in a Mesoscale Landfill Bioreactor

    E-Print Network [OSTI]

    Oldenburg, Curtis M.; Borglin, Sharon E.; Hazen, Terry C.

    2002-01-01T23:59:59.000Z

    biodegradation, landfill, gas generation, simulationPower, H. Landfill emission of gases into the atmosphere:a new approach to landfill operations that controls gas and

  15. Multiphase Modeling of Flow, Transport, and Biodegradation in a Mesoscale Landfill Bioreactor

    E-Print Network [OSTI]

    Oldenburg, Curtis M.; Borglin, Sharon E.; Hazen, Terry C.

    2002-01-01T23:59:59.000Z

    boundary conditions for the mesoscale landfill bioreactor. (and Biodegradation in a Mesoscale Landfill Bioreactor Curtisapplied it to our own mesoscale laboratory aerobic landfill

  16. Using GIS to Identify Remediation Areas in Landfills

    SciTech Connect (OSTI)

    Linda A.Tedrow

    2004-08-01T23:59:59.000Z

    This paper reports the use of GIS mapping software—ArcMap and ArcInfo Workstation—by the Idaho National Engineering and Environmental Laboratory (INEEL) as a non-intrusive method of locating and characterizing radioactive waste in a 97-acre landfill to aid in planning cleanup efforts. The fine-scale techniques and methods used offer potential application for other burial sites for which hazards indicate a non-intrusive approach. By converting many boxes of paper shipping records in multiple formats into a relational database linked to spatial data, the INEEL has related the paper history to our current GIS technologies and spatial data layers. The wide breadth of GIS techniques and tools quickly display areas in need of remediation as well as evaluate methods of remediation for specific areas as the site characterization is better understood and early assumptions are refined.

  17. Reducing Open Cell Landfill Methane Emissions with a Bioactive Alternative Daily

    SciTech Connect (OSTI)

    Helene Hilger; James Oliver; Jean Bogner; David Jones

    2009-03-31T23:59:59.000Z

    Methane and carbon dioxide are formed in landfills as wastes degrade. Molecule-for-molecule, methane is about 20 times more potent than carbon dioxide at trapping heat in the earth's atmosphere, and thus, it is the methane emissions from landfills that are scrutinized. For example, if emissions composed of 60% methane and 40% carbon dioxide were changed to a mix that was 40% methane and 60% carbon dioxide, a 30% reduction in the landfill's global warming potential would result. A 10% methane, 90% carbon dioxide ratio will result in a 75% reduction in global warming potential compared to the baseline. Gas collection from a closed landfill can reduce emissions, and it is sometimes combined with a biocover, an engineered system where methane oxidizing bacteria living in a medium such as compost, convert landfill methane to carbon dioxide and water. Although methane oxidizing bacteria merely convert one greenhouse gas (methane) to another (carbon dioxide), this conversion can offer significant reductions in the overall greenhouse gas contribution, or global warming potential, associated with the landfill. What has not been addressed to date is the fact that methane can also escape from a landfill when the active cell is being filled with waste. Federal regulations require that newly deposited solid waste to be covered daily with a 6 in layer of soil or an alternative daily cover (ADC), such as a canvas tarp. The aim of this study was to assess the feasibility of immobilizing methane oxidizing bacteria into a tarp-like matrix that could be used for alternative daily cover at open landfill cells to prevent methane emissions. A unique method of isolating methanotrophs from landfill cover soil was used to create a liquid culture of mixed methanotrophs. A variety of prospective immobilization techniques were used to affix the bacteria in a tarp-like matrix. Both gel encapsulation of methanotrophs and gels with liquid cores containing methanotrophs were readily made but prone to rapid desiccation. Bacterial adsorption onto foam padding, natural sponge, and geotextile was successful. The most important factor for success appeared to be water holding capacity. Prototype biotarps made with geotextiles plus adsorbed methane oxidizing bacteria were tested for their responses to temperature, intermittent starvation, and washing (to simulate rainfall). The prototypes were mesophilic, and methane oxidation activity remained strong after one cycle of starvation but then declined with repeated cycles. Many of the cells detached with vigorous washing, but at least 30% appeared resistant to sloughing. While laboratory landfill simulations showed that four-layer composite biotarps made with two different types of geotextile could remove up to 50% of influent methane introduced at a flux rate of 22 g m{sup -2} d{sup -1}, field experiments did not yield high activity levels. Tests revealed that there were high hour-to-hour flux variations in the field, which, together with frequent rainfall events, confounded the field testing. Overall, the findings suggest that a methanotroph embedded biotarp appears to be a feasible strategy to mitigate methane emission from landfill cells, although the performance of field-tested biotarps was not robust here. Tarps will likely be best suited for spring and summer use, although the methane oxidizer population may be able to shift and adapt to lower temperatures. The starvation cycling of the tarp may require the capacity for intermittent reinoculation of the cells, although it is also possible that a subpopulation will adapt to the cycling and become dominant. Rainfall is not expected to be a major factor, because a baseline biofilm will be present to repopulate the tarp. If strong performance can be achieved and documented, the biotarp concept could be extended to include interception of other compounds beyond methane, such as volatile aromatic hydrocarbons and chlorinated solvents.

  18. BioGas Project Applications for Federal Agencies and Utilities

    Broader source: Energy.gov [DOE]

    Presentation covers BioGas Project Applications for Federal Agencies and Utilities and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Rapid City, South Dakota.

  19. Sanitary Landfill 1991 annual groundwater monitoring report

    SciTech Connect (OSTI)

    Thompson, C.Y.; Norrell, G.T.; Bennett, C.B.

    1992-02-01T23:59:59.000Z

    The Savannah River Site (SRS) Sanitary Landfill is an approximately seventy acre site located just south of SRS Road C between the Savannah River Site`s B-Area and Upper Three Runs Creek. Results from the first through third quarter 1991 groundwater monitoring date continue to show evidence of elevated levels of several hazardous constituents beneath the Sanitary Landfill: tritium, vinyl chloride, total radium, cadmium, 1,1,1-trichloroethane, 1,2 dichloroethane, 1,4 dichlorobenzene, trichloroethylene (TCE), tetrachloroethylene, and 1,1 dichloroethylene in excess of the primary drinking water standards were observed in at least one well monitoring the Sanitary Landfill during the third quarter of 1991. All of these constituents, except radium, were observed in the lower half of the original thirty-two acre site or the southern expansion site. Trichloroethylene and vinyl chloride are the primary organic contaminants in groundwater beneath the Sanitary Landfill. Vinyl chloride has become the primary contaminant during 1991. Elevated levels of benzene were consistently detected in LFW 7 in the past, but were not present in any LFW wells during the third quarter of 1991. A minor tritium plume is present in the central part of original thirty-two acre landfill. Elevated levels of tritium above the PDWS were consistently present in LFW 10A through 1991. This well has exhibited elevated tritium activities since the second quarter of 1989. Contaminant concentrations in the Sanitary Landfill are presented and discussed in this report.

  20. Sanitary Landfill 1991 annual groundwater monitoring report

    SciTech Connect (OSTI)

    Thompson, C.Y.; Norrell, G.T.; Bennett, C.B.

    1992-02-01T23:59:59.000Z

    The Savannah River Site (SRS) Sanitary Landfill is an approximately seventy acre site located just south of SRS Road C between the Savannah River Site's B-Area and Upper Three Runs Creek. Results from the first through third quarter 1991 groundwater monitoring date continue to show evidence of elevated levels of several hazardous constituents beneath the Sanitary Landfill: tritium, vinyl chloride, total radium, cadmium, 1,1,1-trichloroethane, 1,2 dichloroethane, 1,4 dichlorobenzene, trichloroethylene (TCE), tetrachloroethylene, and 1,1 dichloroethylene in excess of the primary drinking water standards were observed in at least one well monitoring the Sanitary Landfill during the third quarter of 1991. All of these constituents, except radium, were observed in the lower half of the original thirty-two acre site or the southern expansion site. Trichloroethylene and vinyl chloride are the primary organic contaminants in groundwater beneath the Sanitary Landfill. Vinyl chloride has become the primary contaminant during 1991. Elevated levels of benzene were consistently detected in LFW 7 in the past, but were not present in any LFW wells during the third quarter of 1991. A minor tritium plume is present in the central part of original thirty-two acre landfill. Elevated levels of tritium above the PDWS were consistently present in LFW 10A through 1991. This well has exhibited elevated tritium activities since the second quarter of 1989. Contaminant concentrations in the Sanitary Landfill are presented and discussed in this report.

  1. Hazardous materials in Fresh Kills landfill

    SciTech Connect (OSTI)

    Hirschhorn, J.S. [Hirschhorn and Associates, Wheaton, MD (United States)

    1997-12-31T23:59:59.000Z

    No environmental monitoring and corrective action programs can pinpoint multiple locations of hazardous materials the total amount of them in a large landfill. Yet the consequences of hazardous materials in MSW landfills are considerable, in terms of public health concerns, environmental damage, and cleanup costs. In this paper a rough estimation is made of how much hazardous material may have been disposed in Fresh Kills landfill in Staten Island, New York. The logic and methods could be used for other MSW landfills. Fresh Kills has frequently been described as the world`s largest MSW landfill. While records of hazardous waste disposal at Fresh Kills over nearly 50 years of operation certainly do not exist, no reasonable person would argue with the conclusion that large quantities of hazardous waste surely have been disposed at Fresh Kills, both legally and illegally. This study found that at least 2 million tons of hazardous wastes and substances have been disposed at Fresh Kills since 1948. Major sources are: household hazardous waste, commercial RCRA hazardous waste, incinerator ash, and commercial non-RCRA hazardous waste, governmental RCRA hazardous waste. Illegal disposal of hazardous waste surely has contributed even more. This is a sufficient amount to cause serious environmental contamination and releases, especially from such a landfill without an engineered liner system, for example. This figure is roughly 1% of the total amount of waste disposed in Fresh Kills since 1948, probably at least 200 million tons.

  2. Passive drainage and biofiltration of landfill gas: Australian field trial

    SciTech Connect (OSTI)

    Dever, S.A. [School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052 (Australia) and GHD Pty. Ltd., 10 Bond Street, Sydney, NSW 2000 (Australia)]. E-mail: stuart_dever@ghd.com.au; Swarbrick, G.E. [School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052 (Australia)]. E-mail: g.swarbrick@unsw.edu.au; Stuetz, R.M. [School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052 (Australia)]. E-mail: r.stuetz@unsw.edu.au

    2007-07-01T23:59:59.000Z

    In Australia a significant number of landfill waste disposal sites do not incorporate measures for the collection and treatment of landfill gas. This includes many old/former landfill sites, rural landfill sites, non-putrescible solid waste and inert waste landfill sites, where landfill gas generation is low and it is not commercially viable to extract and beneficially utilize the landfill gas. Previous research has demonstrated that biofiltration has the potential to degrade methane in landfill gas, however, the microbial processes can be affected by many local conditions and factors including moisture content, temperature, nutrient supply, including the availability of oxygen and methane, and the movement of gas (oxygen and methane) to/from the micro-organisms. A field scale trial is being undertaken at a landfill site in Sydney, Australia, to investigate passive drainage and biofiltration of landfill gas as a means of managing landfill gas emissions at low to moderate gas generation landfill sites. The design and construction of the trial is described and the experimental results will provide in-depth knowledge on the application of passive gas drainage and landfill gas biofiltration under Sydney (Australian) conditions, including the performance of recycled materials for the management of landfill gas emissions.

  3. Photovoltaics on Landfills in Puerto Rico

    SciTech Connect (OSTI)

    Salasovich, J.; Mosey, G.

    2011-01-01T23:59:59.000Z

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Commonwealth of Puerto Rico for a feasibility study of m0treAlables on several brownfield sites. The EPA defines a brownfield as 'a property, the expansion, redevelopment, or reuse of which may be complicated by the presence or potential presence of a hazardous substance, pollutant, or contaminant.' All of the brownfields in this study are landfill sites. Citizens of Puerto Rico, city planners, and site managers are interested in redevelopment uses for landfills in Puerto Rico, which are particularly well suited for solar photovoltaic (PV) installation. The purpose of this report is to assess the landfills with the highest potential for possible solar PV installation and estimate cost, performance, and site impacts of three different PV options: crystalline silicon (fixed-tilt), crystalline silicon (single-axis tracking), and thin film (fixed-tilt). Each option represents a standalone system that can be sized to use an entire available site area. In addition, the report outlines financing options that could assist in the implementation of a system. The feasibility of PV systems installed on landfills is highly impacted by the available area for an array, solar resource, operating status, landfill cap status, distance to transmission lines, and distance to major roads. All of the landfills in Puerto Rico were screened according to these criteria in order to determine the sites with the greatest potential. Eight landfills were chosen for site visits based on the screening criteria and location. Because of time constraints and the fact that Puerto Rico is a relatively large island, the eight landfills for this visit were all located in the eastern half of the island. The findings from this report can be applied to landfills in the western half of the island. The economics of a potential PV system on landfills in Puerto Rico depend greatly on the cost of electricity. Currently, PREPA has an average electric rate of $0.119/kWh. Based on past electric rate increases in Puerto Rico and other islands in the Caribbean, this rate could increase to $0.15/kWh or higher in a relatively short amount of time. In the coming years, increasing electrical rates and increased necessity for clean power will continue to improve the feasibility of implementing solar PV systems at these sites.

  4. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL

    SciTech Connect (OSTI)

    Don Augenstein

    1999-01-11T23:59:59.000Z

    ''Conventional'' waste landfills emit methane, a potent greenhouse gas, in quantities such that landfill methane is a major factor in global climate change. Controlled landfilling is a novel approach to manage landfills for rapid completion of total gas generation, maximizing gas capture and minimizing emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated and brought to much earlier completion by improving conditions for biological processes (principally moisture levels) in the landfill. Gas recovery efficiency approaches 100% through use of surface membrane cover over porous gas recovery layers operated at slight vacuum. A field demonstration project's results at the Yolo County Central Landfill near Davis, California are, to date, highly encouraging. Two major controlled landfilling benefits would be the reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role in reduction of US greenhouse gas emissions.

  5. Combustion converter design evolution

    SciTech Connect (OSTI)

    Goodale, D.B.; Miskolczy, G.

    1984-08-01T23:59:59.000Z

    The early thermionic converters used hemispherical one-inch-diameter hot shells. They were extensively tested in a natural gas, high-temperature furnace. A converter was life tested for 12,500 hours at emitter temperatures above 1700 K. Two-inch diameter converters with both hemispherical and torispherical shapes were developed next. These converters have been tested in both natural gas-, oil-, and coal-oil slurry-fired environments. A prototype converter for cogeneration applications was also developed using this emitter configuration. A six converter module of cogeneration converters has been constructed.

  6. Mill Seat Landfill Bioreactor Renewable Green Power (NY)

    SciTech Connect (OSTI)

    Barton & Loguidice, P.C.

    2010-01-07T23:59:59.000Z

    The project was implemented at the Mill Seat landfill located in the Town of Bergen, Monroe County, New York. The landfill was previously equipped with a landfill gas collection system to collect methane gas produced by the bioreactor landfill and transport it to a central location for end use. A landfill gas to energy facility was also previously constructed at the site, which utilized generator engines, designed to be powered with landfill methane gas, to produce electricity, to be utilized on site and to be sold to the utility grid. The landfill gas generation rate at the site had exceeded the capacity of the existing generators, and the excess landfill gas was therefore being burned at a candlestick flare for destruction. The funded project consisted of the procurement and installation of two (2) additional 800 KW Caterpillar 3516 generator engines, generator sets, switchgear and ancillary equipment.

  7. Wasting Time : a leisure infrastructure for mega-landfill

    E-Print Network [OSTI]

    Nguyen, Elizabeth M. (Elizabeth Margaret)

    2007-01-01T23:59:59.000Z

    Landfills are consolidating into fewer, taller, and more massive singular objects in the exurban landscape.This thesis looks at one instance in Virginia, the first regional landfill in the state to accept trash from New ...

  8. Landfill Instability and Its Implications Operation, Construction, and Design

    E-Print Network [OSTI]

    landfill waste slide, a 300,000 cubic yard landfill failure involving a geosynthetic clay liner, and a 100 occurred involving liner systems during construction and waste containment closures. Recently an older

  9. Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and...

    Energy Savers [EERE]

    to remove both sulfur species in biogas to ppb levels, making its use possible in a fuel cell CHP unit The high concentrations of sulfur species in the biogas (up to 1.5%...

  10. Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and...

    Office of Environmental Management (EM)

    Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power - Fact Sheet, 2015 Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power - Fact Sheet, 2015 TDA Research...

  11. alternative landfill cover: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    words: landfills; energy recovery; sustainability; management Management of Municipal Solid Wastes (household garbage and rubbish, street sweepings, construction unknown authors...

  12. Study of the VOC emissions from a municipal solid waste storage pilot-scale cell: Comparison with biogases from municipal waste landfill site

    SciTech Connect (OSTI)

    Chiriac, R., E-mail: rodica.chiriac@univ-lyon1.fr [Universite de Lyon, Universite Lyon 1, CNRS, UMR 5615, Laboratoire des Multimateriaux et Interfaces, 43 boulevard du 11 Novembre 1918, F-69622 Villeurbanne (France); De Araujos Morais, J. [Universite Federal de Paraiba, Campus I Departamento de Engenharia Civil e Ambiental, Joao Pessoa, Paraiba (Brazil); Carre, J. [Universite de Lyon, Universite Lyon 1, CNRS, UMR 5256, Institut de Recherche sur la Catalyse et l'Environnement, 43 boulevard du 11 Novembre 1918, F-69622 Villeurbanne (France); Bayard, R. [Universite de Lyon, INSA de Lyon, Laboratoire de Genie Civil et d'Ingenierie environnementale (LGCIE), F-69622 Villeurbanne (France); Chovelon, J.M. [Universite de Lyon, Universite Lyon 1, CNRS, UMR 5256, Institut de Recherche sur la Catalyse et l'Environnement, 43 boulevard du 11 Novembre 1918, F-69622 Villeurbanne (France); Gourdon, R. [Universite de Lyon, INSA de Lyon, Laboratoire de Genie Civil et d'Ingenierie environnementale (LGCIE), F-69622 Villeurbanne (France)

    2011-11-15T23:59:59.000Z

    Highlights: > Follow-up of the emission of VOCs in a municipal waste pilot-scale cell during the acidogenesis and acetogenesis phases. > Study from the very start of waste storage leading to a better understanding of the decomposition/degradation of waste. > Comparison of the results obtained on the pilot-scale cell with those from 3 biogases coming from the same landfill site. > A methodology of characterization for the progression of the stabilization/maturation of waste is finally proposed. - Abstract: The emission of volatile organic compounds (VOCs) from municipal solid waste stored in a pilot-scale cell containing 6.4 tonnes of waste (storage facility which is left open during the first period (40 days) and then closed with recirculation of leachates during a second period (100 days)) was followed by dynamic sampling on activated carbon and analysed by GC-MS after solvent extraction. This was done in order to know the VOC emissions before the installation of a methanogenesis process for the entire waste mass. The results, expressed in reference to toluene, were exploited during the whole study on all the analyzable VOCs: alcohols, ketones and esters, alkanes, benzenic and cyclic compounds, chlorinated compounds, terpene, and organic sulphides. The results of this study on the pilot-scale cell are then compared with those concerning three biogases from a municipal waste landfill: biogas (1) coming from waste cells being filled or recently closed, biogas (2) from all the waste storage cells on site, and biogas (3) which is a residual gas from old storage cells without aspiration of the gas. The analysis of the results obtained revealed: (i) a high emission of VOCs, principally alcohols, ketones and esters during the acidogenesis; (ii) a decrease in the alkane content and an increase in the terpene content were observed in the VOCs emitted during the production of methane; (iii) the production of heavier alkanes and an increase in the average number of carbon atoms per molecule of alkane with the progression of the stabilisation/maturation process were also observed. Previous studies have concentrated almost on the analysis of biogases from landfills. Our research aimed at gaining a more complete understanding of the decomposition/degradation of municipal solid waste by measuring the VOCs emitted from the very start of the landfill process i.e. during the acidogenesis and acetogenesis phases.

  13. DETERMINATION OF GUIDANCE VALUES FOR CLOSED LANDFILL GAS EMISSIONS

    E-Print Network [OSTI]

    Boyer, Edmond

    DETERMINATION OF GUIDANCE VALUES FOR CLOSED LANDFILL GAS EMISSIONS O. BOUR*, S. BERGER**, C Gambetta, 74 000 Annecy SUMMARY: In order to promote active landfill gas collection and treatment or natural attenuation, it is necessary to identify trigger values concerning landfill gas emissions

  14. Analysis and Design of Evapotranspirative Cover for Hazardous Waste Landfill

    E-Print Network [OSTI]

    Zornberg, Jorge G.

    Analysis and Design of Evapotranspirative Cover for Hazardous Waste Landfill Jorge G. Zornberg, M, Inc. OII Superfund landfill in southern California. This cover system constitutes the first ET cover:6 427 CE Database subject headings: Evapotranspiration; Coating; Landfills; Hazardous waste; Design

  15. Aluminum Reactions and Problems in Municipal Solid Waste Landfills

    E-Print Network [OSTI]

    Aluminum Reactions and Problems in Municipal Solid Waste Landfills G. Vincent Calder, Ph.D.1 ; and Timothy D. Stark, Ph.D., P.E., F.ASCE2 Abstract: Aluminum enters municipal solid waste MSW landfills from: Solid wastes; Aluminum; Chemicals; Waste disposal; Landfills. Author keywords: Solid waste; Leachate

  16. Landfill stabilization focus area: Technology summary

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    Landfills within the DOE Complex as of 1990 are estimated to contain 3 million cubic meters of buried waste. The DOE facilities where the waste is predominantly located are at Hanford, the Savannah River Site (SRS), the Idaho National Engineering Laboratory (INEL), the Los Alamos National Laboratory (LANL), the Oak Ridge Reservation (ORR), the Nevada Test Site (NTS), and the Rocky Flats Plant (RFP). Landfills include buried waste, whether on pads or in trenches, sumps, ponds, pits, cribs, heaps and piles, auger holes, caissons, and sanitary landfills. Approximately half of all DOE buried waste was disposed of before 1970. Disposal regulations at that time permitted the commingling of various types of waste (i.e., transuranic, low-level radioactive, hazardous). As a result, much of the buried waste throughout the DOE Complex is presently believed to be contaminated with both hazardous and radioactive materials. DOE buried waste typically includes transuranic-contaminated radioactive waste (TRU), low-level radioactive waste (LLW), hazardous waste per 40 CFR 26 1, greater-than-class-C waste per CFR 61 55 (GTCC), mixed TRU waste, and mixed LLW. The mission of the Landfill Stabilization Focus Area is to develop, demonstrate, and deliver safer,more cost-effective and efficient technologies which satisfy DOE site needs for the remediation and management of landfills. The LSFA is structured into five technology areas to meet the landfill remediation and management needs across the DOE complex. These technology areas are: assessment, retrieval, treatment, containment, and stabilization. Technical tasks in each of these areas are reviewed.

  17. Proceedings of Healthy Buildings 2009 Paper 206 Risk assessment of biogas exposure in kitchens

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Proceedings of Healthy Buildings 2009 Paper 206 Risk assessment of biogas exposure in kitchens C to pollutants while using biogas for cooking was assessed following the methodology described by the US - National Research Council. Information of hazardous compounds and compositions of several biogas types were

  18. Full bridge converter Transformers and isolated converters

    E-Print Network [OSTI]

    Knobloch,Jürgen

    Full bridge converter Transformers and isolated converters Most DC power supplies have the following requirements: 1. Regulated output voltage Solved by a large capacitor at the output, and feedback control. 2. High power factor PFC - discussed previously. 3. Isolation 4. Multiple outputs Isolated

  19. Methane Gas Utilization Project from Landfill at Ellery (NY)

    SciTech Connect (OSTI)

    Pantelis K. Panteli

    2012-01-10T23:59:59.000Z

    Landfill Gas to Electric Energy Generation and Transmission at Chautauqua County Landfill, Town of Ellery, New York. The goal of this project was to create a practical method with which the energy, of the landfill gas produced by the decomposing waste at the Chautauqua County Landfill, could be utilized. This goal was accomplished with the construction of a landfill gas to electric energy plant (originally 6.4MW and now 9.6MW) and the construction of an inter-connection power-line, from the power-plant to the nearest (5.5 miles) power-grid point.

  20. Biomass gasification project gets funding to solve black liquor safety and landfill problems

    SciTech Connect (OSTI)

    Black, N.P.

    1991-02-01T23:59:59.000Z

    This paper reports on biomass gasifications. The main by-product in pulp making is black liquor from virgin fiber; the main by-product in paper recycling is fiber residue. Although the black liquor is recycled for chemical and energy recovery, safety problems plague the boilers currently used to do this. The fiber residue is usually transported to a landfill. The system being developed by MTCI will convert black liquor and fiber residue into a combustible gas, which can then be used for a wide variety of thermal or power generation applications.

  1. Photovoltaic olar nergy Development on Landfills

    E-Print Network [OSTI]

    .pvnavigator.com environmentally sensitive desert lands, as is the case for some largescale solar developments impacts of natural lands developed for solar energy at high environmental costs. InnovativePhotovoltaic olar nergy Development on Landfills ENVIRONMENTAL AREA RESEARCH PIER Environmental

  2. Intrinsic bioremediation of landfills interim report

    SciTech Connect (OSTI)

    Brigmon, R.L. [Westinghouse Savannah River Company, Aiken, SC (United States); Fliermans, C.B.

    1997-07-14T23:59:59.000Z

    Intrinsic bioremediation is a risk management option that relies on natural biological and physical processes to contain the spread of contamination from a source. Evidence is presented in this report that intrinsic bioremediation is occurring at the Sanitary Landfill is fundamental to support incorportion into a Corrective Action Plan (CAP).

  3. Emerging technologies for the management and utilization of landfill gas. Final report, August 1994-August 1997

    SciTech Connect (OSTI)

    Roe, S.; Reisman, J.; Strait, R.; Doorn, M.

    1998-02-01T23:59:59.000Z

    The report gives information on emerging technologies that are considered to be commercially available (Tier 1), currently undergoing research and development (Tier 2), or considered as potentially applicable (Tier 3), for the management of landfill gas (LFG) emissions or for the utilization of methane (CH4) and carbon dioxide (CO2) from LFG. The emerging technologies that are considered to be Tier 1 are: (1) phosphoric acid fuel cells, (2) processes for converting CH4 from LFG to compressed LFG for vehicle fuel or other fuel uses, and (3) use of LFG as a fuel source for leachate evaporation systems. The Tier 2 technologies covered in the report are: (1) operation of landfills as anaerobic bioreactors, (2) operation of landfills are aerobic bioreactors, (3) production of ethanol from LFG, (4) production of commercial CO2 from LFG, and (5) use of LFG to provide fuel for heat and CO2 enhancement in greenhouses. Tier 3 technologies, considered as potentially applicable for LFG. include Stirling and Organic Rankine Cycle engines.

  4. BACK-ANALYSES OF LANDFILL SLOPE FAILURES Nejan Huvaj-Sarihan Timothy D. Stark

    E-Print Network [OSTI]

    BACK-ANALYSES OF LANDFILL SLOPE FAILURES Nejan Huvaj-Sarihan Timothy D. Stark University strength of MSW. The back-analysis of failed waste slopes in the Gnojna Grora landfill in Poland, Istanbul Landfill in Turkey, Hiriya Landfill in Israel, and Payatas Landfill in Philippines are presented

  5. Impact of nitrate-enhanced leachate recirculation on gaseous releases from a landfill bioreactor cell

    SciTech Connect (OSTI)

    Tallec, G.; Bureau, C. [Cemagref, UR HBAN, Parc de Tourvoie, BP44, F-92163 Antony (France); Peu, P.; Benoist, J.C. [Cemagref, UR GERE, 17 Avenue de Cucille, CS 64427, F-35044 Rennes (France); Lemunier, M. [Suez-Environnement, CIRADE, 38 Av. Jean Jaures, 78440 Gargenville (France); Budka, A.; Presse, D. [SITA France, 132 Rue des 3 Fontanot, 92000 Nanterre Cedex (France); Bouchez, T. [Cemagref, UR HBAN, Parc de Tourvoie, BP44, F-92163 Antony (France)], E-mail: theodore.bouchez@cemagref.fr

    2009-07-15T23:59:59.000Z

    This study evaluates the impact of nitrate injection on a full scale landfill bioreactor through the monitoring of gaseous releases and particularly N{sub 2}O emissions. During several weeks, we monitored gas concentrations in the landfill gas collection system as well as surface gas releases with a series of seven static chambers. These devices were directly connected to a gas chromatograph coupled to a flame ionisation detector and an electron capture detector (GC-FID/ECD) placed directly on the field. Measurements were performed before, during and after recirculation of raw leachate and nitrate-enhanced leachate. Raw leachate recirculation did not have a significant effect on the biogas concentrations (CO{sub 2}, CH{sub 4} and N{sub 2}O) in the gas extraction network. However, nitrate-enhanced leachate recirculation induced a marked increase of the N{sub 2}O concentrations in the gas collected from the recirculation trench (100-fold increase from 0.2 ppm to 23 ppm). In the common gas collection system however, this N{sub 2}O increase was no more detectable because of dilution by gas coming from other cells or ambient air intrusion. Surface releases through the temporary cover were characterized by a large spatial and temporal variability. One automated chamber gave limited standard errors over each experimental period for N{sub 2}O releases: 8.1 {+-} 0.16 mg m{sup -2} d{sup -1} (n = 384), 4.2 {+-} 0.14 mg m{sup -2} d{sup -1} (n = 132) and 1.9 {+-} 0.10 mg m{sup -2} d{sup -1} (n = 49), during, after raw leachate and nitrate-enhanced leachate recirculation, respectively. No clear correlation between N{sub 2}O gaseous surface releases and recirculation events were evidenced. Estimated N{sub 2}O fluxes remained in the lower range of what is reported in the literature for landfill covers, even after nitrate injection.

  6. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01T23:59:59.000Z

    role of hydrogen in landfill gas utilization. Sacramento,landfills (yielding “landfill gas”) and livestock-manure-Diverted Methane in landfill gas Methane in biogas from

  7. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    role of hydrogen in landfill gas utilization. Sacramento,landfills (yielding “landfill gas”) and livestock-manure-Diverted Methane in landfill gas Methane in biogas from

  8. Interleaved power converter

    DOE Patents [OSTI]

    Zhu, Lizhi (Canton, MI)

    2007-11-13T23:59:59.000Z

    A power converter architecture interleaves full bridge converters to alleviate thermal management problems in high current applications, and may, for example, double the output power capability while reducing parts count and costs. For example, one phase of a three phase inverter is shared between two transformers, which provide power to a rectifier such as a current doubler rectifier to provide two full bridge DC/DC converters with three rather than four high voltage inverter legs.

  9. ITER convertible blanket evaluation

    SciTech Connect (OSTI)

    Wong, C.P.C.; Cheng, E.

    1995-09-01T23:59:59.000Z

    Proposed International Thermonuclear Experimental Reactor (ITER) convertible blankets were reviewed. Key design difficulties were identified. A new particle filter concept is introduced and key performance parameters estimated. Results show that this particle filter concept can satisfy all of the convertible blanket design requirements except the generic issue of Be blanket lifetime. If the convertible blanket is an acceptable approach for ITER operation, this particle filter option should be a strong candidate.

  10. Decomposition of forest products buried in landfills

    SciTech Connect (OSTI)

    Wang, Xiaoming, E-mail: xwang25@ncsu.edu [Department of Civil, Construction, and Environmental Engineering, Campus Box 7908, North Carolina State University, Raleigh, NC 27695-7908 (United States); Padgett, Jennifer M. [Department of Civil, Construction, and Environmental Engineering, Campus Box 7908, North Carolina State University, Raleigh, NC 27695-7908 (United States); Powell, John S. [Department of Chemical and Biomolecular Engineering, Campus Box 7905, North Carolina State University, Raleigh, NC 27695-7905 (United States); Barlaz, Morton A. [Department of Civil, Construction, and Environmental Engineering, Campus Box 7908, North Carolina State University, Raleigh, NC 27695-7908 (United States)

    2013-11-15T23:59:59.000Z

    Highlights: • This study tracked chemical changes of wood and paper in landfills. • A decomposition index was developed to quantify carbohydrate biodegradation. • Newsprint biodegradation as measured here is greater than previous reports. • The field results correlate well with previous laboratory measurements. - Abstract: The objective of this study was to investigate the decomposition of selected wood and paper products in landfills. The decomposition of these products under anaerobic landfill conditions results in the generation of biogenic carbon dioxide and methane, while the un-decomposed portion represents a biogenic carbon sink. Information on the decomposition of these municipal waste components is used to estimate national methane emissions inventories, for attribution of carbon storage credits, and to assess the life-cycle greenhouse gas impacts of wood and paper products. Hardwood (HW), softwood (SW), plywood (PW), oriented strand board (OSB), particleboard (PB), medium-density fiberboard (MDF), newsprint (NP), corrugated container (CC) and copy paper (CP) were buried in landfills operated with leachate recirculation, and were excavated after approximately 1.5 and 2.5 yr. Samples were analyzed for cellulose (C), hemicellulose (H), lignin (L), volatile solids (VS), and organic carbon (OC). A holocellulose decomposition index (HOD) and carbon storage factor (CSF) were calculated to evaluate the extent of solids decomposition and carbon storage. Samples of OSB made from HW exhibited cellulose plus hemicellulose (C + H) loss of up to 38%, while loss for the other wood types was 0–10% in most samples. The C + H loss was up to 81%, 95% and 96% for NP, CP and CC, respectively. The CSFs for wood and paper samples ranged from 0.34 to 0.47 and 0.02 to 0.27 g OC g{sup ?1} dry material, respectively. These results, in general, correlated well with an earlier laboratory-scale study, though NP and CC decomposition measured in this study were higher than previously reported.

  11. Request for Qualifications for Sacramento Landfill

    Broader source: Energy.gov [DOE]

    This Request for Qualifications (RFQ) solicits experienced companies to design, permit, finance, build, and operate a solar photovoltaic farm (SPV Farm) on the City of Sacramento’s 28th Street Landfill. Respondents to this RFQ must demonstrate experience and capacity to design, permit, finance, build, and operate a SPV Farm that generates electricity that can be sold for electrical use through a power-purchase agreement. Submittals must be prepared and delivered in accordance with the requirements set forth in this document.

  12. Universal thermochemical energy converter

    DOE Patents [OSTI]

    Labinov, Solomon Davidovich (Oak Ridge, TN); Sand, James R. (Oak Ridge, TN); Conklin, James C. (Knoxville, TN); VanCoevering, James (Oak Ridge, TN); Courville, George E. (Oak Ridge, TN)

    2001-01-01T23:59:59.000Z

    Disclosed are methods and apparatus for a thermochemical closed cycle employing a polyatomic, chemically active working fluid for converting heat energy into useful work.

  13. T2LBM Version 1.0: Landfill bioreactor model for TOUGH2

    E-Print Network [OSTI]

    Oldenburg, Curtis M.

    2001-01-01T23:59:59.000Z

    M. , 1998, Modeling landfill gas generation and migration inPower, 1999, Landfill emission of gases into the atmosphere:1.0 modern landfill operators to control gas and leachate

  14. GeoChip-based Analysis of Groundwater Microbial Diversity in Norman Landfill

    E-Print Network [OSTI]

    Lu, Zhenmei

    2010-01-01T23:59:59.000Z

    Diversity in Norman Landfill Zhenmei Lu 1,2 , Zhili He 2,4 ,projects/norlan / ABSTRACT The Norman Landfill is a closedmunicipal solid waste landfill located on an alluvium

  15. Enhanced Landfill Mining Symposium EEC/WTERT Participation at ELFM Conference

    E-Print Network [OSTI]

    Enhanced Landfill Mining Symposium EEC/WTERT Participation at ELFM Conference of Enhanced Landfill Mining. Held at the Greenville (Center of Cleantech of old landfills, each containing valuable resources that are untapped

  16. Hydrogeological Environmental Assessment of Sanitary Landfill Project at Jammu City, India

    E-Print Network [OSTI]

    Nagar, Bharat Bhushan; Mirza, Umar Karim

    2002-01-01T23:59:59.000Z

    DRASTIC Method The prepared landfill project is supposed toAssessment of Sanitary Landfill Project at Jammu City, Indiaimpact of a proposed landfill facility for the city of Jammu

  17. Multiphase Modeling of Flow, Transport, and Biodegradation in a Mesoscale Landfill Bioreactor

    E-Print Network [OSTI]

    Oldenburg, Curtis M.; Borglin, Sharon E.; Hazen, Terry C.

    2002-01-01T23:59:59.000Z

    1179. Popov, V. ; Power, H. Landfill emission of gases intoC.M. T2LBM Version 1.0: Landfill bioreactor model forand recovery from landfills, Ann Arbor Science Publishers,

  18. Hydrogeological Environmental Assessment of Sanitary Landfill Project at Jammu City, India

    E-Print Network [OSTI]

    Nagar, Bharat Bhushan; Mirza, Umar Karim

    2002-01-01T23:59:59.000Z

    of Sanitary Landfill Project at Jammu City, India Bharata proposed landfill facility for the city of Jammu in India.landfill projects have been conceived, designed, and completed in India.

  19. Evaluation of three geophysical methods to locate undocumented landfills

    E-Print Network [OSTI]

    Brand, Stephen Gardner

    1991-01-01T23:59:59.000Z

    Metal Object. The Arrows Are Vectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Figure 45: Magnetic Profile over Area Fill, Station 19, Brenham Landfill. 84 Figure 46: Magnetic Profile over Undisturbed Area, Station... and the road. Thus the northern portion of the entrance way loop especially on the western side was not landfilled. The pond on the north western boundary of the landfill in the well buffer zone was installed for fire control purposes. After the entrance...

  20. UNFCCC-Consolidated baseline and monitoring methodology for landfill...

    Open Energy Info (EERE)

    UNFCCC-Consolidated baseline and monitoring methodology for landfill gas project activities Jump to: navigation, search Tool Summary LAUNCH TOOL Name: UNFCCC-Consolidated baseline...

  1. Modeling Analysis of Biosparging at the Sanitary Landfill

    SciTech Connect (OSTI)

    Jackson, D.

    1998-11-25T23:59:59.000Z

    This report presents the results of a groundwater modeling study that evaluates the performance of the biosparging system at the Sanitary Landfill.

  2. CHP and Bioenergy Systems for Landfills and Wastewater Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    following CHP technologies: Reciprocating Engine, Microturbine, Combustion Turbines, Stirling Engine, and Fuel Cell. CHP and Bioenergy Systems for Landfills and Wastewater...

  3. Comparison between lab- and full-scale applications of in situ aeration of an old landfill and assessment of long-term emission development after completion

    SciTech Connect (OSTI)

    Hrad, Marlies; Gamperling, Oliver [Institute of Waste Management, Department of Water–Atmosphere–Environment, University of Natural Resources and Life Sciences, Muthgasse 107, 1190 Vienna (Austria); Huber-Humer, Marion, E-mail: marion.huber-humer@boku.ac.at [Institute of Waste Management, Department of Water–Atmosphere–Environment, University of Natural Resources and Life Sciences, Muthgasse 107, 1190 Vienna (Austria)

    2013-10-15T23:59:59.000Z

    Highlights: ? Current data on in situ aeration effects from the first Austrian full-scale case study. ? Data on lasting waste stabilisation after aeration completion. ? Information on the transferability of results from lab- to full-scale aeration. - Abstract: Sustainable landfilling has become a fundamental objective in many modern waste management concepts. In this context, the in situ aeration of landfills has been recognised for its potential to convert conventional anaerobic landfills into biological stabilised state, whereby both current and potential (long-term) emissions of the landfilled waste are mitigated. In recent years, different in situ aeration concepts have been successfully applied in Europe, North America and Asia, all pursuing different objectives and strategies. In Austria, the first full-scale application of in situ landfill aeration by means of low pressure air injection and simultaneous off-gas collection and treatment was implemented on an old, small municipal solid waste (MSW) landfill (2.6 ha) in autumn 2007. Complementary laboratory investigations were conducted with waste samples taken from the landfill site in order to provide more information on the transferability of the results from lab- to full-scale aeration measures. In addition, long-term emission development of the stabilised waste after aeration completion was assessed in an ongoing laboratory experiment. Although the initial waste material was described as mostly stable in terms of the biological parameters gas generation potential over 21 days (GP{sub 21}) and respiration activity over 4 days (RA{sub 4}), the lab-scale experiments indicated that aeration, which led to a significant improvement of leachate quality, was accompanied by further measurable changes in the solid waste material under optimised conditions. Even 75 weeks after aeration completion the leachate, as well as gaseous emissions from the stabilised waste material, remained low and stayed below the authorised Austrian discharge limits. However, the application of in situ aeration at the investigated landfill is a factor 10 behind the lab-based predictions after 3 years of operation, mainly due to technical limitations in the full-scale operation (e.g. high air flow resistivity due to high water content of waste and temporarily high water levels within the landfill; limited efficiency of the aeration wells). In addition, material preparation (e.g. sieving, sorting and homogenisation) prior to the emplacement in Landfill Simulation Reactors (LSRs) must be considered when transferring results from lab- to full-scale application.

  4. GeoChip-based Analysis of Groundwater Microbial Diversity in Norman Landfill

    E-Print Network [OSTI]

    Lu, Zhenmei

    2010-01-01T23:59:59.000Z

    is a closed municipal solid waste landfill located on anis a closed municipal solid waste landfill sited on thecollection system, received solid waste for surface disposal

  5. Biogas From Municipal WWTPs: Fuel Cells Viewed as a Value Proposition...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    From Municipal WWTPs: Fuel Cells Viewed as a Value Proposition Biogas From Municipal WWTPs: Fuel Cells Viewed as a Value Proposition Presentation about the value proposition for...

  6. Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power Improving Desulfurization to Enable Fuel Cell Utilization of Digester Gases This project will develop a new,...

  7. Overview of An Analysis Project for Renewable Biogas / Fuel Cell Technologies (Presentation)

    SciTech Connect (OSTI)

    Jalalzadeh-Azar, A.

    2009-11-19T23:59:59.000Z

    Presentation on renewable biogas: as an opportunity for commercialization of fuel cells presented as part of a panel discussion at the 2009 Fuel Cell Seminar, Palm Springs, CA.

  8. Experimental and life cycle assessment analysis of gas emission from mechanically–biologically pretreated waste in a landfill with energy recovery

    SciTech Connect (OSTI)

    Di Maria, Francesco, E-mail: francesco.dimaria@unipg.it; Sordi, Alessio; Micale, Caterina

    2013-11-15T23:59:59.000Z

    Highlights: • Bio-methane landfill emissions from different period (0, 4, 8, 16 weeks) MTB waste have been evaluated. • Electrical energy recoverable from landfill gas ranges from 11 to about 90 kW h/tonne. • Correlation between oxygen uptake, energy recovery and anaerobic gas production shows R{sup 2} ranging from 0.78 to 0.98. • LCA demonstrate that global impact related to gaseous emissions achieve minimum for 4 week of MBT. - Abstract: The global gaseous emissions produced by landfilling the Mechanically Sorted Organic Fraction (MSOF) with different weeks of Mechanical Biological Treatment (MBT) was evaluated for an existing waste management system. One MBT facility and a landfill with internal combustion engines fuelled by the landfill gas for electrical energy production operate in the waste management system considered. An experimental apparatus was used to simulate 0, 4, 8 and 16 weeks of aerobic stabilization and the consequent biogas potential (Nl/kg) of a large sample of MSOF withdrawn from the full-scale MBT. Stabilization achieved by the waste was evaluated by dynamic oxygen uptake and fermentation tests. Good correlation coefficients (R{sup 2}), ranging from 0.7668 to 0.9772, were found between oxygen uptake, fermentation and anaerobic test values. On the basis of the results of several anaerobic tests, the methane production rate k (year{sup ?1}) was evaluated. k ranged from 0.436 to 0.308 year{sup ?1} and the bio-methane potential from 37 to 12 N m{sup 3}/tonne, respectively, for the MSOF with 0 and 16 weeks of treatment. Energy recovery from landfill gas ranged from about 11 to 90 kW h per tonne of disposed MSOF depending on the different scenario investigated. Life cycle analysis showed that the scenario with 0 weeks of pre-treatment has the highest weighted global impact even if opposite results were obtained with respect to the single impact criteria. MSOF pre-treatment periods longer than 4 weeks showed rather negligible variation in the global impact of system emissions.

  9. Microminiature thermionic converters

    DOE Patents [OSTI]

    King, Donald B. (Albuquerque, NM); Sadwick, Laurence P. (Salt Lake City, UT); Wernsman, Bernard R. (Clairton, PA)

    2001-09-25T23:59:59.000Z

    Microminiature thermionic converts (MTCs) having high energy-conversion efficiencies and variable operating temperatures. Methods of manufacturing those converters using semiconductor integrated circuit fabrication and micromachine manufacturing techniques are also disclosed. The MTCs of the invention incorporate cathode to anode spacing of about 1 micron or less and use cathode and anode materials having work functions ranging from about 1 eV to about 3 eV. Existing prior art thermionic converter technology has energy conversion efficiencies ranging from 5-15%. The MTCs of the present invention have maximum efficiencies of just under 30%, and thousands of the devices can be fabricated at modest costs.

  10. LESSONS LEARNED FROM A LANDFILL SLOPE FAILURE INVOLVING

    E-Print Network [OSTI]

    LESSONS LEARNED FROM A LANDFILL SLOPE FAILURE INVOLVING GEOSYTNTHETICS Virginia L. Wilson: Geosynthetics: Lessons Learned from Failures International Geosynthetics Society editors J.P. Giroud, K.L. Soderman and G.P. Raymond November 12, 1998 #12;LESSONS LEARNED FROM A LANDFILL SLOPE FAILURE INVOLVING

  11. Aluminum Waste Reaction Indicators in a Municipal Solid Waste Landfill

    E-Print Network [OSTI]

    Aluminum Waste Reaction Indicators in a Municipal Solid Waste Landfill Timothy D. Stark, F.ASCE1 landfills may contain aluminum from residential and commercial solid waste, industrial waste, and aluminum American Society of Civil Engineers. CE Database subject headings: Solid wastes; Leaching; Aluminum

  12. Landfill Disposal of CCA-Treated Wood with Construction and

    E-Print Network [OSTI]

    Florida, University of

    Landfill Disposal of CCA-Treated Wood with Construction and Demolition (C&D) Debris: Arsenic phased out of many residential uses in the United States, the disposal of CCA-treated wood remains. Catastrophic events have also led to the concentrated disposal of CCA-treated wood, often in unlined landfills

  13. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL

    SciTech Connect (OSTI)

    Don Augenstein; Ramin Yazdani; Rick Moore; Michelle Byars; Jeff Kieffer; Professor Morton Barlaz; Rinav Mehta

    2000-02-26T23:59:59.000Z

    Controlled landfilling is an approach to manage solid waste landfills, so as to rapidly complete methane generation, while maximizing gas capture and minimizing the usual emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated to more rapid and earlier completion to full potential by improving conditions (principally moisture, but also temperature) to optimize biological processes occurring within the landfill. Gas is contained through use of surface membrane cover. Gas is captured via porous layers, under the cover, operated at slight vacuum. A field demonstration project has been ongoing under NETL sponsorship for the past several years near Davis, CA. Results have been extremely encouraging. Two major benefits of the technology are reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times, more predictably, than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role both in reduction of US greenhouse gas emissions and in US renewable energy. The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional landfills. This is the highest methane recovery rate per unit waste, and thus progress toward stabilization, documented anywhere for such a large waste mass. This high recovery rate is attributed to moisture, and elevated temperature attained inexpensively during startup. Economic analyses performed under Phase I of this NETL contract indicate ''greenhouse cost effectiveness'' to be excellent. Other benefits include substantial waste volume loss (over 30%) which translates to extended landfill life. Other environmental benefits include rapidly improved quality and stabilization (lowered pollutant levels) in liquid leachate which drains from the waste.

  14. Construction Costs of Six Landfill Cover Designs

    SciTech Connect (OSTI)

    Dwyer, S.F.

    1998-12-23T23:59:59.000Z

    A large-scale field demonstration comparing and contrasting final landfill cover designs has been constructed and is currently being monitored. Four alternative cover designs and two conventional designs (a RCRA Subtitle `D' Soil Cover and a RCRA Subtitle `C' Compacted Clay Cover) were constructed side-by-side for direct comparison. The demonstration is intended to evaluate the various cover designs based on their respective water balance performance, ease and reliability of construction, and cost. This paper provides an overview of the construction costs of each cover design.

  15. Cost comparisons of alternative landfill final covers

    SciTech Connect (OSTI)

    Dwyer, S.F.

    1997-02-01T23:59:59.000Z

    A large-scale field demonstration comparing and contrasting final landfill cover designs has been constructed and is currently being monitored. Four alternative cover designs and two conventional designs (a RCRA Subtitle ``D`` Soil Cover and a RCRA Subtitle ``C`` Compacted Clay Cover) were constructed of uniform size, side-by-side. The demonstration is intended to evaluate the various cover designs based on their respective water balance performance, ease and reliability of construction, and cost. This paper provides an overview of the construction costs of each cover design.

  16. Planning document for the Advanced Landfill Cover Demonstration

    SciTech Connect (OSTI)

    Hakonson, T.E. [Colorado State Univ., Fort Collins, CO (United States). Center for Ecological Risk Assessment & Management; Bostick, K.V. [Los Alamos National Lab., NM (United States). Environmental Science Group

    1994-10-01T23:59:59.000Z

    The Department of Energy and Department of Defense are faced with the closure of thousands of decommissioned radioactive, hazardous, and mixed waste landfills as a part of ongoing Environmental Restoration activities. Regulations on the closure of hazardous and radioactive waste landfills require the construction of a ``low-permeability`` cover over the unit to limit the migration of liquids into the underlying waste. These landfills must be maintained and monitored for 30 years to ensure that hazardous materials are not migrating from the landfill. This test plan is intended as an initial road map for planning, designing, constructing, evaluating, and documenting the Advanced Landfill Cover Demonstration (ALCD). It describes the goals/ objectives, scope, tasks, responsibilities, technical approach, and deliverables for the demonstration.

  17. Alternative Landfill Cover. Innovative Technology Summary Report

    SciTech Connect (OSTI)

    NONE

    2000-12-01T23:59:59.000Z

    The primary purpose of an engineered cover is to isolate the underlying waste. A key element to isolating the wastes from the environment, engineered covers should minimize or prevent water from infiltrating into the landfill and coming into contact with the waste, thereby minimizing leachate generation. The U.S. EPA construction guidelines for soil hydraulic barriers specify that the soil moisture content and compactive effort may be increased to ensure that the barrier achieves a specified permeability of 1 x 10{sup {minus}7} cm/sec. However, constructing a soil barrier with high moisture content makes the soil more difficult to work and increases the required compactive effort to achieve the specified density, ultimately increasing the construction cost of the barrier. Alternative landfill cover designs rely on soil physical properties, hydraulic characteristics, and vegetation requirements to lower the flux rate of water through the cover. They can achieve greater reliability than the prescriptive RCRA Subtitle C design, especially under arid or semi-arid environmental conditions. With an alternative cover design, compacted soil barriers can be constructed with a soil moisture content that makes placement and compaction of the soil easier and less expensive. Under these conditions, the soil barrier has more capacity to absorb and control moisture within it, thereby enhancing the reliability of the barrier. This document contains information on the above-mentioned technology, including description, applicability, cost, and performance, data.

  18. Industrial Waste Landfill IV upgrade package

    SciTech Connect (OSTI)

    Not Available

    1994-03-29T23:59:59.000Z

    The Y-12 Plant, K-25 Site, and ORNL are managed by DOE`s Operating Contractor (OC), Martin Marietta Energy Systems, Inc. (Energy Systems) for DOE. Operation associated with the facilities by the Operating Contractor and subcontractors, DOE contractors and the DOE Federal Building result in the generation of industrial solid wastes as well as construction/demolition wastes. Due to the waste streams mentioned, the Y-12 Industrial Waste Landfill IV (IWLF-IV) was developed for the disposal of solid industrial waste in accordance to Rule 1200-1-7, Regulations Governing Solid Waste Processing and Disposal in Tennessee. This revised operating document is a part of a request for modification to the existing Y-12 IWLF-IV to comply with revised regulation (Rule Chapters 1200-1-7-.01 through 1200-1-7-.08) in order to provide future disposal space for the ORR, Subcontractors, and the DOE Federal Building. This revised operating manual also reflects approved modifications that have been made over the years since the original landfill permit approval. The drawings referred to in this manual are included in Drawings section of the package. IWLF-IV is a Tennessee Department of Environmental and Conservation/Division of Solid Waste Management (TDEC/DSWM) Class 11 disposal unit.

  19. Numerical and experimental study of soot formation in laminar diffusion flames burning simulated biogas fuels at elevated pressures

    E-Print Network [OSTI]

    Gülder, Ömer L.

    biogas fuels at elevated pressures Marc R.J. Charest , Ömer L. Gülder, Clinton P.T. Groth University 18 April 2014 Available online 2 June 2014 Keywords: Soot formation High pressure combustion Biogas, and other chemical species that are harmful to human health and the environment. Gaseous biofuels, or biogas

  20. List of publications 1. Sun, L., Mller, B. and Schnrer, A. (2013) Biogas production from wheat straw community

    E-Print Network [OSTI]

    biogas digesters. Biores. Technol. 132, 327­332 4. Manzoor, S., Müller, B., Niazi A., Bongcam-Rudloff E. and Schnürer, A. (2012). Improved biogas production from whole stillage by co-digestion with cattle manure. and Ståhlberg, J. (2011). Improved bio-energy yields via sequential ethanol fermentation and biogas digestion

  1. PREFERENTIAL FLOW THROUGH EARTHEN LANDFILL COVERS: FIELD EVALUATION OF ROOT ZONE WATER QUALITY MODEL (RZWQM) AND

    E-Print Network [OSTI]

    Abstract PREFERENTIAL FLOW THROUGH EARTHEN LANDFILL COVERS: FIELD EVALUATION OF ROOT ZONE WATER into the waste, earthen landfill covers are constructed once a landfill reaches its capacity. Formation earthen landfill covers during service. Most commonly used water balance models that are used

  2. The Municipal Solid Waste Landfill as a Source of Montreal Protocol-restricted Halocarbons in the

    E-Print Network [OSTI]

    The Municipal Solid Waste Landfill as a Source of Montreal Protocol-restricted Halocarbons of Geophysics #12;2 #12;The Municipal Solid Waste Landfill as a Source of Montreal Protocol municipal solid waste (MSW) landfills. With several hundred MSW landfills in both the US and UK, estimating

  3. LANDFILL-GAS-TO-ENERGY PROJECTS: AN ANALYSIS OF NET PRIVATE AND SOCIAL BENEFITS

    E-Print Network [OSTI]

    Jaramillo, Paulina

    Materials Table A1: Model Results for West Lake Landfill WEST LAKE IC Engine Gas Turbine Steam Turbine Landfill WEST COUNTY IC Engine Gas Turbine Steam Turbine Average Landfill Gas Generation (mmcf/yr) 1,075 1,735 $1,250 Table A3: Model Results for Modern Landfill MODERN IC Engine Gas Turbine Steam Turbine Average

  4. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01T23:59:59.000Z

    gasolines and diesels, biogas, synthetic natural gas,manure- biodigesters (biogas). Biomethane has similarin landfill gas Methane in biogas from waste-water treatment

  5. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    manure- biodigesters (biogas). Biomethane has similargasolines and diesels, biogas, synthetic natural gas,in landfill gas Methane in biogas from waste-water treatment

  6. Promoting electricity from renewable energy sources -- lessons learned from the EU, U.S. and Japan

    E-Print Network [OSTI]

    Haas, Reinhard

    2008-01-01T23:59:59.000Z

    biomass, hydro power and biogas. Other options with vastTechnologies addressed Wind, biogas All technologies (exceptelectricity, Biomass, Biogas, Landfill gas, Sewage gas,

  7. Adsorption characteristics of siloxanes in landfill gas by the adsorption equilibrium test

    SciTech Connect (OSTI)

    Nam, Sangchul; Namkoong, Wan [Department of Environmental Engineering, Konkuk University, Hwayang-Dong, Gwangjin-Gu, Seoul 143-701 (Korea, Republic of); Kang, Jeong-Hee; Park, Jin-Kyu [Department of Environmental Engineering, Anyang University, Anyang 5-Dong, Manan-Gu, Anyang-Si, Gyeonggi-Do 430-714 (Korea, Republic of); Lee, Namhoon, E-mail: nhlee@anyang.ac.kr [Department of Environmental Engineering, Anyang University, Anyang 5-Dong, Manan-Gu, Anyang-Si, Gyeonggi-Do 430-714 (Korea, Republic of)

    2013-10-15T23:59:59.000Z

    Highlights: • Equilibrium test was attempted to evaluate adsorption characteristics of siloxane. • L2 had higher removal efficiency in carbon compared to noncarbon adsorbents. • Total adsorption capacity of siloxane was 300 mg/g by coal activated carbon. • Adsorption characteristics rely on size of siloxane molecule and adsorbent pore. • Conversion of siloxane was caused by adsorption of noncarbon adsorbents. - Abstract: Due to the increase in energy cost by constantly high oil prices and the obligation to reduce greenhouse effect gases, landfill gas is frequently used as an alternative energy source for producing heat and electricity. Most of landfill gas utility facilities, however, are experiencing problems controlling siloxanes from landfill gas as their catalytic oxidizers are becoming fouled by silicon dioxide dust. To evaluate adsorption characteristics of siloxanes, an adsorption equilibrium test was conducted and parameters in the Freundlich and Langmuir isotherms were analyzed. Coconut activated carbon (CA1), coal activated carbon (CA2), impregnated activated carbon (CA3), silicagel (NCA1), and activated alumina (NCA2) were used for the adsorption of the mixed siloxane which contained hexamethyldisiloxane (L2), octamethylcyclotetrasiloxane (D4), and decamethylcyclopentasiloxane (D5). L2 had higher removal efficiency in noncarbon adsorbents compared to carbon adsorbents. The application of Langmuir and Freundlich adsorption isotherm demonstrated that coconut based CA1 and CA3 provided higher adsorption capacity on L2. And CA2 and NCA1 provided higher adsorption capacity on D4 and D5. Based on the experimental results, L2, D4, and D5 were converted by adsorption and desorption in noncarbon adsorbents. Adsorption affinity of siloxane is considered to be affect by the pore size distribution of the adsorbents and by the molecular size of each siloxane.

  8. Vector generator scan converter

    DOE Patents [OSTI]

    Moore, James M. (Livermore, CA); Leighton, James F. (Livermore, CA)

    1990-01-01T23:59:59.000Z

    High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O (input/output) channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardward for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold.

  9. Vector generator scan converter

    DOE Patents [OSTI]

    Moore, J.M.; Leighton, J.F.

    1988-02-05T23:59:59.000Z

    High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardware for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold. 7 figs.

  10. Landfill mining: A critical review of two decades of research

    SciTech Connect (OSTI)

    Krook, Joakim, E-mail: joakim.krook@liu.se [Department of Management and Engineering, Environmental Technology and Management, Linkoeping University, SE-581 83 Linkoeping (Sweden); Svensson, Niclas; Eklund, Mats [Department of Management and Engineering, Environmental Technology and Management, Linkoeping University, SE-581 83 Linkoeping (Sweden)

    2012-03-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer We analyze two decades of landfill mining research regarding trends and topics. Black-Right-Pointing-Pointer So far landfill mining has mainly been used to solve waste management issues. Black-Right-Pointing-Pointer A new perspective on landfills as resource reservoirs is emerging. Black-Right-Pointing-Pointer The potential of resource extraction from landfills is significant. Black-Right-Pointing-Pointer We outline several key challenges for realization of resource extraction from landfills. - Abstract: Landfills have historically been seen as the ultimate solution for storing waste at minimum cost. It is now a well-known fact that such deposits have related implications such as long-term methane emissions, local pollution concerns, settling issues and limitations on urban development. Landfill mining has been suggested as a strategy to address such problems, and in principle means the excavation, processing, treatment and/or recycling of deposited materials. This study involves a literature review on landfill mining covering a meta-analysis of the main trends, objectives, topics and findings in 39 research papers published during the period 1988-2008. The results show that, so far, landfill mining has primarily been seen as a way to solve traditional management issues related to landfills such as lack of landfill space and local pollution concerns. Although most initiatives have involved some recovery of deposited resources, mainly cover soil and in some cases waste fuel, recycling efforts have often been largely secondary. Typically, simple soil excavation and screening equipment have therefore been applied, often demonstrating moderate performance in obtaining marketable recyclables. Several worldwide changes and recent research findings indicate the emergence of a new perspective on landfills as reservoirs for resource extraction. Although the potential of this approach appears significant, it is argued that facilitating implementation involves a number of research challenges in terms of technology innovation, clarifying the conditions for realization and developing standardized frameworks for evaluating economic and environmental performance from a systems perspective. In order to address these challenges, a combination of applied and theoretical research is required.

  11. Feasibility study for utilization of landfill gas at the Royalton Road Landfill, Broadview Heights, Ohio. Final report

    SciTech Connect (OSTI)

    None

    1983-09-01T23:59:59.000Z

    The technical viability of landfill gas recovery has been previously demonstrated at numerous sites. However, the economics of a full scale utilization system are dependent on proper market conditions, appropriate technologies, landfill gas quantity and quality, and public/purchaser acceptance. The specific objectives of this feasibility study were to determine: The available markets which might purchase landfill gas or landfill gas derived energy products; An extraction system concept design and to perform an on-site pumping test program; The landfill gas utilization technologies most appropriate for the site; Any adverse environmental, health, safety, or socioeconomic impacts associated with the various proposed technologies; The optimum project economics, based on markets and processes examined. Findings and recommendations were presented which review the feasibility of a landfill gas utilization facility on the Royalton Road Landfill. The three identified utilization alternatives are indeed technically feasible. However, current market considerations indicate that installation of a full scale system is not economically advisable at this time. This final report encompasses work performed by SCS Engineers from late 1980 to the present. Monitoring data from several extraction and monitoring wells is presented, including pumping rates and gas quality and quantity analysis. The Market Analysis Data Form, local climatological data, and barometric pressure data are included in the appendix section. 33 figures, 25 tables.

  12. EA-1907: Biogas Anaerobic Digester Facility, Oakley, Kansas

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal by DOE and USDA to provide funding to Western Plains Energy, LLC (WPE) to construct, purchase equipment, and operate a new Biogas Anaerobic Digester at WPE's existing Ethanol Facility, located at 3022 County Road 18, Grinnell Township (Oakley), Gove County, Kansas. The proposed facility will include a receiving building, digester, and related infrastructure. Based on the analysis in USDA's Final EA and FONSI, DOE has determined that DOE's proposed action does not constitute a major Federal action that would significantly affect the quality of the human or natural environment.

  13. Biogas Technologies and Integration with Fuel Cells | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyandapproximately 10 wt%in Defense,BiogasTechnologies

  14. Biogas and Fuel Cells Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform isEnergyMeeting | DepartmentBioenergyUS Department offor theBiogas

  15. Hese Biogas GmbH | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | Open Energy InformationHebeiProgram JumpHennecke GmbHHeresBiogas

  16. Biogas Nord GmbH | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbonof AlternativeBioenergia Brasil S ABiogalBiogas Nord GmbH

  17. July 17, 2012, Webinar: Landfill Gas-to-Energy Projects

    Office of Energy Efficiency and Renewable Energy (EERE)

    This webinar, held July 17, 2012, provided information on the challenges and benefits of developing successful community landfill gas-to-energy projects in Will County, Illinois, and Escambia...

  18. Modeling of leachate generation in municipal solid waste landfills

    E-Print Network [OSTI]

    Beck, James Bryan

    1994-01-01T23:59:59.000Z

    and the inclusion of compaction effects and leachate generation and movement effects by Mehevec (1994) should provide the user with a tool for estimating leachate generation values and landfill capacity figures for a variety of initial design and operational...

  19. Installation of geosynthetic clay liners at California MSW landfills

    SciTech Connect (OSTI)

    Snow, M.; Jesionek, K.S.; Dunn, R.J.; Kavazanjian, E. Jr.

    1997-11-01T23:59:59.000Z

    The California regulations for liner systems at municipal solid waste (MSW) landfills require that alternatives to the prescriptive federal Subtitle D liner system have a containment capability greater than that of the prescriptive system. Regulators may also require a demonstration that use of the prescriptive system is burdensome prior to approval of an alternative liner design. This paper presents seven case histories of the design and installation of geosynthetic clay liners (GCL) as an alternative to the low-permeability soil component of the prescriptive Subtitle D composite liner system at MSW landfills in California. These case histories cover GCLs from different manufacturers and landfill sites with a wide range of conditions including canyon landfills with slopes as steep as 1H:1V.

  20. Brownfield landfill remediation under the Illinois EPA site remediation program

    SciTech Connect (OSTI)

    Beck, J.; Bruce, B.; Miller, J.; Wey, T.

    1999-07-01T23:59:59.000Z

    Brownfield type landfill remediation was completed at the Ft. Sheridan Historic Landmark District, a former Army Base Realignment and Closure Facility, in conjunction with the future development of 551 historic and new homes at this site. The project was completed during 1998 under the Illinois Environmental Protection Agency (Illinois EPA) Site Remediation Program. This paper highlights the Illinois EPA's Site Remediation Program and the remediation of Landfills 3 and 4 at Fort Sheridan. The project involved removal of about 200,000 cubic yards of landfill waste, comprised of industrial and domestic refuse and demolition debris, and post-removal confirmation sampling of soils, sediment, surface water, and groundwater. The sample results were compared to the Illinois Risk-Based Cleanup levels for residential scenarios. The goal of the removal project was to obtain a No Further Remediation letter from the Illinois EPA to allow residential development of the landfill areas.

  1. Anaerobic co-digestion of the organic fraction of municipal solid waste with FOG waste from a sewage treatment plant: Recovering a wasted methane potential and enhancing the biogas yield

    SciTech Connect (OSTI)

    Martin-Gonzalez, L., E-mail: lucia.martin@uab.ca [Departament d'Enginyeria Quimica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Colturato, L.F. [Departament d'Enginyeria Quimica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Font, X.; Vicent, T. [Departament d'Enginyeria Quimica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Institut de Ciencia i Tecnologia Ambiental (ICTA) Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain)

    2010-10-15T23:59:59.000Z

    Anaerobic digestion is applied widely to treat the source collected organic fraction of municipal solid wastes (SC-OFMSW). Lipid-rich wastes are a valuable substrate for anaerobic digestion due to their high theoretical methane potential. Nevertheless, although fat, oil and grease waste from sewage treatment plants (STP-FOGW) are commonly disposed of in landfill, European legislation is aimed at encouraging more effective forms of treatment. Co-digestion of the above wastes may enhance valorisation of STP-FOGW and lead to a higher biogas yield throughout the anaerobic digestion process. In the present study, STP-FOGW was evaluated as a co-substrate in wet anaerobic digestion of SC-OFMSW under mesophilic conditions (37 {sup o}C). Batch experiments carried out at different co-digestion ratios showed an improvement in methane production related to STP-FOGW addition. A 1:7 (VS/VS) STP-FOGW:SC-OFMSW feed ratio was selected for use in performing further lab-scale studies in a 5 L continuous reactor. Biogas yield increased from 0.38 {+-} 0.02 L g VS{sub feed}{sup -1} to 0.55 {+-} 0.05 L g VS{sub feed}{sup -1} as a result of adding STP-FOGW to reactor feed. Both VS reduction values and biogas methane content were maintained and inhibition produced by long chain fatty acid (LCFA) accumulation was not observed. Recovery of a currently wasted methane potential from STP-FOGW was achieved in a co-digestion process with SC-OFMSW.

  2. Energy Economics of Farm Biogas in Cold Climates

    SciTech Connect (OSTI)

    Pillay, Pragasen; Grimberg, Stefan; Powers, Susan E

    2012-10-24T23:59:59.000Z

    Anaerobic digestion of farm and dairy waste has been shown to be capital intensive. One way to improve digester economics is to co-digest high-energy substrates together with the dairy manure. Cheese whey for example represents a high-energy substrate that is generated during cheese manufacture. There are currently no quantitative tools available that predict performance of co-digestion farm systems. The goal of this project was to develop a mathematical tool that would (1) predict the impact of co-digestion and (2) determine the best use of the generated biogas for a cheese manufacturing plant. Two models were developed that separately could be used to meet both goals of the project. Given current pricing structures of the most economical use of the generated biogas at the cheese manufacturing plant was as a replacement of fuel oil to generate heat. The developed digester model accurately predicted the performance of 26 farm digesters operating in the North Eastern U.S.

  3. Applying guidance for methane emission estimation for landfills

    SciTech Connect (OSTI)

    Scharff, Heijo [NV Afvalzorg, Postbus 2, 1566 ZG Assendelft (Netherlands)]. E-mail: h.scharff@afvalzorg.nl; Jacobs, Joeri [NV Afvalzorg, Postbus 2, 1566 ZG Assendelft (Netherlands)]. E-mail: j.jacobs@afvalzorg.nl

    2006-07-01T23:59:59.000Z

    Quantification of methane emission from landfills is important to evaluate measures for reduction of greenhouse gas emissions. Both the United Nations and the European Union have adopted protocols to ensure quantification of methane emission from individual landfills. The purpose of these protocols is to disclose emission data to regulators and the general public. Criteria such as timeliness, completeness, certainty, comparability, consistency and transparency are set for inclusion of emission data in a publicly accessible database. All methods given as guidance to landfill operators to estimate landfill methane emissions are based on models. In this paper the consequences of applying six different models for estimates of three landfills are explored. It is not the intention of this paper to criticise or validate models. The modelling results are compared with whole site methane emission measurements. A huge difference in results is observed. This raises doubts about the accuracy of the models. It also indicates that at least some of the criteria previously mentioned are not met for the tools currently available to estimate methane emissions from individual landfills. This will inevitably lead to compiling and comparing data with an incomparable origin. Harmonisation of models is recommended. This may not necessarily reduce uncertainty, but it will at least result in comparable, consistent and transparent data.

  4. Bioreactor Landfill Research and Demonstration Project Northern Oaks Landfill, Harrison, MI

    SciTech Connect (OSTI)

    Zhao, Xiando; Voice, Thomas; and Hashsham, Syed A.

    2006-08-29T23:59:59.000Z

    A bioreactor landfill cell with 1.2-acre footprint was constructed, filled, operated, and monitored at Northern Oaks Recycling and Disposal Facility (NORDF) at Harrison, MI. With a filled volume of 74,239 cubic yards, the cell contained approximately 35,317 tons of municipal solid waste (MSW) and 20,777 tons of cover soil. It was laid on the slope of an existing cell but separated by a geosynthetic membrane liner. After the cell reached a design height of 60 feet, it was covered with a geosynthetic membrane cap. A three-dimensional monitoring system to collect data at 48 different locations was designed and installed during the construction phase of the bioreactor cell. Each location had a cluster of monitoring devices consisting of a probe to monitor moisture and temperature, a leachate collection basin, and a gas sampling port. An increase in moisture content of the MSW in the bioreactor cell was achieved by pumping leachate collected on-site from various other cells, as well as recirculation of leachate from the bioreactor landfill cell itself. Three types of leachate injection systems were evaluated in this bioreactor cell for their efficacy to distribute pumped leachate uniformly: a leachate injection pipe buried in a 6-ft wide horizontal stone mound, a 15-ft wide geocomposite drainage layer, and a 60-ft wide geocomposite drainage layer. All leachate injection systems were installed on top of the compacted waste surface. The distribution of water and resulting MSW moisture content throughout the bioreactor cell was found to be similar for the three designs. Water coming into and leaving the cell (leachate pumped in, precipitation, snow, evaporation, and collected leachate) was monitored in order to carry out a water balance. Using a leachate injection rate of 26 – 30 gal/yard3, the average moisture content increased from 25% to 35% (wet based) over the period of this study. One of the key aspects of this bioreactor landfill study was to evaluate bioreactor start up and performance in locations with colder climate. For lifts filled during the summer months, methane generation started within three months after completion of the lift. For lifts filled in winter months, very little methane production occurred even eight months after filling. The temperature data indicated that subzero or slightly above zero (oC) temperatures persisted for unusually long periods (more than six months) in the lifts filled during winter months. This was likely due to the high thermal insulation capability of the MSW and the low level of biological activity during start up. This observation indicates that bioreactor landfills located in cold climate and filled during winter months may require mechanisms to increase temperature and initiate biodegradation. Thus, besides moisture, temperature may be the next important factor controlling the biological decomposition in anaerobic bioreactor landfills. Spatial and temporal characterization of leachate samples indicated the presence of low levels of commonly used volatile organic compounds (including acetone, methyl ethyl ketone, methyl isobutyl ketone, and toluene) and metals (including arsenic, chromium, and zinc). Changes and leachate and gaseous sample characteristics correlated with enhanced biological activity and increase in temperature. Continued monitoring of this bioreactor landfill cell is expected to yield critical data needed for start up, design, and operation of this emerging process.

  5. The influence of atmospheric pressure on landfill methane emissions

    SciTech Connect (OSTI)

    Czepiel, P.M.; Shorter, J.H.; Mosher, B.; Allwine, E.; McManus, J.B.; Harriss, R.C.; Kolb, C.E.; Lamb, B.K

    2003-07-01T23:59:59.000Z

    Landfills are the largest source of anthropogenic methane (CH{sub 4}) emissions to the atmosphere in the United States. However, few measurements of whole landfill CH{sub 4} emissions have been reported. Here, we present the results of a multi-season study of whole landfill CH{sub 4} emissions using atmospheric tracer methods at the Nashua, New Hampshire Municipal landfill in the northeastern United States. The measurement data include 12 individual emission tests, each test consisting of 5-8 plume measurements. Measured emissions were negatively correlated with surface atmospheric pressure and ranged from 7.3 to 26.5 m{sup 3} CH{sub 4} min{sup -1}. A simple regression model of our results was used to calculate an annual emission rate of 8.4x10{sup 6} m{sup 3} CH{sub 4} year{sup -1}. These data, along with CH{sub 4} oxidation estimates based on emitted landfill gas isotopic characteristics and gas collection data, were used to estimate annual CH{sub 4} generation at this landfill. A reported gas collection rate of 7.1x10{sup 6} m{sup 3} CH{sub 4} year{sup -1} and an estimated annual rate of CH{sub 4} oxidation by cover soils of 1.2x10{sup 6} m{sup 3} CH{sub 4} year{sup -1} resulted in a calculated annual CH{sub 4} generation rate of 16.7x10{sup 6} m{sup 3} CH{sub 4} year{sup -1}. These results underscore the necessity of understanding a landfill's dynamic environment before assessing long-term emissions potential.

  6. DC systems with transformerless converters

    SciTech Connect (OSTI)

    Vithayathil, J.J.; Mittlestadt, W. [Bonneville Power Administration, Portland, OR (United States)] [Bonneville Power Administration, Portland, OR (United States); Bjoerklund, P.E. [ABB Power Systems AB, Ludvika (Sweden)] [ABB Power Systems AB, Ludvika (Sweden)

    1995-07-01T23:59:59.000Z

    A technical and economic feasibility study of HVDC systems without converter transformers is presented. The presentation includes proposed solutions to the drawback related to the absence of galvanic separation between the ac and dc systems, if the converter transformers are eliminated. The results show that HVDC systems without converter transformers are both technically and economically feasible. The cost savings can be substantial.

  7. Hazards assessment for the INEL Landfill Complex

    SciTech Connect (OSTI)

    Knudsen, J.K.; Calley, M.B.

    1994-02-01T23:59:59.000Z

    This report documents the hazards assessment for the INEL Landfill Complex (LC) located at the Idaho National Engineering Laboratory, which is operated by EG&G Idaho, Inc., for the US Department of Energy (DOE). The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. DOE Order 5500.3A requires that a facility-specific hazards assessment be performed to provide the technical basis for facility emergency planning efforts. This hazards assessment was conducted in accordance with DOE Headquarters and the DOE Idaho Operations Office (DOE-ID) guidance to comply with DOE Order 5500.3A. The hazards assessment identifies and analyzes the hazards that are significant enough to warrant consideration in a facility`s operational emergency management program. The area surrounding the LC, the buildings and structures at the LC, and the processes that are used at the LC are described in this report. All hazardous materials, both radiological and nonradiological, at the LC were identified and screened against threshold quantities according to DOE Order 5500.3A guidance. Asbestos at the Asbestos Pit was the only hazardous material that exceeded its specified threshold quantity. However, the type of asbestos received and the packaging practices used are believed to limit the potential for an airborne release of asbestos fibers. Therefore, in accordance with DOE Order 5500.3A guidance, no further hazardous material characterization or analysis was required for this hazards assessment.

  8. Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and...

    Broader source: Energy.gov (indexed) [DOE]

    Energy, will develop a new, high-capacity sorbent to remove sulfur from anaerobic digester gas. This technology will enable the production of a nearly sulfur-free biogas to...

  9. An overview of the sustainability of solid waste management at military installations

    E-Print Network [OSTI]

    Borglin, S.

    2010-01-01T23:59:59.000Z

    Hill Air Force Base Landfill Gas to Energy Biogas Caseoperators control leachate, landfill gas emissions, odors,USDepartmentofState 2006). Landfill gas (LFG) is created by

  10. Innovation, renewable energy, and state investment: Case studies of leading clean energy funds

    E-Print Network [OSTI]

    Wiser, Ryan; Bolinger, Mark; Milford, Lewis; Porter, Kevin; Clark, Roger

    2002-01-01T23:59:59.000Z

    projects (including landfill gas, manure, wastewatertechnologies include landfill gas and biogas from wastewateras a few digester and landfill gas systems and one large

  11. Solar thermionic energy converter experiment

    SciTech Connect (OSTI)

    Goodale, D.; Lieb, D.; Neale, D.

    1982-08-01T23:59:59.000Z

    A one-inch CVD converter was solar tested in a central receiver heliostat array at the Advanced Components Test Facility at the Georgia Institute of Technology. The test examined heat flux cycling control of the operating point and mounting arrangements. The converter was mounted directly in the solar image with no cavity. The input heat flux was 40-60 W/cm/sup 2/. The converter performance was comparable to combustion measurements made on the same diode. Thermal cycling caused no problems with converter operation. The converter showed no degradation after the test.

  12. Thermionic electric converter

    SciTech Connect (OSTI)

    Davis, E.D.

    1981-12-01T23:59:59.000Z

    A thermionic electric converter is disclosed wherein an externally located heat source causes electrons to be boiled off an electron emissive surface interiorly positioned on one end wall of an evacuated cylindrical chamber. The electrons are electrically focused and accelerated through the interior of an air core induction coil located within a transverse magnetic field, and subsequently are collected on the other end wall of the chamber functioning as a collecting plate. The emf generated in the induction coil by action of the transiting electron stream interacting with the transverse magnetic field is applied to an external circuit to perform work, thereby implementing a direct heat energy to electrical energy conversion.

  13. Cycloidal Wave Energy Converter

    SciTech Connect (OSTI)

    Stefan G. Siegel, Ph.D.

    2012-11-30T23:59:59.000Z

    This program allowed further advancing the development of a novel type of wave energy converter, a Cycloidal Wave Energy Converter or CycWEC. A CycWEC consists of one or more hydrofoils rotating around a central shaft, and operates fully submerged beneath the water surface. It operates under feedback control sensing the incoming waves, and converts wave power to shaft power directly without any intermediate power take off system. Previous research consisting of numerical simulations and two dimensional small 1:300 scale wave flume experiments had indicated wave cancellation efficiencies beyond 95%. The present work was centered on construction and testing of a 1:10 scale model and conducting two testing campaigns in a three dimensional wave basin. These experiments allowed for the first time for direct measurement of electrical power generated as well as the interaction of the CycWEC in a three dimensional environment. The Atargis team successfully conducted two testing campaigns at the Texas A&M Offshore Technology Research Center and was able to demonstrate electricity generation. In addition, three dimensional wave diffraction results show the ability to achieve wave focusing, thus increasing the amount of wave power that can be extracted beyond what was expected from earlier two dimensional investigations. Numerical results showed wave cancellation efficiencies for irregular waves to be on par with results for regular waves over a wide range of wave lengths. Using the results from previous simulations and experiments a full scale prototype was designed and its performance in a North Atlantic wave climate of average 30kW/m of wave crest was estimated. A full scale WEC with a blade span of 150m will deliver a design power of 5MW at an estimated levelized cost of energy (LCOE) in the range of 10-17 US cents per kWh. Based on the new results achieved in the 1:10 scale experiments these estimates appear conservative and the likely performance at full scale will exceed this initial performance estimates. In advancing the Technology Readiness Level (TRL) of this type of wave energy converter from 3 to 4, we find the CycWEC to exceed our initial estimates in terms of hydrodynamic performance. Once fully developed and optimized, it has the potential to not just outperform all other WEC technologies, but to also deliver power at a lower LCOE than competing conventional renewables like wind and solar. Given the large wave power resource both domestically and internationally, this technology has the potential to lead to a large improvement in our ability to produce clean electricity at affordable cost.

  14. Estimation of landfill emission lifespan using process oriented modeling

    SciTech Connect (OSTI)

    Ustohalova, Veronika [Institute of Waste Management, University of Duisburg-Essen, Universitaetsstrasse 15, 45141 Essen (Germany)]. E-mail: veronika.ustohalova@uni-essen.de; Ricken, Tim [Institute of Mechanics, University of Duisburg-Essen, Universitaetsstrasse 15, 45141 Essen (Germany); Widmann, Renatus [Institute of Waste Management, University of Duisburg-Essen, Universitaetsstrasse 15, 45141 Essen (Germany)

    2006-07-01T23:59:59.000Z

    Depending on the particular pollutants emitted, landfills may require service activities lasting from hundreds to thousands of years. Flexible tools allowing long-term predictions of emissions are of key importance to determine the nature and expected duration of maintenance and post-closure activities. A highly capable option represents predictions based on models and verified by experiments that are fast, flexible and allow for the comparison of various possible operation scenarios in order to find the most appropriate one. The intention of the presented work was to develop a experimentally verified multi-dimensional predictive model capable of quantifying and estimating processes taking place in landfill sites where coupled process description allows precise time and space resolution. This constitutive 2-dimensional model is based on the macromechanical theory of porous media (TPM) for a saturated thermo-elastic porous body. The model was used to simulate simultaneously occurring processes: organic phase transition, gas emissions, heat transport, and settlement behavior on a long time scale for municipal solid waste deposited in a landfill. The relationships between the properties (composition, pore structure) of a landfill and the conversion and multi-phase transport phenomena inside it were experimentally determined. In this paper, we present both the theoretical background of the model and the results of the simulations at one single point as well as in a vertical landfill cross section.

  15. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL

    SciTech Connect (OSTI)

    Don Augenstein

    2001-02-01T23:59:59.000Z

    The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional landfills. This is the highest methane recovery rate per unit waste, and thus progress toward stabilization, documented anywhere for such a large waste mass. This high recovery rate is attributed to moisture, and elevated temperature attained inexpensively during startup. Economic analyses performed under Phase I of this NETL contract indicate ''greenhouse cost effectiveness'' to be excellent. Other benefits include substantial waste volume loss (over 30%) which translates to extended landfill life. Other environmental benefits include rapidly improved quality and stabilization (lowered pollutant levels) in liquid leachate which drains from the waste.

  16. Acute and chronic toxicity of municipal landfill leachate as determined with bioassays and chemical analysis

    E-Print Network [OSTI]

    Schrab, Gregory Ernst

    1990-01-01T23:59:59.000Z

    municipal landfill leachates were determined to have mean estimated cumulative cancer risks on the same order of magnitude (10 4) as leachates from co-disposal and hazardous waste landfills. The use of a battery of acute and chronic toxicity bioassays..., chemical analysis, and an estimated cancer risk calculation resulted in data providing evidence that municipal solid waste landfill leachates are as acutely and chronically toxic as co-disposal and hazardous waste landfill leachates. ACKNOWLEDGEMENTS...

  17. Bidirectional buck boost converter

    DOE Patents [OSTI]

    Esser, A.A.M.

    1998-03-31T23:59:59.000Z

    A bidirectional buck boost converter and method of operating the same allows regulation of power flow between first and second voltage sources in which the voltage level at each source is subject to change and power flow is independent of relative voltage levels. In one embodiment, the converter is designed for hard switching while another embodiment implements soft switching of the switching devices. In both embodiments, first and second switching devices are serially coupled between a relatively positive terminal and a relatively negative terminal of a first voltage source with third and fourth switching devices serially coupled between a relatively positive terminal and a relatively negative terminal of a second voltage source. A free-wheeling diode is coupled, respectively, in parallel opposition with respective ones of the switching devices. An inductor is coupled between a junction of the first and second switching devices and a junction of the third and fourth switching devices. Gating pulses supplied by a gating circuit selectively enable operation of the switching devices for transferring power between the voltage sources. In the second embodiment, each switching device is shunted by a capacitor and the switching devices are operated when voltage across the device is substantially zero. 20 figs.

  18. Bidirectional buck boost converter

    DOE Patents [OSTI]

    Esser, Albert Andreas Maria (Niskayuna, NY)

    1998-03-31T23:59:59.000Z

    A bidirectional buck boost converter and method of operating the same allows regulation of power flow between first and second voltage sources in which the voltage level at each source is subject to change and power flow is independent of relative voltage levels. In one embodiment, the converter is designed for hard switching while another embodiment implements soft switching of the switching devices. In both embodiments, first and second switching devices are serially coupled between a relatively positive terminal and a relatively negative terminal of a first voltage source with third and fourth switching devices serially coupled between a relatively positive terminal and a relatively negative terminal of a second voltage source. A free-wheeling diode is coupled, respectively, in parallel opposition with respective ones of the switching devices. An inductor is coupled between a junction of the first and second switching devices and a junction of the third and fourth switching devices. Gating pulses supplied by a gating circuit selectively enable operation of the switching devices for transferring power between the voltage sources. In the second embodiment, each switching device is shunted by a capacitor and the switching devices are operated when voltage across the device is substantially zero.

  19. Modelling of environmental impacts of solid waste landfilling within the life-cycle analysis program EASEWASTE

    SciTech Connect (OSTI)

    Kirkeby, Janus T.; Birgisdottir, Harpa [Environment and Resources, Technical University of Denmark, DTU, Building 113, DK-2800 Kgs. Lyngby (Denmark); Bhander, Gurbakash Singh; Hauschild, Michael [Department of Manufacturing Engineering and Management, Technical University of Denmark, Building 424, DK-2800 Lyngby (Denmark); Christensen, Thomas H. [Environment and Resources, Technical University of Denmark, DTU, Building 113, DK-2800 Kgs. Lyngby (Denmark)], E-mail: thc@er.dtu.dk

    2007-07-01T23:59:59.000Z

    A new computer-based life-cycle assessment model (EASEWASTE) has been developed to evaluate resource and environmental consequences of solid waste management systems. This paper describes the landfilling sub-model used in the life-cycle assessment program EASEWASTE, and examines some of the implications of this sub-model. All quantities and concentrations of leachate and landfill gas can be modified by the user in order to bring them in agreement with the actual landfill that is assessed by the model. All emissions, except the generation of landfill gas, are process specific. The landfill gas generation is calculated on the basis of organic matter in the landfilled waste. A landfill assessment example is provided. For this example, the normalised environmental effects of landfill gas on global warming and photochemical smog are much greater than the environmental effects for landfill leachate or for landfill construction. A sensitivity analysis for this example indicates that the overall environmental impact is sensitive to the gas collection efficiency and the use of the gas, but not to the amount of leachate generated, or the amount of soil or liner material used in construction. The landfill model can be used for evaluating different technologies with different liners, gas and leachate collection efficiencies, and to compare the environmental consequences of landfilling with alternative waste treatment options such as incineration or anaerobic digestion.

  20. JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING / JULY 1999 / 583 RETENTION OF FREE LIQUIDS IN LANDFILLS UNDERGOING

    E-Print Network [OSTI]

    Zornberg, Jorge G.

    LIQUIDS IN LANDFILLS UNDERGOING VERTICAL EXPANSION By Jorge G. Zornberg,1 Member, ASCE, Bruce L. Jernigan undergoing compression due to a landfill vertical expansion. The mechanism of free liquid generation thickness that a landfill could reach without releasing liquids stored within the waste. The proposed

  1. Geosynthetics International, 2010, 17, No.3 Design of a landfill final cover system

    E-Print Network [OSTI]

    Geosynthetics International, 2010, 17, No.3 Design of a landfill final cover system T. D. Stark containment, Strength, Stability, Shearbox test, Failure, Final cover system, Landfill REFERENCE: Stark, T. D. & Newman, E. J. (20 I0). Design of a landfill final cover systcm. Geosynthetics [ntemational17, No.3, 124

  2. Clogging Potential of Tire Shred-Drainage Layer in Landfill Cover Systems Krishna R. Reddy

    E-Print Network [OSTI]

    , drainage, hydraulic conductivity, landfill, recycling, tires #12;3 Introduction Over 280 million used1 Clogging Potential of Tire Shred-Drainage Layer in Landfill Cover Systems Krishna R. Reddy of shredded scrap tire drainage layers in landfill covers. Laboratory clogging tests were conducted using soil

  3. Beneficial Use of Shredded Tires as Drainage Material in Cover Systems for Abandoned Landfills

    E-Print Network [OSTI]

    ; Landfills; Recycling; Slope stability; Drainage. Author keywords: Waste tires; Landfill cover; DrainageBeneficial Use of Shredded Tires as Drainage Material in Cover Systems for Abandoned Landfills Krishna R. Reddy1 ; Timothy D. Stark2 ; and Aravind Marella3 Abstract: Over 280 million tires

  4. Sepiolite as an Alternative Liner Material in Municipal Solid Waste Landfills

    E-Print Network [OSTI]

    Aydilek, Ahmet

    Sepiolite as an Alternative Liner Material in Municipal Solid Waste Landfills Yucel Guney1 ; Savas in municipal solid waste landfills. However, natural clays may not always provide good contaminant sorption in solid waste landfills. DOI: 10.1061/ ASCE 1090-0241 2008 134:8 1166 CE Database subject headings

  5. Risk assessment of landfill disposal sites - State of the art

    SciTech Connect (OSTI)

    Butt, Talib E. [Sustainability Centre in Glasgow (SCG), George Moore Building, 70 Cowcaddens Road, Glasgow Caledonian University, Glasgow G4 0BA, Scotland (United Kingdom)], E-mail: t_e_butt@hotmail.com; Lockley, Elaine [Be Environmental Ltd. Suite 213, Lomeshaye Business Village, Turner Road, Nelson, Lancashire, BB9 7DR, England (United Kingdom); Oduyemi, Kehinde O.K. [Built and Natural Environment, Baxter Building, University of Abertay Dundee, Bell Street, Dundee DD1 1HG, Scotland (United Kingdom)], E-mail: k.oduyemi@abertay.ac.uk

    2008-07-01T23:59:59.000Z

    A risk assessment process can assist in drawing a cost-effective compromise between economic and environmental costs, thereby assuring that the philosophy of 'sustainable development' is adhered to. Nowadays risk analysis is in wide use to effectively manage environmental issues. Risk assessment is also applied to other subjects including health and safety, food, finance, ecology and epidemiology. The literature review of environmental risk assessments in general and risk assessment approaches particularly regarding landfill disposal sites undertaken by the authors, reveals that an integrated risk assessment methodology for landfill gas, leachate or degraded waste does not exist. A range of knowledge gaps is discovered in the literature reviewed to date. From the perspective of landfill leachate, this paper identifies the extent to which various risk analysis aspects are absent in the existing approaches.

  6. Radioactive material in the West Lake Landfill: Summary report

    SciTech Connect (OSTI)

    none,

    1988-06-01T23:59:59.000Z

    The West Lake Landfill is located near the city of St. Louis in Bridgeton, St. Louis County, Missouri. The site has been used since 1962 for disposing of municipal refuse, industrial solid and liquid wastes, and construction demolition debris. This report summarizes the circumstances of the radioactive material in the West Lake Landfill. The radioactive material resulted from the processing of uranium ores and the subsequent by the AEC of processing residues. Primary emphasis is on the radiological environmental aspects as they relate to potential disposition of the material. It is concluded that remedial action is called for. 8 refs., 2 figs., 1 tab.

  7. Sanitary Landfill groundwater monitoring report. First quarter 1993

    SciTech Connect (OSTI)

    Not Available

    1993-05-01T23:59:59.000Z

    This report contains analytical data for samples taken during first quarter 1993 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site. The data are submitted in reference to the Sanitary Landfill Operating Permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established by the US Environmental Protection Agency, the South Carolina final Primary Drinking Water Standards for lead or the SRS flagging criteria.

  8. Sanitary Landfill groundwater monitoring report. Second quarter 1994

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    This report contains analytical data for samples taken during second quarter 1994 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site (SRS). The data are submitted in reference to the Sanitary Landfill Operating Permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established by the US Environmental Protection Agency (Appendix A), the South Carolina final Primary Drinking Water Standard for lead (Appendix A), or the SRS flagging criteria (Appendix B).

  9. Sanitary Landfill groundwater monitoring report. Third quarter 1993

    SciTech Connect (OSTI)

    Not Available

    1993-11-01T23:59:59.000Z

    This report contains analytical data for samples taken during third quarter 1993 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site. The data are submitted in reference to the Sanitary Landfill Operating Permit. The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards or screening levels, established by the US Environmental Protection Agency, the South Carolina final Primary Drinking Water Standard for lead, or the SRS flagging criteria.

  10. Sanitary landfill groundwater monitoring report (U): second quarter 1996

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    This report contains analytical data for samples taken during second quarter 1996 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site (SRS). The data are submitted in reference to the Sanitary Landfill Operating Permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established by the U.S. Environmental Protection Agency (Appendix A), the South Carolina final Primary Drinking Water Standard for lead (Appendix A), or the SRS flagging criteria (Appendix B).

  11. Sanitary Landfill Groundwater Monitoring Report. Second Quarter 1995

    SciTech Connect (OSTI)

    Chase, J.A.

    1995-08-01T23:59:59.000Z

    This report contains analytical data for samples taken during second quarter 1995 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site (SRS). The data are submitted in reference to the Sanitary landfill Operating Permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Water Standards (PDWS) or screening levels, established by the US Environmental Protection Agency (Appendix A), the South Carolina final Primary Drinking Water Standard for lead (Appendix A), or the SRS flagging criteria (Appendix B).

  12. Sanitary Landfill groundwater monitoring report. Second quarter 1993

    SciTech Connect (OSTI)

    Not Available

    1993-08-01T23:59:59.000Z

    This report contains analytical data for samples taken during second quarter 1993 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site. The data are submitted in reference to the Sanitary Landfill Operating Permit (DWP-087A). The report represents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established by the US Environmental Protection Agency the South Carolina final Primary Drinking Water Standards for lead or the SRS flagging criteria.

  13. Sanitary landfill groundwater monitoring report, Third Quarter 1999

    SciTech Connect (OSTI)

    Chase, J.

    1999-12-08T23:59:59.000Z

    This report contains analytical data for samples taken during Third Quarter 1999 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site. The data are submitted in reference to the Sanitary Landfill Operating Permit. The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards or screening levels, established by the U.S. Environmental Protection Agency, the South Carolina final Primary Drinking Water Standard for lead, or the SRS flagging criteria.

  14. Sanitary Landfill groundwater monitoring report: Third quarter 1994

    SciTech Connect (OSTI)

    Not Available

    1994-11-01T23:59:59.000Z

    This report contains analytical data for samples taken during third quarter 1994 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site (SRS). The data are submitted in reference to the Sanitary Landfill Operating Permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established the US Environmental Protection Agency, the South Carolina final PDWS for lead (Appendix A), or the SRS flagging criteria.

  15. Sanitary Landfill Groundwater Monitoring Report, Second Quarter 1999

    SciTech Connect (OSTI)

    Chase, J.

    1999-07-29T23:59:59.000Z

    This report contains analytical data for samples taken during Second Quarter 1999 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site. The data are submitted in reference to the Sanitary Landfill Operating Permit. The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards or screening levels, established by the US Environmental Protection Agency, the South Carolina final Primary Drinking Water Standard for lead, or the SRS flagging criteria.

  16. Sanitary landfill groundwater monitoring report: Third quarter 1996

    SciTech Connect (OSTI)

    NONE

    1996-11-01T23:59:59.000Z

    This report contains analytical data for samples taken during third quarter 1996 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site (SRS). The data are submitted in reference to the Sanitary Landfill Operating Permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established by the US Environmental Protection Agency (Appendix A), the South Carolina final Primary Drinking Water Standard for lead (Appendix A), or the SRS flagging criteria (Appendix B).

  17. Sanitary landfill groundwater monitoring report. Third quarter 1995

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    This report contains analytical data for samples taken during third quarter 1995 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site (SRS). The data are submitted in reference to the Sanitary Landfill Operating Permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established by the U.S. Environmental Protection Agency, the South Carolina final Primary Drinking Water Standard for lead, or the SRS flagging criteria.

  18. Model to aid the design of composite landfill liners

    E-Print Network [OSTI]

    Mohammed, Kifayathulla

    1993-01-01T23:59:59.000Z

    MODEL TO AID THE DESI(iN OF COMPOSITE LANDFILL LINERS A Thesis by KIFAYATHULLA MOHAMMED Submitted to the School of Graduate Studies Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1993... Major Subject: Safety Engineering MODEL TO AID THE DESIGN OF COMPOSITE LANDFILL LINERS A Thesis by Kifayathulla Mohammed Approved as to style and content by: Kevin J. Mclnnes (Co-chairman of Committee) Richard P. Kon n (Member John P. Wagner...

  19. Converting Biomass to Products

    SciTech Connect (OSTI)

    Graybeal, Judith W.

    2006-06-01T23:59:59.000Z

    For nearly 30 years, PNNL has been developing and applying novel thermal, chemical and biological processes to convert biomass to industrial and consumer products, fuels and energy. Honors for technologies resulting from this research include the Presidential Green Chemistry Award and several Federal Laboratory Consortium and R&D 100 Awards. PNNL’s research and development activities address the complete processing scheme, from feedstock pretreatment to purified product recovery. The laboratory applies fundamental science and advanced engineering capabilities to biomass conversion and processing to ensure effective recovery of optimal value from biomass; carbohydrate polymer systems to maximize energy efficiencies; and micro-technology systems for separation and conversion processes. For example, bioproducts researchers in the laboratory’s Institute for Interfacial Catalysis develop and demonstrate the utility of new catalyst formulations for production of bio-based chemicals. This article describes a sampling of current and recent catalysis projects for biomass conversion.

  20. Self-powered microthermionic converter

    DOE Patents [OSTI]

    Marshall, Albert C.; King, Donald B.; Zavadil, Kevin R.; Kravitz, Stanley H.; Tigges, Chris P.; Vawter, Gregory A.

    2004-08-10T23:59:59.000Z

    A self-powered microthermionic converter having an internal thermal power source integrated into the microthermionic converter. These converters can have high energy-conversion efficiencies over a range of operating temperatures. Microengineering techniques are used to manufacture the converter. The utilization of an internal thermal power source increases potential for mobility and incorporation into small devices. High energy efficiency is obtained by utilization of micron-scale interelectrode gap spacing. Alpha-particle emitting radioisotopes can be used for the internal thermal power source, such as curium and polonium isotopes.

  1. Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT California Energy Balance Update and Decomposition Analysis for the Industry and Building Sectors

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2014-01-01T23:59:59.000Z

    solid waste from landfill gas in electricity source data,and Wood Derived Fuels Landfill Gas GWh Other Biogas MSWFuels Industrial CHP Landfill Gas Other Biogas NAICS 22 CHP

  2. "Maximum recycling of Material and Energy, Minimum of Landfilling"

    E-Print Network [OSTI]

    Columbia University

    Recycling (incl. composting) Waste-to Energy Landfi ll #12;16 Treatment of Municipal Solid Waste in the EU 27 in 2006 Source: EUROSTAT 41% of Municipal Solid Waste across the EU 27 is still landfilled Rylander, CEO SYSAV, South Scania Waste Company, Sweden #12;2 The Waste Problem can only be solved

  3. Acute and Genetic Toxicity of Municipal Landfill Leachate

    E-Print Network [OSTI]

    Brown, K.W.; Schrab, G.E.; Donnelly, K.C.

    to be representative of landfills of differing ages and types of wastes. Each sample was tested through three genetic toxicity bioassays (The Aspergillus diploid assay, the Bacillus DNA repair assay and the Salmonella/microsome assay) to measure the ability of each...

  4. Acute and Genetic Toxicity of Municipal Landfill Leachate 

    E-Print Network [OSTI]

    Brown, K.W.; Schrab, G.E.; Donnelly, K.C.

    1991-01-01T23:59:59.000Z

    to be representative of landfills of differing ages and types of wastes. Each sample was tested through three genetic toxicity bioassays (The Aspergillus diploid assay, the Bacillus DNA repair assay and the Salmonella/microsome assay) to measure the ability of each...

  5. Metals in Municipal Landfill Leachate And Their Health Effects

    E-Print Network [OSTI]

    Laughlin, Robert B.

    raw leachate contains concentrations of heavy metals in excess ofthe drinking water standards of the un- saturated zone. If municipal solid waste is placed di- rectly into ground water, or if leachateMetals in Municipal Landfill Leachate And Their Health Effects STEPHEN C. JAMES, BS, MSCE Abstract

  6. Policy Analysis Landfill-Gas-to-Energy Projects

    E-Print Network [OSTI]

    Jaramillo, Paulina

    perspectives in comparison to current subsidies. It was found that the private breakeven price of electricityPolicy Analysis Landfill-Gas-to-Energy Projects: Analysis of Net Private and Social Benefits P A U gas also has the potential to be used to generate electricity.In1994,the

  7. Geosynthetics in Landfills Prepared by M. Bouazza and J. Zornberg

    E-Print Network [OSTI]

    Zornberg, Jorge G.

    ; · geosynthetic clay liners (GCLs), which are composite materials consisting of bentonite and geosynthetics and a #12;geomembrane/compacted clay liner composite as the secondary liner system. The leak detectionGeosynthetics in Landfills Prepared by M. Bouazza and J. Zornberg Geosynthetics are extensively

  8. Story Road Landfill Solar Site Evaluation: San Jose

    Broader source: Energy.gov [DOE]

    This report describes the findings of a solar site evaluation conducted at the Story Road Landfill (Site) in the City of San Jose, California (City). This evaluation was conducted as part of a larger study to assess solar potential at multiple public facilities within the City.

  9. Comparison of slope stability in two Brazilian municipal landfills

    SciTech Connect (OSTI)

    Gharabaghi, B. [School of Engineering, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada)], E-mail: bgharaba@uoguelph.ca; Singh, M.K. [Department of Civil and Geological Engineering, University of Saskatchewan, Saskatoon, S7N 5A9 (Canada); Inkratas, C. [School of Engineering, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada)], E-mail: cinkrata@uoguelph.ca; Fleming, I.R. [Department of Civil and Geological Engineering, University of Saskatchewan, Saskatoon, S7N 5A9 (Canada)], E-mail: ian.fleming@usask.ca; McBean, E. [School of Engineering, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada)], E-mail: emcbean@uoguelph.ca

    2008-07-01T23:59:59.000Z

    The implementation of landfill gas to energy (LFGTE) projects has greatly assisted in reducing the greenhouse gases and air pollutants, leading to an improved local air quality and reduced health risks. The majority of cities in developing countries still dispose of their municipal waste in uncontrolled 'open dumps.' Municipal solid waste landfill construction practices and operating procedures in these countries pose a challenge to implementation of LFGTE projects because of concern about damage to the gas collection infrastructure (horizontal headers and vertical wells) caused by minor, relatively shallow slumps and slides within the waste mass. While major slope failures can and have occurred, such failures in most cases have been shown to involve contributory factors or triggers such as high pore pressures, weak foundation soil or failure along weak geosynthetic interfaces. Many researchers who have studied waste mechanics propose that the shear strength of municipal waste is sufficient such that major deep-seated catastrophic failures under most circumstances require such contributory factors. Obviously, evaluation of such potential major failures requires expert analysis by geotechnical specialists with detailed site-specific information regarding foundation soils, interface shearing resistances and pore pressures both within the waste and in clayey barrier layers or foundation soils. The objective of this paper is to evaluate the potential use of very simple stability analyses which can be used to study the potential for slumps and slides within the waste mass and which may represent a significant constraint on construction and development of the landfill, on reclamation and closure and on the feasibility of a LFGTE project. The stability analyses rely on site-specific but simple estimates of the unit weight of waste and the pore pressure conditions and use 'generic' published shear strength envelopes for municipal waste. Application of the slope stability analysis method is presented in a case study of two Brazilian landfill sites; the Cruz das Almas Landfill in Maceio and the Muribeca Landfill in Recife. The Muribeca site has never recorded a slope failure and is much larger and better-maintained when compared to the Maceio site at which numerous minor slumps and slides have been observed. Conventional limit-equilibrium analysis was used to calculate factors of safety for stability of the landfill side slopes. Results indicate that the Muribeca site is more stable with computed factors of safety values in the range 1.6-2.4 compared with computed values ranging from 0.9 to 1.4 for the Maceio site at which slope failures have been known to occur. The results suggest that this approach may be useful as a screening-level tool when considering the feasibility of implementing LFGTE projects.

  10. Postgraduate Programme Renewable Energy (PPRE) --Biogas Workshop --01. -04. Feb. 2010 --Oldenburg University --venue: TGO, Marie-Curie-Strae 1, 26129 Oldenburg Programme Part 1

    E-Print Network [OSTI]

    Damm, Werner

    Power Plants Dipl.Ing. M. Beyer (Biogas Plant Wittmund) 11:00 Coffee Break 11:15 The Financing of Biogas:30 Technical Aspects of Biogas: Plant Types / Designs and Design Choice Parameters (JL) 12:30 Lunch Practical Session: 13:30 Introduction to biodegradation simulation software (HS) 14:15 Simulation exercises

  11. Livingston Parish Landfill Methane Recovery Project (Feasibility Study)

    SciTech Connect (OSTI)

    White, Steven

    2012-11-15T23:59:59.000Z

    The Woodside Landfill is owned by Livingston Parish, Louisiana and is operated under contract by Waste Management of Louisiana LLC. This public owner/private operator partnership is commonplace in the solid waste industry today. The landfill has been in operation since approximately 1988 and has a permitted capacity of approximately 41 million cubic yards. Based on an assumed in-place waste density of 0.94 ton per cubic yard, the landfill could have an expected design capacity of 39.3 million tons. The landfill does have an active landfill gas collection and control system (LFGCCS) in place because it meets the minimum thresholds for the New Source Performance Standards (NSPS). The initial LFGCS was installed prior to 2006 and subsequent phases were installed in 2007 and 2010. The Parish received a grant from the United States Department of Energy in 2009 to evaluate the potential for landfill gas recovery and utilization at the Woodside Landfill. This includes a technical and economic feasibility study of a project to install a landfill gas to energy (LFGTE) plant and to compare alternative technologies. The LFGTE plant can take the form of on-site electrical generation, a direct use/medium Btu option, or a high-Btu upgrade technology. The technical evaluation in Section 2 of this report concludes that landfill gas from the Woodside landfill is suitable for recovery and utilization. The financial evaluations in sections 3, 4, and 5 of this report provide financial estimates of the returns for various utilization technologies. The report concludes that the most economically viable project is the Electricity Generation option, subject to the Parish’s ability and willingness to allocate adequate cash for initial capital and/or to obtain debt financing. However, even this option does not present a solid return: by our estimates, there is a 19 year simple payback on the electricity generation option. All of the energy recovery options discussed in this report economically stressed. The primary reason for this is the recent fundamental shift in the US energy landscape. Abundant supplies of natural gas have put downward pressure on any project that displaces natural gas or natural gas substitutes. Moreover, this shift appears long-term as domestic supplies for natural gas may have been increased for several hundred years. While electricity prices are less affected by natural gas prices than other thermal projects, they are still significantly affected since much of the power in the Entergy cost structure is driven by natural gas-fired generation. Consequently, rates reimbursed by the power company based on their avoided cost structure also face downward pressure over the near and intermediate term. In addition, there has been decreasing emphasis on environmental concerns regarding the production of thermal energy, and as a result both the voluntary and mandatory markets that drive green attribute prices have softened significantly over the past couple of years. Please note that energy markets are constantly changing due to fundamental supply and demand forces, as well as from external forces such as regulations and environmental concerns. At any point in the future, the outlook for energy prices may change and could deem either the electricity generation or pipeline injection project more feasible. This report is intended to serve as the primary background document for subsequent decisions made at Parish staff and governing board levels.

  12. Thyristor converter simulation and analysis

    SciTech Connect (OSTI)

    Zhang, S.Y.

    1991-01-01T23:59:59.000Z

    In this paper we present a simulation on thyristor converters. The simulation features nonlinearity, non-uniform firing, and the commutations. Several applications such as a current regulation, a converter frequency characteristics analysis, and a power line disturbance analysis will be presented. 4 refs., 4 figs.

  13. Emission assessment at the Burj Hammoud inactive municipal landfill: Viability of landfill gas recovery under the clean development mechanism

    SciTech Connect (OSTI)

    El-Fadel, Mutasem, E-mail: mfadel@aub.edu.lb [Department of Civil and Environmental Engineering, American University of Beirut (Lebanon); Abi-Esber, Layale; Salhab, Samer [Department of Civil and Environmental Engineering, American University of Beirut (Lebanon)

    2012-11-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer LFG emissions are measured at an abandoned landfill with highly organic waste. Black-Right-Pointing-Pointer Mean headspace and vent emissions are 0.240 and 0.074 l CH{sub 4}/m{sup 2} hr, respectively. Black-Right-Pointing-Pointer At sites with high food waste content, LFG generation drops rapidly after site closure. Black-Right-Pointing-Pointer The viability of LFG recovery for CDMs in developing countries is doubtful. - Abstract: This paper examines landfill gas (LFG) emissions at a large inactive waste disposal site to evaluate the viability of investment in LFG recovery through the clean development mechanism (CDM) initiative. For this purpose, field measurements of LFG emissions were conducted and the data were processed by geospatial interpolation to estimate an equivalent site emission rate which was used to calibrate and apply two LFG prediction models to forecast LFG emissions at the site. The mean CH{sub 4} flux values calculated through tessellation, inverse distance weighing and kriging were 0.188 {+-} 0.014, 0.224 {+-} 0.012 and 0.237 {+-} 0.008 l CH{sub 4}/m{sup 2} hr, respectively, compared to an arithmetic mean of 0.24 l/m{sup 2} hr. The flux values are within the reported range for closed landfills (0.06-0.89 l/m{sup 2} hr), and lower than the reported range for active landfills (0.42-2.46 l/m{sup 2} hr). Simulation results matched field measurements for low methane generation potential (L{sub 0}) values in the range of 19.8-102.6 m{sup 3}/ton of waste. LFG generation dropped rapidly to half its peak level only 4 yrs after landfill closure limiting the sustainability of LFG recovery systems in similar contexts and raising into doubt promoted CDM initiatives for similar waste.

  14. Comparative analysis of environmental impacts of maize-biogas and photovoltaics on a land use basis

    SciTech Connect (OSTI)

    Graebig, Markus; Fenner, Richard [Centre for Sustainable Development, Department of Engineering, University of Cambridge (United Kingdom); Bringezu, Stefan [Wuppertal Institute for Climate, Environment and Energy. P.B. 100480, 42004 Wuppertal (Germany)

    2010-07-15T23:59:59.000Z

    This study aims to stimulate the discussion on how to optimize a sustainable energy mix from an environmental perspective and how to apply existing renewable energy sources in the most efficient way. Ground-mounted photovoltaics (PV) and the maize-biogas-electricity route are compared with regard to their potential to mitigate environmental pressure, assuming that a given agricultural area is available for energy production. Existing life cycle assessment (LCA) studies are taken as a basis to analyse environmental impacts of those technologies in relation to conventional technology for power and heat generation. The life-cycle-wide mitigation potential per area used is calculated for the impact categories non-renewable energy input, green house gas (GHG) emissions, acidification and eutrophication. The environmental performance of each system depends on the scenario that is assumed for end energy use (electricity and heat supply have been contemplated). In all scenarios under consideration, PV turns out to be superior to biogas in almost all studied impact categories. Even when maize is used for electricity production in connection with very efficient heat usage, and reduced PV performance is assumed to account for intermittence, PV can still mitigate about four times the amount of green house gas emissions and non-renewable energy input compared to maize-biogas. Soil erosion, which can be entirely avoided with PV, exceeds soil renewal rates roughly 20-fold on maize fields. Regarding the overall Eco-indicator 99 (H) score under most favourable assumptions for the maize-biogas route, PV has still a more than 100% higher potential to mitigate environmental burden. At present, the key advantages of biogas are its price and its availability without intermittence. In the long run, and with respect to more efficient land use, biogas might preferably be produced from organic waste or manure, whereas PV should be integrated into buildings and infrastructures. (author)

  15. Isotopic constraints on off-site migration of landfill CH{sub 4}

    SciTech Connect (OSTI)

    Desrocher, S.; Lollar, B.S. [Univ. of Toronto, Ontario (Canada). Dept. of Geology

    1998-09-01T23:59:59.000Z

    Occurrences of CH{sub 4} in residential areas in the vicinity of the Beare Road landfill, Toronto, Canada, have raised public concern about potential off-site migration of CH{sub 4} from the landfill site. Carbon isotopic analysis of dissolved and gas phase CH{sub 4} at the Beare Road site, however, indicates that CH{sub 4} in the ground water systems in the vicinity of the landfill is related to naturally occurring microbial methanogenesis within these geologic units, rather than to contamination by landfill CH{sub 4}. CH{sub 4} gas in the landfill and landfill cover has {delta}{sup 13}C values typical of microbially produced gas. Concentrations of CH{sub 4} found in deep ground water in the Scarborough, Don, and Whitby Formations underlying the landfill are isotopically distinct from the landfill gases. They are isotopically and compositionally similar, however, to naturally occurring microbial CH{sub 4} identified in organic-rich glacial deposits throughout Ontario. The lack of any significant CH{sub 4} concentrations or concentration gradients in the upper tin zone between the landfill and the deep ground water aquifer is further evidence that no transport between the landfill and deep ground water is occurring.

  16. Measurements of particulate matter concentrations at a landfill site (Crete, Greece)

    SciTech Connect (OSTI)

    Chalvatzaki, E.; Kopanakis, I. [Department of Environmental Engineering, Technical University of Crete, Chania 73100, Crete (Greece); Kontaksakis, M. [Municipal Company of Solid Waste Management, Chania 73100, Crete (Greece); Glytsos, T.; Kalogerakis, N. [Department of Environmental Engineering, Technical University of Crete, Chania 73100, Crete (Greece); Lazaridis, M., E-mail: lazaridi@mred.tuc.g [Department of Environmental Engineering, Technical University of Crete, Chania 73100, Crete (Greece)

    2010-11-15T23:59:59.000Z

    Large amounts of solid waste are disposed in landfills and the potential of particulate matter (PM) emissions into the atmosphere is significant. Particulate matter emissions in landfills are the result of resuspension from the disposed waste and other activities such as mechanical recycling and composting, waste unloading and sorting, the process of coating residues and waste transport by trucks. Measurements of ambient levels of inhalable particulate matter (PM{sub 10}) were performed in a landfill site located at Chania (Crete, Greece). Elevated PM{sub 10} concentrations were measured in the landfill site during several landfill operations. It was observed that the meteorological conditions (mainly wind velocity and temperature) influence considerably the PM{sub 10} concentrations. Comparison between the PM{sub 10} concentrations at the landfill and at a PM{sub 10} background site indicates the influence of the landfill activities on local concentrations at the landfill. No correlation was observed between the measurements at the landfill and the background sites. Finally, specific preventing measures are proposed to control the PM concentrations in landfills.

  17. Thermionic-photovoltaic energy converter

    SciTech Connect (OSTI)

    Chubb, D. L.

    1985-07-09T23:59:59.000Z

    A thermionic-photovoltaic energy conversion device comprises a thermionic diode mounted within a hollow tubular photovoltaic converter. The thermionic diode maintains a cesium discharge for producing excited atoms that emit line radiation in the wavelength region of 850 nm to 890 nm. The photovoltaic converter is a silicon or galium arsenide photovoltaic cell having bandgap energies in this same wavelength region for optimum cell efficiency.

  18. Sanitary landfill groundwater quality assessment plan Savannah River Site

    SciTech Connect (OSTI)

    Wells, D.G.; Cook, J.W.

    1990-06-01T23:59:59.000Z

    This assessment monitoring plan has been prepared in accordance with the guidance provided by the SCDHEC in a letter dated December 7, 1989 from Pearson to Wright and a letter dated October 9, 1989 from Keisler to Lindler. The letters are included a Appendix A, for informational purposes. Included in the plan are all of the monitoring data from the landfill monitoring wells for 1989, and a description of the present monitoring well network. The plan proposes thirty-two new wells and an extensive coring project that includes eleven soil borings. Locations of the proposed wells attempt to follow the SCDHEC guidelines and are downgradient, sidegradient and in the heart of suspected contaminant plumes. Also included in the plan is the current Savannah River Site Sampling and Analysis Plan and the well construction records for all of the existing monitoring wells around the sanitary landfill.

  19. Mixed waste landfill annual groundwater monitoring report April 2005.

    SciTech Connect (OSTI)

    Lyon, Mark L.; Goering, Timothy James (GRAM, Inc., Albuquerque, NM)

    2006-01-01T23:59:59.000Z

    Annual groundwater sampling was conducted at the Sandia National Laboratories' Mixed Waste Landfill (MWL) in April 2005. Seven monitoring wells were sampled using a Bennett{trademark} pump in accordance with the April 2005 Mini-Sampling and Analysis Plan for the MWL (SNL/NM 2005). The samples were analyzed off site at General Engineering Laboratories, Inc. for a broad suite of radiochemical and chemical parameters, and the results are presented in this report. Sample splits were also collected from several of the wells by the New Mexico Environment Department U.S. Department of Energy Oversight Bureau; however, the split sample results are not included in this report. The results of the April 2005 annual groundwater monitoring conducted at the MWL showed constituent concentrations within the historical ranges for the site and indicated no evidence of groundwater contamination from the landfill.

  20. Y-12 Industrial Landfill V. Permit application modifications

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    This report contains the modifications in operations and design to meet the Tennessee Department of Environment and Conversation (TDEC) July 10, 1993, amendments to the regulations for Class 2 landfills. These modifications, though extensive in design and construction cost, are considered minor revisions and should not require a processing fee. Area 1 of ILF V, comprising approximately 20% of the ILF V footprint, was designed and submitted to TDEC prior to the implementation of current regulations. This initial area was constructed with a compacted clay liner and leachate collection system, and became operational in April 1994. The current regulations require landfills to have a composite liner with leachate collection system and closure cap. Modifications to upgrade Areas 2 and 3 of ILF V to meet the current TDEC requirements are included.

  1. Sanitary Landfill Groundwater Monitoring Report (Data Only) - First Quarter 1999

    SciTech Connect (OSTI)

    Chase, J.

    1999-05-26T23:59:59.000Z

    This report contains analytical data for samples taken during First Quarter 1999 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site (SRS). This report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards or screening levels, established by the U.S. Environmental Proteciton Agency, the South Carolina final Primary Drinking Water Standard for lead, or the SRS flagging criteria.

  2. Sanitary landfill groundwater monitoring report. First Quarter 1995

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    This report contains analytical data for samples taken during first quarter 1994 from wells of the LFW series located at the Sanitary Landfill Operating permit (DWP-0874A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established by the US Environmental Protection Agency, the South Carolina final Primary Drinking Water Standard for lead, or the SRS flagging criteria.

  3. Inferred performance of surface hydraulic barriers from landfill operational data

    SciTech Connect (OSTI)

    Gross, B.A. [GeoSyntec Consultants, Austin, TX (United States); Bonaparte, R.; Othman, M.A. [GeoSyntec Consultants, Atlanta, GA (United States)

    1997-12-31T23:59:59.000Z

    There are few published data on the field performance of surface hydraulic barriers (SHBs) used in waste containment or remediation applications. In contrast, operational data for liner systems used beneath landfills are widely available. These data are frequently collected and reported as a facility permit condition. This paper uses leachate collection system (LCS) and leak detection system (LDS) liquid flow rate and chemical quality data collected from modem landfill double-liner systems to infer the likely hydraulic performance of SHBs. Operational data for over 200 waste management unit liner systems are currently being collected and evaluated by the authors as part of an ongoing research investigation for the United States Environmental Protection Agency (USEPA). The top liner of the double-liner system for the units is either a geomembrane (GMB) alone, geomembrane overlying a geosynthetic clay liner (GMB/GCL), or geomembrane overlying a compacted clay liner (GMB/CCL). In this paper, select data from the USEPA study are used to: (i) infer the likely efficiencies of SHBs incorporating GMBs and overlain by drainage layers; and (ii) evaluate the effectiveness of SHBs in reducing water infiltration into, and drainage from, the underlying waste (i.e., source control). SHB efficiencies are inferred from calculated landfill liner efficiencies and then used to estimate average water percolation rates through SHBs as a function of site average annual rainfall. The effectiveness of SHBs for source control is investigated by comparing LCS liquid flow rates for open and closed landfill cells. The LCS flow rates for closed cells are also compared to the estimated average water percolation rates through SHBs presented in the paper.

  4. Sanitary landfill groundwater monitoring report: First quarter 1997

    SciTech Connect (OSTI)

    Chase, J.A.

    1997-05-01T23:59:59.000Z

    This report contains analytical data for samples taken during first quarter 1997 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site (SRS). The data are submitted in reference to the Sanitary Landfill Operating permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final primary Drinking Water Standards (PDWS) or screening levels, established by the U.S. Environmental Protection Agency, the South Carolina final Primary Drinking Water Standard for lead, or the SRS flagging criteria. Wells LFW6R, LFW8R, LFW10A, LFW18, LFW21, and LFW23R were not sampled due to their proximity to the Sanitary Landfill Closure Cap activities. Wells LFW61D and LFW62D are Purge Water Containment Wells and contain mercury. These wells were not sampled since the purge water cannot be treated at the M-1 Air Stripper until the NPDES permit for the stripper is modified.

  5. 488-4D ASH LANDFILL CLOSURE CAP HELP MODELING

    SciTech Connect (OSTI)

    Phifer, M.

    2014-11-17T23:59:59.000Z

    At the request of Area Completion Projects (ACP) in support of the 488-4D Landfill closure, the Savannah River National Laboratory (SRNL) has performed Hydrologic Evaluation of Landfill Performance (HELP) modeling of the planned 488-4D Ash Landfill closure cap to ensure that the South Carolina Department of Health and Environmental Control (SCDHEC) limit of no more than 12 inches of head on top of the barrier layer (saturated hydraulic conductivity of no more than 1.0E-05 cm/s) in association with a 25-year, 24-hour storm event is not projected to be exceeded. Based upon Weber 1998 a 25-year, 24-hour storm event at the Savannah River Site (SRS) is 6.1 inches. The results of the HELP modeling indicate that the greatest peak daily head on top of the barrier layer (i.e. geosynthetic clay liner (GCL) or high density polyethylene (HDPE) geomembrane) for any of the runs made was 0.079 inches associated with a peak daily precipitation of 6.16 inches. This is well below the SCDHEC limit of 12 inches.

  6. Converting Biomass to High-Value Feedstocks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Converting Biomass to High-Value Feedstocks Advanced feedstocks play an important role in economically and efficiently converting biomass into bioenergy products. Advanced...

  7. Sandia National Laboratories: wave energy converters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    marine hydrokinetic (MHK) reference models (RMs) for wave energy converters and tidal, ocean, and river current energy converters. The RMP team includes a partnership between...

  8. Sandia National Laboratories: river current energy converters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    marine hydrokinetic (MHK) reference models (RMs) for wave energy converters and tidal, ocean, and river current energy converters. The RMP team includes a partnership between...

  9. Sandia National Laboratories: tidal energy converters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    marine hydrokinetic (MHK) reference models (RMs) for wave energy converters and tidal, ocean, and river current energy converters. The RMP team includes a partnership between...

  10. Case Studies from the Climate Technology Partnership: Landfill Gas Projects in South Korea and Lessons Learned

    SciTech Connect (OSTI)

    Larney, C.; Heil, M.; Ha, G. A.

    2006-12-01T23:59:59.000Z

    This paper examines landfill gas projects in South Korea. Two case studies provide concrete examples of lessons learned and offer practical guidance for future projects.

  11. INDEPENDENT VERIFICATION SURVEY REPORT FOR THE OPERABLE UNIT-1 LANDFILL TRENCHES, MIAMISBURG CLOSURE PROJECT

    SciTech Connect (OSTI)

    W.C. Adams

    2010-05-24T23:59:59.000Z

    INDEPENDENT VERIFICATION SURVEY REPORT FOR THE OPERABLE UNIT-1 LANDFILL TRENCHES, MIAMISBURG CLOSURE PROJECT, MIAMISBURG, OHIO DCN: 0468-SR-02-0

  12. INDEPENDENT VERIFICATION SURVEY REPORT OPERABLE UNIT-1 LANDFILL TRENCHES, MIAMISBURG CLOSURE PROJECT

    SciTech Connect (OSTI)

    W.C. Adams

    2010-07-21T23:59:59.000Z

    INDEPENDENT VERIFICATION SURVEY REPORT FOR THE OPERABLE UNIT-1 LANDFILL TRENCHES, MIAMISBURG CLOSURE PROJECT, MIAMISBURG, OHIO DCN: 0468-SR-03-0

  13. Generating CO{sub 2}-credits through landfill in situ aeration

    SciTech Connect (OSTI)

    Ritzkowski, M., E-mail: m.ritzkowski@tu-harburg.d [Institute of Environmental Technology and Energy Economics, Hamburg University of Technology, Harburger Schlossstr. 36, D-21079 Hamburg (Germany); Stegmann, R. [Consultants for Waste Management, Prof. R. Stegmann and Partner, Schellerdamm 19-21, D-21079 Hamburg (Germany)

    2010-04-15T23:59:59.000Z

    Landfills are some of the major anthropogenic sources of methane emissions worldwide. The installation and operation of gas extraction systems for many landfills in Europe and the US, often including technical installations for energy recovery, significantly reduced these emissions during the last decades. Residual landfill gas, however, is still continuously produced after the energy recovery became economically unattractive, thus resulting in ongoing methane emissions for many years. By landfill in situ aeration these methane emissions can be widely avoided both, during the aeration process as well as in the subsequent aftercare period. Based on model calculations and online monitoring data the amount of avoided CO{sub 2-eq}. can be determined. For an in situ aerated landfill in northern Germany, acting as a case study, 83-95% (depending on the kind and quality of top cover) of the greenhouse gas emission potential could be reduced under strictly controlled conditions. Recently the United Nations Framework Convention on Climate Change (UNFCCC) has approved a new methodology on the 'Avoidance of landfill gas emissions by in situ aeration of landfills' (). Based on this methodology landfill aeration projects might be considered for generation of Certified Emission Reductions (CERs) in the course of CDM projects. This paper contributes towards an evaluation of the potential of landfill aeration for methane emissions reduction.

  14. Air emissions assessment and air quality permitting for a municipal waste landfill treating municipal sewage sludge

    SciTech Connect (OSTI)

    Koehler, J. [Woodward-Clyde International -- Americas, Oakland, CA (United States)

    1998-12-31T23:59:59.000Z

    This paper presents a case study into the air quality permitting of a municipal solid waste (MSW) landfill in the San Francisco Bay Area undergoing a proposed expansion in operations to increase the life of the landfill. The operations of this facility include MSW landfilling, the treatment and disposal of municipal sewage sludge, the aeration of petroleum-contaminated soils, the construction of a new on-site plant to manufacture soil amendment products from waste wood and other organic material diverted from the landfill, and the installation of a vaporator to create steam from leachate for injection into the landfill gas flare. The emissions assessment for each project component relied upon interpretation of source tests from similar operations, incorporation of on-site measurements into emissions models and mass balances, and use of AP-42 procedures for emissions sources such as wind-blown dust, material handling and transfer operations, and fugitive landfill gas. Air permitting issues included best available control technology (BACT), emission offset thresholds, new source performance standards (NSPS), potential air toxics health risk impacts, and compliance with federal Title V operating permit requirements. With the increasing difficulties of siting new landfills, increasing pressures to reduce the rate of waste placement into existing landfills, and expanding regulatory requirements on landfill operations, experiences similar to those described in this paper are likely to increase in the future as permitting scenarios become more complex.

  15. Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects Webinar (text version)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Below is the text version of the Webinar titled "Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects," originally presented on July 17, 2012.

  16. Ilchmann, Achim; Pahl, M. : Adaptive Multivariable pH Regulation of a Biogas Tower Reactor

    E-Print Network [OSTI]

    Knobloch,Jürgen

    Ilchmann, Achim; Pahl, M. : Adaptive Multivariable pH Regulation of a Biogas Tower Reactor Zuerst for a biogastower reactor.The reactor is a new type for anaerobic treatment of waste water. It has been developed. There are uunterollsapplicationsof control theory resr-rltsto single-inpr-rtsingle-outputpH control of stirred tarrk reactors: see

  17. Improved methodology to assess modification and completion of landfill gas management in the aftercare period

    SciTech Connect (OSTI)

    Morris, Jeremy W.F., E-mail: jmorris@geosyntec.com [Geosyntec Consultants, 10220 Old Columbia Road, Suite A, Columbia, MD 21046 (United States); Crest, Marion, E-mail: marion.crest@suez-env.com [Suez Environnement, 38 rue du President Wilson, 78230 Le Pecq (France); Barlaz, Morton A., E-mail: barlaz@ncsu.edu [Department of Civil, Construction, and Environmental Engineering, Campus Box 7908, North Carolina State University, Raleigh, NC 27695-7908 (United States); Spokas, Kurt A., E-mail: kurt.spokas@ars.usda.gov [United States Department of Agriculture - Agricultural Research Service, 1991 Upper Buford Circle, 439 Borlaug Hall, St. Paul, MN 55108 (United States); Akerman, Anna, E-mail: anna.akerman@sita.fr [SITA France, Tour CB 21, 16 Place de l'Iris, 92040 Paris La Defense Cedex (France); Yuan, Lei, E-mail: lyuan@geosyntec.com [Geosyntec Consultants, 10220 Old Columbia Road, Suite A, Columbia, MD 21046 (United States)

    2012-12-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Performance-based evaluation of landfill gas control system. Black-Right-Pointing-Pointer Analytical framework to evaluate transition from active to passive gas control. Black-Right-Pointing-Pointer Focus on cover oxidation as an alternative means of passive gas control. Black-Right-Pointing-Pointer Integrates research on long-term landfill behavior with practical guidance. - Abstract: Municipal solid waste landfills represent the dominant option for waste disposal in many parts of the world. While some countries have greatly reduced their reliance on landfills, there remain thousands of landfills that require aftercare. The development of cost-effective strategies for landfill aftercare is in society's interest to protect human health and the environment and to prevent the emergence of landfills with exhausted aftercare funding. The Evaluation of Post-Closure Care (EPCC) methodology is a performance-based approach in which landfill performance is assessed in four modules including leachate, gas, groundwater, and final cover. In the methodology, the objective is to evaluate landfill performance to determine when aftercare monitoring and maintenance can be reduced or possibly eliminated. This study presents an improved gas module for the methodology. While the original version of the module focused narrowly on regulatory requirements for control of methane migration, the improved gas module also considers best available control technology for landfill gas in terms of greenhouse gas emissions, air quality, and emissions of odoriferous compounds. The improved module emphasizes the reduction or elimination of fugitive methane by considering the methane oxidation capacity of the cover system. The module also allows for the installation of biologically active covers or other features designed to enhance methane oxidation. A methane emissions model, CALMIM, was used to assist with an assessment of the methane oxidation capacity of landfill covers.

  18. A thermionic converter success story

    SciTech Connect (OSTI)

    Donovan, B.D.; Lamp, T.R. (Aerospace Power Division, Wright Laboratory Wright-Patterson AFB, OH 45433-6563 (United States)); Ramaligam, M.L. (UES, Inc. 4401 Dayton-Xenia Road, Dayton, OH 45432-1894 (United States))

    1993-01-20T23:59:59.000Z

    This paper summarizes the advanced out-of-core thermionic technology program being managed at Wright Laboratory: The Thermionic Critical Technology (TCT) Investigation. This program has been supported primarily by the United State Air Force for design and fabrication, and supported by Strategic Defense Initiative Organization (SDIO) for performance and life testing efforts. Converter design parameters, specifications, and performance testing data is summarized. Converters fabricated by Loral Electro Optical Systems (Loral EOS) under this program have exceeding performance requirements, and have demonstrated efficiencies as high as 14%.

  19. Power converters for parabolic dishes

    SciTech Connect (OSTI)

    Truscello, V.C.; Williams, A.N.

    1981-01-01T23:59:59.000Z

    The development status of receivers and power conversion units to be used with parabolic dish concentrators is presented. Applications are identified, and the key role played by the power converter element of the collector module is emphasized. The electrical output of the 11-meter-diameter dish modules which are being developed varies up to a maximum of about 25 kilowatts, depending on the thermodynamic cycle of the power converter. Three power conversion units are being developed: an organic Rankine, an air Brayton, and a Stirling. The development program for the receivers and the power conversion units is described in detail.

  20. IpNose: Electronic nose for remote bad odour monitoring system in landfill sites Alex Perera*

    E-Print Network [OSTI]

    Gutierrez-Osuna, Ricardo

    IpNose: Electronic nose for remote bad odour monitoring system in landfill sites Alex Perera to classify and quantify different gas/odours. Here we suggest the integration of a small form factor computer of bad odours in landfill sites. Preliminary approach to this application using commercial sensors

  1. Geophysical methods applied to characterize landfill covers with geocomposite F. Genelle1, 2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Geophysical methods applied to characterize landfill covers with geocomposite F. Genelle1, 2 , C attempt to characterize with geophysical methods the state of landfill covers to detect damages that can. The geophysical methods used were the Electrical Resistivity Tomography (ERT), cartography with an Automatic

  2. Sardinia 2007, Eleventh International Waste Management and Landfill Symposium Potential for Reducing Global Methane Emissions

    E-Print Network [OSTI]

    Columbia University

    for Reducing Global Methane Emissions From Landfills, 2000-2030 E. MATTHEWS1 , N. J. THEMELIS2 1 NASA Goddard methane (CH4 )annually to the world's total CH4 emission of ~550 Tg/yr. Recycling and thermal treatment destined for landfills and to mitigating CH4 emission. Waste generation is estimated to more than double

  3. Charge-pump voltage converter

    DOE Patents [OSTI]

    Brainard, John P. (Albuquerque, NM); Christenson, Todd R. (Albuquerque, NM)

    2009-11-03T23:59:59.000Z

    A charge-pump voltage converter for converting a low voltage provided by a low-voltage source to a higher voltage. Charge is inductively generated on a transfer rotor electrode during its transit past an inductor stator electrode and subsequently transferred by the rotating rotor to a collector stator electrode for storage or use. Repetition of the charge transfer process leads to a build-up of voltage on a charge-receiving device. Connection of multiple charge-pump voltage converters in series can generate higher voltages, and connection of multiple charge-pump voltage converters in parallel can generate higher currents. Microelectromechanical (MEMS) embodiments of this invention provide a small and compact high-voltage (several hundred V) voltage source starting with a few-V initial voltage source. The microscale size of many embodiments of this invention make it ideally suited for MEMS- and other micro-applications where integration of the voltage or charge source in a small package is highly desirable.

  4. Int. J. Environment and Pollution, V0/. IS, No.4, 2001 Economic evaluation of a landfill system with gas

    E-Print Network [OSTI]

    Columbia University

    Int. J. Environment and Pollution, V0/. IS, No.4, 2001 Economic evaluation of a landfill system be made as follows: Yedla, S. and Parikh, 1.K. (2001) 'Economic evaluation of a landfill system with gas.K. Parikh Economic evaluation of a landfill system with gas recovery 435 Tonnes per dayMillion tonnes per

  5. DESIGN OF A FAILED LANDFILL SLOPE By: Timothy D. Stark, W. Douglas Evans-, and Paul E. Sherry'

    E-Print Network [OSTI]

    DESIGN OF A FAILED LANDFILL SLOPE 1 ~) ~ ~ By: Timothy D. Stark, W. Douglas Evans-, and Paul E solid waste landfill in which lateral displacements of up to 900 ft (275 m) and vertical settlements municipal solid waste landfill occupies 135 acres (546 km 2 ) approximately 9 miles (15.3 km) n

  6. Pilot-scale experiment on anaerobic bioreactor landfills in China

    SciTech Connect (OSTI)

    Jiang, Jianguo [Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084, PR China (China)], E-mail: jianguoj@tsinghua.edu.cn; Yang, Guodong; Deng, Zhou; Huang, Yunfeng [Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084, PR China (China); Huang, Zhonglin; Feng, Xiangming; Zhou, Shengyong; Zhang, Chaoping [Xiaping Solid Waste Landfill, Shenzhen 518019, PR China (China)

    2007-07-01T23:59:59.000Z

    Developing countries have begun to investigate bioreactor landfills for municipal solid waste management. This paper describes the impacts of leachate recirculation and recirculation loadings on waste stabilization, landfill gas (LFG) generation and leachate characteristics. Four simulated anaerobic columns, R1-R4, were each filled with about 30 tons of waste and recirculated weekly with 1.6, 0.8 and 0.2 m{sup 3} leachate and 0.1 m{sup 3} tap water. The results indicated that the chemical oxygen demand (COD) half-time of leachate from R1 was about 180 days, which was 8-14 weeks shorter than that of R2-R4. A large amount of LFG was first produced in R1, and its generation rate was positively correlated to the COD or volatile fatty acid concentrations of influent leachates after the 30th week. By the 50th week of recirculation, the waste in R1 was more stabilized, with 931.2 kg COD or 175.6 kg total organic carbon released and with the highest landfill gas production. However, this contributed mainly to washout by leachate, which also resulted in the reduction of LFG generation potential and accumulation of ammonia and/or phosphorus in the early stage. Therefore, the regimes of leachate recirculation should be adjusted to the phases of waste stabilization to enhance efficiency of energy recovery. Integrated with the strategy of in situ leachate management, extra pre-treatment or post-treatment methods to remove the nutrients are recommended.

  7. Assessing methane oxidation under landfill covers and its contribution to the above atmospheric CO2 levels: The added value of the isotope

    E-Print Network [OSTI]

    biogas fluxes, which was expected in clay covers presenting fissures, through which CH4 is rapidly transported. At shallow depth, more immobile biogas pockets show a higher level of CH4 oxidation., 1998). The main com- ponents of biogas are CH4 (50­60%) and carbon dioxide (CO2; 40­50%). A major

  8. Stable isotope signatures for characterising the biological stability of landfilled municipal solid waste

    SciTech Connect (OSTI)

    Wimmer, Bernhard, E-mail: bernhard.wimmer@ait.ac.at [AIT Austrian Institute of Technology GmbH, Health and Environment Department, Environmental Resources and Technologies, Konrad-Lorenz-Strasse 24, 3430 Tulln (Austria); Hrad, Marlies; Huber-Humer, Marion [Institute of Waste Management, Department of Water-Atmosphere-Environment, University of Natural Resources and Life Sciences, Muthgasse 107, 1190 Vienna (Austria); Watzinger, Andrea; Wyhlidal, Stefan; Reichenauer, Thomas G. [AIT Austrian Institute of Technology GmbH, Health and Environment Department, Environmental Resources and Technologies, Konrad-Lorenz-Strasse 24, 3430 Tulln (Austria)

    2013-10-15T23:59:59.000Z

    Highlights: ? The isotopic signature of ?{sup 13}C-DIC of leachates is linked to the reactivity of MSW. ? Isotopic signatures of leachates depend on aerobic/anaerobic conditions in landfills. ? In situ aeration of landfills can be monitored by isotope analysis in leachate. ? The isotopic analysis of leachates can be used for assessing the stability of MSW. ? ?{sup 13}C-DIC of leachates helps to define the duration of landfill aftercare. - Abstract: Stable isotopic signatures of landfill leachates are influenced by processes within municipal solid waste (MSW) landfills mainly depending on the aerobic/anaerobic phase of the landfill. We investigated the isotopic signatures of ?{sup 13}C, ?{sup 2}H and ?{sup 18}O of different leachates from lab-scale experiments, lysimeter experiments and a landfill under in situ aeration. In the laboratory, columns filled with MSW of different age and reactivity were percolated under aerobic and anaerobic conditions. In landfill simulation reactors, waste of a 25 year old landfill was kept under aerobic and anaerobic conditions. The lysimeter facility was filled with mechanically shredded fresh waste. After starting of the methane production the waste in the lysimeter containments was aerated in situ. Leachate and gas composition were monitored continuously. In addition the seepage water of an old landfill was collected and analysed periodically before and during an in situ aeration. We found significant differences in the ?{sup 13}C-value of the dissolved inorganic carbon (?{sup 13}C-DIC) of the leachate between aerobic and anaerobic waste material. During aerobic degradation, the signature of ?{sup 13}C-DIC was mainly dependent on the isotopic composition of the organic matter in the waste, resulting in a ?{sup 13}C-DIC of ?20‰ to ?25‰. The production of methane under anaerobic conditions caused an increase in ?{sup 13}C-DIC up to values of +10‰ and higher depending on the actual reactivity of the MSW. During aeration of a landfill the aerobic degradation of the remaining organic matter caused a decrease to a ?{sup 13}C-DIC of about ?20‰. Therefore carbon isotope analysis in leachates and groundwater can be used for tracing the oxidation–reduction status of MSW landfills. Our results indicate that monitoring of stable isotopic signatures of landfill leachates over a longer time period (e.g. during in situ aeration) is a powerful and cost-effective tool for characterising the biodegradability and stability of the organic matter in landfilled municipal solid waste and can be used for monitoring the progress of in situ aeration.

  9. I 95 Landfill Phase II Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas: EnergyHy9Moat of Long| OpenLandfill Phase II

  10. Woodland Landfill Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: Energy Resources JumpWood,WoodfordLandfill Gas Recovery

  11. Penrose Landfill Gas Conversion LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian,ParleInformationPenobscot County, Maine:Landfill Gas

  12. Agricultural Biomass and Landfill Diversion Incentive (Texas) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1Albuquerque, NM - Building Americaof Energy and Landfill

  13. Superfund Record of Decision (EPA Region 3): Moyer Landfill Site, Collegeville, Pennsylvania, September 1985. Final report

    SciTech Connect (OSTI)

    Not Available

    1985-09-30T23:59:59.000Z

    The Moyer Landfill is an inactive privately owned landfill located in Lower Providence Township in Montgomery County, Pennsylvania. The site was operated as a municipal landfill from the 1940's until April 1981, during which time it received municipal refuse and sewage sludges. According to local Federal Bureau of Investigation (FBI) officials, the landfill accepted a variety of solid and liquid hazardous wastes, including polychlorinated biphenyls (PCBs), solvents, paints, low-level radioactive wastes, and incinerated materials in bulk form and/or containerized in drums. In 1972, when the Pennsylvania Dept. of Environmental Resources (PADER) rules and regulations became more restrictive, this landfill was cited, and finally in 1981, it was closed and brought into receivership of the U.S. District Court.

  14. Promoting electricity from renewable energy sources -- lessons learned from the EU, U.S. and Japan

    E-Print Network [OSTI]

    Haas, Reinhard

    2008-01-01T23:59:59.000Z

    Biomass, Biogas, Landfill gas, Sewage gas, Geothermal)€/MWh; Sewage and landfill gas: 45-60 €/MWh; Wind OnshoreMWh; Landfill-, Sewage- & Landfill gas: 64.5-74.4 €/MWh; PV:

  15. Well-to-Wheels analysis of landfill gas-based pathways and their addition to the GREET model.

    SciTech Connect (OSTI)

    Mintz, M.; Han, J.; Wang, M.; Saricks, C.; Energy Systems

    2010-06-30T23:59:59.000Z

    Today, approximately 300 million standard cubic ft/day (mmscfd) of natural gas and 1600 MW of electricity are produced from the decomposition of organic waste at 519 U.S. landfills (EPA 2010a). Since landfill gas (LFG) is a renewable resource, this energy is considered renewable. When used as a vehicle fuel, compressed natural gas (CNG) produced from LFG consumes up to 185,000 Btu of fossil fuel and generates from 1.5 to 18.4 kg of carbon dioxide-equivalent (CO{sub 2}e) emissions per million Btu of fuel on a 'well-to-wheel' (WTW) basis. This compares with approximately 1.1 million Btu and 78.2 kg of CO{sub 2}e per million Btu for CNG from fossil natural gas and 1.2 million Btu and 97.5 kg of CO{sub 2}e per million Btu for petroleum gasoline. Because of the additional energy required for liquefaction, LFG-based liquefied natural gas (LNG) requires more fossil fuel (222,000-227,000 Btu/million Btu WTW) and generates more GHG emissions (approximately 22 kg CO{sub 2}e /MM Btu WTW) if grid electricity is used for the liquefaction process. However, if some of the LFG is used to generate electricity for gas cleanup and liquefaction (or compression, in the case of CNG), vehicle fuel produced from LFG can have no fossil fuel input and only minimal GHG emissions (1.5-7.7 kg CO{sub 2}e /MM Btu) on a WTW basis. Thus, LFG-based natural gas can be one of the lowest GHG-emitting fuels for light- or heavy-duty vehicles. This report discusses the size and scope of biomethane resources from landfills and the pathways by which those resources can be turned into and utilized as vehicle fuel. It includes characterizations of the LFG stream and the processes used to convert low-Btu LFG into high-Btu renewable natural gas (RNG); documents the conversion efficiencies and losses of those processes, the choice of processes modeled in GREET, and other assumptions used to construct GREET pathways; and presents GREET results by pathway stage. GREET estimates of well-to-pump (WTP), pump-to-wheel (PTW), and WTW energy, fossil fuel, and GHG emissions for each LFG-based pathway are then summarized and compared with similar estimates for fossil natural gas and petroleum pathways.

  16. Estimating water content in an active landfill with the aid of GPR

    SciTech Connect (OSTI)

    Yochim, April, E-mail: ayochim@regionofwaterloo.ca [Region of Waterloo Waste Management Division, 925 Erb Street West, Waterloo, ON N2J 3Z4 (Canada); Zytner, Richard G., E-mail: rzytner@uoguelph.ca [School of Engineering, University of Guelph, Guelph, ON N1G 2W1 (Canada); McBean, Edward A., E-mail: emcbean@uoguelph.ca [School of Engineering, University of Guelph, Guelph, ON N1G 2W1 (Canada); Endres, Anthony L., E-mail: alendres@sciborg.uwaterloo.ca [Dept. of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON N2L 3G1 (Canada)

    2013-10-15T23:59:59.000Z

    Highlights: • Limited information in the literature on the use of GPR to measure in situ water content in a landfill. • Developed GPR method allows measurement of in situ water content in a landfill. • Developed GPR method is appealing to waste management professionals operating landfills. - Abstract: Landfill gas (LFG) receives a great deal of attention due to both negative and positive environmental impacts, global warming and a green energy source, respectively. However, predicting the quantity of LFG generated at a given landfill, whether active or closed is difficult due to the heterogeneities present in waste, and the lack of accurate in situ waste parameters like water content. Accordingly, ground penetrating radar (GPR) was evaluated as a tool for estimating in situ water content. Due to the large degree of subsurface heterogeneity and the electrically conductive clay cap covering landfills, both of which affect the transmission of the electromagnetic pulses, there is much scepticism concerning the use of GPR to quantify in situ water content within a municipal landfill. Two landfills were studied. The first landfill was used to develop the measurement protocols, while the second landfill provided a means of confirming these protocols. GPR measurements were initially completed using the surface GPR approach, but the lack of success led to the use of borehole (BH) GPR. Both zero offset profiling (ZOP) and multiple offset gathers (MOG) modes were tried, with the results indicating that BH GPR using the ZOP mode is the most simple and efficient method to measure in situ water content. The best results were obtained at a separation distance of 2 m, where higher the water content, smaller the effective separation distance. However, an increase in water content did appear to increase the accuracy of the GPR measurements. For the effective separation distance of 2 m at both landfills, the difference between GPR and lab measured water contents were reasonable at 33.9% for the drier landfill and 18.1% for the wetter landfill. Infiltration experiments also showed the potential to measure small increases in water content.

  17. Last spring, an Ohio waste slope collapsed, displacing 1.5 million cu yd of waste. Remedial measures can prevent similar failures at ~~grandfathered" landfills.

    E-Print Network [OSTI]

    measures can prevent similar failures at ~~grandfathered" landfills. r I n the early morning hours of March of "grandfathered" landfill slopes. (Grandfathered landfills do not have an engineered liner system.) Because following case history are ap- plicable to the design, operation and expan- sion of many landfills. BEFORE

  18. Portable convertible blast effects shield

    DOE Patents [OSTI]

    Pastrnak, John W. (Livermore, CA); Hollaway, Rocky (Modesto, CA); Henning, Carl D. (Livermore, CA); Deteresa, Steve (Livermore, CA); Grundler, Walter (Hayward, CA); Hagler, Lisle B. (Berkeley, CA); Kokko, Edwin (Dublin, CA); Switzer, Vernon A. (Livermore, CA)

    2011-03-15T23:59:59.000Z

    A rapidly deployable portable convertible blast effects shield/ballistic shield includes a set two or more frusto-conically-tapered telescoping rings operably connected to each other to convert between a telescopically-collapsed configuration for storage and transport, and a telescopically-extended upright configuration forming an expanded inner volume. In a first embodiment, the upright configuration provides blast effects shielding, such as against blast pressures, shrapnel, and/or fire balls. And in a second embodiment, the upright configuration provides ballistic shielding, such as against incoming weapons fire, shrapnel, etc. Each ring has a high-strength material construction, such as a composite fiber and matrix material, capable of substantially inhibiting blast effects and impinging projectiles from passing through the shield. And the set of rings are releasably securable to each other in the telescopically-extended upright configuration by the friction fit of adjacent pairs of frusto-conically-tapered rings to each other.

  19. Portable convertible blast effects shield

    DOE Patents [OSTI]

    Pastrnak, John W. (Livermore, CA); Hollaway, Rocky (Modesto, CA); Henning, Carl D. (Livermore, CA); Deteresa, Steve (Livermore, CA); Grundler, Walter (Hayward, CA); Hagler, Lisle B. (Berkeley, CA); Kokko, Edwin (Dublin, CA); Switzer, Vernon A (Livermore, CA)

    2007-05-22T23:59:59.000Z

    A rapidly deployable portable convertible blast effects shield/ballistic shield includes a set two or more telescoping cylindrical rings operably connected to each other to convert between a telescopically-collapsed configuration for storage and transport, and a telescopically-extended upright configuration forming an expanded inner volume. In a first embodiment, the upright configuration provides blast effects shielding, such as against blast pressures, shrapnel, and/or fire balls. And in a second embodiment, the upright configuration provides ballistic shielding, such as against incoming weapons fire, shrapnel, etc. Each ring has a high-strength material construction, such as a composite fiber and matrix material, capable of substantially inhibiting blast effects and impinging projectiles from passing through the shield. And the set of rings are releasably securable to each other in the telescopically-extended upright configuration, such as by click locks.

  20. Portable convertible blast effects shield

    DOE Patents [OSTI]

    Pastrnak, John W. (Livermore, CA); Hollaway, Rocky (Modesto, CA); Henning, Carl D. (Livermore, CA); Deteresa, Steve (Livermore, CA); Grundler, Walter (Hayward, CA); Hagler,; Lisle B. (Berkeley, CA); Kokko, Edwin (Dublin, CA); Switzer, Vernon A (Livermore, CA)

    2010-10-26T23:59:59.000Z

    A rapidly deployable portable convertible blast effects shield/ballistic shield includes a set two or more telescoping cylindrical rings operably connected to each other to convert between a telescopically-collapsed configuration for storage and transport, and a telescopically-extended upright configuration forming an expanded inner volume. In a first embodiment, the upright configuration provides blast effects shielding, such as against blast pressures, shrapnel, and/or fire balls. And in a second embodiment, the upright configuration provides ballistic shielding, such as against incoming weapons fire, shrapnel, etc. Each ring has a high-strength material construction, such as a composite fiber and matrix material, capable of substantially inhibiting blast effects and impinging projectiles from passing through the shield. And the set of rings are releasably securable to each other in the telescopically-extended upright configuration, such as by click locks.

  1. Collector for thermionic energy converter

    SciTech Connect (OSTI)

    Bell, R.L.

    1981-07-21T23:59:59.000Z

    An improved collector is provided for a thermionic energy converter. The collector comprises a p-type layer of a semiconductor material formed on an n-type layer of a semiconductor material. The p-n junction is maintained in a forward biased condition. The electron affinity of the exposed surface of the p-type layer is effectively lowered to a low level near zero by the presence of a work function lowering activator. The dissipation of energy during collection is reduced by the passage of electrons through the p-type layer in the metastable conduction band state. A significant portion of the electron current remains at the potential of the fermi level of the n-type layer rather than dropping to the fermi level of the p-type layer. Less energy is therefore dissipated as heat and a higher net power output is delivered from a thermionic energy converter incorporating the collector.

  2. Cell modulated DC/DC converter

    E-Print Network [OSTI]

    Warren, James Raymond, III

    2005-01-01T23:59:59.000Z

    A very high frequency converter roughly based on a class E topology is investigated for replacing a conventional boost converter circuit. The loss mechanisms in class E inverters are characterized, and metrics are developed ...

  3. Certification report for final closure of Y-12 Centralized Sanitary Landfill II, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1995-12-31T23:59:59.000Z

    This report represents the Geotek Engineering Company, Inc., (Geotek) record of activities to support certification of final closure Of the subject Y-12 Centralized Sanitary Landfill II. Ex as noted herein, final closure of the landfill was completed in accordance with the Y-12 Centralized Sanitary Landfill 11 Closure/Post Closure Plan, Revision 2, submitted by the US Department of Energy (DOE) to the Tennessee Department of Environment and Conservation (TDEC) on April 14, 1992, and approved by TDEC on May 27, 1994 (the ``Closure Plan``). minor modification to the Closure Plan allowing partial closure of the Y-12 Centralized Sanitary Landfill II (Phase 1) was approved by TDEC on August 3, 1994. The Phase I portion of the closure for the subject landfill was completed on March 25, 1995. A closure certification report entitled Certification Report for Partial Closure of Y-12 Centralized Sanitary Landfill II was submitted to Lockheed Martin Energy Systems, Inc., (LMES) on March 28, 1995. The final closure represents the completion of the closure activities for the entire Y-12 Centralized Sanitary Landfill II Site. The contents of this report and accompanying certification are based on observations by Geotek engineers and geologists during closure activities and on review of reports, records, laboratory test results, and other information furnished to Geotek by LMES.

  4. Landfill gas cleanup for carbonate fuel cell power generation. Final report

    SciTech Connect (OSTI)

    Steinfield, G.; Sanderson, R.

    1998-02-01T23:59:59.000Z

    Landfill gas represents a significant fuel resource both in the US and worldwide. The emissions of landfill gas from existing landfills has become an environmental liability contributing to global warming and causing odor problems. Landfill gas has been used to fuel reciprocating engines and gas turbines, and may also be used to fuel carbonate fuel cells. Carbonate fuel cells have high conversion efficiencies and use the carbon dioxide present in landfill gas as an oxidant. There are, however, a number of trace contaminants in landfill gas that contain chlorine and sulfur which are deleterious to fuel cell operation. Long-term economical operation of fuel cells fueled with landfill gas will, therefore, require cleanup of the gas to remove these contaminants. The overall objective of the work reported here was to evaluate the extent to which conventional contaminant removal processes could be combined to economically reduce contaminant levels to the specifications for carbonate fuel cells. A pilot plant cleaned approximately 970,000 scf of gas over 1,000 hours of operation. The testing showed that the process could achieve the following polished gas concentrations: less than 80 ppbv hydrogen sulfide; less than 1 ppmv (the detection limit) organic sulfur; less than 300 ppbv hydrogen chloride; less than 20--80 ppbv of any individual chlorinated hydrocarbon; and 1.5 ppm sulfur dioxide.

  5. COMMUNITY ALERT INCIDENT: Catalytic Converter Thefts

    E-Print Network [OSTI]

    Rose, Michael R.

    converter is a part used to reduce the toxicity of emissions from an internal combustion engine. What can

  6. Evaluation of methane emissions from Palermo municipal landfill: Comparison between field measurements and models

    SciTech Connect (OSTI)

    Di Bella, Gaetano, E-mail: dibella@idra.unipa.it [Dipartimento di Ingegneria Civile, Ambientale e Aerospaziale, Universita di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Di Trapani, Daniele, E-mail: ditrapani@idra.unipa.it [Dipartimento di Ingegneria Civile, Ambientale e Aerospaziale, Universita di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Viviani, Gaspare, E-mail: gviv@idra.unipa.it [Dipartimento di Ingegneria Civile, Ambientale e Aerospaziale, Universita di Palermo, Viale delle Scienze, 90128 Palermo (Italy)

    2011-08-15T23:59:59.000Z

    Methane (CH{sub 4}) diffuse emissions from Municipal Solid Waste (MSW) landfills represent one of the most important anthropogenic sources of greenhouse gas. CH{sub 4} is produced by anaerobic biodegradation of organic matter in landfilled MSW and constitutes a major component of landfill gas (LFG). Gas recovery is a suitable method to effectively control CH{sub 4} emissions from landfill sites and the quantification of CH{sub 4} emissions represents a good tool to evaluate the effectiveness of a gas recovery system in reducing LFG emissions. In particular, LFG emissions can indirectly be evaluated from mass balance equations between LFG production, recovery and oxidation in the landfill, as well as by a direct approach based on LFG emission measurements from the landfill surface. However, up to now few direct measurements of landfill CH{sub 4} diffuse emissions have been reported in the technical literature. In the present study, both modeling and direct emission measuring methodologies have been applied to the case study of Bellolampo landfill located in Palermo, Italy. The main aim of the present study was to evaluate CH{sub 4} diffuse emissions, based on direct measurements carried out with the flux accumulation chamber (static, non-stationary) method, as well as to obtain the CH{sub 4} contoured flux map of the landfill. Such emissions were compared with the estimate achieved by means of CH{sub 4} mass balance equations. The results showed that the emissions obtained by applying the flux chamber method are in good agreement with the ones derived by the application of the mass balance equation, and that the evaluated contoured flux maps represent a reliable tool to locate areas with abnormal emissions in order to optimize the gas recovery system efficiency.

  7. Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production

    SciTech Connect (OSTI)

    Nges, Ivo Achu, E-mail: Nges.Ivo_Achu@biotek.lu.se [Department of Biotechnology, Lund University, P.O. Box 124, SE 221 00 Lund (Sweden); Escobar, Federico; Fu Xinmei; Bjoernsson, Lovisa [Department of Biotechnology, Lund University, P.O. Box 124, SE 221 00 Lund (Sweden)

    2012-01-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer This study demonstrates the feasibility of co-digestion food industrial waste with energy crops. Black-Right-Pointing-Pointer Laboratory batch co-digestion led to improved methane yield and carbon to nitrogen ratio as compared to mono-digestion of industrial waste. Black-Right-Pointing-Pointer Co-digestion was also seen as a means of degrading energy crops with nutrients addition as crops are poor in nutrients. Black-Right-Pointing-Pointer Batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. Black-Right-Pointing-Pointer It was concluded that co-digestion led an over all economically viable process and ensured a constant supply of feedstock. - Abstract: Currently, there is increasing competition for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop-based biogas production is limited under Swedish conditions; therefore, adding crops to existing industrial waste digestion could be a viable alternative to ensure a constant/reliable supply of feedstock to the anaerobic digester.

  8. CONVERTIBLE BONDS IN A DEFAULTABLE DIFFUSION MODEL

    E-Print Network [OSTI]

    Jeanblanc, Monique

    CONVERTIBLE BONDS IN A DEFAULTABLE DIFFUSION MODEL Tomasz R. Bielecki Department of Applied Research Grant PS12918. #12;2 Convertible Bonds in a Defaultable Diffusion Model 1 Introduction In [4), such as Convertible Bonds (CB), and we provided a rigorous decomposition of a CB into a bond component and a (game

  9. Construction and operation of an industrial solid waste landfill at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    SciTech Connect (OSTI)

    NONE

    1995-10-01T23:59:59.000Z

    The US Department of Energy (DOE), Office of Waste Management, proposes to construct and operate a solid waste landfill within the boundary of the Portsmouth Gaseous Diffusion Plant (PORTS), Piketon, Ohio. The purpose of the proposed action is to provide PORTS with additional landfill capacity for non-hazardous and asbestos wastes. The proposed action is needed to support continued operation of PORTS, which generates non-hazardous wastes on a daily basis and asbestos wastes intermittently. Three alternatives are evaluated in this environmental assessment (EA): the proposed action (construction and operation of the X-737 landfill), no-action, and offsite shipment of industrial solid wastes for disposal.

  10. Water, Neighborhoods and Urban Design: Micro-Utilities and the Fifth Infrastructure

    E-Print Network [OSTI]

    Elmer, Vicki; Fraker, Harrison

    2011-01-01T23:59:59.000Z

    production of energy through biogas and methane production,mixed with food scraps for biogas production while urine isthird converts sludge to biogas for cooking (1000 units) and

  11. PROJECTS FROM FEDERAL REGION IX DOE APPROPRIATE ENERGY TECHNOLOGY PILOT PROGRAM - PART I

    E-Print Network [OSTI]

    Case, C.W.

    2011-01-01T23:59:59.000Z

    welded together like sewer pipe. Biogas production from theintends to convert the biogas into electricity. The wasteproduce 7.6 million Btu of biogas annually. This estimate

  12. Auxiliary resonant DC tank converter

    DOE Patents [OSTI]

    Peng, Fang Z. (Knoxville, TN)

    2000-01-01T23:59:59.000Z

    An auxiliary resonant dc tank (ARDCT) converter is provided for achieving soft-switching in a power converter. An ARDCT circuit is coupled directly across a dc bus to the inverter to generate a resonant dc bus voltage, including upper and lower resonant capacitors connected in series as a resonant leg, first and second dc tank capacitors connected in series as a tank leg, and an auxiliary resonant circuit comprising a series combination of a resonant inductor and a pair of auxiliary switching devices. The ARDCT circuit further includes first clamping means for holding the resonant dc bus voltage to the dc tank voltage of the tank leg, and second clamping means for clamping the resonant dc bus voltage to zero during a resonant period. The ARDCT circuit resonantly brings the dc bus voltage to zero in order to provide a zero-voltage switching opportunity for the inverter, then quickly rebounds the dc bus voltage back to the dc tank voltage after the inverter changes state. The auxiliary switching devices are turned on and off under zero-current conditions. The ARDCT circuit only absorbs ripples of the inverter dc bus current, thus having less current stress. In addition, since the ARDCT circuit is coupled in parallel with the dc power supply and the inverter for merely assisting soft-switching of the inverter without participating in real dc power transmission and power conversion, malfunction and failure of the tank circuit will not affect the functional operation of the inverter; thus a highly reliable converter system is expected.

  13. Digital control of HVDC converters

    SciTech Connect (OSTI)

    Pilotto, L.A.S.; Roitman, M.; Alves, J.E.R.

    1989-05-01T23:59:59.000Z

    This paper presents the project of a completely digital HVDC converter controller based on a 16-bit microcomputer. It was decided to achieve as much as possible by software in order to minimize functions performed by external hardware. The presented design comprises software programmed functions such as a PID current control amplifier, voltage dependent current order limiters and an alpha-minimum symmetrization unit, among others. HVDC control principles are briefly reviewed and a detailed description of both the hardware and software structure of the controller is presented. The digital controller was implemented in an HVDC simulator and several dynamic performance tests demonstrated the efficiency of the proposed methodology.

  14. Converting Energy to Medical Progress

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy, science, and technologyConverting to

  15. Soil Insulation For Barrier Layer Protection In Landfill Covers

    E-Print Network [OSTI]

    Gregory Smith Roy

    Landfill covers are designed to isolate waste from the environment by incorporating low-permeability barrier layers. The barrier layer minimizes and controls gas escaping from the waste and the amount of infiltrating moisture available for leachate generation. Barrier layers are typically designed and constructed of a thick layer of compacted fine-grain native soil material or a manufactured geosynthetic clay liner. The barrier layer must be protected from frost damage. Freezing of a compacted soil layer has been shown to cause quick and irreversible degradation. Large increases in permeability have been demonstrated in compacted clay barriers subjected to a minimum number of freezing and thawing cycles. Design methods to protect the barrier layer from frost damage have not been addressed in the research literature. A design procedure is addressed in this paper that determines the thickness of soil required to protect a barrier layer. The procedure is based on sitespecific temperature ...

  16. Radiological survey of the Shpack Landfill, Norton, Massachusetts

    SciTech Connect (OSTI)

    Cottrell, W.D.; Haywood, F.F.; Witt, D.A.; Myrick, T.E.; Goldsmith, W.A.; Shinpaugh, W.H.; Loy, E.T.

    1981-12-01T23:59:59.000Z

    The results of a radiological survey of the Shpack Landfill, Norton, Massachusetts, are given in this report. The survey was conducted over approximately eight acres which had received radioactive wastes from 1946 to 1965. The survey included measurement of the following: external gamma radiation at the surface and at 1 m (3 ft) above the surface throughout the site; beta-gamma exposure rates at 1 cm (0.4 in.) from the surface throughout the site; concentrations of /sup 226/Ra, /sup 238/U, and /sup 235/U in surface and subsurface soil on the site; and concentrations of /sup 226/Ra, /sup 238/U, /sup 235/U, /sup 230/Th, and /sup 210/Pb in groundwater on the site and in surface water on and near the site. Results indicate that the radioactive contamination is confined to the site and to the swamp immediately adjacent to the site.

  17. A GIS-BASED APPROACH FOR OPTIMIZING THE DEVELOPMENT OF COLLECTIVE BIOGAS PLANTS T. Bioteau, F. Boret, O. Tretyakov, F. Bline, M. Balynska, R. Girault,

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A GIS-BASED APPROACH FOR OPTIMIZING THE DEVELOPMENT OF COLLECTIVE BIOGAS PLANTS T. Bioteau, F 2012 (117) A GIS-BASED APPROACH FOR OPTIMIZING THE DEVELOPMENT OF COLLECTIVE BIOGAS PLANTS T. Bioteau by 20%. In response to these commitments, anaerobic digestion of livestock wastes is expected to expand

  18. Sanitary landfill local-scale flow and transport modeling in support of alternative concentrations limit demonstrations, Savannah River Site

    SciTech Connect (OSTI)

    Kelly, V.A.; Beach, J.A.; Statham, W.H.; Pickens, J.F. [INTERA, Inc., Austin, TX (United States)

    1993-02-19T23:59:59.000Z

    The Savannah River Site (SRS) is a Department of Energy (DOE) facility located near Aiken, South Carolina which is currently operated and managed by Westinghouse Savannah River Company (WSRC). The Sanitary Landfill (Sanitary Landfill) at the SRS is located approximately 2,000 feet Northwest of Upper Three Runs Creek (UTRC) on an approximately 70 acre site located south of Road C between the SRS B-Area and UTRC. The Sanitary Landfill has been receiving wastes since 1974 and operates as an unlined trench and fill operation. The original landfill site was 32 acres. This area reached its capacity around 1987 and a Northern Expansion of 16 acres and a Southern Expansion of 22 acres were added in 1987. The Northern Expansion has not been used for waste disposal to date and the Southern Expansion is expected to reach capacity in 1992 or 1993. The waste received at the Sanitary Landfill is predominantly paper, plastics, rubber, wood, metal, cardboard, rags saturated with degreasing solvents, pesticide bags, empty cans, and asbestos in bags. The landfill is not supposed to receive any radioactive wastes. However, tritium has been detected in the groundwater at the site. Gross alpha and gross beta are also evaluated at the landfill. The objectives of this modeling study are twofold: (1) to create a local scale Sanitary Landfill flow model to study hydraulic effects resulting from capping the Sanitary Landfill; and (2) to create a Sanitary Landfill local scale transport model to support ACL Demonstrations for a RCRA Part B Permit Renewal.

  19. Clean Air Act Title III accidental emission release risk management program, and how it applies to landfills

    SciTech Connect (OSTI)

    Hibbard, C.S.

    1999-07-01T23:59:59.000Z

    On June 20, 1996, EPA promulgated regulations pursuant to Title III of the Clean Air Act (CAA) Amendments of 1990 (Section 112(r)(7) of the CAA). The rule, contained in 40 CFR Part 68, is called Accidental Release Prevention Requirements: Risk Management Programs, and is intended to improve accident prevention and emergency response practices at facilities that store and/or use hazardous substances. Methane is a designated highly hazardous chemical (HHC) under the rule. The rule applies to facilities that have 10,000 pounds of methane or more in any process, roughly equivalent to about 244,000 cubic feet of methane. The US EPA has interpreted this threshold quantity as applying to landfill gas within landfills. This paper presents an overview of the Accidental Release Prevention regulations, and how landfills are affected by the requirements. This paper describes methodologies for calculating the threshold quantity of landfill gas in a landfill. Methane is in landfill gas as a mixture. Because landfill gas can burn readily, down to concentrations of about five percent methane, the entire landfill gas mixture must be treated as the regulated substance, and counts toward the 10,000-pound threshold. It is reasonable to assume that the entire landfill gas collection system, active or passive, is filled with landfill gas, and that a calculation of the volume of the system would be a calculation of the landfill gas present in the process on the site. However, the US EPA has indicated that there are some instances in which pore space gas should be included in this calculation. This paper presents methods available to calculate the amount of pore space gas in a landfill, and how to determine how much of that gas might be available for an explosion. The paper goes through how to conduct the release assessment to determine the worst-case hazard zone around the landfill.

  20. Multiphase Modeling of Flow, Transport, and Biodegradation in a Mesoscale Landfill Bioreactor

    E-Print Network [OSTI]

    Oldenburg, Curtis M.; Borglin, Sharon E.; Hazen, Terry C.

    2002-01-01T23:59:59.000Z

    Version 1.0: Landfill bioreactor model for TOUGH2, LawrenceFigures Biodegradation Bioreactor Aerobic CO2 + H2O + heat1. Schematic of bioreactor and T2LBM conceptualizations.

  1. Investigating the mechanism behind environmental injustice around municipal landfill sites in Scotland 

    E-Print Network [OSTI]

    Richardson, Elizabeth

    model with which neighbourhood exposure to landfills could be classified. This gave the exposure classification a degree of realism not generally incorporated in similar studies. The research revealed clear evidence that deprived neighbourhoods...

  2. Corrective action investigation plan for CAU No. 424: Area 3 Landfill Complex, Tonopah Test Range, Nevada

    SciTech Connect (OSTI)

    NONE

    1997-04-01T23:59:59.000Z

    This Correction Action Investigation Plan contains the environmental sample collection objectives and the criteria for conducting site investigation activities at the Area 3 Landfill Complex, CAU No. 424, which is located at the Tonopah Test Range (TTR). The TTR, included in the Nellis Air Force Range, is approximately 255 kilometers (140 miles) northwest of Las Vegas, nevada. The CAU 424 is comprised of eight individual landfill sites that are located around and within the perimeter of the Area 3 Compound. Due to the unregulated disposal activities commonly associated with early landfill operations, an investigation will be conducted at each CAS to complete the following tasks: identify the presence and nature of possible contaminant migration from the landfills; determine the vertical and lateral extent of possible contaminant migration; ascertain the potential impact to human health and the environment; and provide sufficient information and data to develop and evaluate appropriate corrective action strategies for each CAS.

  3. Overburden effects on waste compaction and leachate generation in municipal landfills

    E-Print Network [OSTI]

    Mehevec, Adam Wade

    1994-01-01T23:59:59.000Z

    This thesis presents a model to predict the effects of overburden pressure on the formation of leachate within municipal solid waste landfills. In addition, it estimates the compaction and subsequent settlement that the waste will undergo due...

  4. MONITORING LANDFILL COVER BY ELECTRICAL RESISTIVITY1 TOMOGRAPHY ON AN EXPERIMENTAL SITE2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    with geosynthetics44 (geomembranes or Geosynthetic Clay Liners), depending on the date of closure (Silvestre et45 al: landfill cover, gravelly clay material, heterogeneity, compaction, electrical30 resistivity, multivariate

  5. Methane production during the anaerobic decomposition of composted and raw organic refuse in simulated landfill cells

    E-Print Network [OSTI]

    West, Margrit Evelyn

    1995-01-01T23:59:59.000Z

    Methane contributes 20% annually to increases in global warming, and is explosive at concentrations of 5-15% in air. Landfills contribute 15% to total methane emissions. This study was conducted to determine the potential decrease in methane...

  6. Investigation of Integrated Subsurface Processing of Landfill Gas and Carbon Sequestration, Johnson County, Kansas

    SciTech Connect (OSTI)

    K. David Newell; Timothy R. Carr

    2007-03-31T23:59:59.000Z

    The Johnson County Landfill in Shawnee, KS is operated by Deffenbaugh Industries and serves much of metropolitan Kansas City. Refuse, which is dumped in large plastic-underlined trash cells covering several acres, is covered over with shale shortly after burial. The landfill waste, once it fills the cell, is then drilled by Kansas City LFG, so that the gas generated by anaerobic decomposition of the refuse can be harvested. Production of raw landfill gas from the Johnson County landfill comes from 150 wells. Daily production is approximately 2.2 to 2.5 mmcf, of which approximately 50% is methane and 50% is carbon dioxide and NMVOCs (non-methane volatile organic compounds). Heating value is approximately 550 BTU/scf. A upgrading plant, utilizing an amine process, rejects the carbon dioxide and NMVOCs, and upgrades the gas to pipeline quality (i.e., nominally a heating value >950 BTU/scf). The gas is sold to a pipeline adjacent to the landfill. With coal-bearing strata underlying the landfill, and carbon dioxide a major effluent gas derived from the upgrading process, the Johnson County Landfill is potentially an ideal setting to study the feasibility of injecting the effluent gas in the coals for both enhanced coalbed methane recovery and carbon sequestration. To these ends, coals below the landfill were cored and then were analyzed for their thickness and sorbed gas content, which ranged up to 79 scf/ton. Assuming 1 1/2 square miles of land (960 acres) at the Johnson County Landfill can be utilized for coalbed and shale gas recovery, the total amount of in-place gas calculates to 946,200 mcf, or 946.2 mmcf, or 0.95 bcf (i.e., 985.6 mcf/acre X 960 acres). Assuming that carbon dioxide can be imbibed by the coals and shales on a 2:1 ratio compared to the gas that was originally present, then 1682 to 1720 days (4.6 to 4.7 years) of landfill carbon dioxide production can be sequestered by the coals and shales immediately under the landfill. Three coal--the Bevier, Fleming, and Mulberry coals--are the major coals of sufficient thickness (nominally >1-foot) that can imbibe carbon dioxide gas with an enhanced coalbed injection. Comparison of the adsorption gas content of coals to the gas desorbed from the coals shows that the degree of saturation decreases with depth for the coals.

  7. Knowledge based ranking algorithm for comparative assessment of post-closure care needs of closed landfills

    SciTech Connect (OSTI)

    Sizirici, Banu, E-mail: bsy3@case.edu [Case Western Reserve University, Civil Engineering Department, 2104 Adelbert Road, Bingham Bld. Room: 216, Cleveland, OH 44106 (United States); Tansel, Berrin; Kumar, Vivek [Florida International University, Civil and Environmental Engineering Department, Miami, FL (United States)

    2011-06-15T23:59:59.000Z

    Post-closure care (PCC) activities at landfills include cap maintenance; water quality monitoring; maintenance and monitoring of the gas collection/control system, leachate collection system, groundwater monitoring wells, and surface water management system; and general site maintenance. The objective of this study was to develop an integrated data and knowledge based decision making tool for preliminary estimation of PCC needs at closed landfills. To develop the decision making tool, 11 categories of parameters were identified as critical areas which could affect future PCC needs. Each category was further analyzed by detailed questions which could be answered with limited data and knowledge about the site, its history, location, and site specific characteristics. Depending on the existing knowledge base, a score was assigned to each question (on a scale 1-10, as 1 being the best and 10 being the worst). Each category was also assigned a weight based on its relative importance on the site conditions and PCC needs. The overall landfill score was obtained from the total weighted sum attained. Based on the overall score, landfill conditions could be categorized as critical, acceptable, or good. Critical condition indicates that the landfill may be a threat to the human health and the environment and necessary steps should be taken. Acceptable condition indicates that the landfill is currently stable and the monitoring should be continued. Good condition indicates that the landfill is stable and the monitoring activities can be reduced in the future. The knowledge base algorithm was applied to two case study landfills for preliminary assessment of PCC performance.

  8. The environmental comparison of landfilling vs. incineration of MSW accounting for waste diversion

    SciTech Connect (OSTI)

    Assamoi, Bernadette [Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5 (Canada); Lawryshyn, Yuri, E-mail: yuri.lawryshyn@utoronto.ca [Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5 (Canada)

    2012-05-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Residential waste diversion initiatives are more successful with organic waste. Black-Right-Pointing-Pointer Using a incineration to manage part of the waste is better environmentally. Black-Right-Pointing-Pointer Incineration leads to more power plant emission offsets. Black-Right-Pointing-Pointer Landfilling all of the waste would be preferred financially. - Abstract: This study evaluates the environmental performance and discounted costs of the incineration and landfilling of municipal solid waste that is ready for the final disposal while accounting for existing waste diversion initiatives, using the life cycle assessment (LCA) methodology. Parameters such as changing waste generation quantities, diversion rates and waste composition were also considered. Two scenarios were assessed in this study on how to treat the waste that remains after diversion. The first scenario is the status quo, where the entire residual waste was landfilled whereas in the second scenario approximately 50% of the residual waste was incinerated while the remainder is landfilled. Electricity was produced in each scenario. Data from the City of Toronto was used to undertake this study. Results showed that the waste diversion initiatives were more effective in reducing the organic portion of the waste, in turn, reducing the net electricity production of the landfill while increasing the net electricity production of the incinerator. Therefore, the scenario that incorporated incineration performed better environmentally and contributed overall to a significant reduction in greenhouse gas emissions because of the displacement of power plant emissions; however, at a noticeably higher cost. Although landfilling proves to be the better financial option, it is for the shorter term. The landfill option would require the need of a replacement landfill much sooner. The financial and environmental effects of this expenditure have yet to be considered.

  9. Pricing landfill externalities: Emissions and disamenity costs in Cape Town, South Africa

    SciTech Connect (OSTI)

    Nahman, Anton, E-mail: anahman@csir.co.za [Environmental and Resource Economics Group, Natural Resources and the Environment, Council for Scientific and Industrial Research, P.O. Box 320, Stellenbosch 7599 (South Africa)

    2011-09-15T23:59:59.000Z

    Highlights: > The paper estimates landfill externalities associated with emissions, disamenities and transport. > Transport externalities vary from 24.22 to 31.42 Rands per tonne. > Costs of emissions (estimated using benefits transfer) vary from 0.07 to 28.91 Rands per tonne. > Disamenities (estimated using hedonic pricing) vary from 0.00 to 57.46 Rands per tonne. > Overall, external costs for urban landfills exceed those of a regional landfill. - Abstract: The external (environmental and social) costs of landfilling (e.g. emissions to air, soil and water; and 'disamenities' such as odours and pests) are difficult to quantify in monetary terms, and are therefore not generally reflected in waste disposal charges or taken into account in decision making regarding waste management options. This results in a bias against alternatives such as recycling, which may be more expensive than landfilling from a purely financial perspective, but preferable from an environmental and social perspective. There is therefore a need to quantify external costs in monetary terms, so that different disposal options can be compared on the basis of their overall costs to society (financial plus external costs). This study attempts to estimate the external costs of landfilling in the City of Cape Town for different scenarios, using the benefits transfer method (for emissions) and the hedonic pricing method (for disamenities). Both methods (in particular the process of transferring and adjusting estimates from one study site to another) are described in detail, allowing the procedures to be replicated elsewhere. The results show that external costs are currently R111 (in South African Rands, or approximately US$16) per tonne of waste, although these could decline under a scenario in which energy is recovered, or in which the existing urban landfills are replaced with a new regional landfill.

  10. Acute and chronic toxicity of municipal landfill leachate as determined with bioassays and chemical analysis 

    E-Print Network [OSTI]

    Schrab, Gregory Ernst

    1990-01-01T23:59:59.000Z

    ACUTE AND CHRONIC TOXICITY OF MUNICIPAL LANDFILL LEACHATE AS DETERMINED WITH BIOASSAYS AND CHEMICAL ANALYSIS A Thesis by GREGORY ERNST SCHRAB Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE May 1990 Major Subject: Soil Science ACUTF AND CHRONIC TOXICITY OF MUNICIPAL LANDFILL LEACHATE AS DETERMINED WITH BIOASSAYS AND CHEMICAL ANALYSIS A Thesis by GREGORY ERNST SCHRAB Approved as to style...

  11. Field versus laboratory characterization of clay deposits for use as in situ municipal landfill liners

    E-Print Network [OSTI]

    Wechsler, Sharon Elizabeth

    1990-01-01T23:59:59.000Z

    FIELD VERSUS LABORATORY CHARACTERIZATION OF CLAY DEPOSITS FOR USE AS IN SITU MUNICIPAL LANDFILL LINERS A Thesis by SHARON ELIZABETH WECHSLER Submitted to the Office of Graduate Studies Texas Aa? University in partial fulfillment... of the requirement for the degree of . KASTER OF SCIENCE Nay 1990 Major Subject: Geology FIELD VERSUS LABORATORY CHARACTERIZATION OF CLAY DEPOSITS FOR USE AS IN SITU MUNICIPAL LANDFILL LINERS A Thesis by SHARON ELIZABETH WECHSLER Approved as to style...

  12. Cost savings associated with landfilling wastes containing very low levels of uranium

    SciTech Connect (OSTI)

    Boggs, C.J. [Argonne National Lab., Germantown, MD (United States); Shaddoan, W.T. [Lockheed Martin Energy Systems, Paducah, KY (United States)

    1996-03-01T23:59:59.000Z

    The Paducah Gaseous Diffusion Plant (PGDP) has operated captive landfills (both residential and construction/demolition debris) in accordance with the Commonwealth of Kentucky regulations since the early 1980s. Typical waste streams allowed in these landfills include nonhazardous industrial and municipal solid waste (such as paper, plastic, cardboard, cafeteria waste, clothing, wood, asbestos, fly ash, metals, and construction debris). In July 1992, the U.S. Environmental Protection Agency issued new requirements for the disposal of sanitary wastes in a {open_quotes}contained landfill.{close_quotes} These requirements were promulgated in the 401 Kentucky Administrative Record Chapters 47 and 48 that became effective 30 June 1995. The requirements for a new contained landfill include a synthetic liner made of high-density polyethylene in addition to the traditional 1-meter (3-foot) clay liner and a leachate collection system. A new landfill at Paducah would accept waste streams similar to those that have been accepted in the past. The permit for the previously existing landfills did not include radioactivity limits; instead, these levels were administratively controlled. Typically, if radioactivity was detected above background levels, the waste was classified as low-level waste (LLW), which would be sent off-site for disposal.

  13. Feasibility Study of Economics and Performance of Solar Photovoltaics at Johnson County Landfill

    SciTech Connect (OSTI)

    Salasovich, J.; Mosey, G.

    2012-01-01T23:59:59.000Z

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Johnson County Landfill in Shawnee, Kansas, for a feasibility study of renewable energy production. Citizens of Shawnee, city planners, and site managers are interested in redevelopment uses for landfills in Kansas that are particularly well suited for grid-tied solar photovoltaic (PV) installation. This report assesses the Johnson County Landfill for possible grid-tied PV installations and estimates the cost, performance, and site impacts of three different PV options: crystalline silicon (fixed tilt), crystalline silicon (single-axis tracking), and thin film (fixed tilt). Each option represents a standalone system that can be sized to use an entire available site area. In addition, the report outlines financing options that could assist in the implementation of a system. The feasibility of PV systems installed on landfills is highly impacted by the available area for an array, solar resource, operating status, landfill cap status, distance to transmission lines, and distance to major roads. The report findings are applicable to other landfills in the surrounding area.

  14. Thermionic converter emitter support arrangement

    SciTech Connect (OSTI)

    Allen, Daniel T. (La Jolla, CA)

    1990-01-01T23:59:59.000Z

    A support is provided for use in a therminonic converter to support an end of an emitter to keep it out of contact with a surrounding collector while allowing the emitter end to move axially as its temperature changes. The emitter end (34) is supported by a spring structure (44) that includes a pair of Belleville springs, and the spring structure is supported by a support structure (42) fixed to the housing that includes the collector. The support structure is in the form of a sandwich with a small metal spring-engaging element (74) at the front end, a larger metal main support (76) at the rear end that is attached to the housing, and with a ceramic layer (80) between them that is bonded by hot isostatic pressing to the metal element and metal main support. The spring structure can include a loose wafer (120) captured between the Belleville springs.

  15. Thermionic converter emitter support arrangement

    SciTech Connect (OSTI)

    Allen, D.T.

    1990-10-16T23:59:59.000Z

    A support is presented for use in a thermionic converted to support an end of an emitter to keep it out of contact with a surrounding collector while allowing the emitter end to move axially at its temperatures changes. The emitter end is supported by a spring structure that includes a pair of Belleville springs, and the spring structure is supported by a support structure fixed to the housing that includes the collector. The support structure is in the form of a sandwich with a small metal spring-engaging element at the front end, a large metal main support at the rear end that is attached to the housing, and metal main support. The spring structure can include a loose wafer captured between the Belleville springs.

  16. Thermionic converter emitter support arrangement

    SciTech Connect (OSTI)

    Allen, Daniel T. (La Jolla, CA)

    1990-01-01T23:59:59.000Z

    A support is provided for use in a thermionic converter to support an end an emitter to keep it out of contact with a surrounding collector while allowing the emitter end to move axially at its temperatures changes. The emitter end (34) is supported by a spring structure (44) that includes a pair of Belleville springs, and the spring structure is supported by a support structure (42) fixed to the housing that includes the collector. The support structure is in the form of a sandwich with a small metal spring-engaging element (74) at the front end, a larger metal main support (76) at the rear end that is attached to the housng, and with a ceramic layer (80) between them that is bonded by hot isostatic pressing to the metal element and metal main support. The spring structure can include a loose wafer (120) captured between the Belleville springs.

  17. Thermionic converter emitter support arrangement

    SciTech Connect (OSTI)

    Allen, D.T.

    1989-07-06T23:59:59.000Z

    This document discusses a support provided for use in a thermionic converter to support an end of an emitter to keep it out of contact with a surrounding collector while allowing the emitter end to move axially as its temperature changes. The emitter end is supported by a spring structure that includes a pair of Belleville springs, and the spring structure is supported by a support structure fixed to the housing that includes the collector. The support structure is in the form of a sandwich with a small metal spring-engaging element at the front end, a larger metal main support at the rear end that is attached to the housing, and with a ceramic layer between them that is bonded by hot isostatic pressing to the metal element and metal main support. The spring structure can include a loose wafer captured between the Belleville springs. 7 figs.

  18. Thermionic converter emitter support arrangement

    SciTech Connect (OSTI)

    Allen, D.T.

    1990-05-22T23:59:59.000Z

    This patent describes a support provided for use in a therminonic converter to support an end of an emitter to keep it out of contact with a surrounding collector while allowing the emitter end to move axially as its temperature changes. The emitter end is supported by a spring structure that includes a pair of Belleville springs, and the spring structure is supported by a support structure fixed to the housing that includes the collector. The support structure is in the form of a sandwich with a small metal spring-engaging element at the front end, a larger metal main support at the rear end that is attached to the housing, and with a ceramic layer between them that is bonded by hot isostatic pressing to the metal element and metal main support. The spring structure can include a loose wafer captured between the Belleville springs.

  19. Greenhouse gas reduction by recovery and utilization of landfill methane and CO{sub 2} technical and market feasibility study, Boului Landfill, Bucharest, Romania. Final report, September 30, 1997--September 19, 1998

    SciTech Connect (OSTI)

    Cook, W.J.; Brown, W.R.; Siwajek, L. [Acrion Technologies, Inc., Cleveland, OH (United States); Sanders, W.I. [Power Management Corp., Bellevue, WA (United States); Botgros, I. [Petrodesign, SA, Bucharest (Romania)

    1998-09-01T23:59:59.000Z

    The project is a landfill gas to energy project rated at about 4 megawatts (electric) at startup, increasing to 8 megawatts over time. The project site is Boului Landfill, near Bucharest, Romania. The project improves regional air quality, reduces emission of greenhouse gases, controls and utilizes landfill methane, and supplies electric power to the local grid. The technical and economic feasibility of pre-treating Boului landfill gas with Acrion`s new landfill gas cleanup technology prior to combustion for power production us attractive. Acrion`s gas treatment provides several benefits to the currently structured electric generation project: (1) increase energy density of landfill gas from about 500 Btu/ft{sup 3} to about 750 Btu/ft{sup 3}; (2) remove contaminants from landfill gas to prolong engine life and reduce maintenance;; (3) recover carbon dioxide from landfill gas for Romanian markets; and (4) reduce emission of greenhouse gases methane and carbon dioxide. Greenhouse gas emissions reduction attributable to successful implementation of the landfill gas to electric project, with commercial liquid CO{sub 2} recovery, is estimated to be 53 million metric tons of CO{sub 2} equivalent of its 15 year life.

  20. 1 | Fuel Cell Technologies Program eere.energy.gov Fuel Cell Technologies Program

    E-Print Network [OSTI]

    July 13, 2011 #12;Biogas Resource Example: Methane from Waste Water Treatment Biogas from waste water 2010 #12;Biogas Resource Example: Methane from Landfills Biogas from landfills is located near large of resource located near urban centers. · If 50% of the bio-methane was available, ~8 million kg

  1. Sandia National Laboratories: wave energy converter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    release. This model has ... Sandia Funded to Model Power Pods for Utility-Scale Wave-Energy Converter On September 16, 2014, in Computational Modeling & Simulation, Energy,...

  2. New Catalyst Converts CO2 to Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a catalyst that improves their system for converting waste carbon dioxide (CO) into syngas, a precursor of gasoline and other energy-rich products, bringing the process closer...

  3. Bi-directional dc-dc Converter

    Broader source: Energy.gov (indexed) [DOE]

    Purpose of Work for FY08 1. Vehicle modeling, simulation, and operation voltages optimization. 2. DC-DC Power converter and control modeling. 3. Silicon Carbide device...

  4. Sandia National Laboratories: current energy converter array...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    array optimization framework Current Energy Converter Array Optimization Framework On March 13, 2014, in Computational Modeling & Simulation, Energy, News, News & Events,...

  5. Sandia National Laboratories: ocean energy converters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ocean energy converters DOE-Sponsored Reference Model Project Results Released On January 28, 2014, in Computational Modeling & Simulation, Energy, News, News & Events,...

  6. Odour-impact assessment around a landfill site from1 weather-type classification, complaint inventory and2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of olfactory nuisances30 in residential neighbourhoods. Although biogas is usually collected and treated., 1997; Kim et al., 2005). In addition,34 biological heat may significantly modify the energy balance

  7. Photoacoustic infrared spectroscopy for conducting gas tracer tests and measuring water saturations in landfills

    SciTech Connect (OSTI)

    Jung, Yoojin; Han, Byunghyun; Mostafid, M. Erfan; Chiu, Pei [Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716 (United States); Yazdani, Ramin [Yolo County Planning and Public Works Department, Division of Integrated Waste Management, Yolo County, 44090 County Rd. 28H, Woodland, CA 95776 (United States); Imhoff, Paul T., E-mail: imhoff@udel.edu [Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716 (United States)

    2012-02-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Photoacoustic infrared spectroscopy tested for measuring tracer gas in landfills. Black-Right-Pointing-Pointer Measurement errors for tracer gases were 1-3% in landfill gas. Black-Right-Pointing-Pointer Background signals from landfill gas result in elevated limits of detection. Black-Right-Pointing-Pointer Technique is much less expensive and easier to use than GC. - Abstract: Gas tracer tests can be used to determine gas flow patterns within landfills, quantify volatile contaminant residence time, and measure water within refuse. While gas chromatography (GC) has been traditionally used to analyze gas tracers in refuse, photoacoustic spectroscopy (PAS) might allow real-time measurements with reduced personnel costs and greater mobility and ease of use. Laboratory and field experiments were conducted to evaluate the efficacy of PAS for conducting gas tracer tests in landfills. Two tracer gases, difluoromethane (DFM) and sulfur hexafluoride (SF{sub 6}), were measured with a commercial PAS instrument. Relative measurement errors were invariant with tracer concentration but influenced by background gas: errors were 1-3% in landfill gas but 4-5% in air. Two partitioning gas tracer tests were conducted in an aerobic landfill, and limits of detection (LODs) were 3-4 times larger for DFM with PAS versus GC due to temporal changes in background signals. While higher LODs can be compensated by injecting larger tracer mass, changes in background signals increased the uncertainty in measured water saturations by up to 25% over comparable GC methods. PAS has distinct advantages over GC with respect to personnel costs and ease of use, although for field applications GC analyses of select samples are recommended to quantify instrument interferences.

  8. Recovery Act: Brea California Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    SciTech Connect (OSTI)

    Galowitz, Stephen

    2012-12-31T23:59:59.000Z

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Olinda Landfill near Brea, California. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting Project reflected a cost effective balance of the following specific sub-objectives: • Meeting the environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas • Utilizing proven and reliable technology and equipment • Maximizing electrical efficiency • Maximizing electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Olinda Landfill • Maximizing equipment uptime • Minimizing water consumption • Minimizing post-combustion emissions • The Project produced and will produce a myriad of beneficial impacts. o The Project created 360 FTE construction and manufacturing jobs and 15 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. o By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). o The Project will annually produce 280,320 MWh’s of clean energy o By destroying the methane in the landfill gas, the Project will generate CO2 equivalent reductions of 164,938 tons annually. The completed facility produces 27.4 MWnet and operates 24 hours a day, seven days a week.

  9. CCA-Treated wood disposed in landfills and life-cycle trade-offs with waste-to-energy and MSW landfill disposal

    E-Print Network [OSTI]

    Florida, University of

    CCA-Treated wood disposed in landfills and life-cycle trade-offs with waste-to-energy and MSW February 2007 Available online 9 April 2007 Abstract Chromated copper arsenate (CCA)-treated wood is a preservative treated wood construction product that grew in use in the 1970s for both residential

  10. Landfill cover performance monitoring using time domain reflectometry

    SciTech Connect (OSTI)

    Neher, E.R.; Cotten, G.B. [Parsons Infrastructure & Technology Group, Inc., Idaho Falls, ID (United States); McElroy, D. [Lockheed-Martin Idaho Technologies Company, Idaho Falls, ID (United States)

    1998-03-01T23:59:59.000Z

    Time domain reflectometry (TDR) systems were installed to monitor soil moisture in two newly constructed landfill covers at the Idaho National Engineering and Environmental Laboratory. Each TDR system includes four vertical arrays with each array consisting of four TDR probes located at depths of 15, 30, 45, and 60 cm. The deepest probes at 60 cm were installed beneath a compacted soil layer to analyze infiltration through the compacted layer. Based on the TDR data, infiltration through the two covers between March and October, 1997 ranged from less than measurable to 1.5 cm. However, due to a prohibition on penetrating the buried waste and resulting limits on probe placement depths, deeper percolation was not evaluated. Some of the advantages found in the application of TDR for infiltration monitoring at this site are the relative low cost and rugged nature of the equipment. Also, of particular importance, the ability to collect frequent moisture measurements allows the capture and evaluation of soil moisture changes resulting from episodic precipitation events. Disadvantages include the inability to install the probes into the waste, difficulties in interpretation of infiltration during freeze/thaw periods, and some excessive noise in the data.

  11. Vacuum-insulated catalytic converter

    DOE Patents [OSTI]

    Benson, David K. (Golden, CO)

    2001-01-01T23:59:59.000Z

    A catalytic converter has an inner canister that contains catalyst-coated substrates and an outer canister that encloses an annular, variable vacuum insulation chamber surrounding the inner canister. An annular tank containing phase-change material for heat storage and release is positioned in the variable vacuum insulation chamber a distance spaced part from the inner canister. A reversible hydrogen getter in the variable vacuum insulation chamber, preferably on a surface of the heat storage tank, releases hydrogen into the variable vacuum insulation chamber to conduct heat when the phase-change material is hot and absorbs the hydrogen to limit heat transfer to radiation when the phase-change material is cool. A porous zeolite trap in the inner canister absorbs and retains hydrocarbons from the exhaust gases when the catalyst-coated substrates and zeolite trap are cold and releases the hydrocarbons for reaction on the catalyst-coated substrate when the zeolite trap and catalyst-coated substrate get hot.

  12. High performance, close-spaced thermionic converters

    SciTech Connect (OSTI)

    Dick, R.S.; Britt, E.J.; Fitzpatrick, G.O.; McVey, J.B.

    1983-08-01T23:59:59.000Z

    Near ideal performance in a Thermionic Energy Converter (TEC) can be obtained using extremely small (< 10 microns) interelectrode spacings. Previous efforts to build such converters have encountered engineering problems. A new type of converter, called SAVTEC (for Self-Adjusting, Versatile Thermionic Energy Converter) has been developed at Rasor Associates, Inc., as a practical way to achieve small spacings. It has been demonstrated to deliver improved performance over conventional, ignited-mode converters. A series of individual SAVTEC's have been built and tested. Two general configurations were built: in the first a single emitter support lead (0.25 mm wire) passes through a hole in the center of the collector, with the emitter being welded to it. In the second three smaller wires replace the center wire and are welded to the emitter perimeter. These converters have shown reliable, temperature controlled spacings of the emitter and collector. Reproducible spacing of 10 microns (0.4 mils) were achieved on several converters. This paper presents details of SAVTEC converter construction and performance, including volt-ampere curves.

  13. Polybrominated diphenyl ethers (PBDEs) in leachates from selected landfill sites in South Africa

    SciTech Connect (OSTI)

    Odusanya, David O. [Department of Environmental, Water and Earth Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, 175 Nelson Mandela Drive, Arcadia, Pretoria 0001 (South Africa); Okonkwo, Jonathan O. [Department of Environmental, Water and Earth Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, 175 Nelson Mandela Drive, Arcadia, Pretoria 0001 (South Africa)], E-mail: OkonkwoOJ@tut.ac.za; Botha, Ben [Department of Environmental, Water and Earth Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, 175 Nelson Mandela Drive, Arcadia, Pretoria 0001 (South Africa)

    2009-01-15T23:59:59.000Z

    The last few decades have seen dramatic growth in the scale of production and the use of polybrominated diphenyl ethers (PBDEs) as flame retardants. Consequently, PBDEs such as BDE -28, -47, -66, -71, -75, -77, -85, -99, -100, -119, -138, -153, -154, and -183 have been detected in various environmental matrices. Generally, in South Africa, once the products containing these chemicals have outlived their usefulness, they are discarded into landfill sites. Consequently, the levels of PBDEs in leachates from landfill sites may give an indication of the general exposure and use of these compounds. The present study was aimed at determining the occurrence and concentrations of most common PBDEs in leachates from selected landfill sites. The extraction capacities of the solvents were also tested. Spiked landfill leachate samples were used for the recovery tests. Separation and determination of the PBDE congeners were carried out with a gas chromatograph equipped with Ni{sup 63} electron capture detector. The mean percentage recoveries ranged from 63% to 108% (n = 3) for landfill leachate samples with petroleum ether giving the highest percentage extraction. The mean concentrations of PBDEs obtained ranged from ND to 2670 pg l{sup -1}, ND to 6638 pg l{sup -1}, ND to 7230 pg l{sup -1}, 41 to 4009 pg l{sup -1}, 90 to 9793 pg l{sup -1} for the Garankuwa, Hatherly, Kwaggarsrand, Soshanguve and Temba landfill sites, respectively. Also BDE -28, -47, -71 and BDE-77 were detected in the leachate samples from all the landfill sites; and all the congeners were detected in two of the oldest landfill sites. The peak concentrations were recorded for BDE-47 at three sites and BDE-71 and BDE-75 at two sites. The highest concentration, 9793 {+-} 1.5 pg l{sup -1}, was obtained for the Temba landfill site with the highest BOD value. This may suggest some influence of organics on the level of PBDEs. Considering the leaching characteristics of brominated flame retardants, there is a high possibility that with time these compounds may infiltrate into the groundwater around the sites since most of the sites are not adequately lined.

  14. Recovery Act: Johnston Rhode Island Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    SciTech Connect (OSTI)

    Galowitz, Stephen

    2013-06-30T23:59:59.000Z

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Central Landfill in Johnston, Rhode Island. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting project reflected a cost effective balance of the following specific sub-objectives. 1) Meet environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas. 2) Utilize proven and reliable technology and equipment. 3) Maximize electrical efficiency. 4) Maximize electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Central Landfill. 5) Maximize equipment uptime. 6) Minimize water consumption. 7) Minimize post-combustion emissions. To achieve the Project Objective the project consisted of several components. 1) The landfill gas collection system was modified and upgraded. 2) A State-of-the Art gas clean up and compression facility was constructed. 3) A high pressure pipeline was constructed to convey cleaned landfill gas from the clean-up and compression facility to the power plant. 4) A combined cycle electric generating facility was constructed consisting of combustion turbine generator sets, heat recovery steam generators and a steam turbine. 5) The voltage of the electricity produced was increased at a newly constructed transformer/substation and the electricity was delivered to the local transmission system. The Project produced a myriad of beneficial impacts. 1) The Project created 453 FTE construction and manufacturing jobs and 25 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. 2) By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). 3) The Project will annually produce 365,292 MWh?s of clean energy. 4) By destroying the methane in the landfill gas, the Project will generate CO{sub 2} equivalent reductions of 164,938 tons annually. The completed facility produces 28.3 MWnet and operates 24 hours a day, seven days a week.

  15. GeoChip-based Analysis of Groundwater Microbial Diversity in Norman Landfill

    SciTech Connect (OSTI)

    Lu, Zhenmei; He, Zhili; Parisi, Victoria; Kang, Sanghoon; Deng, Ye; Nostrand, Joy Van; Masoner, Jason; Cozzarelli, Isabelle; Suflita, Joseph; Zhou, Jizhong

    2010-05-17T23:59:59.000Z

    The Norman Landfill is a closed municipal solid waste landfill located on an alluvium associated with the Canadian River in Norman, Oklahoma. It has operated as a research site since 1994 because it is typical of many closed landfill sites across the U.S. Leachate from the unlined landfill forms a groundwater plume that extends downgradient approximately 250 m from the landfill toward the Canadian River. To investigate the impact of the landfill leachate on the diversity and functional structure of microbial communities, groundwater samples were taken from eight monitoring wells at a depth of 5m, and analyzed using a comprehensive functional gene array covering about 50,000 genes involved in key microbial processes, such as biogeochemical cycling of C, N, P, and S, and bioremediation of organic contaminants and metals. Wells are located within a transect along a presumed flow path with different distances to the center of the leachate plume. Our analyses showed that microbial communities were obviously impacted by the leachate-component from the landfill. The number of genes detected and microbial diversity indices in the center (LF2B) and its closest (MLS35) wells were significantly less than those detected in other more downgradient wells, while no significant changes were observed in the relative abundance (i.e., percentage of each gene category) for most gene categories. However, the microbial community composition or structure of the landfill groundwater did not clearly show a significant correlation with the distance from well LF2B. Burkholderia sp. and Pseudomonas sp. were found to be the dominant microbial populations detected in all wells, while Bradyrhizobium sp. and Ralstonia sp. were dominant populations for seven wells except LF2B. In addition, Mantel test and canonical correspondence analysis (CCA) indicate that pH, sulfate, ammonia nitrogen and dissolved organic carbon (DOC) have significant effects on the microbial community structure. The results suggest that the leachate from unlined landfills significantly impact the structures of groundwater microbial communities, and that more distal wells recover by natural attenuation.

  16. Statistical comparison of leachate from hazardous, codisposal, and municipal solid waste landfills

    SciTech Connect (OSTI)

    Gibbons, R.D.; Dolan, D.G.; May, H.; O'Leary, K.; O'Hara, R.

    1999-09-30T23:59:59.000Z

    There has been considerable debate regarding the chemical characterization of landfill leachate in general and the comparison of various types of landfill leachate (e.g., hazardous, codisposal, and municipal) in particular. For example, the preamble to the US EPA Subtitle D regulation (40 CFR Parts 257 and 258) suggests that there are no significant differences between the number and concentration of toxic constituents in hazardous versus municipal solid waste landfill leachate. The purpose of this paper is to statistically test this hypothesis in a large leachate database comprising 1490 leachate samples from 283 sample points (i.e., monitoring location such as a leachate sump) in 93 landfill waste cells (i.e., a section of a facility that took a specific waste stream or collection of similar waste streams) from 48 sites with municipal, codisposal, or hazardous waste site histories. Results of the analysis reveal clear differention between landfill leachate types, both in terms of constituents detected and their concentrations. The result of the analysis is a classification function that can estimate the probability that new leachate or ground water sample was produced by the disposal of municipal, codisposal, or hazardous waste. This type of computation is illustrated, and applications of the model to Superfund cost-allocation problems are discussed.

  17. Catalytic converter with thermoelectric generator

    SciTech Connect (OSTI)

    Parise, R.J.

    1998-07-01T23:59:59.000Z

    The unique design of an electrically heated catalyst (EHC) and the inclusion of an ECO valve in the exhaust of an internal combustion engine will meet the strict new emission requirements, especially at vehicle cold start, adopted by several states in this country as well as in Europe and Japan. The catalytic converter (CC) has been a most useful tool in pollution abatement for the automobile. But the emission requirements are becoming more stringent and, along with other improvements, the CC must be improved to meet these new standards. Coupled with the ECO valve, the EHC can meet these new emission limits. In an internal combustion engine vehicle (ICEV), approximately 80% of the energy consumed leaves the vehicle as waste heat: out the tail pipe, through the radiator, or convected/radiated off the engine. Included with the waste heat out the tail pipe are the products of combustion which must meet strict emission requirements. The design of a new CC is presented here. This is an automobile CC that has the capability of producing electrical power and reducing the quantity of emissions at vehicle cold start, the Thermoelectric Catalytic Power Generator. The CC utilizes the energy of the exothermic reactions that take place in the catalysis substrate to produce electrical energy with a thermoelectric generator. On vehicle cold start, the thermoelectric generator is used as a heat pump to heat the catalyst substrate to reduce the time to catalyst light-off. Thus an electrically heated catalyst (EHC) will be used to augment the abatement of tail pipe emissions. Included with the EHC in the exhaust stream of the automobile is the ECO valve. This valve restricts the flow of pollutants out the tail pipe of the vehicle for a specified amount of time until the EHC comes up to operating temperature. Then the ECO valve opens and allows the full exhaust, now treated by the EHC, to leave the vehicle.

  18. 1st International Conference on Final Sinks, September 23-25, 2010 Vienna, Austria From Sanitary to Sustainable Landfilling

    E-Print Network [OSTI]

    Szmolyan, Peter

    Rechberger (AT) Daniele Di Trapani (IT) Formation of Hanging Water Tables in Municipal Solid Waste Landfills) Investigation of polycyclic aromatic hydrocarbons (PAHs) content in several incineration residues and simple estimation of their fate in landfill Fan Lu (CN) Biostabilization of Municipal Solid Waste with High Water

  19. Landfill Disamenities And Better Utilization of Waste Resources Presented to the Wisconsin Governor's Task Force on Waste Materials Recovery

    E-Print Network [OSTI]

    Columbia University

    're heading, or should be heading regarding solid waste disposal. I began my environmental engineering career in New York State in the 1960's. We had many problems with polluting solid waste dumps, landfill fires, WTE facilities. We know that municipal solid waste, MSW landfills in the US are estimated to release

  20. Superfund explanation of significant difference for the record of decision (EPA Region 5): Tri-County Landfill/Waste Management Illinois, South Elgin, IL, April 23, 1998

    SciTech Connect (OSTI)

    NONE

    1999-03-01T23:59:59.000Z

    The Tri-County/Elgin Landfill Superfund Site (TCLF) encompasses both the Tri-County and Elgin Landfills. The purpose of this ESD is to explain why the design for the landfill cap component of the remedy differs from that set forth in the ROD (PB93-964133) and to address the cost differentials associated with the change.

  1. Waste management health risk assessment: A case study of a solid waste landfill in South Italy

    SciTech Connect (OSTI)

    Davoli, E., E-mail: enrico.davoli@marionegri.i [Istituto di Ricerche Farmacologiche 'Mario Negri', Environmental Health Sciences Department, Via Giuseppe La Masa 19, 20156 Milano (Italy); Fattore, E.; Paiano, V.; Colombo, A.; Palmiotto, M. [Istituto di Ricerche Farmacologiche 'Mario Negri', Environmental Health Sciences Department, Via Giuseppe La Masa 19, 20156 Milano (Italy); Rossi, A.N.; Il Grande, M. [Progress S.r.l., Via Nicola A. Porpora 147, 20131 Milano (Italy); Fanelli, R. [Istituto di Ricerche Farmacologiche 'Mario Negri', Environmental Health Sciences Department, Via Giuseppe La Masa 19, 20156 Milano (Italy)

    2010-08-15T23:59:59.000Z

    An integrated risk assessment study has been performed in an area within 5 km from a landfill that accepts non hazardous waste. The risk assessment was based on measured emissions and maximum chronic population exposure, for both children and adults, to contaminated air, some foods and soil. The toxic effects assessed were limited to the main known carcinogenic compounds emitted from landfills coming both from landfill gas torch combustion (e.g., dioxins, furans and polycyclic aromatic hydrocarbons, PAHs) and from diffusive emissions (vinyl chloride monomer, VCM). Risk assessment has been performed both for carcinogenic and non-carcinogenic effects. Results indicate that cancer and non-cancer effects risk (hazard index, HI) are largely below the values accepted from the main international agencies (e.g., WHO, US EPA) and national legislation ( and ).

  2. An Assessment of the Disposal of Petroleum Industry NORM in Nonhazardous Landfills

    SciTech Connect (OSTI)

    Arnish, John J.; Blunt, Deborah, L.; Haffenden, Rebecca A.; Herbert, Jennifer; Pfingston, Manjula; Smith, Karen P.; Williams, Gustavious P.

    1999-10-12T23:59:59.000Z

    In this study, the disposal of radium-bearing NORM wastes in nonhazardous landfills in accordance with the MDEQ guidelines was modeled to evaluate potential radiological doses and resultant health risks to workers and the general public. In addition, the study included an evaluation of the potential doses and health risks associated with disposing of a separate NORM waste stream generated by the petroleum industry--wastes containing lead-210 (Pb-210) and its progeny. Both NORM waste streams are characterized in Section 3 of this report. The study also included reviews of (1) the regulatory constraints applicable to the disposal of NORM in nonhazardous landfills in several major oil and gas producing states (Section 2) and (2) the typical costs associated with disposing of NORM, covering disposal options currently permitted by most state regulations as well as the nonhazardous landfill option (Section 4).

  3. Feasibility Study of Solar Photovoltaics on Landfills in Puerto Rico (Second Study)

    SciTech Connect (OSTI)

    Salasovich, J.; Mosey, G.

    2011-08-01T23:59:59.000Z

    This report presents the results of an assessment of the technical and economic feasibility of deploying a solar photovoltaics (PV) system on landfill sites in Puerto Rico. The purpose of this report is to assess the landfills with the highest potential for possible solar PV installation and estimate cost, performance, and site impacts of three different PV options: crystalline silicon (fixed tilt), crystalline silicon (single-axis tracking), and thin film (fixed tilt). The report outlines financing options that could assist in the implementation of a system. According to the site production calculations, the most cost-effective system in terms of return on investment is the thin-film fixed-tilt technology. The report recommends financing options that could assist in the implementation of such a system. The landfills and sites considered in this report were all determined feasible areas in which to implement solar PV systems.

  4. A variable parameter thermionic energy converter

    E-Print Network [OSTI]

    Bragg, Bobby Joe

    1967-01-01T23:59:59.000Z

    Point Spacing Figure~ Power Jersus Spacing Wit?&out 'inmmum Power Point CHAPTER III THEORY OF OPERATION Brief History Vacuum diodes. The earliest known analysis and testing of therm- ionic energy converters was made on vacuum converters (i. e.... , a converter in which the interelectrode space is highly evacuated) by W. Schlicter in 1915 (2). He built a vacuum diode with a platinum emitter at 1000 0 yielding 1. 5 x 10 watt with an efficiency of about 10 $. These results, plus his analysis...

  5. Systems and methods for measuring a parameter of a landfill including a barrier cap and wireless sensor systems and methods

    DOE Patents [OSTI]

    Kunerth, Dennis C.; Svoboda, John M.; Johnson, James T.

    2007-03-06T23:59:59.000Z

    A method of measuring a parameter of a landfill including a cap, without passing wires through the cap, includes burying a sensor apparatus in the landfill prior to closing the landfill with the cap; providing a reader capable of communicating with the sensor apparatus via radio frequency (RF); placing an antenna above the barrier, spaced apart from the sensor apparatus; coupling the antenna to the reader either before or after placing the antenna above the barrier; providing power to the sensor apparatus, via the antenna, by generating a field using the reader; accumulating and storing power in the sensor apparatus; sensing a parameter of the landfill using the sensor apparatus while using power; and transmitting the sensed parameter to the reader via a wireless response signal. A system for measuring a parameter of a landfill is also provided.

  6. BUNCOMBE COUNTY WASTEWATER PRE-TREATMENT AND LANDFILL GAS TO ENERGY PROJECT

    SciTech Connect (OSTI)

    Jon Creighton

    2012-03-13T23:59:59.000Z

    The objective of this project was to construct a landfill gas-to-energy (LFGTE) facility that generates a renewable energy source utilizing landfill gas to power a 1.4MW generator, while at the same time reducing the amount of leachate hauled offsite for treatment. The project included an enhanced gas collection and control system, gas conditioning equipment, and a 1.4 MW generator set. The production of cleaner renewable energy will help offset the carbon footprint of other energy sources that are currently utilized.

  7. Landfill Gas Conversion to LNG and LCO{sub 2}. Final Report

    SciTech Connect (OSTI)

    Brown, W.R.; Cook, W. J.; Siwajek, L.A.

    2000-10-20T23:59:59.000Z

    This report summarizes work on the development of a process to produce LNG (liquefied methane) for heavy vehicle use from landfill gas (LFG) using Acrion's CO{sub 2} wash process for contaminant removal and CO{sub 2} recovery. Work was done in the following areas: (1) production of natural gas pipeline methane for liquefaction at an existing LNG facility, (2) production of LNG from sewage digester gas, (3) the use of mixed refrigerants for process cooling in the production of LNG, liquid CO{sub 2} and pipeline methane, (4) cost estimates for an LNG production facility at the Arden Landfill in Washington PA.

  8. Capping as an alternative for remediating radioactive and mixed waste landfills

    SciTech Connect (OSTI)

    Hakonson, T.E. [Colorado State Univ., Fort Collins, CO (United States). Dept. of Fishery and Wildlife Biology

    1994-03-01T23:59:59.000Z

    This report describes some of the regulatory and technical issues concerning the use of capping as a containment strategy for radioactive and hazardous waste. Capping alternatives for closure of landfills is not just an engineering problem, but rather involves complex physical, biological, and chemical processes requiring a multidisciplinary approach to develop designs that will work over the long haul and are cost-effective. Much of the information has been distilled from regulatory and guidance documents and a compilation of research activities on waste disposal, contaminant transport processes, and technology development for landfills that has been conducted over the last 21 years.

  9. New Perspectives on Wave Energy Converter Control 

    E-Print Network [OSTI]

    Price, Alexandra A E

    2009-01-01T23:59:59.000Z

    This work examines some of the fundamental problems behind the control of wave energy converters (WECs). Several new perspectives are presented to aid the understanding of the problem and the interpretation of the ...

  10. Improved Low-Temperature Performance of Catalytic Converters...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Catalytic converters, installed on vehicles with internal combustion and diesel engines, convert the toxic byproducts of combustion to less toxic compounds. In two-way (lean...

  11. acid residues converted: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: - Resonant converters and related systems, such as piezoelectric transformers, may require a high of resonant converters: a series-resonant parallel-...

  12. ars projekt converted: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: - Resonant converters and related systems, such as piezoelectric transformers, may require a high of resonant converters: a series-resonant parallel-...

  13. angiotensin converting enzyme-3: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: - Resonant converters and related systems, such as piezoelectric transformers, may require a high of resonant converters: a series-resonant parallel-...

  14. angiotensin converting enzyme: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: - Resonant converters and related systems, such as piezoelectric transformers, may require a high of resonant converters: a series-resonant parallel-...

  15. SEP Success Story: State Energy Program Helping Arkansans Convert...

    Energy Savers [EERE]

    State Energy Program Helping Arkansans Convert to Compressed Natural Gas SEP Success Story: State Energy Program Helping Arkansans Convert to Compressed Natural Gas January 25,...

  16. Enterprise converting buses to biodiesel | Department of Energy

    Energy Savers [EERE]

    Enterprise converting buses to biodiesel Enterprise converting buses to biodiesel April 1, 2010 - 6:48pm Addthis Paul Lester Communications Specialist, Office of Energy Efficiency...

  17. Superfund Record of Decision (EPA Region 5): Tri County/Elgin Landfill Site, Elgin, IL. (First remedial action), September 1992. Final report

    SciTech Connect (OSTI)

    Not Available

    1992-09-30T23:59:59.000Z

    The 66-acre Tri County Landfill (TCL) site comprises two former landfills the Tri County Landfill and the Elgin Landfill, located near the junction of Kane, Cook and DuPage Counties, Illinois. The two disposal operations overlapped to the point where the two landfills were indistinguishable. Land use in the area is predominantly agricultural. The local residents and businesses use private wells as their drinking water supply. Prior to the 1940's, both landfills were used for gravel mining operations. From 1968 to 1976, the TCL received liquid and industrial waste. State and county inspection reports revealed that open dumping, area filling, and dumping into the abandonded gravel quarry had occurred at the site. In addition, confined dumping, inadequate daily cover, blowing litter, fires, lack of access restrictions, and leachate flows were typical problems reported. In 1981, the landfill was closed with a final cover.

  18. Process converts incineration slag into stabilized residue

    SciTech Connect (OSTI)

    Thauront, J.; Deneux-Mustin, S. (EMC-Services, Paris (France)); Durecu, S. (EMC-Services, Vandoeuvre-Les Nancy (France)); Fraysse, G. (EMC-Services, Saint-Vulbas (France)); Berthelin, J. (Centre de Pedologie Biologique, Vandoeuvre-Les Nancy (France))

    1994-12-01T23:59:59.000Z

    During 1973 and 1974, EMC-Services designed and built a physico-chemical treatment plant in Hombourg, in France's Alsatian region. The plant is still in operation. Since then, EMC-Services has developed substantial experience in environmental projects, becoming one of the top companies internationally with experience and practice in designing, building and operating hazardous waste treatment plants. EMC-Services operates in France in Salaise, Strasbourg, Mitry-Mory, and Saint-Vulbas, where eight incinerators treat solid, liquid, highly halogenated and nonhazardous industrial waste. The incinerators, built or updated by EMC-Services, have a total capacity of about 200,000 tons per year. In the new process, incineration of special industrial wastes produces non-volatilized solid residue or slag, which is sent for disposal, in compliance with regulations, to special disposal plants. Future European regulations will incorporate landfilling criteria requiring such slag to be stabilized.

  19. Landfills a thing of the past in Germany where advanced waste management By Evridiki Bersi -Kathimerini

    E-Print Network [OSTI]

    Columbia University

    Landfills a thing of the past in Germany where advanced waste management rules By Evridiki Bersi but that day has already come in Germany. On June 1, 2005, Germany imposed a ban on traditional garbage dumps, replacing them with one of the most advanced waste-management systems in the world. In the 1970s, Germany

  20. Development of a Wireless Sensor Network for Monitoring a Bioreactor Landfill Asis Nasipuri,1

    E-Print Network [OSTI]

    Nasipuri, Asis

    1 Development of a Wireless Sensor Network for Monitoring a Bioreactor Landfill Asis Nasipuri,1 (704) 687 6953; email: vogunro@uncc.edu Abstract Recent studies of aerobic bioreactors have of the temperature and moisture in the bioreactor. This work presents the development and implementation

  1. FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL

    SciTech Connect (OSTI)

    Ramin Yazdani; Jeff Kieffer; Heather Akau

    2002-04-01T23:59:59.000Z

    The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches while providing superior environmental protection. The overall objective is to manage landfill solid waste for rapid waste decomposition, maximum landfill gas generation and capture, and minimum long-term environmental consequences. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Construction is complete on the 3.5 acre anaerobic cell and liquid addition has commenced. Construction of the 2.5 acre aerobic cell is nearly complete with only the blower station and biofilter remaining. Waste placement and instrumentation installation is ongoing in the west-side 6-acre anaerobic cell. The current project status and preliminary monitoring results are summarized in this report.

  2. FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL

    SciTech Connect (OSTI)

    Ramin Yazdani; Jeff Kieffer; Heather Akau

    2002-08-01T23:59:59.000Z

    The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Construction is complete on the 3.5-acre anaerobic cell and liquid addition has commenced. Construction of the 2.5 acre aerobic cell is nearly complete with only the blower station and biofilter remaining. Waste placement and instrumentation installation is ongoing in the west-side 6-acre anaerobic cell. The current project status and preliminary monitoring results are summarized in this report.

  3. Impact of different plants on the gas profile of a landfill cover

    SciTech Connect (OSTI)

    Reichenauer, Thomas G., E-mail: thomas.reichenauer@ait.ac.at [Health and Environment Department, Environmental Resources and Technologies, AIT - Austrian Institute of Technology GmbH, 2444 Seibersdorf (Austria); Watzinger, Andrea; Riesing, Johann [Health and Environment Department, Environmental Resources and Technologies, AIT - Austrian Institute of Technology GmbH, 2444 Seibersdorf (Austria); Gerzabek, Martin H. [Institute of Soil Research, Department of Forest and Soil Sciences, University of Natural Resources and Applied Life Sciences, Peter Jordan-Strasse 82, 1190 Vienna (Austria)

    2011-05-15T23:59:59.000Z

    Research highlights: > Plants influence gas profile and methane oxidation in landfill covers. > Plants regulate water content and increase the availability of oxygen for methane oxidation. > Plant species with deep roots like alfalfa showed more stimulation of methane oxidation than plants with shallow root systems like grasses. - Abstract: Methane is an important greenhouse gas emitted from landfill sites and old waste dumps. Biological methane oxidation in landfill covers can help to reduce methane emissions. To determine the influence of different plant covers on this oxidation in a compost layer, we conducted a lysimeter study. We compared the effect of four different plant covers (grass, alfalfa + grass, miscanthus and black poplar) and of bare soil on the concentration of methane, carbon dioxide and oxygen in lysimeters filled with compost. Plants were essential for a sustainable reduction in methane concentrations, whereas in bare soil, methane oxidation declined already after 6 weeks. Enhanced microbial activity - expected in lysimeters with plants that were exposed to landfill gas - was supported by the increased temperature of the gas in the substrate and the higher methane oxidation potential. At the end of the first experimental year and from mid-April of the second experimental year, the methane concentration was most strongly reduced in the lysimeters containing alfalfa + grass, followed by poplar, miscanthus and grass. The observed differences probably reflect the different root morphology of the investigated plants, which influences oxygen transport to deeper compost layers and regulates the water content.

  4. FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL

    SciTech Connect (OSTI)

    Ramin Yazdani; Jeff Kieffer; Heather Akau

    2003-05-01T23:59:59.000Z

    The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Construction is complete on the 3.5-acre anaerobic cell and liquid addition has commenced. Construction of the 2.5-acre aerobic cell is nearly complete with only the biofilter remaining and construction of the west-side 6-acre anaerobic cell is nearly complete with only the liquid addition system remaining. The current project status and preliminary monitoring results are summarized in this report.

  5. FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL

    SciTech Connect (OSTI)

    Ramin Yazdani; Jeff Kieffer; Heather Akau

    2003-12-01T23:59:59.000Z

    The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Liquid addition has commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell and biofilter has been completed. The remaining task to be completed is to test the biofilter prior to operation, which is currently anticipated to begin in January 2004. The current project status and preliminary monitoring results are summarized in this report.

  6. FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL

    SciTech Connect (OSTI)

    Ramin Yazdani; Jeff Kieffer; Heather Akau

    2003-08-01T23:59:59.000Z

    The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Liquid addition has commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell is nearly complete with only the biofilter remaining and is scheduled to be complete by the end of August 2003. The current project status and preliminary monitoring results are summarized in this report.

  7. Analysis of Vegetative on Six Different Landfill Cover Profiles in an Arid Environment.

    SciTech Connect (OSTI)

    Dwyer, Stephen F.; McClellan, Yvonne; Reavis, Bruce A.; Dwyer, Brian P.; Newman, Gretchen; Wolters, Gale

    2005-05-01T23:59:59.000Z

    A large-scale field demonstration comparing final landfill cover designs was constructed and monitored at Sandia National Laboratories in Albuquerque, New Mexico. Two conventional designs (a RCRA Subtitle 'D' Soil Cover and a RCRA Subtitle 'C' Compacted Clay Cover) were constructed side-by-side with four alternative cover test plots designed for arid environments. The demonstration was intended to evaluate the various cover designs based on their respective water balance performance, ease and reliability of construction, and cost. A portion of this project involves the characterization of vegetation establishment and growth on the landfill covers. The various prototype landfill covers were expected to have varying flux rates (Dwyer et al 2000). The landfill covers were further expected to influence vegetation establishment and growth, which may impact site erosion potential and long-term site integrity. Objectives of this phase were to quantify the types of plants occupying each site, the percentage of ground covered by these plants, the density (number of plants per unit area) of plants, and the plant biomass production. The results of this vegetation analysis are presented in this report.3 DRAFT07/06/14AcknowledgementsWe would like to thank all technical and support staff from Sandia and the USDA Forest Service's Rocky Mountain Station not included in the authors' list of this document for their valuable contributions to this research. We would also like to acknowledge the Department of Energy's Subsurface Contaminants Focus Area for funding this work.4

  8. REACTION AND COMBUSTION INDICATORS IN MSW LANDFILLS Jeffrey W. Martin1

    E-Print Network [OSTI]

    , Ohio. ABSTRACT Municipal Solid Waste (MSW) landfills may contain aluminum from residential and commercial solid waste, industrial waste, and aluminum production wastes. Some aluminum-bearing waste municipal solid waste, industrial wastes, and aluminum production waste such as dross, salt cake, baghouse

  9. Results of the radiological survey at the Town of Tonawanda Landfill, Tonawanda, New York (TNY001)

    SciTech Connect (OSTI)

    Rodriguez, R.E.; Murray, M.E.; Uziel, M.S.

    1992-10-01T23:59:59.000Z

    At the request of the US Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted a radiological survey at the Town of Tonawanda Landfill, Tonawanda, New York. The survey was performed in September 1991. The purpose of the survey was to determine if radioactive materials from work performed under government contract at the Linde Air Products Division of Union Carbide Corporation, Tonawanda, New York, had been deposited in the landfill. The survey included a surface gamma scan and the collection of soil samples for radionuclide analyses. Results of the survey suggest that material originating at the Linde plant may have been deposited in the landfill. Soil samples S54 and B12 contained technologically enhanced levels of {sup 238}U not unlike the product formerly produced by the Linde plant. In contrast, samples B4A, B5A and B7B, containing elevated concentrations of {sup 226}Ra and {sup 230}Th with much lower concentrations of {sup 238}U, were similar to the residue or byproduct of the refinery operation conducted at the Linde plant. In 24 instances, soil samples from the Town of Tonawanda Landfill exceeded DOE guideline values for {sup 238}U, {sup 226}Ra, and/or {sup 230}Th in surface or subsurface soil. Nine of these samples contained radionuclide concentrations more than 30 times the guideline value.

  10. Results of the radiological survey at the Town of Tonawanda Landfill, Tonawanda, New York (TNY001)

    SciTech Connect (OSTI)

    Rodriguez, R.E.; Murray, M.E.; Uziel, M.S.

    1992-10-01T23:59:59.000Z

    At the request of the US Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted a radiological survey at the Town of Tonawanda Landfill, Tonawanda, New York. The survey was performed in September 1991. The purpose of the survey was to determine if radioactive materials from work performed under government contract at the Linde Air Products Division of Union Carbide Corporation, Tonawanda, New York, had been deposited in the landfill. The survey included a surface gamma scan and the collection of soil samples for radionuclide analyses. Results of the survey suggest that material originating at the Linde plant may have been deposited in the landfill. Soil samples S54 and B12 contained technologically enhanced levels of [sup 238]U not unlike the product formerly produced by the Linde plant. In contrast, samples B4A, B5A and B7B, containing elevated concentrations of [sup 226]Ra and [sup 230]Th with much lower concentrations of [sup 238]U, were similar to the residue or byproduct of the refinery operation conducted at the Linde plant. In 24 instances, soil samples from the Town of Tonawanda Landfill exceeded DOE guideline values for [sup 238]U, [sup 226]Ra, and/or [sup 230]Th in surface or subsurface soil. Nine of these samples contained radionuclide concentrations more than 30 times the guideline value.

  11. Full Scale Bioreactor Landfill for Carbon Sequestration and Greenhouse Emission Control

    SciTech Connect (OSTI)

    Ramin Yazdani; Jeff Kieffer; Kathy Sananikone; Don Augenstein

    2005-03-30T23:59:59.000Z

    The Yolo County Department of Planning and Public Works constructed a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective was to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entailed the construction of a 12-acre module that contained a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells were highly instrumented to monitor bioreactor performance. Liquid addition commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell and biofilter has been completed. The current project status and preliminary monitoring results are summarized in this report.

  12. LIQUID NATURAL GAS (LNG): AN ALTERNATIVE FUEL FROM LANDFILL GAS (LFG) AND WASTEWATER DIGESTER GAS

    SciTech Connect (OSTI)

    VANDOR,D.

    1999-03-01T23:59:59.000Z

    This Research and Development Subcontract sought to find economic, technical and policy links between methane recovery at landfill and wastewater treatment sites in New York and Maryland, and ways to use that methane as an alternative fuel--compressed natural gas (CNG) or liquid natural gas (LNG) -- in centrally fueled Alternative Fueled Vehicles (AFVs).

  13. Sanitary Landfill Groundwater Monitoring Report - Fourth Quarter 1998 and 1998 Summary

    SciTech Connect (OSTI)

    Chase, J.

    1999-04-09T23:59:59.000Z

    A maximum of fifty-three wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Water permit and as part of the SRS Groundwater Monitoring Program.

  14. Comparison of four composite landfill liner systems considering leakage rate and mass flux

    E-Print Network [OSTI]

    systems, i.e., Subtitle D com- posite liner system, composite liner system with a geosynthetic clay liner (with a 61 cm (2 feet) or 91.5 cm (3 feet) thick compacted clay liner), were evaluated in termsComparison of four composite landfill liner systems considering leakage rate and mass flux T

  15. SERVICE LIFE OF A LANDFILL LINER SYSTEM SUBJECTED TO ELEVATED TEMPERATURES

    E-Print Network [OSTI]

    hydraulic conductivity compacted soil liners and geosynthetic clay liners. This paper uses10 a case history, low hydraulic conductivity compacted25 soil liner (LHCSL), geotextiles, and geosynthetic clay linerSERVICE LIFE OF A LANDFILL LINER SYSTEM SUBJECTED TO ELEVATED TEMPERATURES Timothy D. Stark, Ph

  16. Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils

    SciTech Connect (OSTI)

    Jeremy Semrau; Sung-Woo Lee; Jeongdae Im; Sukhwan Yoon; Michael Barcelona

    2010-09-30T23:59:59.000Z

    The overall objective of this project, 'Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils' was to develop effective, efficient, and economic methodologies by which microbial production of nitrous oxide can be minimized while also maximizing microbial consumption of methane in landfill cover soils. A combination of laboratory and field site experiments found that the addition of nitrogen and phenylacetylene stimulated in situ methane oxidation while minimizing nitrous oxide production. Molecular analyses also indicated that methane-oxidizing bacteria may play a significant role in not only removing methane, but in nitrous oxide production as well, although the contribution of ammonia-oxidizing archaea to nitrous oxide production can not be excluded at this time. Future efforts to control both methane and nitrous oxide emissions from landfills as well as from other environments (e.g., agricultural soils) should consider these issues. Finally, a methanotrophic biofiltration system was designed and modeled for the promotion of methanotrophic activity in local methane 'hotspots' such as landfills. Model results as well as economic analyses of these biofilters indicate that the use of methanotrophic biofilters for controlling methane emissions is technically feasible, and provided either the costs of biofilter construction and operation are reduced or the value of CO{sub 2} credits is increased, can also be economically attractive.

  17. Optimisation of sanitary landfill leachate treatment in a sequencing batch reactor

    E-Print Network [OSTI]

    Optimisation of sanitary landfill leachate treatment in a sequencing batch reactor A. Spagni, S al. 1988; Kjeldsen et al. 2002). Among several technologies, sequen- cing batch reactors (SBRs) haveH and oxidation-reduction potential (ORP) have been frequently used for monitoring and control of batch reactors

  18. Assessment of the methane oxidation capacity of compacted soils intended for use as landfill cover materials

    SciTech Connect (OSTI)

    Rachor, Ingke, E-mail: i.rachor@ifb.uni-hamburg.de [University of Hamburg, Institute of Soil Science, Allende-Platz 2, 20146 Hamburg (Germany); Gebert, Julia; Groengroeft, Alexander; Pfeiffer, Eva-Maria [University of Hamburg, Institute of Soil Science, Allende-Platz 2, 20146 Hamburg (Germany)

    2011-05-15T23:59:59.000Z

    The microbial oxidation of methane in engineered cover soils is considered a potent option for the mitigation of emissions from old landfills or sites containing wastes of low methane generation rates. A laboratory column study was conducted in order to derive design criteria that enable construction of an effective methane oxidising cover from the range of soils that are available to the landfill operator. Therefore, the methane oxidation capacity of different soils was assessed under simulated landfill conditions. Five sandy potential landfill top cover materials with varying contents of silt and clay were investigated with respect to methane oxidation and corresponding soil gas composition over a period of four months. The soils were compacted to 95% of their specific proctor density, resulting in bulk densities of 1.4-1.7 g cm{sup -3}, reflecting considerably unfavourable conditions for methane oxidation due to reduced air-filled porosity. The soil water content was adjusted to field capacity, resulting in water contents ranging from 16.2 to 48.5 vol.%. The investigated inlet fluxes ranged from 25 to about 100 g CH{sub 4} m{sup -2} d{sup -1}, covering the methane load proposed to allow for complete oxidation in landfill covers under Western European climate conditions and hence being suggested as a criterion for release from aftercare. The vertical distribution of gas concentrations, methane flux balances as well as stable carbon isotope studies allowed for clear process identifications. Higher inlet fluxes led to a reduction of the aerated zone, an increase in the absolute methane oxidation rate and a decline of the relative proportion of oxidized methane. For each material, a specific maximum oxidation rate was determined, which varied between 20 and 95 g CH{sub 4} m{sup -2} d{sup -1} and which was positively correlated to the air-filled porosity of the soil. Methane oxidation efficiencies and gas profile data imply a strong link between oxidation capacity and diffusive ingress of atmospheric air. For one material with elevated levels of fine particles and high organic matter content, methane production impeded the quantification of methane oxidation potentials. Regarding the design of landfill cover layers it was concluded that the magnitude of the expected methane load, the texture and expected compaction of the cover material are key variables that need to be known. Based on these, a column study can serve as an appropriate testing system to determine the methane oxidation capacity of a soil intended as landfill cover material.

  19. Mitigation of methane emission from Fakse landfill using a biowindow system

    SciTech Connect (OSTI)

    Scheutz, Charlotte, E-mail: chs@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, Miljovej - Building 113, 2800 Kongens Lyngby (Denmark); Fredenslund, Anders M., E-mail: amf@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, Miljovej - Building 113, 2800 Kongens Lyngby (Denmark); Chanton, Jeffrey, E-mail: jchanton@fsu.edu [Department of Earth, Ocean and Atmospheric Science, 117 N. Woodward Avenue, Florida State University, Tallahassee, Fl 32306-4320 (United States); Pedersen, Gitte Bukh, E-mail: gbp@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, Miljovej - Building 113, 2800 Kongens Lyngby (Denmark); Kjeldsen, Peter, E-mail: pk@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, Miljovej - Building 113, 2800 Kongens Lyngby (Denmark)

    2011-05-15T23:59:59.000Z

    Landfills are significant sources of atmospheric methane (CH{sub 4}) that contributes to climate change, and therefore there is a need to reduce CH{sub 4} emissions from landfills. A promising cost efficient technology is to integrate compost into landfill covers (so-called 'biocovers') to enhance biological oxidation of CH{sub 4}. A full scale biocover system to reduce CH{sub 4} emissions was installed at Fakse landfill, Denmark using composted yard waste as active material supporting CH{sub 4} oxidation. Ten biowindows with a total area of 5000 m{sup 2} were integrated into the existing cover at the 12 ha site. To increase CH{sub 4} load to the biowindows, leachate wells were capped, and clay was added to slopes at the site. Point measurements using flux chambers suggested in most cases that almost all CH{sub 4} was oxidized, but more detailed studies on emissions from the site after installation of the biocover as well as measurements of total CH{sub 4} emissions showed that a significant portion of the emission quantified in the baseline study continued unabated from the site. Total emission measurements suggested a reduction in CH{sub 4} emission of approximately 28% at the end of the one year monitoring period. This was supported by analysis of stable carbon isotopes which showed an increase in oxidation efficiency from 16% to 41%. The project documented that integrating approaches such a whole landfill emission measurements using tracer techniques or stable carbon isotope measurements of ambient air samples are needed to document CH{sub 4} mitigation efficiencies of biocover systems. The study also revealed that there still exist several challenges to better optimize the functionality. The most important challenges are to control gas flow and evenly distribute the gas into the biocovers.

  20. Isolated and soft-switched power converter

    DOE Patents [OSTI]

    Peng, Fang Zheng (Knoxville, TN); Adams, Donald Joe (Knoxville, TN)

    2002-01-01T23:59:59.000Z

    An isolated and soft-switched power converter is used for DC/DC and DC/DC/AC power conversion. The power converter includes two resonant tank circuits coupled back-to-back through an isolation transformer. Each resonant tank circuit includes a pair of resonant capacitors connected in series as a resonant leg, a pair of tank capacitors connected in series as a tank leg, and a pair of switching devices with anti-parallel clamping diodes coupled in series as resonant switches and clamping devices for the resonant leg. The power converter is well suited for DC/DC and DC/DC/AC power conversion applications in which high-voltage isolation, DC to DC voltage boost, bidirectional power flow, and a minimal number of conventional switching components are important design objectives. For example, the power converter is especially well suited to electric vehicle applications and load-side electric generation and storage systems, and other applications in which these objectives are important. The power converter may be used for many different applications, including electric vehicles, hybrid combustion/electric vehicles, fuel-cell powered vehicles with low-voltage starting, remote power sources utilizing low-voltage DC power sources, such as photovoltaics and others, electric power backup systems, and load-side electric storage and generation systems.

  1. Cap and trade schemes on waste management: A case study of the Landfill Allowance Trading Scheme (LATS) in England

    SciTech Connect (OSTI)

    Calaf-Forn, Maria, E-mail: mcalaf@ent.cat [Institut de Ciència i Tecnologia Ambientals (ICTA), Universitat Autònoma de Barcelona (UAB), E-08193 Bellaterra, Barcelona (Spain); ENT Environment and Management, Carrer Sant Joan 39, First Floor, E-08800 Vilanova i la Geltrú, Barcelona (Spain); Roca, Jordi [Departament de Teoria Econòmica, Universitat de Barcelona (UB), Diagonal, 696, E-08034 Barcelona (Spain); Puig-Ventosa, Ignasi [ENT Environment and Management, Carrer Sant Joan 39, First Floor, E-08800 Vilanova i la Geltrú, Barcelona (Spain)

    2014-05-01T23:59:59.000Z

    Highlights: • LATS has been effective to achieve a reduction of the amount of landfilled waste. • LATS has been one of the few environmental instruments for waste management with a cap and trade methodology. • LATS has achieved to increase recycling of the biodegradable and other waste fractions. - Abstract: The Landfill Allowance Trading Scheme (LATS) is one of the main instruments used in England to enforce the landfill diversion targets established in the Directive 1999/31/EC of the European Parliament and of the Council of 26 April 1999 on the landfill of waste (Landfill Directive). Through the LATS, biodegradable municipal waste (BMW) allowances for landfilling are allocated to each local authority, otherwise known as waste disposal authorities (WDAs). The quantity of landfill allowances received is expected to decrease continuously from 2005/06 to 2019/20 so as to meet the objectives of the Landfill Directive. To achieve their commitments, WDAs can exchange, buy, sell or transfer allowances among each other, or may re-profile their own allocation through banking and/or borrowing. Despite the goals for the first seven years – which included two target years (2005/06 and 2009/10) – being widely achieved (the average allocation of allowances per WDA was 22.9% higher than those finally used), market activity among WDAs was high and prices were not very stable. Results in terms of waste reduction and recycling levels have been satisfactory. The reduction of BMW landfilled (in percentage) was higher during the first seven years of the LATS period (2005/06–2011/12) (around 7% annually) than during the previous period (2001/02–2004/05) (4.2% annually). Since 2008, the significance of the LATS diminished because of an increase in the rate of the UK Landfill Tax. The LATS was suppressed after the 2012/13 target year, before what it was initially scheduled. The purpose of this paper is to describe the particularities of the LATS, analyse its performance as a waste management policy, make a comparison with the Landfill Tax, discuss its main features as regards efficiency, effectiveness and the application of the “polluter pays” principle and finally discuss if the effect of the increase in the Landfill Tax is what made the LATS ultimately unnecessary.

  2. External ionization mechanisms for advanced thermionic converters

    SciTech Connect (OSTI)

    Hatziprokopiou, M.E.

    1981-01-01T23:59:59.000Z

    This work investigates ion generation and recombination mechanisms in the cesium plasma as they pertain to the advanced mode thermionic energy converter. The changes in plasma density and temperature within the converter have been studied under the influence of several promising auxiliary ionization candidate sources. Three novel approaches of external cesium ion generation have been investigated in some detail, namely vibrationally excited N/sub 2/ as are energy source of ionization of Cs ions in a dc discharge, microwave power as a means of resonant sustenance of the cesium plasma, and ion generation in a pulse N/sub 2/-Cs mixture. The experimental data obtained and discussed in this work show that all three techniques - i.e. the non-LTE high-voltage pulsing, the energy transfer from vibrationally excited diatomic gases, and the external pumping with a microwave power - have considerable promise as schemes in auxiliary ion generation applicable to the advanced thermionic energy converter.

  3. Characteristics of two thermionic converters with oxide collectors

    SciTech Connect (OSTI)

    Smith, E.A.; Huffman, F.N.

    1984-08-01T23:59:59.000Z

    Thermionic converters built with selected metal oxide coatings on their collectors have given enhanced performance at interelectrode spacings greater than 0.25 mm. The capability of such converters to operate efficiently at large interelectrode spacings is of interest for in-core thermionic power systems. Performance data are reported from one converter built with a collector having a coating of molybdenum sublimed in oxygen and a second converter containing an oxidized zirconium collector. The molybdenum oxide collector converter demonstrated enhanced performance.

  4. Effects of adding wash tower effluent to Ano Liossia landfill to enhance bioreaction c by Olympia Galenianou.

    E-Print Network [OSTI]

    Galenianou, Olympia

    2006-01-01T23:59:59.000Z

    A theoretical study was performed on the effects of adding sulfate-rich wash tower effluent from the Athens hospital waste incinerator to the Ano Liossia landfill of Athens. The method of mass balance was used to examine ...

  5. EA-0767: Construction and Experiment of an Industrial Solid Waste Landfill at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to construct and operate a solid waste landfill within the boundary at the U.S. Department of Energy's Portsmouth Gaseous Diffusion plant...

  6. Annual Performance Assessment and Composite Analysis Review for the ICDF Landfill FY 2008

    SciTech Connect (OSTI)

    Karen Koslow

    2009-08-31T23:59:59.000Z

    This report addresses low-level waste disposal operations at the Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility (ICDF) landfill from the start of operations in Fiscal Year 2003 through Fiscal Year 2008. The ICDF was authorized in the Operable Unit 3-13 Record of Decision for disposal of waste from the Idaho National Laboratory Site CERCLA environmental restoration activities. The ICDF has been operating since 2003 in compliance with the CERCLA requirements and the waste acceptance criteria developed in the CERCLA process. In developing the Operable Unit 3-13 Record of Decision, U.S. Department of Energy Order (DOE) 435.1, 'Radioactive Waste Management', was identified as a 'to be considered' requirement for the ICDF. The annual review requirement under DOE Order 435.1 was determined to be an administrative requirement and, therefore, annual reviews were not prepared on an annual basis. However, the landfill has been operating for 5 years and, since the waste forms and inventories disposed of have changed from what was originally envisioned for the ICDF landfill, the ICDF project team has decided that this annual review is necessary to document the changes and provide a basis for any updates in analyses that may be necessary to continue to meet the substantive requirements of DOE Order 435.1. For facilities regulated under DOE Order 435.1-1, U.S. DOE Manual 435.1-1, 'Radioactive Waste Management', IV.P.(4)(c) stipulates that annual summaries of low-level waste disposal operations shall be prepared with respect to the conclusions and recommendations of the performance assessment and composite analysis. Important factors considered in this review include facility operations, waste receipts, and results from monitoring and research and development programs. There have been no significant changes in operations at the landfill in respect to the disposal geometry, the verification of waste characteristics, and the tracking of inventories against total limits that would affect the results and conclusions of the performance assessment. Waste receipts to date and projected waste receipts through Fiscal Year 2012 are both greater than the inventory assessed in the performance assessment and composite analysis. The waste forms disposed of to the landfill are different from the waste form (compacted soil) assessed in the performance assessment. The leak detection system and groundwater monitoring results indicate the landfill has not leaked. The results of the performance assessment/composite analysis are valid (i.e., there is still a reasonable expectation of meeting performance objectives) but the new information indicates less conservatism in the results than previously believed.

  7. Switched-Mode Power Converter Programmable

    E-Print Network [OSTI]

    -line identification of converter dynamic responses [2, 5, 6], tuning of controller parameters based on identification dynamics followed by an automated algorithm to derive a controller design to meet a desired closed performance controller, an accurate parametric model is necessary. Particularly, a Z-domain transfer function

  8. Hybrid switch for resonant power converters

    DOE Patents [OSTI]

    Lai, Jih-Sheng; Yu, Wensong

    2014-09-09T23:59:59.000Z

    A hybrid switch comprising two semiconductor switches connected in parallel but having different voltage drop characteristics as a function of current facilitates attainment of zero voltage switching and reduces conduction losses to complement reduction of switching losses achieved through zero voltage switching in power converters such as high-current inverters.

  9. Converting Centrifugal Chillers to HCFC-123 

    E-Print Network [OSTI]

    Siebert, B.

    1994-01-01T23:59:59.000Z

    of large water chillers in addressing the CFC issue. These owners, for a variety of reasons, chose to address the issue through the conversion of the existing equipment to an HCFC refrigerant. For each of the three owners, the option of converting...

  10. Combustion converter development for topping and cogeneration applications

    SciTech Connect (OSTI)

    Goodale, D.; Lieb, D.; Miskolczy, G.; Moffat, A.

    1983-08-01T23:59:59.000Z

    This paper discusses the development of combustion-heated thermionic converters. Combustion applications pose a materials problem that does not exist for thermionic converters used in the vacuum of outer space. The high-temperature components of a thermionic converter must be protected from the oxidizing terrestrial environment. A layer of silicon carbide provides the most satisfactory protective coating, or ''hot shell,'' for the emitter and lead of a combustion-heated thermionic converter. Four areas of work aimed at developing combustion heated thermionic converters will be discussed: improving the performance of the two-inch torispherical converter, modifications to the converter so that it may be used in multi-converter modules, the construction of a thermionic cogeneration test furnace, and a converter life test in an oil-fired furnace.

  11. Converting Limbo Lands to Energy-Generating Stations: Renewable Energy Technologies on Underused, Formerly Contaminated Sites

    SciTech Connect (OSTI)

    Mosey, G.; Heimiller, D.; Dahle, D.; Vimmerstedt, L.; Brady-Sabeff, L.

    2007-10-01T23:59:59.000Z

    This report addresses the potential for using 'Limbo Lands' (underused, formerly contaminated sites, landfills, brownfields, abandoned mine lands, etc. ) as sites for renewable energy generating stations.

  12. Title I conceptual design for Pit 6 landfill closure at Lawrence Livermore National Laboratory Site 300

    SciTech Connect (OSTI)

    MacDonnell, B.A.; Obenauf, K.S. [Golder Associates, Inc., Alameda, CA (United States)

    1996-08-01T23:59:59.000Z

    The objective of this design project is to evaluate and prepare design and construction documents for a closure cover cap for the Pit 6 Landfill located at Lawrence Livermore National Laboratory Site 300. This submittal constitutes the Title I Design (Conceptual Design) for the closure cover of the Pit 6 Landfill. A Title I Design is generally 30 percent of the design effort. Title H Design takes the design to 100 percent complete. Comments and edits to this Title I Design will be addressed in the Title II design submittal. Contents of this report are as follows: project background; design issues and engineering approach; design drawings; calculation packages; construction specifications outline; and construction quality assurance plan outline.

  13. Stochastic modelling of landfill processes incorporating waste heterogeneity and data uncertainty

    SciTech Connect (OSTI)

    Zacharof, A.I.; Butler, A.P

    2004-07-01T23:59:59.000Z

    A landfill is a very complex heterogeneous environment and as such it presents many modelling challenges. Attempts to develop models that reproduce these complexities generally involve the use of large numbers of spatially dependent parameters that cannot be properly characterised in the face of data uncertainty. An alternative method is presented, which couples a simplified microbial degradation model with a stochastic hydrological and contaminant transport model. This provides a framework for incorporating the complex effects of spatial heterogeneity within the landfill in a simplified manner, along with other key variables. A methodology for handling data uncertainty is also integrated into the model structure. Illustrative examples of the model's output are presented to demonstrate effects of data uncertainty on leachate composition and gas volume prediction.

  14. Sanitary landfill groundwater monitoring report. Fourth quarter 1994 and 1994 summary

    SciTech Connect (OSTI)

    NONE

    1995-02-01T23:59:59.000Z

    Eighty-nine wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Waste Permit DWP-087A and as part of the SRS Groundwater Monitoring Program. Dichloromethane, a common laboratory contaminant, and trichloroethylene were the most widespread constituents exceeding standards during 1994. Benzene, chloroethene (vinyl chloride), 1,2-dichloroethane, 1,1-dichloroethylene, 1,2-dichloropropane, gross alpha, mercury, nonvolatile beta, tetrachloroethylene, and tritium also exceeded standards in one or more wells. The groundwater flow direction in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill was to the southeast (universal transverse Mercator coordinates). The flow rate in this unit was approximately 140 ft/year during first and fourth quarters 1994.

  15. Sanitary Landfill Groundwater Monitoring Report. Fourth Quarter 1997 and 1997 Summary

    SciTech Connect (OSTI)

    Chase, J. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1998-02-01T23:59:59.000Z

    A maximum of forty-eight wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Water Permit DWP-087A and as part of the SRS Groundwater Monitoring Program. Chloroethene (vinyl chloride) and trichloroethylene were the most widespread constituents exceeding standards during 1997. Lead (total recoverable), 1,4-dichlorobenzene, mercury, benzene, dichloromethane (methylene chloride), a common laboratory contaminant, tetrachloroethylene, 1,2-dichloroethane, gross alpha, tritium, and 1.2-dichloropropane also exceeded standards in one or more wells. The groundwater flow direction in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill was to the southeast (universal transverse Mercator coordinates). The flow rate in this unit was approximately 139 ft/year during first quarter 1997 and 132 ft/year during fourth quarter.

  16. Field performance of a geosynthetic clay liner landfill capping system under simulated waste subsidence

    SciTech Connect (OSTI)

    Weiss, W. [Hochschule fur Architektur und Bauwesen (Germany); Siegmund, M. [Materialforschungs - und, Prufanstalt (Germany); Alexiew, D.

    1995-10-01T23:59:59.000Z

    A flexible landfill capping system consisting of a 3-D-geocore composite for gas vent, a Geosynthetic Clay Liner (GCL) for sealing and a 3-D-geocore composite for drainage of the vegetation soil was built on a test field at Michelshoehe landfill near Weimar, Germany. At four locations airbags were installed underneath the thin capping system to simulate subsidences. On top of three of these airbags overlaps of the GCL were positioned, for comparison there was no overlap at the fourth location. After hydratation of the GCL the airbags were de-aerated and subsidences occurred with app. 5 % tensile strain in the GCL. For three weeks the test field was intensively sprinkled in intervals. Then horizontal and vertical deformations were measured, but not displacements were registered in the overlaps. The evaluation of the GCL`s permeability showed no significant difference between the locations with and without overlaps.

  17. A square root analog to digital converter to optimally convert photonic signals for computed tomography

    E-Print Network [OSTI]

    Bieniosek, Matthew (Matthew F.)

    2010-01-01T23:59:59.000Z

    The arrival of photons at a given location is a Poisson process with an associated shot noise which rises with the square root of the number of photons received. An analog-to-digital converter (ADC) with a square root ...

  18. Quantifying methane oxidation in a landfill-cover soil by gas push-pull tests

    SciTech Connect (OSTI)

    Gomez, K.E. [Institute of Biogeochemistry and Pollutant Dynamics, ETH Zuerich, Universitaetstrasse 16, 8092 Zuerich (Switzerland)], E-mail: gomezke@hotmail.com; Gonzalez-Gil, G.; Lazzaro, A. [Institute of Biogeochemistry and Pollutant Dynamics, ETH Zuerich, Universitaetstrasse 16, 8092 Zuerich (Switzerland); Schroth, M.H. [Institute of Biogeochemistry and Pollutant Dynamics, ETH Zuerich, Universitaetstrasse 16, 8092 Zuerich (Switzerland)], E-mail: martin.schroth@env.ethz.ch

    2009-09-15T23:59:59.000Z

    Methane (CH{sub 4}) oxidation by aerobic methanotrophs in landfill-cover soils decreases emissions of landfill-produced CH{sub 4} to the atmosphere. To quantify in situ rates of CH{sub 4} oxidation we performed five gas push-pull tests (GPPTs) at each of two locations in the cover soil of the Lindenstock landfill (Liestal, Switzerland) over a 4 week period. GPPTs consist of the injection of a gas mixture containing CH{sub 4}, O{sub 2} and noble gas tracers followed by extraction from the same location. Quantification of first-order rate constants was based upon comparison of breakthrough curves of CH{sub 4} with either Ar or CH{sub 4} itself from a subsequent inactive GPPT containing acetylene as an inhibitor of CH{sub 4} oxidation. The maximum calculated first-order rate constant was 24.8 {+-} 0.8 h{sup -1} at location 1 and 18.9 {+-} 0.6 h{sup -1} at location 2. In general, location 2 had higher background CH{sub 4} concentrations in vertical profile samples than location 1. High background CH{sub 4} concentrations in the cover soil during some experiments adversely affected GPPT breakthrough curves and data interpretation. Real-time PCR verified the presence of a large population of methanotrophs at the two GPPT locations and comparison of stable carbon isotope fractionation of CH{sub 4} in an active GPPT and a subsequent inactive GPPT confirmed that microbial activity was responsible for the CH{sub 4} oxidation. The GPPT was shown to be a useful tool to reproducibly estimate in situ rates of CH{sub 4} oxidation in a landfill-cover soil when background CH{sub 4} concentrations were low.

  19. Superfund record of decision (EPA Region 5): Southside Sanitary Landfill, Indianapolis, IN, September 28, 1995

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    This decision document presents the selected remedial action for the Southside Sanitary Landfill (SSL) site, in Indianapolis, Indiana. The results of the Remedial Investigation showed the previous measures were adequate to protect human health and the environment and no unacceptable risk remains at the site. Therefore, the selected remedy for this site is a no further action. The operators of SSL have undertaken specific remedial measures in an attempt to decrease any threat of release of contaminants from the site.

  20. Organic and nitrogen removal from landfill leachate in aerobic granular sludge sequencing batch reactors

    SciTech Connect (OSTI)

    Wei Yanjie [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China); Key Laboratory of Environmental Protection in Water Transport Engineering Ministry of Communications, Tianjin Research Institute of Water Transport Engineering, Tianjin 300456 (China); Ji Min, E-mail: jmtju@yahoo.cn [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China); Li Ruying [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China); Qin Feifei [Tianjin Tanggu Sino French Water Supply Co. Ltd., Tianjin 300450 (China)

    2012-03-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Aerobic granular sludge SBR was used to treat real landfill leachate. Black-Right-Pointing-Pointer COD removal was analyzed kinetically using a modified model. Black-Right-Pointing-Pointer Characteristics of nitrogen removal at different ammonium inputs were explored. Black-Right-Pointing-Pointer DO variations were consistent with the GSBR performances at low ammonium inputs. - Abstract: Granule sequencing batch reactors (GSBR) were established for landfill leachate treatment, and the COD removal was analyzed kinetically using a modified model. Results showed that COD removal rate decreased as influent ammonium concentration increasing. Characteristics of nitrogen removal at different influent ammonium levels were also studied. When the ammonium concentration in the landfill leachate was 366 mg L{sup -1}, the dominant nitrogen removal process in the GSBR was simultaneous nitrification and denitrification (SND). Under the ammonium concentration of 788 mg L{sup -1}, nitrite accumulation occurred and the accumulated nitrite was reduced to nitrogen gas by the shortcut denitrification process. When the influent ammonium increased to a higher level of 1105 mg L{sup -1}, accumulation of nitrite and nitrate lasted in the whole cycle, and the removal efficiencies of total nitrogen and ammonium decreased to only 35.0% and 39.3%, respectively. Results also showed that DO was a useful process controlling parameter for the organics and nitrogen removal at low ammonium input.

  1. Sanitary Landfill Groundwater Monitoring Report - Third and Fourth Quarters 2000 and 2000 Summary

    SciTech Connect (OSTI)

    Chase, J.A.

    2001-03-07T23:59:59.000Z

    A maximum of forty wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill Area at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Waste Permit DWP-087A and as part of the Sanitary Landfill Groundwater Quality Assessment Plan. Chloroethene (vinyl chloride) and trichloroethylene were the most widespread constituent exceeding the Final Primary Drinking Water Standards during the calendar year 2000. 1,4-Dichlorobenzene, benzene, dichloromethane (methylene chloride), gross alpha, lead (total recoverable) mercury (total recoverable), thallium (total recoverable), and tritium also exceeded standards in one or more wells. The groundwater flow direction in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill is to the southeast (universal transverse Mercator coordinates). The flow rate at this unit was approximately 122.64 ft/year during first quarter 2000 and 132.28 ft/year during fourth quarter 2000.

  2. Determination of operating limits for radionuclides for a proposed landfill at Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Wang, J.C.; Lee, D.W.; Ketelle, R.H.; Lee, R.R.; Kocher, D.C. [Oak Ridge National Lab., TN (United States)

    1994-12-31T23:59:59.000Z

    The operating limits for radionuclides in sanitary and industrial wastes were determined for a proposed landfill at the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky. These limits, which may be very small but nonzero, are not mandated by law or regulation but are needed for rational operation. The primary advantages of establishing such operating limits include (a) technically defensible screening criteria for landfill-destined solid wastes, (b) significant reductions in the required capacity of radioactive waste storage and disposal facilities, and (c) reductions in costs associated with storage and disposal of radioactive materials. The approach was based on analyses of potential contamination of groundwater at the plant boundary and the potential exposure to radioactivity of an intruder at the landfill after closure. The groundwater analysis includes (a) a source model describing the disposal of waste and the release of radionuclides from waste to groundwater, (b) site-specific groundwater flow and contaminant transport calculations, and (c) calculations of operating limits from the dose objective and conversion factors. The intruder analysis includes pathways through ingestion of contaminated vegetables and soil, external exposure to contaminated soil, and inhalation of suspended activity from contaminated soil particles. In both analyses, a limit on annual effective dose equivalent of 4 mrem (0.04 mSv) was adopted.

  3. Construction quality assurance for Pit 6 landfill closure, Lawrence Livermore National Laboratory, Site 300

    SciTech Connect (OSTI)

    NONE

    1997-10-30T23:59:59.000Z

    Golder Construction Services, Inc. (GCS), under contract to the Regents of the University of California, Lawrence Livermore National Laboratory (LLNL), provided the construction quality assurance (CQA) observation and testing during the construction of the Site 300, Pit 6 landfill closure cover. The cap construction was performed as a CERCLA non-time-critical removal action from June 2 to August 29, 1997. the project site is located 18 miles east of Livermore on Tesla Road and approximately 10 miles southwest of Tracy on Corral Hollow Road in San Joaquin County, California. This report certifies that the LLNL, Site 300, Pit 6, Landfill Closure was constructed in accordance with the construction specifications and design drawings. This report documents construction activities and CQA monitoring and testing for construction of the Pit 6 Landfill Closure. Golder Associates, Inc. of Oakland, California was the design engineering firm responsible for preparation of the drawings and specifications. CQA services were provided by GCS, of Roseville, California, under supervision of a California registered civil Engineer.

  4. An economical single to three phase converter for induction motors

    E-Print Network [OSTI]

    Di Zerega, Philp Van Uytandaele

    1994-01-01T23:59:59.000Z

    There are several different types of single to three phase converters for induction motors available today. However, many of the presently available phase converters suffer from disadvantages such as high cost or low performance. An economical...

  5. DOE Announces Webinars on the Wave Energy Converter Prize, the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Announces Webinars on the Wave Energy Converter Prize, the Best of the Clean Cities Tools and Resources, and More DOE Announces Webinars on the Wave Energy Converter Prize, the...

  6. Automated Synthesis Tool for Design Optimization of Power Electronic Converters 

    E-Print Network [OSTI]

    Mirjafari, Mehran

    2013-01-09T23:59:59.000Z

    module-integrated photovoltaic inverter is also optimized for efficiency, volume and reliability. An actual converter is constructed using commercial off-the-shelf components. The converter design is chosen as close as possible to a point obtained...

  7. An economical single to three phase converter for induction motors 

    E-Print Network [OSTI]

    Di Zerega, Philp Van Uytandaele

    1994-01-01T23:59:59.000Z

    There are several different types of single to three phase converters for induction motors available today. However, many of the presently available phase converters suffer from disadvantages such as high cost or low performance. An economical...

  8. Digital radix converters for high accuracy data conversion 

    E-Print Network [OSTI]

    Ghanta, Venkataratnam Chowdary

    1993-01-01T23:59:59.000Z

    A sub-binary radix Digital to Analog converter(DAC) which achieves high effective resolution is demonstrated. The converter does not have any built-in-self calibration mechanisms, but achieves high resolution and accuracy through the sub...

  9. Heat Pump Water Heater using Solid-State Energy Converters |...

    Energy Savers [EERE]

    Heat Pump Water Heater using Solid-State Energy Converters Heat Pump Water Heater using Solid-State Energy Converters Sheetak will work on developing a full scale prototype of its...

  10. A low-power reconfigurable analog-to-digital converter

    E-Print Network [OSTI]

    Gulati, Kush

    2001-01-01T23:59:59.000Z

    This thesis presents the concept, theory and design of a low power CMOS analog-to-digital converter that can digitize signals over a wide range of bandwidth and resolution with adaptive power consumption. The converter ...

  11. Mixed waste landfill cell construction at energy solutions LLC: a regulator's perspective

    SciTech Connect (OSTI)

    Lukes, G.C.; Willoughby, O.H. [Utah Department of Environmental Quality, Div. of Solid and Hazardous Waste (United States)

    2007-07-01T23:59:59.000Z

    A small percentage of the property that EnergySolutions' (formerly Envirocare) operates at Clive, Utah is permitted by the State of Utah as a treatment, storage and disposal facility for mixed waste. Mixed Waste is defined as a hazardous waste (Title 40 Code of Federal Regulations Part 261.3) that also has a radioactive component. Typically, the waste EnergySolutions receives at its mixed waste facility is contaminated with heavy metals and organic compounds while also contaminated with radioactivity. For EnergySolutions, the largest generator of mixed waste is the United States Department of Energy. However, EnergySolutions also accepts a wide variety of mixed waste from other generators. For many wastes, EnergySolutions goes through the process of characterization and acceptance (if appropriate) of the waste, treating the waste (if necessary), confirmation that the waste meets Land Disposal Restriction, and disposal of the waste in its mixed waste landfill cell (MWLC). EnergySolutions originally received its State-issued Part B (RCRA) permit in 1990. The Permit allows a mixed waste landfill cell footprint that covers roughly 10 hectares and includes 20 individual 'sumps'. EnergySolutions chose to build small segments of the landfill cell as waste receipts dictated. Nearly 16 years later, EnergySolutions has just completed its Phase V construction project. 18 of the 20 sumps in the original design have been constructed. The last two sumps are anticipated to be its Phase VI construction project. Further expansion of its mixed waste disposal landfill capacity beyond the current design would require a permit modification request and approval by the Executive Secretary of the Utah Solid and Hazardous Waste Control Board. Construction of the landfill cell is governed by the Construction Quality Assurance/Quality Control manual of its State-issued Permit. The construction of each sump is made up of (from the bottom up): a foundation; three feet of engineered clay; primary and secondary geo-synthetics (60 mil HDPE, geo-fabric and geo-textile); a two foot soil protective cover; tertiary geo-synthetics (80 mil HDPE, geo-fabric and geo-textile); and a final two foot soil protective cover. The Utah Department of Environmental Quality Division of Solid and Hazardous Waste (UDEQ/DSHW) oversees the construction process and reviews the documentation after the construction is complete. If all aspects of the construction process are met, the Executive Secretary of the Utah Solid and Hazardous Waste Control Board approves the landfill cell for disposal. It is the role of the regulator to ensure to the stakeholders that the landfill cell has been constructed in accordance with the State-issued permit and that the cell is protective of human health and the environment. A final determination may require conflict resolution between the agency and the facility. (authors)

  12. Gobar gas (biogas) survey in Nepal - 1979; a survey of three community biogas plants in Nepal - 1980; survey of present gobar gas work in India; and night soil gas plant

    SciTech Connect (OSTI)

    Bulmer, A.; Schlorholtz, A.; Fulford, D.J.; Peters, N.

    1980-01-01T23:59:59.000Z

    The first of these documents investigates the success of a project to bring the use of Biogas to Nepal. 50 users and 24 non-users were interviewed. The conclusions were that use of biogas in Nepal is successful, providing clean kitchens, healthier lives, and saving forests. They cause no social problems, but the service company for the plants needs improvement. The second report shows that community plants relying on continued cooperation are fragile enterprises. One of the plants ended up being run by one family, the gas distributed according to the dung input by each family. The gas was not used fully. Technical problems were partly responsible for this. In the second village technical problems and social problems reduced the number of users to 5 families from 26. In the third case the plant fell into disrepair but the social pattern of using a common area for defecation to fill the plant benefitted from having a permanent enclosure built. This scheme charged for use of the gas to help run the plant but the technical and social problems stymied correction. The third report lists the activities of various gobar gas research stations in India. The fourth report gives directions and specifications to build a night soil gas plant, including working drawings.

  13. A transient model for a cesium vapor thermionic converter. [Cs

    SciTech Connect (OSTI)

    El-Genk, M.S.; Murray, C.S.; Chaudhuri, S. (Institute for Space Nuclear Power Studies, Department of Chemical and Nuclear Engineering, The University of New Mexico, Albuquerque, New Mexico (USA))

    1991-01-10T23:59:59.000Z

    This paper presents an analytical model for simulating the transient and steady-state operation of cesium vapor thermionic converters. A parametric analysis is performed to assess the transient response of the converter to changes in fission power and width of interelectrode gap. The model optimizes the converter performance for maximum electric power to the load.(AIP)

  14. Modelling and geometry optimisation of wave energy converters

    E-Print Network [OSTI]

    Nørvåg, Kjetil

    Modelling and geometry optimisation of wave energy converters Adi Kurniawan Supervisors: Prof;Research questions Modelling How to develop more realistic wave energy converter (WEC) models while wave energy converter (WEC) models while at the same time reduce their simulation time? Optimisation

  15. Multiport Converter Topologies for Distributed Energy System Applications 

    E-Print Network [OSTI]

    Hawke, Joshua

    2014-07-28T23:59:59.000Z

    technologies into singular systems, there is a growing appetite for multiport converter (MPC) design. In response, three unique DER MPC topologies are presented: the power sharing converter (PSC), the multi-level nine switch converter (ML9SC), and the modular...

  16. A Dual Supply Buck Converter with Improved Light Load Efficiency

    E-Print Network [OSTI]

    Chen, Hui

    2013-05-02T23:59:59.000Z

    ................................................................................................ 1 1.2 Thesis Organization.................................................................................................. 3 2. BACKGROUND OF BUCK CONVERTER ................................................................ 4 2.1 DC-DC Converter... ...................................................... 2 Fig. 2. 1. A basic DC-DC converter ................................................................................... 5 Fig. 2. 2. Basic topology of a close loop linear regulator................................................... 6 Fig. 2. 3...

  17. CORRECTIVE ACTION DECISION DOCUMENT FOR THE AREA 3 LANDFILL COMPLEX, TONOPAH TEST RANGE, CAU 424, REVISION 0, MARCH 1998

    SciTech Connect (OSTI)

    DOE /NV

    1998-03-03T23:59:59.000Z

    This Corrective Action Decision Document (CADD) has been prepared for the Area 3 Landfill Complex (Corrective Action Unit [CAU] 424) in accordance with the Federal Facility Agreement and Consent Order (FFACO) of 1996. Corrective Action Unit 424 is located at the Tonopah Test Range (TTR) and is comprised of the following Corrective Action Sites (CASs), each an individual landfill located around and within the perimeter of the Area 3 Compound (DOE/NV, 1996a): (1) Landfill A3-1 is CAS No. 03-08-001-A301. (2) Landfill A3-2 is CAS No. 03-08-002-A302. (3) Landfill A3-3 is CAS No. 03-08-002-A303. (4) Landfill A3-4 is CAS No. 03-08-002-A304. (5) Landfill A3-5 is CAS No. 03-08-002-A305. (6) Landfill A3-6 is CAS No. 03-08-002-A306. (7) Landfill A3-7 is CAS No. 03-08-002-A307. (8) Landfill A3-8 is CAS No. 03-08-002-A308. The purpose of this CADD is to identify and provide a rationale for the selection of a recommended corrective action alternative for each CAS. The scope of this CADD consists of the following: (1) Develop corrective action objectives. (2) Identify corrective action alternative screening criteria. (3) Develop corrective action alternatives. (4) Perform detailed and comparative evaluations of the corrective action alternatives in relation to the corrective action objectives and screening criteria. (6) Recommend and justify a preferred corrective action alternative for each CAS. In June and July 1997, a corrective action investigation was performed as set forth in the Corrective Action Investigation Plan (CAIP) for CAU No. 424: Area 3 Landfill Complex, Tonopah Test Range, Nevada (DOE/NV, 1997). Details can be found in Appendix A of this document. The results indicated four groupings of site characteristics as shown in Table ES-1. Based on the potential exposure pathways, the following corrective action objectives have been identified for CAU No. 424: (1) Prevent or mitigate human exposure to subsurface soils containing waste. (2) Remediate the site per applicable state and federal regulations (NAC, 1996c). (3) Prevent adverse impacts to groundwater quality. Based on the review of existing data, future land use, and current operations at the TTR, the following alternatives were developed for consideration at the Area 3 Landfill Complex CAU: Alternative 1 - No Action; Alternative 2 - Administrative Closure; Alternative 3 - Partial Excavation, Backfill, and Recontouring The corrective action alternatives were evaluated based on four general corrective action standards and five remedy-selection decision factors. Based on the results of this evaluation, preferred alternatives were selected for each CAS as indicated in Table ES-2. The preferred corrective action alternatives were evaluated on their technical merits, focusing on performance, reliability, feasibility, and safety. The alternatives were judged to meet all requirements for the technical components evaluated. These alternatives meet all applicable state and federal regulations for closure of the site and will reduce potential future exposure pathways to the contents of the landfills. During corrective action implementation, these alternatives will present minimal potential threat to site workers who come in contact with the waste. However, procedures will be developed and implemented to ensure worker health and safety.

  18. Best Practices for Siting Solar Photovoltaics on Municipal Solid Waste Landfills. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Kiatreungwattana, K.; Mosey, G.; Jones-Johnson, S.; Dufficy, C.; Bourg, J.; Conroy, A.; Keenan, M.; Michaud, W.; Brown, K.

    2013-04-01T23:59:59.000Z

    The Environmental Protection Agency and the National Renewable Energy Laboratory developed this best practices document to address common technical challenges for siting solar photovoltaics (PV) on municipal solid waste (MSW) landfills. The purpose of this document is to promote the use of MSW landfills for solar energy systems. Closed landfills and portions of active landfills with closed cells represent thousands of acres of property that may be suitable for siting solar photovoltaics (PV). These closed landfills may be suitable for near-term construction, making these sites strong candidate to take advantage of the 30% Federal Business Energy Investment Tax Credit. It was prepared in response to the increasing interest in siting renewable energy on landfills from solar developers; landfill owners; and federal, state, and local governments. It contains examples of solar PV projects on landfills and technical considerations and best practices that were gathered from examining the implementation of several of these projects.

  19. Mixed waste storage facility CDR review, Paducah Gaseous Diffusion Plant; Solid waste landfill CDR review, Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    NONE

    1998-08-01T23:59:59.000Z

    This report consists of two papers reviewing the waste storage facility and the landfill projects proposed for the Paducah Gaseous Diffusion Plant complex. The first paper is a review of DOE`s conceptual design report for a mixed waste storage facility. This evaluation is to review the necessity of constructing a separate mixed waste storage facility. The structure is to be capable of receiving, weighing, sampling and the interim storage of wastes for a five year period beginning in 1996. The estimated cost is assessed at approximately $18 million. The review is to help comprehend and decide whether a new storage building is a feasible approach to the PGDP mixed waste storage problem or should some alternate approach be considered. The second paper reviews DOE`s conceptual design report for a solid waste landfill. This solid waste landfill evaluation is to compare costs and the necessity to provide a new landfill that would meet State of Kentucky regulations. The assessment considered funding for a ten year storage facility, but includes a review of other facility needs such as a radiation detection building, compactor/baler machinery, material handling equipment, along with other personnel and equipment storage buildings at a cost of approximately $4.1 million. The review is to help discern whether a landfill only or the addition of compaction equipment is prudent.

  20. Voltage balanced multilevel voltage source converter system

    DOE Patents [OSTI]

    Peng, F.Z.; Lai, J.S.

    1997-07-01T23:59:59.000Z

    Disclosed is a voltage balanced multilevel converter for high power AC applications such as adjustable speed motor drives and back-to-back DC intertie of adjacent power systems. This converter provides a multilevel rectifier, a multilevel inverter, and a DC link between the rectifier and the inverter allowing voltage balancing between each of the voltage levels within the multilevel converter. The rectifier is equipped with at least one phase leg and a source input node for each of the phases. The rectifier is further equipped with a plurality of rectifier DC output nodes. The inverter is equipped with at least one phase leg and a load output node for each of the phases. The inverter is further equipped with a plurality of inverter DC input nodes. The DC link is equipped with a plurality of rectifier charging means and a plurality of inverter discharging means. The plurality of rectifier charging means are connected in series with one of the rectifier charging means disposed between and connected in an operable relationship with each adjacent pair of rectifier DC output nodes. The plurality of inverter discharging means are connected in series with one of the inverter discharging means disposed between and connected in an operable relationship with each adjacent pair of inverter DC input nodes. Each of said rectifier DC output nodes are individually electrically connected to the respective inverter DC input nodes. By this means, each of the rectifier DC output nodes and each of the inverter DC input nodes are voltage balanced by the respective charging and discharging of the rectifier charging means and the inverter discharging means. 15 figs.

  1. Solid state transport-based thermoelectric converter

    DOE Patents [OSTI]

    Hu, Zhiyu

    2010-04-13T23:59:59.000Z

    A solid state thermoelectric converter includes a thermally insulating separator layer, a semiconducting collector and an electron emitter. The electron emitter comprises a metal nanoparticle layer or plurality of metal nanocatalyst particles disposed on one side of said separator layer. A first electrically conductive lead is electrically coupled to the electron emitter. The collector layer is disposed on the other side of the separator layer, wherein the thickness of the separator layer is less than 1 .mu.m. A second conductive lead is electrically coupled to the collector layer.

  2. convert program | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russian NuclearNational5/%2A en Office ofcontracting |convert

  3. Power Maximization in Wave-Energy Converters Using Sampled -Data Extremum Seeking /

    E-Print Network [OSTI]

    Chen, Tianjia

    2013-01-01T23:59:59.000Z

    Power Maximization in Wave-Energy Converters Using Sampled-design optimization of wave energy converters con- sistingN. Sahinkaya. A review of wave energy converter technology.

  4. Integrated Solar Upper Stage (ISUS) thermionic converter string evaluation

    SciTech Connect (OSTI)

    Talbot, G.J.; Ramsey, W.D.; Chao, C.J.

    1998-07-01T23:59:59.000Z

    A serial string of eighth (8) thermionic converters were performance tested at New Mexico Engineering Research Institute (NMERI) by Frank Wyant et al1. The tests results from the second String Thermionic Assembly Research Testbed (START II) produced less than one half the expected power based on individual converter performance tests. Seven of the eight converters were returned to Lockheed Martin Information Systems-EOS for performance evaluation. Six of the seven produced nominal performance while the seventh converter showed a drastic reduction in performance due to a cesium leak to atmosphere. Several models were proposed to explain why the individual converter performance differed so markedly from the START II serial array. This paper discusses the models, evaluates model validity and compares the models with results from a tow converter serial test using of the returned START II converters.

  5. Liquid balance monitoring inside conventional, Retrofit, and bio-reactor landfill cells

    SciTech Connect (OSTI)

    Abichou, Tarek, E-mail: abichou@eng.fsu.edu [Department of Civil and Environmental Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, FL 32311 (United States); Barlaz, Morton A. [Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Green, Roger; Hater, Gary [Waste Management Inc., Cincinnati, OH 45211 (United States)

    2013-10-15T23:59:59.000Z

    Highlights: • The Retrofit, Control, and As-Built cells received 48, 14, and 213 L Mg{sup ?1} (liters of liquids per metric ton of waste). • The leachate collection system yielded 60, 57 and 198 L Mg{sup ?1} from the Retrofit, Control, and As-Built cells. • The head on liner in all cells was below regulatory limits. • Measured moisture content of the waste samples was consistent with that calculated from accumulated liquid by balance. • The in-place saturated hydraulic conductivity of the MSW was calculated to be in the range of 10{sup ?8} to 10{sup ?7} m s{sup ?1}. - Abstract: The Outer Loop landfill bioreactor (OLLB) in Louisville, KY, USA has been the site of a study to evaluate long-term bioreactor performance at a full-scale operational landfill. Three types of landfill units were studied including a conventional landfill (Control cell), a new landfill area that had an air addition and recirculation piping network installed as waste was being placed (As-Built cell), and a conventional landfill that was modified to allow for liquids recirculation (Retrofit cell). During the monitoring period, the Retrofit, Control, and As-Built cells received 48, 14, and 213 L Mg{sup ?1} (liters of liquids per metric ton of waste), respectively. The leachate collection system yielded 60, 57 and 198 L Mg{sup ?1} from the Retrofit, Control, and As-Built cells, respectively. The head on liner in all cells was below regulatory limits. In the Control and As-Built cells, leachate head on liner decreased once waste placement stopped. The measured moisture content of the waste samples was consistent with that calculated from the estimate of accumulated liquid by the liquid balance. Additionally, measurements on excavated solid waste samples revealed large spatial variability in waste moisture content. The degree of saturation in the Control cells decreased from 85% to 75%. The degree of saturation increased from 82% to 83% due to liquids addition in the Retrofit cells and decreased back to 80% once liquid addition stopped. In the As-Built cells, the degree of saturation increased from 87% to 97% during filling activities and then started to decrease soon after filling activities stopped to reach 92% at the end of the monitoring period. The measured leachate generation rates were used to estimate an in-place saturated hydraulic conductivity of the MSW in the range of 10{sup ?8} to 10{sup ?7} m s{sup ?1} which is lower than previous reports. In the Control and Retrofit cells, the net loss in liquids, 43 and 12 L Mg{sup ?1}, respectively, was similar to the measured settlement of 15% and 5–8% strain, respectively (Abichou et al., 2013). The increase in net liquid volume in the As-Built cells indicates that the 37% (average) measured settlement strain in these cells cannot be due to consolidation as the waste mass did not lose any moisture but rather suggests that settlement was attributable to lubrication of waste particle contacts, softening of flexible porous materials, and additional biological degradation.

  6. Public health assessment for Sayreville Landfill, Sayreville, Middlesex County, New Jersey, Region 2. CERCLIS No. NJD980505754. Final report

    SciTech Connect (OSTI)

    Not Available

    1993-11-16T23:59:59.000Z

    The Sayreville Landfill site, located in Middlesex County, New Jersey, was used primarily for the disposal of municipal wastes from 1970 through 1977. Illegal dumping of possibly hazardous materials allegedly occurred during active landfill operations and after landfill closure. Organic and inorganic compounds were found in on-site subsurface soil, ground water, surface water, and sediments at levels above public health assessment comparison values. The community is concerned about the safety of eating fish from the South River. The potential exists for past, present, and future exposure of local residents and workers to contaminated subsurface soil, nearby surface water, and sediments. The New Jersey Department of Health (NJDOH) has concluded that the site is an indeterminate public health hazard since insufficient data exist for all environmental media to which humans may be exposed.

  7. Metal speciation in landfill leachates with a focus on the influence of organic matter

    SciTech Connect (OSTI)

    Claret, Francis, E-mail: f.claret@brgm.fr [BRGM, 3 avenue C. Guillemin, BP 6009, 45060 Orleans (France); Tournassat, Christophe; Crouzet, Catherine; Gaucher, Eric C. [BRGM, 3 avenue C. Guillemin, BP 6009, 45060 Orleans (France); Schaefer, Thorsten [Karlsruhe Institute of Technology (KIT), Institute for Nuclear Waste Disposal (INE), P.O. Box 3640, 76021 Karlsruhe (Germany); Freie Universitaet Berlin, Institute of Geological Sciences, Department of Earth Sciences, Hydrogeology Group, D-12249 Berlin (Germany); Braibant, Gilles; Guyonnet, Dominique [BRGM, 3 avenue C. Guillemin, BP 6009, 45060 Orleans (France)

    2011-09-15T23:59:59.000Z

    Highlights: > This study characterises the heavy-metal content in leachates collected from eight landfills in France. > Most of the metals are concentrated in the <30 kDa fraction, while Pb, Cu and Cd are associated with larger particles. > Metal complexation with OM is not sufficient to explain apparent supersaturation of metals with sulphide minerals. - Abstract: This study characterises the heavy-metal content in leachates collected from eight landfills in France. In order to identify heavy metal occurrence in the different size fractions of leachates, a cascade filtration protocol was applied directly in the field, under a nitrogen gas atmosphere to avoid metal oxidation. The results of analyses performed on the leachates suggest that most of the metals are concentrated in the <30 kDa fraction, while lead, copper and cadmium show an association with larger particles. Initial speciation calculations, without considering metal association with organic matter, suggest that leachate concentrations in lead, copper, nickel and zinc are super-saturated with respect to sulphur phases. Speciation calculations that account for metal complexation with organic matter, considered as fulvic acids based on C1(s) NEXAFS spectroscopy, show that this mechanism is not sufficient to explain such deviation from equilibrium conditions. It is therefore hypothesized that the deviation results also from the influence of biological activity on the kinetics of mineral phase precipitation and dissolution, thus providing a dynamic system. The results of chemical analyses of sampled fluids are compared with speciation calculations and some implications for the assessment of metal mobility and natural attenuation in a context of landfill risk assessment are discussed.

  8. Converting online algorithms to local computation algorithms

    E-Print Network [OSTI]

    Mansour, Yishay; Vardi, Shai; Xie, Ning

    2012-01-01T23:59:59.000Z

    We propose a general method for converting online algorithms to local computation algorithms by selecting a random permutation of the input, and simulating running the online algorithm. We bound the number of steps of the algorithm using a query tree, which models the dependencies between queries. We improve previous analyses of query trees on graphs of bounded degree, and extend the analysis to the cases where the degrees are distributed binomially, and to a special case of bipartite graphs. Using this method, we give a local computation algorithm for maximal matching in graphs of bounded degree, which runs in time and space O(log^3 n). We also show how to convert a large family of load balancing algorithms (related to balls and bins problems) to local computation algorithms. This gives several local load balancing algorithms which achieve the same approximation ratios as the online algorithms, but run in O(log n) time and space. Finally, we modify existing local computation algorithms for hypergraph 2-color...

  9. Fraunhofer ISE IEA HPP Annex 43

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    in the future? Biogas from biological waste: agriculture, landfill, waste (sewage) water Usage of biogas: heat and power generation, grid injection and vehicle fuel Substantial potential to inject biomethane

  10. Large-Scale Field Study of Landfill Covers at Sandia National Laboratories

    SciTech Connect (OSTI)

    Dwyer, S.F.

    1998-09-01T23:59:59.000Z

    A large-scale field demonstration comparing final landfill cover designs has been constructed and is currently being monitored at Sandia National Laboratories in Albuquerque, New Mexico. Two conventional designs (a RCRA Subtitle `D' Soil Cover and a RCRA Subtitle `C' Compacted Clay Cover) were constructed side-by-side with four alternative cover test plots designed for dry environments. The demonstration is intended to evaluate the various cover designs based on their respective water balance performance, ease and reliability of construction, and cost. This paper presents an overview of the ongoing demonstration.

  11. Assessment of an active dry barrier for a landfill cover system

    SciTech Connect (OSTI)

    Stormont, J.C. [Sandia National Labs., Albuquerque, NM (United States); Ankeny, M.D.; Burkhard, M.E.; Tansey, M.K.; Kelsey, J.A. [Stephens (Daniel B.) and Associates, Inc., Albuquerque, NM (United States)

    1994-03-01T23:59:59.000Z

    A dry barrier is a layer of geologic material that is dried by air flow. An active dry barrier system can be designed, installed, and operated as part of a landfill cover system. An active system uses blowers and fans to move air through a high-permeability layer within the cover system. Depending principally on the air-flow rate, it is possible for a dry barrier to remove enough water to substantially reduce the likelihood of water percolating through the cover system. If a material with a relatively great storage capacity, such as processed tuff, is used as the coarse layer, then the efficiency of the dry barrier will be increased.

  12. EXPEDITING THE PATH TO CLOSURE THE CHEMICAL WASTE LANDFILL, SANDIA NATIONAL LABORATORIES, NEW MEXICO

    SciTech Connect (OSTI)

    Young, S.G.; Schofield, D.P.; Davis, M.J.; Methvin, R.; Mitchell, M.

    2003-02-27T23:59:59.000Z

    The Chemical Waste Landfill (CWL) at Sandia National Laboratories, New Mexico (SNL/NM) is undergoing closure subject to the requirements of Subtitle C of RCRA. This paper identifies regulatory mechanisms that have and continue to expedite and simplify the closure of the CWL. These include (1) the Environmental Restoration (ER) Programmatic effort to achieve progress quickly with respect to the standard regulatory processes, which resulted in the performance of voluntary corrective measures at the CWL years in advance of the standard process schedule, (2) the management and disposal of CWL remediation wastes and materials according to the risks posed, and (3) the combination of multiple regulatory requirements into a single submittal.

  13. I 95 Municipal Landfill Phase I Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas: EnergyHy9Moat of Long| OpenLandfill Phase

  14. Modular Power Converters for PV Applications

    SciTech Connect (OSTI)

    Ozpineci, Burak [ORNL; Tolbert, Leon M [ORNL

    2012-05-01T23:59:59.000Z

    This report describes technical opportunities to serve as parts of a technological roadmap for Shoals Technologies Group in power electronics for PV applications. There are many different power converter circuits that can be used for solar inverter applications. The present applications do not take advantage of the potential for using common modules. We envision that the development of a power electronics module could enable higher reliability by being durable and flexible. Modules would have fault current limiting features and detection circuits such that they can limit the current through the module from external faults and can identify and isolate internal faults such that the remaining modules can continue to operate with only minimal disturbance to the utility or customer. Development of a reliable, efficient, low-cost, power electronics module will be a key enabling technology for harnessing more power from solar panels and enable plug and play operation. Power electronics for computer power supplies, communication equipment, and transportation have all targeted reliability and modularity as key requirements and have begun concerted efforts to replace monolithic components with collections of common smart modules. This is happening on several levels including (1) device level with intelligent control, (2) functional module level, and (3) system module. This same effort is needed in power electronics for solar applications. Development of modular units will result in standard power electronic converters that will have a lower installed and operating cost for the overall system. These units will lead to increased adaptability and flexibility of solar inverters. Incorporating autonomous fault current limiting and reconfiguration capabilities into the modules and having redundant modules will lead to a durable converter that can withstand the rigors of solar power generation for more than 30 years. Our vision for the technology roadmap is that there is no need for detailed design of new power converters for each new application or installation. One set of modules and controllers can be pre-developed and the only design question would be how many modules need to be in series or parallel for the specific power requirement. Then, a designer can put the modules together and add the intelligent reconfigurable controller. The controller determines how many modules are connected, but it might also ask for user input for the specific application during setup. The modules include protection against faults and can reset it, if necessary. In case of a power device failure, the controller reconfigures itself to continue limited operation until repair which might be as simple as taking the faulty module out and inserting a new module. The result is cost savings in design, maintenance, repair, and a grid that is more reliable and available. This concept would be a perfect fit for the recently announced funding opportunity announcement (DE-FOA-0000653) on Plug and Play Photovoltaics.

  15. Modelling of stable isotope fractionation by methane oxidation and diffusion in landfill cover soils

    SciTech Connect (OSTI)

    Mahieu, Koenraad [Laboratory of Applied Physical Chemistry (ISOFYS), Ghent University, Coupure links 653, B-9000 Ghent (Belgium); Department of Applied Mathematics, Biometrics and Process Control (BIOMATH), Ghent University, Coupure links 653, B-9000 Ghent (Belgium)], E-mail: Koenraad.mahieu@lid.kviv.be; De Visscher, Alex [Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, T2N 1N4 (Canada); Vanrolleghem, Peter A. [Department of Applied Mathematics, Biometrics and Process Control (BIOMATH), Ghent University, Coupure links 653, B-9000 Ghent (Belgium); Department of Civil Engineering (modelEAU), Universite Laval, Pavillon Pouliot, Quebec, G1K 7P4 (Canada); Van Cleemput, Oswald [Laboratory of Applied Physical Chemistry (ISOFYS), Ghent University, Coupure links 653, B-9000 Ghent (Belgium)

    2008-07-01T23:59:59.000Z

    A technique to measure biological methane oxidation in landfill cover soils that is gaining increased interest is the measurement of stable isotope fractionation in the methane. Usually to quantify methane oxidation, only fractionation by oxidation is taken into account. Recently it was shown that neglecting the isotope fractionation by diffusion results in underestimation of the methane oxidation. In this study a simulation model was developed that describes gas transport and methane oxidation in landfill cover soils. The model distinguishes between {sup 12}CH{sub 4}, {sup 13}CH{sub 4}, and {sup 12}CH{sub 3}D explicitly, and includes isotope fractionation by diffusion and oxidation. To evaluate the model, the simulations were compared with column experiments from previous studies. The predicted concentration profiles and isotopic profiles match the measured ones very well, with a root mean square deviation (RMSD) of 1.7 vol% in the concentration and a RMSD of 0.8 per mille in the {delta}{sup 13}C value, with {delta}{sup 13}C the relative {sup 13}C abundance as compared to an international standard. Overall, the comparison shows that a model-based isotope approach for the determination of methane oxidation efficiencies is feasible and superior to existing isotope methods.

  16. Metal Speciation in Landfill Leachates with a Focus on the Influence of Organic Matter

    SciTech Connect (OSTI)

    F Claret; C Tournassat; C Crouzet; E Gaucher; T Schäfer; G Braibant; D Guyonnet

    2011-12-31T23:59:59.000Z

    This study characterizes the heavy-metal content in leachates collected from eight landfills in France. In order to identify heavy metal occurrence in the different size fractions of leachates, a cascade filtration protocol was applied directly in the field, under a nitrogen gas atmosphere to avoid metal oxidation. The results of analyses performed on the leachates suggest that most of the metals are concentrated in the <30 kDa fraction, while lead, copper and cadmium show an association with larger particles. Initial speciation calculations, without considering metal association with organic matter, suggest that leachate concentrations in lead, copper, nickel and zinc are super-saturated with respect to sulphur phases. Speciation calculations that account for metal complexation with organic matter, considered as fulvic acids based on C1(s) NEXAFS spectroscopy, show that this mechanism is not sufficient to explain such deviation from equilibrium conditions. It is therefore hypothesized that the deviation results also from the influence of biological activity on the kinetics of mineral phase precipitation and dissolution, thus providing a dynamic system. The results of chemical analyses of sampled fluids are compared with speciation calculations and some implications for the assessment of metal mobility and natural attenuation in a context of landfill risk assessment are discussed.

  17. Air-substrate mercury exchange associated with landfill disposal of coal combustion products

    SciTech Connect (OSTI)

    Mei Xin; Mae S. Gustin; Kenneth Ladwig; Debra F. Pflughoeft-Hassett [University of Nevada, Reno, NV (United States). Department of Natural Resources and Environmental Science

    2006-08-15T23:59:59.000Z

    Previous laboratory studies have shown that lignite-derived fly ash emitted mercury (Hg) to the atmosphere, whereas bituminous- and subbituminous-derived fly ash samples adsorbed Hg from the air. In addition, wet flue gas desulfurization (FGD) materials were found to have higher Hg emission rates than fly ash. This study investigated in situ Hg emissions at a blended bituminous-subbituminous ash land-fill in the Great Lakes area and a lignite-derived ash and FGD solids landfill in the Midwestern United States using a dynamic field chamber. Fly ash and saturated FGD materials emitted Hg to atmosphere at low rates (- 0.1 to 1.2 ng/m{sup 2}hr), whereas FGD material mixed with fly ash and pyrite exhibited higher emission rates ({approximately} 10 ng/m{sup 2}hr) but were still comparable with natural background soils (- 0.3 to 13 ng/m{sup 2}hr). Air temperature, solar radiation, and relative humidity were important factors correlated with measured Hg fluxes. Field study results were not consistent with corresponding laboratory observations in that fluxes measured in the latter were higher and more variable. This is hypothesized to be partially an artifact of the flux measurement methods. 19 refs., 4 figs., 6 tabs.

  18. Sanitary Landfill Groundwater Monitoring Report, Fourth Quarter 1999 and 1999 Summary

    SciTech Connect (OSTI)

    Chase, J.

    2000-03-13T23:59:59.000Z

    A maximum of thirty eight-wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill Area at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Water Permit DWP-087A and as part of the SRS Groundwater Monitoring Program. Iron (Total Recoverable), Chloroethene (Vinyl Chloride) and 1,1-Dichloroethane were the most widespread constituents exceeding the Final Primary Drinking Water Standards during 1999. Trichloroethylene, 1,1-Dichloroethylene, 1,2-Dichloroethane, 1,4-Dichlorobenzene, Aluminum (Total Recoverable), Benzene, cis-1,2-Dichloroethylene, Dichlorodifluoromethane, Dichloromethane (Methylene Chloride), Gross Alpha, Mercury (Total Recoverable), Nonvolatile Beta, Tetrachloroethylene, Total Organic Halogens, Trichlorofluoromethane, Tritium also exceeded standards in one or more wells. The groundwater flow direction in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill is to the southeast (universal transverse Mercator coordinates). The flow rate in this unit was approximately 144.175 ft/year during first quarter 1999 and 145.27 ft/year during fourth quarter 1999.

  19. Sanitary landfill groundwater monitoring report. Fourth quarter 1996 and 1996 summary

    SciTech Connect (OSTI)

    NONE

    1997-02-01T23:59:59.000Z

    A maximum of eighty-nine wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Waste Permit DWP-087A and as part of the SRS Groundwater Monitoring Program. Dichloromethane, a common laboratory contaminant, and chloroethene (vinyl chloride) were the most widespread constituents exceeding standards during 1996. Benzene, trichloroethylene, 1,4-dichlorobenzene, 1,1-dichloroethylene, lead (total recoverable), gross alpha, mercury (total recoverable), tetrachloroethylene, fluoride, thallium, radium-226, radium-228, and tritium also exceeded standards in one or more wells. The groundwater flow direction in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill was to the southeast (universal transverse Mercator coordinates). The flow rate in this unit was approximately 141 ft/year during first quarter 1996 and 132 ft/year during fourth quarter 1996

  20. Results of Hazardous and Mixed Waste Excavation from the Chemical Waste Landfill

    SciTech Connect (OSTI)

    Young, S. G.; Schofield, D. P.; Kwiecinski, D.; Edgmon, C. L.; Methvin, R.

    2002-02-27T23:59:59.000Z

    This paper describes the results of the excavation of a 1.9-acre hazardous and mixed waste landfill operated for 23 years at Sandia National Laboratories, Albuquerque, New Mexico. Excavation of the landfill was completed in 2 1/2 years without a single serious accident or injury. Approximately 50,000 cubic yards of soil contaminated with volatile and semi-volatile organics, metals, polychlorinated biphenyl compounds, and radioactive constituents was removed. In addition, over 400 cubic yards of buried debris was removed, including bulk debris, unknown chemicals, compressed gas cylinders, thermal and chemical batteries, explosive and ordnance debris, pyrophoric materials and biohazardous waste. Removal of these wastes included negotiation of multiple regulations and guidances encompassed in the Resource Conservation and Recovery Act (RCRA), the Toxic Substances Control Act (TSCA), and risk assessment methodology. RCRA concepts that were addressed include the area of contamination, permit modification, emergency treatment provision, and listed waste designation. These regulatory decisions enabled the project to overcome logistical and programmatic needs such as increased operational area, the ability to implement process improvements while maintaining a record of decisions and approvals.

  1. Determination of operating limits for radionuclides for a proposed landfill at Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Wang, J.C.; Lee, D.W.; Ketelle, R.H.; Lee, R.R.; Kocher, D.C.

    1994-05-24T23:59:59.000Z

    The operating limits for radionuclides in sanitary and industrial wastes were determined for a proposed landfill at the Paducah Gaseous Diffusion Plant (PGDP), Kentucky. These limits, which may be very small but nonzero, are not mandated by law or regulation but are needed for rational operation. The approach was based on analyses of the potential contamination of groundwater at the plant boundary and the potential exposure to radioactivity of an intruder at the landfill after closure. The groundwater analysis includes (1) a source model describing the disposal of waste and the release of radionuclides from waste to the groundwater, (2) site-specific groundwater flow and contaminant transport calculations, and (3) calculations of operating limits from the dose limit and conversion factors. The intruder analysis includes pathways through ingestion of contaminated vegetables and soil, external exposure to contaminated soil, and inhalation of suspended activity from contaminated soil particles. In both analyses, a limit on annual effective dose equivalent of 4 mrem (0.04 mSv) was adopted. The intended application of the results is to refine the radiological monitoring standards employed by the PGDP Health Physics personnel to determine what constitutes radioactive wastes, with concurrence of the Commonwealth of Kentucky.

  2. Operating limit study for the proposed solid waste landfill at Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Lee, D.W.; Wang, J.C.; Kocher, D.C.

    1995-06-01T23:59:59.000Z

    A proposed solid waste landfill at Paducah Gaseous Diffusion Plant (PGDP) would accept wastes generated during normal operations that are identified as non-radioactive. These wastes may include small amounts of radioactive material from incidental contamination during plant operations. A site-specific analysis of the new solid waste landfill is presented to determine a proposed operating limit that will allow for waste disposal operations to occur such that protection of public health and the environment from the presence of incidentally contaminated waste materials can be assured. Performance objectives for disposal were defined from existing regulatory guidance to establish reasonable dose limits for protection of public health and the environment. Waste concentration limits were determined consistent with these performance objectives for the protection of off-site individuals and inadvertent intruders who might be directly exposed to disposed wastes. Exposures of off-site individuals were estimated using a conservative, site-specific model of the groundwater transport of contamination from the wastes. Direct intrusion was analyzed using an agricultural homesteader scenario. The most limiting concentrations from direct intrusion or groundwater transport were used to establish the concentration limits for radionuclides likely to be present in PGDP wastes.

  3. Above- and below-ground methane fluxes and methanotrophic activity in a landfill-cover soil

    SciTech Connect (OSTI)

    Schroth, M.H., E-mail: martin.schroth@env.ethz.ch [Institute of Biogeochemistry and Pollutant Dynamics, ETH Zuerich, Universitaetstrasse 16, 8092 Zuerich (Switzerland); Eugster, W. [Institute of Agricultural Sciences, ETH Zuerich, Universitaetstrasse 2, 8092 Zuerich (Switzerland); Gomez, K.E. [Institute of Biogeochemistry and Pollutant Dynamics, ETH Zuerich, Universitaetstrasse 16, 8092 Zuerich (Switzerland); Gonzalez-Gil, G. [Laboratory for Environmental Biotechnology, EPF Lausanne, 1015 Lausanne (Switzerland); Niklaus, P.A. [Institute of Agricultural Sciences, ETH Zuerich, Universitaetstrasse 2, 8092 Zuerich (Switzerland); Oester, P. [Oester Messtechnik, Bahnhofstrasse 3, 3600 Thun (Switzerland)

    2012-05-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer We quantify above- and below-ground CH{sub 4} fluxes in a landfill-cover soil. Black-Right-Pointing-Pointer We link methanotrophic activity to estimates of CH{sub 4} loading from the waste body. Black-Right-Pointing-Pointer Methane loading and emissions are highly variable in space and time. Black-Right-Pointing-Pointer Eddy covariance measurements yield largest estimates of CH{sub 4} emissions. Black-Right-Pointing-Pointer Potential methanotrophic activity is high at a location with substantial CH{sub 4} loading. - Abstract: Landfills are a major anthropogenic source of the greenhouse gas methane (CH{sub 4}). However, much of the CH{sub 4} produced during the anaerobic degradation of organic waste is consumed by methanotrophic microorganisms during passage through the landfill-cover soil. On a section of a closed landfill near Liestal, Switzerland, we performed experiments to compare CH{sub 4} fluxes obtained by different methods at or above the cover-soil surface with below-ground fluxes, and to link methanotrophic activity to estimates of CH{sub 4} ingress (loading) from the waste body at selected locations. Fluxes of CH{sub 4} into or out of the cover soil were quantified by eddy-covariance and static flux-chamber measurements. In addition, CH{sub 4} concentrations at the soil surface were monitored using a field-portable FID detector. Near-surface CH{sub 4} fluxes and CH{sub 4} loading were estimated from soil-gas concentration profiles in conjunction with radon measurements, and gas push-pull tests (GPPTs) were performed to quantify rates of microbial CH{sub 4} oxidation. Eddy-covariance measurements yielded by far the largest and probably most representative estimates of overall CH{sub 4} emissions from the test section (daily mean up to {approx}91,500 {mu}mol m{sup -2} d{sup -1}), whereas flux-chamber measurements and CH{sub 4} concentration profiles indicated that at the majority of locations the cover soil was a net sink for atmospheric CH{sub 4} (uptake up to -380 {mu}mol m{sup -2} d{sup -1}) during the experimental period. Methane concentration profiles also indicated strong variability in CH{sub 4} loading over short distances in the cover soil, while potential methanotrophic activity derived from GPPTs was high (v{sub max} {approx} 13 mmol L{sup -1}(soil air) h{sup -1}) at a location with substantial CH{sub 4} loading. Our results provide a basis to assess spatial and temporal variability of CH{sub 4} dynamics in the complex terrain of a landfill-cover soil.

  4. Design of series-parallel connected thermionic converter arrays

    SciTech Connect (OSTI)

    Mcvey, J.B.; Britt, E.J.; Fitzpatrick, G.O.; Dick, R.S.

    1981-01-01T23:59:59.000Z

    Applications of thermionic converters require that a large number of converters be connected together in a series-parallel array in order to provide a useful output voltage. Such an array also serves to insure a very high overall system reliability, despite possible failures of individual converters. This paper predicts the effects of a nonuniform distribution of input power on the performance of such an array. 9 refs.

  5. acid change converts: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transmission, Distribution and Plants Websites Summary: converters can optimize the number of levels by using H bridges scaled in power of three. The shortcoming, the faulty...

  6. Sandia Energy - Sandia, NREL Release Wave Energy Converter Modeling...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia, NREL Release Wave Energy Converter Modeling and Simulation Code: WEC-Sim Home Renewable Energy Energy Water Power Partnership News News & Events Computational Modeling &...

  7. DOE Announces Webinars on the Wave Energy Converter Prize, the...

    Broader source: Energy.gov (indexed) [DOE]

    24: Live Webinar on the Administration of the Wave Energy Converter Prize Funding Opportunity Announcement Webinar Sponsor: EERE Water Power Program The Energy Department will...

  8. Researchers hope better catalysts lead to better ways of converting...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers hope better catalysts lead to better ways of converting biomass to fuel By Jared Sagoff * August 7, 2013 Tweet EmailPrint ARGONNE, Ill. - Scientists and entrepreneurs...

  9. ac to dc converters: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to use solid state Inverters(DC to AC converters) to have a variable voltage, fixed or variable frequency power source available for industrial applications. With advancements...

  10. active npc converter: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solid State Transformer Engineering Websites Summary: converters as distribution transformers 1. A power electronics-based solid state transformer (SST) providesAc-Ac Dual...

  11. alcohol angiotensin-converting-enzyme inhibitors: Topics by E...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    complications. There is no specific treatment for membranous nephropathy. Supportive care with the use of diuretics and angiotensin-converting enzyme inhibitors in combination...

  12. California Energy Commission STAFF REPORT

    E-Print Network [OSTI]

    compliance with the RPS. Keywords: Biodiesel, biogas, biomass, certificates, certification, conduit hydroelectric, digester gas, electrolysis, eligibility, fuel cell, gasification, geothermal, hydrogen, landfill

  13. COMMISSION GUIDEBOOK RENEWABLES PORTFOLIO

    E-Print Network [OSTI]

    compliance with the RPS. Keywords: Biodiesel, biogas, biomass, biomethane, certificates, certification, hydrogen, landfill gas, multifuel, municipal solid waste, ocean wave, photovoltaic, pipeline biomethane

  14. California: Microturbine Protects Environment, Creates Jobs ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    including natural gas, landfill gas, biogas generated from anaerobic digesters, and syngas. While many commercial, industrial, and government facilities are well suited for...

  15. Integrated Solar Power Converters: Wafer-Level Sub-Module Integrated DC/DC Converter

    SciTech Connect (OSTI)

    None

    2012-02-09T23:59:59.000Z

    Solar ADEPT Project: CU-Boulder is developing advanced power conversion components that can be integrated into individual solar panels to improve energy yields. The solar energy that is absorbed and collected by a solar panel is converted into useable energy for the grid through an electronic component called an inverter. Many large, conventional solar energy systems use one, central inverter to convert energy. CU-Boulder is integrating smaller, microinverters into individual solar panels to improve the efficiency of energy collection. The University’s microinverters rely on electrical components that direct energy at high speeds and ensure that minimal energy is lost during the conversion process—improving the overall efficiency of the power conversion process. CU-Boulder is designing its power conversion devices for use on any type of solar panel.

  16. Integrating multi-criteria decision analysis for a GIS-based hazardous waste landfill sitting in Kurdistan Province, western Iran

    SciTech Connect (OSTI)

    Sharifi, Mozafar [Razi University Center for Environmental Studies, Faculty of Science, Baghabrisham 67149, Kermanshah (Iran, Islamic Republic of)], E-mail: sharifimozafar@gmail.com; Hadidi, Mosslem [Academic Center for Education, Culture and Research, Kermanshah (Iran, Islamic Republic of)], E-mail: hadidi_moslem@yahoo.com; Vessali, Elahe [Paradise Ave, Azad University, School of Agriculture, Shiraz (Iran, Islamic Republic of)], E-mail: elahe_vesali@yahoo.com; Mosstafakhani, Parasto [Razi University Centre for Environmental Studies, Faculty of Science, Baghabrisham 67149, Kermanshah (Iran, Islamic Republic of)], E-mail: mostafakhany2003@yahoo.com; Taheri, Kamal [Regional office of Water Resource Management, Zan Boulevard, Kermanshah (Iran, Islamic Republic of)], E-mail: taheri.kamal@gmail.com; Shahoie, Saber [Department of Soil Science, Faculty of Agriculture, Kurdistan University, University Boulevard, Sanandadj (Iran, Islamic Republic of)], E-mail: shahoei@yahoo.com; Khodamoradpour, Mehran [Regional office of Climatology, Sanandaj (Iran, Islamic Republic of)], E-mail: mehrankhodamorad@yahoo.com

    2009-10-15T23:59:59.000Z

    The evaluation of a hazardous waste disposal site is a complicated process because it requires data from diverse social and environmental fields. These data often involve processing of a significant amount of spatial information which can be used by GIS as an important tool for land use suitability analysis. This paper presents a multi-criteria decision analysis alongside with a geospatial analysis for the selection of hazardous waste landfill sites in Kurdistan Province, western Iran. The study employs a two-stage analysis to provide a spatial decision support system for hazardous waste management in a typically under developed region. The purpose of GIS was to perform an initial screening process to eliminate unsuitable land followed by utilization of a multi-criteria decision analysis (MCDA) to identify the most suitable sites using the information provided by the regional experts with reference to new chosen criteria. Using 21 exclusionary criteria, as input layers, masked maps were prepared. Creating various intermediate or analysis map layers a final overlay map was obtained representing areas for hazardous waste landfill sites. In order to evaluate different landfill sites produced by the overlaying a landfill suitability index system was developed representing cumulative effects of relative importance (weights) and suitability values of 14 non-exclusionary criteria including several criteria resulting from field observation. Using this suitability index 15 different sites were visited and based on the numerical evaluation provided by MCDA most suitable sites were determined.

  17. GHG emission factors developed for the collection, transport and landfilling of municipal waste in South African municipalities

    SciTech Connect (OSTI)

    Friedrich, Elena, E-mail: Friedriche@ukzn.ac.za [CRECHE Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Engineering, Civil Engineering Programme, University of KwaZulu-Natal, Howard College Campus, Durban (South Africa); Trois, Cristina [CRECHE Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Engineering, Civil Engineering Programme, University of KwaZulu-Natal, Howard College Campus, Durban (South Africa)

    2013-04-15T23:59:59.000Z

    Highlights: ? An average GHG emission factor for the collection and transport of municipal solid waste in South Africa is calculated. ? A range of GHG emission factors for different types of landfills (including dumps) in South Africa are calculated. ? These factors are compared internationally and their implications for South Africa and developing countries are discussed . ? Areas for new research are highlighted. - Abstract: Greenhouse gas (GHG) emission factors are used with increased frequency for the accounting and reporting of GHG from waste management. However, these factors have been calculated for developed countries of the Northern Hemisphere and are lacking for developing countries. This paper shows how such factors have been developed for the collection, transport and landfilling of municipal waste in South Africa. As such it presents a model on how international results and methodology can be adapted and used to calculate country-specific GHG emission factors from waste. For the collection and transport of municipal waste in South Africa, the average diesel consumption is around 5 dm{sup 3} (litres) per tonne of wet waste and the associated GHG emissions are about 15 kg CO{sub 2} equivalents (CO{sub 2} e). Depending on the type of landfill, the GHG emissions from the landfilling of waste have been calculated to range from ?145 to 1016 kg CO{sub 2} e per tonne of wet waste, when taking into account carbon storage, and from 441 to 2532 kg CO{sub 2} e per tonne of wet waste, when carbon storage is left out. The highest emission factor per unit of wet waste is for landfill sites without landfill gas collection and these are the dominant waste disposal facilities in South Africa. However, cash strapped municipalities in Africa and the developing world will not be able to significantly upgrade these sites and reduce their GHG burdens if there is no equivalent replacement of the Clean Development Mechanism (CDM) resulting from the Kyoto agreement. Other low cost avenues need to be investigated to suit local conditions, in particular landfill covers which enhance methane oxidation.

  18. A Water Balance Study of Four Landfill Cover Designs at Material Disposal Area B in Los Alamos, New Mexico

    SciTech Connect (OSTI)

    David D. Breshears; Fairley J. Barnes; John W. Nyhan; Johnny A. Salazar

    1998-09-01T23:59:59.000Z

    The goal of disposing of low-level radioactive and hazardous waste in shallow landfills is to reduce risk to human health and the environment by isolating contaminants until they no longer pose an unacceptable hazard. In order to achieve this, the Department of Energy Environmental Restoration Program is comparing the performance of several different surface covers at Material Disposal Area (MDA) B in Los Alamos. Two conventional landfill were compared with an improved cover designed to minimize plant and animal intrusion and to minimize water infiltration into the underlying wastes. The conventional covers varied in depth and both conventional and improved designs had different combinations of vegetation (grass verses shrub) and gravel mulch (no mulch verses mulch). These treatments were applied to each of 12 plots and water balance parameters were measured from March1987 through June 1995. Adding a gravel mulch significantly influenced the plant covered field plots receiving no gravel mulch averaged 21.2% shrub cover, while plots with gravel had a 20% larger percent cover of shrubs. However, the influence of gravel mulch on the grass cover was even larger than the influence on shrub cover, average grass cover on the plots with no gravel was 16.3%, compared with a 42% increase in grass cover due to gravel mulch. These cover relationships are important to reduce runoff on the landfill cover, as shown by a regression model that predicts that as ground cover is increased from 30 to 90%,annual runoff is reduced from 8.8 to 0.98 cm-a nine-fold increase. We also found that decreasing the slope of the landfill cover from 6 to 2% reduced runoff from the landfill cover by 2.7-fold. To minimize the risk of hazardous waste from landfills to humans, runoff and seepage need to be minimized and evapotranspiration maximized on the landfill cover. This has to be accomplished for dry and wet years at MDA B. Seepage consisted of 1.9% and 6.2% of the precipitation in the average and once in ten year events, respectively, whereas corresponding values for runoff were 13% and 16%; these changes were accompanied by corresponding decreases in evapotranspiration, which accounted for 86% and only 78% of the precipitation occurring on the average and once in ten year even~ respectively.

  19. Energy and Air Emission Implications of a Decentralized Wastewater System

    E-Print Network [OSTI]

    Shehabi, Arman

    2013-01-01T23:59:59.000Z

    represent results when methane biogas that would have beenflaring will convert methane biogas to carbon dioxide, aAgency reports that biogas is used to offset energy use at

  20. Residential and Transport Energy Use in India: Past Trend and Future Outlook

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01T23:59:59.000Z

    about 3 million family biogas units have been installed,resulting in an estimated biogas consumption of 8PJ in 2005MJ/ca/month converted in biogas with an estimated efficiency

  1. Way to reduce arc voltage losses in hybrid thermionic converters

    SciTech Connect (OSTI)

    Tskhakaya, V.K.; Yarygin, V.I.

    1982-03-01T23:59:59.000Z

    Experimental results are reported concerning the output and emission characteristics of the arc and hybrid regimes in a plane-parallel thermionic converter with Pt--Zr--O electrode pair. It is shown that arc voltage losses can be reduced to values below those obtainable in ordinary arc thermionic converters.

  2. Optimizing Ballast Design of Wave Energy Converters Using Evolutionary Algorithms

    E-Print Network [OSTI]

    Tumer, Kagan

    Optimizing Ballast Design of Wave Energy Converters Using Evolutionary Algorithms Mitch Colby, 97331 kagan.tumer@oregonstate.edu ABSTRACT Wave energy converters promise to be a viable alternative the ballast geometry of a wave energy genera- tor using a two step process. First, we generate a function

  3. Drive System for Traction Applications Using 81-Level Converter

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    of frequency converter. Keywords: vehicle power electronics, vehicle motor drives. I. INTRODUCTION Power Electronics technologies contribute with important part in the development of electric vehicles. On the otherDrive System for Traction Applications Using 81-Level Converter Juan W. Dixon, Micah E. Ortúzar

  4. Ability of Catalytic Converters to Reduce Air Pollution

    E-Print Network [OSTI]

    Nizkorodov, Sergey

    NOx - 1 Ability of Catalytic Converters to Reduce Air Pollution MEASUREMENT OF SELECTED AIR POLLUTANTS IN CAR EXHAUST Last updated: June 17, 2014 #12;NOx - 2 Ability of Catalytic Converters to Reduce Air Pollution MEASUREMENT OF SELECTED AIR POLLUTANTS IN CAR EXHAUST INTRODUCTION Automobile engines

  5. ORIGINAL PAPER Antioxidant and angiotensin-converting enzyme inhibitory

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    functions of these peptides derived from milk proteins are antioxidant and angiotensin-converting enzyme antioxidant activities of the peptides have been observed as chelation of transition metals and scavengingORIGINAL PAPER Antioxidant and angiotensin-converting enzyme inhibitory activity of yoghurt

  6. The frequency dependent impedance of an HVdc converter

    SciTech Connect (OSTI)

    Wood, A.R.; Arrillaga, J. [Univ. of Canterbury, Christchurch (New Zealand)] [Univ. of Canterbury, Christchurch (New Zealand)

    1995-07-01T23:59:59.000Z

    A linear and direct method of determining the frequency dependent impedance of a 12 pulse HVdc converter is presented. Terms are developed for both the dc and ac side impedances of the converter, including the effect of the firing angle control system, the commutation period, and the variability of the commutation period. The impedance predictions are verified by dynamic simulation.

  7. A study of Schwarz converters for nuclear powered spacecraft

    SciTech Connect (OSTI)

    Stuart, T.A. [Univ. of Toledo, OH (United States); Schwarze, G.E. [Lewis Research Center, Cleveland, OH (United States)

    1994-09-01T23:59:59.000Z

    High power space systems which use low dc voltage, high current sources such as thermoelectric generators, will most likely require high voltage conversion for transmission purposes. This study considers the use of the Schwarz resonant converter for use as the basic building block to accomplish this low-to-high voltage conversion for either a dc or an ac spacecraft bus. The Schwarz converter has the important assets of both inherent fault tolerance and resonant operation and parallel operation in modular form is possible. A regulated dc spacecraft bus requires only a single stage converter while a constant frequency ac bus requires a cascaded Schwarz converter configuration. If the power system requires constant output power from the dc generator, then a second converter is required to route unneeded power to a ballast load.

  8. A computer program for HVDC converter station RF noise calculations

    SciTech Connect (OSTI)

    Kasten, D.G.; Caldecott, R.; Sebo, S.A. (Ohio State Univ., Columbus, OH (United States). Dept. of Electrical Engineering); Liu, Y. (Virginia Polytechnic Inst. State Univ., Blacksburg, VA (United States). Bradley Dept. of Electrical Engineering)

    1994-04-01T23:59:59.000Z

    HVDC converter station operations generate radio frequency (RF) electromagnetic (EM) noise which could interfere with adjacent communication and computer equipment, and carrier system operations. A generic Radio Frequency Computer Analysis Program (RAFCAP) for calculating the EM noise generated by valve ignition of a converter station has been developed as part of a larger project. The program calculates RF voltages, currents, complex power, ground level electric field strength and magnetic flux density in and around an HVDC converter station. The program requires the converter station network to be represented by frequency dependent impedance functions. Comparisons of calculated and measured values are given for an actual HVDC station to illustrate the validity of the program. RAFCAP is designed to be used by engineers for the purpose of calculating the RF noise produced by the igniting of HVDC converter valves.

  9. Sanitary Landfill groundwater monitoring report. Fourth quarterly report and summary 1993

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    Fifty-seven wells of the LFW series monitor groundwater quality in Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Waste Permit DWP-087A and as part of the SRS Groundwater Monitoring Program. Dichloromethane a common laboratory contaminant, and trichloroethylene were the most widespread constituents exceeding standards during 1993. Benzene, chlorobenzene, chloroethene 1,2 dichloroethane, 1,1-dichloroethylene, 1,2-dichloropropane, gross alpha, lindane, mercury, tetrachloroethylene, and tritium also exceeded standards in one or more wells. No groundwater contaminants were observed in wells screened in the lower section of Steed Pond Aquifer.

  10. Probabilistic performance-assessment modeling of the mixed waste landfill at Sandia National Laboratories.

    SciTech Connect (OSTI)

    Peace, Gerald (Jerry) L. (.); Goering, Timothy James (GRAM, Inc.); Miller, Mark Laverne; Ho, Clifford Kuofei

    2007-01-01T23:59:59.000Z

    A probabilistic performance assessment has been conducted to evaluate the fate and transport of radionuclides (americium-241, cesium-137, cobalt-60, plutonium-238, plutonium-239, radium-226, radon-222, strontium-90, thorium-232, tritium, uranium-238), heavy metals (lead and cadmium), and volatile organic compounds (VOCs) at the Mixed Waste Landfill (MWL). Probabilistic analyses were performed to quantify uncertainties inherent in the system and models for a 1,000-year period, and sensitivity analyses were performed to identify parameters and processes that were most important to the simulated performance metrics. Comparisons between simulated results and measured values at the MWL were made to gain confidence in the models and perform calibrations when data were available. In addition, long-term monitoring requirements and triggers were recommended based on the results of the quantified uncertainty and sensitivity analyses.

  11. Siting landfills and incinerators in areas of historic unpopularity: Surveying the views of the next generation

    SciTech Connect (OSTI)

    De Feo, Giovanni, E-mail: g.defeo@unisa.it [Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (Italy); Williams, Ian D. [Waste Management Research Group, Faculty of Engineering and the Environment, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom)

    2013-12-15T23:59:59.000Z

    Highlights: • Opinions and knowledge of young people in Italy about waste were studied. • Historic opposition to construction of waste facilities is difficult to overcome. • Awareness of waste management develops with knowledge of environmental issues. • Many stakeholders’ views are needed when siting a new waste management facility. • Respondents’ opinions were influenced by their level of environmental knowledge. - Abstract: The Campania Region in Southern Italy has suffered many problems with municipal solid waste management since the mid-1990s, leading to significant public disturbances and subsequent media coverage. This paper reports on the current views and knowledge of young people (university students) in this region about waste management operations and facilities, specifically the siting of landfills and incinerators. By means of a structured questionnaire, opinion and knowledge were systematically examined by degree type and course year. The study took place in 2011 at the University of Salerno campus. A sample of 900 students, comprising 100 students for each of the nine considered faculties, and 20 students for every academic course year, was randomly selected. Only about a quarter of respondents were not opposed to the siting of a landfill or an incinerator in their city. This clearly highlights that historic opposition to the construction of waste facilities is difficult to overcome and that distrust for previous poor management or indiscretions is long-lived and transcends generations. Students from technical faculties expressed the most reasonable opinion; opinion and knowledge were statistically related (Chi-square test, p < 0.05) to the attended faculty, and the knowledge grew linearly with progression through the university. This suggests that awareness of waste management practices develops with experience and understanding of environmental issues. There is general acceptance that many stakeholders – technicians, politicians and citizens – all have to be part of the decision process when siting a new waste management facility. The opinions of the young respondents were significantly influenced by their level of environmental knowledge.

  12. Scaling methane oxidation: From laboratory incubation experiments to landfill cover field conditions

    SciTech Connect (OSTI)

    Abichou, Tarek, E-mail: abichou@eng.fsu.edu [Florida State University, Tallahassee, FL 32311 (United States); Mahieu, Koenraad; Chanton, Jeff [Florida State University, Tallahassee, FL 32311 (United States); Romdhane, Mehrez; Mansouri, Imane [Unite de Recherche M.A.C.S., Ecole Nationale d'Ingenieurs de Gabes, Route de Medenine, 6029 Gabes (Tunisia)

    2011-05-15T23:59:59.000Z

    Evaluating field-scale methane oxidation in landfill cover soils using numerical models is gaining interest in the solid waste industry as research has made it clear that methane oxidation in the field is a complex function of climatic conditions, soil type, cover design, and incoming flux of landfill gas from the waste mass. Numerical models can account for these parameters as they change with time and space under field conditions. In this study, we developed temperature, and water content correction factors for methane oxidation parameters. We also introduced a possible correction to account for the different soil structure under field conditions. These parameters were defined in laboratory incubation experiments performed on homogenized soil specimens and were used to predict the actual methane oxidation rates to be expected under field conditions. Water content and temperature corrections factors were obtained for the methane oxidation rate parameter to be used when modeling methane oxidation in the field. To predict in situ measured rates of methane with the model it was necessary to set the half saturation constant of methane and oxygen, K{sub m}, to 5%, approximately five times larger than laboratory measured values. We hypothesize that this discrepancy reflects differences in soil structure between homogenized soil conditions in the lab and actual aggregated soil structure in the field. When all of these correction factors were re-introduced into the oxidation module of our model, it was able to reproduce surface emissions (as measured by static flux chambers) and percent oxidation (as measured by stable isotope techniques) within the range measured in the field.

  13. Wind turbines convert the kinetic energy in moving air into rotational energy, which in turn is converted

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Wind turbines convert the kinetic energy in moving air into rotational energy, which in turn is converted to electricity. Since wind speeds vary from month to month and second to second, the amount of electricity wind can make varies constantly. Sometimes a wind turbine will make no power at all

  14. Magnet Technology for Power Converters: Nanocomposite Magnet Technology for High Frequency MW-Scale Power Converters

    SciTech Connect (OSTI)

    None

    2012-02-27T23:59:59.000Z

    Solar ADEPT Project: CMU is developing a new nanoscale magnetic material that will reduce the size, weight, and cost of utility-scale PV solar power conversion systems that connect directly to the grid. Power converters are required to turn the energy that solar power systems create into useable energy for the grid. The power conversion systems made with CMU’s nanoscale magnetic material have the potential to be 150 times lighter and significantly smaller than conventional power conversion systems that produce similar amounts of power.

  15. Dump fire leaves toxic air, sludge A fire which burned for four days at a landfill site in Thessaloniki, sending thick black

    E-Print Network [OSTI]

    Columbia University

    Dump fire leaves toxic air, sludge A fire which burned for four days at a landfill site to break. This led to sludge flowing into some nearby houses. Authorities are due to begin the cleanup

  16. Landfill Gas Conversion to LNG and LCO{sub 2}. Phase II Final Report for January 25, 1999 - April 30, 2000

    SciTech Connect (OSTI)

    Brown, W. R.; Cook, W. J.; Siwajek, L. A.

    2000-10-20T23:59:59.000Z

    This report summarizes work on the development of a process to produce LNG (liquefied methane) for heavy vehicle use from landfill gas (LFG) using Acrion's CO{sub 2} wash process for contaminant removal and CO{sub 2} recovery.

  17. Superfund Record of Decision (EPA Region 2): Hertel Landfill, town of Plattekill, Ulster County, NY. (First remedial action), September 1991. Final report

    SciTech Connect (OSTI)

    Not Available

    1991-09-27T23:59:59.000Z

    The 80-acre Hertel Landfill site consists of a 13-acre former municipal landfill and adjacent land in Plattekill, Ulster County, New York. The site overlies two natural aquifers. In 1976, the site was shut down for a variety of violations, including illegal dumping of industrial wastes and violating a town ordinance prohibiting the disposal of non-local waste. As a result of these improper disposal practices, a number of State investigations were conducted, which identified contamination by various organic compounds and metals in the onsite soil and ground water. The Record of Decision (ROD) addresses soil contaminated by landfill wastes, and ground water contaminated by landfill leachate. The primary contaminants of concern affecting the soil, sediment, debris, and ground water are VOCs including benzene, toluene, and xylenes; other organics including phenols; and metals including arsenic, chromium, and lead. The selected remedial action for the site is included.

  18. Ion trapping in the emitter sheath in thermionic converters

    SciTech Connect (OSTI)

    Lundgren, L.

    1985-12-01T23:59:59.000Z

    The effect of ion trapping in the emitter sheath in ignited thermionic converters is studied. The ion trapping prevents the emitter-sheath barrier from being higher than approximately 0.1 eV, when the current decreases in the converter. This gives a condition for the constriction of the arc. I-V curves are calculated for an ignited thermionic converter with a hydrodynamic plasma theory that takes into account the effect of Coulomb scattering and volume recombination, but assumes that the electron temperature is constant in the plasma.

  19. Design and operation of a thermionic converter in air

    SciTech Connect (OSTI)

    Horner, M.H.; Begg, L.L.; Smith, J.N. Jr. [General Atomics, San Diego, CA (United States); Geller, C.B.; Kallnowski, J.E. [Westinghouse Electric Corp., West Mifflin, PA (United States). Bettis Atomic Power Lab.

    1995-01-01T23:59:59.000Z

    An electrically heated thermionic converter has been designed, built and successfully tested in air. Several unique features were incorporated in this converter: an integral cesium reservoir, innovative ceramic-to-metal seals, a heat rejection system coupling the collector to a low temperature heat sink and an innovative cylindrical heater filament. The converter was operated for extended periods of time with the emitter at about 1900 K. the collector at about 700 K, and a power density of over 2 w(e)/sq. cm. Input power transients were run between 50% and 100% thermal power, at up to 1% per second, without instabilities in performance.

  20. Prediction of core saturation instability at an HVDC converter

    SciTech Connect (OSTI)

    Burton, R.S. [Teshmont Consultants, Inc., Winnipeg, Manitoba (Canada)] [Teshmont Consultants, Inc., Winnipeg, Manitoba (Canada); Fuchshuber, C.F. [Alberta Power Ltd., Edmonton, Alberta (Canada)] [Alberta Power Ltd., Edmonton, Alberta (Canada); Woodford, D.A. [Manitoba HVDC Research Centre, Winnipeg, Manitoba (Canada)] [Manitoba HVDC Research Centre, Winnipeg, Manitoba (Canada); Gole, A.M. [Univ. of Manitoba, Winnipeg, Manitoba (Canada)] [Univ. of Manitoba, Winnipeg, Manitoba (Canada)

    1996-10-01T23:59:59.000Z

    Core saturation instability has occurred on several HVDC schemes resulting from interactions between second harmonic and dc quantities (voltages and currents) on the ac side of the converter and fundamental frequency quantities on the dc side of the converter. The instability can be reinforced by unbalanced saturation of the converter transformers. The paper presents an analytical method which can be used to quickly screen ac and dc system operating conditions to predict where core saturation instability is likely to occur. Analytical results have been confirmed using the digital transients simulation program PSCAD/EMTDC.

  1. Environmental assessment for the construction, operation, and closure of the solid waste landfill at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect (OSTI)

    NONE

    1995-03-01T23:59:59.000Z

    DOE has prepared an environmental assessment (EA) for the proposed construction, operation, and closure of a Solid Waste Landfill (SWL) that would be designed in accordance with Commonwealth of Kentucky landfill regulations (401 Kentucky Administrative Regulations Chapters 47 and 48 and Kentucky Revised Statutes 224.855). PGDP produces approximately 7,200 cubic yards per year of non-hazardous, non-radioactive solid waste currently being disposed of in a transitional contained (residential) landfill cell (Cell No. 3). New Kentucky landfill regulations mandate that all existing landfills be upgraded to meet the requirements of the new regulations or stop receiving wastes by June 30, 1995. Cell No. 3 must stop receiving wastes at that time and be closed and capped within 180 days after final receipt of wastes. The proposed SWL would occupy 25 acres of a 60-acre site immediately north of the existing PGDP landfill (Cell No. 3). The EA evaluated the potential environmental consequences of the proposed action and reasonable alternative actions. Based on the analysis in the EA, DOE has determined that the proposed action does not constitute a major Federal action which will significantly affect the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA), 42 USC 4321 et seq. Therefore, it is determined that an environmental impact statement will not be prepared, and DOE is issuing this FONSI.

  2. Cultural Resources Review for Closure of the nonradioactive Dangerous Waste Landfill and Solid Waste Landfill in the 600 Area, Hanford Site, Benton County, Washington, HCRC# 2010-600-018R

    SciTech Connect (OSTI)

    Gutzeit, Jennifer L.; Kennedy, Ellen P.; Bjornstad, Bruce N.; Sackschewsky, Michael R.; Sharpe, James J.; DeMaris, Ranae; Venno, M.; Christensen, James R.

    2011-02-02T23:59:59.000Z

    The U.S. Department of Energy Richland Operations Office is proposing to close the Nonradioactive Dangerous Waste Landfill (NRDWL) and Solid Waste Landfill (SWL) located in the 600 Area of the Hanford Site. The closure of the NRDWL/SWL entails the construction of an evapotranspiration cover over the landfill. This cover would consist of a 3-foot (1-meter) engineered layer of fine-grained soil, modified with 15 percent by weight pea gravel to form an erosion-resistant topsoil that will sustain native vegetation. The area targeted for silt-loam borrow soil sits in Area C, located in the northern central portion of the Fitzner/Eberhardt Arid Lands Ecology (ALE) Reserve Unit. The pea gravel used for the mixture will be obtained from both off-site commercial sources and an active gravel pit (Pit #6) located just west of the 300 Area of the Hanford Site. Materials for the cover will be transported along Army Loop Road, which runs from Beloit Avenue (near the Rattlesnake Barricade) east-northeast to the NRDWL/SWL, ending at State Route 4. Upgrades to Army Loop Road are necessary to facilitate safe bidirectional hauling traffic. This report documents a cultural resources review of the proposed activity, conducted according to Section 106 of the National Historic Preservation Act of 1966.

  3. ADVANTAGES AND DISADVANTAGES TO OPERATING AN ON-SITE LABORATORY AT THE SANDIA NATIONAL LABORATORIES CHEMICAL WASTE LANDFILL

    SciTech Connect (OSTI)

    Young, S.G.; Creech, M.N.

    2003-02-27T23:59:59.000Z

    During the excavation of the Sandia National Laboratories, New Mexico (SNL/NM) Chemical Waste Landfill (CWL), operations were realized by the presence of URS' (formerly known as United Research Services) On-site Mobile Laboratory (OSML) and the close proximity of the SNL/NM Environmental Restoration Chemical Laboratory (ERCL). The laboratory was located adjacent to the landfill in order to provide soil characterization, health and safety support, and waste management data. Although the cost of maintaining and operating an analytical laboratory can be higher than off-site analysis, there are many benefits to providing on site analytical services. This paper describes the synergies between the laboratory, as well as the advantages and disadvantages to having a laboratory on-site during the excavation of SNL/NM CWL.

  4. Cultural Resource Assessment of the Test Area North Demolition Landfill at the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    Brenda R. Pace

    2003-07-01T23:59:59.000Z

    The proposed new demolition landfill at Test Area North on the Idaho National Engineering and Environmental Laboratory (INEEL) will support ongoing demolition and decontamination within the facilities on the north end of the INEEL. In June of 2003, the INEEL Cultural Resource Management Office conducted archival searches, field surveys, and coordination with the Shoshone-Bannock Tribes to identify all cultural resources that might be adversely affected by the project and to provide recommendations to protect those listed or eligible for listing on the National Register of Historic Places. These investigations showed that landfill construction and operation would affect two significant cultural resources. This report outlines protective measures to ensure that these effects are not adverse.

  5. Health assessment for Shpack Landfill, Attleboro/North, Massachusetts, Region 1. CERCLIS No. MAD980503973. Preliminary report

    SciTech Connect (OSTI)

    Not Available

    1989-04-18T23:59:59.000Z

    The Shpack Landfill site is on the National Priorities List (NPL). The landfill received both domestic and industrial waste, including inorganic and organic chemicals as well as radioactive waste. Ground water contains vinyl chloride, trichloroethylene, trans-1,2-dichloroethylene, tetrachloroethylene, chromium, barium, copper, nickel, manganese, arsenic, cadmium, lead, polychlorinated biphenyl-1260 (Aroclor-1260), radium-226, alpha particles and beta particles. Surface and subsurface soil samples contained radium-226, uranium-238, uranium-235, uranium-234, and visual evidence of metal plating waste sludges. The site is considered to be of potential health concern because of the risk to human health caused by the potential for exposure to hazardous substances via ingestion of contaminated soils at the site and future ingestion of contaminated domestic well water.

  6. Idaho Application for Permit to Convert a Geothermal Injection...

    Open Energy Info (EERE)

    navigation, search OpenEI Reference LibraryAdd to library Form: Idaho Application for Permit to Convert a Geothermal Injection Well - Form 4003-3 Form Type ApplicationNotice Form...

  7. Multilevel Converter Topologies for Utility Scale Solar Photovoltaic Power Systems

    E-Print Network [OSTI]

    Essakiappan, Somasundaram

    2014-04-30T23:59:59.000Z

    sources like photovoltaics (PV) to the utility grid, some of which are multilevel topologies. Multilevel topologies allow for use of lower voltage semiconductor devices than two-level converters. They also produce lower distortion output voltage waveforms...

  8. Oversampled pipline A/D converters with mismatch shaping

    E-Print Network [OSTI]

    Shabra, Ayman U. (Ayman Umar)

    2001-01-01T23:59:59.000Z

    This thesis introduces a technique to improve the linearity of pipeline analog to digital converters (ADC). Through a combination of oversampling and mismatch shaping, the distortion introduced by component mismatch is ...

  9. Protocols for the Equitable Assessment of Marine Energy Converters 

    E-Print Network [OSTI]

    Ingram, David; Smith, George; Bittencourt-Ferreira, Claudio; Smith, Helen

    This book contains the suite of protocols for the equitable evaluation of marine energy converters (based on either tidal or wave energy) produced by the EquiMar consortium led by the University of Edinburgh. These protocols ...

  10. Monolithic series-connected gallium arsenide converter development

    SciTech Connect (OSTI)

    Spitzer, M.B.; McClelland, R.W.; Dingle, B.D.; Dingle, J.E.; Hill, D.S. (Kopin Corp., Taunton, MA (United States)); Rose, B.H. (Sandia National Labs., Albuquerque, NM (United States))

    1991-01-01T23:59:59.000Z

    We report the development of monolithic GaAs photovoltaic devices intended to convert light generated by a laser or other bright source to electricity. The converters described here can provide higher operating voltage than is possible using a single-junction converter, owing to use of a monolithic circuit that forms a planar series-connected string of single-junction sub-cells. This planar monolithic circuit is arranged to deliver the desired voltage and current during operation at the maximum power point. The paper describes two-, six-, and twelve-junction converters intended for illumination by a laser diode with a wavelength of 0.8 {mu}m. Design and characterization data are presented for optical power in the range of 100 mW to 1 W. The best conversion efficiency exceeds 50%. 9 refs., 4 figs., 2 tabs.

  11. Automated Synthesis Tool for Design Optimization of Power Electronic Converters

    E-Print Network [OSTI]

    Mirjafari, Mehran

    2013-01-09T23:59:59.000Z

    Designers of power electronic converters usually face the challenge of having multiple performance indices that must be simultaneously optimized, such as maximizing efficiency while minimizing mass or maximizing reliability while minimizing cost...

  12. Sandia National Laboratories: resonant wave-energy converter...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    resonant wave-energy converter devices Inter-Agency Agreement Signed between DOE's Wind and Water Power Program and Carderock On December 3, 2014, in Energy, News, News & Events,...

  13. Photo of the Week: Converting Solar Energy into Fuel | Department...

    Broader source: Energy.gov (indexed) [DOE]

    toured the facilities that produce wind power generators and converters, in addition to PV solar inverters. In this photo he looks at a Stator 2MW Wind Turbine Generator. | Photo...

  14. Multiport Converter Topologies for Distributed Energy System Applications

    E-Print Network [OSTI]

    Hawke, Joshua

    2014-07-28T23:59:59.000Z

    fuel cell hybrid energy storage (MFC+HES) converter. First, low-voltage and medium-voltage PSC architectures are shown to decouple series-connected source currents and enable independent control. Multidimensional modeling and analysis is then discussed...

  15. A global maximum power point tracking DC-DC converter

    E-Print Network [OSTI]

    Duncan, Joseph, 1981-

    2005-01-01T23:59:59.000Z

    This thesis describes the design, and validation of a maximum power point tracking DC-DC converter capable of following the true global maximum power point in the presence of other local maximum. It does this without the ...

  16. MATHEMATICAL ANALYSIS OF A WAVE ENERGY CONVERTER ARNAUD ROUGIREL

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    for buoy-type ocean wave energy converter. The simplest model for this scheme is a non autonomous piecewise): see [OOS10]. Basically, a WEC is a floating body with a power takeoff system. It uses the vertical

  17. Method for converting uranium oxides to uranium metal

    DOE Patents [OSTI]

    Duerksen, Walter K. (Norris, TN)

    1988-01-01T23:59:59.000Z

    A process is described for converting scrap and waste uranium oxide to uranium metal. The uranium oxide is sequentially reduced with a suitable reducing agent to a mixture of uranium metal and oxide products. The uranium metal is then converted to uranium hydride and the uranium hydride-containing mixture is then cooled to a temperature less than -100.degree. C. in an inert liquid which renders the uranium hydride ferromagnetic. The uranium hydride is then magnetically separated from the cooled mixture. The separated uranium hydride is readily converted to uranium metal by heating in an inert atmosphere. This process is environmentally acceptable and eliminates the use of hydrogen fluoride as well as the explosive conditions encountered in the previously employed bomb-reduction processes utilized for converting uranium oxides to uranium metal.

  18. A Dual Supply Buck Converter with Improved Light Load Efficiency 

    E-Print Network [OSTI]

    Chen, Hui

    2013-05-02T23:59:59.000Z

    Power consumption is the primary concern in battery-operated portable applications. Buck converters have gained popularity in powering portable devices due to their compact size, good current delivery capability and high efficiency. However...

  19. Development, evaluation, and design applications of an AMTEC converter model 

    E-Print Network [OSTI]

    Spence, Cliff Alan

    2002-01-01T23:59:59.000Z

    An AMTEC converter model was developed and its effectiveness as a design tool was evaluated. To develop the model, requirements of the model were defined, modeling equations were selected, and a methodology for model development was established...

  20. Vehicle Technologies Office Merit Review 2014: WBG Converters and Chargers

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about WBG converters...