National Library of Energy BETA

Sample records for landfill gas utilization

  1. Hartford Landfill Gas Utilization Proj Biomass Facility | Open...

    Open Energy Info (EERE)

    Landfill Gas Utilization Proj Biomass Facility Jump to: navigation, search Name Hartford Landfill Gas Utilization Proj Biomass Facility Facility Hartford Landfill Gas Utilization...

  2. Albany Landfill Gas Utilization Project Biomass Facility | Open...

    Open Energy Info (EERE)

    Landfill Gas Utilization Project Biomass Facility Jump to: navigation, search Name Albany Landfill Gas Utilization Project Biomass Facility Facility Albany Landfill Gas Utilization...

  3. Balefill Landfill Gas Utilization Proj Biomass Facility | Open...

    Open Energy Info (EERE)

    Balefill Landfill Gas Utilization Proj Biomass Facility Jump to: navigation, search Name Balefill Landfill Gas Utilization Proj Biomass Facility Facility Balefill Landfill Gas...

  4. Lopez Landfill Gas Utilization Project Biomass Facility | Open...

    Open Energy Info (EERE)

    Lopez Landfill Gas Utilization Project Biomass Facility Jump to: navigation, search Name Lopez Landfill Gas Utilization Project Biomass Facility Facility Lopez Landfill Gas...

  5. Methane Gas Utilization Project from Landfill at Ellery (NY)

    SciTech Connect (OSTI)

    Pantelis K. Panteli

    2012-01-10

    Landfill Gas to Electric Energy Generation and Transmission at Chautauqua County Landfill, Town of Ellery, New York. The goal of this project was to create a practical method with which the energy, of the landfill gas produced by the decomposing waste at the Chautauqua County Landfill, could be utilized. This goal was accomplished with the construction of a landfill gas to electric energy plant (originally 6.4MW and now 9.6MW) and the construction of an inter-connection power-line, from the power-plant to the nearest (5.5 miles) power-grid point.

  6. Feasibility study: utilization of landfill gas for a vehicle fuel system, Rossman's landfill, Clackamas County, Oregon

    SciTech Connect (OSTI)

    1981-01-01

    In 1978, a landfill operator in Oregon became interested in the technical and economic feasibility of recovering the methane generated in the landfill for the refueling of vehicles. DOE awarded a grant for a site-specific feasibility study of this concept. This study investigated the expected methane yield and the development of a conceptual gas-gathering system; gas processing, compressing, and storage systems; and methane-fueled vehicle systems. Cost estimates were made for each area of study. The results of the study are presented. Reasoning that gasoline prices will continue to rise and that approximately 18,000 vehicles in the US have been converted to operate on methane, a project is proposed to use this landfill as a demonstration site to produce and process methane and to fuel a fleet (50 to 400) vehicles with the gas produced in order to obtain performance and economic data on the systems used from gas collection through vehicle operation. (LCL)

  7. 7.4 Landfill Methane Utilization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7.4 Landfill Methane Utilization 7.4 Landfill Methane Utilization A chapter on Landfill Methane Utilization from the Clean Energy Strategies for Local Governments publication. PDF icon 7.4_landfill_methane_utilization.pdf More Documents & Publications CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities Powering Microturbines With Landfill Gas, October 2002 Barriers to CHP with Renewable Portfolio Standards, Draft White Paper, September 2007

  8. Landfill Gas | Open Energy Information

    Open Energy Info (EERE)

    Gas Jump to: navigation, search TODO: Add description List of Landfill Gas Incentives Retrieved from "http:en.openei.orgwindex.php?titleLandfillGas&oldid267173...

  9. Sour landfill gas problem solved

    SciTech Connect (OSTI)

    Nagl, G.; Cantrall, R.

    1996-05-01

    In Broward County, Fla., near Pompano Beach, Waste Management of North America (WMNA, a subsidiary of WMX Technologies, Oak Brook, IL) operates the Central Sanitary Landfill and Recycling Center, which includes the country`s largest landfill gas-to-energy plant. The landfill consists of three collection sites: one site is closed, one is currently receiving garbage, and one will open in the future. Approximately 9 million standard cubic feet (scf) per day of landfill gas is collected from approximately 300 wells spread over the 250-acre landfill. With a dramatic increase of sulfur-containing waste coming to a South Florida landfill following Hurricane Andrew, odors related to hydrogen sulfide became a serious problem. However, in a matter of weeks, an innovative desulfurization unit helped calm the landfill operator`s fears. These very high H{sub 2}S concentrations caused severe odor problems in the surrounding residential area, corrosion problems in the compressors, and sulfur dioxide (SO{sub 2}) emission problems in the exhaust gas from the turbine generators.

  10. Spadra Landfill Gas to Energy Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Spadra Landfill Gas to Energy Biomass Facility Jump to: navigation, search Name Spadra Landfill Gas to Energy Biomass Facility Facility Spadra Landfill Gas to Energy Sector Biomass...

  11. Woodland Landfill Gas Recovery Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Landfill Gas Recovery Biomass Facility Jump to: navigation, search Name Woodland Landfill Gas Recovery Biomass Facility Facility Woodland Landfill Gas Recovery Sector Biomass...

  12. Olinda Landfill Gas Recovery Plant Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Olinda Landfill Gas Recovery Plant Biomass Facility Jump to: navigation, search Name Olinda Landfill Gas Recovery Plant Biomass Facility Facility Olinda Landfill Gas Recovery Plant...

  13. Tapping Landfill Gas to Provide Significant Energy Savings and Greenhouse Gas Reductions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tapping Landfill Gas to Provide Significant Energy Savings and Greenhouse Gas Reductions Recovery Act Funding Supports Two Large Landfill Projects BroadRock Renewables, LLC built two high efficiency electricity generating facilities that utilize landfill gas in California and Rhode Island. The two projects received a total of $25 million in U.S. Department of Energy funding from the American Recovery and Reinvestment Act (ARRA) of 2009. Private-sector cost share for the projects totaled

  14. Penrose Landfill Gas Conversion LLC | Open Energy Information

    Open Energy Info (EERE)

    Page Edit with form History Penrose Landfill Gas Conversion LLC Jump to: navigation, search Name: Penrose Landfill Gas Conversion LLC Place: Los Angeles, California Product: Owner...

  15. Franklin County Sanitary Landfill - Landfill Gas (LFG) to Liquefied Natural Gas (LNG) - Project

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    FRANKLIN COUNTY SANITARY LANDFILL - LANDFILL GAS (LFG) TO LIQUEFIED NATURAL GAS (LNG) - PROJECT January/February 2005 Prepared for: National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 Table of Contents Page BACKGROUND AND INTRODUCTION .......................................................................................1 SUMMARY OF EFFORT PERFORMED ......................................................................................2 Task 2B.1 - Literature Search

  16. Tapping Landfill Gas to Provide Significant Energy Savings and Greenhouse

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gas Reductions - Case Study, 2013 | Department of Energy Tapping Landfill Gas to Provide Significant Energy Savings and Greenhouse Gas Reductions - Case Study, 2013 Tapping Landfill Gas to Provide Significant Energy Savings and Greenhouse Gas Reductions - Case Study, 2013 BroadRock Renewables LLC, in collaboration with DCO Energy, operates combined cycle electric generating plants at the Central Landfill in Johnston, Rhode Island, and Olinda Alpha Landfill in Brea, California. The Rhode

  17. Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Refuse Vehicles Renewable Natural Gas From Landfill Powers Refuse Vehicles to someone by E-mail Share Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Facebook Tweet about Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Twitter Bookmark Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Google Bookmark Alternative Fuels Data Center: Renewable Natural Gas From

  18. Using landfill gas for energy: Projects that pay

    SciTech Connect (OSTI)

    1995-02-01

    Pending Environmental Protection Agency regulations will require 500 to 700 landfills to control gas emissions resulting from decomposing garbage. Conversion of landfill gas to energy not only meets regulations, but also creates energy and revenue for local governments.

  19. Powering Microturbines With Landfill Gas, October 2002 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Powering Microturbines With Landfill Gas, October 2002 Powering Microturbines With Landfill Gas, October 2002 Microturbines are an emerging landfill gas (LFG) energy recovery technology option, especially at smaller landfills where larger electric generation plants are not generally feasible due to economic factors and lower amounts of LFG. This fact sheet provides an overview of microturbine technology and its applications, as well as the economic considerations and benefits of

  20. Greenhouse gas emissions from landfill leachate treatment plants: A

    Office of Scientific and Technical Information (OSTI)

    comparison of young and aged landfill (Journal Article) | SciTech Connect Greenhouse gas emissions from landfill leachate treatment plants: A comparison of young and aged landfill Citation Details In-Document Search Title: Greenhouse gas emissions from landfill leachate treatment plants: A comparison of young and aged landfill Highlights: * Young and aged leachate works accounted for 89.1% and 10.9% of 33.35 Gg CO{sub 2} yr{sup -1}. * Fresh leachate owned extremely low ORP and high organic

  1. Tapping Landfill Gas to Provide Significant Energy Savings and Greenhouse Gas Reductions - Case Study

    SciTech Connect (OSTI)

    2013-04-30

    BroadRock Renewables, LLC built two high efficiency electricity generating facilities that utilize landfill gas in California and Rhode Island. The two projects received a total of $25 million in U.S. Department of Energy funding from the American Recovery and Reinvestment Act (ARRA) of 2009. Private-sector cost share for the projects totaled approximately $186 million.

  2. BUNCOMBE COUNTY WASTEWATER PRE-TREATMENT AND LANDFILL GAS TO ENERGY PROJECT

    SciTech Connect (OSTI)

    Jon Creighton

    2012-03-13

    The objective of this project was to construct a landfill gas-to-energy (LFGTE) facility that generates a renewable energy source utilizing landfill gas to power a 1.4MW generator, while at the same time reducing the amount of leachate hauled offsite for treatment. The project included an enhanced gas collection and control system, gas conditioning equipment, and a 1.4 MW generator set. The production of cleaner renewable energy will help offset the carbon footprint of other energy sources that are currently utilized.

  3. Investigation of Integrated Subsurface Processing of Landfill Gas and Carbon Sequestration, Johnson County, Kansas

    SciTech Connect (OSTI)

    K. David Newell; Timothy R. Carr

    2007-03-31

    The Johnson County Landfill in Shawnee, KS is operated by Deffenbaugh Industries and serves much of metropolitan Kansas City. Refuse, which is dumped in large plastic-underlined trash cells covering several acres, is covered over with shale shortly after burial. The landfill waste, once it fills the cell, is then drilled by Kansas City LFG, so that the gas generated by anaerobic decomposition of the refuse can be harvested. Production of raw landfill gas from the Johnson County landfill comes from 150 wells. Daily production is approximately 2.2 to 2.5 mmcf, of which approximately 50% is methane and 50% is carbon dioxide and NMVOCs (non-methane volatile organic compounds). Heating value is approximately 550 BTU/scf. A upgrading plant, utilizing an amine process, rejects the carbon dioxide and NMVOCs, and upgrades the gas to pipeline quality (i.e., nominally a heating value >950 BTU/scf). The gas is sold to a pipeline adjacent to the landfill. With coal-bearing strata underlying the landfill, and carbon dioxide a major effluent gas derived from the upgrading process, the Johnson County Landfill is potentially an ideal setting to study the feasibility of injecting the effluent gas in the coals for both enhanced coalbed methane recovery and carbon sequestration. To these ends, coals below the landfill were cored and then were analyzed for their thickness and sorbed gas content, which ranged up to 79 scf/ton. Assuming 1 1/2 square miles of land (960 acres) at the Johnson County Landfill can be utilized for coalbed and shale gas recovery, the total amount of in-place gas calculates to 946,200 mcf, or 946.2 mmcf, or 0.95 bcf (i.e., 985.6 mcf/acre X 960 acres). Assuming that carbon dioxide can be imbibed by the coals and shales on a 2:1 ratio compared to the gas that was originally present, then 1682 to 1720 days (4.6 to 4.7 years) of landfill carbon dioxide production can be sequestered by the coals and shales immediately under the landfill. Three coal--the Bevier, Fleming, and Mulberry coals--are the major coals of sufficient thickness (nominally >1-foot) that can imbibe carbon dioxide gas with an enhanced coalbed injection. Comparison of the adsorption gas content of coals to the gas desorbed from the coals shows that the degree of saturation decreases with depth for the coals.

  4. Renewable Energy Holdings Landfill Gas Wales Ltd REH Wales |...

    Open Energy Info (EERE)

    Gas Wales Ltd REH Wales Jump to: navigation, search Name: Renewable Energy Holdings Landfill Gas (Wales) Ltd (REH Wales) Place: United Kingdom Product: A joint venture to own and...

  5. Fuel Flexibility: Landfill Gas Contaminant Mitigation for Power Generation

    SciTech Connect (OSTI)

    Storey, John Morse; Theiss, Timothy J; Kass, Michael D; FINNEY, Charles E A; Lewis, Samuel; Kaul, Brian C; Besmann, Theodore M; Thomas, John F; Rogers, Hiram; Sepaniak, Michael

    2014-04-01

    This research project focused on the mitigation of silica damage to engine-based renewable landfill gas energy systems. Characterization of the landfill gas siloxane contamination, combined with characterization of the silica deposits in engines, led to development of two new mitigation strategies. The first involved a novel method for removing the siloxanes and other heavy contaminants from the landfill gas prior to use by the engines. The second strategy sought to interrupt the formation of hard silica deposits in the engine itself, based on inspection of failed landfill gas engine parts. In addition to mitigation, the project had a third task to develop a robust sensor for siloxanes that could be used to control existing and/or future removal processes.

  6. Recovery Act: Brea California Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    SciTech Connect (OSTI)

    Galowitz, Stephen

    2012-12-31

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Olinda Landfill near Brea, California. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting Project reflected a cost effective balance of the following specific sub-objectives: Meeting the environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas Utilizing proven and reliable technology and equipment Maximizing electrical efficiency Maximizing electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Olinda Landfill Maximizing equipment uptime Minimizing water consumption Minimizing post-combustion emissions The Project produced and will produce a myriad of beneficial impacts. o The Project created 360 FTE construction and manufacturing jobs and 15 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. o By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). o The Project will annually produce 280,320 MWhs of clean energy o By destroying the methane in the landfill gas, the Project will generate CO2 equivalent reductions of 164,938 tons annually. The completed facility produces 27.4 MWnet and operates 24 hours a day, seven days a week.

  7. Recovery Act: Johnston Rhode Island Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    SciTech Connect (OSTI)

    Galowitz, Stephen

    2013-06-30

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Central Landfill in Johnston, Rhode Island. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting project reflected a cost effective balance of the following specific sub-objectives. 1) Meet environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas. 2) Utilize proven and reliable technology and equipment. 3) Maximize electrical efficiency. 4) Maximize electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Central Landfill. 5) Maximize equipment uptime. 6) Minimize water consumption. 7) Minimize post-combustion emissions. To achieve the Project Objective the project consisted of several components. 1) The landfill gas collection system was modified and upgraded. 2) A State-of-the Art gas clean up and compression facility was constructed. 3) A high pressure pipeline was constructed to convey cleaned landfill gas from the clean-up and compression facility to the power plant. 4) A combined cycle electric generating facility was constructed consisting of combustion turbine generator sets, heat recovery steam generators and a steam turbine. 5) The voltage of the electricity produced was increased at a newly constructed transformer/substation and the electricity was delivered to the local transmission system. The Project produced a myriad of beneficial impacts. 1) The Project created 453 FTE construction and manufacturing jobs and 25 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. 2) By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). 3) The Project will annually produce 365,292 MWh�s of clean energy. 4) By destroying the methane in the landfill gas, the Project will generate CO{sub 2} equivalent reductions of 164,938 tons annually. The completed facility produces 28.3 MWnet and operates 24 hours a day, seven days a week.

  8. LIQUID NATURAL GAS (LNG): AN ALTERNATIVE FUEL FROM LANDFILL GAS (LFG) AND WASTEWATER DIGESTER GAS

    SciTech Connect (OSTI)

    VANDOR,D.

    1999-03-01

    This Research and Development Subcontract sought to find economic, technical and policy links between methane recovery at landfill and wastewater treatment sites in New York and Maryland, and ways to use that methane as an alternative fuel--compressed natural gas (CNG) or liquid natural gas (LNG) -- in centrally fueled Alternative Fueled Vehicles (AFVs).

  9. Determination of landfill gas composition and pollutant emission rates at fresh kills landfill. Volume 1. Project report. Final report

    SciTech Connect (OSTI)

    1995-12-07

    Air emissions of landfill gas pollutants at Fresh Kills Landfill, located in Staten Island, NY, were estimated based on three weeks of sampling of flow, concentration, and flux at passive vents, gas extraction wells, gas collection plant headers, and the landfill surface conducted by Radian Corporation in 1995. Emission rates were estimated for 202 pollutants, including hydrogen sulfide, mercury vapor, speciated volatile organic compounds, methane, and carbon dioxide. Results indicate that large amounts of mercury enter the methane, and carbon dioxide. Results indicate that large amounts of mercury enter the methane recovery plant. Emission factors based on the results are presented.

  10. Short Mountain Landfill gas recovery project

    SciTech Connect (OSTI)

    Not Available

    1992-05-01

    The Bonneville Power Administration (BPA), a Federal power marketing agency, has statutory responsibilities to supply electrical power to its utility, industrial, and other customers in the Pacific Northwest. BPA's latest load/resource balance forecast, projects the capability of existing resources to satisfy projected Federal system loads. The forecast indicates a potential resource deficit. The underlying need for action is to satisfy BPA customers' demand for electrical power.

  11. Case Studies from the Climate Technology Partnership: Landfill Gas Projects in South Korea and Lessons Learned

    SciTech Connect (OSTI)

    Larney, C.; Heil, M.; Ha, G. A.

    2006-12-01

    This paper examines landfill gas projects in South Korea. Two case studies provide concrete examples of lessons learned and offer practical guidance for future projects.

  12. Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects Webinar (text version)

    Broader source: Energy.gov [DOE]

    Below is the text version of the Webinar titled "Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects," originally presented on July 17, 2012.

  13. Comparison of emissions from landfills, municipal waste combustors, and fossil fuel-fired utilities

    SciTech Connect (OSTI)

    1996-11-01

    Landfilling is the most popular disposal method for managing municipal solid waste (MSW). However, air emissions from MSW landfills have generally been unregulated until recently. Instead, EPA has focused on emissions from municipal waste combustors (MWCs), even though they only manage 15% of MSW generated in the United States. In the past, little data have been available comparing landfill and MWC air emissions. Such information is provided by this paper. It also compares emissions from waste-to-energy MWCs and fossil fuel-fired utilities with equivalent electrical generation capacity. 1 refs., 6 tabs.

  14. Energy potential of modern landfills

    SciTech Connect (OSTI)

    Bogner, J.E.

    1990-01-01

    Methane produced by refuse decomposition in a sanitary landfill can be recovered for commercial use. Landfill methane is currently under-utilized, with commercial recovery at only a small percentage of US landfills. New federal regulations mandating control of landfill gas migration and atmospheric emissions are providing impetus to methane recovery schemes as a means of recovering costs for increased environmental control. The benefits of landfill methane recovery include utilization of an inexpensive renewable energy resource, removal of explosive gas mixtures from the subsurface, and mitigation of observed historic increases in atmospheric methane. Increased commercial interest in landfill methane recovery is dependent on the final form of Clean Air Act amendments pertaining to gaseous emissions from landfills; market shifts in natural gas prices; financial incentives for development of renewable energy resources; and support for applied research and development to develop techniques for increased control of the gas generation process in situ. This paper will discuss the controls on methane generation in landfills. In addition, it will address how landfill regulations affect landfill design and site management practices which, in turn, influence decomposition rates. Finally, future trends in landfilling, and their relationship to gas production, will be examined. 19 refs., 2 figs., 3 tabs.

  15. Improved methodology to assess modification and completion of landfill gas management in the aftercare period

    SciTech Connect (OSTI)

    Morris, Jeremy W.F.; Crest, Marion; Barlaz, Morton A.; Spokas, Kurt A.; Akerman, Anna; Yuan, Lei

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Performance-based evaluation of landfill gas control system. Black-Right-Pointing-Pointer Analytical framework to evaluate transition from active to passive gas control. Black-Right-Pointing-Pointer Focus on cover oxidation as an alternative means of passive gas control. Black-Right-Pointing-Pointer Integrates research on long-term landfill behavior with practical guidance. - Abstract: Municipal solid waste landfills represent the dominant option for waste disposal in many parts of the world. While some countries have greatly reduced their reliance on landfills, there remain thousands of landfills that require aftercare. The development of cost-effective strategies for landfill aftercare is in society's interest to protect human health and the environment and to prevent the emergence of landfills with exhausted aftercare funding. The Evaluation of Post-Closure Care (EPCC) methodology is a performance-based approach in which landfill performance is assessed in four modules including leachate, gas, groundwater, and final cover. In the methodology, the objective is to evaluate landfill performance to determine when aftercare monitoring and maintenance can be reduced or possibly eliminated. This study presents an improved gas module for the methodology. While the original version of the module focused narrowly on regulatory requirements for control of methane migration, the improved gas module also considers best available control technology for landfill gas in terms of greenhouse gas emissions, air quality, and emissions of odoriferous compounds. The improved module emphasizes the reduction or elimination of fugitive methane by considering the methane oxidation capacity of the cover system. The module also allows for the installation of biologically active covers or other features designed to enhance methane oxidation. A methane emissions model, CALMIM, was used to assist with an assessment of the methane oxidation capacity of landfill covers.

  16. Greenhouse gas emissions from landfill leachate treatment plants: A comparison of young and aged landfill

    SciTech Connect (OSTI)

    Wang, Xiaojun; Jia, Mingsheng; Chen, Xiaohai; Xu, Ying; Lin, Xiangyu; Kao, Chih Ming; Chen, Shaohua

    2014-07-15

    Highlights: • Young and aged leachate works accounted for 89.1% and 10.9% of 33.35 Gg CO{sub 2} yr{sup −1}. • Fresh leachate owned extremely low ORP and high organic matter content. • Strong CH{sub 4} emissions occurred in the fresh leachate ponds, but small in the aged. • N{sub 2}O emissions became dominant in the treatment units of both systems. • 8.45–11.9% of nitrogen was removed as the form of N{sub 2}O under steady-state. - Abstract: With limited assessment, leachate treatment of a specified landfill is considered to be a significant source of greenhouse gas (GHG) emissions. In our study, the cumulative GHG emitted from the storage ponds and process configurations that manage fresh or aged landfill leachate were investigated. Our results showed that strong CH{sub 4} emissions were observed from the fresh leachate storage pond, with the fluxes values (2219–26,489 mg C m{sup −2} h{sup −1}) extremely higher than those of N{sub 2}O (0.028–0.41 mg N m{sup −2} h{sup −1}). In contrast, the emission values for both CH{sub 4} and N{sub 2}O were low for the aged leachate tank. N{sub 2}O emissions became dominant once the leachate entered the treatment plants of both systems, accounting for 8–12% of the removal of N-species gases. Per capita, the N{sub 2}O emission based on both leachate treatment systems was estimated to be 7.99 g N{sub 2}O–N capita{sup −1} yr{sup −1}. An increase of 80% in N{sub 2}O emissions was observed when the bioreactor pH decreased by approximately 1 pH unit. The vast majority of carbon was removed in the form of CO{sub 2}, with a small portion as CH{sub 4} (<0.3%) during both treatment processes. The cumulative GHG emissions for fresh leachate storage ponds, fresh leachate treatment system and aged leachate treatment system were 19.10, 10.62 and 3.63 Gg CO{sub 2} eq yr{sup −1}, respectively, for a total that could be transformed to 9.09 kg CO{sub 2} eq capita{sup −1} yr{sup −1}.

  17. Westchester Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Landfill Biomass Facility Jump to: navigation, search Name Westchester Landfill Biomass Facility Facility Westchester Landfill Sector Biomass Facility Type Landfill Gas Location...

  18. Kiefer Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Kiefer Landfill Biomass Facility Jump to: navigation, search Name Kiefer Landfill Biomass Facility Facility Kiefer Landfill Sector Biomass Facility Type Landfill Gas Location...

  19. Tapping Landfill Gas to Provide Significant Energy Savings and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BroadRock Renewables LLC, in collaboration with DCO Energy, operates combined cycle electric generating plants at the Central Landfill in Johnston, Rhode Island, and Olinda Alpha ...

  20. Property:Building/SPPurchasedEngyForPeriodMwhYrDigesterLandfillGas...

    Open Energy Info (EERE)

    YrDigesterLandfillGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0...

  1. Property:Building/SPPurchasedEngyNrmlYrMwhYrDigesterLandfillGas...

    Open Energy Info (EERE)

    YrDigesterLandfillGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0...

  2. Renewable LNG: Update on the World's Largest Landfill Gas to LNG Plant

    Broader source: Energy.gov [DOE]

    Success story about LNG from landfill gas. Presented by Mike McGowan, Linde NA, Inc., at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado.

  3. Emission assessment at the Burj Hammoud inactive municipal landfill: Viability of landfill gas recovery under the clean development mechanism

    SciTech Connect (OSTI)

    El-Fadel, Mutasem; Abi-Esber, Layale; Salhab, Samer

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer LFG emissions are measured at an abandoned landfill with highly organic waste. Black-Right-Pointing-Pointer Mean headspace and vent emissions are 0.240 and 0.074 l CH{sub 4}/m{sup 2} hr, respectively. Black-Right-Pointing-Pointer At sites with high food waste content, LFG generation drops rapidly after site closure. Black-Right-Pointing-Pointer The viability of LFG recovery for CDMs in developing countries is doubtful. - Abstract: This paper examines landfill gas (LFG) emissions at a large inactive waste disposal site to evaluate the viability of investment in LFG recovery through the clean development mechanism (CDM) initiative. For this purpose, field measurements of LFG emissions were conducted and the data were processed by geospatial interpolation to estimate an equivalent site emission rate which was used to calibrate and apply two LFG prediction models to forecast LFG emissions at the site. The mean CH{sub 4} flux values calculated through tessellation, inverse distance weighing and kriging were 0.188 {+-} 0.014, 0.224 {+-} 0.012 and 0.237 {+-} 0.008 l CH{sub 4}/m{sup 2} hr, respectively, compared to an arithmetic mean of 0.24 l/m{sup 2} hr. The flux values are within the reported range for closed landfills (0.06-0.89 l/m{sup 2} hr), and lower than the reported range for active landfills (0.42-2.46 l/m{sup 2} hr). Simulation results matched field measurements for low methane generation potential (L{sub 0}) values in the range of 19.8-102.6 m{sup 3}/ton of waste. LFG generation dropped rapidly to half its peak level only 4 yrs after landfill closure limiting the sustainability of LFG recovery systems in similar contexts and raising into doubt promoted CDM initiatives for similar waste.

  4. Determination of landfill gas composition and pollutant emission rates at fresh kills landfill. Volume 2. Appendices to project report. Final report

    SciTech Connect (OSTI)

    1995-12-07

    Air emissions of landfill gas pollutants at Fresh Kills Landfill, located in Staten Island, NY, were estimated based on three weeks of sampling of flow, concentration, and flux at passive vents, gas extraction wells, gas collection plant headers, and the landfill surface conducted by Radian Corporation in 1995. Emission rates were estimated for 202 pollutants, including hydrogen sulfide, mercury vapor, speciated volatile organic compounds, methane, and carbon dioxide. Results indicate that large amounts of mercury enter the methane, and carbon dioxide. Results indicate that large amounts of mercury enter the methane recovery plant. Emission factors based on the results are presented.

  5. Landfill Gas Conversion to LNG and LCO{sub 2}. Final Report

    SciTech Connect (OSTI)

    Brown, W.R.; Cook, W. J.; Siwajek, L.A.

    2000-10-20

    This report summarizes work on the development of a process to produce LNG (liquefied methane) for heavy vehicle use from landfill gas (LFG) using Acrion's CO{sub 2} wash process for contaminant removal and CO{sub 2} recovery. Work was done in the following areas: (1) production of natural gas pipeline methane for liquefaction at an existing LNG facility, (2) production of LNG from sewage digester gas, (3) the use of mixed refrigerants for process cooling in the production of LNG, liquid CO{sub 2} and pipeline methane, (4) cost estimates for an LNG production facility at the Arden Landfill in Washington PA.

  6. Ocean County Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    County Landfill Biomass Facility Jump to: navigation, search Name Ocean County Landfill Biomass Facility Facility Ocean County Landfill Sector Biomass Facility Type Landfill Gas...

  7. Pearl Hollow Landfil Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Hollow Landfil Biomass Facility Jump to: navigation, search Name Pearl Hollow Landfil Biomass Facility Facility Pearl Hollow Landfil Sector Biomass Facility Type Landfill Gas...

  8. One Man's Trash, Another Man's Fuel: BMW Plant Converts Landfill Gas to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Fuel | Department of Energy One Man's Trash, Another Man's Fuel: BMW Plant Converts Landfill Gas to Hydrogen Fuel One Man's Trash, Another Man's Fuel: BMW Plant Converts Landfill Gas to Hydrogen Fuel August 25, 2015 - 3:08pm Addthis A worker drives a material handling train powered by hydrogen fuel cells at the BMW plant in Greer, South Carolina. The plant is home to the world's largest fleet of fuel cell forklifts. | Photo courtesy of BMW Manufacturing. A worker drives a material

  9. Garbage In, Power Out: South Carolina BMW Plant Demonstrates Landfill Gas

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Hydrogen Fuel | Department of Energy Garbage In, Power Out: South Carolina BMW Plant Demonstrates Landfill Gas to Hydrogen Fuel Garbage In, Power Out: South Carolina BMW Plant Demonstrates Landfill Gas to Hydrogen Fuel August 25, 2015 - 2:15pm Addthis The plant BMW plant in Greer, South Carolina is home to the world's largest fleet of fuel cell forklifts. | Photo courtesy of BMW Manufacturing. The plant BMW plant in Greer, South Carolina is home to the world's largest fleet of fuel cell

  10. Property:Building/SPPurchasedEngyPerAreaKwhM2DigesterLandfillGas...

    Open Energy Info (EERE)

    M2DigesterLandfillGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0...

  11. Impact of different plants on the gas profile of a landfill cover

    SciTech Connect (OSTI)

    Reichenauer, Thomas G.; Watzinger, Andrea; Riesing, Johann; Gerzabek, Martin H.

    2011-05-15

    Research highlights: > Plants influence gas profile and methane oxidation in landfill covers. > Plants regulate water content and increase the availability of oxygen for methane oxidation. > Plant species with deep roots like alfalfa showed more stimulation of methane oxidation than plants with shallow root systems like grasses. - Abstract: Methane is an important greenhouse gas emitted from landfill sites and old waste dumps. Biological methane oxidation in landfill covers can help to reduce methane emissions. To determine the influence of different plant covers on this oxidation in a compost layer, we conducted a lysimeter study. We compared the effect of four different plant covers (grass, alfalfa + grass, miscanthus and black poplar) and of bare soil on the concentration of methane, carbon dioxide and oxygen in lysimeters filled with compost. Plants were essential for a sustainable reduction in methane concentrations, whereas in bare soil, methane oxidation declined already after 6 weeks. Enhanced microbial activity - expected in lysimeters with plants that were exposed to landfill gas - was supported by the increased temperature of the gas in the substrate and the higher methane oxidation potential. At the end of the first experimental year and from mid-April of the second experimental year, the methane concentration was most strongly reduced in the lysimeters containing alfalfa + grass, followed by poplar, miscanthus and grass. The observed differences probably reflect the different root morphology of the investigated plants, which influences oxygen transport to deeper compost layers and regulates the water content.

  12. Well-to-Wheels analysis of landfill gas-based pathways and their addition to the GREET model.

    SciTech Connect (OSTI)

    Mintz, M.; Han, J.; Wang, M.; Saricks, C.; Energy Systems

    2010-06-30

    Today, approximately 300 million standard cubic ft/day (mmscfd) of natural gas and 1600 MW of electricity are produced from the decomposition of organic waste at 519 U.S. landfills (EPA 2010a). Since landfill gas (LFG) is a renewable resource, this energy is considered renewable. When used as a vehicle fuel, compressed natural gas (CNG) produced from LFG consumes up to 185,000 Btu of fossil fuel and generates from 1.5 to 18.4 kg of carbon dioxide-equivalent (CO{sub 2}e) emissions per million Btu of fuel on a 'well-to-wheel' (WTW) basis. This compares with approximately 1.1 million Btu and 78.2 kg of CO{sub 2}e per million Btu for CNG from fossil natural gas and 1.2 million Btu and 97.5 kg of CO{sub 2}e per million Btu for petroleum gasoline. Because of the additional energy required for liquefaction, LFG-based liquefied natural gas (LNG) requires more fossil fuel (222,000-227,000 Btu/million Btu WTW) and generates more GHG emissions (approximately 22 kg CO{sub 2}e /MM Btu WTW) if grid electricity is used for the liquefaction process. However, if some of the LFG is used to generate electricity for gas cleanup and liquefaction (or compression, in the case of CNG), vehicle fuel produced from LFG can have no fossil fuel input and only minimal GHG emissions (1.5-7.7 kg CO{sub 2}e /MM Btu) on a WTW basis. Thus, LFG-based natural gas can be one of the lowest GHG-emitting fuels for light- or heavy-duty vehicles. This report discusses the size and scope of biomethane resources from landfills and the pathways by which those resources can be turned into and utilized as vehicle fuel. It includes characterizations of the LFG stream and the processes used to convert low-Btu LFG into high-Btu renewable natural gas (RNG); documents the conversion efficiencies and losses of those processes, the choice of processes modeled in GREET, and other assumptions used to construct GREET pathways; and presents GREET results by pathway stage. GREET estimates of well-to-pump (WTP), pump-to-wheel (PTW), and WTW energy, fossil fuel, and GHG emissions for each LFG-based pathway are then summarized and compared with similar estimates for fossil natural gas and petroleum pathways.

  13. Mandatory Utility Green Power Option | Open Energy Information

    Open Energy Info (EERE)

    Mandatory Utility Green Power Option New Mexico Utility Anaerobic Digestion Biomass Fuel Cells Geothermal Electric Hydroelectric energy Hydrogen Landfill Gas Photovoltaics...

  14. Integrated Combined Heat and Power/Advanced Reciprocating Internal Combustion Engine System for Landfill Gas to Power Applications

    Broader source: Energy.gov [DOE]

    Landfill gas (LFG), composed largely of methane and carbon dioxide, is used in over 450 operational projects in 43 states. These projects convert a large source of greenhouse gases into a fuel that...

  15. Gas Utilization Facility Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Gas Utilization Facility Biomass Facility Jump to: navigation, search Name Gas Utilization Facility Biomass Facility Facility Gas Utilization Facility Sector Biomass Facility Type...

  16. List of Landfill Gas Incentives | Open Energy Information

    Open Energy Info (EERE)

    Waste Photovoltaics Solar Thermal Electric Coal with CCS Energy Storage Nuclear Wind Natural Gas Yes Alternative Energy Portfolio Standard (Pennsylvania) Renewables Portfolio...

  17. Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils

    SciTech Connect (OSTI)

    Jeremy Semrau; Sung-Woo Lee; Jeongdae Im; Sukhwan Yoon; Michael Barcelona

    2010-09-30

    The overall objective of this project, 'Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils' was to develop effective, efficient, and economic methodologies by which microbial production of nitrous oxide can be minimized while also maximizing microbial consumption of methane in landfill cover soils. A combination of laboratory and field site experiments found that the addition of nitrogen and phenylacetylene stimulated in situ methane oxidation while minimizing nitrous oxide production. Molecular analyses also indicated that methane-oxidizing bacteria may play a significant role in not only removing methane, but in nitrous oxide production as well, although the contribution of ammonia-oxidizing archaea to nitrous oxide production can not be excluded at this time. Future efforts to control both methane and nitrous oxide emissions from landfills as well as from other environments (e.g., agricultural soils) should consider these issues. Finally, a methanotrophic biofiltration system was designed and modeled for the promotion of methanotrophic activity in local methane 'hotspots' such as landfills. Model results as well as economic analyses of these biofilters indicate that the use of methanotrophic biofilters for controlling methane emissions is technically feasible, and provided either the costs of biofilter construction and operation are reduced or the value of CO{sub 2} credits is increased, can also be economically attractive.

  18. Avista Utilities (Gas)- Prescriptive Commercial Incentive Program

    Broader source: Energy.gov [DOE]

    Avista Utilities offers Natural Gas saving incentives to commercial customers on rate schedule 420 and 424. This program provides rebates for a variety of equipment and appliances including...

  19. Liberty Utilities (Gas)- Commercial Energy Efficiency Programs

    Office of Energy Efficiency and Renewable Energy (EERE)

    Liberty Utilities' program for commercial natural gas customers provides incentives for energy efficient equipment installations and upgrades. Incentives are available for boilers, furnaces, unit...

  20. Short Mountain Landfill Gas Recovery Project : Stage 1 Environmental Assessment.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1992-05-01

    The Bonneville Power Administration (BPA), a Federal power marketing agency, has statutory responsibilities to supply electrical power to its utility, industrial, and other customers in the Pacific Northwest. BPA`s latest load/resource balance forecast, projects the capability of existing resources to satisfy projected Federal system loads. The forecast indicates a potential resource deficit. The underlying need for action is to satisfy BPA customers` demand for electrical power.

  1. Landfill Energy Systems LES | Open Energy Information

    Open Energy Info (EERE)

    Energy Systems LES Jump to: navigation, search Name: Landfill Energy Systems (LES) Place: Michigan Zip: 48393 Product: Landfill gas to energy systems project developer, gas...

  2. Gas concentration cells for utilizing energy

    DOE Patents [OSTI]

    Salomon, Robert E. (Philadelphia, PA)

    1987-01-01

    An apparatus and method for utilizing energy, in which the apparatus may be used for generating electricity or as a heat pump. When used as an electrical generator, two gas concentration cells are connected in a closed gas circuit. The first gas concentration cell is heated and generates electricity. The second gas concentration cell repressurizes the gas which travels between the cells. The electrical energy which is generated by the first cell drives the second cell as well as an electrical load. When used as a heat pump, two gas concentration cells are connected in a closed gas circuit. The first cell is supplied with electrical energy from a direct current source and releases heat. The second cell absorbs heat. The apparatus has no moving parts and thus approximates a heat engine.

  3. Gas concentration cells for utilizing energy

    DOE Patents [OSTI]

    Salomon, R.E.

    1987-06-30

    An apparatus and method are disclosed for utilizing energy, in which the apparatus may be used for generating electricity or as a heat pump. When used as an electrical generator, two gas concentration cells are connected in a closed gas circuit. The first gas concentration cell is heated and generates electricity. The second gas concentration cell repressurizes the gas which travels between the cells. The electrical energy which is generated by the first cell drives the second cell as well as an electrical load. When used as a heat pump, two gas concentration cells are connected in a closed gas circuit. The first cell is supplied with electrical energy from a direct current source and releases heat. The second cell absorbs heat. The apparatus has no moving parts and thus approximates a heat engine. 4 figs.

  4. WC Landfill Energy | Open Energy Information

    Open Energy Info (EERE)

    WC Landfill Energy Place: New Jersey Product: Joint venture between DCO Energy and Marina Energy to develop landfill gas-to-energy plants in New Jersey. References: WC Landfill...

  5. EIA - Natural Gas Pipeline Network - Pipeline Capacity and Utilization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pipeline Utilization & Capacity About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipeline Capacity & Utilization Overview | Utilization Rates | Integration of Storage | Varying Rates of Utilization | Measures of Utilization Overview of Pipeline Utilization Natural gas pipeline companies prefer to operate their systems as close to full capacity as possible to maximize their revenues. However, the average

  6. Landfill Gas Conversion to LNG and LCO{sub 2}. Phase II Final Report for January 25, 1999 - April 30, 2000

    SciTech Connect (OSTI)

    Brown, W. R.; Cook, W. J.; Siwajek, L. A.

    2000-10-20

    This report summarizes work on the development of a process to produce LNG (liquefied methane) for heavy vehicle use from landfill gas (LFG) using Acrion's CO{sub 2} wash process for contaminant removal and CO{sub 2} recovery.

  7. Integrated Combined Heat and Power/Advanced Reciprocating Internal Combustion Engine System for Landfill Gas to Power Applications

    SciTech Connect (OSTI)

    2009-02-01

    Gas Technology Institute will collaborate with Integrated CHP Systems Corporation, West Virginia University, Vronay Engineering Services, KAR Engineering Associates, Pioneer Air Systems, and Energy Concepts Company to recover waste heat from reciprocating engines. The project will integrate waste heat recovery along with gas clean-up technology system improvements. This will address fuel quality issues that have hampered expanded use of opportunity fuels such as landfill gas, digester biogas, and coal mine methane. This will enable increased application of CHP using renewable and domestically derived opportunity fuels.

  8. High-Speed, Temperature Programmable Gas Chromatography Utilizing...

    Office of Scientific and Technical Information (OSTI)

    High-Speed, Temperature Programmable Gas Chromatography Utilizing a Microfabricated Chip ... Citation Details In-Document Search Title: High-Speed, Temperature Programmable Gas ...

  9. Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Landfills Convert Biogas Into Renewable Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Google Bookmark Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on

  10. Utility Partnerships Webinar Series: Gas Utility Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    Emerging gas technologies to enhance industrial energy efficiency, challenges of integrating into the marketplace and an overview of DTE Energy’s energy efficiency programs for natural gas customers.

  11. Natural gas recovery, storage, and utilization SBIR program

    SciTech Connect (OSTI)

    Shoemaker, H.D.

    1993-12-31

    A Fossil Energy natural-gas topic has been a part of the DOE Small Business Innovation Research (SBIR) program since 1988. To date, 50 Phase SBIR natural-gas applications have been funded. Of these 50, 24 were successful in obtaining Phase II SBIR funding. The current Phase II natural-gas research projects awarded under the SBIR program and managed by METC are presented by award year. The presented information on these 2-year projects includes project title, awardee, and a project summary. The 1992 Phase II projects are: landfill gas recovery for vehicular natural gas and food grade carbon dioxide; brine disposal process for coalbed gas production; spontaneous natural as oxidative dimerization across mixed conducting ceramic membranes; low-cost offshore drilling system for natural gas hydrates; motorless directional drill for oil and gas wells; and development of a multiple fracture creation process for stimulation of horizontally drilled wells.The 1993 Phase II projects include: process for sweetening sour gas by direct thermolysis of hydrogen sulfide; remote leak survey capability for natural gas transport storage and distribution systems; reinterpretation of existing wellbore log data using neural-based patter recognition processes; and advanced liquid membrane system for natural gas purification.

  12. Industrial Utility Webinar: Natural Gas Efficiency Programs

    SciTech Connect (OSTI)

    2010-04-15

    The Industrial Utility Webinars focus on providing utilities with information on how to develop sucessful energy efficeincy programs for industrial energy consumers.

  13. High-Speed, Temperature Programmable Gas Chromatography Utilizing...

    Office of Scientific and Technical Information (OSTI)

    High-Speed, Temperature Programmable Gas Chromatography Utilizing a Microfabricated Chip with an Improved Carbon Nanotube Stationary Phase Citation Details In-Document Search...

  14. Orange and Rockland Utilities (Gas)- Residential Efficiency Program

    Broader source: Energy.gov [DOE]

    Orange and Rockland Utilities provides rebates for residential customers purchasing energy efficient natural gas equipment. Rebates exist for furnaces, water boilers and controls, steam boilers,...

  15. Florida Public Utilities (Gas)- Commercial Energy Efficiency Rebates

    Broader source: Energy.gov [DOE]

    Florida Public Utilities offers natural gas customers energy efficiency rebates to save energy in facilities. Rebates are available for water hears, dryers, fryers, and cooking ranges. All...

  16. Federal Utility Partnership Working Group: Atlanta Gas Light Resources

    Broader source: Energy.gov [DOE]

    Presentationgiven at the April 2012 Federal Utility Partnership Working Group (FUPWG) meetinglists Altanta Gas Light (AGL) resources and features a map of its footprint.

  17. Norwich Public Utilities (Gas)- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Norwich Public Utilities (NPU) provides residential natural gas customers rebates for upgrading to energy efficient equipment in eligible homes. NPU offers rebates of between $250 - $3000 for...

  18. DOE Considers Natural Gas Utility Service Options: Proposal Includes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    30-mile Natural Gas Pipeline from Pasco to Hanford | Department of Energy Considers Natural Gas Utility Service Options: Proposal Includes 30-mile Natural Gas Pipeline from Pasco to Hanford DOE Considers Natural Gas Utility Service Options: Proposal Includes 30-mile Natural Gas Pipeline from Pasco to Hanford January 23, 2012 - 12:00pm Addthis Media Contacts Cameron Hardy, DOE , (509) 376-5365, Cameron.Hardy@rl.doe.gov RICHLAND, WASH. - The U.S. Department of Energy (DOE) is considering

  19. Florida Public Utilities (Gas)- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Florida Public Utilities offers the Energy for Life Conservation Program to its residential natural gas customers to save energy in their homes. Rebates are available for existing residences and...

  20. High-Speed, Temperature Programmable Gas Chromatography Utilizing a

    Office of Scientific and Technical Information (OSTI)

    Microfabricated Chip with an Improved Carbon Nanotube Stationary Phase (Journal Article) | SciTech Connect High-Speed, Temperature Programmable Gas Chromatography Utilizing a Microfabricated Chip with an Improved Carbon Nanotube Stationary Phase Citation Details In-Document Search Title: High-Speed, Temperature Programmable Gas Chromatography Utilizing a Microfabricated Chip with an Improved Carbon Nanotube Stationary Phase Authors: Stadermann, M ; Bakajin, O ; Reid, V ; Synovec, R

  1. One Man's Trash, Another Man's Fuel: BMW Plant Converts Landfill...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    One Man's Trash, Another Man's Fuel: BMW Plant Converts Landfill Gas to Hydrogen Fuel One Man's Trash, Another Man's Fuel: BMW Plant Converts Landfill Gas to Hydrogen Fuel August ...

  2. Methane emissions from MBT landfills

    SciTech Connect (OSTI)

    Heyer, K.-U. Hupe, K.; Stegmann, R.

    2013-09-15

    Highlights: Compilation of methane generation potential of mechanical biological treated (MBT) municipal solid waste. Impacts and kinetics of landfill gas production of MBT landfills, approach with differentiated half-lives. Methane oxidation in the waste itself and in soil covers. Estimation of methane emissions from MBT landfills in Germany. - Abstract: Within the scope of an investigation for the German Federal Environment Agency (Umweltbundesamt), the basics for the estimation of the methane emissions from the landfilling of mechanically and biologically treated waste (MBT) were developed. For this purpose, topical research including monitoring results regarding the gas balance at MBT landfills was evaluated. For waste treated to the required German standards, a methane formation potential of approximately 1824 m{sup 3} CH{sub 4}/t of total dry solids may be expected. Monitoring results from MBT landfills show that a three-phase model with differentiated half-lives describes the degradation kinetics in the best way. This is due to the fact that during the first years of disposal, the anaerobic degradation processes still proceed relatively intensively. In addition in the long term (decades), a residual gas production at a low level is still to be expected. Most of the soils used in recultivation layer systems at German landfills show a relatively high methane oxidation capacity up to 5 l CH{sub 4}/(m{sup 2} h). However, measurements at MBT disposal sites indicate that the majority of the landfill gas (in particular at non-covered areas), leaves the landfill body via preferred gas emission zones (hot spots) without significant methane oxidation. Therefore, rather low methane oxidation factors are recommended for open and temporarily covered MBT landfills. Higher methane oxidation rates can be achieved when the soil/recultivation layer is adequately designed and operated. Based on the elaborated default values, the First Order Decay (FOD) model of the IPCC Guidelines for National Greenhouse Gas Inventories, 2006, was used to estimate the methane emissions from MBT landfills. Due to the calculation made by the authors emissions in the range of 60,000135,000 t CO{sub 2-eq.}/a for all German MBT landfills can be expected. This wide range shows the uncertainties when the here used procedure and the limited available data are applied. It is therefore necessary to generate more data in the future in order to calculate more precise methane emission rates from MBT landfills. This is important for the overall calculation of the climate gas production in Germany which is required once a year by the German Government.

  3. VACASULF operation at Citizens Gas and Coke Utility

    SciTech Connect (OSTI)

    Currey, J.H.

    1995-12-01

    Citizens Gas and Coke Utility is a Public Charitable Trust which operates as the Department of Utilities of the City of Indianapolis, Indiana. Indianapolis Coke, the trade name for the Manufacturing Division of the Utility, operates a by-products coke plant in Indianapolis, Indiana. The facility produces both foundry and blast furnace coke. Surplus Coke Oven gas, generated by the process, is mixed with Natural Gas for sale to industrial and residential customers. In anticipation of regulatory developments, beginning in 1990, Indianapolis Coke undertook the task to develop an alternate Coke Oven Gas desulfurization technology for its facility. The new system was intended to perform primary desulfurization of the gas, dramatically extending the oxide bed life, thus reducing disposal liabilities. Citizens Gas chose the VACASULF technology for its primary desulfurization system. VACASULF requires a single purchased material, Potassium Hydroxide (KOH). The KOH reacts with Carbon Dioxide in the coke Oven Gas to form Potassium Carbonate (potash) which in turn absorbs the Hydrogen Sulfide. The rich solution releases the absorbed sulfide under strong vacuum in the desorber column. Operating costs are reduced through utilization of an inherent heat source which is transferred indirectly via attendant reboilers. The Hydrogen Sulfide is transported by the vacuum pumps to the Claus Kiln and Reactor for combustion, reaction, and elemental Sulfur recovery. Regenerated potash solution is returned to the Scrubber.

  4. Experimental and life cycle assessment analysis of gas emission from mechanicallybiologically pretreated waste in a landfill with energy recovery

    SciTech Connect (OSTI)

    Di Maria, Francesco Sordi, Alessio; Micale, Caterina

    2013-11-15

    Highlights: Bio-methane landfill emissions from different period (0, 4, 8, 16 weeks) MTB waste have been evaluated. Electrical energy recoverable from landfill gas ranges from 11 to about 90 kW h/tonne. Correlation between oxygen uptake, energy recovery and anaerobic gas production shows R{sup 2} ranging from 0.78 to 0.98. LCA demonstrate that global impact related to gaseous emissions achieve minimum for 4 week of MBT. - Abstract: The global gaseous emissions produced by landfilling the Mechanically Sorted Organic Fraction (MSOF) with different weeks of Mechanical Biological Treatment (MBT) was evaluated for an existing waste management system. One MBT facility and a landfill with internal combustion engines fuelled by the landfill gas for electrical energy production operate in the waste management system considered. An experimental apparatus was used to simulate 0, 4, 8 and 16 weeks of aerobic stabilization and the consequent biogas potential (Nl/kg) of a large sample of MSOF withdrawn from the full-scale MBT. Stabilization achieved by the waste was evaluated by dynamic oxygen uptake and fermentation tests. Good correlation coefficients (R{sup 2}), ranging from 0.7668 to 0.9772, were found between oxygen uptake, fermentation and anaerobic test values. On the basis of the results of several anaerobic tests, the methane production rate k (year{sup ?1}) was evaluated. k ranged from 0.436 to 0.308 year{sup ?1} and the bio-methane potential from 37 to 12 N m{sup 3}/tonne, respectively, for the MSOF with 0 and 16 weeks of treatment. Energy recovery from landfill gas ranged from about 11 to 90 kW h per tonne of disposed MSOF depending on the different scenario investigated. Life cycle analysis showed that the scenario with 0 weeks of pre-treatment has the highest weighted global impact even if opposite results were obtained with respect to the single impact criteria. MSOF pre-treatment periods longer than 4 weeks showed rather negligible variation in the global impact of system emissions.

  5. Natural Gas Utilities Options Analysis for the Hydrogen Economy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Objectives: Identify business opportunities and valuation of strategic options for the natural gas industry as hydrogen energy systems evolve. PDF icon hpwgw_natgas_ultanalysis_richards.pdf More Documents & Publications Natural Gas Utilities Options Analysis for the Hydrogen Economy Fuel Cell Technologies Overview: March 2012 State Energy Advisory Board Meeting Overview of Hydrogen and Fuel Cell Activities: 6th International Hydrogen and Fuel Cell Expo

  6. Differences in volatile methyl siloxane (VMS) profiles in biogas from landfills and anaerobic digesters and energetics of VMS transformations

    SciTech Connect (OSTI)

    Tansel, Berrin Surita, Sharon C.

    2014-11-15

    Highlights: In the digester gas, D4 and D5 comprised the 62% and 27% if siloxanes, respectively. In landfill gas, the bulk of siloxanes were TMSOH (58%) followed by D4 (17%). Methane utilization may be a possible mechanism for TMSOH formation in the landfills. The geometric configurations of D4 and D5 molecules make them very stable. - Abstract: The objectives of this study were to compare the types and levels of volatile methyl siloxanes (VMS) present in biogas generated in the anaerobic digesters and landfills, evaluate the energetics of siloxane transformations under anaerobic conditions, compare the conditions in anaerobic digesters and municipal solid waste (MSW) landfills which result in differences in siloxane compositions. Biogas samples were collected at the South District Wastewater Treatment Plant and South Dade Landfill in Miami, Florida. In the digester gas, D4 and D5 comprised the bulk of total siloxanes (62% and 27%, respectively) whereas in the landfill gas, the bulk of siloxanes were trimethylsilanol (TMSOH) (58%) followed by D4 (17%). Presence of high levels of TMSOH in the landfill gas indicates that methane utilization may be a possible reaction mechanism for TMSOH formation. The free energy change for transformation of D5 and D4 to TMSOH either by hydrogen or methane utilization are thermodynamically favorable. Either hydrogen or methane should be present at relatively high concentrations for TMSOH formation which explains the high levels present in the landfill gas. The high bond energy and bond distance of the SiO bond, in view of the atomic sizes of Si and O atoms, indicate that Si atoms can provide a barrier, making it difficult to break the SiO bonds especially for molecules with specific geometric configurations such as D4 and D5 where oxygen atoms are positioned inside the frame formed by the large Si atoms which are surrounded by the methyl groups.

  7. Livingston Parish Landfill Methane Recovery Project (Feasibility Study)

    SciTech Connect (OSTI)

    White, Steven

    2012-11-15

    The Woodside Landfill is owned by Livingston Parish, Louisiana and is operated under contract by Waste Management of Louisiana LLC. This public owner/private operator partnership is commonplace in the solid waste industry today. The landfill has been in operation since approximately 1988 and has a permitted capacity of approximately 41 million cubic yards. Based on an assumed in-place waste density of 0.94 ton per cubic yard, the landfill could have an expected design capacity of 39.3 million tons. The landfill does have an active landfill gas collection and control system (LFGCCS) in place because it meets the minimum thresholds for the New Source Performance Standards (NSPS). The initial LFGCS was installed prior to 2006 and subsequent phases were installed in 2007 and 2010. The Parish received a grant from the United States Department of Energy in 2009 to evaluate the potential for landfill gas recovery and utilization at the Woodside Landfill. This includes a technical and economic feasibility study of a project to install a landfill gas to energy (LFGTE) plant and to compare alternative technologies. The LFGTE plant can take the form of on-site electrical generation, a direct use/medium Btu option, or a high-Btu upgrade technology. The technical evaluation in Section 2 of this report concludes that landfill gas from the Woodside landfill is suitable for recovery and utilization. The financial evaluations in sections 3, 4, and 5 of this report provide financial estimates of the returns for various utilization technologies. The report concludes that the most economically viable project is the Electricity Generation option, subject to the Parish’s ability and willingness to allocate adequate cash for initial capital and/or to obtain debt financing. However, even this option does not present a solid return: by our estimates, there is a 19 year simple payback on the electricity generation option. All of the energy recovery options discussed in this report economically stressed. The primary reason for this is the recent fundamental shift in the US energy landscape. Abundant supplies of natural gas have put downward pressure on any project that displaces natural gas or natural gas substitutes. Moreover, this shift appears long-term as domestic supplies for natural gas may have been increased for several hundred years. While electricity prices are less affected by natural gas prices than other thermal projects, they are still significantly affected since much of the power in the Entergy cost structure is driven by natural gas-fired generation. Consequently, rates reimbursed by the power company based on their avoided cost structure also face downward pressure over the near and intermediate term. In addition, there has been decreasing emphasis on environmental concerns regarding the production of thermal energy, and as a result both the voluntary and mandatory markets that drive green attribute prices have softened significantly over the past couple of years. Please note that energy markets are constantly changing due to fundamental supply and demand forces, as well as from external forces such as regulations and environmental concerns. At any point in the future, the outlook for energy prices may change and could deem either the electricity generation or pipeline injection project more feasible. This report is intended to serve as the primary background document for subsequent decisions made at Parish staff and governing board levels.

  8. Radiology utilizing a gas multiwire detector with resolution enhancement

    DOE Patents [OSTI]

    Majewski, Stanislaw (Grafton, VA); Majewski, Lucasz A. (Grafton, VA)

    1999-09-28

    This invention relates to a process and apparatus for obtaining filmless, radiological, digital images utilizing a gas multiwire detector. Resolution is enhanced through projection geometry. This invention further relates to imaging systems for X-ray examination of patients or objects, and is particularly suited for mammography.

  9. Venice Park landfill: Working with the community

    SciTech Connect (OSTI)

    McAdams, C.L.

    1993-09-01

    Venice Park landfill was one of the first sites to be permitted under Michigan's proposed Public Act 641. PA 641 essentially changed the rules and regulations for landfills from the simple design of digging a hole and filling it. It also upgraded standards to those that are more sophisticated, including liners, leachate collection systems, and gas extraction systems. In 1992, methane gas from the landfill was collected into wells drilled into the trash varying in depth from 30-50 feet in depth. A vacuum pulls the gas from the trash into the wells, then through a piping system. The landfill uses about 80-100 kilowatts in-house. The remainder of the gas is sold to Consumers Power Co. which uses landfill gas to supply power to homes.

  10. Utility flue gas mercury control via sorbent injection

    SciTech Connect (OSTI)

    Chang, R.; Carey, T.; Hargrove, B.

    1996-12-31

    The potential for power plant mercury control under Title III of the 1990 Clean Air Act Amendments generated significant interest in assessing whether cost effective technologies are available for removing the mercury present in fossil-fired power plant flue gas. One promising approach is the direct injection of mercury sorbents such as activated carbon into flue gas. This approach has been shown to be effective for mercury control from municipal waste incinerators. However, tests conducted to date on utility fossil-fired boilers show that it is much more difficult to remove the trace species of mercury present in flue gas. EPRI is conducting research in sorbent mercury control including bench-scale evaluation of mercury sorbent activity and capacity with simulated flue gas, pilot testing under actual flue gas conditions, evaluation of sorbent regeneration and recycle options, and the development of novel sorbents. A theoretical model that predicts maximum mercury removals achievable with sorbent injection under different operating conditions is also being developed. This paper presents initial bench-scale and model results. The results to date show that very fine and large amounts of sorbents are needed for mercury control unless long residence times are available for sorbent-mercury contact. Also, sorbent activity and capacity are highly dependent on flue gas composition, temperature, mercury species, and sorbent properties. 10 refs., 4 figs., 2 tabs.

  11. Alabama Natural Gas % of Total Electric Utility Deliveries (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    Electric Utility Deliveries (Percent) Alabama Natural Gas % of Total Electric Utility Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.17 0.13 0.23 0.23 0.29 0.60 0.53 2000's 0.81 1.29 1.98 1.68 2.14 1.79 2.34 2.57 2.46 3.30 2010's 3.81 4.53 4.40 4.08 4.23 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  12. Methods of natural gas liquefaction and natural gas liquefaction plants utilizing multiple and varying gas streams

    DOE Patents [OSTI]

    Wilding, Bruce M; Turner, Terry D

    2014-12-02

    A method of natural gas liquefaction may include cooling a gaseous NG process stream to form a liquid NG process stream. The method may further include directing the first tail gas stream out of a plant at a first pressure and directing a second tail gas stream out of the plant at a second pressure. An additional method of natural gas liquefaction may include separating CO.sub.2 from a liquid NG process stream and processing the CO.sub.2 to provide a CO.sub.2 product stream. Another method of natural gas liquefaction may include combining a marginal gaseous NG process stream with a secondary substantially pure NG stream to provide an improved gaseous NG process stream. Additionally, a NG liquefaction plant may include a first tail gas outlet, and at least a second tail gas outlet, the at least a second tail gas outlet separate from the first tail gas outlet.

  13. UNFCCC-Consolidated baseline and monitoring methodology for landfill...

    Open Energy Info (EERE)

    Consolidated baseline and monitoring methodology for landfill gas project activities Jump to: navigation, search Tool Summary LAUNCH TOOL Name: UNFCCC-Consolidated baseline and...

  14. Austin Utilities (Gas and Electric) - Commercial and Industrial...

    Broader source: Energy.gov (indexed) [DOE]

    commercial location per year, 5,000 per industrial location per year Program Info Sector Name Utility Administrator Austin Utilities Website http:www.austinutilities.compages...

  15. City of Gas City, Indiana (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    861 Data Utility Id 6993 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Distribution Yes This article is a stub. You can help OpenEI by...

  16. LANDFILL GAS CONVERSION TO LNG AND LCO{sub 2}. PHASE 1, FINAL REPORT FOR THE PERIOD MARCH 1998-FEBRUARY 1999

    SciTech Connect (OSTI)

    COOK,W.J.; NEYMAN,M.; SIWAJEK,L.A.; BROWN,W.R.; VAN HAUWAERT,P.M.; CURREN,E.D.

    1998-02-25

    Process designs and economics were developed to produce LNG and liquid carbon dioxide (CO{sub 2}) from landfill gas (LFG) using the Acrion CO{sub 2} wash process. The patented Acrion CO{sub 2} wash process uses liquid CO{sub 2} to absorb contaminants from the LFG. The process steps are compression, drying, CO{sub 2} wash contaminant removal and CO{sub 2} recovery, residual CO{sub 2} removal and methane liquefaction. Three flowsheets were developed using different residual CO{sub 2} removal schemes. These included physical solvent absorption (methanol), membranes and molecular sieves. The capital and operating costs of the flowsheets were very similar. The LNG production cost was around ten cents per gallon. In parallel with process flowsheet development, the business aspects of an eventual commercial project have been explored. The process was found to have significant potential commercial application. The business plan effort investigated the economics of LNG transportation, fueling, vehicle conversion, and markets. The commercial value of liquid CO{sub 2} was also investigated. This Phase 1 work, March 1998 through February 1999, was funded under Brookhaven National laboratory contract 725089 under the research program entitled ``Liquefied Natural Gas as a Heavy Vehicle Fuel.'' The Phase 2 effort will develop flowsheets for the following: (1) CO{sub 2} and pipeline gas production, with the pipeline methane being liquefied at a peak shaving site, (2) sewage digester gas as an alternate feedstock to LFG and (3) the use of mixed refrigerants for process cooling. Phase 2 will also study the modification of Acrion's process demonstration unit for the production of LNG and a market site for LNG production.

  17. Sustainable Energy Utility (Electric & Gas)- Business Energy Rebate Program

    Broader source: Energy.gov [DOE]

    The District of Columbia's Sustainable Energy Utility (DCSEU) administers the Business Energy Rebate Program. Rebates are available to businesses and institutions for the installation of energy...

  18. Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project

    Energy Savers [EERE]

    | Department of Energy Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project October 31, 2013 - 11:30am Addthis News Media Contact (202) 586-4940 WASHINGTON -- As part of the Obama Administration's all-of-the-above strategy to deploy every available source of American energy, the Energy Department today announced a new concentrating solar power (CSP) project led by the Sacramento Municipal Utility

  19. Low-NOx Gas Turbine Injectors Utilizing Hydrogen-Rich Opportunity Fuels -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact Sheet, 2015 | Department of Energy Low-NOx Gas Turbine Injectors Utilizing Hydrogen-Rich Opportunity Fuels - Fact Sheet, 2015 Low-NOx Gas Turbine Injectors Utilizing Hydrogen-Rich Opportunity Fuels - Fact Sheet, 2015 Solar Turbines Incorporated, in collaboration with The Pennsylvania State University and the University of Southern California, modified a gas turbine combustion system to operate on hydrogen-rich opportunity fuels. Increasing the usability of opportunity fuels will avoid

  20. Avista Utilities (Gas)- Oregon Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Avista Utilities also provides a free in-home inspection to evaluate the cost and benefits associated with weatherizing your home. This free analysis is available to qualified Oregon residential...

  1. Montana-Dakota Utilities (Gas)- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

     MDU issues rebate payments in the form of a check, not a utility bill credit. Application forms must be fully completed with equipment information such as invoice or receipt, brand, model number,...

  2. Electric and gas utility marketing of residential energy conservation case studies

    SciTech Connect (OSTI)

    1980-05-01

    The objective of this research was to obtain information about utility conservation marketing techniques from companies actively engaged in performing residential conservation services. Many utilities currently are offering comprehensive services (audits, listing of contractors and lenders, post-installation inspection, advertising, and performing consumer research). Activities are reported for the following utilities: Niagara Mohawk Power Corporation; Tampa Electric Company; Memphis Light, Gas, and Water Division; Northern States Power-Wisconsin; Public Service Company of Colorado; Arizona Public Service Company; Pacific Gas and Electric Company; Sacramento Municipal Utility District; and Pacific Power and Light Company.

  3. Aerobic landfill bioreactor

    DOE Patents [OSTI]

    Hudgins, Mark P; Bessette, Bernard J; March, John C; McComb, Scott T.

    2002-01-01

    The present invention includes a system of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  4. Aerobic landfill bioreactor

    DOE Patents [OSTI]

    Hudgins, Mark P; Bessette, Bernard J; March, John; McComb, Scott T.

    2000-01-01

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  5. Utilization of Process Off-Gas as a Fuel for Improved Energy Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combined Heat and Power (CHP) System Utilizing Off-Gas from Coke Calcination ADVANCED MANUFACTURING OFFICE Utilization of Process Off-Gas as a Fuel for Improved Energy Efficiency Introduction Coke calcination is a process that involves the heating of green petroleum coke in order to remove volatile material and purify the coke for further processing. Calcined coke is vital to the aluminum industry, where it is used to produce carbon anodes for aluminum production. Calcined coke is also

  6. Nonthermal plasma processor utilizing additive-gas injection and/or gas extraction

    DOE Patents [OSTI]

    Rosocha, Louis A.

    2006-06-20

    A device for processing gases includes a cylindrical housing in which an electrically grounded, metal injection/extraction gas supply tube is disposed. A dielectric tube surrounds the injection/extraction gas supply tube to establish a gas modification passage therearound. Additionally, a metal high voltage electrode circumscribes the dielectric tube. The high voltage electrode is energizable to create nonthermal electrical microdischarges between the high voltage electrode and the injection/extraction gas supply tube across the dielectric tube within the gas modification passage. An injection/extraction gas and a process gas flow through the nonthermal electrical microdischarges within the gas modification passage and a modified process gas results. Using the device contaminants that are entrained in the process gas can be destroyed to yield a cleaner, modified process gas.

  7. DOE Report to Congress„Energy Efficient Electric and Natural Gas Utilities

    Office of Environmental Management (EM)

    AND REGIONAL POLICIES THAT PROMOTE ENERGY EFFICIENCY PROGRAMS CARRIED OUT BY ELECTRIC AND GAS UTILITIES A REPORT TO THE UNITED STATES CONGRESS PURSUANT TO SECTION 139 OF THE ENERGY POLICY ACT OF 2005 MARCH 2007 U.S. DEPARTMENT OF ENERGY Sec. 139. Energy Efficient Electric and Natural Gas Utilities Study. a) IN GENERAL.-Not later than 1 year after the date of enactment of this Act, the Secretary, in consultation with the National Association of Regulatory Utility Commis- sioners and the National

  8. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL

    SciTech Connect (OSTI)

    Don Augenstein; Ramin Yazdani; Rick Moore; Michelle Byars; Jeff Kieffer; Professor Morton Barlaz; Rinav Mehta

    2000-02-26

    Controlled landfilling is an approach to manage solid waste landfills, so as to rapidly complete methane generation, while maximizing gas capture and minimizing the usual emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated to more rapid and earlier completion to full potential by improving conditions (principally moisture, but also temperature) to optimize biological processes occurring within the landfill. Gas is contained through use of surface membrane cover. Gas is captured via porous layers, under the cover, operated at slight vacuum. A field demonstration project has been ongoing under NETL sponsorship for the past several years near Davis, CA. Results have been extremely encouraging. Two major benefits of the technology are reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times, more predictably, than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role both in reduction of US greenhouse gas emissions and in US renewable energy. The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional landfills. This is the highest methane recovery rate per unit waste, and thus progress toward stabilization, documented anywhere for such a large waste mass. This high recovery rate is attributed to moisture, and elevated temperature attained inexpensively during startup. Economic analyses performed under Phase I of this NETL contract indicate ''greenhouse cost effectiveness'' to be excellent. Other benefits include substantial waste volume loss (over 30%) which translates to extended landfill life. Other environmental benefits include rapidly improved quality and stabilization (lowered pollutant levels) in liquid leachate which drains from the waste.

  9. Utilization of low-quality natural gas: A current assessment. Final report

    SciTech Connect (OSTI)

    Acheson, W.P.; Hackworth, J.H.; Kasper, S.; McIlvried, H.G.

    1993-01-01

    The objective of this report is to evaluate the low quality natural gas (LQNG) resource base, current utilization of LQNG, and environmental issues relative to its use, to review processes for upgrading LQNG to pipeline quality, and to make recommendations of research needs to improve the potential for LQNG utilization. LQNG is gas from any reservoir which contains amounts of nonhydrocarbon gases sufficient to lower the heating value or other properties of the gas below commercial, pipeline standards. For the purposes of this study, LQNG is defined as natural gas that contains more than 2% carbon dioxide, more than 4% nitrogen, or more than 4% combined CO{sub 2} plus N{sub 2}. The other contaminant of concern is hydrogen sulfide. A minor contaminant in some natural gases is helium, but this inert gas usually presents no problems.

  10. Property-rights application in utilization of natural resources: the case of Iran's natural gas

    SciTech Connect (OSTI)

    Abghari, M.H.

    1982-01-01

    The concessionaries produce more oil in Iran because of fear of nationalization, lower oil production costs in the Middle East, and more investment opportunities around the globe. This higher discount rate means more oil production and also, more natural gas, a joint product, is produced. Produced natural gas could have been used in the Iranian market, or exported. Low oil prices and high transportation costs of natural gas resulted in the low well-head value of natural gas. The fear of nationalization kept concessionaires from utilizing natural gas in Iran's domestic market. The high transportation costs of natural gas was a negative factor in export utilization. Also, if natural gas, which can be substituted for oil in many uses, were to be utilized, concessionaires would have had to produce less oil. Because oil had a well-established market, it would have been contrary to their interest to leave a lot of oil underground while their concessions ran out. Consequently, they chose to take the oil and flare natural gas. The Iranian government must take responsibility in this matter also. The country's rulers were not concerned with maximizing the country's wealth, but maximizing the security of their regimes, and their personal wealth and pleasure.

  11. Public Utility Regulatory Policies Act of 1978: Natural Gas Rate Design Study

    SciTech Connect (OSTI)

    1980-05-01

    First, the comments on May 3, 1979 Notice of Inquiry of DOE relating to the Gas Utility Rate Design Study Required by Section 306 of PURPA are presented. Then, comments on the following are included: (1) ICF Gas Utility Model, Gas Utility Model Data Outputs, Scenario Design; (2) Interim Model Development Report with Example Case Illustrations; (3) Interim Report on Simulation of Seven Rate Forms; (4) Methodology for Assessing the Impacts of Alternative Rate Designs on Industrial Energy Use; (5) Simulation of Marginal-Cost-Based Natural Gas Rates; and (6) Preliminary Discussion Draft of the Gas Rate Design Study. Among the most frequent comments expressed were the following: (a) the public should be given the opportunity to review the final report prior to its submission to Congress; (b) results based on a single computer model of only four hypothetical utility situations cannot be used for policy-making purposes for individual companies or the entire gas industry; (c) there has been an unobjective treatment of traditional and economic cost rate structures; the practical difficulties and potential detrimental consequences of economic cost rates are not fully disclosed; and (d) it is erroneous to assume that end users, particularly residential customers, are influenced by price signals in the rate structure, as opposed to the total bill.

  12. Montana-Dakota Utilities (Gas)- Commercial Natural Gas Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Custom rebates are also available for natural gas customers who pursue energy efficiency upgrades in eligible facilities. Custom incentives vary depending on equipment cost and expected energy sa...

  13. Rate impacts and key design elements of gas and electric utility decoupling: a comprehensive review

    SciTech Connect (OSTI)

    Lesh, Pamela G.

    2009-10-15

    Opponents of decoupling worry that customers will experience frequent and significant rate increases as a result of its adoption, but a review of 28 natural gas and 17 electric utilities suggests that decoupling adjustments are both refunds to customers as well as charges and tend to be small. (author)

  14. Sandia National Laboratories: No More Green Waste in the Landfill

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    No More Green Waste in the Landfill June 09, 2011 Dump Truck Image On the heels of Sandia National Laboratories' successful food waste composting program, Pollution Prevention (P2) has teamed with the Facilities' Grounds and Roads team and the Solid Waste Transfer Facility to implement green waste composting. Previously, branches and logs were being diverted and mulched by Kirtland Air Force Base at their Construction & Demolition Landfill that is on base and utilized under contract by

  15. Illinois Turning Landfill Trash into Future Cash

    Broader source: Energy.gov [DOE]

    Will County, Illinois officials yesterday formally broke ground on a new $7 million project (that includes $1 million of Energy Efficiency Conservation Block Grant funds) to turn methane gas from the Prairie View Landfill into electricity in a partnership with Waste Management. Will County will receive revenue from the sale of the gas created from decomposing garbage which will be harnessed and converted to generate 4.8 megawatts of green electrical power and used to power up to 8,000 homes. The future revenue generated from the sale of the gas and the sale of the electricity could reach $1 million annually.

  16. Gas Recovery Systems | Open Energy Information

    Open Energy Info (EERE)

    Systems Jump to: navigation, search Name: Gas Recovery Systems Place: California Zip: 94550 Product: Turnkey landfill gas (LFG) energy extraction systems. References: Gas Recovery...

  17. Reducing GHG emissions by co-utilization of coal with natural gas or biomass

    SciTech Connect (OSTI)

    Smith, I.M.

    2004-07-01

    Energy reserves price and security of supply issues are discussed in the context of the prospects for coal and policies to reduce greenhouse gas (GHG) emissions. Coal is projected to remain a major source of energy, with most of the demand growth in developing countries. Currently available power-generating technologies, deploying coal with natural gas or biomass, are examined. Examples of successful, partial substitution of coal by other fuels in power stations are highlighted, including the GHG emissions reductions achieved as well as the costs where available. Among various options, hybrid gasification and parallel cofiring of coal with biomass and natural gas appear to have the greatest potential to reduce GHG emissions. Much may also be achieved by cofiring, reburning, and repowering with gas turbines. The best method differs between different power systems. Co-utilization of biomass with coal is a least-cost option to reduce GHG emissions where the fuel prices are comparable, usually due to subsidies or taxes. The role of biomass is likely to increase due to greater use of subsidies, carbon taxes, and emissions trading within the context of the Kyoto Protocol. This should provide opportunities for clean coal technology transfer and diffusion, including biomass co-utilization. 32 refs., 1 fig., 3 tabs.

  18. CSL Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    CSL Gas Recovery Biomass Facility Jump to: navigation, search Name CSL Gas Recovery Biomass Facility Facility CSL Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  19. BJ Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    BJ Gas Recovery Biomass Facility Jump to: navigation, search Name BJ Gas Recovery Biomass Facility Facility BJ Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  20. DFW Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    DFW Gas Recovery Biomass Facility Jump to: navigation, search Name DFW Gas Recovery Biomass Facility Facility DFW Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  1. Lake Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Gas Recovery Biomass Facility Jump to: navigation, search Name Lake Gas Recovery Biomass Facility Facility Lake Gas Recovery Sector Biomass Facility Type Landfill Gas Location Cook...

  2. CID Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    CID Gas Recovery Biomass Facility Jump to: navigation, search Name CID Gas Recovery Biomass Facility Facility CID Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  3. CO2 utilization and storage in shale gas reservoirs: Experimental results and economic impacts

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schaef, Herbert T.; Davidson, Casie L.; Owen, Antionette Toni; Miller, Quin R. S.; Loring, John S.; Thompson, Christopher J.; Bacon, Diana H.; Glezakou, Vassiliki Alexandra; McGrail, B. Peter

    2014-12-31

    Natural gas is considered a cleaner and lower-emission fuel than coal, and its high abundance from advanced drilling techniques has positioned natural gas as a major alternative energy source for the U.S. However, each ton of CO2 emitted from any type of fossil fuel combustion will continue to increase global atmospheric concentrations. One unique approach to reducing anthropogenic CO2 emissions involves coupling CO2 based enhanced gas recovery (EGR) operations in depleted shale gas reservoirs with long-term CO2 storage operations. In this paper, we report unique findings about the interactions between important shale minerals and sorbing gases (CH4 and CO2) andmore » associated economic consequences. Where enhanced condensation of CO2 followed by desorption on clay surface is observed under supercritical conditions, a linear sorption profile emerges for CH4. Volumetric changes to montmorillonites occur during exposure to CO2. Theory-based simulations identify interactions with interlayer cations as energetically favorable for CO2 intercalation. Thus, experimental evidence suggests CH4 does not occupy the interlayer and has only the propensity for surface adsorption. Mixed CH4:CO2 gas systems, where CH4 concentrations prevail, indicate preferential CO2 sorption as determined by in situ infrared spectroscopy and X-ray diffraction techniques. Collectively, these laboratory studies combined with a cost-based economic analysis provide a basis for identifying favorable CO2-EOR opportunities in previously fractured shale gas reservoirs approaching final stages of primary gas production. Moreover, utilization of site-specific laboratory measurements in reservoir simulators provides insight into optimum injection strategies for maximizing CH4/CO2 exchange rates to obtain peak natural gas production.« less

  4. Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines

    SciTech Connect (OSTI)

    Venkatesan, Krishna

    2011-11-30

    The purpose of this program was to develop low-emissions, efficient fuel-flexible combustion technology which enables operation of a given gas turbine on a wider range of opportunity fuels that lie outside of current natural gas-centered fuel specifications. The program encompasses a selection of important, representative fuels of opportunity for gas turbines with widely varying fundamental properties of combustion. The research program covers conceptual and detailed combustor design, fabrication, and testing of retrofitable and/or novel fuel-flexible gas turbine combustor hardware, specifically advanced fuel nozzle technology, at full-scale gas turbine combustor conditions. This project was performed over the period of October 2008 through September 2011 under Cooperative Agreement DE-FC26-08NT05868 for the U.S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled "Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines". The overall objective of this program was met with great success. GE was able to successfully demonstrate the operability of two fuel-flexible combustion nozzles over a wide range of opportunity fuels at heavy-duty gas turbine conditions while meeting emissions goals. The GE MS6000B ("6B") gas turbine engine was chosen as the target platform for new fuel-flexible premixer development. Comprehensive conceptual design and analysis of new fuel-flexible premixing nozzles were undertaken. Gas turbine cycle models and detailed flow network models of the combustor provide the premixer conditions (temperature, pressure, pressure drops, velocities, and air flow splits) and illustrate the impact of widely varying fuel flow rates on the combustor. Detailed chemical kinetic mechanisms were employed to compare some fundamental combustion characteristics of the target fuels, including flame speeds and lean blow-out behavior. Perfectly premixed combustion experiments were conducted to provide experimental combustion data of our target fuels at gas turbine conditions. Based on an initial assessment of premixer design requirements and challenges, the most promising sub-scale premixer concepts were evaluated both experimentally and computationally. After comprehensive screening tests, two best performing concepts were scaled up for further development. High pressure single nozzle tests were performed with the scaled premixer concepts at target gas turbine conditions with opportunity fuels. Single-digit NOx emissions were demonstrated for syngas fuels. Plasma-assisted pilot technology was demonstrated to enhance ignition capability and provide additional flame stability margin to a standard premixing fuel nozzle. However, the impact of plasma on NOx emissions was observed to be unacceptable given the goals of this program and difficult to avoid.

  5. Resource planning for gas utilities: Using a model to analyze pivotal issues

    SciTech Connect (OSTI)

    Busch, J.F.; Comnes, G.A.

    1995-11-01

    With the advent of wellhead price decontrols that began in the late 1970s and the development of open access pipelines in the 1980s and 90s, gas local distribution companies (LDCs) now have increased responsibility for their gas supplies and face an increasingly complex array of supply and capacity choices. Heretofore this responsibility had been share with the interstate pipelines that provide bundled firm gas supplies. Moreover, gas supply an deliverability (capacity) options have multiplied as the pipeline network becomes increasing interconnected and as new storage projects are developed. There is now a fully-functioning financial market for commodity price hedging instruments and, on interstate Pipelines, secondary market (called capacity release) now exists. As a result of these changes in the natural gas industry, interest in resource planning and computer modeling tools for LDCs is increasing. Although in some ways the planning time horizon has become shorter for the gas LDC, the responsibility conferred to the LDC and complexity of the planning problem has increased. We examine current gas resource planning issues in the wake of the Federal Energy Regulatory Commission`s (FERC) Order 636. Our goal is twofold: (1) to illustrate the types of resource planning methods and models used in the industry and (2) to illustrate some of the key tradeoffs among types of resources, reliability, and system costs. To assist us, we utilize a commercially-available dispatch and resource planning model and examine four types of resource planning problems: the evaluation of new storage resources, the evaluation of buyback contracts, the computation of avoided costs, and the optimal tradeoff between reliability and system costs. To make the illustration of methods meaningful yet tractable, we developed a prototype LDC and used it for the majority of our analysis.

  6. Phytoremediation of landfill leachate

    SciTech Connect (OSTI)

    Jones, D.L. . E-mail: d.jones@bangor.ac.uk; Williamson, K.L.; Owen, A.G.

    2006-07-01

    Leachate emissions from landfill sites are of concern, primarily due to their toxic impact when released unchecked into the environment, and the potential for landfill sites to generate leachate for many hundreds of years following closure. Consequently, economically and environmentally sustainable disposal options are a priority in waste management. One potential option is the use of soil-plant based remediation schemes. In many cases, using either trees (including short rotation coppice) or grassland, phytoremediation of leachate has been successful. However, there are a significant number of examples where phytoremediation has failed. Typically, this failure can be ascribed to excessive leachate application and poor management due to a fundamental lack of understanding of the plant-soil system. On balance, with careful management, phytoremediation can be viewed as a sustainable, cost effective and environmentally sound option which is capable of treating 250 m{sup 3} ha{sup -1} yr{sup -1}. However, these schemes have a requirement for large land areas and must be capable of responding to changes in leachate quality and quantity, problems of scheme establishment and maintenance, continual environmental monitoring and seasonal patterns of plant growth. Although the fundamental underpinning science is well understood, further work is required to create long-term predictive remediation models, full environmental impact assessments, a complete life-cycle analysis and economic analyses for a wide range of landfill scenarios.

  7. Altamont Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    search Name Altamont Gas Recovery Biomass Facility Facility Altamont Gas Recovery Sector Biomass Facility Type Landfill Gas Location Alameda County, California Coordinates...

  8. Waste utilization as an energy source: Municipal wastes. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    The bibliography contains citations concerning the utilization of municipal wastes as an energy source. Articles discuss energy derived from incineration/combustion, refuse-derived fuels, co-firing municipal waste and standard fuels, landfill gas production, sewage combustion, and other waste-to-energy technologies. Citations address economics and efficiencies of various schemes to utilize municipal waste products as energy sources. (Contains a minimum of 130 citations and includes a subject term index and title list.)

  9. Advanced Acid Gas Separation Technology for the Utilization of Low Rank Coals

    SciTech Connect (OSTI)

    Kloosterman, Jeff

    2012-12-31

    Air Products has developed a potentially ground-breaking technology Sour Pressure Swing Adsorption (PSA) to replace the solvent-based acid gas removal (AGR) systems currently employed to separate sulfur containing species, along with CO{sub 2} and other impurities, from gasifier syngas streams. The Sour PSA technology is based on adsorption processes that utilize pressure swing or temperature swing regeneration methods. Sour PSA technology has already been shown with higher rank coals to provide a significant reduction in the cost of CO{sub 2} capture for power generation, which should translate to a reduction in cost of electricity (COE), compared to baseline CO{sub 2} capture plant design. The objective of this project is to test the performance and capability of the adsorbents in handling tar and other impurities using a gaseous mixture generated from the gasification of lower rank, lignite coal. The results of this testing are used to generate a high-level pilot process design, and to prepare a techno-economic assessment evaluating the applicability of the technology to plants utilizing these coals.

  10. Landfilling ash/sludge mixtures

    SciTech Connect (OSTI)

    Benoit, J.; Eighmy, T.T.; Crannell, B.S.

    1999-10-01

    The geotechnical properties of a mixture of municipal solid waste incinerator bottom ash and municipal wastewater treatment plant sludge was investigated for a proposed ash/sludge secure landfill. The components as well as mixtures ranging from 10:1 to 5:1 (ash:sludge, by volume) were evaluated, where appropriate, for a number of geotechnical index and mechanical properties including particle size, water content, specific gravity, density-moisture relationships, shear strength, and compressibility. The results from a compactibility study and stability analysis of the proposed landfill were used to help approve a landfill codisposal concept; a full-scale facility was constructed and is currently operating successfully.

  11. Prima Desheha Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Prima Desheha Landfill Biomass Facility Jump to: navigation, search Name Prima Desheha Landfill Biomass Facility Facility Prima Desheha Landfill Sector Biomass Facility Type...

  12. Byxbee Park Sanitary Landfill Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Byxbee Park Sanitary Landfill Biomass Facility Jump to: navigation, search Name Byxbee Park Sanitary Landfill Biomass Facility Facility Byxbee Park Sanitary Landfill Sector Biomass...

  13. Miramar Landfill Metro Biosolids Center Biomass Facility | Open...

    Open Energy Info (EERE)

    Miramar Landfill Metro Biosolids Center Biomass Facility Jump to: navigation, search Name Miramar Landfill Metro Biosolids Center Biomass Facility Facility Miramar Landfill Metro...

  14. Blackburn Landfill Co-Generation Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Blackburn Landfill Co-Generation Biomass Facility Jump to: navigation, search Name Blackburn Landfill Co-Generation Biomass Facility Facility Blackburn Landfill Co-Generation...

  15. Evaluation of methane emissions from Palermo municipal landfill: Comparison between field measurements and models

    SciTech Connect (OSTI)

    Di Bella, Gaetano; Di Trapani, Daniele; Viviani, Gaspare

    2011-08-15

    Methane (CH{sub 4}) diffuse emissions from Municipal Solid Waste (MSW) landfills represent one of the most important anthropogenic sources of greenhouse gas. CH{sub 4} is produced by anaerobic biodegradation of organic matter in landfilled MSW and constitutes a major component of landfill gas (LFG). Gas recovery is a suitable method to effectively control CH{sub 4} emissions from landfill sites and the quantification of CH{sub 4} emissions represents a good tool to evaluate the effectiveness of a gas recovery system in reducing LFG emissions. In particular, LFG emissions can indirectly be evaluated from mass balance equations between LFG production, recovery and oxidation in the landfill, as well as by a direct approach based on LFG emission measurements from the landfill surface. However, up to now few direct measurements of landfill CH{sub 4} diffuse emissions have been reported in the technical literature. In the present study, both modeling and direct emission measuring methodologies have been applied to the case study of Bellolampo landfill located in Palermo, Italy. The main aim of the present study was to evaluate CH{sub 4} diffuse emissions, based on direct measurements carried out with the flux accumulation chamber (static, non-stationary) method, as well as to obtain the CH{sub 4} contoured flux map of the landfill. Such emissions were compared with the estimate achieved by means of CH{sub 4} mass balance equations. The results showed that the emissions obtained by applying the flux chamber method are in good agreement with the ones derived by the application of the mass balance equation, and that the evaluated contoured flux maps represent a reliable tool to locate areas with abnormal emissions in order to optimize the gas recovery system efficiency.

  16. Risk assessment of landfill disposal sites - State of the art

    SciTech Connect (OSTI)

    Butt, Talib E. Lockley, Elaine; Oduyemi, Kehinde O.K.

    2008-07-01

    A risk assessment process can assist in drawing a cost-effective compromise between economic and environmental costs, thereby assuring that the philosophy of 'sustainable development' is adhered to. Nowadays risk analysis is in wide use to effectively manage environmental issues. Risk assessment is also applied to other subjects including health and safety, food, finance, ecology and epidemiology. The literature review of environmental risk assessments in general and risk assessment approaches particularly regarding landfill disposal sites undertaken by the authors, reveals that an integrated risk assessment methodology for landfill gas, leachate or degraded waste does not exist. A range of knowledge gaps is discovered in the literature reviewed to date. From the perspective of landfill leachate, this paper identifies the extent to which various risk analysis aspects are absent in the existing approaches.

  17. Estimation of landfill emission lifespan using process oriented modeling

    SciTech Connect (OSTI)

    Ustohalova, Veronika . E-mail: veronika.ustohalova@uni-essen.de; Ricken, Tim; Widmann, Renatus

    2006-07-01

    Depending on the particular pollutants emitted, landfills may require service activities lasting from hundreds to thousands of years. Flexible tools allowing long-term predictions of emissions are of key importance to determine the nature and expected duration of maintenance and post-closure activities. A highly capable option represents predictions based on models and verified by experiments that are fast, flexible and allow for the comparison of various possible operation scenarios in order to find the most appropriate one. The intention of the presented work was to develop a experimentally verified multi-dimensional predictive model capable of quantifying and estimating processes taking place in landfill sites where coupled process description allows precise time and space resolution. This constitutive 2-dimensional model is based on the macromechanical theory of porous media (TPM) for a saturated thermo-elastic porous body. The model was used to simulate simultaneously occurring processes: organic phase transition, gas emissions, heat transport, and settlement behavior on a long time scale for municipal solid waste deposited in a landfill. The relationships between the properties (composition, pore structure) of a landfill and the conversion and multi-phase transport phenomena inside it were experimentally determined. In this paper, we present both the theoretical background of the model and the results of the simulations at one single point as well as in a vertical landfill cross section.

  18. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL

    SciTech Connect (OSTI)

    Don Augenstein

    2001-02-01

    The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional landfills. This is the highest methane recovery rate per unit waste, and thus progress toward stabilization, documented anywhere for such a large waste mass. This high recovery rate is attributed to moisture, and elevated temperature attained inexpensively during startup. Economic analyses performed under Phase I of this NETL contract indicate ''greenhouse cost effectiveness'' to be excellent. Other benefits include substantial waste volume loss (over 30%) which translates to extended landfill life. Other environmental benefits include rapidly improved quality and stabilization (lowered pollutant levels) in liquid leachate which drains from the waste.

  19. Low NO{sub x} turbine power generation utilizing low Btu GOB gas. Final report, June--August 1995

    SciTech Connect (OSTI)

    Ortiz, I.; Anthony, R.V.; Gabrielson, J.; Glickert, R.

    1995-08-01

    Methane, a potent greenhouse gas, is second only to carbon dioxide as a contributor to potential global warming. Methane liberated by coal mines represents one of the most promising under exploited areas for profitably reducing these methane emissions. Furthermore, there is a need for apparatus and processes that reduce the nitrogen oxide (NO{sub x}) emissions from gas turbines in power generation. Consequently, this project aims to demonstrate a technology which utilizes low grade fuel (CMM) in a combustion air stream to reduce NO{sub x} emissions in the operation of a gas turbine. This technology is superior to other existing technologies because it can directly use the varying methane content gases from various streams of the mining operation. The simplicity of the process makes it useful for both new gas turbines and retrofitting existing gas turbines. This report evaluates the feasibility of using gob gas from the 11,000 acre abandoned Gateway Mine near Waynesburg, Pennsylvania as a fuel source for power generation applying low NO{sub x} gas turbine technology at a site which is currently capable of producing low grade GOB gas ({approx_equal} 600 BTU) from abandoned GOB areas.

  20. Modified biochemical methane potential (BMP) assays to assess biodegradation potential of landfilled refuse

    SciTech Connect (OSTI)

    Bogner, J.E.; Rose, C.; Piorkowski, R.

    1989-01-01

    Modified Biochemical Methane Potential (BMP) assays were used to assess biogas production potential of solid landfill samples. In landfill samples with visible soil content, moisture addition alone was generally as effective at stimulating biogas production as the addition of a comprehensive nutrient media. In a variety of samples from humid and semiarid landfills, addition of an aqueous nutrient media was the most effective stimulant for biogas production; however, moisture addition was almost as effective for most samples, suggesting that water addition would be the most cost-effective field approach. Onset of methanogenesis was slower in fresh refuse samples (even when inoculated with anaerobic digester sludge) than in landfill samples, indicating that the soil into which materials are landfilled is a major source of microorganisms. High volatile solids loading in fresh refuse and landfill assays retarded methanogenesis. A comparison of anaerobic and aerobic sample handling techniques showed no significant differences with regard to onset of methanogenesis and total gas production. The technique shows initial promise with regard to replication and reproducibility of results and could be a meaningful addition to landfill site evaluations where commercial gas recovery is anticipated. The BMP technique could also be adapted to assess anaerobic biodegradability of other solid waste materials for conventional anaerobic digestion applications. 9 refs., 6 figs., 2 tabs.

  1. Low-NOx Gas Turbine Injectors Utilizing Hydrogen-Rich Opportunity Fuels

    Broader source: Energy.gov [DOE]

    Gas turbines are commonly used in industry for onsite power and heating needs because of their high efficiency and clean environmental performance. Natural gas is the fuel most frequently used to...

  2. Chestnut Ridge Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Chestnut Ridge Gas Recovery Sector Biomass Facility Type Landfill Gas Location Anderson County, Tennessee Coordinates 36.0809574, -84.2278796 Show Map Loading map......

  3. Stable isotope signatures for characterising the biological stability of landfilled municipal solid waste

    SciTech Connect (OSTI)

    Wimmer, Bernhard; Hrad, Marlies; Huber-Humer, Marion; Watzinger, Andrea; Wyhlidal, Stefan; Reichenauer, Thomas G.

    2013-10-15

    Highlights: ? The isotopic signature of ?{sup 13}C-DIC of leachates is linked to the reactivity of MSW. ? Isotopic signatures of leachates depend on aerobic/anaerobic conditions in landfills. ? In situ aeration of landfills can be monitored by isotope analysis in leachate. ? The isotopic analysis of leachates can be used for assessing the stability of MSW. ? ?{sup 13}C-DIC of leachates helps to define the duration of landfill aftercare. - Abstract: Stable isotopic signatures of landfill leachates are influenced by processes within municipal solid waste (MSW) landfills mainly depending on the aerobic/anaerobic phase of the landfill. We investigated the isotopic signatures of ?{sup 13}C, ?{sup 2}H and ?{sup 18}O of different leachates from lab-scale experiments, lysimeter experiments and a landfill under in situ aeration. In the laboratory, columns filled with MSW of different age and reactivity were percolated under aerobic and anaerobic conditions. In landfill simulation reactors, waste of a 25 year old landfill was kept under aerobic and anaerobic conditions. The lysimeter facility was filled with mechanically shredded fresh waste. After starting of the methane production the waste in the lysimeter containments was aerated in situ. Leachate and gas composition were monitored continuously. In addition the seepage water of an old landfill was collected and analysed periodically before and during an in situ aeration. We found significant differences in the ?{sup 13}C-value of the dissolved inorganic carbon (?{sup 13}C-DIC) of the leachate between aerobic and anaerobic waste material. During aerobic degradation, the signature of ?{sup 13}C-DIC was mainly dependent on the isotopic composition of the organic matter in the waste, resulting in a ?{sup 13}C-DIC of ?20 to ?25. The production of methane under anaerobic conditions caused an increase in ?{sup 13}C-DIC up to values of +10 and higher depending on the actual reactivity of the MSW. During aeration of a landfill the aerobic degradation of the remaining organic matter caused a decrease to a ?{sup 13}C-DIC of about ?20. Therefore carbon isotope analysis in leachates and groundwater can be used for tracing the oxidationreduction status of MSW landfills. Our results indicate that monitoring of stable isotopic signatures of landfill leachates over a longer time period (e.g. during in situ aeration) is a powerful and cost-effective tool for characterising the biodegradability and stability of the organic matter in landfilled municipal solid waste and can be used for monitoring the progress of in situ aeration.

  4. Kentucky Utilities Company and Louisville Gas & Electric- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

     Kentucky Utilities Company's Home Energy Rebate program provides incentives for residential customers to upgrade to energy efficiency home appliances and heat and air conditioning equipment. ...

  5. Development of Fuel-Flexible Combustion Systems Utilizing Opportunity Fuels in Gas Turbines

    SciTech Connect (OSTI)

    2008-12-01

    General Electric Global Research will define, develop, and test new fuel nozzle technology concepts for gas turbine operation on a wide spectrum of opportunity fuels and/or fuel blends. This will enable gas turbine operation on ultra-low Btu fuel streams such as very weak natural gas, highly-diluted industrial process gases, or gasified waste streams that are out of the capability range of current turbine systems.

  6. Baseload gas turbine to meet utility requirements for reliability and availability

    SciTech Connect (OSTI)

    Grevstad, P.E.; Smith, M.J.; Duncan, R.L.

    1982-04-01

    The coal gasifier-gas turbine, combined cycle is described as a superior baseload electric generating system. It promises lower fuel cost, lower operating and maintenance cost, and superior siting and environmental characteristics over conventional steam systems with flue gas clean up and fluidized bed combined cycle systems. Two major new components are required: 1) the coal gasifier, and 2) the baseload gas turbine. 10 refs.

  7. Low-NOx Gas Turbine Injectors Utilizing Hydrogen-Rich Opportunity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    combustion system to operate on hydrogen-rich opportunity fuels. Increasing the usability of opportunity fuels will avoid greenhouse gas emissions from the combustion of...

  8. Sanitary landfill groundwater monitoring data

    SciTech Connect (OSTI)

    Thompson, C.Y.

    1992-05-01

    This report for first quarter 1992 contains sanitary landfill groundwater monitoring data for the Savannah River Plant. The data tables presented in this report are copies of draft analytical results and therefore do contain errors. These errors will be corrected when the finalized data is received from the laboratory.

  9. Comparison of slope stability in two Brazilian municipal landfills

    SciTech Connect (OSTI)

    Gharabaghi, B. Singh, M.K.; Inkratas, C. Fleming, I.R. McBean, E.

    2008-07-01

    The implementation of landfill gas to energy (LFGTE) projects has greatly assisted in reducing the greenhouse gases and air pollutants, leading to an improved local air quality and reduced health risks. The majority of cities in developing countries still dispose of their municipal waste in uncontrolled 'open dumps.' Municipal solid waste landfill construction practices and operating procedures in these countries pose a challenge to implementation of LFGTE projects because of concern about damage to the gas collection infrastructure (horizontal headers and vertical wells) caused by minor, relatively shallow slumps and slides within the waste mass. While major slope failures can and have occurred, such failures in most cases have been shown to involve contributory factors or triggers such as high pore pressures, weak foundation soil or failure along weak geosynthetic interfaces. Many researchers who have studied waste mechanics propose that the shear strength of municipal waste is sufficient such that major deep-seated catastrophic failures under most circumstances require such contributory factors. Obviously, evaluation of such potential major failures requires expert analysis by geotechnical specialists with detailed site-specific information regarding foundation soils, interface shearing resistances and pore pressures both within the waste and in clayey barrier layers or foundation soils. The objective of this paper is to evaluate the potential use of very simple stability analyses which can be used to study the potential for slumps and slides within the waste mass and which may represent a significant constraint on construction and development of the landfill, on reclamation and closure and on the feasibility of a LFGTE project. The stability analyses rely on site-specific but simple estimates of the unit weight of waste and the pore pressure conditions and use 'generic' published shear strength envelopes for municipal waste. Application of the slope stability analysis method is presented in a case study of two Brazilian landfill sites; the Cruz das Almas Landfill in Maceio and the Muribeca Landfill in Recife. The Muribeca site has never recorded a slope failure and is much larger and better-maintained when compared to the Maceio site at which numerous minor slumps and slides have been observed. Conventional limit-equilibrium analysis was used to calculate factors of safety for stability of the landfill side slopes. Results indicate that the Muribeca site is more stable with computed factors of safety values in the range 1.6-2.4 compared with computed values ranging from 0.9 to 1.4 for the Maceio site at which slope failures have been known to occur. The results suggest that this approach may be useful as a screening-level tool when considering the feasibility of implementing LFGTE projects.

  10. Case studies in alternative landfill design

    SciTech Connect (OSTI)

    Barbagallo, J.C.; Druback, G.W.

    1995-12-31

    In the past, landfills or {open_quotes}dumps{close_quotes} were not highly regulated and typically did not require a detailed engineering design. However, landfills are no longer just holes in the ground, and landfill closures entail more than just spreading some dirt on top of piles of garbage. Today landfill design is a highly regulated, complex design effort that integrates soils and geosynthetics into systems aimed at providing long-term protection for the environment and surrounding communities. Integrating these complex design systems into the available landscape and exising landfill configuration often requires the designer go beyond the {open_quotes}typical{close_quotes} landfill and landfill closure design to satisfy regulations and provide cost-effective solutions.

  11. Estimating water content in an active landfill with the aid of GPR

    SciTech Connect (OSTI)

    Yochim, April, E-mail: ayochim@regionofwaterloo.ca [Region of Waterloo Waste Management Division, 925 Erb Street West, Waterloo, ON N2J 3Z4 (Canada); Zytner, Richard G., E-mail: rzytner@uoguelph.ca [School of Engineering, University of Guelph, Guelph, ON N1G 2W1 (Canada); McBean, Edward A., E-mail: emcbean@uoguelph.ca [School of Engineering, University of Guelph, Guelph, ON N1G 2W1 (Canada); Endres, Anthony L., E-mail: alendres@sciborg.uwaterloo.ca [Dept. of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON N2L 3G1 (Canada)

    2013-10-15

    Highlights: Limited information in the literature on the use of GPR to measure in situ water content in a landfill. Developed GPR method allows measurement of in situ water content in a landfill. Developed GPR method is appealing to waste management professionals operating landfills. - Abstract: Landfill gas (LFG) receives a great deal of attention due to both negative and positive environmental impacts, global warming and a green energy source, respectively. However, predicting the quantity of LFG generated at a given landfill, whether active or closed is difficult due to the heterogeneities present in waste, and the lack of accurate in situ waste parameters like water content. Accordingly, ground penetrating radar (GPR) was evaluated as a tool for estimating in situ water content. Due to the large degree of subsurface heterogeneity and the electrically conductive clay cap covering landfills, both of which affect the transmission of the electromagnetic pulses, there is much scepticism concerning the use of GPR to quantify in situ water content within a municipal landfill. Two landfills were studied. The first landfill was used to develop the measurement protocols, while the second landfill provided a means of confirming these protocols. GPR measurements were initially completed using the surface GPR approach, but the lack of success led to the use of borehole (BH) GPR. Both zero offset profiling (ZOP) and multiple offset gathers (MOG) modes were tried, with the results indicating that BH GPR using the ZOP mode is the most simple and efficient method to measure in situ water content. The best results were obtained at a separation distance of 2 m, where higher the water content, smaller the effective separation distance. However, an increase in water content did appear to increase the accuracy of the GPR measurements. For the effective separation distance of 2 m at both landfills, the difference between GPR and lab measured water contents were reasonable at 33.9% for the drier landfill and 18.1% for the wetter landfill. Infiltration experiments also showed the potential to measure small increases in water content.

  12. Economic evaluation and market analysis for natural gas utilization. Topical report

    SciTech Connect (OSTI)

    Hackworth, J.H.; Koch, R.W.; Rezaiyan, A.J.

    1995-04-01

    During the past decade, the U.S. has experienced a surplus gas supply. Future prospects are brightening because of increased estimates of the potential size of undiscovered gas reserves. At the same time, U.S. oil reserves and production have steadily declined, while oil imports have steadily increased. Reducing volume growth of crude oil imports was a key objective of the Energy Policy Act of 1992. Natural gas could be an important alternative energy source to liquid products derived from crude oil to help meet market demand. The purpose of this study was to (1) analyze three energy markets to determine whether greater use could be made of natural gas or its derivatives and (2) determine whether those products could be provided on an economically competitive basis. The following three markets were targeted for possible increases in gas use: transportation fuels, power generation, and chemical feedstock. Gas-derived products that could potentially compete in these three markets were identified, and the economics of the processes for producing those products were evaluated. The processes considered covered the range from commercial to those in early stages of process development. The analysis also evaluated the use of both high-quality natural gas and lower-quality gases containing CO{sub 2} and N{sub 2} levels above normal pipeline quality standards.

  13. Utilizing gas-filled cavities for the generation of an intense muon source

    SciTech Connect (OSTI)

    Stratakis, Diktys; Neuffer, David V.

    2015-05-03

    A key requirement for designing intense muon sources is operating rf cavities in multi-tesla magnetic fields. Recently, a proof-of-principle experiment demonstrated that an rf cavity filed with high pressure hydrogen gas could meet this goal. In this study, rigorous simulation is used to design and evaluate the performance of an intense muon source with gas filled cavities. We present a new lattice design and compare our results with conventional schemes. We detail the influence of gas pressure on the muon production rate.

  14. New Natural Gas Storage and Transportation Capabilities Utilizing Rapid Methane Hydrate Formation Techniques

    SciTech Connect (OSTI)

    Brown, T.D.; Taylor, C.E.; Bernardo, M.

    2010-01-01

    Natural gas (methane as the major component) is a vital fossil fuel for the United States and around the world. One of the problems with some of this natural gas is that it is in remote areas where there is little or no local use for the gas. Nearly 50 percent worldwide natural gas reserves of ~6,254.4 trillion ft3 (tcf) is considered as stranded gas, with 36 percent or ~86 tcf of the U.S natural gas reserves totaling ~239 tcf, as stranded gas [1] [2]. The worldwide total does not include the new estimates by U.S. Geological Survey of 1,669 tcf of natural gas north of the Arctic Circle, [3] and the U.S. ~200,000 tcf of natural gas or methane hydrates, most of which are stranded gas reserves. Domestically and globally there is a need for newer and more economic storage, transportation and processing capabilities to deliver the natural gas to markets. In order to bring this resource to market, one of several expensive methods must be used: 1. Construction and operation of a natural gas pipeline 2. Construction of a storage and compression facility to compress the natural gas (CNG) at 3,000 to 3,600 psi, increasing its energy density to a point where it is more economical to ship, or 3. Construction of a cryogenic liquefaction facility to produce LNG, (requiring cryogenic temperatures at <-161 C) and construction of a cryogenic receiving port. Each of these options for the transport requires large capital investment along with elaborate safety systems. The Department of Energy's Office of Research and Development Laboratories at the National Energy Technology Laboratory (NETL) is investigating new and novel approaches for rapid and continuous formation and production of synthetic NGHs. These synthetic hydrates can store up to 164 times their volume in gas while being maintained at 1 atmosphere and between -10 to -20C for several weeks. Owing to these properties, new process for the economic storage and transportation of these synthetic hydrates could be envisioned for stranded gas reserves. The recent experiments and their results from the testing within NETL's 15-Liter Hydrate Cell Facility exhibit promising results. Introduction of water at the desired temperature and pressure through an NETL designed nozzle into a temperature controlled methane environment within the 15-Liter Hydrate Cell allowed for instantaneous formation of methane hydrates. The instantaneous and continuous hydrate formation process was repeated over several days while varying the flow rate of water, its' temperature, and the overall temperature of the methane environment. These results clearly indicated that hydrates formed immediately after the methane and water left the nozzle at temperatures above the freezing point of water throughout the range of operating conditions. [1] Oil and Gas Journal Vol. 160.48, Dec 22, 2008. [2] http://www.eia.doe.gov/oiaf/servicerpt/natgas/chapter3.html and http://www.eia.doe.gov/oiaf/servicerpt/natgas/pdf/tbl7.pdf [3] U.S. Geological Survey, Circum-Arctic Resource Appraisal: Estimates of Undiscovered Oil and Gas North of the Arctic Circle, May 2008.

  15. Kentucky Utilities Company and Louisville Gas & Electric- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Kentucky Utilities Company (KU) offers rebates to all commercial customers who pay a DSM charge on monthly bills. Rebates are available on lighting measures, sensors, air conditioners, heat pumps,...

  16. Demonstration of an on-site PAFC cogeneration system with waste heat utilization by a new gas absorption chiller

    SciTech Connect (OSTI)

    Urata, Tatsuo

    1996-12-31

    Analysis and cost reduction of fuel cells is being promoted to achieve commercial on-site phosphoric acid fuel cells (on-site FC). However, for such cells to be effectively utilized, a cogeneration system designed to use the heat generated must be developed at low cost. Room heating and hot-water supply are the most simple and efficient uses of the waste heat of fuel cells. However, due to the short room-heating period of about 4 months in most areas in Japan, the sites having demand for waste heat of fuel cells throughout the year will be limited to hotels and hospitals Tokyo Gas has therefore been developing an on-site FC and the technology to utilize tile waste heat of fuel cells for room cooling by means of an absorption refrigerator. The paper describes the results of fuel cell cogeneration tests conducted on a double effect gas absorption chiller heater with auxiliary waste heat recovery (WGAR) that Tokyo Gas developed in its Energy Technology Research Laboratory.

  17. Landfill reduction experience in The Netherlands

    SciTech Connect (OSTI)

    Scharff, Heijo

    2014-11-15

    Highlights: • ‘Zero waste’ initiatives never consider risks, side effects or experience of achieved low levels of landfill. • This paper provides insight into what works and what not. • Where strong gradients in regulations and tax occur between countries, waste will find its way to landfills across borders. • Strong landfill reduction can create a fierce competition over the remaining waste to be landfilled resulting in losses. • At some point a public organisation should take responsibility for the operation of a ‘safety net’ in waste management. - Abstract: Modern waste legislation aims at resource efficiency and landfill reduction. This paper analyses more than 20 years of landfill reduction in the Netherlands. The combination of landfill regulations, landfill tax and landfill bans resulted in the desired landfill reduction, but also had negative effects. A fierce competition developed over the remaining waste to be landfilled. In 2013 the Dutch landfill industry generated €40 million of annual revenue, had €58 million annual costs and therefore incurred an annual loss of €18 million. It is not an attractive option to prematurely end business. There is a risk that Dutch landfill operators will not be able to fulfil the financial obligations for closure and aftercare. Contrary to the polluter pays principle the burden may end up with society. EU regulations prohibiting export of waste for disposal are in place. Strong differentials in landfill tax rate between nations have nevertheless resulted in transboundary shipment of waste and in non-compliance with the self-sufficiency and proximity principles. During the transformation from a disposal society to a recycling society, it is important to carefully plan required capacity and to guide the reorganisation of the landfill sector. At some point, it is no longer profitable to provide landfill services. It may be necessary for public organisations or the state to take responsibility for the continued operation of a ‘safety net’ in waste management. Regulations have created a financial incentive to pass on the burden of monitoring and controlling the impact of waste to future generations. To prevent this, it is necessary to revise regulations on aftercare and create incentives to actively stabilise landfills.

  18. EA-1707: Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste Landfill, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the potential environmental impacts of closing the Nonradioactive Dangerous Waste Landfill and the Solid Waste Landfill. The Washington State Department of Ecology is a cooperating agency in preparing this EA.

  19. Transco drops self-help gas, forcing users back to utilities

    SciTech Connect (OSTI)

    Hines, V.

    1985-11-04

    Transcontinental Gas Pipe Line (Transco) responded to Federal Energy Regulatory Commission Order 436, which eliminates pipeline discretion over who can arrange contract carriage of gas the pipeline does not own, because some users will look for alternate shipping routes and others will experience a significant increase in energy costs. Transco and most other pipeline companies declined to adopt the order because it is too flawed from their point of view. The article quotes several users who are looking for alternative transportation or considering fuel substitutions because of the higher prices.

  20. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect (OSTI)

    C. Jean Bustard; Kenneth E. Baldrey; Richard Schlager

    2000-04-01

    The U.S. Department of Energy and ADA Environmental Solutions has begun a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the flyash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. Preliminary testing has identified a class of common deliquescent salts that effectively control flyash resistivity on a variety of coals. A method to evaluate cohesive properties of flyash in the laboratory has been selected and construction of an electrostatic tensiometer test fixture is underway. Preliminary selection of a variety of chemicals that will be screened for effect on flyash cohesion has been completed.

  1. I 95 Landfill Phase II Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    I 95 Landfill Phase II Biomass Facility Jump to: navigation, search Name I 95 Landfill Phase II Biomass Facility Facility I 95 Landfill Phase II Sector Biomass Facility Type...

  2. EA-1997: Construction Landfill Expansion, Pantex Plant, Amarillo, Texas |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 7: Construction Landfill Expansion, Pantex Plant, Amarillo, Texas EA-1997: Construction Landfill Expansion, Pantex Plant, Amarillo, Texas SUMMARY Construction Landfill Expansion, Pantex Plant, Amarillo, Texas

  3. Milliken Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    2006 Database Retrieved from "http:en.openei.orgwindex.php?titleMillikenLandfillBiomassFacility&oldid397777" Feedback Contact needs updating Image needs updating...

  4. Acme Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    NEEDS 2006 Database Retrieved from "http:en.openei.orgwindex.php?titleAcmeLandfillBiomassFacility&oldid397115" Feedback Contact needs updating Image needs updating...

  5. Colton Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    2006 Database Retrieved from "http:en.openei.orgwindex.php?titleColtonLandfillBiomassFacility&oldid397336" Feedback Contact needs updating Image needs updating...

  6. Girvin Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    2006 Database Retrieved from "http:en.openei.orgwindex.php?titleGirvinLandfillBiomassFacility&oldid397500" Feedback Contact needs updating Image needs updating...

  7. Utilization of refuse derived fuels by the United States Navy

    SciTech Connect (OSTI)

    Lehr, D.L.

    1983-07-01

    The Resource Conservation and Recovery Act and the Safe Drinking Water Act are forcing those in charge of landfills to adhere to more stringent operating standards. This, along with the growing scarcity of landfill availability, makes the use of landfills less desirable for solid waste disposal. As such, new disposal methods that are environmentally safe and economically practical must be found. One alternative, that is not really new but which has gained renewed interest, is incineration. The Resource Conservation and Recovery Act also requires that government agencies should direct their installations to recover as many resources as possible. Therefore if incineration is to be implemented, heat recovery should be incorporated into the system. There are several processes available to convert raw refuse into a fuel for use in a heat recovery system. Refuse derived fuels (RDF) can be in the form of raw refuse, densified refuse, powdered refuse, gas, or pyrolytic oil. The only form of RDF that is economically feasible for systems designed to process less than 200 TPD (tons per day) is raw refuse. Most Navy bases generate far less than 200 TPD of solid waste and therefore the Navy has focused most of its attention on modular heat recovery incinerator (HRI) systems that utilize raw refuse as fuel.

  8. CO2 utilization and storage in shale gas reservoirs: Experimental results and economic impacts

    SciTech Connect (OSTI)

    Schaef, Herbert T.; Davidson, Casie L.; Owen, Antionette Toni; Miller, Quin R. S.; Loring, John S.; Thompson, Christopher J.; Bacon, Diana H.; Glezakou, Vassiliki Alexandra; McGrail, B. Peter

    2014-12-31

    Natural gas is considered a cleaner and lower-emission fuel than coal, and its high abundance from advanced drilling techniques has positioned natural gas as a major alternative energy source for the U.S. However, each ton of CO2 emitted from any type of fossil fuel combustion will continue to increase global atmospheric concentrations. One unique approach to reducing anthropogenic CO2 emissions involves coupling CO2 based enhanced gas recovery (EGR) operations in depleted shale gas reservoirs with long-term CO2 storage operations. In this paper, we report unique findings about the interactions between important shale minerals and sorbing gases (CH4 and CO2) and associated economic consequences. Where enhanced condensation of CO2 followed by desorption on clay surface is observed under supercritical conditions, a linear sorption profile emerges for CH4. Volumetric changes to montmorillonites occur during exposure to CO2. Theory-based simulations identify interactions with interlayer cations as energetically favorable for CO2 intercalation. Thus, experimental evidence suggests CH4 does not occupy the interlayer and has only the propensity for surface adsorption. Mixed CH4:CO2 gas systems, where CH4 concentrations prevail, indicate preferential CO2 sorption as determined by in situ infrared spectroscopy and X-ray diffraction techniques. Collectively, these laboratory studies combined with a cost-based economic analysis provide a basis for identifying favorable CO2-EOR opportunities in previously fractured shale gas reservoirs approaching final stages of primary gas production. Moreover, utilization of site-specific laboratory measurements in reservoir simulators provides insight into optimum injection strategies for maximizing CH4/CO2 exchange rates to obtain peak natural gas production.

  9. US EPA Landfill Methane Outreach Program | Open Energy Information

    Open Energy Info (EERE)

    EPA Landfill Methane Outreach Program Jump to: navigation, search Name US EPA Landfill Methane Outreach Program AgencyCompany Organization United States Environmental Protection...

  10. http://ndep.nv.gov/bwm/landfill.htm

    National Nuclear Security Administration (NNSA)

    http:ndep.nv.govbwmlandfill.htm TS Power Plant Landfill Newmount, Nevada Energy Investment Operating - Class III Permitted Eureka County Humboldt County Regional Landfill...

  11. Life Cycle Greenhouse Gas Emissions of Utility-Scale Wind Power: Systematic Review and Harmonization

    Broader source: Energy.gov [DOE]

    As clean energy increasingly becomes part of the national dialogue, lenders, utilities, and lawmakers need the most comprehensive and accurate information on GHG emissions from various sources of energy to inform policy, planning, and investment decisions. The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that gives decision makers and investors more precise estimates of life cycle GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty.

  12. Utilization of endless coiled tubing and nitrogen gas in geothermal well system maintenance

    SciTech Connect (OSTI)

    McReynolds, A.S.; Maxson, H.L.

    1980-09-01

    The use of endless coiled tubing and nitrogen gas combine to offer efficient means of initiating and maintaining geothermal and reinjection well productivity. Routine applications include initial flashing of wells in addition to the surging of the formation by essentially the same means to increase production rates. Various tools can be attached to the tubing for downhole measurement purposes whereby the effectiveness of the tools is enhanced by this method of introduction to the well bore. Remedial work such as scale and fill removal can also be accomplished in an efficient manner by using the tubing as a work string and injecting various chemicals in conjunction with specialized tools to remedy downhole problems.

  13. Knowledge based ranking algorithm for comparative assessment of post-closure care needs of closed landfills

    SciTech Connect (OSTI)

    Sizirici, Banu; Tansel, Berrin; Kumar, Vivek

    2011-06-15

    Post-closure care (PCC) activities at landfills include cap maintenance; water quality monitoring; maintenance and monitoring of the gas collection/control system, leachate collection system, groundwater monitoring wells, and surface water management system; and general site maintenance. The objective of this study was to develop an integrated data and knowledge based decision making tool for preliminary estimation of PCC needs at closed landfills. To develop the decision making tool, 11 categories of parameters were identified as critical areas which could affect future PCC needs. Each category was further analyzed by detailed questions which could be answered with limited data and knowledge about the site, its history, location, and site specific characteristics. Depending on the existing knowledge base, a score was assigned to each question (on a scale 1-10, as 1 being the best and 10 being the worst). Each category was also assigned a weight based on its relative importance on the site conditions and PCC needs. The overall landfill score was obtained from the total weighted sum attained. Based on the overall score, landfill conditions could be categorized as critical, acceptable, or good. Critical condition indicates that the landfill may be a threat to the human health and the environment and necessary steps should be taken. Acceptable condition indicates that the landfill is currently stable and the monitoring should be continued. Good condition indicates that the landfill is stable and the monitoring activities can be reduced in the future. The knowledge base algorithm was applied to two case study landfills for preliminary assessment of PCC performance.

  14. The environmental comparison of landfilling vs. incineration of MSW accounting for waste diversion

    SciTech Connect (OSTI)

    Assamoi, Bernadette; Lawryshyn, Yuri

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Residential waste diversion initiatives are more successful with organic waste. Black-Right-Pointing-Pointer Using a incineration to manage part of the waste is better environmentally. Black-Right-Pointing-Pointer Incineration leads to more power plant emission offsets. Black-Right-Pointing-Pointer Landfilling all of the waste would be preferred financially. - Abstract: This study evaluates the environmental performance and discounted costs of the incineration and landfilling of municipal solid waste that is ready for the final disposal while accounting for existing waste diversion initiatives, using the life cycle assessment (LCA) methodology. Parameters such as changing waste generation quantities, diversion rates and waste composition were also considered. Two scenarios were assessed in this study on how to treat the waste that remains after diversion. The first scenario is the status quo, where the entire residual waste was landfilled whereas in the second scenario approximately 50% of the residual waste was incinerated while the remainder is landfilled. Electricity was produced in each scenario. Data from the City of Toronto was used to undertake this study. Results showed that the waste diversion initiatives were more effective in reducing the organic portion of the waste, in turn, reducing the net electricity production of the landfill while increasing the net electricity production of the incinerator. Therefore, the scenario that incorporated incineration performed better environmentally and contributed overall to a significant reduction in greenhouse gas emissions because of the displacement of power plant emissions; however, at a noticeably higher cost. Although landfilling proves to be the better financial option, it is for the shorter term. The landfill option would require the need of a replacement landfill much sooner. The financial and environmental effects of this expenditure have yet to be considered.

  15. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Refuse Hideaway Landfill in Middleton, Wisconsin

    SciTech Connect (OSTI)

    Salasovich, J.; Mosey, G.

    2011-08-01

    This report presents the results of an assessment of the technical and economic feasibility of deploying a photovoltaics (PV) system on a brownfield site at the Refuse Hideaway Landfill in Middleton, Wisconsin. The site currently has a PV system in place and was assessed for further PV installations. The cost, performance, and site impacts of different PV options were estimated. The economics of the potential systems were analyzed using an electric rate of $0.1333/kWh and incentives offered by the State of Wisconsin and by the serving utility, Madison Gas and Electric. According to the site production calculations, the most cost-effective system in terms of return on investment is the thin-film fixed-tilt technology. The report recommends financing options that could assist in the implementation of such a system.

  16. Coal combustion waste management at landfills and surface impoundments 1994-2004.

    SciTech Connect (OSTI)

    Elcock, D.; Ranek, N. L.; Environmental Science Division

    2006-09-08

    On May 22, 2000, as required by Congress in its 1980 Amendments to the Resource Conservation and Recovery Act (RCRA), the U.S. Environmental Protection Agency (EPA) issued a Regulatory Determination on Wastes from the Combustion of Fossil Fuels. On the basis of information contained in its 1999 Report to Congress: Wastes from the Combustion of Fossil Fuels, the EPA concluded that coal combustion wastes (CCWs), also known as coal combustion by-products (CCBs), did not warrant regulation under Subtitle C of RCRA, and it retained the existing hazardous waste exemption for these materials under RCRA Section 3001(b)(3)(C). However, the EPA also determined that national regulations under Subtitle D of RCRA were warranted for CCWs that are disposed of in landfills or surface impoundments. The EPA made this determination in part on the basis of its findings that 'present disposal practices are such that, in 1995, these wastes were being managed in 40 percent to 70 percent of landfills and surface impoundments without reasonable controls in place, particularly in the area of groundwater monitoring; and while there have been substantive improvements in state regulatory programs, we have also identified gaps in State oversight' (EPA 2000). The 1999 Report to Congress (RTC), however, may not have reflected the changes in CCW disposal practices that occurred since the cutoff date (1995) of its database and subsequent developments. The U.S. Department of Energy (DOE) and the EPA discussed this issue and decided to conduct a joint DOE/EPA study to collect new information on the recent CCW management practices by the power industry. It was agreed that such information would provide a perspective on the chronological adoption of control measures in CCW units based on State regulations. A team of experts from the EPA, industry, and DOE (with support from Argonne National Laboratory) was established to develop a mutually acceptable approach for collecting and analyzing data on CCW disposal practices and State regulatory requirements at landfills and surface impoundments that were permitted, built, or laterally expanded between January 1, 1994, and December 31, 2004. The scope of the study excluded waste units that manage CCWs in active or abandoned coal mines. The EPA identified the following three areas of interest: (1) Recent and current CCW industry surface disposal management practices, (2) State regulatory requirements for CCW management, and (3) Implementation of State requirements (i.e., the extent to which States grant or deny operator requests to waive or vary regulatory requirements and the rationales for doing so). DOE and the EPA obtained data on recent and current disposal practices from a questionnaire that the Utility Solid Waste Activities Group (USWAG) distributed to its members that own or operate coal-fired power plants. USWAG, formed in 1978, is responsible for addressing solid and hazardous waste issues on behalf of the utility industry. It is an informal consortium of approximately 80 utility operating companies, the Edison Electric Institute (EEI), the National Rural Electric Cooperative Association (NRECA), the American Public Power Association (APPA), and the American Gas Association (AGA). EEI is the principal national association of investor-owned electric power and light companies. NRECA is the national association of rural electric cooperatives. APPA is the national association of publicly owned electric utilities. AGA is the national association of natural gas utilities. Together, USWAG member companies and trade associations represent more than 85% of the total electric generating capacity of the United States and service more than 95% of the nation's consumers of electricity. To verify the survey findings, the EPA also asked State regulators from nine selected States that are leading consumers of coal for electricity generation for information on disposal units that may not have been covered in the USWAG survey. The selected States were Georgia, Illinois, Indiana, Michigan, Missouri, North Carolina, North Da

  17. Pyrolysis process for producing condensed stabilized hydrocarbons utilizing a beneficially reactive gas

    DOE Patents [OSTI]

    Durai-Swamy, Kandaswamy (Culver City, CA)

    1982-01-01

    In a process for recovery of values contained in solid carbonaceous material, the solid carbonaceous material is comminuted and then subjected to pyrolysis, in the presence of a carbon containing solid particulate source of heat and a beneficially reactive transport gas in a transport flash pyrolysis reactor, to form a pyrolysis product stream. The pyrolysis product stream contains a gaseous mixture and particulate solids. The solids are separated from the gaseous mixture to form a substantially solids-free gaseous stream which comprises volatilized hydrocarbon free radicals newly formed by pyrolysis. Preferably the solid particulate source of heat is formed by oxidizing part of the separated particulate solids. The beneficially reactive transport gas inhibits the reactivity of the char product and the carbon-containing solid particulate source of heat. Condensed stabilized hydrocarbons are obtained by quenching the gaseous mixture stream with a quench fluid which contains a capping agent for stabilizing and terminating newly formed volatilized hydrocarbon free radicals. The capping agent is partially depleted of hydrogen by the stabilization and termination reaction. Hydrocarbons of four or more carbon atoms in the gaseous mixture stream are condensed. A liquid stream containing the stabilized liquid product is then treated or separated into various fractions. A liquid containing the hydrogen depleted capping agent is hydrogenated to form a regenerated capping agent. At least a portion of the regenerated capping agent is recycled to the quench zone as the quench fluid. In another embodiment capping agent is produced by the process, separated from the liquid product mixture, and recycled.

  18. Integrated Water Gas Shift Membrane Reactors Utilizing Novel, Non Precious Metal Mixed Matrix Membrane

    SciTech Connect (OSTI)

    Ferraris, John

    2013-09-30

    Nanoparticles of zeolitic imidazolate frameworks and other related hybrid materials were prepared by modifying published synthesis procedures by introducing bases, changing stoichiometric ratios, or adjusting reaction conditions. These materials were stable at temperatures >300 C and were compatible with the polymer matrices used to prepare mixed- matrix membranes (MMMs). MMMs tested at 300 C exhibited a >30 fold increase in permeability, compared to those measured at 35 C, while maintaining H{sub 2}/CO{sub 2} selectivity. Measurements at high pressure (up to 30 atm) and high temperature (up to 300 C) resulted in an increase in gas flux across the membrane with retention of selectivity. No variations in permeability were observed at high pressures at either 35 or 300 C. CO{sub 2}-induced plasticization was not observed for Matrimid, VTEC, and PBI polymers or their MMMs at 30 atm and 300 C. Membrane surface modification by cross-linking with ethanol diamine resulted in an increase in H{sub 2}/CO{sub 2} selectivity at 35 C. Spectrometric analysis showed that the cross-linking was effective to temperatures <150 C. At higher temperatures, the cross-linked membranes exhibit a H{sub 2}/CO{sub 2} selectivity similar to the uncross-linked polymer. Performance of the polybenzimidazole (PBI) hollow fibers prepared at Santa Fe Science and Technology (SFST, Inc.) showed increased flux o to a flat PBI membrane. A water-gas shift reactor has been built and currently being optimized for testing under DOE conditions.

  19. GTZ-Greenhouse Gas Calculator for Waste Management | Open Energy...

    Open Energy Info (EERE)

    a great part of the national greenhouse gas production, because landfills produce methane which has a particularly strong effect on climate change. Therefore, it is essential...

  20. Production development and utilization of Zimmer Station wet FGD by-products. Final report. Volume 3, Product development of gypsum, Phase 1

    SciTech Connect (OSTI)

    Smith, Kevin; Beeghly, Joel H.

    2000-11-30

    In the way of background information about 30 electric utility units with a combined total of 15,000 MW utilize magnesium enhanced lime flue gas desulfurization (FGD) systems. The first generation process begun in 1973, called the Thiosorbic® Process, was a technical breakthrough that offered significantly improved operating and performance characteristics compared with competing FGD technologies. The process is described as Flow Diagram "A" in Figure 1. A disadvantage of this and other inhibited or natural oxidation wet FGD systems is the capital and operating cost associated with landfill disposal of the calcium sulfite based solids. Fixation to stabilize the sludge solids for compunction in a landfill also consumes fly ash that otherwise may be marketable.

  1. Production development and utilization of Zimmer Station wet FGD by-products. Final report. Volume 2, Product development of magnesium hydroxide, Phase 1

    SciTech Connect (OSTI)

    Smith, Kevin; Beeghly, Joel H.

    2000-11-30

    In the way of background information about 30 electric utility units with a combined total of 15,000 MW utilize magnesium enhanced lime flue gas desulfurization (FGD) systems. The first generation process begun in 1973, called the Thiosorbic® Process, was a technical breakthrough that offered significantly improved operating and performance characteristics compared with competing FGD technologies. The process is described as Flow Diagram "A" in figure 1. A disadvantage of this and other inhibited or natural oxidation wet FGD systems is the capital and operating cost associated with landfill disposal of the calcium sulfite based solids. Fixation to stabilize the sludge solids for compaction in a landfill also consumes fly ash that otherwise may be marketable.

  2. Instrumentation of dredge spoil for landfill construction

    SciTech Connect (OSTI)

    Byle, M.J.; McCullough, M.L.; Alexander, R.; Vasuki, N.C.; Langer, J.A.

    1999-07-01

    The Delaware Solid Waste Authority's Northern Solid Waste Management Center is located outside of Wilmington Delaware at Cherry Island, a former dredge disposal site. Dredge spoils, of very low permeability, range in depths up to 30 m (100 feet) which form a natural liner and the foundation for the 140 ha (350-acre) municipal solid waste landfill. The soils beneath the landfill have been extensively instrumented to measure pore pressure, settlement and deflections, using inclinometer casings, standpipe piezometers, vibrating wire piezometers, pneumatic piezometers, settlement plates, liquid settlement gages, total pressure cells and thermistors. The nature of the existing waste and anticipated settlements (up to 6 m (19 feet)) have required some unique installation details. The instrumentation data has been integral in planning the landfilling sequence to maintain perimeter slope stability and has provided key geotechnical parameters needed for operation and construction of the landfill. The performance of the instrumentation and monitoring results are discussed.

  3. Waste management health risk assessment: A case study of a solid waste landfill in South Italy

    SciTech Connect (OSTI)

    Davoli, E.; Fattore, E.; Paiano, V.; Colombo, A.; Palmiotto, M.; Rossi, A.N.; Il Grande, M.; Fanelli, R.

    2010-08-15

    An integrated risk assessment study has been performed in an area within 5 km from a landfill that accepts non hazardous waste. The risk assessment was based on measured emissions and maximum chronic population exposure, for both children and adults, to contaminated air, some foods and soil. The toxic effects assessed were limited to the main known carcinogenic compounds emitted from landfills coming both from landfill gas torch combustion (e.g., dioxins, furans and polycyclic aromatic hydrocarbons, PAHs) and from diffusive emissions (vinyl chloride monomer, VCM). Risk assessment has been performed both for carcinogenic and non-carcinogenic effects. Results indicate that cancer and non-cancer effects risk (hazard index, HI) are largely below the values accepted from the main international agencies (e.g., WHO, US EPA) and national legislation ( and ).

  4. Agencies plan continued DOE landfill remediation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Agencies plan continued DOE landfill remediation The U.S. Department of Energy (DOE), Idaho Department of Environmental Quality and U.S. Environmental Protection Agency have released a planning document that specifies how DOE will continue to remediate a landfill containing hazardous and transuranic waste at DOE's Idaho Site located in eastern Idaho. The Phase 1 Remedial Design/Remedial Action Work Plan for Operable Unit 7-13/14 document was issued after the September 2008 Record of Decision

  5. Landfill aeration worldwide: Concepts, indications and findings

    SciTech Connect (OSTI)

    Ritzkowski, M.; Stegmann, R.

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer Different landfill aeration concepts and accordant application areas are described. Black-Right-Pointing-Pointer Examples of full scale projects are provided for Europe, North-America and Asia. Black-Right-Pointing-Pointer Major project findings are summarised, including prospects and limitations. Black-Right-Pointing-Pointer Inconsistencies between laboratory and full scale results have been elaborated. Black-Right-Pointing-Pointer An explanatory approach in connection with the inconsistencies is provided. - Abstract: The creation of sustainable landfills is a fundamental goal in waste management worldwide. In this connection landfill aeration contributes towards an accelerated, controlled and sustainable conversion of conventional anaerobic landfills into a biological stabilized state associated with a minimised emission potential. The technology has been successfully applied to landfills in Europe, North America and Asia, following different strategies depending on the geographical region, the specific legislation and the available financial resources. Furthermore, methodologies for the incorporation of landfill aeration into the carbon trade mechanisms have been developed in recent years. This manuscript gives an overview on existing concepts for landfill aeration; their application ranges and specifications. For all of the described concepts examples from different countries worldwide are provided, including details regarding their potentials and limitations. Some of the most important findings from these aeration projects are summarised and future research needs have been identified. It becomes apparent that there is a great demand for a systematisation of the available results and implications in order to further develop and optimise this very promising technology. The IWWG (International Waste Working Group) Task Group 'Landfill Aeration' contributes towards the achievement of this goal.

  6. Improved energy recovery from municipal solid wastes in sanitary landfills by two-phase digestion of biomass

    SciTech Connect (OSTI)

    Onu, Chukwu.

    1990-01-01

    The concept under investigaton was the separation of the acidogenic and the methanogenic phases of anaerobic fermentation, converting the sanitary landfill into an acid reactor and using a separate upflow fixed-film anaerobic reactor for methanogenesis. Acidic leachate from the landfill simulator was used as the influent substrate to the anaerobic reactor. The goal of the study was to improve both methane yield and concentration through nutrient addition and two-phase digestion of MSW. Sewage sludge was utilized to provide moisture, buffering capacity, nutrients, and an adequate microbial population. Single-phase systems with other enhancement techniques were also compared to the two-phase with sludge addition. Data from this study indicated that gas produced in the anaerobic reactor had methane concentration as high as 80 Mole % at the fixed-bed reactor (FBR) hydraulic retention time (HRT) of 7 days. The system reached a cumulative methane production rate of 78.6 {ell}/kg dry waste at an estimated cumulative production rate of approximately 270 {ell}/kg/yr. This performance was better than that reported in the literature for a similar type of feed. This study has also indicated that sewage sludge addition appears to be a successful enhancement technique for methane gas production from municipal solid waste. The addition of mineral nutrients and buffer solutions appears to have influenced the development of a dominant population of methanogenic bacteria in the FBR as indicated by the COD removal efficiency of 90% and 100% conversion of all influent organic acids. In terms of the overall system performance, the two-phase system was superior to the one-phase technique currently in use for methane generation.

  7. Low-Btu coal-gasification-process design report for Combustion Engineering/Gulf States Utilities coal-gasification demonstration plant. [Natural gas or No. 2 fuel oil to natural gas or No. 2 fuel oil or low Btu gas

    SciTech Connect (OSTI)

    Andrus, H E; Rebula, E; Thibeault, P R; Koucky, R W

    1982-06-01

    This report describes a coal gasification demonstration plant that was designed to retrofit an existing steam boiler. The design uses Combustion Engineering's air blown, atmospheric pressure, entrained flow coal gasification process to produce low-Btu gas and steam for Gulf States Utilities Nelson No. 3 boiler which is rated at a nominal 150 MW of electrical power. Following the retrofit, the boiler, originally designed to fire natural gas or No. 2 oil, will be able to achieve full load power output on natural gas, No. 2 oil, or low-Btu gas. The gasifier and the boiler are integrated, in that the steam generated in the gasifier is combined with steam from the boiler to produce full load. The original contract called for a complete process and mechanical design of the gasification plant. However, the contract was curtailed after the process design was completed, but before the mechanical design was started. Based on the well defined process, but limited mechanical design, a preliminary cost estimate for the installation was completed.

  8. Flue Gas Perification Utilizing SOx/NOx Reactions During Compression of CO2 Derived from Oxyfuel Combustion

    SciTech Connect (OSTI)

    Kevin Fogash

    2010-09-30

    The United States wishes to decrease foreign energy dependence by utilizing the countrys significant coal reserves, while stemming the effects of global warming from greenhouse gases. In response to these needs, Air Products has developed a patented process for the compression and purification of the CO2 stream from oxyfuel combustion of pulverized coal. The purpose of this project was the development and performance of a comprehensive experimental and engineering evaluation to determine the feasibility of purifying CO2 derived from the flue gas generated in a tangentially fired coal combustion unit operated in the oxy-combustion mode. Following the design and construction of a 15 bar reactor system, Air Products conducted two test campaigns using the slip stream from the tangentially fired oxy-coal combustion unit. During the first test campaign, Air Products evaluated the reactor performance based on both the liquid and gaseous reactor effluents. The data obtained from the test run has enabled Air Products to determine the reaction and mass transfer rates, as well as the effectiveness of the reactor system. During the second test campaign, Air Products evaluated reactor performance based on effluents for different reactor pressures, as well as water recycle rates. Analysis of the reaction equations indicates that both pressure and water flow rate affect the process reaction rates, as well as the overall reactor performance.

  9. Flue Gas Purification Utilizing SOx/NOx Reactions During Compression of CO{sub 2} Derived from Oxyfuel Combustion

    SciTech Connect (OSTI)

    Fogash, Kevin

    2010-09-30

    The United States wishes to decrease foreign energy dependence by utilizing the countrys significant coal reserves, while stemming the effects of global warming from greenhouse gases. In response to these needs, Air Products has developed a patented process for the compression and purification of the CO{sub 2} stream from oxyfuel combustion of pulverized coal. The purpose of this project was the development and performance of a comprehensive experimental and engineering evaluation to determine the feasibility of purifying CO{sub 2} derived from the flue gas generated in a tangentially fired coal combustion unit operated in the oxy-combustion mode. Following the design and construction of a 15 bar reactor system, Air Products conducted two test campaigns using the slip stream from the tangentially fired oxy-coal combustion unit. During the first test campaign, Air Products evaluated the reactor performance based on both the liquid and gaseous reactor effluents. The data obtained from the test run has enabled Air Products to determine the reaction and mass transfer rates, as well as the effectiveness of the reactor system. During the second test campaign, Air Products evaluated reactor performance based on effluents for different reactor pressures, as well as water recycle rates. Analysis of the reaction equations indicates that both pressure and water flow rate affect the process reaction rates, as well as the overall reactor performance.

  10. Photovoltaics on Landfills in Puerto Rico

    SciTech Connect (OSTI)

    Salasovich, J.; Mosey, G.

    2011-01-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Commonwealth of Puerto Rico for a feasibility study of m0treAlables on several brownfield sites. The EPA defines a brownfield as 'a property, the expansion, redevelopment, or reuse of which may be complicated by the presence or potential presence of a hazardous substance, pollutant, or contaminant.' All of the brownfields in this study are landfill sites. Citizens of Puerto Rico, city planners, and site managers are interested in redevelopment uses for landfills in Puerto Rico, which are particularly well suited for solar photovoltaic (PV) installation. The purpose of this report is to assess the landfills with the highest potential for possible solar PV installation and estimate cost, performance, and site impacts of three different PV options: crystalline silicon (fixed-tilt), crystalline silicon (single-axis tracking), and thin film (fixed-tilt). Each option represents a standalone system that can be sized to use an entire available site area. In addition, the report outlines financing options that could assist in the implementation of a system. The feasibility of PV systems installed on landfills is highly impacted by the available area for an array, solar resource, operating status, landfill cap status, distance to transmission lines, and distance to major roads. All of the landfills in Puerto Rico were screened according to these criteria in order to determine the sites with the greatest potential. Eight landfills were chosen for site visits based on the screening criteria and location. Because of time constraints and the fact that Puerto Rico is a relatively large island, the eight landfills for this visit were all located in the eastern half of the island. The findings from this report can be applied to landfills in the western half of the island. The economics of a potential PV system on landfills in Puerto Rico depend greatly on the cost of electricity. Currently, PREPA has an average electric rate of $0.119/kWh. Based on past electric rate increases in Puerto Rico and other islands in the Caribbean, this rate could increase to $0.15/kWh or higher in a relatively short amount of time. In the coming years, increasing electrical rates and increased necessity for clean power will continue to improve the feasibility of implementing solar PV systems at these sites.

  11. Geophysical exploration and hydrologic impact of the closed Gracelawn landfill in Auburn, ME

    SciTech Connect (OSTI)

    Wisniewski, D. . Geology Dept.)

    1993-03-01

    Several geophysical methods were used over portions of the Gracelawn landfill, in Auburn, Maine to determine the surface boundaries and subsurface structure of this closed landfill, and to determine the landfill's effects on groundwater quality. The landfill was originally a sand and gravel pit excavated in the 1950's and early 1960's, and was used as a landfill from 1964--1977. The site is unlined, has a clay cap, and has been graded and developed as a baseball park. Two seismic refraction lines were performed to obtain a minimum depth to bedrock of 80 m. Seismic velocities of methane gas-saturated trash ranged from 250 to 340 m/s, and sand velocities are approximately 800 m/s. Two electrical resistivity Wenner surveys over the trash yielded the depth to saturated material and thickness of the trash layers. Resistivity values for dry refuse ranged from 1,000-2,000 [Omega]*m. A third electrical resistivity survey yielded the thickness of unsaturated and saturated sands bordering the landfill. Dry sands were found to have a resistivity of 1,000 [Omega]*m, and saturated sands a resistivity of 500 [Omega]*m. Gravity and magnetic survey grids across the site revealed anomalies which were mapped to illustrate the irregular morphology of the buried trash as well as its surface boundaries. Residual magnetic anomalies are on the order of 2,000 nT. Residual gravity anomalies are up to 5 mGal. Groundwater elevations determined by the geophysical survey, combined with a survey of existing water monitoring well logs, indicate that the groundwater flow in the sand and gravel aquifer is to the southeast, away from the public water supply, Lake Auburn, which lies to the north of the site. However, correlations between the bedrock fracture analysis and the geophysical survey illustrate that there is potential for contamination of Lake Auburn via the bedrock aquifer.

  12. Reducing Open Cell Landfill Methane Emissions with a Bioactive Alternative Daily

    SciTech Connect (OSTI)

    Helene Hilger; James Oliver; Jean Bogner; David Jones

    2009-03-31

    Methane and carbon dioxide are formed in landfills as wastes degrade. Molecule-for-molecule, methane is about 20 times more potent than carbon dioxide at trapping heat in the earth's atmosphere, and thus, it is the methane emissions from landfills that are scrutinized. For example, if emissions composed of 60% methane and 40% carbon dioxide were changed to a mix that was 40% methane and 60% carbon dioxide, a 30% reduction in the landfill's global warming potential would result. A 10% methane, 90% carbon dioxide ratio will result in a 75% reduction in global warming potential compared to the baseline. Gas collection from a closed landfill can reduce emissions, and it is sometimes combined with a biocover, an engineered system where methane oxidizing bacteria living in a medium such as compost, convert landfill methane to carbon dioxide and water. Although methane oxidizing bacteria merely convert one greenhouse gas (methane) to another (carbon dioxide), this conversion can offer significant reductions in the overall greenhouse gas contribution, or global warming potential, associated with the landfill. What has not been addressed to date is the fact that methane can also escape from a landfill when the active cell is being filled with waste. Federal regulations require that newly deposited solid waste to be covered daily with a 6 in layer of soil or an alternative daily cover (ADC), such as a canvas tarp. The aim of this study was to assess the feasibility of immobilizing methane oxidizing bacteria into a tarp-like matrix that could be used for alternative daily cover at open landfill cells to prevent methane emissions. A unique method of isolating methanotrophs from landfill cover soil was used to create a liquid culture of mixed methanotrophs. A variety of prospective immobilization techniques were used to affix the bacteria in a tarp-like matrix. Both gel encapsulation of methanotrophs and gels with liquid cores containing methanotrophs were readily made but prone to rapid desiccation. Bacterial adsorption onto foam padding, natural sponge, and geotextile was successful. The most important factor for success appeared to be water holding capacity. Prototype biotarps made with geotextiles plus adsorbed methane oxidizing bacteria were tested for their responses to temperature, intermittent starvation, and washing (to simulate rainfall). The prototypes were mesophilic, and methane oxidation activity remained strong after one cycle of starvation but then declined with repeated cycles. Many of the cells detached with vigorous washing, but at least 30% appeared resistant to sloughing. While laboratory landfill simulations showed that four-layer composite biotarps made with two different types of geotextile could remove up to 50% of influent methane introduced at a flux rate of 22 g m{sup -2} d{sup -1}, field experiments did not yield high activity levels. Tests revealed that there were high hour-to-hour flux variations in the field, which, together with frequent rainfall events, confounded the field testing. Overall, the findings suggest that a methanotroph embedded biotarp appears to be a feasible strategy to mitigate methane emission from landfill cells, although the performance of field-tested biotarps was not robust here. Tarps will likely be best suited for spring and summer use, although the methane oxidizer population may be able to shift and adapt to lower temperatures. The starvation cycling of the tarp may require the capacity for intermittent reinoculation of the cells, although it is also possible that a subpopulation will adapt to the cycling and become dominant. Rainfall is not expected to be a major factor, because a baseline biofilm will be present to repopulate the tarp. If strong performance can be achieved and documented, the biotarp concept could be extended to include interception of other compounds beyond methane, such as volatile aromatic hydrocarbons and chlorinated solvents.

  13. Briefing: DOE EM ITR Landfill Assessment Project Lessons Learned |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy ITR Landfill Assessment Project Lessons Learned Briefing: DOE EM ITR Landfill Assessment Project Lessons Learned By: Craig H. Benson, PhD, PE Where: EM SSAB Teleconference: 1 Briefing provides lessons learned from the DOE EM ITR Landfill Assessment Project. PDF icon EM SSAB ITR Landfill Assessment Project Lessons Learned Presentation - July 2009 More Documents & Publications Disposal Practices at the Nevada Test Site 2008 Idaho CERCLA Disposal Facility at Idaho

  14. Briefing: Summary and Recommendations of EM Landfill Workshop | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Summary and Recommendations of EM Landfill Workshop Briefing: Summary and Recommendations of EM Landfill Workshop The briefing is an independent technical review report from the summary and recommendations of the EM Landfill Workshop help in October 2008. By: Craig H. Bendson, PhD, PE; William H. Albright, PhD; David P. Ray, PE; and John Smegal Sponsored By: The Office of Engineering and Technology (EM-20) PDF icon EM Landfill Workshop Report - November 21, 2008 More Documents

  15. Landfill Cover Revegetation at the Rocky Flats Environmental Technology

    Office of Environmental Management (EM)

    Site | Department of Energy Landfill Cover Revegetation at the Rocky Flats Environmental Technology Site Landfill Cover Revegetation at the Rocky Flats Environmental Technology Site Landfill Cover Revegetation at the Rocky Flats Environmental Technology Site PDF icon Landfill Cover Revegetation at the Rocky Flats Environmental Technology Site More Documents & Publications Revegetation of the Rocky Flats Site Smooth Brome Monitoring at Rocky Flats-2005 Results Monitoring the Performance

  16. Monitoring the Performance of an Alternative Landfill Cover at the

    Office of Environmental Management (EM)

    Monticello, Utah, Uranium Mill Tailings Disposal Site | Department of Energy the Performance of an Alternative Landfill Cover at the Monticello, Utah, Uranium Mill Tailings Disposal Site Monitoring the Performance of an Alternative Landfill Cover at the Monticello, Utah, Uranium Mill Tailings Disposal Site Monitoring the Performance of an Alternative Landfill Cover at the Monticello, Utah, Uranium Mill Tailings Disposal Site PDF icon Monitoring the Performance of an Alternative Landfill

  17. Assessment of the methane oxidation capacity of compacted soils intended for use as landfill cover materials

    SciTech Connect (OSTI)

    Rachor, Ingke; Gebert, Julia; Groengroeft, Alexander; Pfeiffer, Eva-Maria

    2011-05-15

    The microbial oxidation of methane in engineered cover soils is considered a potent option for the mitigation of emissions from old landfills or sites containing wastes of low methane generation rates. A laboratory column study was conducted in order to derive design criteria that enable construction of an effective methane oxidising cover from the range of soils that are available to the landfill operator. Therefore, the methane oxidation capacity of different soils was assessed under simulated landfill conditions. Five sandy potential landfill top cover materials with varying contents of silt and clay were investigated with respect to methane oxidation and corresponding soil gas composition over a period of four months. The soils were compacted to 95% of their specific proctor density, resulting in bulk densities of 1.4-1.7 g cm{sup -3}, reflecting considerably unfavourable conditions for methane oxidation due to reduced air-filled porosity. The soil water content was adjusted to field capacity, resulting in water contents ranging from 16.2 to 48.5 vol.%. The investigated inlet fluxes ranged from 25 to about 100 g CH{sub 4} m{sup -2} d{sup -1}, covering the methane load proposed to allow for complete oxidation in landfill covers under Western European climate conditions and hence being suggested as a criterion for release from aftercare. The vertical distribution of gas concentrations, methane flux balances as well as stable carbon isotope studies allowed for clear process identifications. Higher inlet fluxes led to a reduction of the aerated zone, an increase in the absolute methane oxidation rate and a decline of the relative proportion of oxidized methane. For each material, a specific maximum oxidation rate was determined, which varied between 20 and 95 g CH{sub 4} m{sup -2} d{sup -1} and which was positively correlated to the air-filled porosity of the soil. Methane oxidation efficiencies and gas profile data imply a strong link between oxidation capacity and diffusive ingress of atmospheric air. For one material with elevated levels of fine particles and high organic matter content, methane production impeded the quantification of methane oxidation potentials. Regarding the design of landfill cover layers it was concluded that the magnitude of the expected methane load, the texture and expected compaction of the cover material are key variables that need to be known. Based on these, a column study can serve as an appropriate testing system to determine the methane oxidation capacity of a soil intended as landfill cover material.

  18. Landfill stabilization focus area: Technology summary

    SciTech Connect (OSTI)

    1995-06-01

    Landfills within the DOE Complex as of 1990 are estimated to contain 3 million cubic meters of buried waste. The DOE facilities where the waste is predominantly located are at Hanford, the Savannah River Site (SRS), the Idaho National Engineering Laboratory (INEL), the Los Alamos National Laboratory (LANL), the Oak Ridge Reservation (ORR), the Nevada Test Site (NTS), and the Rocky Flats Plant (RFP). Landfills include buried waste, whether on pads or in trenches, sumps, ponds, pits, cribs, heaps and piles, auger holes, caissons, and sanitary landfills. Approximately half of all DOE buried waste was disposed of before 1970. Disposal regulations at that time permitted the commingling of various types of waste (i.e., transuranic, low-level radioactive, hazardous). As a result, much of the buried waste throughout the DOE Complex is presently believed to be contaminated with both hazardous and radioactive materials. DOE buried waste typically includes transuranic-contaminated radioactive waste (TRU), low-level radioactive waste (LLW), hazardous waste per 40 CFR 26 1, greater-than-class-C waste per CFR 61 55 (GTCC), mixed TRU waste, and mixed LLW. The mission of the Landfill Stabilization Focus Area is to develop, demonstrate, and deliver safer,more cost-effective and efficient technologies which satisfy DOE site needs for the remediation and management of landfills. The LSFA is structured into five technology areas to meet the landfill remediation and management needs across the DOE complex. These technology areas are: assessment, retrieval, treatment, containment, and stabilization. Technical tasks in each of these areas are reviewed.

  19. US EPA record of decision review for landfills: Sanitary landfill (740-G), Savannah River Site

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    This report presents the results of a review of the US Environmental Protection Agency (EPA) Record of Decision System (RODS) database search conducted to identify Superfund landfill sites where a Record of Decision (ROD) has been prepared by EPA, the States or the US Army Corps of Engineers describing the selected remedy at the site. ROD abstracts from the database were reviewed to identify site information including site type, contaminants of concern, components of the selected remedy, and cleanup goals. Only RODs from landfill sites were evaluated so that the results of the analysis can be used to support the remedy selection process for the Sanitary Landfill at the Savannah River Site (SRS).

  20. DOE - Office of Legacy Management -- West Lake Landfill - MO 05

    Office of Legacy Management (LM)

    Lake Landfill - MO 05 FUSRAP Considered Sites Site: West Lake Landfill (MO.05) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see http://www.epa.gov/oerrpage/superfund/sites/npl/nar1289.htm Documents Related to West Lake Landfill

  1. FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL

    SciTech Connect (OSTI)

    Ramin Yazdani; Jeff Kieffer; Heather Akau

    2003-08-01

    The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Liquid addition has commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell is nearly complete with only the biofilter remaining and is scheduled to be complete by the end of August 2003. The current project status and preliminary monitoring results are summarized in this report.

  2. FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL

    SciTech Connect (OSTI)

    Ramin Yazdani; Jeff Kieffer; Heather Akau

    2003-05-01

    The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Construction is complete on the 3.5-acre anaerobic cell and liquid addition has commenced. Construction of the 2.5-acre aerobic cell is nearly complete with only the biofilter remaining and construction of the west-side 6-acre anaerobic cell is nearly complete with only the liquid addition system remaining. The current project status and preliminary monitoring results are summarized in this report.

  3. FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL

    SciTech Connect (OSTI)

    Ramin Yazdani; Jeff Kieffer; Heather Akau

    2003-12-01

    The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Liquid addition has commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell and biofilter has been completed. The remaining task to be completed is to test the biofilter prior to operation, which is currently anticipated to begin in January 2004. The current project status and preliminary monitoring results are summarized in this report.

  4. Full Scale Bioreactor Landfill for Carbon Sequestration and Greenhouse Emission Control

    SciTech Connect (OSTI)

    Ramin Yazdani; Jeff Kieffer; Kathy Sananikone; Don Augenstein

    2005-03-30

    The Yolo County Department of Planning and Public Works constructed a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective was to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entailed the construction of a 12-acre module that contained a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells were highly instrumented to monitor bioreactor performance. Liquid addition commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell and biofilter has been completed. The current project status and preliminary monitoring results are summarized in this report.

  5. Utilities Offering Federal Utility Energy Service Contracts

    Broader source: Energy.gov [DOE]

    The Energy Policy Act of 1992, codified as 42 USC Section 8256 (c) Utility Incentive Programs, authorizes and encourages agencies to participate in programs to increase energy efficiency and for water conservation or the management of electricity demand conducted by gas, water, or electric utilities and generally available to customers of such utilities.

  6. RADIOLOGICAL SURVEY OF A PORTION OF PROPERTY OWNED BY MODERN LANDFILL, INC. -

    Office of Legacy Management (LM)

    A" 917 RADIOLOGICAL SURVEY OF A PORTION OF PROPERTY OWNED BY MODERN LANDFILL, INC. - FORMER LOOW SITE Summary Report Work performed by the Health and Safety Research Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830 March 1981 OAK RIDGE NATIONAL LABORATORY operated by UNION. CARBIDE CORPORATION for the DEPARTMENT OF ENERGY as part of the Formerly Utilized Sites-- Remedial Action Program CONTENTS Page LIST OF FIGURES .. .. . .. . . . . . . . ......... iii LIST OF TABLES

  7. EA-1707: Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Landfill, Hanford Site, Richland, Washington | Department of Energy 07: Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste Landfill, Hanford Site, Richland, Washington EA-1707: Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste Landfill, Hanford Site, Richland, Washington Summary This EA evaluates the potential environmental impacts of closing the Nonradioactive Dangerous Waste Landfill and the Solid Waste Landfill. The Washington State Department of Ecology

  8. Utilization of a fuel cell power plant for the capture and conversion of gob well gas. Final report, June--December, 1995

    SciTech Connect (OSTI)

    Przybylic, A.R.; Haynes, C.D.; Haskew, T.A.; Boyer, C.M. II; Lasseter, E.L.

    1995-12-01

    A preliminary study has been made to determine if a 200 kW fuel cell power plant operating on variable quality coalbed methane can be placed and successfully operated at the Jim Walter Resources No. 4 mine located in Tuscaloosa County, Alabama. The purpose of the demonstration is to investigate the effects of variable quality (50 to 98% methane) gob gas on the output and efficiency of the power plant. To date, very little detail has been provided concerning the operation of fuel cells in this environment. The fuel cell power plant will be located adjacent to the No. 4 mine thermal drying facility rated at 152 M British thermal units per hour. The dryer burns fuel at a rate of 75,000 cubic feet per day of methane and 132 tons per day of powdered coal. The fuel cell power plant will provide 700,000 British thermal units per hour of waste heat that can be utilized directly in the dryer, offsetting coal utilization by approximately 0.66 tons per day and providing an avoided cost of approximately $20 per day. The 200 kilowatt electrical power output of the unit will provide a utility cost reduction of approximately $3,296 each month. The demonstration will be completely instrumented and monitored in terms of gas input and quality, electrical power output, and British thermal unit output. Additionally, real-time power pricing schedules will be applied to optimize cost savings. 28 refs., 35 figs., 13 tabs.

  9. Interim site characterization report and ground-water monitoring program for the Hanford site solid waste landfill

    SciTech Connect (OSTI)

    Fruland, R.M.; Hagan, R.A.; Cline, C.S.; Bates, D.J.; Evans, J.C.; Aaberg, R.L.

    1989-07-01

    Federal and state regulations governing the operation of landfills require utilization of ground-water monitoring systems to determine whether or not landfill operations impact ground water at the point of compliance (ground water beneath the perimeter of the facility). A detection-level ground-water monitoring system was designed, installed, and initiated at the Hanford Site Solid Waste Landfill (SWL). Chlorinated hydrocarbons were detected at the beginning of the ground-water monitoring program and continue to be detected more than 1 year later. The most probable source of the chlorinated hydrocarbons is washwater discharged to the SWL between 1985 and 1987. This is an interim report and includes data from the characterization work that was performed during well installation in 1987, such as field observations, sediment studies, and geophysical logging results, and data from analyses of ground-water samples collected in 1987 and 1988, such as field parameter measurements and chemical analyses. 38 refs., 27 figs., 8 tabs.

  10. Request for Qualifications for Sacramento Landfill

    Broader source: Energy.gov [DOE]

    This Request for Qualifications (RFQ) solicits experienced companies to design, permit, finance, build, and operate a solar photovoltaic farm (SPV Farm) on the City of Sacramento’s 28th Street Landfill. Respondents to this RFQ must demonstrate experience and capacity to design, permit, finance, build, and operate a SPV Farm that generates electricity that can be sold for electrical use through a power-purchase agreement. Submittals must be prepared and delivered in accordance with the requirements set forth in this document.

  11. Development and Testing of the Advanced CHP System Utilizing the Off-Gas from the Innovative Green Coke Calcining Process in Fluidized Bed

    SciTech Connect (OSTI)

    Chudnovsky, Yaroslav; Kozlov, Aleksandr

    2013-08-15

    Green petroleum coke (GPC) is an oil refining byproduct that can be used directly as a solid fuel or as a feedstock for the production of calcined petroleum coke. GPC contains a high amount of volatiles and sulfur. During the calcination process, the GPC is heated to remove the volatiles and sulfur to produce purified calcined coke, which is used in the production of graphite, electrodes, metal carburizers, and other carbon products. Currently, more than 80% of calcined coke is produced in rotary kilns or rotary hearth furnaces. These technologies provide partial heat utilization of the calcined coke to increase efficiency of the calcination process, but they also share some operating disadvantages. However, coke calcination in an electrothermal fluidized bed (EFB) opens up a number of potential benefits for the production enhancement, while reducing the capital and operating costs. The increased usage of heavy crude oil in recent years has resulted in higher sulfur content in green coke produced by oil refinery process, which requires a significant increase in the calcinations temperature and in residence time. The calorific value of the process off-gas is quite substantial and can be effectively utilized as an opportunity fuel for combined heat and power (CHP) production to complement the energy demand. Heat recovered from the product cooling can also contribute to the overall economics of the calcination process. Preliminary estimates indicated the decrease in energy consumption by 35-50% as well as a proportional decrease in greenhouse gas emissions. As such, the efficiency improvement of the coke calcinations systems is attracting close attention of the researchers and engineers throughout the world. The developed technology is intended to accomplish the following objectives: - Reduce the energy and carbon intensity of the calcined coke production process. - Increase utilization of opportunity fuels such as industrial waste off-gas from the novel petroleum coke calcination process. - Increase the opportunity of heat (chemical and physical) utilization from process off-gases and solid product. - Develop a design of advanced CHP system utilizing off-gases as an opportunity fuel for petroleum coke calcinations and sensible heat of calcined coke. A successful accomplishment of the aforementioned objectives will contribute toward the following U.S. DOE programmatic goals: - Drive a 25% reduction in U. S. industrial energy intensity by 2017 in support of EPAct 2005; - Contribute to an 18% reduction in U.S. carbon intensity by 2012 as established by the Administrations National Goal to Reduce Emissions Intensity. 8

  12. DOE - Office of Legacy Management -- Pfohl Brothers Landfill - NY 66

    Office of Legacy Management (LM)

    Pfohl Brothers Landfill - NY 66 FUSRAP Considered Sites Site: Pfohl Brothers Landfill (NY.66 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Five-Year Review Report Pfohl Brothers Landfill Superfund Site Erie County Town of Cheektowaga, New York EPA REGION 2 Congressional District(s): 30 Erie Cheektowaga NPL LISTING HISTORY Documents

  13. Landfill Methane Project Development Handbook | Open Energy Informatio...

    Open Energy Info (EERE)

    Methane Project Development Handbook Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Landfill Methane Project Development Handbook AgencyCompany Organization: United...

  14. CHP and Bioenergy Systems for Landfills and Wastewater Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Treatment Plants CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants There are important issues to consider when selecting a CHP technology, such as ...

  15. DOE EM Landfill Workshop and Path Forward - July 2009

    Office of Environmental Management (EM)

    by CRESP DOE EM Landfill Workshop 2 Objective: - Discuss findings & recommendations from ITR visits to DOE facilities - Identify technology gaps and needs to advance EM disposal...

  16. CHP and Bioenergy for Landfills and Wastewater Treatment Plants...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities This document explores opportunities for alternative CHP fuels. PDF icon CHP and Bioenergy for ...

  17. Process for the utilization of household rubbish or garbage and other organic waste products for the production of methane gas

    SciTech Connect (OSTI)

    Hunziker, M.; Schildknecht, A.

    1985-04-16

    Non-organic substances are separated from household garbage and the organic substances are fed in proportioned manner into a mixing tank and converted into slurry by adding liquid. The slurry is crushed for homogenization purposes in a crushing means and passed into a closed holding container. It is then fed over a heat exchanger and heated to 55/sup 0/ to 60/sup 0/ C. The slurry passes into a plurality of reaction vessels in which the methane gas and carbon dioxide are produced. In a separating plant, the mixture of gaseous products is broken down into its components and some of the methane gas is recycled by bubbling it through both the holding tank and the reaction tank, the remainder being stored in gasholders. The organic substances are degraded much more rapidly through increasing the degradation temperature and as a result constructional expenditure can be reduced.

  18. Utilization of Common Automotive Three-Way NO{sub x} Reduction Catalyst for Managing Off- Gas from Thermal Treatment of High-Nitrate Waste - 13094

    SciTech Connect (OSTI)

    Foster, Adam L.; Ki Song, P.E.

    2013-07-01

    Studsvik's Thermal Organic Reduction (THOR) steam reforming process has been tested and proven to effectively treat radioactive and hazardous wastes streams with high nitrate contents to produce dry, stable mineral products, while providing high conversion (>98%) of nitrates and nitrites directly to nitrogen gas. However, increased NO{sub x} reduction may be desired for some waste streams under certain regulatory frameworks. In order to enhance the NO{sub x} reduction performance of the THOR process, a common Three-Way catalytic NO{sub x} reduction unit was installed in the process gas piping of a recently completed Engineering Scale Technology Demonstration (ESTD). The catalytic DeNO{sub x} unit was located downstream of the main THOR process vessel, and it was designed to catalyze the reduction of residual NO{sub x} to nitrogen gas via the oxidation of the hydrogen, carbon monoxide, and volatile organic compounds that are inherent to the THOR process gas. There was no need for auxiliary injection of a reducing gas, such as ammonia. The unit consisted of four monolith type catalyst sections positioned in series with a gas mixing section located between each catalyst section. The process gas was monitored for NO{sub x} concentration upstream and downstream of the catalytic DeNO{sub x} unit. Conversion efficiencies ranged from 91% to 97% across the catalytic unit, depending on the composition of the inlet gas. Higher concentrations of hydrogen and carbon monoxide in the THOR process gas increased the NO{sub x} reduction capability of the catalytic DeNO{sub x} unit. The NO{sub x} destruction performance of THOR process in combination with the Three-Way catalytic unit resulted in overall system NO{sub x} reduction efficiencies of greater than 99.9% with an average NO{sub x} reduction efficiency of 99.94% for the entire demonstration program. This allowed the NO{sub x} concentration in the ESTD exhaust gas to be maintained at less than 40 parts per million (ppm), dry basis with an average concentration of approximately 17 ppm, dry basis. There were no signs of catalyst deactivation throughout the 6 day demonstration program, even under the high steam (>50%) content and chemically reducing conditions inherent to the THOR process. Utilization of the common Three-Way automotive catalyst may prove to be a cost effective method for improving NO{sub x} emissions from thermal treatment processes that utilize similar processing conditions. This paper will discuss the details of the implementation and performance of the Three-Way catalytic DeNO{sub x} unit at the THOR ESTD, as well as a discussion of future work to determine the long-term durability of the catalyst in the THOR process. (authors)

  19. Briefing: DOE EM Landfill Workshop & Path Forward | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Landfill Workshop & Path Forward Briefing: DOE EM Landfill Workshop & Path Forward By: Office of Groundwater and Soil Remediation Where: SSAB Teleconference 2 Subject: DOE EM Landfill Workshop & Path Forward PDF icon DOE EM Landfill Workshop and Path Forward - July 2009 More Documents & Publications Briefing: Summary and Recommendations of EM Landfill Workshop Briefing: DOE EM ITR Landfill Assessment Project Lessons Learned Environmental Management Waste Management Facility

  20. DOEIEV-0005/20 Formerly Utilized MED/AEC Sites Remedial Action Program

    Office of Legacy Management (LM)

    20 Formerly Utilized MED/AEC Sites Remedial Action Program Radiological Survey of the Middlesex Municipal Landfill, Middlesex, New Jersey April 1980 , Final Report Prepared for U.S. Department of Energy Assistant Secretary for Environment Office of Environmental Compliance and Overview Division of Environmental Control Technology DOE/EV-O005/20 UC-70 Formerly Utilized MED/AEC Sites Remedbl Action Program Radiological Survey uf the Middlesex Municipal Landfill, Middlesex, New Jersey April 1980

  1. Comparison between lab- and full-scale applications of in situ aeration of an old landfill and assessment of long-term emission development after completion

    SciTech Connect (OSTI)

    Hrad, Marlies; Gamperling, Oliver; Huber-Humer, Marion

    2013-10-15

    Highlights: ? Current data on in situ aeration effects from the first Austrian full-scale case study. ? Data on lasting waste stabilisation after aeration completion. ? Information on the transferability of results from lab- to full-scale aeration. - Abstract: Sustainable landfilling has become a fundamental objective in many modern waste management concepts. In this context, the in situ aeration of landfills has been recognised for its potential to convert conventional anaerobic landfills into biological stabilised state, whereby both current and potential (long-term) emissions of the landfilled waste are mitigated. In recent years, different in situ aeration concepts have been successfully applied in Europe, North America and Asia, all pursuing different objectives and strategies. In Austria, the first full-scale application of in situ landfill aeration by means of low pressure air injection and simultaneous off-gas collection and treatment was implemented on an old, small municipal solid waste (MSW) landfill (2.6 ha) in autumn 2007. Complementary laboratory investigations were conducted with waste samples taken from the landfill site in order to provide more information on the transferability of the results from lab- to full-scale aeration measures. In addition, long-term emission development of the stabilised waste after aeration completion was assessed in an ongoing laboratory experiment. Although the initial waste material was described as mostly stable in terms of the biological parameters gas generation potential over 21 days (GP{sub 21}) and respiration activity over 4 days (RA{sub 4}), the lab-scale experiments indicated that aeration, which led to a significant improvement of leachate quality, was accompanied by further measurable changes in the solid waste material under optimised conditions. Even 75 weeks after aeration completion the leachate, as well as gaseous emissions from the stabilised waste material, remained low and stayed below the authorised Austrian discharge limits. However, the application of in situ aeration at the investigated landfill is a factor 10 behind the lab-based predictions after 3 years of operation, mainly due to technical limitations in the full-scale operation (e.g. high air flow resistivity due to high water content of waste and temporarily high water levels within the landfill; limited efficiency of the aeration wells). In addition, material preparation (e.g. sieving, sorting and homogenisation) prior to the emplacement in Landfill Simulation Reactors (LSRs) must be considered when transferring results from lab- to full-scale application.

  2. Industrial Waste Landfill IV upgrade package

    SciTech Connect (OSTI)

    Not Available

    1994-03-29

    The Y-12 Plant, K-25 Site, and ORNL are managed by DOE`s Operating Contractor (OC), Martin Marietta Energy Systems, Inc. (Energy Systems) for DOE. Operation associated with the facilities by the Operating Contractor and subcontractors, DOE contractors and the DOE Federal Building result in the generation of industrial solid wastes as well as construction/demolition wastes. Due to the waste streams mentioned, the Y-12 Industrial Waste Landfill IV (IWLF-IV) was developed for the disposal of solid industrial waste in accordance to Rule 1200-1-7, Regulations Governing Solid Waste Processing and Disposal in Tennessee. This revised operating document is a part of a request for modification to the existing Y-12 IWLF-IV to comply with revised regulation (Rule Chapters 1200-1-7-.01 through 1200-1-7-.08) in order to provide future disposal space for the ORR, Subcontractors, and the DOE Federal Building. This revised operating manual also reflects approved modifications that have been made over the years since the original landfill permit approval. The drawings referred to in this manual are included in Drawings section of the package. IWLF-IV is a Tennessee Department of Environmental and Conservation/Division of Solid Waste Management (TDEC/DSWM) Class 11 disposal unit.

  3. ENHANCED GROWTH RATE AND SILANE UTILIZATION IN AMORPHOUS SILICON AND NANOCRYSTALLINE-SILICON SOLAR CELL DEPOSITION VIA GAS PHASE ADDITIVES

    SciTech Connect (OSTI)

    Ridgeway, R.G.; Hegedus, S.S.; Podraza, N.J.

    2012-08-31

    Air Products set out to investigate the impact of additives on the deposition rate of both ???µCSi and ???±Si-H films. One criterion for additives was that they could be used in conventional PECVD processing, which would require sufficient vapor pressure to deliver material to the process chamber at the required flow rates. The flow rate required would depend on the size of the substrate onto which silicon films were being deposited, potentially ranging from 200 mm diameter wafers to the 5.7 m2 glass substrates used in GEN 8.5 flat-panel display tools. In choosing higher-order silanes, both disilane and trisilane had sufficient vapor pressure to withdraw gas at the required flow rates of up to 120 sccm. This report presents results obtained from testing at Air Products?¢???? electronic technology laboratories, located in Allentown, PA, which focused on developing processes on a commercial IC reactor using silane and mixtures of silane plus additives. These processes were deployed to compare deposition rates and film properties with and without additives, with a goal of maximizing the deposition rate while maintaining or improving film properties.

  4. Winnebago County Landfill Gas Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    2.72.7 MW 2,700 kW 2,700,000 W 2,700,000,000 mW 0.0027 GW Commercial Online Date 2000 Heat Rate (BTUkWh) 9350.0 References EPA Web Site1 Loading map... "minzoom":false,"map...

  5. RCWMD Badlands Landfill Gas Project Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    mW 1.0e-3 GW Commercial Online Date 2001 Heat Rate (BTUkWh) 12916.67 References EPA Web Site1 Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN...

  6. Greenhouse gas emissions from landfill leachate treatment plants...

    Office of Scientific and Technical Information (OSTI)

    ... Subject: 54 ENVIRONMENTAL SCIENCES; 12 MANAGEMENT OF RADIOACTIVE WASTES, AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES; AGING; CARBON DIOXIDE; GREENHOUSE GASES; LEACHATES; ...

  7. Renewable LNG: Update on the World's Largest Landfill Gas to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presented by Mike McGowan, Linde NA, Inc., at the NRELDOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado. PDF icon june2012biogasworkshopmcgowan.pdf ...

  8. CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities

    Broader source: Energy.gov [DOE]

    Overview of market opportunities for CHP and bioenergy for landfills and wastewater treatment plants

  9. Integrating multi-criteria decision analysis for a GIS-based hazardous waste landfill sitting in Kurdistan Province, western Iran

    SciTech Connect (OSTI)

    Sharifi, Mozafar Hadidi, Mosslem Vessali, Elahe Mosstafakhani, Parasto Taheri, Kamal Shahoie, Saber Khodamoradpour, Mehran

    2009-10-15

    The evaluation of a hazardous waste disposal site is a complicated process because it requires data from diverse social and environmental fields. These data often involve processing of a significant amount of spatial information which can be used by GIS as an important tool for land use suitability analysis. This paper presents a multi-criteria decision analysis alongside with a geospatial analysis for the selection of hazardous waste landfill sites in Kurdistan Province, western Iran. The study employs a two-stage analysis to provide a spatial decision support system for hazardous waste management in a typically under developed region. The purpose of GIS was to perform an initial screening process to eliminate unsuitable land followed by utilization of a multi-criteria decision analysis (MCDA) to identify the most suitable sites using the information provided by the regional experts with reference to new chosen criteria. Using 21 exclusionary criteria, as input layers, masked maps were prepared. Creating various intermediate or analysis map layers a final overlay map was obtained representing areas for hazardous waste landfill sites. In order to evaluate different landfill sites produced by the overlaying a landfill suitability index system was developed representing cumulative effects of relative importance (weights) and suitability values of 14 non-exclusionary criteria including several criteria resulting from field observation. Using this suitability index 15 different sites were visited and based on the numerical evaluation provided by MCDA most suitable sites were determined.

  10. GHG emission factors developed for the collection, transport and landfilling of municipal waste in South African municipalities

    SciTech Connect (OSTI)

    Friedrich, Elena; Trois, Cristina

    2013-04-15

    Highlights: ? An average GHG emission factor for the collection and transport of municipal solid waste in South Africa is calculated. ? A range of GHG emission factors for different types of landfills (including dumps) in South Africa are calculated. ? These factors are compared internationally and their implications for South Africa and developing countries are discussed . ? Areas for new research are highlighted. - Abstract: Greenhouse gas (GHG) emission factors are used with increased frequency for the accounting and reporting of GHG from waste management. However, these factors have been calculated for developed countries of the Northern Hemisphere and are lacking for developing countries. This paper shows how such factors have been developed for the collection, transport and landfilling of municipal waste in South Africa. As such it presents a model on how international results and methodology can be adapted and used to calculate country-specific GHG emission factors from waste. For the collection and transport of municipal waste in South Africa, the average diesel consumption is around 5 dm{sup 3} (litres) per tonne of wet waste and the associated GHG emissions are about 15 kg CO{sub 2} equivalents (CO{sub 2} e). Depending on the type of landfill, the GHG emissions from the landfilling of waste have been calculated to range from ?145 to 1016 kg CO{sub 2} e per tonne of wet waste, when taking into account carbon storage, and from 441 to 2532 kg CO{sub 2} e per tonne of wet waste, when carbon storage is left out. The highest emission factor per unit of wet waste is for landfill sites without landfill gas collection and these are the dominant waste disposal facilities in South Africa. However, cash strapped municipalities in Africa and the developing world will not be able to significantly upgrade these sites and reduce their GHG burdens if there is no equivalent replacement of the Clean Development Mechanism (CDM) resulting from the Kyoto agreement. Other low cost avenues need to be investigated to suit local conditions, in particular landfill covers which enhance methane oxidation.

  11. Development of Real-Time, Gas Quality Sensor Technology

    Broader source: Energy.gov [DOE]

    Landfill gas (LFG), composed largely of methane and carbon dioxide, is used in over 645 operational projects in 48 states. These projects convert a large source of greenhouse gases into a fuel that...

  12. ITP Industrial Distributed Energy: CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems for Landfills and Wastewater Treatment Plants November 7, 2007 Denver, Colorado Paul Lemar Jr., President pll@rdcnet.com www.rdcnet.com www.distributed-generation.com Reciprocating Engines for ADG and LFG z Reciprocating engines are either Otto (spark ignition) or Diesel (compression ignition) cycle systems z Natural gas engines, as well as those powered by ADG or LFG, are typically spark ignition systems z Some dual fuel engines have been developed using ADG/LFG with a portion of diesel

  13. A case study: Environmental benefit plan for Blydenburgh Landfill

    SciTech Connect (OSTI)

    Hansen, J.M.; Druback, G.W.

    1995-12-31

    The Town of Islip, New York, encompasses 285 square kilometers (110 square miles) along the southern shore of Suffolk County, Long Island. The Town relied upon Blydenburgh Landfill for the disposal of its estimated 290 kilotonnes per year (320,000 tons per year) of municipal solid waste (MSW) without having to contract for off-Long Island hauling and disposal. In 1983, the Long Island Landfill Law was enacted and effectively banned landfilling of raw garbage on most of Long Island after December 18, 1990. The act precluded the economic development of new landfill capacity for the Town. Blydenburgh Landfill was projected to reach capacity in early 1987 and close. To conserve landfill capacity for residential use, the Town prohibited commercial haulers from the landfill in the fall of 1986. In response, the Mobro barge departed Long Island City on March 22, 1987 loaded with commercial MSW that was no longer accepted at the Blydenburgh site. Negative publicity surrounded the Mobro barge and the continuing need to provide for waste disposal. In response, the New York State Department of Environmental Conservation (NYSDEC) and the Town`s Resource Recovery Agency entered into an Order on Consent on May 12, 1987. This allowed for continued operations and a vertical MSW {open_quotes}piggyback{close_quotes} expansion on top of a closed and capped portion of the existing 181,000 square meter (44.8 acre) landfill mound. In addition, the Order on Consent permitted construction of a separate 12,000 square meter (3.0 acre) ash residue vertical piggyback expansion adjacent to the MSW piggyback expansion. Both expansions were designed for and constructed on top of existing landfilled MSW.

  14. Fact Sheet: DOE/National Association of Regulatory Utility Commissione...

    Office of Environmental Management (EM)

    DOENational Association of Regulatory Utility Commissioners Natural Gas Infrastructure Modernization Partnership Fact Sheet: DOENational Association of Regulatory Utility...

  15. Manhattan Project truck unearthed at landfill cleanup site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manhattan project truck Manhattan Project truck unearthed at landfill cleanup site A LANL excavation crew working on a Recovery Act cleanup project has uncovered the remnants of a 1940s military truck buried in a Manhattan Project-era landfill. April 8, 2011 image description Excavator operator Kevin Miller looks at the remnants of a 1940s military truck buried in a Manhattan Project-era landfill. Contact Fred deSousa Communications Office (505) 665-3430 Email Remnants of a 1940s military truck

  16. Landfill mining: A critical review of two decades of research

    SciTech Connect (OSTI)

    Krook, Joakim; Svensson, Niclas; Eklund, Mats

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer We analyze two decades of landfill mining research regarding trends and topics. Black-Right-Pointing-Pointer So far landfill mining has mainly been used to solve waste management issues. Black-Right-Pointing-Pointer A new perspective on landfills as resource reservoirs is emerging. Black-Right-Pointing-Pointer The potential of resource extraction from landfills is significant. Black-Right-Pointing-Pointer We outline several key challenges for realization of resource extraction from landfills. - Abstract: Landfills have historically been seen as the ultimate solution for storing waste at minimum cost. It is now a well-known fact that such deposits have related implications such as long-term methane emissions, local pollution concerns, settling issues and limitations on urban development. Landfill mining has been suggested as a strategy to address such problems, and in principle means the excavation, processing, treatment and/or recycling of deposited materials. This study involves a literature review on landfill mining covering a meta-analysis of the main trends, objectives, topics and findings in 39 research papers published during the period 1988-2008. The results show that, so far, landfill mining has primarily been seen as a way to solve traditional management issues related to landfills such as lack of landfill space and local pollution concerns. Although most initiatives have involved some recovery of deposited resources, mainly cover soil and in some cases waste fuel, recycling efforts have often been largely secondary. Typically, simple soil excavation and screening equipment have therefore been applied, often demonstrating moderate performance in obtaining marketable recyclables. Several worldwide changes and recent research findings indicate the emergence of a new perspective on landfills as reservoirs for resource extraction. Although the potential of this approach appears significant, it is argued that facilitating implementation involves a number of research challenges in terms of technology innovation, clarifying the conditions for realization and developing standardized frameworks for evaluating economic and environmental performance from a systems perspective. In order to address these challenges, a combination of applied and theoretical research is required.

  17. DOE - Office of Legacy Management -- Shpack Landfill - MA 06

    Office of Legacy Management (LM)

    Shpack Landfill - MA 06 FUSRAP Considered Sites Shpack Landfill, NY Alternate Name(s): Attleboro, MA Metals and Controls Site Norton Landfill area MA.06-2 MA.06-3 Location: 68 Union Road, Norton, Massachusetts MA.06-2 Historical Operations: No AEC activities were conducted on site. Contamination was suspected from disposal of materials containing uranium and zirconium ash. MA.06-2 MA.06-3 Eligibility Determination: Eligible MA.06-1 Radiological Survey(s): Assessment Surveys MA.06-4 MA.06-5

  18. Case Study - Liquefied Natural Gas

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Environmental Science Enviro Express Kenworth LNG tractor. Connecticut Clean Cities Future Fuels Project Case Study - Liquefied Natural Gas As a part of the U.S. Department of Energy's broad effort to develop cleaner transportation technologies that reduce U.S. dependence on imported oil, this study examines advanced 2011 natural gas fueled trucks using liquefied natural gas (LNG) replacing older diesel fueled trucks. The trucks are used 6 days per week in regional city-to-landfill long hauls of

  19. Utility Partnerships

    Broader source: Energy.gov [DOE]

    Utility Partnerships 7/10/12. Provides an overview of LEAP's (Charlottesville, VA) partnership with local utilities.

  20. Sandia National Laboratories: No More Green Waste in the Landfill

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    No More Green Waste in the Landfill June 09, 2011 Dump Truck Image On the heels of Sandia National Laboratories' successful food waste composting program, Pollution Prevention (P2)...

  1. INVESTIGATION OF HOLOCENE FAULTING PROPOSED C-746-U LANDFILL EXPANSION

    SciTech Connect (OSTI)

    Lettis, William

    2006-07-01

    This report presents the findings of a fault hazard investigation for the C-746-U landfill's proposed expansion located at the Department of Energy's (DOE) Paducah Gaseous Diffusion Plant (PGDP), in Paducah, Kentucky. The planned expansion is located directly north of the present-day C-746-U landfill. Previous geophysical studies within the PGDP site vicinity interpret possible northeast-striking faults beneath the proposed landfill expansion, although prior to this investigation the existence, locations, and ages of these inferred faults have not been confirmed through independent subsurface exploration. The purpose of this investigation is to assess whether or not Holocene-active fault displacement is present beneath the footprint of the proposed landfill expansion.

  2. DOE EM Landfill Workshop and Path Forward - July 2009

    Office of Environmental Management (EM)

    SSAB Teleconference: 2. DOE EM Landfill Workshop & Path Forward Office of Groundwater and Soil Remediation US Department of Energy July 2009 Slides prepared by CRESP DOE EM Landfill Workshop 2 Objective: - Discuss findings & recommendations from ITR visits to DOE facilities - Identify technology gaps and needs to advance EM disposal practice of the future. - Obtain input from experts within and outside of DOE. Panels: Waste subsidence: prediction and impacts Waste forecasting: predicting

  3. Computer Modeling of Saltstone Landfills by Intera Environmental Consultants

    SciTech Connect (OSTI)

    Albenesius, E.L.

    2001-08-09

    This report summaries the computer modeling studies and how the results of these studies were used to estimate contaminant releases to the groundwater. These modeling studies were used to improve saltstone landfill designs and are the basis for the current reference design. With the reference landfill design, EPA Drinking Water Standards can be met for all chemicals and radionuclides contained in Savannah River Plant waste salts.

  4. Appendix B Landfill Inspection Forms and Survey Data

    Office of Legacy Management (LM)

    B Landfill Inspection Forms and Survey Data This page intentionally left blank This page intentionally left blank Original Landfill January 2012 Monthly Inspection-Attachment 1 The monthly inspection of the OLF was completed on January 30. The Rocky Flats Site only received .15 inches of precipitation during the month of January. The cover was dry at the time of the inspection. The slump in the East Perimeter Channel (EPC) remained unchanged. Berm locations that were re-graded during the OLF

  5. DOE - Office of Legacy Management -- Woburn Landfill - MA 07

    Office of Legacy Management (LM)

    Woburn Landfill - MA 07 FUSRAP Considered Sites Site: Woburn Landfill (MA.07) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Woburn , Massachusetts MA.07-2 Evaluation Year: 1987 MA.07-6 Site Operations: The National Lead Company, Inc. disposed of approximately fifty 55-gallon drums of low grade uranium ore in at this site in 1960. MA.07-2 MA.07-4 Site Disposition: Eliminated - Conditions determined meet applicable requirements

  6. Utility Partnership Program Utility Partners

    Broader source: Energy.gov [DOE]

    Utility Partnership Program utility partners are eager to work closely with federal agencies to help achieve energy management goals.

  7. System dynamics of the competition of municipal solid waste to landfill, electricity, and liquid fuel in California

    SciTech Connect (OSTI)

    Westbrook, Jessica; Malczynski, Leonard A.; Manley, Dawn Kataoka

    2014-03-01

    A quantitative system dynamics model was created to evaluate the economic and environmental tradeoffs between biomass to electricity and to liquid fuel using MSW biomass in the state of California as a case study. From an environmental perspective, landfilling represents the worst use of MSW over time, generating more greenhouse gas (GHG) emissions compared to converting MSW to liquid fuel or to electricity. MSW to ethanol results in the greatest displacement of GHG emissions per dollar spent compared to MSW to electricity. MSW to ethanol could save the state of California approximately $60 billion in energy costs by 2050 compared to landfilling, while also reducing GHG emissions state-wide by approximately 140 million metric tons during that timeframe. MSW conversion to electricity creates a significant cost within the state's electricity sector, although some conversion technologies are cost competitive with existing renewable generation.

  8. Spatial variability of nitrous oxide and methane emissions from an MBT landfill in operation: Strong N{sub 2}O hotspots at the working face

    SciTech Connect (OSTI)

    Harborth, Peter; Fu, Roland; Mnnich, Kai; Flessa, Heinz; Fricke, Klaus

    2013-10-15

    Highlights: ? First measurements of N{sub 2}O and CH{sub 4} emissions from an MBT landfill. ? High N{sub 2}O emissions from recently deposited material. ? N{sub 2}O emissions associated with aeration and the occurrence of nitrite and nitrate. ? Strong negative correlation between CH{sub 4} and N{sub 2}O production activity. - Abstract: Mechanical biological treatment (MBT) is an effective technique, which removes organic carbon from municipal solid waste (MSW) prior to deposition. Thereby, methane (CH{sub 4}) production in the landfill is strongly mitigated. However, direct measurements of greenhouse gas emissions from full-scale MBT landfills have not been conducted so far. Thus, CH{sub 4} and nitrous oxide (N{sub 2}O) emissions from a German MBT landfill in operation as well as their concentrations in the landfill gas (LFG) were measured. High N{sub 2}O emissions of 20200 g CO{sub 2} eq. m{sup ?2} h{sup ?1} magnitude (up to 428 mg N m{sup ?2} h{sup ?1}) were observed within 20 m of the working face. CH{sub 4} emissions were highest at the landfill zone located at a distance of 3040 m from the working face, where they reached about 10 g CO{sub 2} eq. m{sup ?2} h{sup ?1}. The MBT material in this area has been deposited several weeks earlier. Maximum LFG concentration for N{sub 2}O was 24.000 ppmv in material below the emission hotspot. At a depth of 50 cm from the landfill surface a strong negative correlation between N{sub 2}O and CH{sub 4} concentrations was observed. From this and from the distribution pattern of extractable ammonium, nitrite, and nitrate it has been concluded that strong N{sub 2}O production is associated with nitrification activity and the occurrence of nitrite and nitrate, which is initiated by oxygen input during waste deposition. Therefore, CH{sub 4} mitigation measures, which often employ aeration, could result in a net increase of GHG emissions due to increased N{sub 2}O emissions, especially at MBT landfills.

  9. Risk mitigation methodology for solid waste landfills. Doctoral thesis

    SciTech Connect (OSTI)

    Nixon, W.B.

    1995-05-01

    Several recent models have attempted to simulate or assess the probability and consequences of the leakage of aqueous contaminant leakage from solid waste landfills. These models incorporate common factors, including climatological and geological characteristics. Each model, however, employs a unique approach to the problem, assigns different relative weights to factors, and relies upon extrapolated small-scale experimental data and/or subjective judgment in predicting the full-scale landfill failure mechanisms leading to contaminant migration. As a result, no two models are likely to equally assess a given landfill, and no one model has been validated as a predictor of long-term performance. The United States Air Force maintains a database for characterization of potential hazardous waste sites. Records include more than 500 landfills, providing such information as waste, soil, aquifer, monitoring location data, and the results of sample testing. Through analysis of this information, nearly 300 landfills were assessed to have sufficiently, partially, or inadequately contained hazardous constituents of the wastes placed within them.

  10. Natural Gas Processing Plants in the United States: 2010 Update...

    Gasoline and Diesel Fuel Update (EIA)

    3. Natural Gas Processing Plants Utilization Rates Based on 2008 Flows Figure 3. Natural Gas Processing Plants Utilization Rates Based on 2008 Flows Note: Average utilization rates...

  11. Future of Natural Gas

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Natural Gas Bill Eisele, CEM SC Electric & Gas Co Hosted by: FEDERAL UTILITY PARTNERSHIP WORKING GROUP SEMINAR November 5-6, 2014 Cape Canaveral. Florida Agenda * Gas Facts * Supply vs. Capacity * Sources * Consumption * Pipeline system * Gas Interruptions - Operational Flow Orders * Pricing Federal Utility Partnership Working Group November 5-6, 2014 Cape Canaveral, FL Sources of Natural Gas * Mine * Import * Remove from storage Federal Utility Partnership Working Group November 5-6,

  12. Corrective Action Plan for Corrective Action Unit 424: Area 3 Landfill Complex, Tonopah Test Range, Nevada

    SciTech Connect (OSTI)

    Bechtel Nevada

    1998-08-31

    This corrective action plan provides the closure implementation methods for the Area 3 Landfill Complex, Corrective Action Unit (CAU) 424, located at the Tonopah Test Range. The Area 3 Landfill Complex consists of 8 landfill sites, each designated as a separate corrective action site.

  13. Sanitary landfill groundwater monitoring report. Third quarter 1995

    SciTech Connect (OSTI)

    1995-11-01

    This report contains analytical data for samples taken during third quarter 1995 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site (SRS). The data are submitted in reference to the Sanitary Landfill Operating Permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established by the U.S. Environmental Protection Agency, the South Carolina final Primary Drinking Water Standard for lead, or the SRS flagging criteria.

  14. Delineation of landfill migration boundaries using chemical surrogates

    SciTech Connect (OSTI)

    Thielen, D.R.; Foreman, P.S.; Davis, A.; Wyeth, R.

    1987-02-01

    A purge/trap procedures for the determination of monochlorobenzene and monochlorotoluene at the 10 ng/g level in soil is described. The advantages of a heated and stirred vessel for sample preparation are demonstrated. This method was applied to samples from the Hyde Park landfill site in Niagara Falls, NY, and the results were used to define chemical migration is illustrated with both two- and three-dimensional plotting techniques. This study is a first phase in the development of a remedial plan for the Hyde Park landfill.

  15. How to save money on monthly gas utility bills for public-housing agencies: A simple step-by-step procedure

    SciTech Connect (OSTI)

    Ryan, R.S.

    1990-01-01

    This manual gives a step-by-step procedure that managers of HUD-associated housing projects can use to buy gas at the wellhead and have it transported to the point of use via the pipeline and the local distribution company. This procedure can be used to reduce the costs of natural gas used at public-housing units. The concept is commonly referred to as 'carriage gas'.

  16. Intelligent Bioreactor Management Information System (IBM-IS) for Mitigation of Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Paul Imhoff; Ramin Yazdani; Don Augenstein; Harold Bentley; Pei Chiu

    2010-04-30

    Methane is an important contributor to global warming with a total climate forcing estimated to be close to 20% that of carbon dioxide (CO2) over the past two decades. The largest anthropogenic source of methane in the US is 'conventional' landfills, which account for over 30% of anthropogenic emissions. While controlling greenhouse gas emissions must necessarily focus on large CO2 sources, attention to reducing CH4 emissions from landfills can result in significant reductions in greenhouse gas emissions at low cost. For example, the use of 'controlled' or bioreactor landfilling has been estimated to reduce annual US greenhouse emissions by about 15-30 million tons of CO2 carbon (equivalent) at costs between $3-13/ton carbon. In this project we developed or advanced new management approaches, landfill designs, and landfill operating procedures for bioreactor landfills. These advances are needed to address lingering concerns about bioreactor landfills (e.g., efficient collection of increased CH4 generation) in the waste management industry, concerns that hamper bioreactor implementation and the consequent reductions in CH4 emissions. Collectively, the advances described in this report should result in better control of bioreactor landfills and reductions in CH4 emissions. Several advances are important components of an Intelligent Bioreactor Management Information System (IBM-IS).

  17. Labview utilities

    Energy Science and Technology Software Center (OSTI)

    2011-09-30

    The software package provides several utilities written in LabView. These utilities don't form independent programs, but rather can be used as a library or controls in other labview programs. The utilities include several new controls (xcontrols), VIs for input and output routines, as well as other 'helper'-functions not provided in the standard LabView environment.

  18. Story Road Landfill Solar Site Evaluation: San Jose

    Broader source: Energy.gov [DOE]

    This report describes the findings of a solar site evaluation conducted at the Story Road Landfill (Site) in the City of San Jose, California (City). This evaluation was conducted as part of a larger study to assess solar potential at multiple public facilities within the City.

  19. Sanitary landfill groundwater monitoring data. First quarter 1992

    SciTech Connect (OSTI)

    Thompson, C.Y.

    1992-05-01

    This report for first quarter 1992 contains sanitary landfill groundwater monitoring data for the Savannah River Plant. The data tables presented in this report are copies of draft analytical results and therefore do contain errors. These errors will be corrected when the finalized data is received from the laboratory.

  20. Organic carbon cycling in landfills: Model for a continuum approach

    SciTech Connect (OSTI)

    Bogner, J.; Lagerkvist, A.

    1997-09-01

    Organic carbon cycling in landfills can be addressed through a continuum model where the end-points are conventional anaerobic digestion of organic waste (short-term analogue) and geologic burial of organic material (long-term analogue). Major variables influencing status include moisture state, temperature, organic carbon loading, nutrient status, and isolation from the surrounding environment. Bioreactor landfills which are engineered for rapid decomposition approach (but cannot fully attain) the anaerobic digester end-point and incur higher unit costs because of their high degree of environmental isolation and control. At the other extreme, uncontrolled land disposal of organic waste materials is similar to geologic burial where organic carbon may be aerobically recycled to atmospheric CO{sub 2}, anaerobically converted to CH{sub 4} and CO{sub 2} during early diagenesis, or maintained as intermediate or recalcitrant forms into geologic time (> 1,000 years) for transformations via kerogen pathways. A family of improved landfill models are needed at several scales (molecular to landscape) which realistically address landfill processes and can be validated with field data.

  1. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cooperative Utilities Savings Category: Geothermal Electric, Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Landfill Gas, Wind (Small),...

  2. Alternative Fuels Data Center: Metropolitan Utilities District Fuels

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicles With Natural Gas Metropolitan Utilities District Fuels Vehicles With Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Metropolitan Utilities District Fuels Vehicles With Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Metropolitan Utilities District Fuels Vehicles With Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Metropolitan Utilities District Fuels Vehicles With Natural Gas on Google Bookmark Alternative Fuels Data Center:

  3. A study of tritium in municipal solid waste leachate and gas

    SciTech Connect (OSTI)

    Mutch Jr, R. D.; Mahony, J. D.

    2008-07-15

    It has become increasingly clear in the last few years that the vast majority of municipal solid waste landfills produce leachate that contains elevated levels of tritium. The authors recently conducted a study of landfills in New York and New Jersey and found that the mean concentration of tritium in the leachate from ten municipal solid waste (MSW) landfills was 33,800 pCi/L with a peak value of 192,000 pCi/L. A 2003 study in California reported a mean tritium concentration of 99,000 pCi/L with a peak value of 304,000 pCi/L. Studies in Pennsylvania and the UK produced similar results. The USEPA MCL for tritium is 20,000 pCi/L. Tritium is also manifesting itself as landfill gas and landfill gas condensate. Landfill gas condensate samples from landfills in the UK and California were found to have tritium concentrations as high as 54,400 and 513,000 pCi/L, respectively. The tritium found in MSW leachate is believed to derive principally from gaseous tritium lighting devices used in some emergency exit signs, compasses, watches, and even novelty items, such as 'glow stick' key chains. This study reports the findings of recent surveys of leachate from a number of municipal solid waste landfills, both open and closed, from throughout the United States and Europe. The study evaluates the human health and ecological risks posed by elevated tritium levels in municipal solid waste leachate and landfill gas and the implications to their safe management. We also assess the potential risks posed to solid waste management facility workers exposed to tritium-containing waste materials in transfer stations and other solid waste management facilities. (authors)

  4. Measurements of particulate matter concentrations at a landfill site (Crete, Greece)

    SciTech Connect (OSTI)

    Chalvatzaki, E.; Kopanakis, I.; Kontaksakis, M.; Glytsos, T.; Kalogerakis, N.; Lazaridis, M.

    2010-11-15

    Large amounts of solid waste are disposed in landfills and the potential of particulate matter (PM) emissions into the atmosphere is significant. Particulate matter emissions in landfills are the result of resuspension from the disposed waste and other activities such as mechanical recycling and composting, waste unloading and sorting, the process of coating residues and waste transport by trucks. Measurements of ambient levels of inhalable particulate matter (PM{sub 10}) were performed in a landfill site located at Chania (Crete, Greece). Elevated PM{sub 10} concentrations were measured in the landfill site during several landfill operations. It was observed that the meteorological conditions (mainly wind velocity and temperature) influence considerably the PM{sub 10} concentrations. Comparison between the PM{sub 10} concentrations at the landfill and at a PM{sub 10} background site indicates the influence of the landfill activities on local concentrations at the landfill. No correlation was observed between the measurements at the landfill and the background sites. Finally, specific preventing measures are proposed to control the PM concentrations in landfills.

  5. Aligning Utility Incentives with Investment in Energy Efficiency...

    Open Energy Info (EERE)

    Demonstration & Implementation Regulations: MandatesTargets This report assists gas and electric utilities as well as utility regulators with the implementation of the...

  6. Primer on gas integrated resource planning

    SciTech Connect (OSTI)

    Goldman, C.; Comnes, G.A.; Busch, J.; Wiel, S.

    1993-12-01

    This report discusses the following topics: gas resource planning: need for IRP; gas integrated resource planning: methods and models; supply and capacity planning for gas utilities; methods for estimating gas avoided costs; economic analysis of gas utility DSM programs: benefit-cost tests; gas DSM technologies and programs; end-use fuel substitution; and financial aspects of gas demand-side management programs.

  7. Montana-Dakota Utilities- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Montana-Dakota Utilities (MDU) offers several residential rebates on energy efficient equipment for natural gas and electric customers. Natural gas customers are eligible for rebates on furnaces...

  8. LFG utilization: Life or death after Section 29

    SciTech Connect (OSTI)

    Zahren, B.J.

    1996-11-01

    Of all the potential sources of renewable energy, landfill gas (LFG) presents the best opportunity for a win, win policy. Harnessing an environmental pollutant that normally escapes into the atmosphere is good public policy. Using the LFG collected from landfills as an alternative fuel could displace millions of barrels of imported oil, thousands of tons of coal, or other hydrocarbon fuels with a finite supply. Furthermore, if a significant amount of methane that escapes in LFG into the atmosphere can be recovered and used as fuel, there will be a double elimination of greenhouse gases (i.e. the reduction in greenhouse gas emissions and in the other fossil fuels not consumed). This presentation also describes some statistics on U.S. Biomass Energy from the Waste Category.

  9. Passive soil venting at the Chemical Waste Landfill Site at Sandia National Laboratories, Albuquerque, New Mexico

    SciTech Connect (OSTI)

    Phelan, J.M.; Reavis, B.; Cheng, W.C.

    1995-05-01

    Passive Soil Vapor Extraction was tested at the Chemical Waste Landfill (CWL) site at Sandia National Laboratories, New Mexico (SNLIW). Data collected included ambient pressures, differential pressures between soil gas and ambient air, gas flow rates into and out of the soil and concentrations of volatile organic compounds (VOCS) in vented soil gas. From the differential pressure and flow rate data, estimates of permeability were arrived at and compared with estimates from other studies. Flow, differential pressure, and ambient pressure data were collected for nearly 30 days. VOC data were collected for two six-hour periods during this time. Total VOC emissions were calculated and found to be under the limit set by the Resource Conservation and Recovery Act (RCRA). Although a complete process evaluation is not possible with the data gathered, some of the necessary information for designing a passive venting process was determined and the important parameters for designing the process were indicated. More study is required to evaluate long-term VOC removal using passive venting and to establish total remediation costs when passive venting is used as a polishing process following active soil vapor extraction.

  10. Gainesville Regional Utilities- Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Gainesville Regional Utilities (GRU) offers an incentive to business customers for upgrading or installing fuel efficient natural gas equipment at eligible facilities. Incentives are available for...

  11. Setting Energy Savings Targets for Utilities

    SciTech Connect (OSTI)

    none,

    2011-09-01

    Helps policymakers understand how electric and natural gas utilities can achieve greater efficiency by establishing numeric energy savings targets and goals for energy efficiency programs.

  12. Sanitary landfill groundwater monitoring report. First Quarter 1995

    SciTech Connect (OSTI)

    1995-06-01

    This report contains analytical data for samples taken during first quarter 1994 from wells of the LFW series located at the Sanitary Landfill Operating permit (DWP-0874A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established by the US Environmental Protection Agency, the South Carolina final Primary Drinking Water Standard for lead, or the SRS flagging criteria.

  13. Appendix B Landfill Inspection Forms and Survey Data

    Office of Legacy Management (LM)

    Original Landfill January 2011 Monthly Inspection - Attachment 1 The January inspection of the OLF was completed on January 28. The cover was fairly dry at the time of the inspection as precipitation has been scarce during the entire month. No new cracks were observed during this inspection. The locations where the previously reported cracks had been filled and compacted were also still in good repair. Project Location Updates Berm 1 and 7 continue to look good with no new slumping or cracking

  14. Utilization Graphs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that use data from the PDSF batch scheduler (SGE) to show the utilization of the cluster over the past 24 hours. The graphs were generated with RRDTool and are updated...

  15. 488-4D ASH LANDFILL CLOSURE CAP HELP MODELING

    SciTech Connect (OSTI)

    Phifer, M.

    2014-11-17

    At the request of Area Completion Projects (ACP) in support of the 488-4D Landfill closure, the Savannah River National Laboratory (SRNL) has performed Hydrologic Evaluation of Landfill Performance (HELP) modeling of the planned 488-4D Ash Landfill closure cap to ensure that the South Carolina Department of Health and Environmental Control (SCDHEC) limit of no more than 12 inches of head on top of the barrier layer (saturated hydraulic conductivity of no more than 1.0E-05 cm/s) in association with a 25-year, 24-hour storm event is not projected to be exceeded. Based upon Weber 1998 a 25-year, 24-hour storm event at the Savannah River Site (SRS) is 6.1 inches. The results of the HELP modeling indicate that the greatest peak daily head on top of the barrier layer (i.e. geosynthetic clay liner (GCL) or high density polyethylene (HDPE) geomembrane) for any of the runs made was 0.079 inches associated with a peak daily precipitation of 6.16 inches. This is well below the SCDHEC limit of 12 inches.

  16. INDEPENDENT VERIFICATION SURVEY REPORT FOR THE OPERABLE UNIT-1 LANDFILL TRENCHES, MIAMISBURG CLOSURE PROJECT

    SciTech Connect (OSTI)

    W.C. Adams

    2010-05-24

    INDEPENDENT VERIFICATION SURVEY REPORT FOR THE OPERABLE UNIT-1 LANDFILL TRENCHES, MIAMISBURG CLOSURE PROJECT, MIAMISBURG, OHIO DCN: 0468-SR-02-0

  17. INDEPENDENT VERIFICATION SURVEY REPORT OPERABLE UNIT-1 LANDFILL TRENCHES, MIAMISBURG CLOSURE PROJECT

    SciTech Connect (OSTI)

    W.C. Adams

    2010-07-21

    INDEPENDENT VERIFICATION SURVEY REPORT FOR THE OPERABLE UNIT-1 LANDFILL TRENCHES, MIAMISBURG CLOSURE PROJECT, MIAMISBURG, OHIO DCN: 0468-SR-03-0

  18. Power Towers for Utilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Towers for Utilities - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  19. The Flexible Solar Utility: Preparing for Solar's Impacts to...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    purchased resources Natural gas (NG ) pipeline expansion limits and NG fracking environmental restrictions Utility Business Models Evolved business models...

  20. Fact Sheet: DOE/National Association of Regulatory Utility Commissione...

    Energy Savers [EERE]

    Fact Sheet: DOENational Association of Regulatory Utility Commissioners Natural Gas Infrastructure Modernization Partnership Summary: Building on many years of productive...

  1. Method and apparatus utilizing ionizing and microwave radiation for saturation determination of water, oil and a gas in a core sample

    DOE Patents [OSTI]

    Maerefat, Nicida L. (Sugar Land, TX); Parmeswar, Ravi (Marlton, NJ); Brinkmeyer, Alan D. (Tulsa, OK); Honarpour, Mehdi (Bartlesville, OK)

    1994-01-01

    A system for determining the relative permeabilities of gas, water and oil in a core sample has a microwave emitter/detector subsystem and an X-ray emitter/detector subsystem. A core holder positions the core sample between microwave absorbers which prevent diffracted microwaves from reaching a microwave detector where they would reduce the signal-to-noise ratio of the microwave measurements. The microwave emitter/detector subsystem and the X-ray emitter/detector subsystem each have linear calibration characteristics, allowing one subsystem to be calibrated with respect to the other subsystem. The dynamic range of microwave measurements is extended through the use of adjustable attenuators. This also facilitates the use of core samples with wide diameters. The stratification characteristics of the fluids may be observed with a windowed cell separator at the outlet of the core sample. The condensation of heavy hydrocarbon gas and the dynamic characteristics of the fluids are observed with a sight glass at the outlet of the core sample.

  2. Method and apparatus utilizing ionizing and microwave radiation for saturation determination of water, oil and a gas in a core sample

    DOE Patents [OSTI]

    Maerefat, N.L.; Parmeswar, R.; Brinkmeyer, A.D.; Honarpour, M.

    1994-08-23

    A system is described for determining the relative permeabilities of gas, water and oil in a core sample has a microwave emitter/detector subsystem and an X-ray emitter/detector subsystem. A core holder positions the core sample between microwave absorbers which prevent diffracted microwaves from reaching a microwave detector where they would reduce the signal-to-noise ratio of the microwave measurements. The microwave emitter/detector subsystem and the X-ray emitter/detector subsystem each have linear calibration characteristics, allowing one subsystem to be calibrated with respect to the other subsystem. The dynamic range of microwave measurements is extended through the use of adjustable attenuators. This also facilitates the use of core samples with wide diameters. The stratification characteristics of the fluids may be observed with a windowed cell separator at the outlet of the core sample. The condensation of heavy hydrocarbon gas and the dynamic characteristics of the fluids are observed with a sight glass at the outlet of the core sample. 11 figs.

  3. Category:Utility Company Aliases | Open Energy Information

    Open Energy Info (EERE)

    Country Public Utility GreyStone H HECO Huntsville Utilities I IID I cont. Integrys J JCP&L K Kansas Gas & Electric Co KCP&L Kentucky Utilities Co (Virginia) KeySpan Generation LLC...

  4. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    Accounting Standards Board. The changes will allow FERC an understanding of the nature and extent to which hedging activities are used by electric utilities and gas...

  5. Validation of the National Energy Audit (NEAT) with data from a gas utility low-income residential weatherization program in New York State

    SciTech Connect (OSTI)

    Gettings, M.B.; Berry, L.G.; Beyer, M.A.; Maxwell, J.B.

    1998-01-01

    This study uses two approaches to the validation of the National Energy Audit (NEAT). The first consists of comparisons of audit-predicted savings to savings observed in a pre- and post-retrofit analysis of metered gas consumption. Here, realization rates, which are the ratio of measured savings to audit-predicted savings, are examined for 49 houses to determine how accurately NEAT predicts savings in a field setting. The second approach involves assessing the accuracy of NEAT`s internal algorithms by comparing its results to those obtained with another engineering model, DOE-2.1E, which is an industry standard. In this analysis, both engineering models are applied to two houses, using the same building description data, and measure-specific estimates of savings are compared. 12 figs., 11 tabs.

  6. Appendix B Landfill Inspection Forms and Survey Data

    Office of Legacy Management (LM)

    This page intentionally left blank This page intentionally left blank Rocky Flats Site Original Landfill - Settlement Plates Monitoring Quarterly Survey March 26, 2010 Comparison to Previous Survey December 15, 2009 03-26-10 OBSERVATIONS DELTA DELTA DELTA 12-15-09 OBSERVATIONS POINT NUMBER NORTHING EASTING ELEVATION DESCRIPTION NORTHING EASTING ELEVATION POINT NUMBER NORTHING EASTING ELEVATION DESCRIPTION 15053 747913.6883 2082233.082 6005.91 N-RIM-PIPE-AA 0.00 -0.02 -0.02 76527 747913.6913

  7. Landfill siting in New York: Case studies confirming the importance of site-specific hydrogeologic investigations

    SciTech Connect (OSTI)

    Cloyd, K.C.; Concannon, P.W. )

    1993-03-01

    Landfill siting is one of the most problematic environmental issues facing society today for a variety of both technical and political reasons. New York State has approached many of these issues by requiring both generalized siting studies and detailed hydrogeologic evaluation of any proposed landfill site. Geographic Information Systems (GIS) have emerged as an appropriate tool for accumulating information for preliminary decision making. Recently, Goodman and others have suggested the use of a terrain suitability map (land use map) as a mechanism for simplifying landfill siting. They propose the use of existing geologic and morphologic information to eliminate large areas of New York from consideration as potential landfill locations. The study concludes that the Appalachian Plateau region (the Southern Tier), and the Erie-Ontario Plain are the most suitable areas for landfill development in the state. An evaluation of the geology at existing landfills and the impacts that relate to the facilities has shown that suitable sites do indeed exist in areas deemed unacceptable by Goodman and others. Conversely, a number of landfills located in suitable terranes have proven to be developed on less than suitable sites. While evaluation of existing information plays an obvious role in preliminary siting studies, it is not a substitute for detailed hydrogeologic investigation. It is local hydrogeological conditions that are most important in determining the suitability of a site for landfill development rather than the regional geologic context of the site.

  8. Superfund Record of Decision (EPA Region 3): Moyer Landfill Site, Collegeville, Pennsylvania, September 1985. Final report

    SciTech Connect (OSTI)

    Not Available

    1985-09-30

    The Moyer Landfill is an inactive privately owned landfill located in Lower Providence Township in Montgomery County, Pennsylvania. The site was operated as a municipal landfill from the 1940's until April 1981, during which time it received municipal refuse and sewage sludges. According to local Federal Bureau of Investigation (FBI) officials, the landfill accepted a variety of solid and liquid hazardous wastes, including polychlorinated biphenyls (PCBs), solvents, paints, low-level radioactive wastes, and incinerated materials in bulk form and/or containerized in drums. In 1972, when the Pennsylvania Dept. of Environmental Resources (PADER) rules and regulations became more restrictive, this landfill was cited, and finally in 1981, it was closed and brought into receivership of the U.S. District Court.

  9. TDR calibration for the alternative landfill cover demonstration (ALCD)

    SciTech Connect (OSTI)

    Lopez, J.; Dwyer, S.F.; Swanson, J.N.

    1997-09-01

    The Alternative Landfill Cover Demonstration is a large scale field test that compares the performance of various landfill cover designs in dry environments. An important component of the comparison is the change in the moisture content of the soils throughout the different cover test plots. Time Domain Reflectometry (TDR) is the primary method for the measurement of the volumetric moisture content. Each of the covers is composed of layers of varying types and densities of soils. The probes are therefore calibrated to calculate the volumetric moisture content in each of the different soils in order to gain the optimum performance of the TDR system. The demonstration plots are constructed in two phases; a different probe is used in each phase. The probe that is used in Phase 1 is calibrated for the following soils: compacted native soil, uncompacted native soil, compacted native soil mixed with 6% sodium bentonite by weight, and sand. The probe that is used in Phase 2 is calibrated for the following soils: compacted native soil, uncompacted native soil, and sand. In addition, the probes are calibrated for the varying cable lengths of the TDR probes. The resulting empirically derived equations allow for the calculation of in-situ volumetric moisture content of all of the varying soils throughout the cover test plots in the demonstration.

  10. WINDExchange: Utility-Scale Wind

    Wind Powering America (EERE)

    Utility-Scale Wind Photo of two people standing on top of the nacelle of a utility-scale wind turbine. Wind is an important source of affordable, renewable energy, currently supplying nearly 5% of our nation's electricity demand. By generating electricity from wind turbines, the United States can reduce its greenhouse gas emissions, diversify its energy supply, provide cost-competitive electricity to key coastal regions, and help revitalize key sectors of its economy, including manufacturing.

  11. Energy Recovery Associates | Open Energy Information

    Open Energy Info (EERE)

    - NY NJ CT PA Area Sector: Biofuels Product: Landfill Gas, Digester Gas, mixed methane and Greenhouse gases recovery and utilization equipment and projects. Number of...

  12. Tribal Utility Policy Issues

    Energy Savers [EERE]

    Utility Policy Issues New Mexico July 27, 2015 Margaret Schaff Kanim Associates, LLC (An Indian Owned Consulting Firm) 303-443-0182 mschaff@att.net *US Energy Information Administration New Mexico Energy Stats  Sixth in crude oil production in the nation in 2013.  5% of U.S. marketed natural gas production in 2012  Largest coal-fired electric power plants in NM both on Navajo Nation  2,100-megawatt Four Corners (Navajo Mine) (APS)  1,643-megawatt San Juan (San Juan Mines) (Public

  13. Old Y-12 utility poles put to use for recreation and training | Y-12

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Security Complex Old Y-12 utility poles ... Old Y-12 utility poles put to use for recreation and training Posted: May 31, 2012 - 8:25am Maintenance Support and Utilities Management personnel at the Y-12 National Security Complex have taken steps to make sure old utility poles aren't sent to the landfill. "We tried to donate them to area organizations, but Y-12 didn't have the equipment to transport the poles on Tennessee highways," said Daniel Diden, a planner and

  14. Certification report for final closure of Y-12 Centralized Sanitary Landfill II, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    1995-12-31

    This report represents the Geotek Engineering Company, Inc., (Geotek) record of activities to support certification of final closure Of the subject Y-12 Centralized Sanitary Landfill II. Ex as noted herein, final closure of the landfill was completed in accordance with the Y-12 Centralized Sanitary Landfill 11 Closure/Post Closure Plan, Revision 2, submitted by the US Department of Energy (DOE) to the Tennessee Department of Environment and Conservation (TDEC) on April 14, 1992, and approved by TDEC on May 27, 1994 (the ``Closure Plan``). minor modification to the Closure Plan allowing partial closure of the Y-12 Centralized Sanitary Landfill II (Phase 1) was approved by TDEC on August 3, 1994. The Phase I portion of the closure for the subject landfill was completed on March 25, 1995. A closure certification report entitled Certification Report for Partial Closure of Y-12 Centralized Sanitary Landfill II was submitted to Lockheed Martin Energy Systems, Inc., (LMES) on March 28, 1995. The final closure represents the completion of the closure activities for the entire Y-12 Centralized Sanitary Landfill II Site. The contents of this report and accompanying certification are based on observations by Geotek engineers and geologists during closure activities and on review of reports, records, laboratory test results, and other information furnished to Geotek by LMES.

  15. Limited site investigation of Landfills 1 and 4, Fort Lewis, Washington

    SciTech Connect (OSTI)

    Last, G.V.; Eddy, P.A.; Airhart, S.P.; Olsen, K.R.; Raymond, J.R.; Dahl, D.R.

    1990-08-01

    The information presented in this report was collected during limited site investigation activities conducted in the vicinity of Landfills 1 and 4 at Fort Lewis. The purpose of this work was to provide a means of detecting and evaluating the impacts of these inactive landfills on ground-water quality and adjacent lands. This effort included the design and construction of ground-water monitoring systems for compliance with applicable federal and state regulations governing Resource Conservation and Recovery Act (RCRA)-type landfills. Ground-water samples were collected from both existing (1981 and 1984) wells and the newly installed (1988) wells. The analytical results from the water samples indicate that the ground water in and around Landfill 1 contains limited contamination. Contaminants may include volatile organic compounds and nitrate. The primary concern in the area around Landfill 1 was the determination that ground water from two wells may contain cis-1,2-dichloroethylene and 1,1,1-trichloroethylene above drinking water standards. Nitrate levels in the downgradient wells were greater than those in upgradient wells and exceeded drinking water standards in some of the less-representative samples. Analyses of ground-water samples from wells in and around Landfill 4 indicate several contaminants may be present. These include volatile organic compounds (principally cis-1,2-dichloroethylene and 1,1,1-trichloroethylene), coliform, oil and grease, and perhaps some metals (iron and magnesium). The primary concern in the area around Landfill 4 was the determination that ground water from five wells contained cis-1,2-dichloroethylene and 1,1,1-trichloroethylene above drinking water standards. The source of contaminants beneath either landfill cannot yet be identified. Insufficient data exist to disprove or confirm either landfill as possible contributors. 19 refs., 32 figs., 17 tabs.

  16. Business Owners: Prepare for Utility Disruptions | Department of Energy

    Energy Savers [EERE]

    Utility Disruptions Business Owners: Prepare for Utility Disruptions Business Owners: Prepare for Utility Disruptions Have a plan in place in case a natural disaster or other hazard knocks out your business's electricity or natural gas service. Identify energy utilities-The utilities that are absolutely necessary to running your business. How might a disaster impact the availability of those utilities? Determine backup options-Contact your utility companies to discuss potential backup options,

  17. Corrective action investigation plan for CAU Number 453: Area 9 Landfill, Tonopah Test Range

    SciTech Connect (OSTI)

    1997-05-14

    This Corrective Action Investigation Plan (CAIP) contains the environmental sample collection objectives and criteria for conducting site investigation activities at the Area 9 Landfill, Corrective Action Unit (CAU) 453/Corrective Action (CAS) 09-55-001-0952, which is located at the Tonopah Test Range (TTR). The TTR, included in the Nellis Air Force Range, is approximately 255 kilometers (140 miles) northwest of Las Vegas, Nevada. The Area 9 Landfill is located northwest of Area 9 on the TTR. The landfill cells associated with CAU 453 were excavated to receive waste generated from the daily operations conducted at Area 9 and from range cleanup which occurred after test activities.

  18. Construction and operation of an industrial solid waste landfill at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    SciTech Connect (OSTI)

    1995-10-01

    The US Department of Energy (DOE), Office of Waste Management, proposes to construct and operate a solid waste landfill within the boundary of the Portsmouth Gaseous Diffusion Plant (PORTS), Piketon, Ohio. The purpose of the proposed action is to provide PORTS with additional landfill capacity for non-hazardous and asbestos wastes. The proposed action is needed to support continued operation of PORTS, which generates non-hazardous wastes on a daily basis and asbestos wastes intermittently. Three alternatives are evaluated in this environmental assessment (EA): the proposed action (construction and operation of the X-737 landfill), no-action, and offsite shipment of industrial solid wastes for disposal.

  19. MassSAVE (Gas)- Residential Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    MassSAVE, through Gas Networks, organizes residential conservation services for programs administered by Massachusetts electric companies, gas companies and municipal aggregators. These utilities...

  20. Utility FGD Survey, January--December 1989

    SciTech Connect (OSTI)

    Hance, S.L.; McKibben, R.S.; Jones, F.M. )

    1992-03-01

    The Utility flue gas desulfurization (FGD) Survey report, which is generated by a computerized data base management system, represents a survey of operational and planned domestic utility flue gas desulfurization (FGD) systems. It summarizes information contributed by the utility industry, system and equipment suppliers, system designers, research organizations, and regulatory agencies. The data cover system design, fuel characteristics, operating history, and actual system performance. Also included is a unit-by-unit discussion of problems and solutions associated with the boilers, scrubbers, and FGD systems. The development status (operational, under construction, or in the planning stages), system supplier, process, waste disposal practice, and regulatory class are tabulated alphabetically by utility company.

  1. Production development and utilization of Zimmer Station wet FGD by-products. Final report. Volume 1, Executive summary

    SciTech Connect (OSTI)

    Smith, Kevin; Beeghly, Joel H.

    2000-11-30

    About 30 electric utility units with a combined total of 15,000 MW utilize magnesium enhanced lime flue gas desulfurization (FGD) systems. A disadvantage of this and other inhibited or natural oxidation wet FGD systems is the capital and operating cost associated with landfill disposal of the calcium sulfite based solids. Fixation to stabilize the solids for compaction in a landfill also consumes fly ash that otherwise may be marketable. This Executive Summary describes efforts to dewater the magnesium hydroxide and gypsum slurries and then process the solids into a more user friendly and higher value form. To eliminate the cost of solids disposal in its first generation Thiosorbic® system, the Dravo Lime Company developed the ThioClear® process that utilizes a magnesium based absorber liquor to remove S02 with minimal suspended solids. Magnesium enhanced lime is added to an oxidized bleed stream of thickener overflow (TOF) to produce magnesium hydroxide [Mg(OH)2] and gypsum (CaS04 • 2H20), as by-products. This process was demonstrated at the 3 to 5 MW closed loop FGD system pilot plant at the Miami Fort Station of Cinergy, near Cincinnati, Ohio with the help of OCDO Grant Agreement CDO/D-91-6. A similar process strictly for'recovery and reuse of Mg(OH)2 began operation at the Zimmer Station of Cinergy in late 1994 that can produce 900 pounds of Mg(OH)2 per hour and 2,600 pounds of gypsum per hour. This by-product plant, called the Zimmer Slipstream Magnesium Hydroxide Recovery Project Demonstration, was conducted with the help of OCDO Grant Agreement CDO/D-921-004. Full scale ThioClear® plants began operating in 1997 at the 130 MW Applied Energy Services plant, in Monaca, PA, and in year 2000 at the 1,330 MW Allegheny Energy Pleasants Station at St. Marys, WV.

  2. Field measurements of frost penetration into a landfill cover that uses a paper sludge barrier

    SciTech Connect (OSTI)

    Moo-Young, H.K.; LaPlante, C.; Zimmie, T.F.; Quiroz, J.

    1999-07-01

    Frost penetration is a major environmental concern in landfill design. Freezing and thawing cycles may deteriorate the permeability of the liner or cap. In this study, the depth of frost penetration into a landfill cover that uses paper sludge as the impermeable barrier (the Hubbardston landfill in Massachusetts) was measured using a frost measurement system. A thermistor probe measured the temperature at various depths. Although temperature measurements are important, soil resistivity measurements are required to accurately predict the freezing level, since soil resistivity increases greatly upon freezing. A conductivity probe measured the half-bridge voltage between conductivity rings and a ground rod. Data were collected in data loggers. The data collected from 1992--1996 showed that the frost level did not penetrate the paper sludge capping layer. Heavy snow cover throughout the winters decreased the depth of frost penetration by insulating the landfill. The high water content in the sludge also contributed to the lack of freezing.

  3. Corrective action investigation plan for CAU No. 424: Area 3 Landfill Complex, Tonopah Test Range, Nevada

    SciTech Connect (OSTI)

    1997-04-01

    This Correction Action Investigation Plan contains the environmental sample collection objectives and the criteria for conducting site investigation activities at the Area 3 Landfill Complex, CAU No. 424, which is located at the Tonopah Test Range (TTR). The TTR, included in the Nellis Air Force Range, is approximately 255 kilometers (140 miles) northwest of Las Vegas, nevada. The CAU 424 is comprised of eight individual landfill sites that are located around and within the perimeter of the Area 3 Compound. Due to the unregulated disposal activities commonly associated with early landfill operations, an investigation will be conducted at each CAS to complete the following tasks: identify the presence and nature of possible contaminant migration from the landfills; determine the vertical and lateral extent of possible contaminant migration; ascertain the potential impact to human health and the environment; and provide sufficient information and data to develop and evaluate appropriate corrective action strategies for each CAS.

  4. Federal Utility Partnership Working Group Utility Partners

    Broader source: Energy.gov [DOE]

    Federal Utility Partnership Working Group (FUPWG) utility partners are eager to work closely with Federal agencies to help achieve energy management goals.

  5. Federal Utility Partnership Working Group - Utility Interconnection...

    Energy Savers [EERE]

    Federal Utility Partnership Working Group (FUPWG) meeting-discusses solarphotovoltaic (PV) projects to connect with utility in California and their issues. fupwgfall12jewell.pd...

  6. SPECIAL REPORT Allegations Regarding the Sandia National Laboratories Mixed Waste Landfill

    Energy Savers [EERE]

    Regarding the Sandia National Laboratories Mixed Waste Landfill OAI-SR-16-01 February 2016 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 February 18, 2016 MEMORANDUM FOR THE MANAGER, SANDIA FIELD OFFICE FROM: David Sedillo, Director Western Audits Division Office of Inspector General SUBJECT: INFORMATION: Special Report on the "Allegations Regarding the Sandia National Laboratories Mixed Waste Landfill"

  7. Ground-water monitoring compliance plan for the Hanford Site Solid Waste Landfill

    SciTech Connect (OSTI)

    Fruland, R.M.

    1986-10-01

    Washington state regulations required that solid waste landfill facilities have ground-water monitoring programs in place by May 27, 1987. This document describes the well locations, installation, characterization studies and sampling and analysis plan to be followed in implementing the ground-water monitoring program at the Hanford Site Solid Waste Landfill (SWL). It is based on Washington Administrative Code WAC 173-304-490. 11 refs., 19 figs., 4 tabs.

  8. Liberty Utilities Iowa High Efficiency Equipment Rebate

    Broader source: Energy.gov [DOE]

    Liberty Utilities offers a rebate to its Iowa residential and small business customers for the purchase of high efficiency ENERGY STAR natural gas home heating and water heating equipment....

  9. Feasibility Study of Economics and Performance of Solar Photovoltaics at Johnson County Landfill

    SciTech Connect (OSTI)

    Salasovich, J.; Mosey, G.

    2012-01-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Johnson County Landfill in Shawnee, Kansas, for a feasibility study of renewable energy production. Citizens of Shawnee, city planners, and site managers are interested in redevelopment uses for landfills in Kansas that are particularly well suited for grid-tied solar photovoltaic (PV) installation. This report assesses the Johnson County Landfill for possible grid-tied PV installations and estimates the cost, performance, and site impacts of three different PV options: crystalline silicon (fixed tilt), crystalline silicon (single-axis tracking), and thin film (fixed tilt). Each option represents a standalone system that can be sized to use an entire available site area. In addition, the report outlines financing options that could assist in the implementation of a system. The feasibility of PV systems installed on landfills is highly impacted by the available area for an array, solar resource, operating status, landfill cap status, distance to transmission lines, and distance to major roads. The report findings are applicable to other landfills in the surrounding area.

  10. Cost savings associated with landfilling wastes containing very low levels of uranium

    SciTech Connect (OSTI)

    Boggs, C.J.; Shaddoan, W.T.

    1996-03-01

    The Paducah Gaseous Diffusion Plant (PGDP) has operated captive landfills (both residential and construction/demolition debris) in accordance with the Commonwealth of Kentucky regulations since the early 1980s. Typical waste streams allowed in these landfills include nonhazardous industrial and municipal solid waste (such as paper, plastic, cardboard, cafeteria waste, clothing, wood, asbestos, fly ash, metals, and construction debris). In July 1992, the U.S. Environmental Protection Agency issued new requirements for the disposal of sanitary wastes in a {open_quotes}contained landfill.{close_quotes} These requirements were promulgated in the 401 Kentucky Administrative Record Chapters 47 and 48 that became effective 30 June 1995. The requirements for a new contained landfill include a synthetic liner made of high-density polyethylene in addition to the traditional 1-meter (3-foot) clay liner and a leachate collection system. A new landfill at Paducah would accept waste streams similar to those that have been accepted in the past. The permit for the previously existing landfills did not include radioactivity limits; instead, these levels were administratively controlled. Typically, if radioactivity was detected above background levels, the waste was classified as low-level waste (LLW), which would be sent off-site for disposal.

  11. (Electric and Gas) Residential Rebate Program

    Broader source: Energy.gov [DOE]

    The Energize CT in coordination with participating utilities offers various rebates for energy efficient electric and natural gas equipment.  

  12. OpenEI Community - natural gas+ condensing flue gas heat recovery...

    Open Energy Info (EERE)

    groupincrease-natural-gas-energy-efficiency

  13. Unconventional gas outlook: resources, economics, and technologies

    SciTech Connect (OSTI)

    Drazga, B.

    2006-08-15

    The report explains the current and potential of the unconventional gas market including country profiles, major project case studies, and new technology research. It identifies the major players in the market and reports their current and forecasted projects, as well as current volume and anticipated output for specific projects. Contents are: Overview of unconventional gas; Global natural gas market; Drivers of unconventional gas sources; Forecast; Types of unconventional gas; Major producing regions Overall market trends; Production technology research; Economics of unconventional gas production; Barriers and challenges; Key regions: Australia, Canada, China, Russia, Ukraine, United Kingdom, United States; Major Projects; Industry Initiatives; Major players. Uneconomic or marginally economic resources such as tight (low permeability) sandstones, shale gas, and coalbed methane are considered unconventional. However, due to continued research and favorable gas prices, many previously uneconomic or marginally economic gas resources are now economically viable, and may not be considered unconventional by some companies. Unconventional gas resources are geologically distinct in that conventional gas resources are buoyancy-driven deposits, occurring as discrete accumulations in structural or stratigraphic traps, whereas unconventional gas resources are generally not buoyancy-driven deposits. The unconventional natural gas category (CAM, gas shales, tight sands, and landfill) is expected to continue at double-digit growth levels in the near term. Until 2008, demand for unconventional natural gas is likely to increase at an AAR corresponding to 10.7% from 2003, aided by prioritized research and development efforts. 1 app.

  14. Disposition of Utility Rebates under 42 U.S.C. § 8256

    Office of Environmental Management (EM)

    8256(c) enacted. * 1995: "Statutory note" ... or the management of electricity demand conducted by gas, ... and gas utilities to design cost-effective demand management ...

  15. Integrated Advanced Reciprocating Internal Combustion Engine System for Increased Utilization of Gaseous Opportunity Fuels

    SciTech Connect (OSTI)

    Pratapas, John; Zelepouga, Serguei; Gnatenko, Vitaliy; Saveliev, Alexei; Jangale, Vilas; Li, Hailin; Getz, Timothy; Mather, Daniel

    2013-08-31

    The project is addressing barriers to or opportunities for increasing distributed generation (DG)/combined heat and power (CHP) use in industrial applications using renewable/opportunity fuels. This project brings together novel gas quality sensor (GQS) technology with engine management for opportunity fuels such as landfill gas, digester gas and coal bed methane. By providing the capability for near real-time monitoring of the composition of these opportunity fuels, the GQS output can be used to improve the performance, increase efficiency, raise system reliability, and provide improved project economics and reduced emissions for engines used in distributed generation and combined heat and power.

  16. Questar Gas - Home Builder Gas Appliance Rebate Program | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Other EE Tankless Water Heater Program Info Sector Name Utility Administrator Questar Gas Website http:www.thermwise.combuilderBuilderRebates.html State Utah Program Type...

  17. Study of the VOC emissions from a municipal solid waste storage pilot-scale cell: Comparison with biogases from municipal waste landfill site

    SciTech Connect (OSTI)

    Chiriac, R.; De Araujos Morais, J.; Carre, J.; Bayard, R.; Chovelon, J.M.; Gourdon, R.

    2011-11-15

    Highlights: > Follow-up of the emission of VOCs in a municipal waste pilot-scale cell during the acidogenesis and acetogenesis phases. > Study from the very start of waste storage leading to a better understanding of the decomposition/degradation of waste. > Comparison of the results obtained on the pilot-scale cell with those from 3 biogases coming from the same landfill site. > A methodology of characterization for the progression of the stabilization/maturation of waste is finally proposed. - Abstract: The emission of volatile organic compounds (VOCs) from municipal solid waste stored in a pilot-scale cell containing 6.4 tonnes of waste (storage facility which is left open during the first period (40 days) and then closed with recirculation of leachates during a second period (100 days)) was followed by dynamic sampling on activated carbon and analysed by GC-MS after solvent extraction. This was done in order to know the VOC emissions before the installation of a methanogenesis process for the entire waste mass. The results, expressed in reference to toluene, were exploited during the whole study on all the analyzable VOCs: alcohols, ketones and esters, alkanes, benzenic and cyclic compounds, chlorinated compounds, terpene, and organic sulphides. The results of this study on the pilot-scale cell are then compared with those concerning three biogases from a municipal waste landfill: biogas (1) coming from waste cells being filled or recently closed, biogas (2) from all the waste storage cells on site, and biogas (3) which is a residual gas from old storage cells without aspiration of the gas. The analysis of the results obtained revealed: (i) a high emission of VOCs, principally alcohols, ketones and esters during the acidogenesis; (ii) a decrease in the alkane content and an increase in the terpene content were observed in the VOCs emitted during the production of methane; (iii) the production of heavier alkanes and an increase in the average number of carbon atoms per molecule of alkane with the progression of the stabilisation/maturation process were also observed. Previous studies have concentrated almost on the analysis of biogases from landfills. Our research aimed at gaining a more complete understanding of the decomposition/degradation of municipal solid waste by measuring the VOCs emitted from the very start of the landfill process i.e. during the acidogenesis and acetogenesis phases.

  18. NET PRED UTILITY

    Energy Science and Technology Software Center (OSTI)

    002602IBMPC00 Normalized Elution Time Prediction Utility http://omics.pnl.gov/software/NETPredictionUtility.php

  19. Inland Empire Utilities Agency IEUA | Open Energy Information

    Open Energy Info (EERE)

    Solar Product: Water utility that also offers renewable energy services through methane gas and solar generation. Coordinates: 34.012811, -117.689328 Show Map Loading...

  20. Development of Fuel-Flexible Combustion Systems Utilizing Opportunity...

    Broader source: Energy.gov (indexed) [DOE]

    Publications Fuel-Flexible, Low-Emissions Catalytic Combustor for Opportunity Fuels Low-NOx Gas Turbine Injectors Utilizing Hydrogen-Rich Opportunity Fuels - Fact Sheet, 2015...

  1. Trash processing and recycling using the zero landfill solution

    SciTech Connect (OSTI)

    Thompson, W.J.

    1994-12-31

    Each person in the US produces approximately one ton of trash per year. The environmentally friendly municipal trash processing and recycling complex used for illustrative purposes in this paper is designed and sized to handle trash from typical municipalities ranging from 500,000 to 750,000 populations. This translates into a nominal 2,000 ton per day (TPD) facility. A typical component breakdown of municipal solid waste is shown in appendix A. The layout of the complex is shown in appendix B. Today`s municipal trash processing and recycling center should be designed to serve the needs of the municipality for at least the next 20 to 30 years. It should also be designed in such a way as to allow any new technology advancements to be added easily and in a cost effective manner to extend the useful service life of the facility almost indefinitely. 100% of the trash will be recycled. There will be no need for a dump, landfill, or disposal site at all. No curbside separation is required.

  2. Fact Sheet: DOE/National Association of Regulatory Utility Commissioners

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Gas Infrastructure Modernization Partnership | Department of Energy DOE/National Association of Regulatory Utility Commissioners Natural Gas Infrastructure Modernization Partnership Fact Sheet: DOE/National Association of Regulatory Utility Commissioners Natural Gas Infrastructure Modernization Partnership The following fact sheet outlines one of the Department of Energy's series of actions, partnerships, and stakeholder commitments to help modernize the nation¹s natural gas

  3. Development of Fuel-Flexible Combustion Systems Utilizing Opportunity Fuels

    Office of Environmental Management (EM)

    in Gas Turbines - Fact Sheet, May 2014 | Department of Energy Fuel-Flexible Combustion Systems Utilizing Opportunity Fuels in Gas Turbines - Fact Sheet, May 2014 Development of Fuel-Flexible Combustion Systems Utilizing Opportunity Fuels in Gas Turbines - Fact Sheet, May 2014 GE Global Research developed and tested new fuel-flexible gas turbine nozzle technology concepts that will enable end users to efficiently generate power and heat from industrial off-gases and gasified industrial,

  4. ITP Industrial Distributed Energy: CHP and Bioenergy for Landfills...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Wastewater Treatment Plants November 7, 2007 The Opportunity for Alternative CHP Fuels z High natural gas prices have decreased spark spreads and reduced CHP market ...

  5. Feasibility Study of Solar Photovoltaics on Landfills in Puerto Rico (Second Study)

    SciTech Connect (OSTI)

    Salasovich, J.; Mosey, G.

    2011-08-01

    This report presents the results of an assessment of the technical and economic feasibility of deploying a solar photovoltaics (PV) system on landfill sites in Puerto Rico. The purpose of this report is to assess the landfills with the highest potential for possible solar PV installation and estimate cost, performance, and site impacts of three different PV options: crystalline silicon (fixed tilt), crystalline silicon (single-axis tracking), and thin film (fixed tilt). The report outlines financing options that could assist in the implementation of a system. According to the site production calculations, the most cost-effective system in terms of return on investment is the thin-film fixed-tilt technology. The report recommends financing options that could assist in the implementation of such a system. The landfills and sites considered in this report were all determined feasible areas in which to implement solar PV systems.

  6. Steam plant ash disposal facility and industrial landfill at the Y-12 Plant, Anderson County, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    The US Department of Energy (DOE) is proposing to install a wet ash handling system to dewater bottom ash from the coal-fired steam plant at its Y-12 Plant and to construct a new landfill for disposal of industrial wastes, including the dewatered bottom ash. The DOE operates three major facilities on its Oak Ridge Reservation (ORR). Operation of these facilities results in the production of a variety of nonhazardous, nonradioactive solid wastes (approximately 300 m{sup 3} per day, compacted) including sanitary wastes, common industrial wastes and construction debris. At the current rate of use, this existing landfill will be filled within approximately 18 months, and more space is urgently needed. In an effort to alleviate this problem, DOE and WMD management propose to create additional landfill facilities at a nearby site. The potential environmental impacts associated with this proposed action are the subject of this environmental assessment (EA).

  7. Selection of clc, cba, and fcb chlorobenzoate-catabolic genotypes from groundwater and surface waters adjacent to the Hyde Park, Niagara Falls, chemical landfill

    SciTech Connect (OSTI)

    Peel, M.C.; Wyndham, R.C.

    1999-04-01

    The frequency of isolation of three nonhomologous chlorobenzoate catabolic genotypes (clc, cba, and fbc) was determined for 464 isolates from freshwater sediments and groundwater in the vicinity of the Hyde Park industrial landfill site in the Niagara watershed. Samples were collected from both contaminated and noncontaminated sites during spring, summer, and fall and enriched at 4, 22, or 32 C with micromolar to millimolar concentrations of chlorobenzoates and 3-chlorobiphenyl. Hybridization at moderate stringency to restriction-digested genomic DNA with DNA probes revealed the chlorocatechol 1,2-dioxygenase operon (clcABD), the 3-chlorobenzoate 3,4-(4,5)-dioxygenase operon (cbaABC), and the 4-chlorobenzoate dehalogenase (fcbB) gene in isolates enriched from all contaminated sites in the vicinity of the industrial landfill. Nevertheless, the known genes were found in less than 10% of the isolates from the contaminated sites, indicating a high level of genetic diversity in the microbial community. The known genotypes were not enriched from the noncontaminated control sites nearby. The clc, cba, and fcb isolates were distributed across five phenotypically distinct groups based on Biolog carbon source utilization, with the breadth of the host range decreasing in the order clc > cba > fcb. Restriction fragment length polymorphism (RFLP) patterns showed that the cba genes were conserved in all isolates whereas the clc and fcb genes exhibited variation in RFLP patterns.

  8. Natural gas marketing and transportation

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This book covers: Overview of the natural gas industry; Federal regulation of marketing and transportation; State regulation of transportation; Fundamentals of gas marketing contracts; Gas marketing options and strategies; End user agreements; Transportation on interstate pipelines; Administration of natural gas contracts; Structuring transactions with the nonconventional source fuels credit; Take-or-pay wars- a cautionary analysis for the future; Antitrust pitfalls in the natural gas industry; Producer imbalances; Natural gas futures for the complete novice; State non-utility regulation of production, transportation and marketing; Natural gas processing agreements and Disproportionate sales, gas balancing, and accounting to royalty owners.

  9. Utility Potential Calculator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Potential Studies in the Northwest V1.0 Utility Potential Calculator V1.0 for Excel 2007 Utility Potential Calculator V1.0 for Excel 2003 Note: BPA developed the Utility...

  10. Landfill impacts on aquatic plant communities and tissue metal levels at Indiana Dunes National Lakeshore

    SciTech Connect (OSTI)

    Stewart, P.M. [National Biological Service, Porter, IN (United States). Lake Michigan Ecological Station; Scribailo, R.W. [Purdue Univ.North Central, Westville, IN (United States). Section of Biology and Chemistry

    1995-12-31

    One important environmental issue facing Northwest Indiana and park management at Indiana Dunes National Lakeshore (INOU) is the contamination of water, sediment and biota by persistent toxic substances. Aquatic plant communities were used to evaluate the water/organismal quality of the Grand Calumet Lagoons and two dunal ponds (pannes) at Gary, Indiana, which are partially located in the Miller Woods Unit of INDU. The lagoon is divided into several areas, the USX Lagoon is located between sections of a large industrial landfill (steel slag and other material). The Marquette Lagoon is located further away from the landfill and tends to be upgradient from the landfill. The West Panne (WP) is located next to the landfill, while the East Panne (EP) is separated from the landfill and the WP by a high dune ridge. Plant populations shift toward fewer submergent aquatics, with a higher abundance of tolerant taxa in the western section of the USX Lagoon. These differences are supported by cluster analysis. Heavy metals in root tissue of Scirpus americanus and other plant species from the pannes were significantly higher than those found in shoots. Shoot tissue metal levels in plants collected from the lagoons were higher than root tissue metal levels. The WP site has the most elevated tissue metal levels for most metals assayed, while the EP site shows similar contaminant levels. The plant distributions observed and tissue metal concentrations measured suggest that INDU`s aquatic plant community has been affected by the industrial landfill and that there exists a hydrological connection between the ponds.

  11. Utilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utilities Utilities Below are resources for Tribes about utilities. The Economics of Electric System Municipalization Looks at the economic environment in California to determine whether municipalization would be a beneficial option for many California cities. Source: Bay Area Economic Forum. Establishing a Tribal Utility Authority Handbook Provides an introduction to electric utility operation and general guidance for the steps required to form a tribal utility authority. Funded by an economic

  12. Systems and methods for measuring a parameter of a landfill including a barrier cap and wireless sensor systems and methods

    DOE Patents [OSTI]

    Kunerth, Dennis C.; Svoboda, John M.; Johnson, James T.

    2007-03-06

    A method of measuring a parameter of a landfill including a cap, without passing wires through the cap, includes burying a sensor apparatus in the landfill prior to closing the landfill with the cap; providing a reader capable of communicating with the sensor apparatus via radio frequency (RF); placing an antenna above the barrier, spaced apart from the sensor apparatus; coupling the antenna to the reader either before or after placing the antenna above the barrier; providing power to the sensor apparatus, via the antenna, by generating a field using the reader; accumulating and storing power in the sensor apparatus; sensing a parameter of the landfill using the sensor apparatus while using power; and transmitting the sensed parameter to the reader via a wireless response signal. A system for measuring a parameter of a landfill is also provided.

  13. Tribal Utility Policy Issues

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utility Policy Issues New Mexico July 27, 2015 Margaret ... *US Energy Information Administration New ... nation in utility-scale electricity generation from solar ...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Landfill Gas, Wind (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels Universal System Benefits Program Beginning January 1, 1999, all electric utilities --...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Ohio's net-metering law requires electric distribution utilities to offer net metering to customers who generate electricity using wind energy, solar energy, biomass, landfill gas,...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Landfill Gas Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Net Metering Ohio's net-metering law requires electric distribution utilities to offer net metering to...

  17. CX-009132: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Landfill Gas Utilization Plant CX(s) Applied: B5.21 Date: 08/02/2012 Location(s): New York Offices(s): Golden Field Office

  18. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Landfill Gas, Wind (Small) Universal System Benefits Program Beginning January 1, 1999, all electric utilities --...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Landfill Gas, Wind (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels Fuel Mix and Emissions Disclosure Oregon's 1999 electric utility restructuring legislation...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Cooperative Utilities, Tribal Government, Retail Supplier, Agricultural Savings Category: Solar Photovoltaics, Wind (All), Biomass, Landfill Gas, Wind (Small) Sales and Use Tax...

  1. Renewables Portfolio Standard | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Investor-Owned Utility Local Government Savings Category Geothermal Electric Solar Thermal Electric Solar Photovoltaics Wind (All) Biomass Municipal Solid Waste Landfill Gas Tidal...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    utilities to offer net metering to customers who generate electricity using wind energy, solar energy, biomass, landfill gas, hydropower, fu... Eligibility: Commercial,...

  3. Net Metering

    Broader source: Energy.gov [DOE]

    Ohio's net-metering law requires electric distribution utilities to offer net metering to customers who generate electricity using wind energy, solar energy, biomass, landfill gas, hydropower, fu...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Institutional Savings Category: Biomass, Municipal Solid Waste, Landfill Gas N. Mariana Islands- Net Metering Note: The Commonwealth Utility Corporation issued a moratorium on...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Wind (All), Biomass, Hydroelectric, Hydrogen, Landfill Gas, Wind (Small), Anaerobic Digestion Mandatory Utility Green Power Option Since Oregon's electricity restructuring, the...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Power, Landfill Gas, Tidal, Wave, Wind (Small), Hydroelectric (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels Renewable Energy Standard Utilities subject to the...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydroelectric, Landfill Gas Santa Clara Water & Sewer- Solar Water Heating Program In 1975, the City of Santa Clara established the nation's first municipal solar utility. Under...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Heat Pumps, Landfill Gas, Tidal, Wave, Ocean Thermal, Wind (Small) Renewables Portfolio Standard Eligible Technologies: Eligibility: Investor-Owned Utility, Local...

  9. Pierce County, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Panel Association (SIPA) Energy Generation Facilities in Pierce County, Washington P.E.R.C. Biomass Facility Simpson Tacoma Biomass Facility Tacoma Landfill Gas Utilization...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    requires electric distribution utilities to offer net metering to customers who generate electricity using wind energy, solar energy, biomass, landfill gas, hydropower, fu......

  11. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Landfill Gas: Consumption for Electricity Generation, by Sector, 2003 - 2013 (Million Cubic Feet) Electric Power Sector Period Total (all sectors) Electric Utilities Independent...

  12. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    D. Landfill Gas: Consumption for Electricity Generation, by Sector, 2003 - 2013 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Landfill Gas, Wind (Small), Hydroelectric (Small), Fuel Cells using Renewable Fuels, Microturbines Austin Energy- Net Metering Austin Energy, the municipal utility of Austin...

  14. Duke Energy - Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Hydroelectric Landfill Gas Wind (Small) Hydroelectric (Small) Program Info Sector Name Utility Website http:www.duke-energy.comgenerate-your-own-powersc-rate-options-tarif.....

  15. An integrated analytical framework for quantifying the LCOE of waste-to-energy facilities for a range of greenhouse gas emissions policy and technical factors

    SciTech Connect (OSTI)

    Townsend, Aaron K.; Webber, Michael E.

    2012-07-15

    This study presents a novel integrated method for considering the economics of waste-to-energy (WTE) facilities with priced greenhouse gas (GHG) emissions based upon technical and economic characteristics of the WTE facility, MSW stream, landfill alternative, and GHG emissions policy. The study demonstrates use of the formulation for six different policy scenarios and explores sensitivity of the results to ranges of certain technical parameters as found in existing literature. The study shows that details of the GHG emissions regulations have large impact on the levelized cost of energy (LCOE) of WTE and that GHG regulations can either increase or decrease the LCOE of WTE depending on policy choices regarding biogenic fractions from combusted waste and emissions from landfills. Important policy considerations are the fraction of the carbon emissions that are priced (i.e. all emissions versus only non-biogenic emissions), whether emissions credits are allowed due to reducing fugitive landfill gas emissions, whether biogenic carbon sequestration in landfills is credited against landfill emissions, and the effectiveness of the landfill gas recovery system where waste would otherwise have been buried. The default landfill gas recovery system effectiveness assumed by much of the industry yields GHG offsets that are very close to the direct non-biogenic GHG emissions from a WTE facility, meaning that small changes in the recovery effectiveness cause relatively larger changes in the emissions factor of the WTE facility. Finally, the economics of WTE are dependent on the MSW stream composition, with paper and wood being advantageous, metal and glass being disadvantageous, and plastics, food, and yard waste being either advantageous or disadvantageous depending upon the avoided tipping fee and the GHG emissions price.

  16. Additions to natural gas in underground storage to be nearly...

    U.S. Energy Information Administration (EIA) Indexed Site

    Additions to natural gas in underground storage to be nearly 50% higher this summer Although it's still spring, natural gas supply companies and utilities are already preparing for ...

  17. IMPROVED BIOMASS UTILIZATION THROUGH REMOTE FLOW SENSING

    SciTech Connect (OSTI)

    Washington University- St. Louis:; ,; Muthanna Al-Dahhan; E-mail: muthanna@wustl.edu; ,; Rajneesh Varma; Khursheed Karim; Mehul Vesvikar; Rebecca Hoffman; ,; Oak Ridge National Laboratory:; ,; David Depaoli,; Email: depaolidw@ornl.gov; ,; Thomas Klasson; Alan L. Wintenberg; Charles W Alexander; Lloyd Clonts; ,; Iowa Energy Center; ,; ,; Norm Olson; Email: nolson@energy.iastate.edu

    2007-03-26

    The growth of the livestock industry provides a valuable source of affordable, sustainable, and renewable bioenergy, while also requiring the safe disposal of the large quantities of animal wastes (manure) generated at dairy, swine, and poultry farms. If these biomass resources are mishandled and underutilized, major environmental problems will be created, such as surface and ground water contamination, odors, dust, ammonia leaching, and methane emission. Anaerobic digestion of animal wastes, in which microorganisms break down organic materials in the absence of oxygen, is one of the most promising waste treatment technologies. This process produces biogas typically containing {approx}65% methane and {approx}35% carbon dioxide. The production of biogas through anaerobic digestion from animal wastes, landfills, and municipal waste water treatment plants represents a large source of renewable and sustainable bio-fuel. Such bio-fuel can be combusted directly, used in internal combustion engines, converted into methanol, or partially oxidized to produce synthesis gas (a mixture of hydrogen and carbon monoxide) that can be converted to clean liquid fuels and chemicals via Fischer-Tropsch synthesis. Different design and mixing configurations of anaerobic digesters for treating cow manure have been utilized commercially and/or tested on a laboratory scale. These digesters include mechanically mixed, gas recirculation mixed, and slurry recirculation mixed designs, as well as covered lagoon digesters. Mixing is an important parameter for successful performance of anaerobic digesters. It enhances substrate contact with the microbial community; improves pH, temperature and substrate/microorganism uniformity; prevents stratification and scum accumulation; facilitates the removal of biogas from the digester; reduces or eliminates the formation of inactive zones (dead zones); prevents settling of biomass and inert solids; and aids in particle size reduction. Unfortunately, information and findings in the literature on the effect of mixing on anaerobic digestion are contradictory. One reason is the lack of measurement techniques for opaque systems such as digesters. Better understanding of the mixing and hydrodynamics of digesters will result in appropriate design, configuration selection, scale-up, and performance, which will ultimately enable avoiding digester failures. Accordingly, this project sought to advance the fundamental knowledge and understanding of the design, scale up, operation, and performance of cow manure anaerobic digesters with high solids loading. The project systematically studied parameters affecting cow manure anaerobic digestion performance, in different configurations and sizes by implementing computer automated radioactive particle tracking (CARPT), computed tomography (CT), and computational fluid dynamics (CFD), and by developing novel multiple-particle CARPT (MP-CARPT) and dual source CT (DSCT) techniques. The accomplishments of the project were achieved in a collaborative effort among Washington University, the Oak Ridge National Laboratory, and the Iowa Energy Center teams. The following investigations and achievements were accomplished: Systematic studies of anaerobic digesters performance and kinetics using various configurations, modes of mixing, and scales (laboratory, pilot plant, and commercial sizes) were conducted and are discussed in Chapter 2. It was found that mixing significantly affected the performance of the pilot plant scale digester ({approx}97 liter). The detailed mixing and hydrodynamics were investigated using computer automated radioactive particle tracking (CARPT) techniques, and are discussed in Chapter 3. A novel multiple particle tracking technique (MP-CARPT) technique that can track simultaneously up to 8 particles was developed, tested, validated, and implemented. Phase distribution was investigated using gamma ray computer tomography (CT) techniques, which are discussed in Chapter 4. A novel dual source CT (DSCT) technique was developed to measure the phase distribution of dynamic three phase system such as digesters with high solids loading and other types of gas-liquid-solid fluidization systems. Evaluation and validation of the computational fluid dynamics (CFD) models and closures were conducted to model and simulate the hydrodynamics and mixing intensity of the anaerobic digesters (Chapter 5). It is strongly recommended that additional studies be conducted, both on hydrodynamics and performance, in large scale digesters. The studies should use advanced non-invasive measurement techniques, including the developed novel measurement techniques, to further understand their design, scale-up, performance, and operation to avoid any digester failure. The final goal is a system ready to be used by farmers on site for bioenergy production and for animal/farm waste treatment.

  18. The Utility Management Conference

    Broader source: Energy.gov [DOE]

    The Utility Management Conference™ 2016 in San Diego is the place to be for leading utility and consulting staff. The technical program has been expanded to 36 sessions running in four concurrent rooms in order to provide utility leaders with the latest tools, techniques, best practices, and emerging solutions you need for effective utility management. This event will empower attendees, leading the water sector “On the Road to the Utilities of the Future.”

  19. A water balance study of four landfill cover designs varying in slope for semiarid regions

    SciTech Connect (OSTI)

    Nyhan, J.W.; Schofield, T.G.; Salazar, J.A.

    1997-02-01

    The goal of disposing of radioactive and hazardous waste in shallow landfills is to reduce risk to human health and to the environment by isolating contaminants until they no longer pose a hazard. In order to achieve this, the performance of a landfill cover design without an engineered barrier (Conventional Design) was compared with three designs containing either a hydraulic barrier (EPA Design) or a capillary barrier (Loam and Clay Loam Capillary Barrier Designs). Water balance parameters were measured since 1991 at six-hour intervals for four different landfill cover designs in 1.0- by 10.0-m plots with downhill slopes of 5, 10, 15, and 25%. Whereas runoff generally accounted for only 2-3% of the precipitation losses on these designs, similar values for evapotranspiration ranged from 86% to 91%, with increased evapotranspiration occurring with increases in slope. Consequently, interflow and seepage usually decreased with increasing slope for each landfill cover design. Seepage consisted of up to 10% of the precipitation on the Conventional Design, whereas the hydraulic barrier in the EPA Design effectively controlled seepage at all slopes, and both of the capillary designs worked effectively to eliminate seepage at the higher slopes.

  20. Stability monitoring system for the Fresh Kills Landfill in New York City

    SciTech Connect (OSTI)

    Thomann, T.G.; Khoury, M.A.; Rosenfarb, J.L.; Napolitano, R.A.

    1999-07-01

    The Fresh Kills Landfill, located in Staten Island, New York, serves as the repository of all municipal solid waste from the five boroughs of New York City. Because of the existence of compressible soils under most of the filling areas and the urban environment surrounding the landfill, considerable importance is being placed on the relationship between filling operations and the stability of the landfill. As a result of this concern and to address Order on Consent requirements, a program of geotechnical site characterizations, stability analyses, and design and implementation of a geotechnical instrumentation program was undertaken. Geotechnical instruments have been installed within the refuse fill and foundation soils to monitor both the magnitude and rate of change of pore pressure, lateral and vertical movements, and temperature. This paper presents an overview of the subsurface conditions, the overall instrumentation plan for assessing the landfill stability, a description of the various instruments, the performance of these instruments to date, an overview of the collected measurements, and a description of how these measurements are used to monitor the stability.

  1. Washington Closure Hanford Report of Settlement Monitoring of the ERDF Landfill

    SciTech Connect (OSTI)

    J. T. Cameron

    2008-07-30

    This report summarizes the results of the ERDF Settlement Monitoring Program conducted between August 9, 2007, and April 29, 2008, on the 35-foot and 70-foot levels of the ERDF landfill. The purpose of this monitoring program was to verify that the materials already placed under the 35-foot and 70-foot levels satisfy the settlement criteria of the conceptual cap design.

  2. Value engineering: An alternative liner system at the La Paz County Regional Landfill

    SciTech Connect (OSTI)

    Shafer, A.L.; Purdy, S.; Tempelis, D.

    1997-11-01

    The La Paz County Regional Landfill is a 65 hectare (160 acre) municipal waste site located near the western border of Arizona between the cities of Parker and Quartzsite. The site is operated under a public/private partnership between the County of La Paz and Browning-Ferris Industries, Inc. (BFI). The County owns the landfill and infrastructure and BFI is responsible for facility improvements, environmental compliance, and daily operations. Following the initial permitting and construction of the first landfill cell, a value engineering review was conducted on the site design and permit requirements. Based on this review, substantial cost saving opportunities were identified. In order to implement the value engineering ideas, the site permit was modified and a new Solid Waste Facilities Plan was Submitted to the Arizona Department of Environmental Quality. This paper discusses the value engineering modifications that were conducted, the revisions to the permits, and the relative cost savings that were realized. The areas addressed include the liner system design, closure design, disposal capacity, and operations plan. Through the use of alternative liners a cost savings of well over 50 percent (as compared to the original permit) will be realized over the life of the landfill.

  3. Sanitary Landfill Groundwater Monitoring Report - Fourth Quarter 1998 and 1998 Summary

    SciTech Connect (OSTI)

    Chase, J.

    1999-04-09

    A maximum of fifty-three wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Water permit and as part of the SRS Groundwater Monitoring Program.

  4. Water quality evaluation and geochemical assessment of iron, manganese, and arsenic in a landfill site

    SciTech Connect (OSTI)

    Pisigan, R.A. Jr.

    1995-12-31

    Several monitoring wells at a landfill site were sampled for water quality parameters to determine the nature of groundwater contamination. The landfill, located beneath a limestone and dolomitic bedrock, has been used for about 20 years for trash and garbage disposal. The monitoring parameters include major cations and anions, as well as iron, manganese, arsenic, and other parameters measured in the field to characterize the subsurface conditions. Groundwater samples collected near the landfill and downgradient locations had higher levels of iron, manganese, arsenic, alkalinity, hardness than those samples from an upgradient well. The downgradient and on-site samples were also more acidic and turbid, The dissolved oxygen data tend to suggest reducing conditions in the leachate environment. The elevated groundwater concentrations of the three metals, especially iron, were most probably caused by the acidity generated by carbon dioxide and organic acids released from microbial degradation of organic compounds dumped into the landfill. The acidic pH led to the dissolution of iron, manganese, and arsenic bearing mineral phases. The buffering reactions of limestone and dolomite to neutralize the acidic degradation products increased the hardness cations, Ca{sup +2} and Mg{sup +2}. Inorganic speciation modeling indicates that iron, manganese, and arsenic predominantly exist as Fe {sup +2}, Mn{sup +2}, and H{sub 3}AsO{sub 3}. The possible presence of organic complexes of iron was discussed, but could be modeled due to lack of appropriate equilibrium constant data.

  5. Navajo Tribal Utility Authority Moves Forward with First Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Navajo Tribal Utility Authority Moves Forward with First Utility-Scale Solar Plant Navajo Tribal Utility Authority Moves Forward with First Utility-Scale Solar Plant January 14, ...

  6. A Case Study of Danville Utilities: Utilizing Industrial Assessment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Study of Danville Utilities: Utilizing Industrial Assessment Centers to Provide Energy Efficiency Resources for Key Accounts A Case Study of Danville Utilities: Utilizing ...

  7. Performance evaluation of an anaerobic/aerobic landfill-based digester using yard waste for energy and compost production

    SciTech Connect (OSTI)

    Yazdani, Ramin; Barlaz, Morton A.; Augenstein, Don; Kayhanian, Masoud; Tchobanoglous, George

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Biochemical methane potential decreased by 83% during the two-stage operation. Black-Right-Pointing-Pointer Net energy produced was 84.3 MWh or 46 kWh per million metric tons (Mg). Black-Right-Pointing-Pointer The average removal efficiency of volatile organic compounds (VOCs) was 96-99%. Black-Right-Pointing-Pointer The average removal efficiency of non-methane organic compounds (NMOCs) was 68-99%. Black-Right-Pointing-Pointer The two-stage batch digester proved to be simple to operate and cost-effective. - Abstract: The objective of this study was to evaluate a new alternative for yard waste management by constructing, operating and monitoring a landfill-based two-stage batch digester (anaerobic/aerobic) with the recovery of energy and compost. The system was initially operated under anaerobic conditions for 366 days, after which the yard waste was aerated for an additional 191 days. Off gas generated from the aerobic stage was treated by biofilters. Net energy recovery was 84.3 MWh, or 46 kWh per million metric tons of wet waste (as received), and the biochemical methane potential of the treated waste decreased by 83% during the two-stage operation. The average removal efficiencies of volatile organic compounds and non-methane organic compounds in the biofilters were 96-99% and 68-99%, respectively.

  8. Variable gas leak rate valve

    DOE Patents [OSTI]

    Eernisse, Errol P.; Peterson, Gary D.

    1976-01-01

    A variable gas leak rate valve which utilizes a poled piezoelectric element to control opening and closing of the valve. The gas flow may be around a cylindrical rod with a tubular piezoelectric member encircling the rod for seating thereagainst to block passage of gas and for reopening thereof upon application of suitable electrical fields.

  9. CO2 Utilization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CO2 Utilization CO2 Utilization Carbon dioxide (CO2) use and reuse efforts focus on the conversion of CO2 to useable products and fuels that will reduce CO2 emissions in areas where geologic storage may not be an optimal solution. These include: Enhanced Oil/Gas Recovery - Injecting CO2 into depleting oil or gas bearing fields to maximize the amount of CO2 that could be stored as well as maximize hydrocarbon production. View the latest projects selected in FY 2014. CO2 as Feedstock - Use CO2 as

  10. Nitrogen management in landfill leachate: Application of SHARON, ANAMMOX and combined SHARON-ANAMMOX process

    SciTech Connect (OSTI)

    Sri Shalini, S.; Joseph, Kurian

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Significant research on ammonia removal from leachate by SHARON and ANAMMOX process. Black-Right-Pointing-Pointer Operational parameters, microbiology, biochemistry and application of the process. Black-Right-Pointing-Pointer SHARON-ANAMMOX process for leachate a new research and this paper gives wide facts. Black-Right-Pointing-Pointer Cost-effective process, alternative to existing technologies for leachate treatment. Black-Right-Pointing-Pointer Address the issues and operational conditions for application in leachate treatment. - Abstract: In today's context of waste management, landfilling of Municipal Solid Waste (MSW) is considered to be one of the standard practices worldwide. Leachate generated from municipal landfills has become a great threat to the surroundings as it contains high concentration of organics, ammonia and other toxic pollutants. Emphasis has to be placed on the removal of ammonia nitrogen in particular, derived from the nitrogen content of the MSW and it is a long term pollution problem in landfills which determines when the landfill can be considered stable. Several biological processes are available for the removal of ammonia but novel processes such as the Single Reactor System for High Activity Ammonia Removal over Nitrite (SHARON) and Anaerobic Ammonium Oxidation (ANAMMOX) process have great potential and several advantages over conventional processes. The combined SHARON-ANAMMOX process for municipal landfill leachate treatment is a new, innovative and significant approach that requires more research to identify and solve critical issues. This review addresses the operational parameters, microbiology, biochemistry and application of both the processes to remove ammonia from leachate.

  11. Modeling of leachate generation from MSW landfills by a 2-dimensional 2-domain approach

    SciTech Connect (OSTI)

    Fellner, Johann

    2010-11-15

    The flow of water through Municipal Solid Waste (MSW) landfills is highly non-uniform and dominated by preferential pathways. Thus, concepts to simulate landfill behavior require that a heterogeneous flow regime is considered. Recent models are based on a 2-domain approach, differentiating between channel domain with high hydraulic conductivity, and matrix domain of slow water movement with high water retention capacity. These models focus on the mathematical description of rapid water flow in channel domain. The present paper highlights the importance of water exchange between the two domains, and expands the 1-dimensional, 2-domain flow model by taking into account water flows in two dimensions. A flow field consisting of a vertical path (channel domain) surrounded by the waste mass (matrix domain) is defined using the software HYDRUS-2D. When the new model is calibrated using data sets from a MSW-landfill site the predicted leachate generation corresponds well with the observed leachate discharge. An overall model efficiency in terms of r{sup 2} of 0.76 was determined for a simulation period of almost 4 years. The results confirm that water in landfills follows a preferential path way characterized by high permeability (K{sub s} = 300 m/d) and zero retention capacity, while the bulk of the landfill (matrix domain) is characterized by low permeability (K{sub s} = 0.1 m/d) and high retention capacity. The most sensitive parameters of the model are the hydraulic conductivities of the channel domain and the matrix domain, and the anisotropy of the matrix domain.

  12. Cap and trade schemes on waste management: A case study of the Landfill Allowance Trading Scheme (LATS) in England

    SciTech Connect (OSTI)

    Calaf-Forn, Maria; Roca, Jordi; Puig-Ventosa, Ignasi

    2014-05-01

    Highlights: LATS has been effective to achieve a reduction of the amount of landfilled waste. LATS has been one of the few environmental instruments for waste management with a cap and trade methodology. LATS has achieved to increase recycling of the biodegradable and other waste fractions. - Abstract: The Landfill Allowance Trading Scheme (LATS) is one of the main instruments used in England to enforce the landfill diversion targets established in the Directive 1999/31/EC of the European Parliament and of the Council of 26 April 1999 on the landfill of waste (Landfill Directive). Through the LATS, biodegradable municipal waste (BMW) allowances for landfilling are allocated to each local authority, otherwise known as waste disposal authorities (WDAs). The quantity of landfill allowances received is expected to decrease continuously from 2005/06 to 2019/20 so as to meet the objectives of the Landfill Directive. To achieve their commitments, WDAs can exchange, buy, sell or transfer allowances among each other, or may re-profile their own allocation through banking and/or borrowing. Despite the goals for the first seven years which included two target years (2005/06 and 2009/10) being widely achieved (the average allocation of allowances per WDA was 22.9% higher than those finally used), market activity among WDAs was high and prices were not very stable. Results in terms of waste reduction and recycling levels have been satisfactory. The reduction of BMW landfilled (in percentage) was higher during the first seven years of the LATS period (2005/062011/12) (around 7% annually) than during the previous period (2001/022004/05) (4.2% annually). Since 2008, the significance of the LATS diminished because of an increase in the rate of the UK Landfill Tax. The LATS was suppressed after the 2012/13 target year, before what it was initially scheduled. The purpose of this paper is to describe the particularities of the LATS, analyse its performance as a waste management policy, make a comparison with the Landfill Tax, discuss its main features as regards efficiency, effectiveness and the application of the polluter pays principle and finally discuss if the effect of the increase in the Landfill Tax is what made the LATS ultimately unnecessary.

  13. Avista Utilities- Net Metering

    Broader source: Energy.gov [DOE]

    For Avista Utilities customers, any net excess generation (NEG) during a monthly billing period is credited to the customer's next bill at the utility's retail rate. At the beginning of each ca...

  14. Utility Partnerships Program Overview

    SciTech Connect (OSTI)

    2014-10-03

    Document describes the Utility Partnerships Program within the U.S. Department of Energy's Federal Energy Management Program.

  15. Electrical utilities relay settings

    SciTech Connect (OSTI)

    HACHE, J.M.

    1999-02-24

    This document contains the Hanford transmission and distribution system relay settings that are under the control of Electrical Utilities.

  16. YEAR 2 BIOMASS UTILIZATION

    SciTech Connect (OSTI)

    Christopher J. Zygarlicke

    2004-11-01

    This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from cofiring coal with waste paper, sunflower hulls, and wood waste showed a broad spectrum of chemical and physical characteristics, according to American Society for Testing and Materials (ASTM) C618 procedures. Higher-than-normal levels of magnesium, sodium, and potassium oxide were observed for the biomass-coal fly ash, which may impact utilization in cement replacement in concrete under ASTM requirements. Other niche markets for biomass-derived fly ash were explored. Research was conducted to develop/optimize a catalytic partial oxidation-based concept for a simple, low-cost fuel processor (reformer). Work progressed to evaluate the effects of temperature and denaturant on ethanol catalytic partial oxidation. A catalyst was isolated that had a yield of 24 mole percent, with catalyst coking limited to less than 15% over a period of 2 hours. In biodiesel research, conversion of vegetable oils to biodiesel using an alternative alkaline catalyst was demonstrated without the need for subsequent water washing. In work related to biorefinery technologies, a continuous-flow reactor was used to react ethanol with lactic acid prepared from an ammonium lactate concentrate produced in fermentations conducted at the EERC. Good yields of ester were obtained even though the concentration of lactic acid in the feed was low with respect to the amount of water present. Esterification gave lower yields of ester, owing to the lowered lactic acid content of the feed. All lactic acid fermentation from amylose hydrolysate test trials was completed. Management activities included a decision to extend several projects to December 31, 2003, because of delays in receiving biomass feedstocks for testing and acquisition of commercial matching funds. In strategic studies, methods for producing acetate esters for high-value fibers, fuel additives, solvents, and chemical intermediates were discussed with several commercial entities. Commercial industries have an interest in efficient biomass gasification designs but are waiting for economic incentives. Utility, biorefinery, pulp and paper, or other industries are interested in lignin as a potential fuel or feedstock but need more information on properties.

  17. Annual Performance Assessment and Composite Analysis Review for the ICDF Landfill FY 2008

    SciTech Connect (OSTI)

    Karen Koslow Arthur Rood

    2009-08-31

    This report addresses low-level waste disposal operations at the Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility (ICDF) landfill from the start of operations in Fiscal Year 2003 through Fiscal Year 2008. The ICDF was authorized in the Operable Unit 3-13 Record of Decision for disposal of waste from the Idaho National Laboratory Site CERCLA environmental restoration activities. The ICDF has been operating since 2003 in compliance with the CERCLA requirements and the waste acceptance criteria developed in the CERCLA process. In developing the Operable Unit 3-13 Record of Decision, U.S. Department of Energy Order (DOE) 435.1, 'Radioactive Waste Management', was identified as a 'to be considered' requirement for the ICDF. The annual review requirement under DOE Order 435.1 was determined to be an administrative requirement and, therefore, annual reviews were not prepared on an annual basis. However, the landfill has been operating for 5 years and, since the waste forms and inventories disposed of have changed from what was originally envisioned for the ICDF landfill, the ICDF project team has decided that this annual review is necessary to document the changes and provide a basis for any updates in analyses that may be necessary to continue to meet the substantive requirements of DOE Order 435.1. For facilities regulated under DOE Order 435.1-1, U.S. DOE Manual 435.1-1, 'Radioactive Waste Management', IV.P.(4)(c) stipulates that annual summaries of low-level waste disposal operations shall be prepared with respect to the conclusions and recommendations of the performance assessment and composite analysis. Important factors considered in this review include facility operations, waste receipts, and results from monitoring and research and development programs. There have been no significant changes in operations at the landfill in respect to the disposal geometry, the verification of waste characteristics, and the tracking of inventories against total limits that would affect the results and conclusions of the performance assessment. Waste receipts to date and projected waste receipts through Fiscal Year 2012 are both greater than the inventory assessed in the performance assessment and composite analysis. The waste forms disposed of to the landfill are different from the waste form (compacted soil) assessed in the performance assessment. The leak detection system and groundwater monitoring results indicate the landfill has not leaked. The results of the performance assessment/composite analysis are valid (i.e., there is still a reasonable expectation of meeting performance objectives) but the new information indicates less conservatism in the results than previously believed.

  18. EA-0767: Construction and Experiment of an Industrial Solid Waste Landfill at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to construct and operate a solid waste landfill within the boundary at the U.S. Department of Energy's Portsmouth Gaseous Diffusion plant...

  19. Natural Gas Modernization Clearinghouse Stakeholders | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Initiatives » Natural Gas Modernization Clearinghouse » Natural Gas Modernization Clearinghouse Stakeholders Natural Gas Modernization Clearinghouse Stakeholders Regulators EMATRIX Environmental Protection Agency (EPA) Natural Gas Star program Federal Energy Regulatory Commission (FERC) National Association of Regulatory Utility Commissioners (NARUC) Pipeline and Hazardous Materials Safety Administration (PHMSA) Industry groups American Gas Association (AGA) American Gas Foundation (AGF)

  20. Washington Gas- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Washington Gas provides a number of rebates to residential customers who utilize energy efficient equipment and measures in the home. Rebates are limited to natural gas furnaces and programmable...

  1. Mercury sorbent delivery system for flue gas

    DOE Patents [OSTI]

    Klunder; ,Edgar B. (Bethel Park, PA)

    2009-02-24

    The invention presents a device for the removal of elemental mercury from flue gas streams utilizing a layer of activated carbon particles contained within the filter fabric of a filter bag for use in a flue gas scrubbing system.

  2. Charlottesville Gas- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Charlottesville Gas offers rebates to residential customers for purchasing and installing specified energy efficient equipment. Rebates and utility bill credits of up to $100 are available for...

  3. Efficiency Maine Business Programs (Unitil Gas) - Commercial...

    Broader source: Energy.gov (indexed) [DOE]

    Other EE Food Service Equipment Program Info Sector Name Utility Administrator Efficiency Maine Website http:www.efficiencymaine.comat-worknatural-gas-program State...

  4. Process for selected gas oxide removal by radiofrequency catalysts

    DOE Patents [OSTI]

    Cha, Chang Y. (3807 Reynolds St., Laramie, WY 82070)

    1993-01-01

    This process to remove gas oxides from flue gas utilizes adsorption on a char bed subsequently followed by radiofrequency catalysis enhancing such removal through selected reactions. Common gas oxides include SO.sub.2 and NO.sub.x.

  5. Title I conceptual design for Pit 6 landfill closure at Lawrence Livermore National Laboratory Site 300

    SciTech Connect (OSTI)

    MacDonnell, B.A.; Obenauf, K.S.

    1996-08-01

    The objective of this design project is to evaluate and prepare design and construction documents for a closure cover cap for the Pit 6 Landfill located at Lawrence Livermore National Laboratory Site 300. This submittal constitutes the Title I Design (Conceptual Design) for the closure cover of the Pit 6 Landfill. A Title I Design is generally 30 percent of the design effort. Title H Design takes the design to 100 percent complete. Comments and edits to this Title I Design will be addressed in the Title II design submittal. Contents of this report are as follows: project background; design issues and engineering approach; design drawings; calculation packages; construction specifications outline; and construction quality assurance plan outline.

  6. EM SSAB ITR Landfill Assessment Project Lessons Learned Presentation - July 2009

    Office of Environmental Management (EM)

    Teleconference: 1. DOE EM ITR Landfill Assessment Project: Lessons Learned Craig H. Benson, PhD, PE CRESP July 2009 1 Independent Technical Review Team * Craig H. Benson, PhD, PE - University of Wisconsin-Madison: waste containment systems, civil engineering, geotechnical engineering. * William H. Albright, PhD - Desert Research Institute, Reno, Nevada: waste containment systems, hydrology, regulatory interactions. * David P. Ray, PE - US Army Corps of Engineers, Omaha, NB: waste containment

  7. Microsoft Word - Final TTR Landfill Extension EA--December 2006.doc

    National Nuclear Security Administration (NNSA)

    ENVIRONMENTAL ASSESSMENT for SANITARY LANDFILL EXPANSION ON THE TONOPAH TEST RANGE, NYE COUNTY, NV January January 2007 ACRONYMS AND ABBREVIATIONS ACC Air Combat Command AFB Air Force Base CAA Clean Air Act CEQ Council on Environmental Quality CES Civil Engineer Squadron CEV Environmental Management Flight CFR Code of Federal Regulations CO Carbon monoxide EA Environmental Assessment EIAP Environmental Impact Analysis Process EO Executive Order EPA Environmental Protection Agency MSL Mean sea

  8. Complete decay of radionuclides: Implications for low-level waste disposal in municipal landfills

    SciTech Connect (OSTI)

    Meck, R.A.

    1996-05-01

    The time required for the complete decay of a radioactive source can be quantified by specifying an acceptable probability and using an original derivation. The physical phenomenon of complete decay may be used as the technical basis to change regulations and permit, with public acceptance, the inexpensive disposal of short half-lived radioactive waste into municipal landfills. Current regulations require isolation of trash form the biosphere for 30 years during the post-closure control period for municipal landfills. Thirty years is sufficient time for complete decay of significant quantities of short-lived radionuclides, and there is a large decay capacity in the nation`s landfills. As the major generators of low-level radioactive waste with relatively short half-lives, the academic, medical, and research communities likely would benefit most from such regulatory relief. Disposal of such waste is prohibited or costly. The waste must be specially packaged, stored, transported, and disposed in designated repositories. Regulatory relief can be initiated by citizens since the Administrative Procedures Act gives citizens the right to petition for regulatory change. 10 refs., 2 tabs.

  9. Paleo-channel deposits of natural uranium at a Former Air Force Landfill

    SciTech Connect (OSTI)

    Young, C.; Weismann, PGJ.; Nelson, CHPK. [Cabrera Services, Inc., Baltimore, MD (United States)

    2007-07-01

    The US Air Force has sought to understand the provenance of radionuclides that were detected in monitor wells surrounding a closed solid-waste landfill at the former Lowry Air Force Base in Denver, Colorado. Groundwater concentrations of gross alpha, gross beta, and total uranium were thought to exceed regulatory standards. Down-gradient concentrations of these parameters exceeded up-gradient concentrations, suggesting that the landfill is leaching uranium to groundwater. Alternate hypotheses for the occurrence of the uranium included that either equipment containing refined uranium had been discarded or that uranium ore may have been disposed in the landfill, or that the uranium is naturally-occurring. Our study has concluded that the elevated radionuclide concentrations stem from naturally-occurring uranium in the regional watershed which has been preferentially deposited in paleo-channel sediments beneath the site. This study shows that a simple comparison of up-gradient versus down-gradient groundwater samples can be an inadequate method for determining whether heterogeneous geo-systems have been contaminated. It is important to understand the geologic depositional system, plus local geochemistry and how these factors impact contaminant transport. (authors)

  10. Liquefied Natural Gas for Trucks and Buses

    SciTech Connect (OSTI)

    James Wegrzyn; Michael Gurevich

    2000-06-19

    Liquefied natural gas (LNG) is being developed as a heavy vehicle fuel. The reason for developing LNG is to reduce our dependency on imported oil by eliminating technical and costs barriers associated with its usage. The U.S. Department of Energy (DOE) has a program, currently in its third year, to develop and advance cost-effective technologies for operating and refueling natural gas-fueled heavy vehicles (Class 7-8 trucks). The objectives of the DOE Natural Gas Vehicle Systems Program are to achieve market penetration by reducing vehicle conversion and fuel costs, to increase consumer acceptance by improving the reliability and efficiency, and to improve air quality by reducing tailpipe emissions. One way to reduce fuel costs is to develop new supplies of cheap natural gas. Significant progress is being made towards developing more energy-efficient, low-cost, small-scale natural gas liquefiers for exploiting alternative sources of natural gas such as from landfill and remote gas sites. In particular, the DOE program provides funds for research and development in the areas of; natural gas clean up, LNG production, advanced vehicle onboard storage tanks, improved fuel delivery systems and LNG market strategies. In general, the program seeks to integrate the individual components being developed into complete systems, and then demonstrate the technology to establish technical and economic feasibility. The paper also reviews the importance of cryogenics in designing LNG fuel delivery systems.

  11. Carrots for Utilities: Providing Financial Returns for Utility...

    Open Energy Info (EERE)

    Carrots for Utilities: Providing Financial Returns for Utility Investments in Energy Efficiency Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carrots for Utilities:...

  12. "List of Covered Electric Utilities" under the Public Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 Revised "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2006 Revised Under Title I of the Public Utility Regulatory...

  13. Carbon Dioxide Utilization Summit

    Broader source: Energy.gov [DOE]

    The 6th Carbon Dioxide Utilization Summit will be held in Newark, New Jersey, from Feb. 24–26, 2016. The conference will look at the benefits and challenges of carbon dioxide utilization. Advanced Algal Systems Program Manager Alison Goss Eng and Technology Manager Devinn Lambert will be in attendance. Dr. Goss Eng will be chairing a round table on Fuels and Chemicals during the Carbon Dioxide Utilization: From R&D to Commercialization discussion session.

  14. When Utility Bills Attack!

    Broader source: Energy.gov [DOE]

    As proactive as I am with my monthly budgeting, I tend to be reactive when it comes to my monthly utility bills.

  15. Resources for Utility Regulators

    SciTech Connect (OSTI)

    SEE Action

    2012-06-01

    Provides a summary of State and Local Energy Efficiency Action Network (SEE Action) information resources available to utility regulators, organized by topic.

  16. Utilities | Open Energy Information

    Open Energy Info (EERE)

    historic, in human and machine readable formats. See also the NREL System Advisor Model (SAM) and NREL's BEOpt. Utility Outage Information dataset - Information and resources...

  17. Utility Service Renovations

    Broader source: Energy.gov [DOE]

    Any upgrade to utility service provides an opportunity to revisit a Federal building's electrical loads and costs, but it also may provide an economic way to bundle the upgrade with an onsite renewable electricity project during renovation. Upgrading utility service to the site may involve improving or adding a transformer, upgrading utility meters, or otherwise modifying the interconnection equipment or services with the utility. In some cases, the upgrade may change the tariff structure for the facility and may qualify the property for a different structure with lower overall costs. In all cases, the implementation of renewable energy technologies should be identified during the design phase.

  18. USET Tribal Utility Summit

    Broader source: Energy.gov [DOE]

    The United South and Eastern Tribes (USET) is hosting its annual Tribal Utility Summit at the Harrah's Cherokee Casino and hosted by Eastern Band of Cherokee Indians.

  19. Utility Sounding Board

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tool Conduit Utility Sounding Board Residential Segmentation Six Going On Seven The USB was created to inform BPA on the implementation of energy efficiency programs...

  20. Utility Partnerships Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... UESCs help utilities improve key customer load profles, meet effciency and renewable energy portfolio standards, and provide exemplary customer service. Federal sites beneft from ...

  1. Electric Utility Industry Update

    Broader source: Energy.gov [DOE]

    Presentationgiven at the April 2012 Federal Utility Partnership Working Group (FUPWG) meetingcovers significant electric industry trends and industry priorities with federal customers.

  2. Utilize Available Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Storage of Gases Data Transfer Considerations for ALS Scientists and Users ALS Chemistry Lab ALS Biology Lab Floor Operators (for after hours gas connections only)...

  3. Power Towers for Utilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering ...

  4. Dalton Utilities | Open Energy Information

    Open Energy Info (EERE)

    Dalton Utilities Jump to: navigation, search Name: Dalton Utilities Place: Georgia Phone Number: 706-278-1313 Website: www.dutil.comresidentialinde Twitter: @DaltonUtilities...

  5. Flue gas desulfurization

    DOE Patents [OSTI]

    Im, K.H.; Ahluwalia, R.K.

    1984-05-01

    The invention involves a combustion process in which combustion gas containing sulfur oxide is directed past a series of heat exchangers to a stack and in which a sodium compound is added to the combustion gas in a temparature zone of above about 1400 K to form Na/sub 2/SO/sub 4/. Preferably, the temperature is above about 1800 K and the sodium compound is present as a vapor to provide a gas-gas reaction to form Na/sub 2/SO/sub 4/ as a liquid. Since liquid Na/sub 2/SO/sub 4/ may cause fouling of heat exchanger surfaces downstream from the combustion zone, the process advantageously includes the step of injecting a cooling gas downstream of the injection of the sodium compound yet upstream of one or more heat exchangers to cool the combustion gas to below about 1150 K and form solid Na/sub 2/SO/sub 4/. The cooling gas is preferably a portion of the combustion gas downstream which may be recycled for cooling. It is further advantageous to utilize an electrostatic precipitator downstream of the heat exchangers to recover the Na/sub 2/SO/sub 4/. It is also advantageous in the process to remove a portion of the combustion gas cleaned in the electrostatic precipitator and recycle that portion upstream to use as the cooling gas. 3 figures.

  6. Utility+Utility Access Map | OpenEI Community

    Open Energy Info (EERE)

    utility company pages under a given utility id. From the Special Ask page, in the query box enter the following: Category:Utility CompaniesEiaUtilityId::15248 substituting...

  7. Power Sales to Electric Utilities

    SciTech Connect (OSTI)

    1989-02-01

    The Public Utilities Regulatory Policies Act (PURPA) of 1979 requires that electrical utilities interconnect with qualifying facilities and purchase electricity at a rate based upon their full avoided costs (i.e., costs of providing both capacity and energy). Qualifying facilities (QF) include solar or geothermal electric units, hydropower, municipal solid waste or biomass-fired power plants, and cogeneration projects that satisfy maximum size, fuel use, ownership, location, and/or efficiency criteria. In Washington State, neither standard power purchase prices based upon a proxy ''avoided plant'', standard contracts, or a standard offer process have been used. Instead, a variety of power purchase contracts have been negotiated by developers of qualifying facilities with investor-owned utilities, public utility districts, and municipally-owned and operated utilities. With a hydro-based system, benefits associated with resource acquisition are determined in large part by how compatible the resource is with a utility's existing generation mix. Power purchase rates are negotiated and vary according to firm energy production, guarantees, ability to schedule maintenance or downtime, rights of refusal, power plant purchase options, project start date and length of contract; front-loading or levelization provisions; and the ability of the project to provide ''demonstrated'' capacity. Legislation was also enacted which allows PURPA to work effectively. Initial laws established ownership rights and provided irrigation districts, PUDs, and municipalities with expanded enabling powers. Financial processes were streamlined and, in some cases, simplified. Finally, laws were passed which are designed to ensure that development proceeds in an environmentally acceptable manner. In retrospect, PURPA has worked well within Washington. In the state of Washington, 20 small-scale hydroelectric projects with a combined generating capacity of 77 MW, 3 solid waste-to-energy facilities with 55 MW of electrical output, 4 cogeneration projects with 34.5 MW of generating capability, and 4 wastewater treatment facility digester gas-to-energy projects with 5 MW of electrical production have come on-line (or are in the final stages of construction) since the passage of PURPA. These numbers represent only a small portion of Washington's untapped and underutilized cogeneration and renewable resource generating potentials. [DJE-2005

  8. Teuchos Utility Package

    Energy Science and Technology Software Center (OSTI)

    2004-03-01

    Teuchos is designed to provide portable, object-oriented tools for Trillnos developers and users. This includes templated wrappers to BLAS/LAPACK, a serial dense matrix class, a parameter list, XML parsing utilities, reference counted pointer (smart pointer) utilities, and more. These tools are designed to run on both serial and parallel computers.

  9. Utility FGD survey, January--December 1988

    SciTech Connect (OSTI)

    Hance, S.L.; McKibben, R.S.; Jones, F.M. )

    1991-09-01

    The Utility FGD Survey report, which is generated by a computerized data base management system, represents a survey of operational and planned domestic utility flue gas desulfurization (FGD) systems. It summarizes information contributed by the utility industry, system and equipment suppliers, system designers, research organizations, and regulatory agencies. The data cover system design, fuel characteristics, operating history, and actual system performance. Also included is a unit-by-unit discussion of problems and solutions associated with the boilers, scrubbers, and FGD systems. The development status (operational, under construction, or in the planning stages), system supplier, process, waste disposal practice, and regulatory class are tabulated alphabetically by utility company. Simplified process flow diagrams of FGD systems, definitions, and a glossary of terms are attached to the report. Current data for domestic FGD systems show systems in operation, systems under construction, and systems planned. The current total FGD-controlled capacity in the United States is 67,091 MW.

  10. Sulfur gas emissions from stored flue-gas-desulfurization sludges

    SciTech Connect (OSTI)

    Adams, D.F.; Farwell, S.O.

    1980-01-01

    In field studies conducted for the Electric Power Research Institute by the University of Washington (1978) and the University of Idaho (1979), 13 gas samples from sludge storage sites at coal-burning power plants were analyzed by wall-coated open-tube cryogenic capillary-column gas chromatography with a sulfur-selective flame-photometric detector. Hydrogen sulfide, carbonyl sulfide, dimethyl sulfide, carbon disulfide, and dimethyl disulfide were identified in varying concentrations and ratios in the emissions from both operating sludge ponds and landfills and from FGD sludge surfaces that had been stored in the open for 3-32 mo or longer. Other sulfur compounds, probably propanethiols, were found in emissions from some sludges. Chemical ''stabilization/fixation'' sulfate-sulfite ratio, sludge water content, and temperature were the most significant variables controlling sulfur gas production. The average sulfur emissions from each of the 13 FGD storage sites ranged from 0.01 to 0.26 g/sq m/yr sulfur.

  11. Supersonic gas compressor

    DOE Patents [OSTI]

    Lawlor, Shawn P. (Bellevue, WA); Novaresi, Mark A. (San Diego, CA); Cornelius, Charles C. (Kirkland, WA)

    2007-11-13

    A gas compressor based on the use of a driven rotor having a compression ramp traveling at a local supersonic inlet velocity (based on the combination of inlet gas velocity and tangential speed of the ramp) which compresses inlet gas against a stationary sidewall. In using this method to compress inlet gas, the supersonic compressor efficiently achieves high compression ratios while utilizing a compact, stabilized gasdynamic flow path. Operated at supersonic speeds, the inlet stabilizes an oblique/normal shock system in the gasdyanamic flow path formed between the rim of the rotor, the strakes, and a stationary external housing. Part load efficiency is enhanced by the use of a pre-swirl compressor, and using a bypass stream to bleed a portion of the intermediate pressure gas after passing through the pre-swirl compressor back to the inlet of the pre-swirl compressor. Inlet guide vanes to the compression ramp enhance overall efficiency.

  12. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology | Department of Energy 4 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Caterpillar/U.S. Department of Energy PDF icon 2004_deer_hopmann.pdf More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Advanced Natural Gas Reciprocating Engines (ARES) - Presentation by Caterpillar, Inc., June 2011

  13. CORRECTIVE ACTION DECISION DOCUMENT FOR THE AREA 3 LANDFILL COMPLEX, TONOPAH TEST RANGE, CAU 424, REVISION 0, MARCH 1998

    SciTech Connect (OSTI)

    DOE /NV

    1998-03-03

    This Corrective Action Decision Document (CADD) has been prepared for the Area 3 Landfill Complex (Corrective Action Unit [CAU] 424) in accordance with the Federal Facility Agreement and Consent Order (FFACO) of 1996. Corrective Action Unit 424 is located at the Tonopah Test Range (TTR) and is comprised of the following Corrective Action Sites (CASs), each an individual landfill located around and within the perimeter of the Area 3 Compound (DOE/NV, 1996a): (1) Landfill A3-1 is CAS No. 03-08-001-A301. (2) Landfill A3-2 is CAS No. 03-08-002-A302. (3) Landfill A3-3 is CAS No. 03-08-002-A303. (4) Landfill A3-4 is CAS No. 03-08-002-A304. (5) Landfill A3-5 is CAS No. 03-08-002-A305. (6) Landfill A3-6 is CAS No. 03-08-002-A306. (7) Landfill A3-7 is CAS No. 03-08-002-A307. (8) Landfill A3-8 is CAS No. 03-08-002-A308. The purpose of this CADD is to identify and provide a rationale for the selection of a recommended corrective action alternative for each CAS. The scope of this CADD consists of the following: (1) Develop corrective action objectives. (2) Identify corrective action alternative screening criteria. (3) Develop corrective action alternatives. (4) Perform detailed and comparative evaluations of the corrective action alternatives in relation to the corrective action objectives and screening criteria. (6) Recommend and justify a preferred corrective action alternative for each CAS. In June and July 1997, a corrective action investigation was performed as set forth in the Corrective Action Investigation Plan (CAIP) for CAU No. 424: Area 3 Landfill Complex, Tonopah Test Range, Nevada (DOE/NV, 1997). Details can be found in Appendix A of this document. The results indicated four groupings of site characteristics as shown in Table ES-1. Based on the potential exposure pathways, the following corrective action objectives have been identified for CAU No. 424: (1) Prevent or mitigate human exposure to subsurface soils containing waste. (2) Remediate the site per applicable state and federal regulations (NAC, 1996c). (3) Prevent adverse impacts to groundwater quality. Based on the review of existing data, future land use, and current operations at the TTR, the following alternatives were developed for consideration at the Area 3 Landfill Complex CAU: Alternative 1 - No Action; Alternative 2 - Administrative Closure; Alternative 3 - Partial Excavation, Backfill, and Recontouring The corrective action alternatives were evaluated based on four general corrective action standards and five remedy-selection decision factors. Based on the results of this evaluation, preferred alternatives were selected for each CAS as indicated in Table ES-2. The preferred corrective action alternatives were evaluated on their technical merits, focusing on performance, reliability, feasibility, and safety. The alternatives were judged to meet all requirements for the technical components evaluated. These alternatives meet all applicable state and federal regulations for closure of the site and will reduce potential future exposure pathways to the contents of the landfills. During corrective action implementation, these alternatives will present minimal potential threat to site workers who come in contact with the waste. However, procedures will be developed and implemented to ensure worker health and safety.

  14. A hybrid method for quasi-three-dimensional slope stability analysis in a municipal solid waste landfill

    SciTech Connect (OSTI)

    Yu, L.; Batlle, F.

    2011-12-15

    Highlights: > A quasi-three-dimensional slope stability analysis method was proposed. > The proposed method is a good engineering tool for 3D slope stability analysis. > Factor of safety from 3D analysis is higher than from 2D analysis. > 3D analysis results are more sensitive to cohesion than 2D analysis. - Abstract: Limited space for accommodating the ever increasing mounds of municipal solid waste (MSW) demands the capacity of MSW landfill be maximized by building landfills to greater heights with steeper slopes. This situation has raised concerns regarding the stability of high MSW landfills. A hybrid method for quasi-three-dimensional slope stability analysis based on the finite element stress analysis was applied in a case study at a MSW landfill in north-east Spain. Potential slides can be assumed to be located within the waste mass due to the lack of weak foundation soils and geosynthetic membranes at the landfill base. The only triggering factor of deep-seated slope failure is the higher leachate level and the relatively high and steep slope in the front. The valley-shaped geometry and layered construction procedure at the site make three-dimensional slope stability analyses necessary for this landfill. In the finite element stress analysis, variations of leachate level during construction and continuous settlement of the landfill were taken into account. The 'equivalent' three-dimensional factor of safety (FoS) was computed from the individual result of the two-dimensional analysis for a series of evenly spaced cross sections within the potential sliding body. Results indicate that the hybrid method for quasi-three-dimensional slope stability analysis adopted in this paper is capable of locating roughly the spatial position of the potential sliding mass. This easy to manipulate method can serve as an engineering tool in the preliminary estimate of the FoS as well as the approximate position and extent of the potential sliding mass. The result that FoS obtained from three-dimensional analysis increases as much as 50% compared to that from two-dimensional analysis implies the significance of the three-dimensional effect for this study-case. Influences of shear parameters, time elapse after landfill closure, leachate level as well as unit weight of waste on FoS were also investigated in this paper. These sensitivity analyses serve as the guidelines of construction practices and operating procedures for the MSW landfill under study.

  15. Development of an Advanced Combined Heat and Power (CHP) System Utilizing

    Office of Environmental Management (EM)

    Off-Gas from Coke Calcination - Fact Sheet, 2014 | Department of Energy an Advanced Combined Heat and Power (CHP) System Utilizing Off-Gas from Coke Calcination - Fact Sheet, 2014 Development of an Advanced Combined Heat and Power (CHP) System Utilizing Off-Gas from Coke Calcination - Fact Sheet, 2014 The Gas Technology Institute-in collaboration with Superior Graphite Company and SCHMIDTSCHE SCHACK, a division of ARVOS Group, Wexford business unit (formerly Alstom Power Energy

  16. Utilization of coal mine ventilation exhaust as combustion air in gas-fired turbines for electric and/or mechanical power generation. Semi-annual topical report, June 1995--August 1995

    SciTech Connect (OSTI)

    1995-12-01

    Methane emitted during underground coal mining operations is a hazard that is dealt with by diluting the methane with fresh air and exhausting the contaminated air to the atmosphere. Unfortunately this waste stream may contain more than 60% of the methane resource from the coal, and in the atmosphere the methane acts as a greenhouse gas with an effect about 24.5 times greater than CO{sub 2}. Though the waste stream is too dilute for normal recovery processes, it can be used as combustion air for a turbine-generator, thereby reducing the turbine fuel requirements while reducing emissions. Preliminary analysis indicates that such a system, built using standard equipment, is economically and environmentally attractive, and has potential for worldwide application.

  17. PAM stack test utility

    Energy Science and Technology Software Center (OSTI)

    2007-08-22

    The pamtest utility calls the normal PAM hooks using a service and username supplied on the command line. This allows an administratory to test any one of many configured PAM stacks as any existing user on the machine.

  18. Utility Metering- AGL Resources

    Broader source: Energy.gov [DOE]

    Presentationgiven at the Spring 2013 Federal Utility Partnership Working Group (FUPWG) meetingdiscusses AGL Resources metering, including interruptible rate customers, large users, and meeting federal metering goals.

  19. Best Practices for Siting Solar Photovoltaics on Municipal Solid Waste Landfills. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Kiatreungwattana, K.; Mosey, G.; Jones-Johnson, S.; Dufficy, C.; Bourg, J.; Conroy, A.; Keenan, M.; Michaud, W.; Brown, K.

    2013-04-01

    The Environmental Protection Agency and the National Renewable Energy Laboratory developed this best practices document to address common technical challenges for siting solar photovoltaics (PV) on municipal solid waste (MSW) landfills. The purpose of this document is to promote the use of MSW landfills for solar energy systems. Closed landfills and portions of active landfills with closed cells represent thousands of acres of property that may be suitable for siting solar photovoltaics (PV). These closed landfills may be suitable for near-term construction, making these sites strong candidate to take advantage of the 30% Federal Business Energy Investment Tax Credit. It was prepared in response to the increasing interest in siting renewable energy on landfills from solar developers; landfill owners; and federal, state, and local governments. It contains examples of solar PV projects on landfills and technical considerations and best practices that were gathered from examining the implementation of several of these projects.

  20. Hualapai Tribal Utility Project

    Office of Environmental Management (EM)

    Hualapai Tribal Utility Project Tribal Utility Project DOE First Steps Program DOE First Steps Program Jack Ehrhardt Jack Ehrhardt - - Hualapai Planning Director Hualapai Planning Director WHO WE ARE WHO WE ARE ~1 MILLION ACRES IN ~1 MILLION ACRES IN NW ARIZONA NW ARIZONA 108 MILES OF THE 108 MILES OF THE GRAND CANYON GRAND CANYON 2500 Members 2500 Members Peach Springs Peach Springs Community Community ~240 electric customers ~240 electric customers ECONOMIC SITUATION ECONOMIC SITUATION Very

  1. Gas hydrate cool storage system

    DOE Patents [OSTI]

    Ternes, M.P.; Kedl, R.J.

    1984-09-12

    The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

  2. Treatment of municipal landfill leachate using a combined anaerobic digester and activated sludge system

    SciTech Connect (OSTI)

    Kheradmand, S.; Karimi-Jashni, A.; Sartaj, M.

    2010-06-15

    The main objective of this study was to assess the feasibility of treating sanitary landfill leachate using a combined anaerobic and activated sludge system. A high-strength leachate from Shiraz municipal landfill site was treated using this system. A two-stage laboratory-scale anaerobic digester under mesophilic conditions and an activated sludge unit were used. Landfill leachate composition and characteristics varied considerably during 8 months experiment (COD concentrations of 48,552-62,150 mg/L). It was found that the system could reduce the COD of the leachate by 94% at a loading rate of 2.25 g COD/L/d and 93% at loading rate of 3.37 g COD/L/d. The anaerobic digester treatment was quite effective in removing Fe, Cu, Mn, and Ni. However, in the case of Zn, removal efficiency was about 50%. For the rest of the HMs the removal efficiencies were in the range 88.8-99.9%. Ammonia reduction did not occur in anaerobic digesters. Anaerobic reactors increased alkalinity about 3.2-4.8% in the 1st digester and 1.8-7.9% in the 2nd digester. In activated sludge unit, alkalinity and ammonia removal efficiency were 49-60% and 48.6-64.7%, respectively. Methane production rate was in the range of 0.02-0.04, 0.04-0.07, and 0.02-0.04 L/g COD{sub rem} for the 1st digester, the 2nd digester, and combination of both digesters, respectively; the methane content of the biogas varied between 60% and 63%.

  3. Steam plant ash disposal facility and industrial landfill at the Y-12 Plant, Anderson County, Tennessee. Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    The US Department of Energy (DOE) is proposing to install a wet ash handling system to dewater bottom ash from the coal-fired steam plant at its Y-12 Plant and to construct a new landfill for disposal of industrial wastes, including the dewatered bottom ash. The DOE operates three major facilities on its Oak Ridge Reservation (ORR). Operation of these facilities results in the production of a variety of nonhazardous, nonradioactive solid wastes (approximately 300 m{sup 3} per day, compacted) including sanitary wastes, common industrial wastes and construction debris. At the current rate of use, this existing landfill will be filled within approximately 18 months, and more space is urgently needed. In an effort to alleviate this problem, DOE and WMD management propose to create additional landfill facilities at a nearby site. The potential environmental impacts associated with this proposed action are the subject of this environmental assessment (EA).

  4. Large-Scale Field Study of Landfill Covers at Sandia National Laboratories

    SciTech Connect (OSTI)

    Dwyer, S.F.

    1998-09-01

    A large-scale field demonstration comparing final landfill cover designs has been constructed and is currently being monitored at Sandia National Laboratories in Albuquerque, New Mexico. Two conventional designs (a RCRA Subtitle `D' Soil Cover and a RCRA Subtitle `C' Compacted Clay Cover) were constructed side-by-side with four alternative cover test plots designed for dry environments. The demonstration is intended to evaluate the various cover designs based on their respective water balance performance, ease and reliability of construction, and cost. This paper presents an overview of the ongoing demonstration.

  5. Groundwater Strategy for the Ou-1 Landfill Area, Miamisburg Closure Project, Ohio

    SciTech Connect (OSTI)

    LOONEY, BRIANB.

    2004-01-01

    The general objective of the study was to assist the Miamisburg Closure Project in their efforts to develop and refine a comprehensive, technically sound strategy for remediation of groundwater contaminated with trichloroethylene and other volatile organic compounds in the vicinity of the landfill in Operable Unit 1. To provide the necessary flexibility to the site, regulators and stakeholders, the resulting evaluation considered a variety of approaches ranging from ''no further action'' to waste removal. The approaches also included continued soil vapor extraction, continued groundwater pump and treat, monitored natural attenuation, biostimulation, partitioning barriers, hydrologic modification, and others.

  6. Formerly Utilized Sites Remedial Action Program Fact Sheet

    Broader source: Energy.gov (indexed) [DOE]

    Ammunition Plant Seaway Industrial Park Linde Air Products Tonawanda Landfill Niagara Falls Storage Site Guterl Specialty Steel Colonie Shallow Land Disposal Area Shpack...

  7. Sulfur gas emissions from stored flue gas desulfurization solids. Final report

    SciTech Connect (OSTI)

    Adams, D.F.; Farwell, S.O.

    1981-10-01

    The emissions of volatile, sulfur-containing compounds from the surfaces of 13 flue gas desulfurization (FGD) solids field storage sites have been characterized. The sulfur gas emissions from these storage surfaces were determined by measuring the sulfur gas enhancement of sulfur-free sweep air passing through a dynamic emission flux chamber placed over selected sampling areas. Samples of the enclosure sweep air were cryogenically concentrated in surface-deactivated Pyrex U traps. Analyses were conducted by wall-coated, open-tubular, capillary column, cryogenic, temperature-programmed gas chromatography using a sulfur-selective flame photometric detector. Several major variables associated with FGD sludge production processes were examined in relation to the measured range and variations in sulfur fluxes including: the sulfur dioxide scrubbing reagent used, sludge sulfite oxidation, unfixed or stabilized (fixed) FGD solids, and ponding or landfill storage. The composition and concentration of the measured sulfur gas emissions were found to vary with the type of solids, the effectiveness of rainwater drainage from the landfill surface, the method of impoundment, and the sulfate/sulfite ratio of the solids. The FGD solids emissions may contain hydrogen sulfide, carbonyl sulfide, dimethyl sulfide, carbon disulfide, and dimethyl disulfide in varying concentrations and ratios. In addition, up to four unidentified organo-sulfur compounds were found in the emissions from four different FGD solids. The measured, total sulfur emissions ranged from less than 0.01 to nearly 0.3 kg of sulfur per day for an equivalent 40.5 hectare (100 acre) FGD solids impoundment surface.

  8. "List of Covered Electric Utilities" under the Public Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2009 Under Title I, Sec. 102(c) of the Public Utility Regulatory Policies...

  9. "List of Covered Electric Utilities" under the Public Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2008 Under Title I of the Public Utility Regulatory Policies Act of 1978...

  10. Geothermal Power/Oil & Gas Coproduction Opportunity

    SciTech Connect (OSTI)

    DOE

    2012-02-01

    Coproduced geothermal resources can deliver near-term energy savings, diminish greenhouse gas emissions, extend the economic life of oil and gas fields, and profitably utilize oil and gas field infrastructure. This two-pager provides an overview of geothermal coproduced resources.

  11. The Flexible Solar Utility. Preparing for Solar's Impacts to Utility

    Office of Scientific and Technical Information (OSTI)

    Planning and Operations (Technical Report) | SciTech Connect Technical Report: The Flexible Solar Utility. Preparing for Solar's Impacts to Utility Planning and Operations Citation Details In-Document Search Title: The Flexible Solar Utility. Preparing for Solar's Impacts to Utility Planning and Operations This paper seeks to provide a flexible utility roadmap for identifying the steps that need to be taken to place the utility in the best position for addressing solar in the future. Solar

  12. Sanitary Landfill Groundwater Monitoring Report, Fourth Quarter 1999 and 1999 Summary

    SciTech Connect (OSTI)

    Chase, J.

    2000-03-13

    A maximum of thirty eight-wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill Area at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Water Permit DWP-087A and as part of the SRS Groundwater Monitoring Program. Iron (Total Recoverable), Chloroethene (Vinyl Chloride) and 1,1-Dichloroethane were the most widespread constituents exceeding the Final Primary Drinking Water Standards during 1999. Trichloroethylene, 1,1-Dichloroethylene, 1,2-Dichloroethane, 1,4-Dichlorobenzene, Aluminum (Total Recoverable), Benzene, cis-1,2-Dichloroethylene, Dichlorodifluoromethane, Dichloromethane (Methylene Chloride), Gross Alpha, Mercury (Total Recoverable), Nonvolatile Beta, Tetrachloroethylene, Total Organic Halogens, Trichlorofluoromethane, Tritium also exceeded standards in one or more wells. The groundwater flow direction in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill is to the southeast (universal transverse Mercator coordinates). The flow rate in this unit was approximately 144.175 ft/year during first quarter 1999 and 145.27 ft/year during fourth quarter 1999.

  13. Intrinsic in situ anaerobic biodegradation of chlorinated solvents at an industrial landfill

    SciTech Connect (OSTI)

    Lee, M.D.; Mazierski, P.F.; Buchanan, R.J. Jr.; Ellis, D.E.; Sehayek, L.S.

    1995-12-31

    The DuPont Necco Park Landfill in Niagara Falls, New York, is contaminated with numerous chlorinated solvents at concentrations of up to hundreds of mg/L in the groundwater. An extensive monitoring program was conducted to determine if intrinsic anaerobic biodegradation was occurring at the site, to determine what might limit this activity, and to characterize this activity with depth and distance away from the landfill. It was determined that anaerobic microbial activity was occurring in all zones, based upon the presence of intermediate products of the breakdown of the chlorinated solvents and the presence of final metabolic end products such as ethene and ethane. Aerobic, iron-reducing, manganese-reducing, sulfate-reducing, and methanogenic redox conditions were identified at the site. High levels of nitrogen and biodegradable organic compounds were present in most areas to support cometabolic anaerobic microbial activity against the chlorinated solvents. Intrinsic biodegradation is clearly evident and is effective in reducing the concentrations of chlorinated organic in the groundwater at the site. Groundwater modeling efforts during development of a site conceptual model indicated that microbial degradation was necessary to account for the downgradient reduction of chlorinated volatile organic compounds as compared to chloride, a conservative indicator parameter.

  14. Effect of landfill leachate organic acids on trace metal adsorption by kaolinite

    SciTech Connect (OSTI)

    Schroth, B.; Garrison, Sposito

    1997-02-01

    Hexanoic (hex) and fulvic acid (FA), representing early and later stages of landfill leachate evolution, were examined for influence on trace metal adsorption by a poorly crystallized kaolinite (KGa-2). Our experiments represented a model approach to examine possible reaction mechanisms in an environmentally important ternary metal-ligand-mineral surface system. Batch experiments were conducted in 0.01 mol kg(-1) NaClO4 at pH 3-8. Concentrations of metals (Cu, Cd, and Pb) and ligands were representative of those found typically in groundwater immediately downgradient of a landfill. The presence of FA resulted in enhancement of metal adsorption below pH 5, whereas the presence of hex produced no significant net change in metal uptake. Measured surface charge properties of KGa-2 were combined with binary and ternary system data in constructing a quantitative model of the system. The simple combination of binary system results was not effective in predicting the observed ternary system behavior. In both ternary systems, the addition of ternary surface complexes (TSCs) to the models resulted in a satisfactory fit to the data. Our work suggests the strong possibility that TSC involvement in surface reactions of natural adsorbents may be a useful concept.

  15. Determination of operating limits for radionuclides for a proposed landfill at Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Wang, J.C.; Lee, D.W.; Ketelle, R.H.; Lee, R.R.; Kocher, D.C.

    1994-05-24

    The operating limits for radionuclides in sanitary and industrial wastes were determined for a proposed landfill at the Paducah Gaseous Diffusion Plant (PGDP), Kentucky. These limits, which may be very small but nonzero, are not mandated by law or regulation but are needed for rational operation. The approach was based on analyses of the potential contamination of groundwater at the plant boundary and the potential exposure to radioactivity of an intruder at the landfill after closure. The groundwater analysis includes (1) a source model describing the disposal of waste and the release of radionuclides from waste to the groundwater, (2) site-specific groundwater flow and contaminant transport calculations, and (3) calculations of operating limits from the dose limit and conversion factors. The intruder analysis includes pathways through ingestion of contaminated vegetables and soil, external exposure to contaminated soil, and inhalation of suspended activity from contaminated soil particles. In both analyses, a limit on annual effective dose equivalent of 4 mrem (0.04 mSv) was adopted. The intended application of the results is to refine the radiological monitoring standards employed by the PGDP Health Physics personnel to determine what constitutes radioactive wastes, with concurrence of the Commonwealth of Kentucky.

  16. Operating limit study for the proposed solid waste landfill at Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Lee, D.W.; Wang, J.C.; Kocher, D.C.

    1995-06-01

    A proposed solid waste landfill at Paducah Gaseous Diffusion Plant (PGDP) would accept wastes generated during normal operations that are identified as non-radioactive. These wastes may include small amounts of radioactive material from incidental contamination during plant operations. A site-specific analysis of the new solid waste landfill is presented to determine a proposed operating limit that will allow for waste disposal operations to occur such that protection of public health and the environment from the presence of incidentally contaminated waste materials can be assured. Performance objectives for disposal were defined from existing regulatory guidance to establish reasonable dose limits for protection of public health and the environment. Waste concentration limits were determined consistent with these performance objectives for the protection of off-site individuals and inadvertent intruders who might be directly exposed to disposed wastes. Exposures of off-site individuals were estimated using a conservative, site-specific model of the groundwater transport of contamination from the wastes. Direct intrusion was analyzed using an agricultural homesteader scenario. The most limiting concentrations from direct intrusion or groundwater transport were used to establish the concentration limits for radionuclides likely to be present in PGDP wastes.

  17. Feasibility of utilizing apple pomace

    SciTech Connect (OSTI)

    Stapleton, J.

    1983-06-01

    Apple pomace, the solid residue from juice production, is a solid waste problem in the Hudson Valley. This study investigates possibilities for converting it to a resource. The characteristics of the region's apple growing and processing industries are examined at length, including their potential for converting waste biomass. The properties of apple pomace are described. From interviews with Hudson Valley apple processors the following information is presented: quantities of pomace produced; seasonality of production; disposal procedures, costs, and revenues; trends in juice production; and attitudes toward alternatives. Literature research resulted in a list of more than 25 end uses for apple pomace of which eight were selected for analysis. Landfilling, landspreading, composting, animal feed, direct burning, gasification, anaerobic digestion (methane generation), and fermentation (ethanol production) were analyzed with regard to technical availability, regulatory and environmental impact, attitudes toward end use, and energetic and economic feasibility (See Table 19). The study recommends (1) a pilot anaerobic digestion plant be set up, (2) the possibility of extracting methane from the Marlborough landfill be investigated, (3) a study of the mid-Hudson waste conversion potential be conducted, and (4) an education program in alternative waste management be carried out for the region's industrial and agricultural managers.

  18. Flora Utilities | Open Energy Information

    Open Energy Info (EERE)

    Flora Utilities Jump to: navigation, search Name: Flora Utilities Place: Indiana Phone Number: 574-967-4971 Website: www.townofflora.orgflora-util Outage Hotline: 574-967-4971...

  19. Utilization of CFB fly ash for construction applications

    SciTech Connect (OSTI)

    Conn, R.E.; Sellakumar, K.; Bland, A.E.

    1999-07-01

    Disposal in landfills has been the most common means of handling ash in circulating fluidized bed (CFB) boiler power plants. Recently, larger CFB boilers with generating capacities up to 300 MWe are currently being planned, resulting in increased volumes and disposal cost of ash by-product. Studies have shown that CFB ashes do not pose environmental concerns that should significantly limit their potential utilization. Many uses of CFB ash are being investigated by Foster Wheeler, which can provide more cost-effective ash management. Construction applications have been identified as one of the major uses for CFB ashes. Typically, CFB ash cannot be used as a cement replacement in concrete due to its unacceptably high sulfur content. However, CFB ashes can be used for other construction applications that require less stringent specifications including soil stabilization, road base, structural fill, and synthetic aggregate. In this study, potential construction applications were identified for fly ashes from several CFB boilers firing diverse fuels such as petroleum coke, refuse derived fuel (RDF) and coal. The compressive strength of hydrated fly ashes was measured in order to screen their potential for use in various construction applications. Based on the results of this work, the effects of both ash chemistry and carbon content on utilization potential were ascertained. Actual beneficial uses of ashes evaluated in this study are also discussed.

  20. For Utilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Superior Energy Performance » For Utilities For Utilities Utilities helped industrial customers prepare for SEP certification in SEP demonstrations. Utilities helped industrial customers prepare for SEP certification in SEP demonstrations. Utilities and energy efficiency program administrators are testing SEP as a practical, energy-saving program offering. Utilities and energy efficiency program administrators are testing SEP as a practical, energy-saving program offering. Superior Energy

  1. UESC Training for Utility Representatives

    Broader source: Energy.gov [DOE]

    Webinar covers utility energy service contracts (UESC), which allow utilities to provide their Federal agencies with comprehensive energy and water efficiency improvements and demand-reduction services.

  2. Industrial Energy Efficiency Utility Webinars

    Office of Energy Efficiency and Renewable Energy (EERE)

    State, regional, and utility partners can learn how to help manufacturing customers save energy by reading the following presentations. Webinars feature experts from utilities, government, and...

  3. Cannelton Utilities | Open Energy Information

    Open Energy Info (EERE)

    Cannelton Utilities Jump to: navigation, search Name: Cannelton Utilities Place: Indiana Phone Number: (812) 547-7919 Outage Hotline: (812) 547-7919 References: EIA Form EIA-861...

  4. Hustisford Utilities | Open Energy Information

    Open Energy Info (EERE)

    Hustisford Utilities Jump to: navigation, search Name: Hustisford Utilities Place: Wisconsin Phone Number: (920) 349-3650 Website: www.hustisford.comindex.asp?S Outage Hotline:...

  5. Maryville Utilities | Open Energy Information

    Open Energy Info (EERE)

    Maryville Utilities Jump to: navigation, search Name: Maryville Utilities Place: Tennessee Phone Number: 865.273.3900 or 865-273-3300 Website: www.maryvillegov.comutility-p...

  6. Slinger Utilities | Open Energy Information

    Open Energy Info (EERE)

    Slinger Utilities Jump to: navigation, search Name: Slinger Utilities Place: Wisconsin Phone Number: (262)644-5265 Website: www.vi.slinger.wi.govindex.as Outage Hotline: (262)...

  7. Utility Community Solar Handbook- Understanding and Supporting Utility Program Development

    Broader source: Energy.gov [DOE]

    The "Utility Community Solar Handbook: Understanding and Supporting Utility Program Development" provides the utility's perspective on community solar program development and is a resource for government officials, regulators, community organizers, solar energy advocates, non-profits, and interested citizens who want to support their local utilities in implementing projects.

  8. Leachate treatment system using constructed wetlands, Town of Fenton sanitary landfill, Broome County, New York. Final report

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    Municipal sanitary landfills generate leachate that New York State regulations require to be collected and treated to avoid contaminating surface water and groundwater. One option for treating leachate is to haul it to municipal wastewater treatment facility. This option may be expensive, may require excessive energy for transportation, and may require pretreatment to protect the receiving facility`s processes. An alternative is on-site treatment and discharge. Personnel from the Town of Fenton, New York; Hawk Engineering, P.C.; Cornell University; and Ithaca College designed, built, and operated a pilot constructed wetland for treating leachate at the Town of Fenton`s municipal landfill. The system, consisting of two overland flow beds and two subsurface flow beds has been effective for 18 months in reducing levels of ammonia (averaging 85% removal by volatilization and denitrification) and total iron (averaging 95% removal by precipitation and sedimentation), two key constituents of the Fenton landfill`s leachate. The system effects these reductions with zero chemical and energy inputs and minimal maintenance. A third key constituent of the leachate, manganese, apparently passes through the beds with minimal removal. Details and wetland considerations are described.

  9. Gas Hydrate Storage of Natural Gas

    SciTech Connect (OSTI)

    Rudy Rogers; John Etheridge

    2006-03-31

    Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5) rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a lower heat transfer rate in the internal heat exchanger than was designed. It is believed that the fins on the heat-exchanger tubes did not make proper contact with the tubes transporting the chilled glycol, and pairs of fins were too close for interior areas of fins to serve as hydrate collection sites. A correction of the fabrication fault in the heat exchanger fin attachments could be easily made to provide faster formation rates. The storage success with the POC process provides valuable information for making the process an economically viable process for safe, aboveground natural-gas storage.

  10. A Water Balance Study of Four Landfill Cover Designs at Material Disposal Area B in Los Alamos, New Mexico

    SciTech Connect (OSTI)

    David D. Breshears; Fairley J. Barnes; John W. Nyhan; Johnny A. Salazar

    1998-09-01

    The goal of disposing of low-level radioactive and hazardous waste in shallow landfills is to reduce risk to human health and the environment by isolating contaminants until they no longer pose an unacceptable hazard. In order to achieve this, the Department of Energy Environmental Restoration Program is comparing the performance of several different surface covers at Material Disposal Area (MDA) B in Los Alamos. Two conventional landfill were compared with an improved cover designed to minimize plant and animal intrusion and to minimize water infiltration into the underlying wastes. The conventional covers varied in depth and both conventional and improved designs had different combinations of vegetation (grass verses shrub) and gravel mulch (no mulch verses mulch). These treatments were applied to each of 12 plots and water balance parameters were measured from March1987 through June 1995. Adding a gravel mulch significantly influenced the plant covered field plots receiving no gravel mulch averaged 21.2% shrub cover, while plots with gravel had a 20% larger percent cover of shrubs. However, the influence of gravel mulch on the grass cover was even larger than the influence on shrub cover, average grass cover on the plots with no gravel was 16.3%, compared with a 42% increase in grass cover due to gravel mulch. These cover relationships are important to reduce runoff on the landfill cover, as shown by a regression model that predicts that as ground cover is increased from 30 to 90%,annual runoff is reduced from 8.8 to 0.98 cm-a nine-fold increase. We also found that decreasing the slope of the landfill cover from 6 to 2% reduced runoff from the landfill cover by 2.7-fold. To minimize the risk of hazardous waste from landfills to humans, runoff and seepage need to be minimized and evapotranspiration maximized on the landfill cover. This has to be accomplished for dry and wet years at MDA B. Seepage consisted of 1.9% and 6.2% of the precipitation in the average and once in ten year events, respectively, whereas corresponding values for runoff were 13% and 16%; these changes were accompanied by corresponding decreases in evapotranspiration, which accounted for 86% and only 78% of the precipitation occurring on the average and once in ten year even~ respectively.

  11. Table 7.10 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam; Unit: Million U.S. Dollars. Electricity Components Natural Gas Electricity Electricity from Sources Natural Gas NAICS Electricity from Local Other than Natural Gas from Local Code(a) Subsector and Industry Total Utility(b) Local Utility(c) Total Utility(b) Total United States 311 Food 5,328 4,635

  12. MTV Utility Library

    Energy Science and Technology Software Center (OSTI)

    2008-02-29

    The MSV Java Utility Library contains software developed over many years for many sponsors. (This work is not a derivative of CB-EMIS), but rather support to the CB-EMIS software). Projects that have used and contributed to code in this library: CB-EMIS (PROTECT), BWIC, Fort Future, Teva, Integrated Oceans, ENKIMDU, RCW, JEMS, JWACS, EPA watershed, and many others. This library will continue to be used in other non-CB-EMIS related projects. The components include: Spatial components: Multi-coordinatemore » system spatial objects. 2D spatial indexing system, and polygon griding system. Data translation: Allows import and export of file based data to and from object oriented systems. Multi-platform data streams: Allows platform specific data streams to operate on any support platform. Other items include printing, custom GUI components, support for NIMA Raster Product Format, program logging utilities and others.« less

  13. A Case Study of Danville Utilities: Utilizing Industrial Assessment Centers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Provide Energy Efficiency Resources for Key Accounts | Department of Energy Study of Danville Utilities: Utilizing Industrial Assessment Centers to Provide Energy Efficiency Resources for Key Accounts A Case Study of Danville Utilities: Utilizing Industrial Assessment Centers to Provide Energy Efficiency Resources for Key Accounts This case study provides information on how Danville Utilities used Industrial Assessment Centers to provide energy efficiency resources to key accounts. PDF

  14. STEP Utility Data Release Form

    Broader source: Energy.gov [DOE]

    STEP Utility Data Release Form, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  15. STEP Utility Bill Analysis Report

    Broader source: Energy.gov [DOE]

    STEP Utility Bill Analysis Report, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  16. Philadelphia Navy Yard: UESC Project with Philadelphia Gas Works

    Broader source: Energy.gov [DOE]

    Presentation—given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting—provides information on the Philadelphia Navy Yard's utility energy services contract (UESC) project with Philadelphia Gas Works (PGW).

  17. Laclede Gas Company - Commercial and Industrial Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    Gas Steamer: 475 Food Service Gas Fryer: 350 Food Service Griddle: 400 Food Service Convection Oven: 200 Kitchen Low-Flow Spray Nozzle: 100 Program Info Sector Name Utility...

  18. Confidential data in a competitive utility environment: A regulatory perspective

    SciTech Connect (OSTI)

    Vine, E.

    1996-08-01

    Historically, the electric utility industry has been regarded as one of the most open industries in the United States in sharing information but their reputation is being challenged by competitive energy providers, the general public, regulators, and other stakeholders. As the prospect of competition among electricity power providers has increased in recent years, many utilities have been requesting that the data they submit to their utility regulatory commissions remain confidential. Withholding utility information from the public is likely to have serious and significant policy implications with respect to: (1) consumer education, the pursuit of truth, mutual respect among parties, and social cooperation; (2) the creation of a fair market for competitive energy services; (3) the regulatory balance; (4) regional and national assessments of energy-savings opportunities; (5) research and development; and (6) evaluations of utility programs, plans, and policies. In a telephone survey of all public utility commissions (PUCs) that regulate electric and gas utilities in the U.S., we found that almost all PUCs have received requests from utility companies for data to be filed as confidential, and confidential data filings appear to have increased (both in scope and in frequency) in those states where utility restructuring is being actively discussed. The most common types of data submitted as confidential by utilities dealt with specific customer data, market data, avoided costs, and utility costs.

  19. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Accounting Standards Board. The changes will allow FERC an understanding of the nature and extent to which hedging activities are used by electric utilities and gas...

  20. Philadelphia Gas Works: Who’s on First?

    Broader source: Energy.gov [DOE]

    Presentation—given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting—about the Philadelphia Gas Works (PGW) and its federal projects.

  1. Kansas Oil and Gas Conservation Commission | Open Energy Information

    Open Energy Info (EERE)

    service and safety of public utilities, common carriers, motor carriers, and regulate oil and gas production by protecting correlative rights and environmental resources....

  2. Holyoke Gas & Electric - Commercial Energy Efficiency Loan Program...

    Broader source: Energy.gov (indexed) [DOE]

    Utility Administrator Holyoke Gas and Electric Department Website http:www.hged.comhtmlincentiveprograms.htmlCommercialAssist State Massachusetts Program Type Loan...

  3. Vermont Gas - Residential Energy Efficiency Loan and Rebate Program...

    Broader source: Energy.gov (indexed) [DOE]

    Sector Name Utility Website http:www.vermontgas.comefficiencyprogramsresprograms.html State Vermont Program Type Loan Program Summary Vermont Gas customers whose homes...

  4. Geotechnical properties of paper mill sludges for use in landfill covers

    SciTech Connect (OSTI)

    Moo-Young, H.K.; Zimmie, T.F.

    1996-09-01

    This study investigates the geotechnical properties of seven paper mill sludges. Paper mill sludges have a high water content and a high degree of compressibility and behave like a highly organic soil. Consolidation tests reveal a large reduction in void ratio and high strain values that are expected due to the high compressibility. Triaxial shear-strength tests conducted on remolded and undisturbed samples showed variations in the strength parameters resulting from the differences in sludge composition (i.e., water content and organic content). Laboratory permeability tests conducted on in-situ specimens either met the regulatory requirement for the permeability of a landfill cover or were very close. With time, consolidation and dewatering of the paper sludge improved the permeability of cover. Freezing and thawing cycles increased the sludge permeability about one to two orders of magnitude. Maximum permeability changes occurred within 10 freeze and thaw cycles.

  5. Fission gas retention in irradiated metallic fuel

    SciTech Connect (OSTI)

    Fenske, G.R.; Gruber, E.E.; Kramer, J.M.

    1987-01-01

    Theoretical calculations and experimental measurements of the quantity of retained fission gas in irradiated metallic fuel (U-5Fs) are presented. The calculations utilize the Booth method to model the steady-state release of gases from fuel grains and a simplified grain-boundary gas model to predict the gas release from intergranular regions. The quantity of gas retained in as-irradiated fuel was determined by collecting the gases released from short segments of EBR-II driver fuel that were melted in a gas-tight furnace. Comparison of the calculations to the measurements shows quantitative agreement with both the magnitude and the axial variation of the retained gas content.

  6. Solid waste landfills under the Resource Conservation and Recovery Act Subtitle D

    SciTech Connect (OSTI)

    1995-11-01

    This document provides guidance for meeting: (1) Guidelines for the Land Disposal of Solid Waste (40 CFR 241); (2) Criteria for Classification of Solid Waste Disposal Facilities and Practices (40 CFR 257); and (3) Criteria for Municipal Solid Waste Landfills (MSWLFs) (40 CFR Part 258). Revisions to 40 CFR 257 and a new Part 258 were published in the Federal Register (56 FR 50978, 10/9/91). The Guidelines for the Land Disposal of Solid Waste set requirements and recommended procedures to ensure that the design, construction, and operation of land disposal sites is done in a manner that will protect human health and the environment. These regulations are applicable to MSWLFs and non-MSWLFs (e.g., landfills used only for the disposal of demolition debris, commercial waste, and/or industrial waste). These guidelines are not applicable to the, land disposal of hazardous, agricultural, and/or mining wastes. These criteria are to be used under the Resource Conservation and Recovery Act (RCRA) in determining which solid waste disposal facilities pose a reasonable possibility of adversely affecting human health or the environment. Facilities failing to satisfy these criteria will be considered to be open dumps which are prohibited under Section 4005 of RCRA. The Criteria for MSWLFs are applicable only to MSWLFs, including those MSWLFs in which sewage sludge is co-disposed with household waste. Based on specific criteria, certain MSWLFs are exempt from some, or all, of the regulations of 40 CFR 258. MSWLFs that fail to satisfy the criteria specified in 40 CFR 258 are also considered open dumps for the purposes of Section 4005 of RCRA. Through the use of a series of interrelated flow diagrams, this guidance document directs the reader to each design, operation, maintenance, and closure activity that must be performed for MSWLFs and non-MSWLFs.

  7. Paleo-channel deposition of natural uranium at a US Air Force landfill

    SciTech Connect (OSTI)

    Young, Carl; Weismann, Joseph; Caputo, Daniel [Cabrera Services, Inc., East Hartford, Connecticut (United States)

    2007-07-01

    Available in abstract form only. Full text of publication follows: The US Air Force sought to identify the source of radionuclides that were detected in groundwater surrounding a closed solid waste landfill at the former Lowry Air Force Base in Denver, Colorado, USA. Gross alpha, gross beta, and uranium levels in groundwater were thought to exceed US drinking water standards and down-gradient concentrations exceeded up-gradient concentrations. Our study has concluded that the elevated radionuclide concentrations are due to naturally-occurring uranium in the regional watershed and that the uranium is being released from paleo-channel sediments beneath the site. Groundwater samples were collected from monitor wells, surface water and sediments over four consecutive quarters. A list of 23 radionuclides was developed for analysis based on historical landfill records. Concentrations of major ions and metals and standard geochemical parameters were analyzed. The only radionuclide found to be above regulatory standards was uranium. A search of regional records shows that uranium is abundant in the upstream drainage basin. Analysis of uranium isotopic ratios shows that the uranium has not been processed for enrichment nor is it depleted uranium. There is however slight enrichment in the U-234:U- 238 activity ratio, which is consistent with uranium that has undergone aqueous transport. Comparison of up-gradient versus down-gradient uranium concentrations in groundwater confirms that higher uranium concentrations are found in the down-gradient wells. The US drinking water standard of 30 {mu}g/L for uranium was exceeded in some of the up-gradient wells and in most of the down-gradient wells. Several lines of evidence indicate that natural uranium occurring in streams has been preferentially deposited in paleo-channel sediments beneath the site, and that the paleo-channel deposits are causing the increased uranium concentrations in down-gradient groundwater compared to up-gradient groundwater. (authors)

  8. Siting landfills and incinerators in areas of historic unpopularity: Surveying the views of the next generation

    SciTech Connect (OSTI)

    De Feo, Giovanni; Williams, Ian D.

    2013-12-15

    Highlights: Opinions and knowledge of young people in Italy about waste were studied. Historic opposition to construction of waste facilities is difficult to overcome. Awareness of waste management develops with knowledge of environmental issues. Many stakeholders views are needed when siting a new waste management facility. Respondents opinions were influenced by their level of environmental knowledge. - Abstract: The Campania Region in Southern Italy has suffered many problems with municipal solid waste management since the mid-1990s, leading to significant public disturbances and subsequent media coverage. This paper reports on the current views and knowledge of young people (university students) in this region about waste management operations and facilities, specifically the siting of landfills and incinerators. By means of a structured questionnaire, opinion and knowledge were systematically examined by degree type and course year. The study took place in 2011 at the University of Salerno campus. A sample of 900 students, comprising 100 students for each of the nine considered faculties, and 20 students for every academic course year, was randomly selected. Only about a quarter of respondents were not opposed to the siting of a landfill or an incinerator in their city. This clearly highlights that historic opposition to the construction of waste facilities is difficult to overcome and that distrust for previous poor management or indiscretions is long-lived and transcends generations. Students from technical faculties expressed the most reasonable opinion; opinion and knowledge were statistically related (Chi-square test, p < 0.05) to the attended faculty, and the knowledge grew linearly with progression through the university. This suggests that awareness of waste management practices develops with experience and understanding of environmental issues. There is general acceptance that many stakeholders technicians, politicians and citizens all have to be part of the decision process when siting a new waste management facility. The opinions of the young respondents were significantly influenced by their level of environmental knowledge.

  9. Eco-efficiency for greenhouse gas emissions mitigation of municipal solid waste management: A case study of Tianjin, China

    SciTech Connect (OSTI)

    Zhao Wei; Huppes, Gjalt; Voet, Ester van der

    2011-06-15

    The issue of municipal solid waste (MSW) management has been highlighted in China due to the continually increasing MSW volumes being generated and the limited capacity of waste treatment facilities. This article presents a quantitative eco-efficiency (E/E) analysis on MSW management in terms of greenhouse gas (GHG) mitigation. A methodology for E/E analysis has been proposed, with an emphasis on the consistent integration of life cycle assessment (LCA) and life cycle costing (LCC). The environmental and economic impacts derived from LCA and LCC have been normalized and defined as a quantitative E/E indicator. The proposed method was applied in a case study of Tianjin, China. The study assessed the current MSW management system, as well as a set of alternative scenarios, to investigate trade-offs between economy and GHG emissions mitigation. Additionally, contribution analysis was conducted on both LCA and LCC to identify key issues driving environmental and economic impacts. The results show that the current Tianjin's MSW management system emits the highest GHG and costs the least, whereas the situation reverses in the integrated scenario. The key issues identified by the contribution analysis show no linear relationship between the global warming impact and the cost impact in MSW management system. The landfill gas utilization scenario is indicated as a potential optimum scenario by the proposed E/E analysis, given the characteristics of MSW, technology levels, and chosen methodologies. The E/E analysis provides an attractive direction towards sustainable waste management, though some questions with respect to uncertainty need to be discussed further.

  10. Natural gas monthly, October 1991

    SciTech Connect (OSTI)

    Not Available

    1991-11-05

    The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of Energy (DOE). The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. The data in this publication are collected on surveys conducted by the EIA to fulfill its responsibilities for gathering and reporting energy data. Some of the data are collected under the authority of the Federal Energy Regulatory Commission (FERC), an independent commission within the DOE, which has jurisdiction primarily in the regulation of electric utilities and the interstate natural gas industry. Geographic coverage is the 50 States and the District of Columbia. 16 figs., 33 tabs.

  11. Tribal Utility Feasibility Study

    SciTech Connect (OSTI)

    Engel, R. A.; Zoellick, J. J.

    2007-06-30

    The Schatz Energy Research Center (SERC) assisted the Yurok Tribe in investigating the feasibility of creating a permanent energy services program for the Tribe. The original purpose of the DOE grant that funded this project was to determine the feasibility of creating a full-blown Yurok Tribal electric utility to buy and sell electric power and own and maintain all electric power infrastructure on the Reservation. The original project consultant found this opportunity to be infeasible for the Tribe. When SERC took over as project consultant, we took a different approach. We explored opportunities for the Tribe to develop its own renewable energy resources for use on the Reservation and/or off-Reservation sales as a means of generating revenue for the Tribe. We also looked at ways the Tribe can provide energy services to its members and how to fund such efforts. We identified opportunities for the development of renewable energy resources and energy services on the Yurok Reservation that fall into five basic categories: Demand-side management This refers to efforts to reduce energy use through energy efficiency and conservation measures. Off-grid, facility and household scale renewable energy systems These systems can provide electricity to individual homes and Tribal facilities in areas of the Reservation that do not currently have access to the electric utility grid. Village scale, micro-grid renewable energy systems - These are larger scale systems that can provide electricity to interconnected groups of homes and Tribal facilities in areas of the Reservation that do not have access to the conventional electric grid. This will require the development of miniature electric grids to serve these interconnected facilities. Medium to large scale renewable energy development for sale to the grid In areas where viable renewable energy resources exist and there is access to the conventional electric utility grid, these resources can be developed and sold to the wholesale electricity market. Facility scale, net metered renewable energy systems These are renewable energy systems that provide power to individual households or facilities that are connected to conventional electric utility grid.

  12. Utilities and Workplace Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summit Mike Waters - Duke Energy November 18th, 2014 Duke Energy  Electricity provider for over 7.2 million retail customers  6 states: NC, SC, FL, OH, IN, KY  104,000 sq. miles of service territory  ~50,000 MW of regulated generation  Fortune 250 company  Vertically integrated utility  Headquarters: Charlotte, NC 2 Duke Energy Support Activities Goals  Provide safe, reliable, affordable and increasingly clean electricity to power the movement of people and goods 

  13. Tribal Utility Formation

    Energy Savers [EERE]

    I L L E P O W E R A D M I N I S T R A T I O N Tribal Utility Formation in the Bonneville Power Administration Service Territory Ken Johnston Acting Tribal Affairs Manager BPA TRIBAL AFFAIRS DEPARTMENT JULY 2015 B O N N E V I L L E P O W E R A D M I N I S T R A T I O N 2 The Basics  BPA markets power from 31 Federal dams, the Columbia Generating Station Nuclear Plant, and several small non- Federal power plants  About 80% of the power BPA sells is hydroelectric  BPA accounts for about

  14. Coming utility squeeze play

    SciTech Connect (OSTI)

    Stoiaken, L.N.

    1988-02-01

    Like a sleeping giant, utilities are waking up and preparing to participate in the increasingly competitive power production industry. Some are establishing subsidiaries to participate in join venture deals with independents. Others are competing by offering lucrative discount or deferral rates to important industrial and commercial customers considering cogeneration. And now, a third approach is beginning to shape up- the disaggregation of generation assets into a separate generation company, or genco. This article briefly discusses these three and also devotes brief sections to functional segmentation and The regulatory arena.

  15. Fact Sheet: DOE/National Association of Regulatory Utility Commissioners

    Energy Savers [EERE]

    Fact Sheet: DOE/National Association of Regulatory Utility Commissioners Natural Gas Infrastructure Modernization Partnership Summary: Building on many years of productive collaboration, the U.S. Department of Energy will work with NARUC to encourage investments in infrastructure modernization to enhance pipeline safety, efficiency and deliverability. State Public Utility Commissions serve a leading role in ensuring continued investments are made to secure safe, reliable, affordable and robust

  16. Estimation and Control of Diesel Engine Processes Utilizing Variable Intake

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Valve Actuation | Department of Energy Estimation and Control of Diesel Engine Processes Utilizing Variable Intake Valve Actuation Estimation and Control of Diesel Engine Processes Utilizing Variable Intake Valve Actuation Air handling system model for multi-cylinder variable geometry turbocharged diesel engine with cooled EGR and flexible intake valve actuation developed to capture dynamic effects of gas exchange actuators PDF icon deer12_kocher.pdf More Documents & Publications Slide

  17. Utility Static Generation Reliability

    Energy Science and Technology Software Center (OSTI)

    1993-03-05

    PICES (Probabilistic Investigation of Capacity and Energy Shortages) was developed for estimating an electric utility''s expected frequency and duration of capacity deficiencies on a daily on and off-peak basis. In addition to the system loss-of-load probability (LOLP) and loss-of-load expectation (LOLE) indices, PICES calculates the expected frequency and duration of system capacity deficiencies and the probability, expectation, and expected frequency and duration of a range of system reserve margin states. Results are aggregated and printedmore » on a weekly, monthly, or annual basis. The program employs hourly load data and either the two-state (on/off) or a more sophisticated three-state (on/partially on/fully off) generating unit representation. Unit maintenance schedules are determined on a weekly, levelized reserve margin basis. In addition to the 8760-hour annual load record, the user provides the following information for each unit: plant capacity, annual maintenance requirement, two or three-state unit failure and repair rates, and for three-state models, the partial state capacity deficiency. PICES can also supply default failure and repair rate values, based on the Edison Electric Institute''s 1979 Report on Equipment Availability for the Ten-Year Period 1968 Through 1977, for many common plant types. Multi-year analysis can be performed by specifying as input data the annual peak load growth rates and plant addition and retirement schedules for each year in the study.« less

  18. Utilization Technology Institute | Open Energy Information

    Open Energy Info (EERE)

    Utilization Technology Institute Jump to: navigation, search Name: Utilization Technology Institute Place: Des Plaines, IL References: Utilization Technology Institute1...

  19. Utility Energy Service Contracts Training for Utility Representatives

    Broader source: Energy.gov [DOE]

    This webinar targets Federal staff, as well as utility representatives, and provides an understanding of the legal parameters, contracting requirements, financing options, and other aspects of utility energy service contracts (UESC).

  20. Federal Utility Partnership Working Group- Utility Interconnection Panel

    Broader source: Energy.gov [DOE]

    Presentation—given at at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meeting—discusses solar/photovoltaic (PV) projects to connect with utility in California and their issues.

  1. Gas separating

    DOE Patents [OSTI]

    Gollan, Arye Z. [Newton, MA

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  2. Gas separating

    DOE Patents [OSTI]

    Gollan, Arye (Newton, MA)

    1988-01-01

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  3. utility rate | OpenEI Community

    Open Energy Info (EERE)

    utility Utility Companies utility rate Utility Rates version 1 version 2 version 3 web service Smart meter After several months of development and testing, the next...

  4. The Flexible Solar Utility. Preparing for Solar's Impacts to Utility

    Office of Scientific and Technical Information (OSTI)

    Planning and Operations (Technical Report) | SciTech Connect The Flexible Solar Utility. Preparing for Solar's Impacts to Utility Planning and Operations Citation Details In-Document Search Title: The Flexible Solar Utility. Preparing for Solar's Impacts to Utility Planning and Operations × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public

  5. Utility Partnership Webinar Series: State Mandates for Utility Energy Efficiency

    Broader source: Energy.gov [DOE]

    This webinar highlights state mandates from throughout the country, and how they’ve influenced utility industrial energy efficiency programs.

  6. Health assessment for Hooker Chemical (102nd Street Landfill), Niagara Falls, New York, Region 2. CERCLIS No. NYD980506810. Preliminary report

    SciTech Connect (OSTI)

    Not Available

    1989-06-01

    The 102nd Street Landfill is two sites that comprise 22 acres. Occidental Chemical Corporation (OCC) and its predecessor, the Oldbury Electrochemical Company, deposited approximately 23,500 tons of mixed organic solvents, organic and inorganic phosphates, and related chemicals. Included in the site are approximately 300 tons of hexachlorocyclohexane process cake, including lindane. In addition, brine sludge, fly ash, electrochemical cell parts and related equipment in unknown quantities were dumped at the site. On-site contamination of the 102nd Street Landfill includes soils contaminated with non-aqueous phase liquids on both portions of the Landfill. Off-site contamination, based on current studies, results from contaminated ground-water leaching into the Niagara River which causes contamination of the river water, sediments, and aquatic organisms, including fish. The 102nd Street Landfill continues to represent a potential public health threat.

  7. Public health assessment for J and L landfill, Avon Township, Oakland County, Michigan, Region 5. CERCLIS No. MID980609440. Final report

    SciTech Connect (OSTI)

    Not Available

    1993-10-19

    The U.S. Environmental Protection Agency (U.S. EPA) placed the J L Landfill site on the National Priorities List (NPL) on March 31, 1989. Beginning in 1951, steel-making firms, including Jones Laughlin, used the site as a landfill for slag, dust from air cleaners at their plants, and general rubbish. By 1980, the landfill had been filled to capacity, and Jones Laughlin closed and coverd the site. The cover on the landfill is inadequate by current standards. Surface soils contain concentrations of metals that are of health concern. The groundwater contains metals and organic chemicals at concentrations of health concern, some of which may be attributable to other sites in the area. The site poses no apparent public health hazard under present conditions, however, several potential exposure pathways may pose hazards should they be completed in the future.

  8. EERC Center for Biomass Utilization 2005

    SciTech Connect (OSTI)

    Zygarlicke, C.J.; Schmidt, D.D.; Olson, E.S.; Leroux, K.M.; Wocken, C.A.; Aulich, T.A.; WIlliams, K.D.

    2008-07-28

    Biomass utilization is one solution to our nations addiction to oil and fossil fuels. What is needed now is applied fundamental research that will cause economic technology development for the utilization of the diverse biomass resources in the United States. This Energy & Environmental Research Center (EERC) applied fundamental research project contributes to the development of economical biomass utilization for energy, transportation fuels, and marketable chemicals using biorefinery methods that include thermochemical and fermentation processes. The fundamental and basic applied research supports the broad scientific objectives of the U.S. Department of Energy (DOE) Biomass Program, especially in the area of developing alternative renewable biofuels, sustainable bioenergy, technologies that reduce greenhouse gas emissions, and environmental remediation. Its deliverables include 1) identifying and understanding environmental consequences of energy production from biomass, including the impacts on greenhouse gas production, carbon emission abatement, and utilization of waste biomass residues and 2) developing biology-based solutions that address DOE and national needs related to waste cleanup, hydrogen production from renewable biomass, biological and chemical processes for energy and fuel production, and environmental stewardship. This project serves the public purpose of encouraging good environmental stewardship by developing biomass-refining technologies that can dramatically increase domestic energy production to counter current trends of rising dependence upon petroleum imports. Decreasing the nations reliance on foreign oil and energy will enhance national security, the economy of rural communities, and future competitiveness. Although renewable energy has many forms, such as wind and solar, biomass is the only renewable energy source that can be governed through agricultural methods and that has an energy density that can realistically compete with, or even replace, petroleum and other fossil fuels in the near future. It is a primary domestic, sustainable, renewable energy resource that can supply liquid transportation fuels, chemicals, and energy that are currently produced from fossil sources, and it is a sustainable resource for a hydrogen-based economy in the future.

  9. Avista Utilities (Natural Gas)- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    A $800 incentive is available for the builder of new construction manufactured homes that meet the ENERGY STAR/ECO-Rated Homes criteria and are verified as an ENERGY STAR/ECO-Rated Home, and a ...

  10. Montana-Dakota Utilities (Gas)- Residential New Construction Rebate Program

    Broader source: Energy.gov [DOE]

    Application forms must be fully completed with equipment information such as invoice or receipt, brand, model number, serial number, installation date and dealer information. Equipment must be in...

  11. Natural Gas Utilities Options Analysis for the Hydrogen Economy

    Broader source: Energy.gov [DOE]

    Presentation by 12-Richards to DOE Hydrogen Pipeline R&D Project Review Meeting held January 5-6, 2005 at Oak Ridge National Laboratory in Oak Ridge, Tennessee.

  12. Austin Utilities (Gas and Electric) - Residential Conserve and...

    Broader source: Energy.gov (indexed) [DOE]

    50 Dishwashers: 25 RefrigeratorsFreezers: 25 RefrigeratorFreezer Recycling: 15 Room Air Conditioners: 25 + 15 for recycling Room AC Recycling: 15 Central AC: 100 +...

  13. Richmond Department of Public Utilities (Gas)- Energy Conservation Rebates

    Broader source: Energy.gov [DOE]

    NOTE:The program is currently under review. Newrebates will be made available after they are finalized. Please contact the program managerprovided below for updated information about the program.

  14. Post-Closure Inspection Report for Corrective Action Unit 424: Area 3 Landfill Complex, Tonopah Test Range, Nevada, Calendar Year 2000

    SciTech Connect (OSTI)

    K. B. Campbell

    2001-06-01

    Corrective Action Unit (CAU) 424, the Area 3 Landfill Complex at Tonopah Test Range, consists of eight landfill sites, Corrective Action Sites (CASS), seven of which are landfill cells that were closed previously by capping. (The eighth CAS, A3-7, was not used as a landfill site and was closed without taking any corrective action.) Figure 1 shows the locations of the landfill cells. CAU 424 closure activities included removing small volumes of soil containing petroleum hydrocarbons, repairing cell covers that were cracked or had subsided, and installing above-grade and at-grade monuments marking the comers of the landfill cells. Post-closure monitoring requirements for CAU 424 are detailed in Section 5.0, Post-Closure Inspection Plan contained, in the Closure Report for Corrective Action Unit 424: Area 3 Landfill Complex, Tonopah Test Range. Nevada, report number DOE/NV--283. The Closure Report (CR) was approved by the Nevada Division of Environmental Protection (NDEP) in July 1999. The CR includes compaction and permeability results of soils that cap the seven landfill cells. Post-closure monitoring consists of the following: (1) Site inspections done twice a year to evaluate the condition of the unit; (2) Verification that the site is secure; (3) Notice of any subsidence or deficiencies that may compromise the integrity of the unit; (4) Remedy of any deficiencies within 90 days of discovery; and (5) Preparation and submittal of an annual report. Site inspections were conducted on June 20, 2000, and November 20, 2000. The inspections were preformed after the NDEP approval of the CR. This report includes copies of the inspection checklist and photographs, and recommendations and conclusions. The Post-Closure Inspection Checklists are found in Attachment A, a copy of the field notes is found in Attachment B, and copies of the inspection photographs are found in Attachment C.

  15. Optimal Electric Utility Expansion

    Energy Science and Technology Software Center (OSTI)

    1989-10-10

    SAGE-WASP is designed to find the optimal generation expansion policy for an electrical utility system. New units can be automatically selected from a user-supplied list of expansion candidates which can include hydroelectric and pumped storage projects. The existing system is modeled. The calculational procedure takes into account user restrictions to limit generation configurations to an area of economic interest. The optimization program reports whether the restrictions acted as a constraint on the solution. All expansionmore » configurations considered are required to pass a user supplied reliability criterion. The discount rate and escalation rate are treated separately for each expansion candidate and for each fuel type. All expenditures are separated into local and foreign accounts, and a weighting factor can be applied to foreign expenditures.« less

  16. gas rates | OpenEI Community

    Open Energy Info (EERE)

    as far as I'm aware. That may be a dataset that is added in the future. You can access natural gas prices by utility and sector by downloading the EIA-176 form from the Energy...

  17. Virginia Natural Gas Number of Gas and Gas Condensate Wells ...

    Gasoline and Diesel Fuel Update (EIA)

    Gas and Gas Condensate Wells (Number of Elements) Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  18. Colorado Natural Gas Number of Gas and Gas Condensate Wells ...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) Colorado Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  19. Nebraska Natural Gas Number of Gas and Gas Condensate Wells ...

    Gasoline and Diesel Fuel Update (EIA)

    Gas and Gas Condensate Wells (Number of Elements) Nebraska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  20. Missouri Natural Gas Number of Gas and Gas Condensate Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Missouri Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...