National Library of Energy BETA

Sample records for landfill gas utilization

  1. Hartford Landfill Gas Utilization Proj Biomass Facility | Open...

    Open Energy Info (EERE)

    Landfill Gas Utilization Proj Biomass Facility Jump to: navigation, search Name Hartford Landfill Gas Utilization Proj Biomass Facility Facility Hartford Landfill Gas Utilization...

  2. Albany Landfill Gas Utilization Project Biomass Facility | Open...

    Open Energy Info (EERE)

    Landfill Gas Utilization Project Biomass Facility Jump to: navigation, search Name Albany Landfill Gas Utilization Project Biomass Facility Facility Albany Landfill Gas Utilization...

  3. Balefill Landfill Gas Utilization Proj Biomass Facility | Open...

    Open Energy Info (EERE)

    Balefill Landfill Gas Utilization Proj Biomass Facility Jump to: navigation, search Name Balefill Landfill Gas Utilization Proj Biomass Facility Facility Balefill Landfill Gas...

  4. Lopez Landfill Gas Utilization Project Biomass Facility | Open...

    Open Energy Info (EERE)

    Lopez Landfill Gas Utilization Project Biomass Facility Jump to: navigation, search Name Lopez Landfill Gas Utilization Project Biomass Facility Facility Lopez Landfill Gas...

  5. Methane Gas Utilization Project from Landfill at Ellery (NY)

    SciTech Connect (OSTI)

    Pantelis K. Panteli

    2012-01-10

    Landfill Gas to Electric Energy Generation and Transmission at Chautauqua County Landfill, Town of Ellery, New York. The goal of this project was to create a practical method with which the energy, of the landfill gas produced by the decomposing waste at the Chautauqua County Landfill, could be utilized. This goal was accomplished with the construction of a landfill gas to electric energy plant (originally 6.4MW and now 9.6MW) and the construction of an inter-connection power-line, from the power-plant to the nearest (5.5 miles) power-grid point.

  6. Feasibility study: utilization of landfill gas for a vehicle fuel system, Rossman's landfill, Clackamas County, Oregon

    SciTech Connect (OSTI)

    1981-01-01

    In 1978, a landfill operator in Oregon became interested in the technical and economic feasibility of recovering the methane generated in the landfill for the refueling of vehicles. DOE awarded a grant for a site-specific feasibility study of this concept. This study investigated the expected methane yield and the development of a conceptual gas-gathering system; gas processing, compressing, and storage systems; and methane-fueled vehicle systems. Cost estimates were made for each area of study. The results of the study are presented. Reasoning that gasoline prices will continue to rise and that approximately 18,000 vehicles in the US have been converted to operate on methane, a project is proposed to use this landfill as a demonstration site to produce and process methane and to fuel a fleet (50 to 400) vehicles with the gas produced in order to obtain performance and economic data on the systems used from gas collection through vehicle operation. (LCL)

  7. Landfill Gas | Open Energy Information

    Open Energy Info (EERE)

    Gas Jump to: navigation, search TODO: Add description List of Landfill Gas Incentives Retrieved from "http:en.openei.orgwindex.php?titleLandfillGas&oldid267173...

  8. 7.4 Landfill Methane Utilization

    Office of Energy Efficiency and Renewable Energy (EERE)

    A chapter on Landfill Methane Utilization from the Clean Energy Strategies for Local Governments publication.

  9. Operating a fuel cell using landfill gas

    SciTech Connect (OSTI)

    Trippel, C.E.; Preston, J.L. Jr.; Trocciola, J.; Spiegel, R.

    1996-12-31

    An ONSI PC25{trademark}, 200 kW (nominal capacity) phosphoric acid fuel cell operating on landfill gas is installed at the Town of Groton Flanders Road landfill in Groton, Connecticut. This joint project by the Connecticut Light & Power Company (CL&P) which is an operating company of Northeast Utilities, the Town of Groton, International Fuel Cells (IFC), and the US EPA is intended to demonstrate the viability of installing, operating and maintaining a fuel cell operating on landfill gas at a landfill site. The goals of the project are to evaluate the fuel cell and gas pretreatment unit operation, test modifications to simplify the GPU design and demonstrate reliability of the entire system.

  10. Sour landfill gas problem solved

    SciTech Connect (OSTI)

    Nagl, G.; Cantrall, R.

    1996-05-01

    In Broward County, Fla., near Pompano Beach, Waste Management of North America (WMNA, a subsidiary of WMX Technologies, Oak Brook, IL) operates the Central Sanitary Landfill and Recycling Center, which includes the country`s largest landfill gas-to-energy plant. The landfill consists of three collection sites: one site is closed, one is currently receiving garbage, and one will open in the future. Approximately 9 million standard cubic feet (scf) per day of landfill gas is collected from approximately 300 wells spread over the 250-acre landfill. With a dramatic increase of sulfur-containing waste coming to a South Florida landfill following Hurricane Andrew, odors related to hydrogen sulfide became a serious problem. However, in a matter of weeks, an innovative desulfurization unit helped calm the landfill operator`s fears. These very high H{sub 2}S concentrations caused severe odor problems in the surrounding residential area, corrosion problems in the compressors, and sulfur dioxide (SO{sub 2}) emission problems in the exhaust gas from the turbine generators.

  11. Spadra Landfill Gas to Energy Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Spadra Landfill Gas to Energy Biomass Facility Jump to: navigation, search Name Spadra Landfill Gas to Energy Biomass Facility Facility Spadra Landfill Gas to Energy Sector Biomass...

  12. Woodland Landfill Gas Recovery Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Landfill Gas Recovery Biomass Facility Jump to: navigation, search Name Woodland Landfill Gas Recovery Biomass Facility Facility Woodland Landfill Gas Recovery Sector Biomass...

  13. Olinda Landfill Gas Recovery Plant Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Olinda Landfill Gas Recovery Plant Biomass Facility Jump to: navigation, search Name Olinda Landfill Gas Recovery Plant Biomass Facility Facility Olinda Landfill Gas Recovery Plant...

  14. Powering Microturbines With Landfill Gas, October 2002 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants 7.4 Landfill Methane Utilization CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market ...

  15. Albany Interim Landfill gas extraction and mobile power system: Using landfill gas to produce electricity. Final report

    SciTech Connect (OSTI)

    1997-06-01

    The Albany Interim Landfill Gas Extraction and Mobile Power System project served three research objectives: (1) determination of the general efficiency and radius of influence of horizontally placed landfill gas extraction conduits; (2) determination of cost and effectiveness of a hydrogen sulfide gas scrubber utilizing Enviro-Scrub{trademark} liquid reagent; and (3) construction and evaluation of a dual-fuel (landfill gas/diesel) 100 kW mobile power station. The horizontal gas extraction system was very successful; overall, gas recovery was high and the practical radius of influence of individual extractors was about 50 feet. The hydrogen sulfide scrubber was effective and its use appears feasible at typical hydrogen sulfide concentrations and gas flows. The dual-fuel mobile power station performed dependably and was able to deliver smooth power output under varying load and landfill gas fuel conditions.

  16. Penrose Landfill Gas Conversion LLC | Open Energy Information

    Open Energy Info (EERE)

    Page Edit with form History Penrose Landfill Gas Conversion LLC Jump to: navigation, search Name: Penrose Landfill Gas Conversion LLC Place: Los Angeles, California Product: Owner...

  17. Tapping Landfill Gas to Provide Significant Energy Savings and...

    Energy Savers [EERE]

    Central Landfill in Johnston, Rhode Island, and Olinda Alpha Landfill in Brea, California. ... The California plant is the third-largest landfill-gas-to-electricity facility in the ...

  18. Franklin County Sanitary Landfill - Landfill Gas (LFG) to Liquefied Natural Gas (LNG) - Project

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    FRANKLIN COUNTY SANITARY LANDFILL - LANDFILL GAS (LFG) TO LIQUEFIED NATURAL GAS (LNG) - PROJECT January/February 2005 Prepared for: National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 Table of Contents Page BACKGROUND AND INTRODUCTION .......................................................................................1 SUMMARY OF EFFORT PERFORMED ......................................................................................2 Task 2B.1 - Literature Search

  19. Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Refuse Vehicles Renewable Natural Gas From Landfill Powers Refuse Vehicles to someone by E-mail Share Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Facebook Tweet about Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Twitter Bookmark Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Google Bookmark Alternative Fuels Data Center: Renewable Natural Gas From

  20. Using landfill gas for energy: Projects that pay

    SciTech Connect (OSTI)

    1995-02-01

    Pending Environmental Protection Agency regulations will require 500 to 700 landfills to control gas emissions resulting from decomposing garbage. Conversion of landfill gas to energy not only meets regulations, but also creates energy and revenue for local governments.

  1. Tapping Landfill Gas to Provide Significant Energy Savings and Greenhouse Gas Reductions - Case Study

    SciTech Connect (OSTI)

    2013-04-30

    BroadRock Renewables, LLC built two high efficiency electricity generating facilities that utilize landfill gas in California and Rhode Island. The two projects received a total of $25 million in U.S. Department of Energy funding from the American Recovery and Reinvestment Act (ARRA) of 2009. Private-sector cost share for the projects totaled approximately $186 million.

  2. BUNCOMBE COUNTY WASTEWATER PRE-TREATMENT AND LANDFILL GAS TO ENERGY PROJECT

    SciTech Connect (OSTI)

    Jon Creighton

    2012-03-13

    The objective of this project was to construct a landfill gas-to-energy (LFGTE) facility that generates a renewable energy source utilizing landfill gas to power a 1.4MW generator, while at the same time reducing the amount of leachate hauled offsite for treatment. The project included an enhanced gas collection and control system, gas conditioning equipment, and a 1.4 MW generator set. The production of cleaner renewable energy will help offset the carbon footprint of other energy sources that are currently utilized.

  3. Investigation of Integrated Subsurface Processing of Landfill Gas and Carbon Sequestration, Johnson County, Kansas

    SciTech Connect (OSTI)

    K. David Newell; Timothy R. Carr

    2007-03-31

    The Johnson County Landfill in Shawnee, KS is operated by Deffenbaugh Industries and serves much of metropolitan Kansas City. Refuse, which is dumped in large plastic-underlined trash cells covering several acres, is covered over with shale shortly after burial. The landfill waste, once it fills the cell, is then drilled by Kansas City LFG, so that the gas generated by anaerobic decomposition of the refuse can be harvested. Production of raw landfill gas from the Johnson County landfill comes from 150 wells. Daily production is approximately 2.2 to 2.5 mmcf, of which approximately 50% is methane and 50% is carbon dioxide and NMVOCs (non-methane volatile organic compounds). Heating value is approximately 550 BTU/scf. A upgrading plant, utilizing an amine process, rejects the carbon dioxide and NMVOCs, and upgrades the gas to pipeline quality (i.e., nominally a heating value >950 BTU/scf). The gas is sold to a pipeline adjacent to the landfill. With coal-bearing strata underlying the landfill, and carbon dioxide a major effluent gas derived from the upgrading process, the Johnson County Landfill is potentially an ideal setting to study the feasibility of injecting the effluent gas in the coals for both enhanced coalbed methane recovery and carbon sequestration. To these ends, coals below the landfill were cored and then were analyzed for their thickness and sorbed gas content, which ranged up to 79 scf/ton. Assuming 1 1/2 square miles of land (960 acres) at the Johnson County Landfill can be utilized for coalbed and shale gas recovery, the total amount of in-place gas calculates to 946,200 mcf, or 946.2 mmcf, or 0.95 bcf (i.e., 985.6 mcf/acre X 960 acres). Assuming that carbon dioxide can be imbibed by the coals and shales on a 2:1 ratio compared to the gas that was originally present, then 1682 to 1720 days (4.6 to 4.7 years) of landfill carbon dioxide production can be sequestered by the coals and shales immediately under the landfill. Three coal--the Bevier

  4. Renewable Energy Holdings Landfill Gas Wales Ltd REH Wales |...

    Open Energy Info (EERE)

    Gas Wales Ltd REH Wales Jump to: navigation, search Name: Renewable Energy Holdings Landfill Gas (Wales) Ltd (REH Wales) Place: United Kingdom Product: A joint venture to own and...

  5. Fuel Flexibility: Landfill Gas Contaminant Mitigation for Power Generation

    SciTech Connect (OSTI)

    Storey, John Morse; Theiss, Timothy J; Kass, Michael D; FINNEY, Charles E A; Lewis, Samuel; Kaul, Brian C; Besmann, Theodore M; Thomas, John F; Rogers, Hiram; Sepaniak, Michael

    2014-04-01

    This research project focused on the mitigation of silica damage to engine-based renewable landfill gas energy systems. Characterization of the landfill gas siloxane contamination, combined with characterization of the silica deposits in engines, led to development of two new mitigation strategies. The first involved a novel method for removing the siloxanes and other heavy contaminants from the landfill gas prior to use by the engines. The second strategy sought to interrupt the formation of hard silica deposits in the engine itself, based on inspection of failed landfill gas engine parts. In addition to mitigation, the project had a third task to develop a robust sensor for siloxanes that could be used to control existing and/or future removal processes.

  6. Renewable LNG: Update on the World's Largest Landfill Gas to...

    Broader source: Energy.gov (indexed) [DOE]

    Success story about LNG from landfill gas. Presented by Mike McGowan, Linde NA, Inc., at the NRELDOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado. ...

  7. Recovery Act: Brea California Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    SciTech Connect (OSTI)

    Galowitz, Stephen

    2012-12-31

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Olinda Landfill near Brea, California. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting Project reflected a cost effective balance of the following specific sub-objectives: • Meeting the environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gasUtilizing proven and reliable technology and equipment • Maximizing electrical efficiency • Maximizing electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Olinda Landfill • Maximizing equipment uptime • Minimizing water consumption • Minimizing post-combustion emissions • The Project produced and will produce a myriad of beneficial impacts. o The Project created 360 FTE construction and manufacturing jobs and 15 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. o By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). o The Project will annually produce 280,320 MWh’s of clean energy o By destroying the methane in the landfill gas, the Project will generate CO2 equivalent reductions of 164,938 tons annually. The completed facility produces 27.4 MWnet and operates 24 hours a day, seven days a week.

  8. Recovery Act: Johnston Rhode Island Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    SciTech Connect (OSTI)

    Galowitz, Stephen

    2013-06-30

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Central Landfill in Johnston, Rhode Island. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting project reflected a cost effective balance of the following specific sub-objectives. 1) Meet environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas. 2) Utilize proven and reliable technology and equipment. 3) Maximize electrical efficiency. 4) Maximize electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Central Landfill. 5) Maximize equipment uptime. 6) Minimize water consumption. 7) Minimize post-combustion emissions. To achieve the Project Objective the project consisted of several components. 1) The landfill gas collection system was modified and upgraded. 2) A State-of-the Art gas clean up and compression facility was constructed. 3) A high pressure pipeline was constructed to convey cleaned landfill gas from the clean-up and compression facility to the power plant. 4) A combined cycle electric generating facility was constructed consisting of combustion turbine generator sets, heat recovery steam generators and a steam turbine. 5) The voltage of the electricity produced was increased at a newly constructed transformer/substation and the electricity was delivered to the local transmission system. The Project produced a myriad of beneficial impacts. 1) The Project created 453 FTE construction and manufacturing jobs and 25 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. 2) By combining state-of-the-art gas clean up systems with post combustion emissions control

  9. Nation's first fuel cell power plant powered by processed landfill gas

    SciTech Connect (OSTI)

    Leeper, J.D.; Engels, W.W.

    1986-04-01

    Southern California Edison Company (Edison) and the Los Angeles Department of Water and Power (LADWP) installed, and are operating, a 40 kw phosphoric acid fuel cell utilizing processed landfill gas at a hotel and convention complex in the City of Industry, California. This field test aims to establish important electric utility operating criteria of two separate, promising technologies linked together for the first time. Among the key objectives to be established during this project are: (1) operating a fuel cell to establish electric generation equipment criteria, such as fuel efficiency, reliability, siteability, and emission and electric output characteristics; (2) determining whether under-utilized landfill gas can be used in a fuel cell designed to operate on natural gas; and (3) identifying methods to improve the economic viability of such a system.

  10. LIQUID NATURAL GAS (LNG): AN ALTERNATIVE FUEL FROM LANDFILL GAS (LFG) AND WASTEWATER DIGESTER GAS

    SciTech Connect (OSTI)

    VANDOR,D.

    1999-03-01

    This Research and Development Subcontract sought to find economic, technical and policy links between methane recovery at landfill and wastewater treatment sites in New York and Maryland, and ways to use that methane as an alternative fuel--compressed natural gas (CNG) or liquid natural gas (LNG) -- in centrally fueled Alternative Fueled Vehicles (AFVs).

  11. Determination of landfill gas composition and pollutant emission rates at fresh kills landfill. Volume 1. Project report. Final report

    SciTech Connect (OSTI)

    1995-12-07

    Air emissions of landfill gas pollutants at Fresh Kills Landfill, located in Staten Island, NY, were estimated based on three weeks of sampling of flow, concentration, and flux at passive vents, gas extraction wells, gas collection plant headers, and the landfill surface conducted by Radian Corporation in 1995. Emission rates were estimated for 202 pollutants, including hydrogen sulfide, mercury vapor, speciated volatile organic compounds, methane, and carbon dioxide. Results indicate that large amounts of mercury enter the methane, and carbon dioxide. Results indicate that large amounts of mercury enter the methane recovery plant. Emission factors based on the results are presented.

  12. Landfill Gas and Biogas - Energy Explained, Your Guide To Understanding

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy - Energy Information Administration Landfill Gas and Biogas Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases Come

  13. Short Mountain Landfill gas recovery project

    SciTech Connect (OSTI)

    Not Available

    1992-05-01

    The Bonneville Power Administration (BPA), a Federal power marketing agency, has statutory responsibilities to supply electrical power to its utility, industrial, and other customers in the Pacific Northwest. BPA's latest load/resource balance forecast, projects the capability of existing resources to satisfy projected Federal system loads. The forecast indicates a potential resource deficit. The underlying need for action is to satisfy BPA customers' demand for electrical power.

  14. Case Studies from the Climate Technology Partnership: Landfill Gas Projects in South Korea and Lessons Learned

    SciTech Connect (OSTI)

    Larney, C.; Heil, M.; Ha, G. A.

    2006-12-01

    This paper examines landfill gas projects in South Korea. Two case studies provide concrete examples of lessons learned and offer practical guidance for future projects.

  15. Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects Webinar (text version)

    Broader source: Energy.gov [DOE]

    Below is the text version of the Webinar titled "Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects," originally presented on July 17, 2012.

  16. Comparison of emissions from landfills, municipal waste combustors, and fossil fuel-fired utilities

    SciTech Connect (OSTI)

    1996-11-01

    Landfilling is the most popular disposal method for managing municipal solid waste (MSW). However, air emissions from MSW landfills have generally been unregulated until recently. Instead, EPA has focused on emissions from municipal waste combustors (MWCs), even though they only manage 15% of MSW generated in the United States. In the past, little data have been available comparing landfill and MWC air emissions. Such information is provided by this paper. It also compares emissions from waste-to-energy MWCs and fossil fuel-fired utilities with equivalent electrical generation capacity. 1 refs., 6 tabs.

  17. Energy potential of modern landfills

    SciTech Connect (OSTI)

    Bogner, J.E.

    1990-01-01

    Methane produced by refuse decomposition in a sanitary landfill can be recovered for commercial use. Landfill methane is currently under-utilized, with commercial recovery at only a small percentage of US landfills. New federal regulations mandating control of landfill gas migration and atmospheric emissions are providing impetus to methane recovery schemes as a means of recovering costs for increased environmental control. The benefits of landfill methane recovery include utilization of an inexpensive renewable energy resource, removal of explosive gas mixtures from the subsurface, and mitigation of observed historic increases in atmospheric methane. Increased commercial interest in landfill methane recovery is dependent on the final form of Clean Air Act amendments pertaining to gaseous emissions from landfills; market shifts in natural gas prices; financial incentives for development of renewable energy resources; and support for applied research and development to develop techniques for increased control of the gas generation process in situ. This paper will discuss the controls on methane generation in landfills. In addition, it will address how landfill regulations affect landfill design and site management practices which, in turn, influence decomposition rates. Finally, future trends in landfilling, and their relationship to gas production, will be examined. 19 refs., 2 figs., 3 tabs.

  18. Improved methodology to assess modification and completion of landfill gas management in the aftercare period

    SciTech Connect (OSTI)

    Morris, Jeremy W.F.; Crest, Marion; Barlaz, Morton A.; Spokas, Kurt A.; Akerman, Anna; Yuan, Lei

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Performance-based evaluation of landfill gas control system. Black-Right-Pointing-Pointer Analytical framework to evaluate transition from active to passive gas control. Black-Right-Pointing-Pointer Focus on cover oxidation as an alternative means of passive gas control. Black-Right-Pointing-Pointer Integrates research on long-term landfill behavior with practical guidance. - Abstract: Municipal solid waste landfills represent the dominant option for waste disposal in many parts of the world. While some countries have greatly reduced their reliance on landfills, there remain thousands of landfills that require aftercare. The development of cost-effective strategies for landfill aftercare is in society's interest to protect human health and the environment and to prevent the emergence of landfills with exhausted aftercare funding. The Evaluation of Post-Closure Care (EPCC) methodology is a performance-based approach in which landfill performance is assessed in four modules including leachate, gas, groundwater, and final cover. In the methodology, the objective is to evaluate landfill performance to determine when aftercare monitoring and maintenance can be reduced or possibly eliminated. This study presents an improved gas module for the methodology. While the original version of the module focused narrowly on regulatory requirements for control of methane migration, the improved gas module also considers best available control technology for landfill gas in terms of greenhouse gas emissions, air quality, and emissions of odoriferous compounds. The improved module emphasizes the reduction or elimination of fugitive methane by considering the methane oxidation capacity of the cover system. The module also allows for the installation of biologically active covers or other features designed to enhance methane oxidation. A methane emissions model, CALMIM, was used to assist with an assessment of the methane oxidation capacity of

  19. Landfill gas cleanup for carbonate fuel cell power generation. Final report

    SciTech Connect (OSTI)

    Steinfield, G.; Sanderson, R.

    1998-02-01

    Landfill gas represents a significant fuel resource both in the US and worldwide. The emissions of landfill gas from existing landfills has become an environmental liability contributing to global warming and causing odor problems. Landfill gas has been used to fuel reciprocating engines and gas turbines, and may also be used to fuel carbonate fuel cells. Carbonate fuel cells have high conversion efficiencies and use the carbon dioxide present in landfill gas as an oxidant. There are, however, a number of trace contaminants in landfill gas that contain chlorine and sulfur which are deleterious to fuel cell operation. Long-term economical operation of fuel cells fueled with landfill gas will, therefore, require cleanup of the gas to remove these contaminants. The overall objective of the work reported here was to evaluate the extent to which conventional contaminant removal processes could be combined to economically reduce contaminant levels to the specifications for carbonate fuel cells. A pilot plant cleaned approximately 970,000 scf of gas over 1,000 hours of operation. The testing showed that the process could achieve the following polished gas concentrations: less than 80 ppbv hydrogen sulfide; less than 1 ppmv (the detection limit) organic sulfur; less than 300 ppbv hydrogen chloride; less than 20--80 ppbv of any individual chlorinated hydrocarbon; and 1.5 ppm sulfur dioxide.

  20. Greenhouse gas emissions from landfill leachate treatment plants: A comparison of young and aged landfill

    SciTech Connect (OSTI)

    Wang, Xiaojun; Jia, Mingsheng; Chen, Xiaohai; Xu, Ying; Lin, Xiangyu; Kao, Chih Ming; Chen, Shaohua

    2014-07-15

    Highlights: • Young and aged leachate works accounted for 89.1% and 10.9% of 33.35 Gg CO{sub 2} yr{sup −1}. • Fresh leachate owned extremely low ORP and high organic matter content. • Strong CH{sub 4} emissions occurred in the fresh leachate ponds, but small in the aged. • N{sub 2}O emissions became dominant in the treatment units of both systems. • 8.45–11.9% of nitrogen was removed as the form of N{sub 2}O under steady-state. - Abstract: With limited assessment, leachate treatment of a specified landfill is considered to be a significant source of greenhouse gas (GHG) emissions. In our study, the cumulative GHG emitted from the storage ponds and process configurations that manage fresh or aged landfill leachate were investigated. Our results showed that strong CH{sub 4} emissions were observed from the fresh leachate storage pond, with the fluxes values (2219–26,489 mg C m{sup −2} h{sup −1}) extremely higher than those of N{sub 2}O (0.028–0.41 mg N m{sup −2} h{sup −1}). In contrast, the emission values for both CH{sub 4} and N{sub 2}O were low for the aged leachate tank. N{sub 2}O emissions became dominant once the leachate entered the treatment plants of both systems, accounting for 8–12% of the removal of N-species gases. Per capita, the N{sub 2}O emission based on both leachate treatment systems was estimated to be 7.99 g N{sub 2}O–N capita{sup −1} yr{sup −1}. An increase of 80% in N{sub 2}O emissions was observed when the bioreactor pH decreased by approximately 1 pH unit. The vast majority of carbon was removed in the form of CO{sub 2}, with a small portion as CH{sub 4} (<0.3%) during both treatment processes. The cumulative GHG emissions for fresh leachate storage ponds, fresh leachate treatment system and aged leachate treatment system were 19.10, 10.62 and 3.63 Gg CO{sub 2} eq yr{sup −1}, respectively, for a total that could be transformed to 9.09 kg CO{sub 2} eq capita{sup −1} yr{sup −1}.

  1. Westchester Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Landfill Biomass Facility Jump to: navigation, search Name Westchester Landfill Biomass Facility Facility Westchester Landfill Sector Biomass Facility Type Landfill Gas Location...

  2. Kiefer Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Kiefer Landfill Biomass Facility Jump to: navigation, search Name Kiefer Landfill Biomass Facility Facility Kiefer Landfill Sector Biomass Facility Type Landfill Gas Location...

  3. Renewable LNG: Update on the World's Largest Landfill Gas to LNG Plant

    Office of Energy Efficiency and Renewable Energy (EERE)

    Success story about LNG from landfill gas. Presented by Mike McGowan, Linde NA, Inc., at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado.

  4. Property:Building/SPPurchasedEngyForPeriodMwhYrDigesterLandfillGas...

    Open Energy Info (EERE)

    YrDigesterLandfillGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0...

  5. Property:Building/SPPurchasedEngyNrmlYrMwhYrDigesterLandfillGas...

    Open Energy Info (EERE)

    YrDigesterLandfillGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0...

  6. Determination of landfill gas composition and pollutant emission rates at fresh kills landfill. Volume 2. Appendices to project report. Final report

    SciTech Connect (OSTI)

    1995-12-07

    Air emissions of landfill gas pollutants at Fresh Kills Landfill, located in Staten Island, NY, were estimated based on three weeks of sampling of flow, concentration, and flux at passive vents, gas extraction wells, gas collection plant headers, and the landfill surface conducted by Radian Corporation in 1995. Emission rates were estimated for 202 pollutants, including hydrogen sulfide, mercury vapor, speciated volatile organic compounds, methane, and carbon dioxide. Results indicate that large amounts of mercury enter the methane, and carbon dioxide. Results indicate that large amounts of mercury enter the methane recovery plant. Emission factors based on the results are presented.

  7. Emission assessment at the Burj Hammoud inactive municipal landfill: Viability of landfill gas recovery under the clean development mechanism

    SciTech Connect (OSTI)

    El-Fadel, Mutasem; Abi-Esber, Layale; Salhab, Samer

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer LFG emissions are measured at an abandoned landfill with highly organic waste. Black-Right-Pointing-Pointer Mean headspace and vent emissions are 0.240 and 0.074 l CH{sub 4}/m{sup 2} hr, respectively. Black-Right-Pointing-Pointer At sites with high food waste content, LFG generation drops rapidly after site closure. Black-Right-Pointing-Pointer The viability of LFG recovery for CDMs in developing countries is doubtful. - Abstract: This paper examines landfill gas (LFG) emissions at a large inactive waste disposal site to evaluate the viability of investment in LFG recovery through the clean development mechanism (CDM) initiative. For this purpose, field measurements of LFG emissions were conducted and the data were processed by geospatial interpolation to estimate an equivalent site emission rate which was used to calibrate and apply two LFG prediction models to forecast LFG emissions at the site. The mean CH{sub 4} flux values calculated through tessellation, inverse distance weighing and kriging were 0.188 {+-} 0.014, 0.224 {+-} 0.012 and 0.237 {+-} 0.008 l CH{sub 4}/m{sup 2} hr, respectively, compared to an arithmetic mean of 0.24 l/m{sup 2} hr. The flux values are within the reported range for closed landfills (0.06-0.89 l/m{sup 2} hr), and lower than the reported range for active landfills (0.42-2.46 l/m{sup 2} hr). Simulation results matched field measurements for low methane generation potential (L{sub 0}) values in the range of 19.8-102.6 m{sup 3}/ton of waste. LFG generation dropped rapidly to half its peak level only 4 yrs after landfill closure limiting the sustainability of LFG recovery systems in similar contexts and raising into doubt promoted CDM initiatives for similar waste.

  8. Measuring seasonal variations of moisture in a landfill with the partitioning gas tracer test

    SciTech Connect (OSTI)

    Han, Byunghyun; Jafarpour, Behnam; Gallagher, Victoria N.; Imhoff, Paul T. . E-mail: imhoff@udel.edu; Chiu, Pei C.; Fluman, Daniel A.

    2006-07-01

    Seven pilot-scale partitioning gas tracer tests (PGTTs) were conducted to assess the accuracy and reproducibility of this method for measuring water in municipal solid waste landfills. Tests were conducted in the same location over a 12-month period, and measured moisture conditions ranged from possible dry waste to refuse with a moisture content of 24.7%. The final moisture content of 24.7% was in reasonable agreement with gravimetric measurements of excavated refuse, where the moisture content was 26.5 {+-} 6.0CI%. Laboratory tests were used to assess the utility of the PGTT for measuring water in small pores, water sorbed to solid surfaces, and the influence of dry waste on PGTTs. These experiments indicated that when refuse surfaces are not completely solvated with water, PGTTs may produce misleading results (negative estimates) of water saturation and moisture content.

  9. Landfill Gas Conversion to LNG and LCO{sub 2}. Final Report

    SciTech Connect (OSTI)

    Brown, W.R.; Cook, W. J.; Siwajek, L.A.

    2000-10-20

    This report summarizes work on the development of a process to produce LNG (liquefied methane) for heavy vehicle use from landfill gas (LFG) using Acrion's CO{sub 2} wash process for contaminant removal and CO{sub 2} recovery. Work was done in the following areas: (1) production of natural gas pipeline methane for liquefaction at an existing LNG facility, (2) production of LNG from sewage digester gas, (3) the use of mixed refrigerants for process cooling in the production of LNG, liquid CO{sub 2} and pipeline methane, (4) cost estimates for an LNG production facility at the Arden Landfill in Washington PA.

  10. Garbage In, Power Out: South Carolina BMW Plant Demonstrates Landfill Gas

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Hydrogen Fuel | Department of Energy Garbage In, Power Out: South Carolina BMW Plant Demonstrates Landfill Gas to Hydrogen Fuel Garbage In, Power Out: South Carolina BMW Plant Demonstrates Landfill Gas to Hydrogen Fuel August 25, 2015 - 2:15pm Addthis The plant BMW plant in Greer, South Carolina is home to the world's largest fleet of fuel cell forklifts. | Photo courtesy of BMW Manufacturing. The plant BMW plant in Greer, South Carolina is home to the world's largest fleet of fuel cell

  11. Ocean County Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    County Landfill Biomass Facility Jump to: navigation, search Name Ocean County Landfill Biomass Facility Facility Ocean County Landfill Sector Biomass Facility Type Landfill Gas...

  12. Pearl Hollow Landfil Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Hollow Landfil Biomass Facility Jump to: navigation, search Name Pearl Hollow Landfil Biomass Facility Facility Pearl Hollow Landfil Sector Biomass Facility Type Landfill Gas...

  13. Tapping Landfill Gas to Provide Significant Energy Savings and Greenhouse Gas Reductions- Case Study, 2013

    Broader source: Energy.gov [DOE]

    Case study overviewing two large landfill projects in California and Rhode Island funded by the Recovery Act

  14. Impact of different plants on the gas profile of a landfill cover

    SciTech Connect (OSTI)

    Reichenauer, Thomas G.; Watzinger, Andrea; Riesing, Johann; Gerzabek, Martin H.

    2011-05-15

    Research highlights: > Plants influence gas profile and methane oxidation in landfill covers. > Plants regulate water content and increase the availability of oxygen for methane oxidation. > Plant species with deep roots like alfalfa showed more stimulation of methane oxidation than plants with shallow root systems like grasses. - Abstract: Methane is an important greenhouse gas emitted from landfill sites and old waste dumps. Biological methane oxidation in landfill covers can help to reduce methane emissions. To determine the influence of different plant covers on this oxidation in a compost layer, we conducted a lysimeter study. We compared the effect of four different plant covers (grass, alfalfa + grass, miscanthus and black poplar) and of bare soil on the concentration of methane, carbon dioxide and oxygen in lysimeters filled with compost. Plants were essential for a sustainable reduction in methane concentrations, whereas in bare soil, methane oxidation declined already after 6 weeks. Enhanced microbial activity - expected in lysimeters with plants that were exposed to landfill gas - was supported by the increased temperature of the gas in the substrate and the higher methane oxidation potential. At the end of the first experimental year and from mid-April of the second experimental year, the methane concentration was most strongly reduced in the lysimeters containing alfalfa + grass, followed by poplar, miscanthus and grass. The observed differences probably reflect the different root morphology of the investigated plants, which influences oxygen transport to deeper compost layers and regulates the water content.

  15. Property:Building/SPPurchasedEngyPerAreaKwhM2DigesterLandfillGas...

    Open Energy Info (EERE)

    M2DigesterLandfillGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0...

  16. Gas Utilization Facility Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Gas Utilization Facility Biomass Facility Jump to: navigation, search Name Gas Utilization Facility Biomass Facility Facility Gas Utilization Facility Sector Biomass Facility Type...

  17. Well-to-Wheels analysis of landfill gas-based pathways and their addition to the GREET model.

    SciTech Connect (OSTI)

    Mintz, M.; Han, J.; Wang, M.; Saricks, C.; Energy Systems

    2010-06-30

    Today, approximately 300 million standard cubic ft/day (mmscfd) of natural gas and 1600 MW of electricity are produced from the decomposition of organic waste at 519 U.S. landfills (EPA 2010a). Since landfill gas (LFG) is a renewable resource, this energy is considered renewable. When used as a vehicle fuel, compressed natural gas (CNG) produced from LFG consumes up to 185,000 Btu of fossil fuel and generates from 1.5 to 18.4 kg of carbon dioxide-equivalent (CO{sub 2}e) emissions per million Btu of fuel on a 'well-to-wheel' (WTW) basis. This compares with approximately 1.1 million Btu and 78.2 kg of CO{sub 2}e per million Btu for CNG from fossil natural gas and 1.2 million Btu and 97.5 kg of CO{sub 2}e per million Btu for petroleum gasoline. Because of the additional energy required for liquefaction, LFG-based liquefied natural gas (LNG) requires more fossil fuel (222,000-227,000 Btu/million Btu WTW) and generates more GHG emissions (approximately 22 kg CO{sub 2}e /MM Btu WTW) if grid electricity is used for the liquefaction process. However, if some of the LFG is used to generate electricity for gas cleanup and liquefaction (or compression, in the case of CNG), vehicle fuel produced from LFG can have no fossil fuel input and only minimal GHG emissions (1.5-7.7 kg CO{sub 2}e /MM Btu) on a WTW basis. Thus, LFG-based natural gas can be one of the lowest GHG-emitting fuels for light- or heavy-duty vehicles. This report discusses the size and scope of biomethane resources from landfills and the pathways by which those resources can be turned into and utilized as vehicle fuel. It includes characterizations of the LFG stream and the processes used to convert low-Btu LFG into high-Btu renewable natural gas (RNG); documents the conversion efficiencies and losses of those processes, the choice of processes modeled in GREET, and other assumptions used to construct GREET pathways; and presents GREET results by pathway stage. GREET estimates of well-to-pump (WTP), pump

  18. Mandatory Utility Green Power Option | Open Energy Information

    Open Energy Info (EERE)

    Mandatory Utility Green Power Option New Mexico Utility Anaerobic Digestion Biomass Fuel Cells Geothermal Electric Hydroelectric energy Hydrogen Landfill Gas Photovoltaics...

  19. Liberty Utilities (Gas)- Commercial Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    Liberty Utilities' program for commercial natural gas customers provides incentives for energy efficient equipment installations and upgrades. Incentives are available for boilers, furnaces, unit...

  20. Avista Utilities (Gas)- Prescriptive Commercial Incentive Program

    Broader source: Energy.gov [DOE]

    Avista Utilities offers Natural Gas saving incentives to commercial customers on rate schedule 420 and 424. This program provides rebates for a variety of equipment and appliances including...

  1. Integrated Combined Heat and Power/Advanced Reciprocating Internal Combustion Engine System for Landfill Gas to Power Applications

    Broader source: Energy.gov [DOE]

    Landfill gas (LFG), composed largely of methane and carbon dioxide, is used in over 450 operational projects in 43 states. These projects convert a large source of greenhouse gases into a fuel that...

  2. List of Landfill Gas Incentives | Open Energy Information

    Open Energy Info (EERE)

    Waste Photovoltaics Solar Thermal Electric Coal with CCS Energy Storage Nuclear Wind Natural Gas Yes Alternative Energy Portfolio Standard (Pennsylvania) Renewables Portfolio...

  3. Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils

    SciTech Connect (OSTI)

    Jeremy Semrau; Sung-Woo Lee; Jeongdae Im; Sukhwan Yoon; Michael Barcelona

    2010-09-30

    The overall objective of this project, 'Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils' was to develop effective, efficient, and economic methodologies by which microbial production of nitrous oxide can be minimized while also maximizing microbial consumption of methane in landfill cover soils. A combination of laboratory and field site experiments found that the addition of nitrogen and phenylacetylene stimulated in situ methane oxidation while minimizing nitrous oxide production. Molecular analyses also indicated that methane-oxidizing bacteria may play a significant role in not only removing methane, but in nitrous oxide production as well, although the contribution of ammonia-oxidizing archaea to nitrous oxide production can not be excluded at this time. Future efforts to control both methane and nitrous oxide emissions from landfills as well as from other environments (e.g., agricultural soils) should consider these issues. Finally, a methanotrophic biofiltration system was designed and modeled for the promotion of methanotrophic activity in local methane 'hotspots' such as landfills. Model results as well as economic analyses of these biofilters indicate that the use of methanotrophic biofilters for controlling methane emissions is technically feasible, and provided either the costs of biofilter construction and operation are reduced or the value of CO{sub 2} credits is increased, can also be economically attractive.

  4. Short Mountain Landfill Gas Recovery Project : Stage 1 Environmental Assessment.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1992-05-01

    The Bonneville Power Administration (BPA), a Federal power marketing agency, has statutory responsibilities to supply electrical power to its utility, industrial, and other customers in the Pacific Northwest. BPA`s latest load/resource balance forecast, projects the capability of existing resources to satisfy projected Federal system loads. The forecast indicates a potential resource deficit. The underlying need for action is to satisfy BPA customers` demand for electrical power.

  5. Industrial landfill leachate characterization and treatment utilizing anaerobic digestion with methane production

    SciTech Connect (OSTI)

    Corbo, P.

    1985-01-01

    Anaerobic digestion of organic compounds found in an industrial landfill leachate originating from a Superfund site was assessed using mixed methanogenic cultures. Leachate was found to contain a dissolved organic content (DOC) of about 16,000 mg/liter, of which 40% was in the form of acetic, propionic and butyric acids. The overall reduction of DOC and the fates of individual volatile fatty acids were studied during batch experiments of 5, 10, and 20% leachate dilutions. Other leachate components were characterized. Two methanogenic cultures were selected. A leachate digesting culture was selected directly with the leachate. A volatile fatty acid digesting culture was selected using acetic, propionic and butyric acids in the ratio found in the leachate. An overall DOC reduction of 64.3% was observed for the leachate digesting culture. A reduction of 69.1% was observed for the volatile fatty acid digesting culture. Specific DOC utilization rates were 0.154 and 0.211 day/sup -1/, for the leachate digesting and volatile fatty acid digesting cultures, respectively. Methane was produced at levels of 0.95-0.99 liters per gram DOC removed. Cell growth could not be observed during batch experiments. Acetate appeared to be the rate-limiting step in the DOC removal. Batch experiments with 20% leachate dilutions did not produce much methane, possibly due to overloading systems with volatile fatty acids. Other leachate components did not appear to effect anaerobic digestion.

  6. Landfill Energy Systems LES | Open Energy Information

    Open Energy Info (EERE)

    Energy Systems LES Jump to: navigation, search Name: Landfill Energy Systems (LES) Place: Michigan Zip: 48393 Product: Landfill gas to energy systems project developer, gas...

  7. Renewable LNG: Update on the World's Largest Landfill Gas to LNG Plant

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LNG Update on the world's largest landfill gas to LNG plant Mike McGowan Head of Government Affairs Linde NA, Inc. June 12, 2012 $18.3 billion global sales A leading gases and engineering company Linde North America Profile $2.3 billion in gases sales revenue in North America in 2011 5,000 employees throughout the U.S., Canada and the Caribbean Supplier of compressed and cryogenic gases and technology Atmospheric gases - oxygen, nitrogen, argon Helium LNG and LPG Hydrogen Rare gases Plant

  8. Gas concentration cells for utilizing energy

    DOE Patents [OSTI]

    Salomon, R.E.

    1987-06-30

    An apparatus and method are disclosed for utilizing energy, in which the apparatus may be used for generating electricity or as a heat pump. When used as an electrical generator, two gas concentration cells are connected in a closed gas circuit. The first gas concentration cell is heated and generates electricity. The second gas concentration cell repressurizes the gas which travels between the cells. The electrical energy which is generated by the first cell drives the second cell as well as an electrical load. When used as a heat pump, two gas concentration cells are connected in a closed gas circuit. The first cell is supplied with electrical energy from a direct current source and releases heat. The second cell absorbs heat. The apparatus has no moving parts and thus approximates a heat engine. 4 figs.

  9. Gas concentration cells for utilizing energy

    DOE Patents [OSTI]

    Salomon, Robert E.

    1987-01-01

    An apparatus and method for utilizing energy, in which the apparatus may be used for generating electricity or as a heat pump. When used as an electrical generator, two gas concentration cells are connected in a closed gas circuit. The first gas concentration cell is heated and generates electricity. The second gas concentration cell repressurizes the gas which travels between the cells. The electrical energy which is generated by the first cell drives the second cell as well as an electrical load. When used as a heat pump, two gas concentration cells are connected in a closed gas circuit. The first cell is supplied with electrical energy from a direct current source and releases heat. The second cell absorbs heat. The apparatus has no moving parts and thus approximates a heat engine.

  10. Methanation process utilizing split cold gas recycle

    DOE Patents [OSTI]

    Tajbl, Daniel G.; Lee, Bernard S.; Schora, Jr., Frank C.; Lam, Henry W.

    1976-07-06

    In the methanation of feed gas comprising carbon monoxide and hydrogen in multiple stages, the feed gas, cold recycle gas and hot product gas is mixed in such proportions that the mixture is at a temperature sufficiently high to avoid carbonyl formation and to initiate the reaction and, so that upon complete reaction of the carbon monoxide and hydrogen, an excessive adiabatic temperature will not be reached. Catalyst damage by high or low temperatures is thereby avoided with a process that utilizes extraordinarily low recycle ratios and a minimum of investment in operating costs.

  11. High-Speed, Temperature Programmable Gas Chromatography Utilizing...

    Office of Scientific and Technical Information (OSTI)

    High-Speed, Temperature Programmable Gas Chromatography Utilizing a Microfabricated Chip ... Title: High-Speed, Temperature Programmable Gas Chromatography Utilizing a Microfabricated ...

  12. Landfill gas cleanup for carbonate fuel cell power generation. CRADA final report

    SciTech Connect (OSTI)

    Steinfeld, G.; Sanderson, R.

    1998-02-01

    The overall objective of the work reported here was to evaluate the extent to which conventional contaminant removal processes could be combined to economically reduce contaminant levels to the specifications for carbonate fuel cells. The technical effort was conducted by EPRI, consultant David Thimsen, Kaltec of Minnesota, Energy Research Corporation (ERC) and Interpoll Laboratories. The Electric Power Research Institute (EPRI) made available two test skids originally used to test an ERC 30 kW carbonate fuel cell at the Destec Coal Gasification Plan in Plaquemine, LA. EPRI`s carbonate fuel cell pilot plant was installed at the Anoka County Regional Landfill in Ramsey, Minnesota. Additional gas cleaning equipment was installed to evaluate a potentially inexpensive, multi-stage gas cleaning process to remove sulfur and chlorine in the gas to levels acceptable for long-term, economical carbonate fuel cell operation. The pilot plant cleaned approximately 970,000 scf (27,500 Nm{sup 3}) of gas over 1,000 hours of operation. The testing showed that the process could achieve the following polished gas concentrations. Less than 80 ppbv hydrogen sulfide; less than 1 ppmv (the detection limit) organic sulfur; less than 300 ppbv hydrogen chloride; less than 20--80 ppbv of any individual chlorined hydrocarbon; and 1.5 ppm sulfur dioxide. These were the detection limits of the analytical procedures employed. It is probable that the actual concentrations are below these analytical limits.

  13. EIA - Natural Gas Pipeline Network - Pipeline Capacity and Utilization

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline Utilization & Capacity About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipeline Capacity & Utilization Overview | Utilization Rates | Integration of Storage | Varying Rates of Utilization | Measures of Utilization Overview of Pipeline Utilization Natural gas pipeline companies prefer to operate their systems as close to full capacity as possible to maximize their revenues. However, the average

  14. WC Landfill Energy | Open Energy Information

    Open Energy Info (EERE)

    WC Landfill Energy Place: New Jersey Product: Joint venture between DCO Energy and Marina Energy to develop landfill gas-to-energy plants in New Jersey. References: WC Landfill...

  15. High-Speed, Temperature Programmable Gas Chromatography Utilizing...

    Office of Scientific and Technical Information (OSTI)

    High-Speed, Temperature Programmable Gas Chromatography Utilizing a Microfabricated Chip ... Chromatography Utilizing a Microfabricated Chip with an Improved Carbon Nanotube ...

  16. Landfill Gas Conversion to LNG and LCO{sub 2}. Phase II Final Report for January 25, 1999 - April 30, 2000

    SciTech Connect (OSTI)

    Brown, W. R.; Cook, W. J.; Siwajek, L. A.

    2000-10-20

    This report summarizes work on the development of a process to produce LNG (liquefied methane) for heavy vehicle use from landfill gas (LFG) using Acrion's CO{sub 2} wash process for contaminant removal and CO{sub 2} recovery.

  17. Integrated Combined Heat and Power/Advanced Reciprocating Internal Combustion Engine System for Landfill Gas to Power Applications

    SciTech Connect (OSTI)

    2009-02-01

    Gas Technology Institute will collaborate with Integrated CHP Systems Corporation, West Virginia University, Vronay Engineering Services, KAR Engineering Associates, Pioneer Air Systems, and Energy Concepts Company to recover waste heat from reciprocating engines. The project will integrate waste heat recovery along with gas clean-up technology system improvements. This will address fuel quality issues that have hampered expanded use of opportunity fuels such as landfill gas, digester biogas, and coal mine methane. This will enable increased application of CHP using renewable and domestically derived opportunity fuels.

  18. Utility Partnerships Webinar Series: Gas Utility Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    Emerging gas technologies to enhance industrial energy efficiency, challenges of integrating into the marketplace and an overview of DTE Energy’s energy efficiency programs for natural gas customers.

  19. FCPP application to utilize anaerobic digester gas

    SciTech Connect (OSTI)

    Nakayama, Yoshio; Kusama, Nobuyuki; Wada, Katsuya

    1996-12-31

    Toshiba and a municipal organization of Yokohama city are jointly conducting a program to utilize ADG (Anaerobic Digester Gas) more effectively. ADG which contains about 60% methane is produced by anaerobic digestion of waste water treatment sludge and has been used as an energy source for heating digestion tanks in sewage treatment plants and/or for combustion engine fuel. This program is focused on operating a commercial Phosphoric Acid Fuel Cell (PAFC) power plant on ADG because of its inherently high fuel efficiency and low emissions characteristics. According to the following joint program, we have successfully demonstrated an ADG fueled FCPP The success of this study promises that the ADG fueled FCPP, an environment-friendly power generation system, will be added to the line-up of PC25{trademark}C applications.

  20. Natural gas recovery, storage, and utilization SBIR program

    SciTech Connect (OSTI)

    Shoemaker, H.D.

    1993-12-31

    A Fossil Energy natural-gas topic has been a part of the DOE Small Business Innovation Research (SBIR) program since 1988. To date, 50 Phase SBIR natural-gas applications have been funded. Of these 50, 24 were successful in obtaining Phase II SBIR funding. The current Phase II natural-gas research projects awarded under the SBIR program and managed by METC are presented by award year. The presented information on these 2-year projects includes project title, awardee, and a project summary. The 1992 Phase II projects are: landfill gas recovery for vehicular natural gas and food grade carbon dioxide; brine disposal process for coalbed gas production; spontaneous natural as oxidative dimerization across mixed conducting ceramic membranes; low-cost offshore drilling system for natural gas hydrates; motorless directional drill for oil and gas wells; and development of a multiple fracture creation process for stimulation of horizontally drilled wells.The 1993 Phase II projects include: process for sweetening sour gas by direct thermolysis of hydrogen sulfide; remote leak survey capability for natural gas transport storage and distribution systems; reinterpretation of existing wellbore log data using neural-based patter recognition processes; and advanced liquid membrane system for natural gas purification.

  1. Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Landfills Convert Biogas Into Renewable Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Google Bookmark Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on

  2. Industrial Utility Webinar: Natural Gas Efficiency Programs

    SciTech Connect (OSTI)

    2010-04-15

    The Industrial Utility Webinars focus on providing utilities with information on how to develop sucessful energy efficeincy programs for industrial energy consumers.

  3. Norwich Public Utilities (Gas)- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Norwich Public Utilities (NPU) provides residential natural gas customers rebates for upgrading to energy efficient equipment in eligible homes. NPU offers rebates of between $250 - $3000 for...

  4. Federal Utility Partnership Working Group: Atlanta Gas Light Resources

    Broader source: Energy.gov [DOE]

    Presentation—given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting—lists Altanta Gas Light (AGL) resources and features a map of its footprint.

  5. Orange and Rockland Utilities (Gas)- Residential Efficiency Program

    Broader source: Energy.gov [DOE]

    Orange and Rockland Utilities provides rebates for residential customers purchasing energy efficient natural gas equipment. Rebates exist for furnaces, water boilers and controls, steam boilers,...

  6. DOE Considers Natural Gas Utility Service Options: Proposal Includes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    30-mile Natural Gas Pipeline from Pasco to Hanford | Department of Energy Considers Natural Gas Utility Service Options: Proposal Includes 30-mile Natural Gas Pipeline from Pasco to Hanford DOE Considers Natural Gas Utility Service Options: Proposal Includes 30-mile Natural Gas Pipeline from Pasco to Hanford January 23, 2012 - 12:00pm Addthis Media Contacts Cameron Hardy, DOE , (509) 376-5365, Cameron.Hardy@rl.doe.gov RICHLAND, WASH. - The U.S. Department of Energy (DOE) is considering

  7. Florida Public Utilities (Gas)- Commercial Energy Efficiency Rebates

    Office of Energy Efficiency and Renewable Energy (EERE)

    Florida Public Utilities offers natural gas customers energy efficiency rebates  to save energy in facilities. Rebates are available for water hears, dryers, fryers, and cooking ranges.  All...

  8. Florida Public Utilities (Gas)- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Florida Public Utilities offers the Energy for Life Conservation Program to its residential natural gas customers to save energy in their homes. Rebates are available for existing residences and...

  9. Fuel Cell System Challenges Utilizing Natural Gas and Methanol

    Broader source: Energy.gov (indexed) [DOE]

    Smarter Solutions for a Clean Energy Future Fuel Cell System Challenges Utilizing Natural Gas ... fuel processing hardware and system integration March 19, 2014 2 NASDAQ:BLDP TSX:BLD ...

  10. Purged window apparatus utilizing heated purge gas

    DOE Patents [OSTI]

    Ballard, Evan O.

    1984-01-01

    A purged window apparatus utilizing tangentially injected heated purge gases in the vicinity of electromagnetic radiation transmitting windows, and a tapered external mounting tube to accelerate these gases to provide a vortex flow on the window surface and a turbulent flow throughout the mounting tube. Use of this apparatus prevents backstreaming of gases under investigation which are flowing past the mouth of the mounting tube which would otherwise deposit on the windows. Lengthy spectroscopic investigations and analyses can thereby be performed without the necessity of interrupting the procedures in order to clean or replace contaminated windows.

  11. VACASULF operation at Citizens Gas and Coke Utility

    SciTech Connect (OSTI)

    Currey, J.H.

    1995-12-01

    Citizens Gas and Coke Utility is a Public Charitable Trust which operates as the Department of Utilities of the City of Indianapolis, Indiana. Indianapolis Coke, the trade name for the Manufacturing Division of the Utility, operates a by-products coke plant in Indianapolis, Indiana. The facility produces both foundry and blast furnace coke. Surplus Coke Oven gas, generated by the process, is mixed with Natural Gas for sale to industrial and residential customers. In anticipation of regulatory developments, beginning in 1990, Indianapolis Coke undertook the task to develop an alternate Coke Oven Gas desulfurization technology for its facility. The new system was intended to perform primary desulfurization of the gas, dramatically extending the oxide bed life, thus reducing disposal liabilities. Citizens Gas chose the VACASULF technology for its primary desulfurization system. VACASULF requires a single purchased material, Potassium Hydroxide (KOH). The KOH reacts with Carbon Dioxide in the coke Oven Gas to form Potassium Carbonate (potash) which in turn absorbs the Hydrogen Sulfide. The rich solution releases the absorbed sulfide under strong vacuum in the desorber column. Operating costs are reduced through utilization of an inherent heat source which is transferred indirectly via attendant reboilers. The Hydrogen Sulfide is transported by the vacuum pumps to the Claus Kiln and Reactor for combustion, reaction, and elemental Sulfur recovery. Regenerated potash solution is returned to the Scrubber.

  12. Wellhead to wire utilization of remote gas resources

    SciTech Connect (OSTI)

    Harris, R.A.; Hines, T.L.

    1998-12-31

    Utilization of remote gas resources in developing countries continues to offer challenges and opportunities to producers and contractors. The Aguaytia Gas and Power Project is an example where perseverance and creativity resulted in successful utilization of natural gas resources in the Ucayali Region of Central Peru, a country which previously had no natural gas infrastructure. The resource for the project was first discovered by Mobil in 1961, and remained undeveloped for over thirty years due to lack of infrastructure and markets. Maple Gas won a competitively bid contract to develop the Aguaytia gas reserves in March of 1993. The challenges facing Maple Gas were to develop downstream markets for the gas, execute contracts with Perupetro S.A. and other Peruvian government entities, raise financing for the project, and solicit and execute engineering procurement and construction (EPC) contracts for the execution of the project. The key to development of the downstream markets was the decision to generate electric power and transmit the power over the Andes to the main electrical grid along the coast of Peru. Supplemental revenue could be generated by gas sales to a small regional power plant and extraction of LPG and natural gasoline for consumption in the Peruvian market. Three separate lump sum contracts were awarded to Asea Brown Boveri (ABB) companies for the gas project, power project and transmission project. Each project presented its unique challenges, but the commonalities were the accelerated schedule, high rainfall in a prolonged wet season and severe logistics due to lack of infrastructure in the remote region. This presentation focuses on how the gas plant contractor, ABB Randall, working in harmony with the developer, Maple Gas, tackled the challenges to monetize a remote gas resource.

  13. One Man's Trash, Another Man's Fuel: BMW Plant Converts Landfill...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    One Man's Trash, Another Man's Fuel: BMW Plant Converts Landfill Gas to Hydrogen Fuel One Man's Trash, Another Man's Fuel: BMW Plant Converts Landfill Gas to Hydrogen Fuel August ...

  14. Methane emissions from MBT landfills

    SciTech Connect (OSTI)

    Heyer, K.-U. Hupe, K.; Stegmann, R.

    2013-09-15

    Highlights: • Compilation of methane generation potential of mechanical biological treated (MBT) municipal solid waste. • Impacts and kinetics of landfill gas production of MBT landfills, approach with differentiated half-lives. • Methane oxidation in the waste itself and in soil covers. • Estimation of methane emissions from MBT landfills in Germany. - Abstract: Within the scope of an investigation for the German Federal Environment Agency (“Umweltbundesamt”), the basics for the estimation of the methane emissions from the landfilling of mechanically and biologically treated waste (MBT) were developed. For this purpose, topical research including monitoring results regarding the gas balance at MBT landfills was evaluated. For waste treated to the required German standards, a methane formation potential of approximately 18–24 m{sup 3} CH{sub 4}/t of total dry solids may be expected. Monitoring results from MBT landfills show that a three-phase model with differentiated half-lives describes the degradation kinetics in the best way. This is due to the fact that during the first years of disposal, the anaerobic degradation processes still proceed relatively intensively. In addition in the long term (decades), a residual gas production at a low level is still to be expected. Most of the soils used in recultivation layer systems at German landfills show a relatively high methane oxidation capacity up to 5 l CH{sub 4}/(m{sup 2} h). However, measurements at MBT disposal sites indicate that the majority of the landfill gas (in particular at non-covered areas), leaves the landfill body via preferred gas emission zones (hot spots) without significant methane oxidation. Therefore, rather low methane oxidation factors are recommended for open and temporarily covered MBT landfills. Higher methane oxidation rates can be achieved when the soil/recultivation layer is adequately designed and operated. Based on the elaborated default values, the First Order Decay (FOD

  15. Experimental and life cycle assessment analysis of gas emission from mechanicallybiologically pretreated waste in a landfill with energy recovery

    SciTech Connect (OSTI)

    Di Maria, Francesco Sordi, Alessio; Micale, Caterina

    2013-11-15

    Highlights: Bio-methane landfill emissions from different period (0, 4, 8, 16 weeks) MTB waste have been evaluated. Electrical energy recoverable from landfill gas ranges from 11 to about 90 kW h/tonne. Correlation between oxygen uptake, energy recovery and anaerobic gas production shows R{sup 2} ranging from 0.78 to 0.98. LCA demonstrate that global impact related to gaseous emissions achieve minimum for 4 week of MBT. - Abstract: The global gaseous emissions produced by landfilling the Mechanically Sorted Organic Fraction (MSOF) with different weeks of Mechanical Biological Treatment (MBT) was evaluated for an existing waste management system. One MBT facility and a landfill with internal combustion engines fuelled by the landfill gas for electrical energy production operate in the waste management system considered. An experimental apparatus was used to simulate 0, 4, 8 and 16 weeks of aerobic stabilization and the consequent biogas potential (Nl/kg) of a large sample of MSOF withdrawn from the full-scale MBT. Stabilization achieved by the waste was evaluated by dynamic oxygen uptake and fermentation tests. Good correlation coefficients (R{sup 2}), ranging from 0.7668 to 0.9772, were found between oxygen uptake, fermentation and anaerobic test values. On the basis of the results of several anaerobic tests, the methane production rate k (year{sup ?1}) was evaluated. k ranged from 0.436 to 0.308 year{sup ?1} and the bio-methane potential from 37 to 12 N m{sup 3}/tonne, respectively, for the MSOF with 0 and 16 weeks of treatment. Energy recovery from landfill gas ranged from about 11 to 90 kW h per tonne of disposed MSOF depending on the different scenario investigated. Life cycle analysis showed that the scenario with 0 weeks of pre-treatment has the highest weighted global impact even if opposite results were obtained with respect to the single impact criteria. MSOF pre-treatment periods longer than 4 weeks showed rather negligible variation in the global

  16. Influence of mechanical-biological waste pre-treatment methods on the gas formation in landfills

    SciTech Connect (OSTI)

    Bockreis, A. . E-mail: a.bockreis@iwar.tu-darmstadt.de; Steinberg, I.

    2005-07-01

    In order to minimise emissions and environmental impacts, only pre-treated waste should be disposed of. For the last six years, a series of continuous experiments has been conducted at the Institute WAR, TU Darmstadt, in order to determine the emissions from pre-treated waste. Different kinds of pre-treated waste were incubated in several reactors and various data, including production and composition of the gas and the leachate, were collected. In this paper, the interim results of gas production and the gas composition from different types of waste after a running time of six years are presented and discussed.

  17. Radiology utilizing a gas multiwire detector with resolution enhancement

    DOE Patents [OSTI]

    Majewski, Stanislaw; Majewski, Lucasz A.

    1999-09-28

    This invention relates to a process and apparatus for obtaining filmless, radiological, digital images utilizing a gas multiwire detector. Resolution is enhanced through projection geometry. This invention further relates to imaging systems for X-ray examination of patients or objects, and is particularly suited for mammography.

  18. Differences in volatile methyl siloxane (VMS) profiles in biogas from landfills and anaerobic digesters and energetics of VMS transformations

    SciTech Connect (OSTI)

    Tansel, Berrin Surita, Sharon C.

    2014-11-15

    Highlights: • In the digester gas, D4 and D5 comprised the 62% and 27% if siloxanes, respectively. • In landfill gas, the bulk of siloxanes were TMSOH (58%) followed by D4 (17%). • Methane utilization may be a possible mechanism for TMSOH formation in the landfills. • The geometric configurations of D4 and D5 molecules make them very stable. - Abstract: The objectives of this study were to compare the types and levels of volatile methyl siloxanes (VMS) present in biogas generated in the anaerobic digesters and landfills, evaluate the energetics of siloxane transformations under anaerobic conditions, compare the conditions in anaerobic digesters and municipal solid waste (MSW) landfills which result in differences in siloxane compositions. Biogas samples were collected at the South District Wastewater Treatment Plant and South Dade Landfill in Miami, Florida. In the digester gas, D4 and D5 comprised the bulk of total siloxanes (62% and 27%, respectively) whereas in the landfill gas, the bulk of siloxanes were trimethylsilanol (TMSOH) (58%) followed by D4 (17%). Presence of high levels of TMSOH in the landfill gas indicates that methane utilization may be a possible reaction mechanism for TMSOH formation. The free energy change for transformation of D5 and D4 to TMSOH either by hydrogen or methane utilization are thermodynamically favorable. Either hydrogen or methane should be present at relatively high concentrations for TMSOH formation which explains the high levels present in the landfill gas. The high bond energy and bond distance of the Si–O bond, in view of the atomic sizes of Si and O atoms, indicate that Si atoms can provide a barrier, making it difficult to break the Si–O bonds especially for molecules with specific geometric configurations such as D4 and D5 where oxygen atoms are positioned inside the frame formed by the large Si atoms which are surrounded by the methyl groups.

  19. Livingston Parish Landfill Methane Recovery Project (Feasibility Study)

    SciTech Connect (OSTI)

    White, Steven

    2012-11-15

    The Woodside Landfill is owned by Livingston Parish, Louisiana and is operated under contract by Waste Management of Louisiana LLC. This public owner/private operator partnership is commonplace in the solid waste industry today. The landfill has been in operation since approximately 1988 and has a permitted capacity of approximately 41 million cubic yards. Based on an assumed in-place waste density of 0.94 ton per cubic yard, the landfill could have an expected design capacity of 39.3 million tons. The landfill does have an active landfill gas collection and control system (LFGCCS) in place because it meets the minimum thresholds for the New Source Performance Standards (NSPS). The initial LFGCS was installed prior to 2006 and subsequent phases were installed in 2007 and 2010. The Parish received a grant from the United States Department of Energy in 2009 to evaluate the potential for landfill gas recovery and utilization at the Woodside Landfill. This includes a technical and economic feasibility study of a project to install a landfill gas to energy (LFGTE) plant and to compare alternative technologies. The LFGTE plant can take the form of on-site electrical generation, a direct use/medium Btu option, or a high-Btu upgrade technology. The technical evaluation in Section 2 of this report concludes that landfill gas from the Woodside landfill is suitable for recovery and utilization. The financial evaluations in sections 3, 4, and 5 of this report provide financial estimates of the returns for various utilization technologies. The report concludes that the most economically viable project is the Electricity Generation option, subject to the Parish’s ability and willingness to allocate adequate cash for initial capital and/or to obtain debt financing. However, even this option does not present a solid return: by our estimates, there is a 19 year simple payback on the electricity generation option. All of the energy recovery options discussed in this report

  20. Utility flue gas mercury control via sorbent injection

    SciTech Connect (OSTI)

    Chang, R.; Carey, T.; Hargrove, B.

    1996-12-31

    The potential for power plant mercury control under Title III of the 1990 Clean Air Act Amendments generated significant interest in assessing whether cost effective technologies are available for removing the mercury present in fossil-fired power plant flue gas. One promising approach is the direct injection of mercury sorbents such as activated carbon into flue gas. This approach has been shown to be effective for mercury control from municipal waste incinerators. However, tests conducted to date on utility fossil-fired boilers show that it is much more difficult to remove the trace species of mercury present in flue gas. EPRI is conducting research in sorbent mercury control including bench-scale evaluation of mercury sorbent activity and capacity with simulated flue gas, pilot testing under actual flue gas conditions, evaluation of sorbent regeneration and recycle options, and the development of novel sorbents. A theoretical model that predicts maximum mercury removals achievable with sorbent injection under different operating conditions is also being developed. This paper presents initial bench-scale and model results. The results to date show that very fine and large amounts of sorbents are needed for mercury control unless long residence times are available for sorbent-mercury contact. Also, sorbent activity and capacity are highly dependent on flue gas composition, temperature, mercury species, and sorbent properties. 10 refs., 4 figs., 2 tabs.

  1. Venice Park landfill: Working with the community

    SciTech Connect (OSTI)

    McAdams, C.L.

    1993-09-01

    Venice Park landfill was one of the first sites to be permitted under Michigan's proposed Public Act 641. PA 641 essentially changed the rules and regulations for landfills from the simple design of digging a hole and filling it. It also upgraded standards to those that are more sophisticated, including liners, leachate collection systems, and gas extraction systems. In 1992, methane gas from the landfill was collected into wells drilled into the trash varying in depth from 30-50 feet in depth. A vacuum pulls the gas from the trash into the wells, then through a piping system. The landfill uses about 80-100 kilowatts in-house. The remainder of the gas is sold to Consumers Power Co. which uses landfill gas to supply power to homes.

  2. Low-NOx Gas Turbine Injectors Utilizing Hydrogen-Rich Opportunity...

    Energy Savers [EERE]

    Low-NOx Gas Turbine Injectors Utilizing Hydrogen-Rich Opportunity Fuels - Fact Sheet, 2015 Low-NOx Gas Turbine Injectors Utilizing Hydrogen-Rich Opportunity Fuels - Fact Sheet, ...

  3. Alabama Natural Gas % of Total Electric Utility Deliveries (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    Electric Utility Deliveries (Percent) Alabama Natural Gas % of Total Electric Utility Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.17 0.13 0.23 0.23 0.29 0.60 0.53 2000's 0.81 1.29 1.98 1.68 2.14 1.79 2.34 2.57 2.46 3.30 2010's 3.81 4.53 4.40 4.08 4.23 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016

  4. Middlesex Sampling Plant and Middlesex Municipal Landfill, annual site environmental report, Middlesex, New Jersey, calendar year 1987: Formerly Utilized Sites Remedial Action Program (FUSRAP)

    SciTech Connect (OSTI)

    Not Available

    1988-04-01

    The monitoring program at the Middlesex Sampling Plant (MSP) and Middlesex Municipal Landfill (MML) measures radon gas concentrations in air; external gamma radiation levels; and uranium and radium concentrations in surface water, groundwater, and sediment. To verify that the sites are in compliance with the DOE radiation protection standard (100 mrem/yr) and to assess their potential effect on public health, the radiation dose was calculated for the maximally exposed individual. Based on the conservative scenarios described in the report, this individual, at the MSP, would receive an annual external exposure approximately equivalent to 10 percent of the DOE radiation protection standard. By comparison, the incremental dose received from living in a brick house as opposed to a wooden house is about the same. At the MML, the annual external exposure to the maximally exposed individual would be less than 1 percent of the standard. The cumulative dose to the population within an 80-km (50-mi) radius of the sites that would result from radioactive materials present at the MSP and MML would be indistinguishable from the dose that the same population would receive from naturally occurring radioactive sources. Results of the 1987 monitoring show that the MSP and MML are in compliance with the DOE radiation protection standard. 14 refs., 11 figs., 22 tabs.

  5. Methods of natural gas liquefaction and natural gas liquefaction plants utilizing multiple and varying gas streams

    DOE Patents [OSTI]

    Wilding, Bruce M; Turner, Terry D

    2014-12-02

    A method of natural gas liquefaction may include cooling a gaseous NG process stream to form a liquid NG process stream. The method may further include directing the first tail gas stream out of a plant at a first pressure and directing a second tail gas stream out of the plant at a second pressure. An additional method of natural gas liquefaction may include separating CO.sub.2 from a liquid NG process stream and processing the CO.sub.2 to provide a CO.sub.2 product stream. Another method of natural gas liquefaction may include combining a marginal gaseous NG process stream with a secondary substantially pure NG stream to provide an improved gaseous NG process stream. Additionally, a NG liquefaction plant may include a first tail gas outlet, and at least a second tail gas outlet, the at least a second tail gas outlet separate from the first tail gas outlet.

  6. Middlesex Sampling Plant and Middlesex Municipal Landfill. Annual site environmental report, calendar year 1985. Formerly Utilized Sites Remedial Action Program (FUSRAP). [FUSRAP

    SciTech Connect (OSTI)

    Not Available

    1986-08-01

    The monitoring program at the Middlesex Sampling Plant (MSP) and Middlesex Municipal Landfill (MML) measures uranium and radium concentrations in surface water, groundwater, and sediment; radon gas concentrations in air; and external gamma radiation dose rates. Potential radiation doses to the public are also calculated. During 1985, the highest annual average radon levels in air at the MML and MSP were 10% and 17%, respectively, of the Derived Concentration Guides (DCG). The highest annual average gamma dose rate at the MSP was 167 mrem/y; at the MML the highest annual average dose rate was 13 mrem/y. The highest average annual concentrations of uranium in surface water monitored at the MSP and MML were 13% and 1%, respectively, of the DOE DCG. The highest annual average concentrations of /sup 226/Ra in surface water were 3.3 and 0.8%, respectively, of the applicable DOE DCG. The highest annual average uranium concentration in groundwater at the MSP was about 9% of the DCG; the highest /sup 226/Ra concentration was 0.7% of the respective DCG. The corresponding values for the MML were 0.5 and 3.3%. The highest annual average concentrations of uranium and /sup 226/Ra in sediments at the MSP were 7.7 and 3.5 pCi/g, respectively. The highest uranium concentration at the MML was 3.3 pCi/g, while the highest /sup 226/Ra concentration was 0.7 pCi/g. The calculated total radiation dose to the maximally exposed individual at the MSP, considering several pathways, was 10.5 mrem or 11% of the radiation protection standard; at the MML, it was 0.14 mrem or less than 1% of the radiation protection standard.

  7. Technology for the Recovery of Fuel and Adsorbent Carbons from Coal Burning Utility Ash Ponds and Landfills

    SciTech Connect (OSTI)

    J.G. Groppo; T.L. Robl

    2005-09-30

    of mercury from simulated flue gas. A business model was generated to summarize anticipated costs incurred during the first year of operation of a 50 tph feed capacity plant. Using the best available data from a variety of sources, the business model showed that even when using conservative pricing and sales volume, the processing plant would be economically viable in the first year of operation. Not surprisingly, economic success would be sensitive to sales volume and pricing. In order to maximize both of these factors, it is imperative that high quality products be produced.

  8. Austin Utilities (Gas and Electric) - Commercial and Industrial...

    Broader source: Energy.gov (indexed) [DOE]

    commercial location per year, 5,000 per industrial location per year Program Info Sector Name Utility Administrator Austin Utilities Website http:www.austinutilities.compages...

  9. UNFCCC-Consolidated baseline and monitoring methodology for landfill...

    Open Energy Info (EERE)

    Consolidated baseline and monitoring methodology for landfill gas project activities Jump to: navigation, search Tool Summary LAUNCH TOOL Name: UNFCCC-Consolidated baseline and...

  10. Natural Gas Utilities Options Analysis for the Hydrogen Economy

    Broader source: Energy.gov [DOE]

    Objectives: Identify business opportunities and valuation of strategic options for the natural gas industry as hydrogen energy systems evolve.

  11. City of Gas City, Indiana (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    861 Data Utility Id 6993 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Distribution Yes This article is a stub. You can help OpenEI by...

  12. Economics of Alaska North Slope gas utilization options

    SciTech Connect (OSTI)

    Thomas, C.P.; Doughty, T.C.; Hackworth, J.H.; North, W.B.; Robertson, E.P.

    1996-08-01

    The recoverable natural gas available for sale in the developed and known undeveloped fields on the Alaskan North Slope (ANS) total about 26 trillion cubic feet (TCF), including 22 TCF in the Prudhoe Bay Unit (PBU) and 3 TCF in the undeveloped Point Thomson Unit (PTU). No significant commercial use has been made of this large natural gas resource because there are no facilities in place to transport this gas to current markets. To date the economics have not been favorable to support development of a gas transportation system. However, with the declining trend in ANS oil production, interest in development of this huge gas resource is rising, making it important for the U.S. Department of Energy, industry, and the State of Alaska to evaluate and assess the options for development of this vast gas resource. The purpose of this study was to assess whether gas-to-liquids (GTL) conversion technology would be an economic alternative for the development and sale of the large, remote, and currently unmarketable ANS natural gas resource, and to compare the long term economic impact of a GTL conversion option to that of the more frequently discussed natural gas pipeline/liquefied natural gas (LNG) option. The major components of the study are: an assessment of the ANS oil and gas resources; an analysis of conversion and transportation options; a review of natural gas, LNG, and selected oil product markets; and an economic analysis of the LNG and GTL gas sales options based on publicly available input needed for assumptions of the economic variables. Uncertainties in assumptions are evaluated by determining the sensitivity of project economics to changes in baseline economic variables.

  13. Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project October 31, 2013 - 4:58pm Addthis As part of the Obama Administration's all-of-the-above strategy to deploy every available source of American energy, the Energy Department today announced a new concentrating solar power (CSP) project led by the Sacramento Municipal Utility District (SMUD). The project will integrate

  14. DOE Report to Congress„Energy Efficient Electric and Natural Gas Utilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    REGIONAL POLICIES THAT PROMOTE ENERGY EFFICIENCY PROGRAMS CARRIED OUT BY ELECTRIC AND GAS UTILITIES A REPORT TO THE UNITED STATES CONGRESS PURSUANT TO SECTION 139 OF THE ENERGY POLICY ACT OF 2005 MARCH 2007 U.S. DEPARTMENT OF ENERGY Sec. 139. Energy Efficient Electric and Natural Gas Utilities Study. a) IN GENERAL.-Not later than 1 year after the date of enactment of this Act, the Secretary, in consultation with the National Association of Regulatory Utility Commis- sioners and the National

  15. Sustainable Energy Utility (Electric & Gas)- Business Energy Rebate Program

    Broader source: Energy.gov [DOE]

    The District of Columbia's Sustainable Energy Utility (DCSEU) administers the Business Energy Rebate Program. Rebates are available to businesses and institutions for the installation of energy...

  16. LANDFILL GAS CONVERSION TO LNG AND LCO{sub 2}. PHASE 1, FINAL REPORT FOR THE PERIOD MARCH 1998-FEBRUARY 1999

    SciTech Connect (OSTI)

    COOK,W.J.; NEYMAN,M.; SIWAJEK,L.A.; BROWN,W.R.; VAN HAUWAERT,P.M.; CURREN,E.D.

    1998-02-25

    Process designs and economics were developed to produce LNG and liquid carbon dioxide (CO{sub 2}) from landfill gas (LFG) using the Acrion CO{sub 2} wash process. The patented Acrion CO{sub 2} wash process uses liquid CO{sub 2} to absorb contaminants from the LFG. The process steps are compression, drying, CO{sub 2} wash contaminant removal and CO{sub 2} recovery, residual CO{sub 2} removal and methane liquefaction. Three flowsheets were developed using different residual CO{sub 2} removal schemes. These included physical solvent absorption (methanol), membranes and molecular sieves. The capital and operating costs of the flowsheets were very similar. The LNG production cost was around ten cents per gallon. In parallel with process flowsheet development, the business aspects of an eventual commercial project have been explored. The process was found to have significant potential commercial application. The business plan effort investigated the economics of LNG transportation, fueling, vehicle conversion, and markets. The commercial value of liquid CO{sub 2} was also investigated. This Phase 1 work, March 1998 through February 1999, was funded under Brookhaven National laboratory contract 725089 under the research program entitled ``Liquefied Natural Gas as a Heavy Vehicle Fuel.'' The Phase 2 effort will develop flowsheets for the following: (1) CO{sub 2} and pipeline gas production, with the pipeline methane being liquefied at a peak shaving site, (2) sewage digester gas as an alternate feedstock to LFG and (3) the use of mixed refrigerants for process cooling. Phase 2 will also study the modification of Acrion's process demonstration unit for the production of LNG and a market site for LNG production.

  17. Natural Gas Utilities Options Analysis for the Hydrogen Economy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    30 August 2005 Augusta, GA Mark E. Richards Manager, Advanced Energy Systems 2 Team and Collaborators > Team - Gas Technology Institute - RAND Corporation - Ares Corporation > Collaborators - Keyspan - NiSource - Southern California Gas 3 Funding and Duration > Funding: $300,000 - Carve-out of NiSource earmark > Duration - Original plan was nine months - Current expectation is approximately 12-14 months, completion in fourth quarter 2005 4 Objectives > Identify business

  18. Montana-Dakota Utilities (Gas)- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

     MDU issues rebate payments in the form of a check, not a utility bill credit. Application forms must be fully completed with equipment information such as invoice or receipt, brand, model number,...

  19. Avista Utilities (Gas)- Oregon Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Avista Utilities also provides a free in-home inspection to evaluate the cost and benefits associated with weatherizing your home. This free analysis is available to qualified Oregon residential...

  20. Electric and gas utility marketing of residential energy conservation case studies

    SciTech Connect (OSTI)

    1980-05-01

    The objective of this research was to obtain information about utility conservation marketing techniques from companies actively engaged in performing residential conservation services. Many utilities currently are offering comprehensive services (audits, listing of contractors and lenders, post-installation inspection, advertising, and performing consumer research). Activities are reported for the following utilities: Niagara Mohawk Power Corporation; Tampa Electric Company; Memphis Light, Gas, and Water Division; Northern States Power-Wisconsin; Public Service Company of Colorado; Arizona Public Service Company; Pacific Gas and Electric Company; Sacramento Municipal Utility District; and Pacific Power and Light Company.

  1. Natural Gas Utilities Options Analysis for the Hydrogen Economy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 January 2005 Oak Ridge National Laboratory Oak Ridge, TN Mark E. Richards Manager, Advanced Energy Systems 2 Gas Technology Institute > GTI is an independent non-profit R&D organization > GTI focuses on energy & environmental issues - Specialize on natural gas & hydrogen > Our main facility is an 18- acre campus near Chicago - Over 350,000 ft 2 GTI's Main Research Facility GTI's Energy & Environmental Technology Center 3 GTI RD&D Organization Robert Stokes

  2. Nonthermal plasma processor utilizing additive-gas injection and/or gas extraction

    DOE Patents [OSTI]

    Rosocha, Louis A.

    2006-06-20

    A device for processing gases includes a cylindrical housing in which an electrically grounded, metal injection/extraction gas supply tube is disposed. A dielectric tube surrounds the injection/extraction gas supply tube to establish a gas modification passage therearound. Additionally, a metal high voltage electrode circumscribes the dielectric tube. The high voltage electrode is energizable to create nonthermal electrical microdischarges between the high voltage electrode and the injection/extraction gas supply tube across the dielectric tube within the gas modification passage. An injection/extraction gas and a process gas flow through the nonthermal electrical microdischarges within the gas modification passage and a modified process gas results. Using the device contaminants that are entrained in the process gas can be destroyed to yield a cleaner, modified process gas.

  3. Lantana landfill: A history of environmental management 1965--96

    SciTech Connect (OSTI)

    Statom, R.A.

    1997-08-01

    The Lantana Sanitary Landfill (LSL) is located in central Palm Beach County, Florida. The history of this landfill is a case study of the changes in environmental law, demography, solid waste management, hydrogeology, and public opinion in south Florida in the last 30 years. In 1983 Palm Beach County transferred ownership of the LSL to the Palm Beach County Solid Waste Authority (SWA). Environmental regulation enacted by Florida in the mid 1980`s resulted in negotiations to close the LSL. Closure was completed in 1988 utilizing a synthetic top liner, a landfill gas extraction/flare system, and a stormwater management system. In 1990 a groundwater mitigation system was installed to remediate the eastern plume. Closure of the LSL, extension of municipal water to local residents, and extensive public education by the SWA all served to answer most of the complaints of the local residents. In 1996 the LSL fell under a new series of air regulations and was required to apply for a Title V permit.

  4. Opportunities for the utilization of natural gas in the developing countries

    SciTech Connect (OSTI)

    Carameros, G.D. Jr.

    1981-01-01

    A review of natural gas resources and utilization in the less-developed countries (LDCs) demonstrates that gas can be a very attractive option in meeting a nation's energy needs. Furthermore, some LDCs have sufficient reserves to undertake an export project as a new source of income. The obstacles hindering gas programs in LDCs involve market development, high-risk investment requirements, and manpower resources.

  5. Utilization of low-quality natural gas: A current assessment. Final report

    SciTech Connect (OSTI)

    Acheson, W.P.; Hackworth, J.H.; Kasper, S.; McIlvried, H.G.

    1993-01-01

    The objective of this report is to evaluate the low quality natural gas (LQNG) resource base, current utilization of LQNG, and environmental issues relative to its use, to review processes for upgrading LQNG to pipeline quality, and to make recommendations of research needs to improve the potential for LQNG utilization. LQNG is gas from any reservoir which contains amounts of nonhydrocarbon gases sufficient to lower the heating value or other properties of the gas below commercial, pipeline standards. For the purposes of this study, LQNG is defined as natural gas that contains more than 2% carbon dioxide, more than 4% nitrogen, or more than 4% combined CO{sub 2} plus N{sub 2}. The other contaminant of concern is hydrogen sulfide. A minor contaminant in some natural gases is helium, but this inert gas usually presents no problems.

  6. Property-rights application in utilization of natural resources: the case of Iran's natural gas

    SciTech Connect (OSTI)

    Abghari, M.H.

    1982-01-01

    The concessionaries produce more oil in Iran because of fear of nationalization, lower oil production costs in the Middle East, and more investment opportunities around the globe. This higher discount rate means more oil production and also, more natural gas, a joint product, is produced. Produced natural gas could have been used in the Iranian market, or exported. Low oil prices and high transportation costs of natural gas resulted in the low well-head value of natural gas. The fear of nationalization kept concessionaires from utilizing natural gas in Iran's domestic market. The high transportation costs of natural gas was a negative factor in export utilization. Also, if natural gas, which can be substituted for oil in many uses, were to be utilized, concessionaires would have had to produce less oil. Because oil had a well-established market, it would have been contrary to their interest to leave a lot of oil underground while their concessions ran out. Consequently, they chose to take the oil and flare natural gas. The Iranian government must take responsibility in this matter also. The country's rulers were not concerned with maximizing the country's wealth, but maximizing the security of their regimes, and their personal wealth and pleasure.

  7. Aerobic landfill bioreactor

    DOE Patents [OSTI]

    Hudgins, Mark P; Bessette, Bernard J; March, John; McComb, Scott T.

    2000-01-01

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  8. Aerobic landfill bioreactor

    DOE Patents [OSTI]

    Hudgins, Mark P; Bessette, Bernard J; March, John C; McComb, Scott T.

    2002-01-01

    The present invention includes a system of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  9. Public Utility Regulatory Policies Act of 1978: Natural Gas Rate Design Study

    SciTech Connect (OSTI)

    1980-05-01

    First, the comments on May 3, 1979 Notice of Inquiry of DOE relating to the Gas Utility Rate Design Study Required by Section 306 of PURPA are presented. Then, comments on the following are included: (1) ICF Gas Utility Model, Gas Utility Model Data Outputs, Scenario Design; (2) Interim Model Development Report with Example Case Illustrations; (3) Interim Report on Simulation of Seven Rate Forms; (4) Methodology for Assessing the Impacts of Alternative Rate Designs on Industrial Energy Use; (5) Simulation of Marginal-Cost-Based Natural Gas Rates; and (6) Preliminary Discussion Draft of the Gas Rate Design Study. Among the most frequent comments expressed were the following: (a) the public should be given the opportunity to review the final report prior to its submission to Congress; (b) results based on a single computer model of only four hypothetical utility situations cannot be used for policy-making purposes for individual companies or the entire gas industry; (c) there has been an unobjective treatment of traditional and economic cost rate structures; the practical difficulties and potential detrimental consequences of economic cost rates are not fully disclosed; and (d) it is erroneous to assume that end users, particularly residential customers, are influenced by price signals in the rate structure, as opposed to the total bill.

  10. Montana-Dakota Utilities (Gas)- Commercial Natural Gas Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Custom rebates are also available for natural gas customers who pursue energy efficiency upgrades in eligible facilities. Custom incentives vary depending on equipment cost and expected energy sa...

  11. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL

    SciTech Connect (OSTI)

    Don Augenstein; Ramin Yazdani; Rick Moore; Michelle Byars; Jeff Kieffer; Professor Morton Barlaz; Rinav Mehta

    2000-02-26

    Controlled landfilling is an approach to manage solid waste landfills, so as to rapidly complete methane generation, while maximizing gas capture and minimizing the usual emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated to more rapid and earlier completion to full potential by improving conditions (principally moisture, but also temperature) to optimize biological processes occurring within the landfill. Gas is contained through use of surface membrane cover. Gas is captured via porous layers, under the cover, operated at slight vacuum. A field demonstration project has been ongoing under NETL sponsorship for the past several years near Davis, CA. Results have been extremely encouraging. Two major benefits of the technology are reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times, more predictably, than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role both in reduction of US greenhouse gas emissions and in US renewable energy. The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional

  12. C L E A N C I T I E S Low-NOx Gas Turbine Injectors Utilizing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NOx Gas Turbine Injectors Utilizing Hydrogen-Rich Opportunity Fuels ADVANCED MANUFACTURING OFFICE Increasing the Fuel Flexibility of Industrial Gas Turbine Combustion Systems This project modifed a gas turbine combustion system to operate on hydrogen-rich opportunity fuels. Increasing the usability of opportunity fuels will avoid greenhouse gas emissions from the combustion of natural gas and increase the diversity of fuel sources for U.S. industry. Introduction Gas turbines are commonly used in

  13. Rate impacts and key design elements of gas and electric utility decoupling: a comprehensive review

    SciTech Connect (OSTI)

    Lesh, Pamela G.

    2009-10-15

    Opponents of decoupling worry that customers will experience frequent and significant rate increases as a result of its adoption, but a review of 28 natural gas and 17 electric utilities suggests that decoupling adjustments are both refunds to customers as well as charges and tend to be small. (author)

  14. Utilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 July 2016 ______________________________________________________________________________ 1 Utilities [References: FAR 41, DEAR 941 and 970.4102] 1.0 Summary of Latest Changes This update includes administrative changes. 2.0 Discussion This chapter supplements other more primary acquisition regulations and policies contained in the references above and should be considered in the context of those references. 2.1 Overview. This section discusses the acquisition and sales of utility services by

  15. Reducing GHG emissions by co-utilization of coal with natural gas or biomass

    SciTech Connect (OSTI)

    Smith, I.M.

    2004-07-01

    Energy reserves price and security of supply issues are discussed in the context of the prospects for coal and policies to reduce greenhouse gas (GHG) emissions. Coal is projected to remain a major source of energy, with most of the demand growth in developing countries. Currently available power-generating technologies, deploying coal with natural gas or biomass, are examined. Examples of successful, partial substitution of coal by other fuels in power stations are highlighted, including the GHG emissions reductions achieved as well as the costs where available. Among various options, hybrid gasification and parallel cofiring of coal with biomass and natural gas appear to have the greatest potential to reduce GHG emissions. Much may also be achieved by cofiring, reburning, and repowering with gas turbines. The best method differs between different power systems. Co-utilization of biomass with coal is a least-cost option to reduce GHG emissions where the fuel prices are comparable, usually due to subsidies or taxes. The role of biomass is likely to increase due to greater use of subsidies, carbon taxes, and emissions trading within the context of the Kyoto Protocol. This should provide opportunities for clean coal technology transfer and diffusion, including biomass co-utilization. 32 refs., 1 fig., 3 tabs.

  16. Gas Recovery Systems | Open Energy Information

    Open Energy Info (EERE)

    Systems Jump to: navigation, search Name: Gas Recovery Systems Place: California Zip: 94550 Product: Turnkey landfill gas (LFG) energy extraction systems. References: Gas Recovery...

  17. DFW Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    DFW Gas Recovery Biomass Facility Jump to: navigation, search Name DFW Gas Recovery Biomass Facility Facility DFW Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  18. Lake Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Gas Recovery Biomass Facility Jump to: navigation, search Name Lake Gas Recovery Biomass Facility Facility Lake Gas Recovery Sector Biomass Facility Type Landfill Gas Location Cook...

  19. CID Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    CID Gas Recovery Biomass Facility Jump to: navigation, search Name CID Gas Recovery Biomass Facility Facility CID Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  20. CSL Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    CSL Gas Recovery Biomass Facility Jump to: navigation, search Name CSL Gas Recovery Biomass Facility Facility CSL Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  1. BJ Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    BJ Gas Recovery Biomass Facility Jump to: navigation, search Name BJ Gas Recovery Biomass Facility Facility BJ Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  2. CO2 utilization and storage in shale gas reservoirs: Experimental results and economic impacts

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schaef, Herbert T.; Davidson, Casie L.; Owen, Antionette Toni; Miller, Quin R. S.; Loring, John S.; Thompson, Christopher J.; Bacon, Diana H.; Glezakou, Vassiliki Alexandra; McGrail, B. Peter

    2014-12-31

    Natural gas is considered a cleaner and lower-emission fuel than coal, and its high abundance from advanced drilling techniques has positioned natural gas as a major alternative energy source for the U.S. However, each ton of CO2 emitted from any type of fossil fuel combustion will continue to increase global atmospheric concentrations. One unique approach to reducing anthropogenic CO2 emissions involves coupling CO2 based enhanced gas recovery (EGR) operations in depleted shale gas reservoirs with long-term CO2 storage operations. In this paper, we report unique findings about the interactions between important shale minerals and sorbing gases (CH4 and CO2) andmore » associated economic consequences. Where enhanced condensation of CO2 followed by desorption on clay surface is observed under supercritical conditions, a linear sorption profile emerges for CH4. Volumetric changes to montmorillonites occur during exposure to CO2. Theory-based simulations identify interactions with interlayer cations as energetically favorable for CO2 intercalation. Thus, experimental evidence suggests CH4 does not occupy the interlayer and has only the propensity for surface adsorption. Mixed CH4:CO2 gas systems, where CH4 concentrations prevail, indicate preferential CO2 sorption as determined by in situ infrared spectroscopy and X-ray diffraction techniques. Collectively, these laboratory studies combined with a cost-based economic analysis provide a basis for identifying favorable CO2-EOR opportunities in previously fractured shale gas reservoirs approaching final stages of primary gas production. Moreover, utilization of site-specific laboratory measurements in reservoir simulators provides insight into optimum injection strategies for maximizing CH4/CO2 exchange rates to obtain peak natural gas production.« less

  3. Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines

    SciTech Connect (OSTI)

    Venkatesan, Krishna

    2011-11-30

    The purpose of this program was to develop low-emissions, efficient fuel-flexible combustion technology which enables operation of a given gas turbine on a wider range of opportunity fuels that lie outside of current natural gas-centered fuel specifications. The program encompasses a selection of important, representative fuels of opportunity for gas turbines with widely varying fundamental properties of combustion. The research program covers conceptual and detailed combustor design, fabrication, and testing of retrofitable and/or novel fuel-flexible gas turbine combustor hardware, specifically advanced fuel nozzle technology, at full-scale gas turbine combustor conditions. This project was performed over the period of October 2008 through September 2011 under Cooperative Agreement DE-FC26-08NT05868 for the U.S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled "Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines". The overall objective of this program was met with great success. GE was able to successfully demonstrate the operability of two fuel-flexible combustion nozzles over a wide range of opportunity fuels at heavy-duty gas turbine conditions while meeting emissions goals. The GE MS6000B ("6B") gas turbine engine was chosen as the target platform for new fuel-flexible premixer development. Comprehensive conceptual design and analysis of new fuel-flexible premixing nozzles were undertaken. Gas turbine cycle models and detailed flow network models of the combustor provide the premixer conditions (temperature, pressure, pressure drops, velocities, and air flow splits) and illustrate the impact of widely varying fuel flow rates on the combustor. Detailed chemical kinetic mechanisms were employed to compare some fundamental combustion characteristics of the target fuels, including flame speeds and lean blow-out behavior. Perfectly premixed combustion experiments were conducted to

  4. Sandia National Laboratories: No More Green Waste in the Landfill

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    No More Green Waste in the Landfill June 09, 2011 Dump Truck Image On the heels of Sandia National Laboratories' successful food waste composting program, Pollution Prevention (P2) has teamed with the Facilities' Grounds and Roads team and the Solid Waste Transfer Facility to implement green waste composting. Previously, branches and logs were being diverted and mulched by Kirtland Air Force Base at their Construction & Demolition Landfill that is on base and utilized under contract by

  5. Resource planning for gas utilities: Using a model to analyze pivotal issues

    SciTech Connect (OSTI)

    Busch, J.F.; Comnes, G.A.

    1995-11-01

    With the advent of wellhead price decontrols that began in the late 1970s and the development of open access pipelines in the 1980s and 90s, gas local distribution companies (LDCs) now have increased responsibility for their gas supplies and face an increasingly complex array of supply and capacity choices. Heretofore this responsibility had been share with the interstate pipelines that provide bundled firm gas supplies. Moreover, gas supply an deliverability (capacity) options have multiplied as the pipeline network becomes increasing interconnected and as new storage projects are developed. There is now a fully-functioning financial market for commodity price hedging instruments and, on interstate Pipelines, secondary market (called capacity release) now exists. As a result of these changes in the natural gas industry, interest in resource planning and computer modeling tools for LDCs is increasing. Although in some ways the planning time horizon has become shorter for the gas LDC, the responsibility conferred to the LDC and complexity of the planning problem has increased. We examine current gas resource planning issues in the wake of the Federal Energy Regulatory Commission`s (FERC) Order 636. Our goal is twofold: (1) to illustrate the types of resource planning methods and models used in the industry and (2) to illustrate some of the key tradeoffs among types of resources, reliability, and system costs. To assist us, we utilize a commercially-available dispatch and resource planning model and examine four types of resource planning problems: the evaluation of new storage resources, the evaluation of buyback contracts, the computation of avoided costs, and the optimal tradeoff between reliability and system costs. To make the illustration of methods meaningful yet tractable, we developed a prototype LDC and used it for the majority of our analysis.

  6. Utility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Utah Natural Gas Gross Withdrawals (Million Cubic Feet) Utah Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 29,169 25,803 28,696 27,430 26,066 25,904 26,327 27,840 23,393 28,671 28,721 25,640 1992 27,197 25,078 25,991 23,358 25,028 25,354 26,008 25,896 26,956 27,416 27,403 28,590 1993 29,036 27,418 31,267 29,882 27,942 28,358 27,521 25,763 24,670 27,934 27,324 29,068 1994 28,316 28,226 30,799 29,630 29,997 28,579 29,370 30,013 28,336

  7. Illinois Turning Landfill Trash into Future Cash

    Office of Energy Efficiency and Renewable Energy (EERE)

    Will County, Illinois officials yesterday formally broke ground on a new $7 million project (that includes $1 million of Energy Efficiency Conservation Block Grant funds) to turn methane gas from the Prairie View Landfill into electricity in a partnership with Waste Management. Will County will receive revenue from the sale of the gas created from decomposing garbage which will be harnessed and converted to generate 4.8 megawatts of green electrical power and used to power up to 8,000 homes. The future revenue generated from the sale of the gas and the sale of the electricity could reach $1 million annually.

  8. Phytoremediation of landfill leachate

    SciTech Connect (OSTI)

    Jones, D.L. . E-mail: d.jones@bangor.ac.uk; Williamson, K.L.; Owen, A.G.

    2006-07-01

    Leachate emissions from landfill sites are of concern, primarily due to their toxic impact when released unchecked into the environment, and the potential for landfill sites to generate leachate for many hundreds of years following closure. Consequently, economically and environmentally sustainable disposal options are a priority in waste management. One potential option is the use of soil-plant based remediation schemes. In many cases, using either trees (including short rotation coppice) or grassland, phytoremediation of leachate has been successful. However, there are a significant number of examples where phytoremediation has failed. Typically, this failure can be ascribed to excessive leachate application and poor management due to a fundamental lack of understanding of the plant-soil system. On balance, with careful management, phytoremediation can be viewed as a sustainable, cost effective and environmentally sound option which is capable of treating 250 m{sup 3} ha{sup -1} yr{sup -1}. However, these schemes have a requirement for large land areas and must be capable of responding to changes in leachate quality and quantity, problems of scheme establishment and maintenance, continual environmental monitoring and seasonal patterns of plant growth. Although the fundamental underpinning science is well understood, further work is required to create long-term predictive remediation models, full environmental impact assessments, a complete life-cycle analysis and economic analyses for a wide range of landfill scenarios.

  9. Altamont Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    search Name Altamont Gas Recovery Biomass Facility Facility Altamont Gas Recovery Sector Biomass Facility Type Landfill Gas Location Alameda County, California Coordinates...

  10. Advanced Acid Gas Separation Technology for the Utilization of Low Rank Coals

    SciTech Connect (OSTI)

    Kloosterman, Jeff

    2012-12-31

    Air Products has developed a potentially ground-breaking technology – Sour Pressure Swing Adsorption (PSA) – to replace the solvent-based acid gas removal (AGR) systems currently employed to separate sulfur containing species, along with CO{sub 2} and other impurities, from gasifier syngas streams. The Sour PSA technology is based on adsorption processes that utilize pressure swing or temperature swing regeneration methods. Sour PSA technology has already been shown with higher rank coals to provide a significant reduction in the cost of CO{sub 2} capture for power generation, which should translate to a reduction in cost of electricity (COE), compared to baseline CO{sub 2} capture plant design. The objective of this project is to test the performance and capability of the adsorbents in handling tar and other impurities using a gaseous mixture generated from the gasification of lower rank, lignite coal. The results of this testing are used to generate a high-level pilot process design, and to prepare a techno-economic assessment evaluating the applicability of the technology to plants utilizing these coals.

  11. Waste utilization as an energy source: Municipal wastes. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    The bibliography contains citations concerning the utilization of municipal wastes as an energy source. Articles discuss energy derived from incineration/combustion, refuse-derived fuels, co-firing municipal waste and standard fuels, landfill gas production, sewage combustion, and other waste-to-energy technologies. Citations address economics and efficiencies of various schemes to utilize municipal waste products as energy sources. (Contains a minimum of 130 citations and includes a subject term index and title list.)

  12. Decomposition of forest products buried in landfills

    SciTech Connect (OSTI)

    Wang, Xiaoming; Padgett, Jennifer M.; Powell, John S.; Barlaz, Morton A.

    2013-11-15

    Highlights: • This study tracked chemical changes of wood and paper in landfills. • A decomposition index was developed to quantify carbohydrate biodegradation. • Newsprint biodegradation as measured here is greater than previous reports. • The field results correlate well with previous laboratory measurements. - Abstract: The objective of this study was to investigate the decomposition of selected wood and paper products in landfills. The decomposition of these products under anaerobic landfill conditions results in the generation of biogenic carbon dioxide and methane, while the un-decomposed portion represents a biogenic carbon sink. Information on the decomposition of these municipal waste components is used to estimate national methane emissions inventories, for attribution of carbon storage credits, and to assess the life-cycle greenhouse gas impacts of wood and paper products. Hardwood (HW), softwood (SW), plywood (PW), oriented strand board (OSB), particleboard (PB), medium-density fiberboard (MDF), newsprint (NP), corrugated container (CC) and copy paper (CP) were buried in landfills operated with leachate recirculation, and were excavated after approximately 1.5 and 2.5 yr. Samples were analyzed for cellulose (C), hemicellulose (H), lignin (L), volatile solids (VS), and organic carbon (OC). A holocellulose decomposition index (HOD) and carbon storage factor (CSF) were calculated to evaluate the extent of solids decomposition and carbon storage. Samples of OSB made from HW exhibited cellulose plus hemicellulose (C + H) loss of up to 38%, while loss for the other wood types was 0–10% in most samples. The C + H loss was up to 81%, 95% and 96% for NP, CP and CC, respectively. The CSFs for wood and paper samples ranged from 0.34 to 0.47 and 0.02 to 0.27 g OC g{sup −1} dry material, respectively. These results, in general, correlated well with an earlier laboratory-scale study, though NP and CC decomposition measured in this study were higher than

  13. Opportunities to more fully utilize safeguards information reported to the IAEA at Gas Centrifuge Enrichment Plants

    SciTech Connect (OSTI)

    Garner, James R; Whitaker, J Michael

    2015-01-01

    In an effort to increase transparency and to strengthen IAEA safeguards, more countries are adopting practices that provide the IAEA with more timely, safeguards-relevant information to confirm nuclear operations are as declared. At Gas Centrifuge Enrichment Plants (GCEPs) potential examples include installing unattended IAEA instruments that transmit selected information back to Vienna, instruments that collect and store measurement information on-site, and daily facility operator submissions of material receipts, shipments, or utilization of key operational systems (e.g., UF6 feed stations) to on-site mail boxes. Recently the IAEA has implemented the use of on-site mailbox systems supplemented with short notice or unannounced inspections to maintain effectiveness without significantly increasing the number of inspection days. While these measures significantly improves the IAEA’s effectiveness, we have identified several opportunities for how the use of this information could be improved and how some additional information would further improve safeguards. This paper presents concepts for how the safeguards information currently collected at GCEPs could be more effectively utilized through enhancing the way that raw data is displayed visually so that it is more intuitive to the inspector and provides for more effective inspection planning and execution, comparing information with previous IAEA inspection activities (lists of previous verified inventory), through comparing data with operator supplied data when inspectors arrive (notional inventory change reports), and through evaluating the data over time to provide even greater confidence in the data and operations as declared in between inspections. This paper will also discuss several potential improvements to the submissions themselves, such as including occupancy information about product and tails stations and including weight information for each station.

  14. LASO Airport Landfill | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LASO Airport Landfill LASO Airport Landfill The Los Alamos Airport Landfill consists of two inactive solid waste disposal sites [the airport landfill, SWMU 73-001(a) and the debris disposal area (DDA), SWMU 73-001(d)] are located at the Los Alamos County Airport. In late 2006 and early 2007, the Final Remedy landfill cover system was installed at the airport landfill. The Final Remedy design and completion activities for the airport landfill and the DDA are provided in the Remedy Completion

  15. ITP Industrial Distributed Energy: CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Landfills and Wastewater Treatment Plants: Market Opportunities November 7, 2007 Denver, Colorado Paul Lemar Jr., President pll@rdcnet.com www.rdcnet.com www.distributed-generation.com CHP and Bioenergy for Landfills and Wastewater Treatment Plants November 7, 2007 The Opportunity for Alternative CHP Fuels z High natural gas prices have decreased spark spreads and reduced CHP market potential z Increasing natural gas supply or reducing demand substantially is unlikely z Renewable portfolio

  16. Evaluation of methane emissions from Palermo municipal landfill: Comparison between field measurements and models

    SciTech Connect (OSTI)

    Di Bella, Gaetano; Di Trapani, Daniele; Viviani, Gaspare

    2011-08-15

    Methane (CH{sub 4}) diffuse emissions from Municipal Solid Waste (MSW) landfills represent one of the most important anthropogenic sources of greenhouse gas. CH{sub 4} is produced by anaerobic biodegradation of organic matter in landfilled MSW and constitutes a major component of landfill gas (LFG). Gas recovery is a suitable method to effectively control CH{sub 4} emissions from landfill sites and the quantification of CH{sub 4} emissions represents a good tool to evaluate the effectiveness of a gas recovery system in reducing LFG emissions. In particular, LFG emissions can indirectly be evaluated from mass balance equations between LFG production, recovery and oxidation in the landfill, as well as by a direct approach based on LFG emission measurements from the landfill surface. However, up to now few direct measurements of landfill CH{sub 4} diffuse emissions have been reported in the technical literature. In the present study, both modeling and direct emission measuring methodologies have been applied to the case study of Bellolampo landfill located in Palermo, Italy. The main aim of the present study was to evaluate CH{sub 4} diffuse emissions, based on direct measurements carried out with the flux accumulation chamber (static, non-stationary) method, as well as to obtain the CH{sub 4} contoured flux map of the landfill. Such emissions were compared with the estimate achieved by means of CH{sub 4} mass balance equations. The results showed that the emissions obtained by applying the flux chamber method are in good agreement with the ones derived by the application of the mass balance equation, and that the evaluated contoured flux maps represent a reliable tool to locate areas with abnormal emissions in order to optimize the gas recovery system efficiency.

  17. Landfilling ash/sludge mixtures

    SciTech Connect (OSTI)

    Benoit, J.; Eighmy, T.T.; Crannell, B.S.

    1999-10-01

    The geotechnical properties of a mixture of municipal solid waste incinerator bottom ash and municipal wastewater treatment plant sludge was investigated for a proposed ash/sludge secure landfill. The components as well as mixtures ranging from 10:1 to 5:1 (ash:sludge, by volume) were evaluated, where appropriate, for a number of geotechnical index and mechanical properties including particle size, water content, specific gravity, density-moisture relationships, shear strength, and compressibility. The results from a compactibility study and stability analysis of the proposed landfill were used to help approve a landfill codisposal concept; a full-scale facility was constructed and is currently operating successfully.

  18. EA-1707: Closure of Nonradioactive Dangerous Waste Landfill and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    07: Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste Landfill, Hanford Site, Richland, Washington EA-1707: Closure of Nonradioactive Dangerous Waste Landfill and...

  19. Miramar Landfill Metro Biosolids Center Biomass Facility | Open...

    Open Energy Info (EERE)

    Miramar Landfill Metro Biosolids Center Biomass Facility Jump to: navigation, search Name Miramar Landfill Metro Biosolids Center Biomass Facility Facility Miramar Landfill Metro...

  20. Blackburn Landfill Co-Generation Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Blackburn Landfill Co-Generation Biomass Facility Jump to: navigation, search Name Blackburn Landfill Co-Generation Biomass Facility Facility Blackburn Landfill Co-Generation...

  1. EA-1997: Construction Landfill Expansion, Pantex Plant, Amarillo...

    Office of Environmental Management (EM)

    7: Construction Landfill Expansion, Pantex Plant, Amarillo, Texas EA-1997: Construction Landfill Expansion, Pantex Plant, Amarillo, Texas SUMMARY Construction Landfill Expansion,...

  2. Byxbee Park Sanitary Landfill Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Byxbee Park Sanitary Landfill Biomass Facility Jump to: navigation, search Name Byxbee Park Sanitary Landfill Biomass Facility Facility Byxbee Park Sanitary Landfill Sector Biomass...

  3. Prima Desheha Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Prima Desheha Landfill Biomass Facility Jump to: navigation, search Name Prima Desheha Landfill Biomass Facility Facility Prima Desheha Landfill Sector Biomass Facility Type...

  4. Low NO{sub x} turbine power generation utilizing low Btu GOB gas. Final report, June--August 1995

    SciTech Connect (OSTI)

    Ortiz, I.; Anthony, R.V.; Gabrielson, J.; Glickert, R.

    1995-08-01

    Methane, a potent greenhouse gas, is second only to carbon dioxide as a contributor to potential global warming. Methane liberated by coal mines represents one of the most promising under exploited areas for profitably reducing these methane emissions. Furthermore, there is a need for apparatus and processes that reduce the nitrogen oxide (NO{sub x}) emissions from gas turbines in power generation. Consequently, this project aims to demonstrate a technology which utilizes low grade fuel (CMM) in a combustion air stream to reduce NO{sub x} emissions in the operation of a gas turbine. This technology is superior to other existing technologies because it can directly use the varying methane content gases from various streams of the mining operation. The simplicity of the process makes it useful for both new gas turbines and retrofitting existing gas turbines. This report evaluates the feasibility of using gob gas from the 11,000 acre abandoned Gateway Mine near Waynesburg, Pennsylvania as a fuel source for power generation applying low NO{sub x} gas turbine technology at a site which is currently capable of producing low grade GOB gas ({approx_equal} 600 BTU) from abandoned GOB areas.

  5. Risk assessment of landfill disposal sites - State of the art

    SciTech Connect (OSTI)

    Butt, Talib E. Lockley, Elaine; Oduyemi, Kehinde O.K.

    2008-07-01

    A risk assessment process can assist in drawing a cost-effective compromise between economic and environmental costs, thereby assuring that the philosophy of 'sustainable development' is adhered to. Nowadays risk analysis is in wide use to effectively manage environmental issues. Risk assessment is also applied to other subjects including health and safety, food, finance, ecology and epidemiology. The literature review of environmental risk assessments in general and risk assessment approaches particularly regarding landfill disposal sites undertaken by the authors, reveals that an integrated risk assessment methodology for landfill gas, leachate or degraded waste does not exist. A range of knowledge gaps is discovered in the literature reviewed to date. From the perspective of landfill leachate, this paper identifies the extent to which various risk analysis aspects are absent in the existing approaches.

  6. Low-NOx Gas Turbine Injectors Utilizing Hydrogen-Rich Opportunity Fuels

    Broader source: Energy.gov [DOE]

    Gas turbines are commonly used in industry for onsite power and heating needs because of their high efficiency and clean environmental performance. Natural gas is the fuel most frequently used to...

  7. Pathway analysis for a contaminated landfill in Middlesex, New Jersey

    SciTech Connect (OSTI)

    Yu, C.; Merry-Libby, P.; Yang, J.Y.

    1985-01-01

    Under the Formerly Utilized Sites Remedial Action Program, the US Department of Energy began excavating contaminated materials from the Middlesex Municipal landfill in 1984. A total of 16,000 mT of landfill materials covering a 0.2-ha area was excavated, of which 11,000 mT was contaminated and has been transported to the nearby sampling plant site for interim storage. Based on the pathway analysis for the onsite and near-site resident scenarios, the radiation dose rates and radionuclide concentrations in groundwater would be below the regulatory requirements for both the short-term and long-term scenarios. Hence, the potential health risks to maximally exposed individuals due to radioactive releases from the Middlesex landfill would be insignificant.

  8. Low-NOx Gas Turbine Injectors Utilizing Hydrogen-Rich Opportunity Fuels- Fact Sheet, 2015

    Broader source: Energy.gov [DOE]

    Factsheet summarizing how this project will modify a gas turbine combustion system to operate on hydrogen-rich opportunity fuels

  9. Estimation of landfill emission lifespan using process oriented modeling

    SciTech Connect (OSTI)

    Ustohalova, Veronika . E-mail: veronika.ustohalova@uni-essen.de; Ricken, Tim; Widmann, Renatus

    2006-07-01

    Depending on the particular pollutants emitted, landfills may require service activities lasting from hundreds to thousands of years. Flexible tools allowing long-term predictions of emissions are of key importance to determine the nature and expected duration of maintenance and post-closure activities. A highly capable option represents predictions based on models and verified by experiments that are fast, flexible and allow for the comparison of various possible operation scenarios in order to find the most appropriate one. The intention of the presented work was to develop a experimentally verified multi-dimensional predictive model capable of quantifying and estimating processes taking place in landfill sites where coupled process description allows precise time and space resolution. This constitutive 2-dimensional model is based on the macromechanical theory of porous media (TPM) for a saturated thermo-elastic porous body. The model was used to simulate simultaneously occurring processes: organic phase transition, gas emissions, heat transport, and settlement behavior on a long time scale for municipal solid waste deposited in a landfill. The relationships between the properties (composition, pore structure) of a landfill and the conversion and multi-phase transport phenomena inside it were experimentally determined. In this paper, we present both the theoretical background of the model and the results of the simulations at one single point as well as in a vertical landfill cross section.

  10. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL

    SciTech Connect (OSTI)

    Don Augenstein

    2001-02-01

    The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional landfills. This is the highest methane recovery rate per unit waste, and thus progress toward stabilization, documented anywhere for such a large waste mass. This high recovery rate is attributed to moisture, and elevated temperature attained inexpensively during startup. Economic analyses performed under Phase I of this NETL contract indicate ''greenhouse cost effectiveness'' to be excellent. Other benefits include substantial waste volume loss (over 30%) which translates to extended landfill life. Other environmental benefits include rapidly improved quality and stabilization (lowered pollutant levels) in liquid leachate which drains from the waste.

  11. Chestnut Ridge Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Chestnut Ridge Gas Recovery Sector Biomass Facility Type Landfill Gas Location Anderson County, Tennessee Coordinates 36.0809574, -84.2278796 Show Map Loading map......

  12. Combustion research related to utilization of coal as a gas turbine fuel

    SciTech Connect (OSTI)

    Davis-Waltermine, D.M.; Anderson, R.J.

    1984-06-01

    A nominal 293 kw (1 MBtu/hr) atmospheric pressure, refractory-lined combustor has been used to investigate the effects of a number of combustor and fuel dependent variables on combustion efficiency and flue gas characteristics for minimally cleaned, coal-derived gas (MCG) and coal water mixtures. The variables which have been evaluated include: percent excess air, air distribution, combustion air preheat temperature, swirl number, fuel feedrate, coal particle size, coal loading in slurry, and slurry viscosity. Characterization of the flue gas included major/minor gas species, alkali levels, and particulate loading, size, and composition. These atmospheric pressure combustion studies accompanied by data from planned pressurized studies on coal-water slurries and hot, minimally cleaned, coal-derived gas will aid in the determination of the potential of these fuels for use in gas turbines.

  13. Development of Fuel-Flexible Combustion Systems Utilizing Opportunity Fuels in Gas Turbines

    SciTech Connect (OSTI)

    2008-12-01

    General Electric Global Research will define, develop, and test new fuel nozzle technology concepts for gas turbine operation on a wide spectrum of opportunity fuels and/or fuel blends. This will enable gas turbine operation on ultra-low Btu fuel streams such as very weak natural gas, highly-diluted industrial process gases, or gasified waste streams that are out of the capability range of current turbine systems.

  14. Baseload gas turbine to meet utility requirements for reliability and availability

    SciTech Connect (OSTI)

    Grevstad, P.E.; Smith, M.J.; Duncan, R.L.

    1982-04-01

    The coal gasifier-gas turbine, combined cycle is described as a superior baseload electric generating system. It promises lower fuel cost, lower operating and maintenance cost, and superior siting and environmental characteristics over conventional steam systems with flue gas clean up and fluidized bed combined cycle systems. Two major new components are required: 1) the coal gasifier, and 2) the baseload gas turbine. 10 refs.

  15. Unbundling of small-customer gas services: New challenges for state public utility commissions

    SciTech Connect (OSTI)

    Costello, K.W.; Lemon, J.R.

    1997-10-01

    The evolution of competition in the US natural gas industry has followed a predictable course. Wellhead deregulation stimulated pipeline restructuring, which in turn has provoked a debate over gas-service restructuring at the retail level. Over the last several years, almost all local gas distribution companies (LDCs) in the US have established stand-alone transportation service allowing industrial customers to purchase gas supplies in the open market. By all accounts, service unbundling to large retail customers has achieved significant cost savings to these customers. The current focus in the retail gas sector is on small customers-namely, small commercial and residential customers. To many observers, service unbundling to small customers, especially residential customers, is not as clear cut in terms of yielding economic benefits as it was for large customers. For example, they question whether residential customers or their agents can procure gas supplies and interstate pipeline services at a lower cost than an LDC. They also argue that the transaction cost for small customers, in terms of per-unit of gas purchased, may be much greater than for large customers. Finally, they believe the high cost of unreliable service to small customers may preclude reliance on market forces and contracts, to assure these customers the high level of reliable service that they demand. Comprehensive service unbundling with the correct regulatory rules in place should further enhance competition in the natural gas industry. If past trends in the natural gas industry continue, service unbundling will ultimately be available to all retail customers. This article examines the many regulatory-policy questions relating to the unbundling of services to small retail gas customers. It argues that widespread service unbundling is an inherent feature of a competitive natural gas industry and will likely benefit gas customers and society at large. 61 refs.

  16. Kentucky Utilities Company and Louisville Gas & Electric- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

     Kentucky Utilities Company's Home Energy Rebate program provides incentives for residential customers to upgrade to energy efficiency home appliances and heat and air conditioning equipment. ...

  17. Modified biochemical methane potential (BMP) assays to assess biodegradation potential of landfilled refuse

    SciTech Connect (OSTI)

    Bogner, J.E.; Rose, C.; Piorkowski, R.

    1989-01-01

    Modified Biochemical Methane Potential (BMP) assays were used to assess biogas production potential of solid landfill samples. In landfill samples with visible soil content, moisture addition alone was generally as effective at stimulating biogas production as the addition of a comprehensive nutrient media. In a variety of samples from humid and semiarid landfills, addition of an aqueous nutrient media was the most effective stimulant for biogas production; however, moisture addition was almost as effective for most samples, suggesting that water addition would be the most cost-effective field approach. Onset of methanogenesis was slower in fresh refuse samples (even when inoculated with anaerobic digester sludge) than in landfill samples, indicating that the soil into which materials are landfilled is a major source of microorganisms. High volatile solids loading in fresh refuse and landfill assays retarded methanogenesis. A comparison of anaerobic and aerobic sample handling techniques showed no significant differences with regard to onset of methanogenesis and total gas production. The technique shows initial promise with regard to replication and reproducibility of results and could be a meaningful addition to landfill site evaluations where commercial gas recovery is anticipated. The BMP technique could also be adapted to assess anaerobic biodegradability of other solid waste materials for conventional anaerobic digestion applications. 9 refs., 6 figs., 2 tabs.

  18. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect (OSTI)

    C. Jean Bustard

    2003-12-01

    ADA Environmental Solutions (ADA-ES) has successfully completed a research and development program granted by the Department of Energy National Energy Technology Laboratory (NETL) to develop a family of non-toxic flue gas conditioning agents to provide utilities and industries with a cost-effective means of complying with environmental regulations on particulate emissions and opacity. An extensive laboratory screening of potential additives was completed followed by full-scale trials at four utility power plants. The developed cohesivity additives have been demonstrated on a 175 MW utility boiler that exhibited poor collection of unburned carbon in the electrostatic precipitator. With cohesivity conditioning, opacity spiking caused by rapping reentrainment was reduced and total particulate emissions were reduced by more than 30%. Ammonia conditioning was also successful in reducing reentrainment on the same unit. Conditioned fly ash from the process is expected to be suitable for dry or wet disposal and for concrete admixture.

  19. Economic evaluation and market analysis for natural gas utilization. Topical report

    SciTech Connect (OSTI)

    Hackworth, J.H.; Koch, R.W.; Rezaiyan, A.J.

    1995-04-01

    During the past decade, the U.S. has experienced a surplus gas supply. Future prospects are brightening because of increased estimates of the potential size of undiscovered gas reserves. At the same time, U.S. oil reserves and production have steadily declined, while oil imports have steadily increased. Reducing volume growth of crude oil imports was a key objective of the Energy Policy Act of 1992. Natural gas could be an important alternative energy source to liquid products derived from crude oil to help meet market demand. The purpose of this study was to (1) analyze three energy markets to determine whether greater use could be made of natural gas or its derivatives and (2) determine whether those products could be provided on an economically competitive basis. The following three markets were targeted for possible increases in gas use: transportation fuels, power generation, and chemical feedstock. Gas-derived products that could potentially compete in these three markets were identified, and the economics of the processes for producing those products were evaluated. The processes considered covered the range from commercial to those in early stages of process development. The analysis also evaluated the use of both high-quality natural gas and lower-quality gases containing CO{sub 2} and N{sub 2} levels above normal pipeline quality standards.

  20. Utilizing Gas Filled Cavities for the Generation of an Intense Muon Source

    SciTech Connect (OSTI)

    Stratakis, Diktys; Neuffer, David V.

    2015-05-01

    A key requirement for designing intense muon sources is operating rf cavities in multi-tesla magnetic fields. Recently, a proof-of-principle experiment demonstrated that an rf cavity filed with high pressure hydrogen gas could meet this goal. In this study, rigorous simulation is used to design and evaluate the performance of an intense muon source with gas filled cavities. We present a new lattice design and compare our results with conventional schemes. We detail the influence of gas pressure on the muon production rate.

  1. Utilizing gas-filled cavities for the generation of an intense muon source

    SciTech Connect (OSTI)

    Stratakis, Diktys; Neuffer, David V.

    2015-05-03

    A key requirement for designing intense muon sources is operating rf cavities in multi-tesla magnetic fields. Recently, a proof-of-principle experiment demonstrated that an rf cavity filed with high pressure hydrogen gas could meet this goal. In this study, rigorous simulation is used to design and evaluate the performance of an intense muon source with gas filled cavities. We present a new lattice design and compare our results with conventional schemes. We detail the influence of gas pressure on the muon production rate.

  2. New Natural Gas Storage and Transportation Capabilities Utilizing Rapid Methane Hydrate Formation Techniques

    SciTech Connect (OSTI)

    Brown, T.D.; Taylor, C.E.; Bernardo, M.

    2010-01-01

    Natural gas (methane as the major component) is a vital fossil fuel for the United States and around the world. One of the problems with some of this natural gas is that it is in remote areas where there is little or no local use for the gas. Nearly 50 percent worldwide natural gas reserves of ~6,254.4 trillion ft3 (tcf) is considered as stranded gas, with 36 percent or ~86 tcf of the U.S natural gas reserves totaling ~239 tcf, as stranded gas [1] [2]. The worldwide total does not include the new estimates by U.S. Geological Survey of 1,669 tcf of natural gas north of the Arctic Circle, [3] and the U.S. ~200,000 tcf of natural gas or methane hydrates, most of which are stranded gas reserves. Domestically and globally there is a need for newer and more economic storage, transportation and processing capabilities to deliver the natural gas to markets. In order to bring this resource to market, one of several expensive methods must be used: 1. Construction and operation of a natural gas pipeline 2. Construction of a storage and compression facility to compress the natural gas (CNG) at 3,000 to 3,600 psi, increasing its energy density to a point where it is more economical to ship, or 3. Construction of a cryogenic liquefaction facility to produce LNG, (requiring cryogenic temperatures at <-161 °C) and construction of a cryogenic receiving port. Each of these options for the transport requires large capital investment along with elaborate safety systems. The Department of Energy's Office of Research and Development Laboratories at the National Energy Technology Laboratory (NETL) is investigating new and novel approaches for rapid and continuous formation and production of synthetic NGHs. These synthetic hydrates can store up to 164 times their volume in gas while being maintained at 1 atmosphere and between -10 to -20°C for several weeks. Owing to these properties, new process for the economic storage and transportation of these synthetic hydrates could be envisioned

  3. Kentucky Utilities Company and Louisville Gas & Electric- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Kentucky Utilities Company (KU) offers rebates to all commercial customers who pay a DSM charge on monthly bills. Rebates are available on lighting measures, sensors, air conditioners, heat pumps,...

  4. Demonstration of an on-site PAFC cogeneration system with waste heat utilization by a new gas absorption chiller

    SciTech Connect (OSTI)

    Urata, Tatsuo

    1996-12-31

    Analysis and cost reduction of fuel cells is being promoted to achieve commercial on-site phosphoric acid fuel cells (on-site FC). However, for such cells to be effectively utilized, a cogeneration system designed to use the heat generated must be developed at low cost. Room heating and hot-water supply are the most simple and efficient uses of the waste heat of fuel cells. However, due to the short room-heating period of about 4 months in most areas in Japan, the sites having demand for waste heat of fuel cells throughout the year will be limited to hotels and hospitals Tokyo Gas has therefore been developing an on-site FC and the technology to utilize tile waste heat of fuel cells for room cooling by means of an absorption refrigerator. The paper describes the results of fuel cell cogeneration tests conducted on a double effect gas absorption chiller heater with auxiliary waste heat recovery (WGAR) that Tokyo Gas developed in its Energy Technology Research Laboratory.

  5. High-voltage electrical apparatus utilizing an insulating gas of sulfur hexafluoride and helium

    DOE Patents [OSTI]

    Wootton, Roy E.

    1980-01-01

    High-voltage electrical apparatus includes an outer housing at low potential, an inner electrode disposed within the outer housing at high potential with respect thereto, and support means for insulatably supporting the inner electrode within the outer housing. Conducting particles contaminate the interior of the outer housing, and an insulating gas electrically insulates the inner electrode from the outer housing even in the presence of the conducting particles. The insulating gas is comprised of sulfur hexafluoride at a partial pressure of from about 2.9 to about 3.4 atmospheres absolute, and helium at a partial pressure from about 1.1 to about 11.4 atmospheres absolute. The sulfur hexafluoride comprises between 20 and 65 volume percent of the insulating gas.

  6. Transco drops self-help gas, forcing users back to utilities

    SciTech Connect (OSTI)

    Hines, V.

    1985-11-04

    Transcontinental Gas Pipe Line (Transco) responded to Federal Energy Regulatory Commission Order 436, which eliminates pipeline discretion over who can arrange contract carriage of gas the pipeline does not own, because some users will look for alternate shipping routes and others will experience a significant increase in energy costs. Transco and most other pipeline companies declined to adopt the order because it is too flawed from their point of view. The article quotes several users who are looking for alternative transportation or considering fuel substitutions because of the higher prices.

  7. Comparison of slope stability in two Brazilian municipal landfills

    SciTech Connect (OSTI)

    Gharabaghi, B. Singh, M.K.; Inkratas, C. Fleming, I.R. McBean, E.

    2008-07-01

    The implementation of landfill gas to energy (LFGTE) projects has greatly assisted in reducing the greenhouse gases and air pollutants, leading to an improved local air quality and reduced health risks. The majority of cities in developing countries still dispose of their municipal waste in uncontrolled 'open dumps.' Municipal solid waste landfill construction practices and operating procedures in these countries pose a challenge to implementation of LFGTE projects because of concern about damage to the gas collection infrastructure (horizontal headers and vertical wells) caused by minor, relatively shallow slumps and slides within the waste mass. While major slope failures can and have occurred, such failures in most cases have been shown to involve contributory factors or triggers such as high pore pressures, weak foundation soil or failure along weak geosynthetic interfaces. Many researchers who have studied waste mechanics propose that the shear strength of municipal waste is sufficient such that major deep-seated catastrophic failures under most circumstances require such contributory factors. Obviously, evaluation of such potential major failures requires expert analysis by geotechnical specialists with detailed site-specific information regarding foundation soils, interface shearing resistances and pore pressures both within the waste and in clayey barrier layers or foundation soils. The objective of this paper is to evaluate the potential use of very simple stability analyses which can be used to study the potential for slumps and slides within the waste mass and which may represent a significant constraint on construction and development of the landfill, on reclamation and closure and on the feasibility of a LFGTE project. The stability analyses rely on site-specific but simple estimates of the unit weight of waste and the pore pressure conditions and use 'generic' published shear strength envelopes for municipal waste. Application of the slope stability

  8. Performance of paper mill sludges as landfill capping material

    SciTech Connect (OSTI)

    Moo-Young, H.K. Jr.; Zimmie, T.F.

    1997-12-31

    The high cost of waste containment has sparked interest in low cost and effective strategies of containing wastes. Paper mill sludges have been effectively used as the impermeable barrier in landfill covers. Since paper mill sludges are viewed as a waste material, the sludge is given to the landfill owner at little or no cost. Thus, when a clay soil is not locally available to use as the impermeable barrier in a cover system, paper sludge barriers can save $20,000 to $50,000 per acre in construction costs. This study looks at the utilization and performance of blended and primary paper sludge as landfill capping material. To determine the effectiveness of paper sludge as an impermeable barrier layer, test pads were constructed to simulate a typical landfill cover with paper sludge and clay as the impermeable barrier and were monitored for infiltration rates for five years. Long-term hydraulic conductivity values estimated from the leachate generation rates of the test pads indicate that paper sludge provides an acceptable hydraulic barrier.

  9. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect (OSTI)

    C. Jean Bustard; Kenneth E. Baldrey; Richard Schlager

    2000-04-01

    The U.S. Department of Energy and ADA Environmental Solutions has begun a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the flyash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. Preliminary testing has identified a class of common deliquescent salts that effectively control flyash resistivity on a variety of coals. A method to evaluate cohesive properties of flyash in the laboratory has been selected and construction of an electrostatic tensiometer test fixture is underway. Preliminary selection of a variety of chemicals that will be screened for effect on flyash cohesion has been completed.

  10. Fluxes of methane between landfills and the atmosphere: Natural and engineered controls

    SciTech Connect (OSTI)

    Bogner, J.; Meadows, M.; Czepiel, P.

    1997-08-01

    Field measurement of landfill methane emissions indicates natural variability spanning more than 2 seven orders of magnitude, from approximately 0.0004 to more than 4000 g m{sub -2} day{sup -1}. This wide range reflects net emissions resulting from production (methanogenesis), consumption (methanotrophic oxidation), and gaseous transport processes. The determination of an {open_quotes}average{close_quotes} emission rate for a given field site requires sampling designs and statistical techniques which consider spatial and temporal variability. Moreover, particularly at sites with pumped gas recovery systems, it is possible for methanotrophic microorganisms in aerated cover soils to oxidize all of the methane from landfill sources below and, additionally, to oxidize methane diffusing into cover soils from atmospheric sources above. In such cases, a reversed soil gas concentration gradient is observed in shallow cover soils, indicating bidirectional diffusional transport to the depth of optimum methane oxidation. Rates of landfill methane oxidation from field and laboratory incubation studies range up to 166 g m{sup -2} day{sup -1} among the highest for any natural setting, providing an effective natural control on net emissions. Estimates of worldwide landfill methane emissions to the atmosphere have ranged from 9 to 70 Tg yr{sup -1}, differing mainly in assumed methane yields from estimated quantities of landfilled refuse. At highly controlled landfill sites in developed countries, landfill methane is often collected via vertical wells or horizontal collectors. Recovery of landfill methane through engineered systems can provide both environmental and energy benefits by mitigating subsurface migration, reducing surface emissions, and providing an alternative energy resource for industrial boiler use, on-site electrical generation, or upgrading to a substitute natural gas.

  11. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect (OSTI)

    Kenneth E. Baldrey

    2002-05-01

    The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, performance testing of flue gas conditioning was underway at the PacifiCorp Jim Bridger Power Plant. The product tested, ADA-43, was a combination resistivity modifier with cohesivity polymers. This represents the first long-term full-scale testing of this class of products. Modifications to the flue gas conditioning system at Jim Bridger, including development of alternate injection lances, was also undertaken to improve chemical spray distribution and to avoid spray deposition to duct interior surfaces. Also in this quarter, a firm commitment was received for another long-term test of the cohesivity additives. This plant fires a bituminous coal and has opacity and particulate emissions performance issues related to fly ash re-entrainment. Ammonia conditioning is employed here on one unit, but there is interest in liquid cohesivity additives as a safer alternative.

  12. Sanitary landfill groundwater monitoring data

    SciTech Connect (OSTI)

    Thompson, C.Y.

    1992-05-01

    This report for first quarter 1992 contains sanitary landfill groundwater monitoring data for the Savannah River Plant. The data tables presented in this report are copies of draft analytical results and therefore do contain errors. These errors will be corrected when the finalized data is received from the laboratory.

  13. Case studies in alternative landfill design

    SciTech Connect (OSTI)

    Barbagallo, J.C.; Druback, G.W.

    1995-12-31

    In the past, landfills or {open_quotes}dumps{close_quotes} were not highly regulated and typically did not require a detailed engineering design. However, landfills are no longer just holes in the ground, and landfill closures entail more than just spreading some dirt on top of piles of garbage. Today landfill design is a highly regulated, complex design effort that integrates soils and geosynthetics into systems aimed at providing long-term protection for the environment and surrounding communities. Integrating these complex design systems into the available landscape and exising landfill configuration often requires the designer go beyond the {open_quotes}typical{close_quotes} landfill and landfill closure design to satisfy regulations and provide cost-effective solutions.

  14. Estimating water content in an active landfill with the aid of GPR

    SciTech Connect (OSTI)

    Yochim, April, E-mail: ayochim@regionofwaterloo.ca [Region of Waterloo Waste Management Division, 925 Erb Street West, Waterloo, ON N2J 3Z4 (Canada); Zytner, Richard G., E-mail: rzytner@uoguelph.ca [School of Engineering, University of Guelph, Guelph, ON N1G 2W1 (Canada); McBean, Edward A., E-mail: emcbean@uoguelph.ca [School of Engineering, University of Guelph, Guelph, ON N1G 2W1 (Canada); Endres, Anthony L., E-mail: alendres@sciborg.uwaterloo.ca [Dept. of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON N2L 3G1 (Canada)

    2013-10-15

    Highlights: Limited information in the literature on the use of GPR to measure in situ water content in a landfill. Developed GPR method allows measurement of in situ water content in a landfill. Developed GPR method is appealing to waste management professionals operating landfills. - Abstract: Landfill gas (LFG) receives a great deal of attention due to both negative and positive environmental impacts, global warming and a green energy source, respectively. However, predicting the quantity of LFG generated at a given landfill, whether active or closed is difficult due to the heterogeneities present in waste, and the lack of accurate in situ waste parameters like water content. Accordingly, ground penetrating radar (GPR) was evaluated as a tool for estimating in situ water content. Due to the large degree of subsurface heterogeneity and the electrically conductive clay cap covering landfills, both of which affect the transmission of the electromagnetic pulses, there is much scepticism concerning the use of GPR to quantify in situ water content within a municipal landfill. Two landfills were studied. The first landfill was used to develop the measurement protocols, while the second landfill provided a means of confirming these protocols. GPR measurements were initially completed using the surface GPR approach, but the lack of success led to the use of borehole (BH) GPR. Both zero offset profiling (ZOP) and multiple offset gathers (MOG) modes were tried, with the results indicating that BH GPR using the ZOP mode is the most simple and efficient method to measure in situ water content. The best results were obtained at a separation distance of 2 m, where higher the water content, smaller the effective separation distance. However, an increase in water content did appear to increase the accuracy of the GPR measurements. For the effective separation distance of 2 m at both landfills, the difference between GPR and lab measured water contents were reasonable at 33

  15. Demonstration of neutron detection utilizing open cell foam and noble gas scintillation

    SciTech Connect (OSTI)

    Lavelle, C. M. Miller, E. C.; Coplan, M.; Thompson, Alan K.; Vest, Robert E.; Yue, A. T.; Kowler, A. L.; Koeth, T.; Al-Sheikhly, M.; Clark, Charles W.

    2015-03-02

    We present results demonstrating neutron detection via a closely spaced converter structure coupled to low pressure noble gas scintillation instrumented by a single photo-multiplier tube (PMT). The converter is dispersed throughout the gas volume using a reticulated vitreous carbon foam coated with boron carbide (B{sub 4}C). A calibrated cold neutron beam is used to measure the neutron detection properties, using a thin film of enriched {sup 10}B as a reference standard. Monte Carlo computations of the ion energy deposition are discussed, including treatment of the foam random network. Results from this study indicate that the foam shadows a significant portion of the scintillation light from the PMT. The high scintillation yield of Xe appears to overcome the light loss, facilitating neutron detection and presenting interesting opportunities for neutron detector design.

  16. CO2 utilization and storage in shale gas reservoirs: Experimental results and economic impacts

    SciTech Connect (OSTI)

    Schaef, Herbert T.; Davidson, Casie L.; Owen, Antionette Toni; Miller, Quin R. S.; Loring, John S.; Thompson, Christopher J.; Bacon, Diana H.; Glezakou, Vassiliki Alexandra; McGrail, B. Peter

    2014-12-31

    Natural gas is considered a cleaner and lower-emission fuel than coal, and its high abundance from advanced drilling techniques has positioned natural gas as a major alternative energy source for the U.S. However, each ton of CO2 emitted from any type of fossil fuel combustion will continue to increase global atmospheric concentrations. One unique approach to reducing anthropogenic CO2 emissions involves coupling CO2 based enhanced gas recovery (EGR) operations in depleted shale gas reservoirs with long-term CO2 storage operations. In this paper, we report unique findings about the interactions between important shale minerals and sorbing gases (CH4 and CO2) and associated economic consequences. Where enhanced condensation of CO2 followed by desorption on clay surface is observed under supercritical conditions, a linear sorption profile emerges for CH4. Volumetric changes to montmorillonites occur during exposure to CO2. Theory-based simulations identify interactions with interlayer cations as energetically favorable for CO2 intercalation. Thus, experimental evidence suggests CH4 does not occupy the interlayer and has only the propensity for surface adsorption. Mixed CH4:CO2 gas systems, where CH4 concentrations prevail, indicate preferential CO2 sorption as determined by in situ infrared spectroscopy and X-ray diffraction techniques. Collectively, these laboratory studies combined with a cost-based economic analysis provide a basis for identifying favorable CO2-EOR opportunities in previously fractured shale gas reservoirs approaching final stages of primary gas production. Moreover, utilization of site-specific laboratory measurements in reservoir simulators provides insight into optimum injection strategies for maximizing CH4/CO2 exchange rates to obtain peak natural

  17. Utilization of endless coiled tubing and nitrogen gas in geothermal well system maintenance

    SciTech Connect (OSTI)

    McReynolds, A.S.; Maxson, H.L.

    1980-09-01

    The use of endless coiled tubing and nitrogen gas combine to offer efficient means of initiating and maintaining geothermal and reinjection well productivity. Routine applications include initial flashing of wells in addition to the surging of the formation by essentially the same means to increase production rates. Various tools can be attached to the tubing for downhole measurement purposes whereby the effectiveness of the tools is enhanced by this method of introduction to the well bore. Remedial work such as scale and fill removal can also be accomplished in an efficient manner by using the tubing as a work string and injecting various chemicals in conjunction with specialized tools to remedy downhole problems.

  18. Alternative Fuels Data Center: DeKalb County Turns Trash to Gas

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    from landfill gas helps displace imported oil, makes good economic sense, and is good for ... "Processing natural gas from LFG helps displace imported oil, makes good economic sense, ...

  19. Life Cycle Greenhouse Gas Emissions of Utility-Scale Wind Power: Systematic Review and Harmonization

    Broader source: Energy.gov [DOE]

    As clean energy increasingly becomes part of the national dialogue, lenders, utilities, and lawmakers need the most comprehensive and accurate information on GHG emissions from various sources of energy to inform policy, planning, and investment decisions. The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that gives decision makers and investors more precise estimates of life cycle GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty.

  20. Landfill reduction experience in The Netherlands

    SciTech Connect (OSTI)

    Scharff, Heijo

    2014-11-15

    Highlights: • ‘Zero waste’ initiatives never consider risks, side effects or experience of achieved low levels of landfill. • This paper provides insight into what works and what not. • Where strong gradients in regulations and tax occur between countries, waste will find its way to landfills across borders. • Strong landfill reduction can create a fierce competition over the remaining waste to be landfilled resulting in losses. • At some point a public organisation should take responsibility for the operation of a ‘safety net’ in waste management. - Abstract: Modern waste legislation aims at resource efficiency and landfill reduction. This paper analyses more than 20 years of landfill reduction in the Netherlands. The combination of landfill regulations, landfill tax and landfill bans resulted in the desired landfill reduction, but also had negative effects. A fierce competition developed over the remaining waste to be landfilled. In 2013 the Dutch landfill industry generated €40 million of annual revenue, had €58 million annual costs and therefore incurred an annual loss of €18 million. It is not an attractive option to prematurely end business. There is a risk that Dutch landfill operators will not be able to fulfil the financial obligations for closure and aftercare. Contrary to the polluter pays principle the burden may end up with society. EU regulations prohibiting export of waste for disposal are in place. Strong differentials in landfill tax rate between nations have nevertheless resulted in transboundary shipment of waste and in non-compliance with the self-sufficiency and proximity principles. During the transformation from a disposal society to a recycling society, it is important to carefully plan required capacity and to guide the reorganisation of the landfill sector. At some point, it is no longer profitable to provide landfill services. It may be necessary for public organisations or the state to take responsibility for the

  1. EA-1707: Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste Landfill, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the potential environmental impacts of closing the Nonradioactive Dangerous Waste Landfill and the Solid Waste Landfill. The Washington State Department of Ecology is a cooperating agency in preparing this EA.

  2. Utilization of refuse derived fuels by the United States Navy

    SciTech Connect (OSTI)

    Lehr, D.L.

    1983-07-01

    The Resource Conservation and Recovery Act and the Safe Drinking Water Act are forcing those in charge of landfills to adhere to more stringent operating standards. This, along with the growing scarcity of landfill availability, makes the use of landfills less desirable for solid waste disposal. As such, new disposal methods that are environmentally safe and economically practical must be found. One alternative, that is not really new but which has gained renewed interest, is incineration. The Resource Conservation and Recovery Act also requires that government agencies should direct their installations to recover as many resources as possible. Therefore if incineration is to be implemented, heat recovery should be incorporated into the system. There are several processes available to convert raw refuse into a fuel for use in a heat recovery system. Refuse derived fuels (RDF) can be in the form of raw refuse, densified refuse, powdered refuse, gas, or pyrolytic oil. The only form of RDF that is economically feasible for systems designed to process less than 200 TPD (tons per day) is raw refuse. Most Navy bases generate far less than 200 TPD of solid waste and therefore the Navy has focused most of its attention on modular heat recovery incinerator (HRI) systems that utilize raw refuse as fuel.

  3. Integrated Water Gas Shift Membrane Reactors Utilizing Novel, Non Precious Metal Mixed Matrix Membrane

    SciTech Connect (OSTI)

    Ferraris, John

    2013-09-30

    Nanoparticles of zeolitic imidazolate frameworks and other related hybrid materials were prepared by modifying published synthesis procedures by introducing bases, changing stoichiometric ratios, or adjusting reaction conditions. These materials were stable at temperatures >300 °C and were compatible with the polymer matrices used to prepare mixed- matrix membranes (MMMs). MMMs tested at 300 °C exhibited a >30 fold increase in permeability, compared to those measured at 35 °C, while maintaining H{sub 2}/CO{sub 2} selectivity. Measurements at high pressure (up to 30 atm) and high temperature (up to 300 °C) resulted in an increase in gas flux across the membrane with retention of selectivity. No variations in permeability were observed at high pressures at either 35 or 300 °C. CO{sub 2}-induced plasticization was not observed for Matrimid®, VTEC, and PBI polymers or their MMMs at 30 atm and 300 °C. Membrane surface modification by cross-linking with ethanol diamine resulted in an increase in H{sub 2}/CO{sub 2} selectivity at 35 °C. Spectrometric analysis showed that the cross-linking was effective to temperatures <150 °C. At higher temperatures, the cross-linked membranes exhibit a H{sub 2}/CO{sub 2} selectivity similar to the uncross-linked polymer. Performance of the polybenzimidazole (PBI) hollow fibers prepared at Santa Fe Science and Technology (SFST, Inc.) showed increased flux o to a flat PBI membrane. A water-gas shift reactor has been built and currently being optimized for testing under DOE conditions.

  4. Pyrolysis process for producing condensed stabilized hydrocarbons utilizing a beneficially reactive gas

    DOE Patents [OSTI]

    Durai-Swamy, Kandaswamy

    1982-01-01

    In a process for recovery of values contained in solid carbonaceous material, the solid carbonaceous material is comminuted and then subjected to pyrolysis, in the presence of a carbon containing solid particulate source of heat and a beneficially reactive transport gas in a transport flash pyrolysis reactor, to form a pyrolysis product stream. The pyrolysis product stream contains a gaseous mixture and particulate solids. The solids are separated from the gaseous mixture to form a substantially solids-free gaseous stream which comprises volatilized hydrocarbon free radicals newly formed by pyrolysis. Preferably the solid particulate source of heat is formed by oxidizing part of the separated particulate solids. The beneficially reactive transport gas inhibits the reactivity of the char product and the carbon-containing solid particulate source of heat. Condensed stabilized hydrocarbons are obtained by quenching the gaseous mixture stream with a quench fluid which contains a capping agent for stabilizing and terminating newly formed volatilized hydrocarbon free radicals. The capping agent is partially depleted of hydrogen by the stabilization and termination reaction. Hydrocarbons of four or more carbon atoms in the gaseous mixture stream are condensed. A liquid stream containing the stabilized liquid product is then treated or separated into various fractions. A liquid containing the hydrogen depleted capping agent is hydrogenated to form a regenerated capping agent. At least a portion of the regenerated capping agent is recycled to the quench zone as the quench fluid. In another embodiment capping agent is produced by the process, separated from the liquid product mixture, and recycled.

  5. I 95 Landfill Phase II Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    I 95 Landfill Phase II Biomass Facility Jump to: navigation, search Name I 95 Landfill Phase II Biomass Facility Facility I 95 Landfill Phase II Sector Biomass Facility Type...

  6. Milliken Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    2006 Database Retrieved from "http:en.openei.orgwindex.php?titleMillikenLandfillBiomassFacility&oldid397777" Feedback Contact needs updating Image needs updating...

  7. Acme Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    NEEDS 2006 Database Retrieved from "http:en.openei.orgwindex.php?titleAcmeLandfillBiomassFacility&oldid397115" Feedback Contact needs updating Image needs updating...

  8. Colton Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    2006 Database Retrieved from "http:en.openei.orgwindex.php?titleColtonLandfillBiomassFacility&oldid397336" Feedback Contact needs updating Image needs updating...

  9. Girvin Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    2006 Database Retrieved from "http:en.openei.orgwindex.php?titleGirvinLandfillBiomassFacility&oldid397500" Feedback Contact needs updating Image needs updating...

  10. Gas venting

    DOE Patents [OSTI]

    Johnson, Edwin F.

    1976-01-01

    Improved gas venting from radioactive-material containers which utilizes the passageways between interbonded impervious laminae.

  11. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Refuse Hideaway Landfill in Middleton, Wisconsin

    SciTech Connect (OSTI)

    Salasovich, J.; Mosey, G.

    2011-08-01

    This report presents the results of an assessment of the technical and economic feasibility of deploying a photovoltaics (PV) system on a brownfield site at the Refuse Hideaway Landfill in Middleton, Wisconsin. The site currently has a PV system in place and was assessed for further PV installations. The cost, performance, and site impacts of different PV options were estimated. The economics of the potential systems were analyzed using an electric rate of $0.1333/kWh and incentives offered by the State of Wisconsin and by the serving utility, Madison Gas and Electric. According to the site production calculations, the most cost-effective system in terms of return on investment is the thin-film fixed-tilt technology. The report recommends financing options that could assist in the implementation of such a system.

  12. Briefing: DOE EM ITR Landfill Assessment Project Lessons Learned...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ITR Landfill Assessment Project Lessons Learned Briefing: DOE EM ITR Landfill Assessment Project Lessons Learned By: Craig H. Benson, PhD, PE Where: EM SSAB Teleconference: 1 ...

  13. US EPA Landfill Methane Outreach Program | Open Energy Information

    Open Energy Info (EERE)

    EPA Landfill Methane Outreach Program Jump to: navigation, search Name US EPA Landfill Methane Outreach Program AgencyCompany Organization United States Environmental Protection...

  14. CHP and Bioenergy Systems for Landfills and Wastewater Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems for Landfills and Wastewater Treatment Plants CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants There are important issues to consider when selecting ...

  15. CHP and Bioenergy for Landfills and Wastewater Treatment Plants...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Landfills and Wastewater Treatment Plants: Market Opportunities CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities This document explores ...

  16. Microsoft Word - Final TTR Landfill Extension EA--December 2006...

    National Nuclear Security Administration (NNSA)

    ... Once the landfill reaches capacity, sources of air pollution associated with the landfill would no longer be present. Waste transport vehicles would cause minor increases in car- ...

  17. Modeling Analysis of Biosparging at the Sanitary Landfill (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Modeling Analysis of Biosparging at the Sanitary Landfill Citation Details In-Document Search Title: Modeling Analysis of Biosparging at the Sanitary Landfill ...

  18. DOE - Office of Legacy Management -- West Lake Landfill - MO...

    Office of Legacy Management (LM)

    Lake Landfill - MO 05 FUSRAP Considered Sites Site: West Lake Landfill (MO.05) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition:...

  19. Knowledge based ranking algorithm for comparative assessment of post-closure care needs of closed landfills

    SciTech Connect (OSTI)

    Sizirici, Banu; Tansel, Berrin; Kumar, Vivek

    2011-06-15

    Post-closure care (PCC) activities at landfills include cap maintenance; water quality monitoring; maintenance and monitoring of the gas collection/control system, leachate collection system, groundwater monitoring wells, and surface water management system; and general site maintenance. The objective of this study was to develop an integrated data and knowledge based decision making tool for preliminary estimation of PCC needs at closed landfills. To develop the decision making tool, 11 categories of parameters were identified as critical areas which could affect future PCC needs. Each category was further analyzed by detailed questions which could be answered with limited data and knowledge about the site, its history, location, and site specific characteristics. Depending on the existing knowledge base, a score was assigned to each question (on a scale 1-10, as 1 being the best and 10 being the worst). Each category was also assigned a weight based on its relative importance on the site conditions and PCC needs. The overall landfill score was obtained from the total weighted sum attained. Based on the overall score, landfill conditions could be categorized as critical, acceptable, or good. Critical condition indicates that the landfill may be a threat to the human health and the environment and necessary steps should be taken. Acceptable condition indicates that the landfill is currently stable and the monitoring should be continued. Good condition indicates that the landfill is stable and the monitoring activities can be reduced in the future. The knowledge base algorithm was applied to two case study landfills for preliminary assessment of PCC performance.

  20. Data summary of municipal solid waste management alternatives. Volume 8, Appendix F, Landfills

    SciTech Connect (OSTI)

    1992-10-01

    While the preceding appendices have focused on the thermochemical approaches to managing municipal solid waste (MSW), this appendix and those that follow on composting and anaerobic digestion address more of the bioconversion process technologies. Landfilling is the historical baseline MSW management option central to every community`s solid waste management plan. It generally encompasses shredfills, balefills, landfill gas recovery, and landfill mining. While landfilling is virtually universal in use, it continues to undergo intense scrutiny by the public and regulators alike. Most recently, the US Environmental Protection Agency (EPA) issued its final rule on criteria for designing, operating, monitoring, and closing municipal solid waste landfills. While the Federal government has established nationwide standards and will assist the States in planning and developing their own practices, the States and local governments will carry out the actual planning and direct implementation. The States will also be authorized to devise programs to deal with their specific conditions and needs. While the main body of this appendix and corresponding research was originally prepared in July of 1991, references to the new RCRA Subtitle D, Part 258 EPA regulations have been included in this resubmission (908). By virtue of timing, this appendix is, necessarily, a ``transition`` document, combining basic landfill design and operation information as well as reference to new regulatory requirements. Given the speed with which landfill practices are and will be changing, the reader is encouraged to refer to Part 258 for additional details. As States set additional requirements and schedules and owners and operators of MSW landfills seek to comply, additional guidance and technical information, including case studies, will likely become available in the literature.

  1. Data Summary of Municipal Solid Waste Management Alternatives. Volume VIII: Appendix F - Landfills

    SciTech Connect (OSTI)

    1992-10-01

    While the preceding appendices have focused on the thermochemical approaches to managing municipal solid waste (MSW), this appendix and those that follow on composting and anaerobic digestion address more of the bioconversion process technologies. Landfilling is the historical baseline MSW management option central to every community's solid waste management plan. It generally encompasses shredfills, balefills, landfill gas recovery, and landfill mining. While landfilling is virtually universal in use, it continues to undergo intense scrutiny by the public and regulators alike. Most recently, the US Environmental Protection Agency (EPA) issued its final rule on criteria for designing, operating, monitoring, and closing municipal solid waste landfills. While the Federal government has established nationwide standards and will assist the States in planning and developing their own practices, the States and local governments will carry out the actual planning and direct implementation. The States will also be authorized to devise programs to deal with their specific conditions and needs. While the main body of this appendix and corresponding research was originally prepared in July of 1991, references to the new RCRA Subtitle D, Part 258 EPA regulations have been included in this resubmission (908). By virtue of timing, this appendix is, necessarily, a transition'' document, combining basic landfill design and operation information as well as reference to new regulatory requirements. Given the speed with which landfill practices are and will be changing, the reader is encouraged to refer to Part 258 for additional details. As States set additional requirements and schedules and owners and operators of MSW landfills seek to comply, additional guidance and technical information, including case studies, will likely become available in the literature.

  2. The environmental comparison of landfilling vs. incineration of MSW accounting for waste diversion

    SciTech Connect (OSTI)

    Assamoi, Bernadette; Lawryshyn, Yuri

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Residential waste diversion initiatives are more successful with organic waste. Black-Right-Pointing-Pointer Using a incineration to manage part of the waste is better environmentally. Black-Right-Pointing-Pointer Incineration leads to more power plant emission offsets. Black-Right-Pointing-Pointer Landfilling all of the waste would be preferred financially. - Abstract: This study evaluates the environmental performance and discounted costs of the incineration and landfilling of municipal solid waste that is ready for the final disposal while accounting for existing waste diversion initiatives, using the life cycle assessment (LCA) methodology. Parameters such as changing waste generation quantities, diversion rates and waste composition were also considered. Two scenarios were assessed in this study on how to treat the waste that remains after diversion. The first scenario is the status quo, where the entire residual waste was landfilled whereas in the second scenario approximately 50% of the residual waste was incinerated while the remainder is landfilled. Electricity was produced in each scenario. Data from the City of Toronto was used to undertake this study. Results showed that the waste diversion initiatives were more effective in reducing the organic portion of the waste, in turn, reducing the net electricity production of the landfill while increasing the net electricity production of the incinerator. Therefore, the scenario that incorporated incineration performed better environmentally and contributed overall to a significant reduction in greenhouse gas emissions because of the displacement of power plant emissions; however, at a noticeably higher cost. Although landfilling proves to be the better financial option, it is for the shorter term. The landfill option would require the need of a replacement landfill much sooner. The financial and environmental effects of this expenditure have yet to be considered.

  3. GTZ-Greenhouse Gas Calculator for Waste Management | Open Energy...

    Open Energy Info (EERE)

    a great part of the national greenhouse gas production, because landfills produce methane which has a particularly strong effect on climate change. Therefore, it is essential...

  4. Low-Btu coal-gasification-process design report for Combustion Engineering/Gulf States Utilities coal-gasification demonstration plant. [Natural gas or No. 2 fuel oil to natural gas or No. 2 fuel oil or low Btu gas

    SciTech Connect (OSTI)

    Andrus, H E; Rebula, E; Thibeault, P R; Koucky, R W

    1982-06-01

    This report describes a coal gasification demonstration plant that was designed to retrofit an existing steam boiler. The design uses Combustion Engineering's air blown, atmospheric pressure, entrained flow coal gasification process to produce low-Btu gas and steam for Gulf States Utilities Nelson No. 3 boiler which is rated at a nominal 150 MW of electrical power. Following the retrofit, the boiler, originally designed to fire natural gas or No. 2 oil, will be able to achieve full load power output on natural gas, No. 2 oil, or low-Btu gas. The gasifier and the boiler are integrated, in that the steam generated in the gasifier is combined with steam from the boiler to produce full load. The original contract called for a complete process and mechanical design of the gasification plant. However, the contract was curtailed after the process design was completed, but before the mechanical design was started. Based on the well defined process, but limited mechanical design, a preliminary cost estimate for the installation was completed.

  5. Production development and utilization of Zimmer Station wet FGD by-products. Final report. Volume 2, Product development of magnesium hydroxide, Phase 1

    SciTech Connect (OSTI)

    Smith, Kevin; Beeghly, Joel H.

    2000-11-30

    In the way of background information about 30 electric utility units with a combined total of 15,000 MW utilize magnesium enhanced lime flue gas desulfurization (FGD) systems. The first generation process begun in 1973, called the Thiosorbic® Process, was a technical breakthrough that offered significantly improved operating and performance characteristics compared with competing FGD technologies. The process is described as Flow Diagram "A" in figure 1. A disadvantage of this and other inhibited or natural oxidation wet FGD systems is the capital and operating cost associated with landfill disposal of the calcium sulfite based solids. Fixation to stabilize the sludge solids for compaction in a landfill also consumes fly ash that otherwise may be marketable.

  6. Production development and utilization of Zimmer Station wet FGD by-products. Final report. Volume 3, Product development of gypsum, Phase 1

    SciTech Connect (OSTI)

    Smith, Kevin; Beeghly, Joel H.

    2000-11-30

    In the way of background information about 30 electric utility units with a combined total of 15,000 MW utilize magnesium enhanced lime flue gas desulfurization (FGD) systems. The first generation process begun in 1973, called the Thiosorbic® Process, was a technical breakthrough that offered significantly improved operating and performance characteristics compared with competing FGD technologies. The process is described as Flow Diagram "A" in Figure 1. A disadvantage of this and other inhibited or natural oxidation wet FGD systems is the capital and operating cost associated with landfill disposal of the calcium sulfite based solids. Fixation to stabilize the sludge solids for compunction in a landfill also consumes fly ash that otherwise may be marketable.

  7. Flue Gas Perification Utilizing SOx/NOx Reactions During Compression of CO2 Derived from Oxyfuel Combustion

    SciTech Connect (OSTI)

    Kevin Fogash

    2010-09-30

    The United States wishes to decrease foreign energy dependence by utilizing the country’s significant coal reserves, while stemming the effects of global warming from greenhouse gases. In response to these needs, Air Products has developed a patented process for the compression and purification of the CO2 stream from oxyfuel combustion of pulverized coal. The purpose of this project was the development and performance of a comprehensive experimental and engineering evaluation to determine the feasibility of purifying CO2 derived from the flue gas generated in a tangentially fired coal combustion unit operated in the oxy-combustion mode. Following the design and construction of a 15 bar reactor system, Air Products conducted two test campaigns using the slip stream from the tangentially fired oxy-coal combustion unit. During the first test campaign, Air Products evaluated the reactor performance based on both the liquid and gaseous reactor effluents. The data obtained from the test run has enabled Air Products to determine the reaction and mass transfer rates, as well as the effectiveness of the reactor system. During the second test campaign, Air Products evaluated reactor performance based on effluents for different reactor pressures, as well as water recycle rates. Analysis of the reaction equations indicates that both pressure and water flow rate affect the process reaction rates, as well as the overall reactor performance.

  8. Flue Gas Purification Utilizing SOx/NOx Reactions During Compression of CO{sub 2} Derived from Oxyfuel Combustion

    SciTech Connect (OSTI)

    Fogash, Kevin

    2010-09-30

    The United States wishes to decrease foreign energy dependence by utilizing the country’s significant coal reserves, while stemming the effects of global warming from greenhouse gases. In response to these needs, Air Products has developed a patented process for the compression and purification of the CO{sub 2} stream from oxyfuel combustion of pulverized coal. The purpose of this project was the development and performance of a comprehensive experimental and engineering evaluation to determine the feasibility of purifying CO{sub 2} derived from the flue gas generated in a tangentially fired coal combustion unit operated in the oxy-combustion mode. Following the design and construction of a 15 bar reactor system, Air Products conducted two test campaigns using the slip stream from the tangentially fired oxy-coal combustion unit. During the first test campaign, Air Products evaluated the reactor performance based on both the liquid and gaseous reactor effluents. The data obtained from the test run has enabled Air Products to determine the reaction and mass transfer rates, as well as the effectiveness of the reactor system. During the second test campaign, Air Products evaluated reactor performance based on effluents for different reactor pressures, as well as water recycle rates. Analysis of the reaction equations indicates that both pressure and water flow rate affect the process reaction rates, as well as the overall reactor performance.

  9. Waste management health risk assessment: A case study of a solid waste landfill in South Italy

    SciTech Connect (OSTI)

    Davoli, E.; Fattore, E.; Paiano, V.; Colombo, A.; Palmiotto, M.; Rossi, A.N.; Il Grande, M.; Fanelli, R.

    2010-08-15

    An integrated risk assessment study has been performed in an area within 5 km from a landfill that accepts non hazardous waste. The risk assessment was based on measured emissions and maximum chronic population exposure, for both children and adults, to contaminated air, some foods and soil. The toxic effects assessed were limited to the main known carcinogenic compounds emitted from landfills coming both from landfill gas torch combustion (e.g., dioxins, furans and polycyclic aromatic hydrocarbons, PAHs) and from diffusive emissions (vinyl chloride monomer, VCM). Risk assessment has been performed both for carcinogenic and non-carcinogenic effects. Results indicate that cancer and non-cancer effects risk (hazard index, HI) are largely below the values accepted from the main international agencies (e.g., WHO, US EPA) and national legislation ( and ).

  10. Improved energy recovery from municipal solid wastes in sanitary landfills by two-phase digestion of biomass

    SciTech Connect (OSTI)

    Onu, Chukwu.

    1990-01-01

    The concept under investigaton was the separation of the acidogenic and the methanogenic phases of anaerobic fermentation, converting the sanitary landfill into an acid reactor and using a separate upflow fixed-film anaerobic reactor for methanogenesis. Acidic leachate from the landfill simulator was used as the influent substrate to the anaerobic reactor. The goal of the study was to improve both methane yield and concentration through nutrient addition and two-phase digestion of MSW. Sewage sludge was utilized to provide moisture, buffering capacity, nutrients, and an adequate microbial population. Single-phase systems with other enhancement techniques were also compared to the two-phase with sludge addition. Data from this study indicated that gas produced in the anaerobic reactor had methane concentration as high as 80 Mole % at the fixed-bed reactor (FBR) hydraulic retention time (HRT) of 7 days. The system reached a cumulative methane production rate of 78.6 {ell}/kg dry waste at an estimated cumulative production rate of approximately 270 {ell}/kg/yr. This performance was better than that reported in the literature for a similar type of feed. This study has also indicated that sewage sludge addition appears to be a successful enhancement technique for methane gas production from municipal solid waste. The addition of mineral nutrients and buffer solutions appears to have influenced the development of a dominant population of methanogenic bacteria in the FBR as indicated by the COD removal efficiency of 90% and 100% conversion of all influent organic acids. In terms of the overall system performance, the two-phase system was superior to the one-phase technique currently in use for methane generation.

  11. Utility Partnership Program Utility Partners | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Heuser Kentucky Northeast Utilities Marge Howell 860-280-2510 Connecticut, Massachusetts, New Hampshire NSTAR Robert Laurence 800-592-2000 Massachusetts Oklahoma Gas & Electric Co. ...

  12. Instrumentation of dredge spoil for landfill construction

    SciTech Connect (OSTI)

    Byle, M.J.; McCullough, M.L.; Alexander, R.; Vasuki, N.C.; Langer, J.A.

    1999-07-01

    The Delaware Solid Waste Authority's Northern Solid Waste Management Center is located outside of Wilmington Delaware at Cherry Island, a former dredge disposal site. Dredge spoils, of very low permeability, range in depths up to 30 m (100 feet) which form a natural liner and the foundation for the 140 ha (350-acre) municipal solid waste landfill. The soils beneath the landfill have been extensively instrumented to measure pore pressure, settlement and deflections, using inclinometer casings, standpipe piezometers, vibrating wire piezometers, pneumatic piezometers, settlement plates, liquid settlement gages, total pressure cells and thermistors. The nature of the existing waste and anticipated settlements (up to 6 m (19 feet)) have required some unique installation details. The instrumentation data has been integral in planning the landfilling sequence to maintain perimeter slope stability and has provided key geotechnical parameters needed for operation and construction of the landfill. The performance of the instrumentation and monitoring results are discussed.

  13. Landfill aeration worldwide: Concepts, indications and findings

    SciTech Connect (OSTI)

    Ritzkowski, M.; Stegmann, R.

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer Different landfill aeration concepts and accordant application areas are described. Black-Right-Pointing-Pointer Examples of full scale projects are provided for Europe, North-America and Asia. Black-Right-Pointing-Pointer Major project findings are summarised, including prospects and limitations. Black-Right-Pointing-Pointer Inconsistencies between laboratory and full scale results have been elaborated. Black-Right-Pointing-Pointer An explanatory approach in connection with the inconsistencies is provided. - Abstract: The creation of sustainable landfills is a fundamental goal in waste management worldwide. In this connection landfill aeration contributes towards an accelerated, controlled and sustainable conversion of conventional anaerobic landfills into a biological stabilized state associated with a minimised emission potential. The technology has been successfully applied to landfills in Europe, North America and Asia, following different strategies depending on the geographical region, the specific legislation and the available financial resources. Furthermore, methodologies for the incorporation of landfill aeration into the carbon trade mechanisms have been developed in recent years. This manuscript gives an overview on existing concepts for landfill aeration; their application ranges and specifications. For all of the described concepts examples from different countries worldwide are provided, including details regarding their potentials and limitations. Some of the most important findings from these aeration projects are summarised and future research needs have been identified. It becomes apparent that there is a great demand for a systematisation of the available results and implications in order to further develop and optimise this very promising technology. The IWWG (International Waste Working Group) Task Group 'Landfill Aeration' contributes towards the achievement of this goal.

  14. Stable isotope signatures for characterising the biological stability of landfilled municipal solid waste

    SciTech Connect (OSTI)

    Wimmer, Bernhard; Hrad, Marlies; Huber-Humer, Marion; Watzinger, Andrea; Wyhlidal, Stefan; Reichenauer, Thomas G.

    2013-10-15

    Highlights: ► The isotopic signature of δ{sup 13}C-DIC of leachates is linked to the reactivity of MSW. ► Isotopic signatures of leachates depend on aerobic/anaerobic conditions in landfills. ► In situ aeration of landfills can be monitored by isotope analysis in leachate. ► The isotopic analysis of leachates can be used for assessing the stability of MSW. ► δ{sup 13}C-DIC of leachates helps to define the duration of landfill aftercare. - Abstract: Stable isotopic signatures of landfill leachates are influenced by processes within municipal solid waste (MSW) landfills mainly depending on the aerobic/anaerobic phase of the landfill. We investigated the isotopic signatures of δ{sup 13}C, δ{sup 2}H and δ{sup 18}O of different leachates from lab-scale experiments, lysimeter experiments and a landfill under in situ aeration. In the laboratory, columns filled with MSW of different age and reactivity were percolated under aerobic and anaerobic conditions. In landfill simulation reactors, waste of a 25 year old landfill was kept under aerobic and anaerobic conditions. The lysimeter facility was filled with mechanically shredded fresh waste. After starting of the methane production the waste in the lysimeter containments was aerated in situ. Leachate and gas composition were monitored continuously. In addition the seepage water of an old landfill was collected and analysed periodically before and during an in situ aeration. We found significant differences in the δ{sup 13}C-value of the dissolved inorganic carbon (δ{sup 13}C-DIC) of the leachate between aerobic and anaerobic waste material. During aerobic degradation, the signature of δ{sup 13}C-DIC was mainly dependent on the isotopic composition of the organic matter in the waste, resulting in a δ{sup 13}C-DIC of −20‰ to −25‰. The production of methane under anaerobic conditions caused an increase in δ{sup 13}C-DIC up to values of +10‰ and higher depending on the actual reactivity of the MSW

  15. Photovoltaics on Landfills in Puerto Rico

    SciTech Connect (OSTI)

    Salasovich, J.; Mosey, G.

    2011-01-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Commonwealth of Puerto Rico for a feasibility study of m0treAlables on several brownfield sites. The EPA defines a brownfield as 'a property, the expansion, redevelopment, or reuse of which may be complicated by the presence or potential presence of a hazardous substance, pollutant, or contaminant.' All of the brownfields in this study are landfill sites. Citizens of Puerto Rico, city planners, and site managers are interested in redevelopment uses for landfills in Puerto Rico, which are particularly well suited for solar photovoltaic (PV) installation. The purpose of this report is to assess the landfills with the highest potential for possible solar PV installation and estimate cost, performance, and site impacts of three different PV options: crystalline silicon (fixed-tilt), crystalline silicon (single-axis tracking), and thin film (fixed-tilt). Each option represents a standalone system that can be sized to use an entire available site area. In addition, the report outlines financing options that could assist in the implementation of a system. The feasibility of PV systems installed on landfills is highly impacted by the available area for an array, solar resource, operating status, landfill cap status, distance to transmission lines, and distance to major roads. All of the landfills in Puerto Rico were screened according to these criteria in order to determine the sites with the greatest potential. Eight landfills were chosen for site visits based on the screening criteria and location. Because of time constraints and the fact that Puerto Rico is a relatively large island, the eight landfills for this visit were all located in the eastern half of the island. The findings from this report can be applied to landfills in the western half of the island. The economics of a potential PV system on landfills in Puerto Rico depend greatly on the

  16. Preliminary assessment of numerical data requirements TA-73 landfill Los Alamos, New Mexico

    SciTech Connect (OSTI)

    Not Available

    1993-11-19

    A numerical model, TOUGH2, was selected for describing liquid- and gas-phase flow in the unsaturated tuff underlying the TA-73 landfill. The model was selected primarily for its ability to simulate the significant mechanisms that may affect transport of contaminants through the vadose zone at the TA-73 landfill, including non-isothermal flow through fractured media. TOUGH2 is the best documented, verified, and validated model capable of performing the required simulations. The sensitivity analyses that were performed and describes in this report identified the input parameters that the selected numerical model is most sensitive to. The input parameters analyzed were saturated hydraulic conductivity, van Genuchten {alpha} and n, residual and saturated moisture contents, infiltration rate, fracture spacing and permeability, atmospheric pressure, and temperature. The sensitivity analyses were performed using a model grid that was designed to incorporate the regions in the landfill vicinity where contaminant transport is likely to occur and where the physical processes affecting flow and transport are the most dynamic. The sensitivity analyses performed suggest that the model is quite sensitive to a number of input parameters, including saturated hydraulic conductivity, the van Genuchten parameters {alpha} and n (for both the tuff matrix and fractures), fracture density and aperture, and atmospheric pressure. The results indicate that additional site-specific hydraulic properties and fracture data should be obtained before attempting to perform predictive, numerical simulations of gas- and liquid-phase flow beneath the landfill.

  17. Geophysical exploration and hydrologic impact of the closed Gracelawn landfill in Auburn, ME

    SciTech Connect (OSTI)

    Wisniewski, D. . Geology Dept.)

    1993-03-01

    Several geophysical methods were used over portions of the Gracelawn landfill, in Auburn, Maine to determine the surface boundaries and subsurface structure of this closed landfill, and to determine the landfill's effects on groundwater quality. The landfill was originally a sand and gravel pit excavated in the 1950's and early 1960's, and was used as a landfill from 1964--1977. The site is unlined, has a clay cap, and has been graded and developed as a baseball park. Two seismic refraction lines were performed to obtain a minimum depth to bedrock of 80 m. Seismic velocities of methane gas-saturated trash ranged from 250 to 340 m/s, and sand velocities are approximately 800 m/s. Two electrical resistivity Wenner surveys over the trash yielded the depth to saturated material and thickness of the trash layers. Resistivity values for dry refuse ranged from 1,000-2,000 [Omega]*m. A third electrical resistivity survey yielded the thickness of unsaturated and saturated sands bordering the landfill. Dry sands were found to have a resistivity of 1,000 [Omega]*m, and saturated sands a resistivity of 500 [Omega]*m. Gravity and magnetic survey grids across the site revealed anomalies which were mapped to illustrate the irregular morphology of the buried trash as well as its surface boundaries. Residual magnetic anomalies are on the order of 2,000 nT. Residual gravity anomalies are up to 5 mGal. Groundwater elevations determined by the geophysical survey, combined with a survey of existing water monitoring well logs, indicate that the groundwater flow in the sand and gravel aquifer is to the southeast, away from the public water supply, Lake Auburn, which lies to the north of the site. However, correlations between the bedrock fracture analysis and the geophysical survey illustrate that there is potential for contamination of Lake Auburn via the bedrock aquifer.

  18. Method of testing gas insulated systems for the presence of conducting particles utilizing a gas mixture of nitrogen and sulfur hexafluoride

    DOE Patents [OSTI]

    Wootton, Roy E.

    1979-01-01

    A method of testing a gas insulated system for the presence of conducting particles. The method includes inserting a gaseous mixture comprising about 98 volume percent nitrogen and about 2 volume percent sulfur hexafluoride into the gas insulated system at a pressure greater than 60 lb./sq. in. gauge, and then applying a test voltage to the system. If particles are present within the system, the gaseous mixture will break down, providing an indicator of the presence of the particles.

  19. Reducing Open Cell Landfill Methane Emissions with a Bioactive Alternative Daily

    SciTech Connect (OSTI)

    Helene Hilger; James Oliver; Jean Bogner; David Jones

    2009-03-31

    Methane and carbon dioxide are formed in landfills as wastes degrade. Molecule-for-molecule, methane is about 20 times more potent than carbon dioxide at trapping heat in the earth's atmosphere, and thus, it is the methane emissions from landfills that are scrutinized. For example, if emissions composed of 60% methane and 40% carbon dioxide were changed to a mix that was 40% methane and 60% carbon dioxide, a 30% reduction in the landfill's global warming potential would result. A 10% methane, 90% carbon dioxide ratio will result in a 75% reduction in global warming potential compared to the baseline. Gas collection from a closed landfill can reduce emissions, and it is sometimes combined with a biocover, an engineered system where methane oxidizing bacteria living in a medium such as compost, convert landfill methane to carbon dioxide and water. Although methane oxidizing bacteria merely convert one greenhouse gas (methane) to another (carbon dioxide), this conversion can offer significant reductions in the overall greenhouse gas contribution, or global warming potential, associated with the landfill. What has not been addressed to date is the fact that methane can also escape from a landfill when the active cell is being filled with waste. Federal regulations require that newly deposited solid waste to be covered daily with a 6 in layer of soil or an alternative daily cover (ADC), such as a canvas tarp. The aim of this study was to assess the feasibility of immobilizing methane oxidizing bacteria into a tarp-like matrix that could be used for alternative daily cover at open landfill cells to prevent methane emissions. A unique method of isolating methanotrophs from landfill cover soil was used to create a liquid culture of mixed methanotrophs. A variety of prospective immobilization techniques were used to affix the bacteria in a tarp-like matrix. Both gel encapsulation of methanotrophs and gels with liquid cores containing methanotrophs were readily made but

  20. Support EM LA Airport Landfill Cover Project by providing 40000...

    Office of Environmental Management (EM)

    Support EM LA Airport Landfill Cover Project by providing 40000 tons of soil Support EM LA Airport Landfill Cover Project by providing 40000 tons of soil DE-DT0010454-Task-Order-4 ...

  1. Assessment of the methane oxidation capacity of compacted soils intended for use as landfill cover materials

    SciTech Connect (OSTI)

    Rachor, Ingke; Gebert, Julia; Groengroeft, Alexander; Pfeiffer, Eva-Maria

    2011-05-15

    The microbial oxidation of methane in engineered cover soils is considered a potent option for the mitigation of emissions from old landfills or sites containing wastes of low methane generation rates. A laboratory column study was conducted in order to derive design criteria that enable construction of an effective methane oxidising cover from the range of soils that are available to the landfill operator. Therefore, the methane oxidation capacity of different soils was assessed under simulated landfill conditions. Five sandy potential landfill top cover materials with varying contents of silt and clay were investigated with respect to methane oxidation and corresponding soil gas composition over a period of four months. The soils were compacted to 95% of their specific proctor density, resulting in bulk densities of 1.4-1.7 g cm{sup -3}, reflecting considerably unfavourable conditions for methane oxidation due to reduced air-filled porosity. The soil water content was adjusted to field capacity, resulting in water contents ranging from 16.2 to 48.5 vol.%. The investigated inlet fluxes ranged from 25 to about 100 g CH{sub 4} m{sup -2} d{sup -1}, covering the methane load proposed to allow for complete oxidation in landfill covers under Western European climate conditions and hence being suggested as a criterion for release from aftercare. The vertical distribution of gas concentrations, methane flux balances as well as stable carbon isotope studies allowed for clear process identifications. Higher inlet fluxes led to a reduction of the aerated zone, an increase in the absolute methane oxidation rate and a decline of the relative proportion of oxidized methane. For each material, a specific maximum oxidation rate was determined, which varied between 20 and 95 g CH{sub 4} m{sup -2} d{sup -1} and which was positively correlated to the air-filled porosity of the soil. Methane oxidation efficiencies and gas profile data imply a strong link between oxidation capacity

  2. Landfill Cover Revegetation at the Rocky Flats Environmental Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Site | Department of Energy Landfill Cover Revegetation at the Rocky Flats Environmental Technology Site Landfill Cover Revegetation at the Rocky Flats Environmental Technology Site Landfill Cover Revegetation at the Rocky Flats Environmental Technology Site Landfill Cover Revegetation at the Rocky Flats Environmental Technology Site (507.34 KB) More Documents & Publications Revegetation of the Rocky Flats Site Smooth Brome Monitoring at Rocky Flats-2005 Results EIS-0285-SA-134:

  3. CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities | Department of Energy for Landfills and Wastewater Treatment Plants: Market Opportunities CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities This document explores opportunities for alternative CHP fuels. CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities (November 2007) (342.09 KB) More Documents & Publications CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants Barriers to CHP with

  4. US EPA record of decision review for landfills: Sanitary landfill (740-G), Savannah River Site

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    This report presents the results of a review of the US Environmental Protection Agency (EPA) Record of Decision System (RODS) database search conducted to identify Superfund landfill sites where a Record of Decision (ROD) has been prepared by EPA, the States or the US Army Corps of Engineers describing the selected remedy at the site. ROD abstracts from the database were reviewed to identify site information including site type, contaminants of concern, components of the selected remedy, and cleanup goals. Only RODs from landfill sites were evaluated so that the results of the analysis can be used to support the remedy selection process for the Sanitary Landfill at the Savannah River Site (SRS).

  5. Landfill stabilization focus area: Technology summary

    SciTech Connect (OSTI)

    1995-06-01

    Landfills within the DOE Complex as of 1990 are estimated to contain 3 million cubic meters of buried waste. The DOE facilities where the waste is predominantly located are at Hanford, the Savannah River Site (SRS), the Idaho National Engineering Laboratory (INEL), the Los Alamos National Laboratory (LANL), the Oak Ridge Reservation (ORR), the Nevada Test Site (NTS), and the Rocky Flats Plant (RFP). Landfills include buried waste, whether on pads or in trenches, sumps, ponds, pits, cribs, heaps and piles, auger holes, caissons, and sanitary landfills. Approximately half of all DOE buried waste was disposed of before 1970. Disposal regulations at that time permitted the commingling of various types of waste (i.e., transuranic, low-level radioactive, hazardous). As a result, much of the buried waste throughout the DOE Complex is presently believed to be contaminated with both hazardous and radioactive materials. DOE buried waste typically includes transuranic-contaminated radioactive waste (TRU), low-level radioactive waste (LLW), hazardous waste per 40 CFR 26 1, greater-than-class-C waste per CFR 61 55 (GTCC), mixed TRU waste, and mixed LLW. The mission of the Landfill Stabilization Focus Area is to develop, demonstrate, and deliver safer,more cost-effective and efficient technologies which satisfy DOE site needs for the remediation and management of landfills. The LSFA is structured into five technology areas to meet the landfill remediation and management needs across the DOE complex. These technology areas are: assessment, retrieval, treatment, containment, and stabilization. Technical tasks in each of these areas are reviewed.

  6. Tribal Utility Policy Issues

    Broader source: Energy.gov (indexed) [DOE]

    ... Coal Combustion Residuals Regulation Act of 2015 (H.R. 1734) FCC's Connect America Funding to provide broadband to rural communities Gas Utility Issues Pipeline Safety & ...

  7. Utilization of a fuel cell power plant for the capture and conversion of gob well gas. Final report, June--December, 1995

    SciTech Connect (OSTI)

    Przybylic, A.R.; Haynes, C.D.; Haskew, T.A.; Boyer, C.M. II; Lasseter, E.L.

    1995-12-01

    A preliminary study has been made to determine if a 200 kW fuel cell power plant operating on variable quality coalbed methane can be placed and successfully operated at the Jim Walter Resources No. 4 mine located in Tuscaloosa County, Alabama. The purpose of the demonstration is to investigate the effects of variable quality (50 to 98% methane) gob gas on the output and efficiency of the power plant. To date, very little detail has been provided concerning the operation of fuel cells in this environment. The fuel cell power plant will be located adjacent to the No. 4 mine thermal drying facility rated at 152 M British thermal units per hour. The dryer burns fuel at a rate of 75,000 cubic feet per day of methane and 132 tons per day of powdered coal. The fuel cell power plant will provide 700,000 British thermal units per hour of waste heat that can be utilized directly in the dryer, offsetting coal utilization by approximately 0.66 tons per day and providing an avoided cost of approximately $20 per day. The 200 kilowatt electrical power output of the unit will provide a utility cost reduction of approximately $3,296 each month. The demonstration will be completely instrumented and monitored in terms of gas input and quality, electrical power output, and British thermal unit output. Additionally, real-time power pricing schedules will be applied to optimize cost savings. 28 refs., 35 figs., 13 tabs.

  8. FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL

    SciTech Connect (OSTI)

    Ramin Yazdani; Jeff Kieffer; Heather Akau

    2003-08-01

    The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Liquid addition has commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell is nearly complete with only the biofilter remaining and is scheduled to be complete by the end of August 2003. The current project status and preliminary monitoring results are summarized in this report.

  9. FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL

    SciTech Connect (OSTI)

    Ramin Yazdani; Jeff Kieffer; Heather Akau

    2003-05-01

    The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Construction is complete on the 3.5-acre anaerobic cell and liquid addition has commenced. Construction of the 2.5-acre aerobic cell is nearly complete with only the biofilter remaining and construction of the west-side 6-acre anaerobic cell is nearly complete with only the liquid addition system remaining. The current project status and preliminary monitoring results are summarized in this report.

  10. FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL

    SciTech Connect (OSTI)

    Ramin Yazdani; Jeff Kieffer; Heather Akau

    2003-12-01

    The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Liquid addition has commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell and biofilter has been completed. The remaining task to be completed is to test the biofilter prior to operation, which is currently anticipated to begin in January 2004. The current project status and preliminary monitoring results are summarized in this report.