Powered by Deep Web Technologies
Note: This page contains sample records for the topic "landfill gas solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Landfill Gas Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of landfill gas energy resources and technologies supplemented by specific information to apply landfill gas energy within the Federal sector.

2

Capturing, Purifying, and Liquefying Landfill Gas for Transportation Fuel  

E-Print Network [OSTI]

Capturing, Purifying, and Liquefying Landfill Gas for Transportation Fuel TRANSPORTATION ENERGY alternative fuel, and purified landfill gas could provide a renewable domestic source of it. Landfills of landfill gas purification and demonstrate liquefaction technology for the conversion of renewable

3

Tapping Landfill Gas to Provide Significant Energy Savings and...  

Broader source: Energy.gov (indexed) [DOE]

Tapping Landfill Gas to Provide Significant Energy Savings and Greenhouse Gas Reductions - Case Study, 2013 Tapping Landfill Gas to Provide Significant Energy Savings and...

4

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network [OSTI]

Natural Gas Nitric Oxide/Nitrogen Dioxide Neal Road LandfillThe methane, nitrogen and carbon dioxide concentrations ofmethane, 30% nitrogen and 30% carbon dioxide. The recorded

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

5

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network [OSTI]

Journal of Engineering for Gas Turbines and Power, 121:569-operations with natural gas: Fuel composition implications,”USA ICEF2006-1578 LANDFILL GAS FUELED HCCI DEMONSTRATION

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

6

Community Renewable Energy Success Stories: Landfill Gas-to-Energy...  

Broader source: Energy.gov (indexed) [DOE]

Stories: Landfill Gas-to-Energy Projects Webinar (text version) Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects Webinar (text version) Below is the text...

7

Using landfill gas for energy: Projects that pay  

SciTech Connect (OSTI)

Pending Environmental Protection Agency regulations will require 500 to 700 landfills to control gas emissions resulting from decomposing garbage. Conversion of landfill gas to energy not only meets regulations, but also creates energy and revenue for local governments.

NONE

1995-02-01T23:59:59.000Z

8

DETERMINATION OF GUIDANCE VALUES FOR CLOSED LANDFILL GAS EMISSIONS  

E-Print Network [OSTI]

DETERMINATION OF GUIDANCE VALUES FOR CLOSED LANDFILL GAS EMISSIONS O. BOUR*, S. BERGER**, C Gambetta, 74 000 Annecy SUMMARY: In order to promote active landfill gas collection and treatment or natural attenuation, it is necessary to identify trigger values concerning landfill gas emissions

Boyer, Edmond

9

Methane Gas Utilization Project from Landfill at Ellery (NY)  

SciTech Connect (OSTI)

Landfill Gas to Electric Energy Generation and Transmission at Chautauqua County Landfill, Town of Ellery, New York. The goal of this project was to create a practical method with which the energy, of the landfill gas produced by the decomposing waste at the Chautauqua County Landfill, could be utilized. This goal was accomplished with the construction of a landfill gas to electric energy plant (originally 6.4MW and now 9.6MW) and the construction of an inter-connection power-line, from the power-plant to the nearest (5.5 miles) power-grid point.

Pantelis K. Panteli

2012-01-10T23:59:59.000Z

10

Capture and Utilisation of Landfill Gas  

E-Print Network [OSTI]

about 955 landfills that recovered biogas. The largest number of such landfills were in the USA landfills in Denmark that in total captured 5,800Nm3 of biogas per hour, equivalent to 276.4MW of contained #12;Biomass US DATA ON GENERATION OF BIOGAS AT LANDFILLS Eileen Berenyi, a Research Associate of EEC

Columbia University

11

LANDFILL-GAS-TO-ENERGY PROJECTS: AN ANALYSIS OF NET PRIVATE AND SOCIAL BENEFITS  

E-Print Network [OSTI]

Materials Table A1: Model Results for West Lake Landfill WEST LAKE IC Engine Gas Turbine Steam Turbine Landfill WEST COUNTY IC Engine Gas Turbine Steam Turbine Average Landfill Gas Generation (mmcf/yr) 1,075 1,735 $1,250 Table A3: Model Results for Modern Landfill MODERN IC Engine Gas Turbine Steam Turbine Average

Jaramillo, Paulina

12

Story Road Landfill Solar Site Evaluation: San Jose  

Broader source: Energy.gov [DOE]

This report describes the findings of a solar site evaluation conducted at the Story Road Landfill (Site) in the City of San Jose, California (City). This evaluation was conducted as part of a larger study to assess solar potential at multiple public facilities within the City.

13

E-Print Network 3.0 - annual landfill gas Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

systems, and emissions from diesel equipment at the landfill. The MWC emissions... .K. dioxins emissions have been reported in the fugitive gas emissions from landfills as well as...

14

Renewable LNG: Update on the World's Largest Landfill Gas to...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

LNG from landfill gas. Presented by Mike McGowan, Linde NA, Inc., at the NRELDOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado....

15

July 17, 2012, Webinar: Landfill Gas-to-Energy Projects  

Office of Energy Efficiency and Renewable Energy (EERE)

This webinar, held July 17, 2012, provided information on the challenges and benefits of developing successful community landfill gas-to-energy projects in Will County, Illinois, and Escambia...

16

Feasibility study: utilization of landfill gas for a vehicle fuel system, Rossman's landfill, Clackamas County, Oregon  

SciTech Connect (OSTI)

In 1978, a landfill operator in Oregon became interested in the technical and economic feasibility of recovering the methane generated in the landfill for the refueling of vehicles. DOE awarded a grant for a site-specific feasibility study of this concept. This study investigated the expected methane yield and the development of a conceptual gas-gathering system; gas processing, compressing, and storage systems; and methane-fueled vehicle systems. Cost estimates were made for each area of study. The results of the study are presented. Reasoning that gasoline prices will continue to rise and that approximately 18,000 vehicles in the US have been converted to operate on methane, a project is proposed to use this landfill as a demonstration site to produce and process methane and to fuel a fleet (50 to 400) vehicles with the gas produced in order to obtain performance and economic data on the systems used from gas collection through vehicle operation. (LCL)

None

1981-01-01T23:59:59.000Z

17

Feasibility study for utilization of landfill gas at the Royalton Road Landfill, Broadview Heights, Ohio. Final report  

SciTech Connect (OSTI)

The technical viability of landfill gas recovery has been previously demonstrated at numerous sites. However, the economics of a full scale utilization system are dependent on proper market conditions, appropriate technologies, landfill gas quantity and quality, and public/purchaser acceptance. The specific objectives of this feasibility study were to determine: The available markets which might purchase landfill gas or landfill gas derived energy products; An extraction system concept design and to perform an on-site pumping test program; The landfill gas utilization technologies most appropriate for the site; Any adverse environmental, health, safety, or socioeconomic impacts associated with the various proposed technologies; The optimum project economics, based on markets and processes examined. Findings and recommendations were presented which review the feasibility of a landfill gas utilization facility on the Royalton Road Landfill. The three identified utilization alternatives are indeed technically feasible. However, current market considerations indicate that installation of a full scale system is not economically advisable at this time. This final report encompasses work performed by SCS Engineers from late 1980 to the present. Monitoring data from several extraction and monitoring wells is presented, including pumping rates and gas quality and quantity analysis. The Market Analysis Data Form, local climatological data, and barometric pressure data are included in the appendix section. 33 figures, 25 tables.

None

1983-09-01T23:59:59.000Z

18

LIQUID NATURAL GAS (LNG): AN ALTERNATIVE FUEL FROM LANDFILL GAS (LFG) AND WASTEWATER DIGESTER GAS  

SciTech Connect (OSTI)

This Research and Development Subcontract sought to find economic, technical and policy links between methane recovery at landfill and wastewater treatment sites in New York and Maryland, and ways to use that methane as an alternative fuel--compressed natural gas (CNG) or liquid natural gas (LNG) -- in centrally fueled Alternative Fueled Vehicles (AFVs).

VANDOR,D.

1999-03-01T23:59:59.000Z

19

Case Studies from the Climate Technology Partnership: Landfill Gas Projects in South Korea and Lessons Learned  

SciTech Connect (OSTI)

This paper examines landfill gas projects in South Korea. Two case studies provide concrete examples of lessons learned and offer practical guidance for future projects.

Larney, C.; Heil, M.; Ha, G. A.

2006-12-01T23:59:59.000Z

20

Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects Webinar (text version)  

Office of Energy Efficiency and Renewable Energy (EERE)

Below is the text version of the Webinar titled "Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects," originally presented on July 17, 2012.

Note: This page contains sample records for the topic "landfill gas solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Landfill gas cleanup for carbonate fuel cell power generation. Final report  

SciTech Connect (OSTI)

Landfill gas represents a significant fuel resource both in the US and worldwide. The emissions of landfill gas from existing landfills has become an environmental liability contributing to global warming and causing odor problems. Landfill gas has been used to fuel reciprocating engines and gas turbines, and may also be used to fuel carbonate fuel cells. Carbonate fuel cells have high conversion efficiencies and use the carbon dioxide present in landfill gas as an oxidant. There are, however, a number of trace contaminants in landfill gas that contain chlorine and sulfur which are deleterious to fuel cell operation. Long-term economical operation of fuel cells fueled with landfill gas will, therefore, require cleanup of the gas to remove these contaminants. The overall objective of the work reported here was to evaluate the extent to which conventional contaminant removal processes could be combined to economically reduce contaminant levels to the specifications for carbonate fuel cells. A pilot plant cleaned approximately 970,000 scf of gas over 1,000 hours of operation. The testing showed that the process could achieve the following polished gas concentrations: less than 80 ppbv hydrogen sulfide; less than 1 ppmv (the detection limit) organic sulfur; less than 300 ppbv hydrogen chloride; less than 20--80 ppbv of any individual chlorinated hydrocarbon; and 1.5 ppm sulfur dioxide.

Steinfield, G.; Sanderson, R.

1998-02-01T23:59:59.000Z

22

Int. J. Environment and Pollution, V0/. IS, No.4, 2001 Economic evaluation of a landfill system with gas  

E-Print Network [OSTI]

Int. J. Environment and Pollution, V0/. IS, No.4, 2001 Economic evaluation of a landfill system be made as follows: Yedla, S. and Parikh, 1.K. (2001) 'Economic evaluation of a landfill system with gas.K. Parikh Economic evaluation of a landfill system with gas recovery 435 Tonnes per dayMillion tonnes per

Columbia University

23

Investigation of Integrated Subsurface Processing of Landfill Gas and Carbon Sequestration, Johnson County, Kansas  

SciTech Connect (OSTI)

The Johnson County Landfill in Shawnee, KS is operated by Deffenbaugh Industries and serves much of metropolitan Kansas City. Refuse, which is dumped in large plastic-underlined trash cells covering several acres, is covered over with shale shortly after burial. The landfill waste, once it fills the cell, is then drilled by Kansas City LFG, so that the gas generated by anaerobic decomposition of the refuse can be harvested. Production of raw landfill gas from the Johnson County landfill comes from 150 wells. Daily production is approximately 2.2 to 2.5 mmcf, of which approximately 50% is methane and 50% is carbon dioxide and NMVOCs (non-methane volatile organic compounds). Heating value is approximately 550 BTU/scf. A upgrading plant, utilizing an amine process, rejects the carbon dioxide and NMVOCs, and upgrades the gas to pipeline quality (i.e., nominally a heating value >950 BTU/scf). The gas is sold to a pipeline adjacent to the landfill. With coal-bearing strata underlying the landfill, and carbon dioxide a major effluent gas derived from the upgrading process, the Johnson County Landfill is potentially an ideal setting to study the feasibility of injecting the effluent gas in the coals for both enhanced coalbed methane recovery and carbon sequestration. To these ends, coals below the landfill were cored and then were analyzed for their thickness and sorbed gas content, which ranged up to 79 scf/ton. Assuming 1 1/2 square miles of land (960 acres) at the Johnson County Landfill can be utilized for coalbed and shale gas recovery, the total amount of in-place gas calculates to 946,200 mcf, or 946.2 mmcf, or 0.95 bcf (i.e., 985.6 mcf/acre X 960 acres). Assuming that carbon dioxide can be imbibed by the coals and shales on a 2:1 ratio compared to the gas that was originally present, then 1682 to 1720 days (4.6 to 4.7 years) of landfill carbon dioxide production can be sequestered by the coals and shales immediately under the landfill. Three coal--the Bevier, Fleming, and Mulberry coals--are the major coals of sufficient thickness (nominally >1-foot) that can imbibe carbon dioxide gas with an enhanced coalbed injection. Comparison of the adsorption gas content of coals to the gas desorbed from the coals shows that the degree of saturation decreases with depth for the coals.

K. David Newell; Timothy R. Carr

2007-03-31T23:59:59.000Z

24

Feasibility Study of Solar Photovoltaics on Landfills in Puerto Rico (Second Study)  

SciTech Connect (OSTI)

This report presents the results of an assessment of the technical and economic feasibility of deploying a solar photovoltaics (PV) system on landfill sites in Puerto Rico. The purpose of this report is to assess the landfills with the highest potential for possible solar PV installation and estimate cost, performance, and site impacts of three different PV options: crystalline silicon (fixed tilt), crystalline silicon (single-axis tracking), and thin film (fixed tilt). The report outlines financing options that could assist in the implementation of a system. According to the site production calculations, the most cost-effective system in terms of return on investment is the thin-film fixed-tilt technology. The report recommends financing options that could assist in the implementation of such a system. The landfills and sites considered in this report were all determined feasible areas in which to implement solar PV systems.

Salasovich, J.; Mosey, G.

2011-08-01T23:59:59.000Z

25

Feasibility Study of Economics and Performance of Solar Photovoltaics at Johnson County Landfill  

SciTech Connect (OSTI)

The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Johnson County Landfill in Shawnee, Kansas, for a feasibility study of renewable energy production. Citizens of Shawnee, city planners, and site managers are interested in redevelopment uses for landfills in Kansas that are particularly well suited for grid-tied solar photovoltaic (PV) installation. This report assesses the Johnson County Landfill for possible grid-tied PV installations and estimates the cost, performance, and site impacts of three different PV options: crystalline silicon (fixed tilt), crystalline silicon (single-axis tracking), and thin film (fixed tilt). Each option represents a standalone system that can be sized to use an entire available site area. In addition, the report outlines financing options that could assist in the implementation of a system. The feasibility of PV systems installed on landfills is highly impacted by the available area for an array, solar resource, operating status, landfill cap status, distance to transmission lines, and distance to major roads. The report findings are applicable to other landfills in the surrounding area.

Salasovich, J.; Mosey, G.

2012-01-01T23:59:59.000Z

26

Recovery Act: Brea California Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas  

SciTech Connect (OSTI)

The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Olinda Landfill near Brea, California. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting Project reflected a cost effective balance of the following specific sub-objectives: • Meeting the environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas • Utilizing proven and reliable technology and equipment • Maximizing electrical efficiency • Maximizing electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Olinda Landfill • Maximizing equipment uptime • Minimizing water consumption • Minimizing post-combustion emissions • The Project produced and will produce a myriad of beneficial impacts. o The Project created 360 FTE construction and manufacturing jobs and 15 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. o By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). o The Project will annually produce 280,320 MWh’s of clean energy o By destroying the methane in the landfill gas, the Project will generate CO2 equivalent reductions of 164,938 tons annually. The completed facility produces 27.4 MWnet and operates 24 hours a day, seven days a week.

Galowitz, Stephen

2012-12-31T23:59:59.000Z

27

Recovery Act: Johnston Rhode Island Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas  

SciTech Connect (OSTI)

The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Central Landfill in Johnston, Rhode Island. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting project reflected a cost effective balance of the following specific sub-objectives. 1) Meet environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas. 2) Utilize proven and reliable technology and equipment. 3) Maximize electrical efficiency. 4) Maximize electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Central Landfill. 5) Maximize equipment uptime. 6) Minimize water consumption. 7) Minimize post-combustion emissions. To achieve the Project Objective the project consisted of several components. 1) The landfill gas collection system was modified and upgraded. 2) A State-of-the Art gas clean up and compression facility was constructed. 3) A high pressure pipeline was constructed to convey cleaned landfill gas from the clean-up and compression facility to the power plant. 4) A combined cycle electric generating facility was constructed consisting of combustion turbine generator sets, heat recovery steam generators and a steam turbine. 5) The voltage of the electricity produced was increased at a newly constructed transformer/substation and the electricity was delivered to the local transmission system. The Project produced a myriad of beneficial impacts. 1) The Project created 453 FTE construction and manufacturing jobs and 25 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. 2) By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). 3) The Project will annually produce 365,292 MWh?s of clean energy. 4) By destroying the methane in the landfill gas, the Project will generate CO{sub 2} equivalent reductions of 164,938 tons annually. The completed facility produces 28.3 MWnet and operates 24 hours a day, seven days a week.

Galowitz, Stephen

2013-06-30T23:59:59.000Z

28

IEA-Renewable Energy Technologies, Bioenergy Agreement Task 37: Energy from Biogas and Landfill Gas  

E-Print Network [OSTI]

EFP-06 IEA- Renewable Energy Technologies, Bioenergy Agreement Task 37: Energy from Biogas-Bioenergy, Task 37- Energy from Biogas and Landfill Gas", via samarbejde, informationsudveksling, fælles analyser. biogas fra anaerob udrådning (AD) som en integreret gylle og affalds behandlings teknologi. Arbejdet

29

Greenhouse gas reduction by recovery and utilization of landfill methane and CO{sub 2} technical and market feasibility study, Boului Landfill, Bucharest, Romania. Final report, September 30, 1997--September 19, 1998  

SciTech Connect (OSTI)

The project is a landfill gas to energy project rated at about 4 megawatts (electric) at startup, increasing to 8 megawatts over time. The project site is Boului Landfill, near Bucharest, Romania. The project improves regional air quality, reduces emission of greenhouse gases, controls and utilizes landfill methane, and supplies electric power to the local grid. The technical and economic feasibility of pre-treating Boului landfill gas with Acrion`s new landfill gas cleanup technology prior to combustion for power production us attractive. Acrion`s gas treatment provides several benefits to the currently structured electric generation project: (1) increase energy density of landfill gas from about 500 Btu/ft{sup 3} to about 750 Btu/ft{sup 3}; (2) remove contaminants from landfill gas to prolong engine life and reduce maintenance;; (3) recover carbon dioxide from landfill gas for Romanian markets; and (4) reduce emission of greenhouse gases methane and carbon dioxide. Greenhouse gas emissions reduction attributable to successful implementation of the landfill gas to electric project, with commercial liquid CO{sub 2} recovery, is estimated to be 53 million metric tons of CO{sub 2} equivalent of its 15 year life.

Cook, W.J.; Brown, W.R.; Siwajek, L. [Acrion Technologies, Inc., Cleveland, OH (United States); Sanders, W.I. [Power Management Corp., Bellevue, WA (United States); Botgros, I. [Petrodesign, SA, Bucharest (Romania)

1998-09-01T23:59:59.000Z

30

Integrated Combined Heat and Power/Advanced Reciprocating Internal Combustion Engine System for Landfill Gas to Power Applications  

Broader source: Energy.gov [DOE]

Landfill gas (LFG), composed largely of methane and carbon dioxide, is used in over 450 operational projects in 43 states. These projects convert a large source of greenhouse gases into a fuel that...

31

Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils  

SciTech Connect (OSTI)

The overall objective of this project, 'Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils' was to develop effective, efficient, and economic methodologies by which microbial production of nitrous oxide can be minimized while also maximizing microbial consumption of methane in landfill cover soils. A combination of laboratory and field site experiments found that the addition of nitrogen and phenylacetylene stimulated in situ methane oxidation while minimizing nitrous oxide production. Molecular analyses also indicated that methane-oxidizing bacteria may play a significant role in not only removing methane, but in nitrous oxide production as well, although the contribution of ammonia-oxidizing archaea to nitrous oxide production can not be excluded at this time. Future efforts to control both methane and nitrous oxide emissions from landfills as well as from other environments (e.g., agricultural soils) should consider these issues. Finally, a methanotrophic biofiltration system was designed and modeled for the promotion of methanotrophic activity in local methane 'hotspots' such as landfills. Model results as well as economic analyses of these biofilters indicate that the use of methanotrophic biofilters for controlling methane emissions is technically feasible, and provided either the costs of biofilter construction and operation are reduced or the value of CO{sub 2} credits is increased, can also be economically attractive.

Jeremy Semrau; Sung-Woo Lee; Jeongdae Im; Sukhwan Yoon; Michael Barcelona

2010-09-30T23:59:59.000Z

32

Balefill Landfill Gas Utilization Proj Biomass Facility | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT BiomassArnprior,Aurantia SACitasUSFWSBayInformation Balefill

33

List of Landfill Gas Incentives | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:KeystoneSolarList of Geothermal Incentives

34

Albany Landfill Gas Utilization Project Biomass Facility | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergy InformationTuri BiomassWheelerLand andAlatna,Information

35

UNFCCC-Consolidated baseline and monitoring methodology for landfill gas  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save Energy Now Jump to:Development Reports JumpUNF Energyof

36

Tapping Landfill Gas to Provide Significant Energy Savings and Greenhouse  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and1 SpecialMaximizingResidential Buildings »CoilGas Reductions

37

Best Practices for Siting Solar Photovoltaics on Municipal Solid Waste Landfills. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites  

SciTech Connect (OSTI)

The Environmental Protection Agency and the National Renewable Energy Laboratory developed this best practices document to address common technical challenges for siting solar photovoltaics (PV) on municipal solid waste (MSW) landfills. The purpose of this document is to promote the use of MSW landfills for solar energy systems. Closed landfills and portions of active landfills with closed cells represent thousands of acres of property that may be suitable for siting solar photovoltaics (PV). These closed landfills may be suitable for near-term construction, making these sites strong candidate to take advantage of the 30% Federal Business Energy Investment Tax Credit. It was prepared in response to the increasing interest in siting renewable energy on landfills from solar developers; landfill owners; and federal, state, and local governments. It contains examples of solar PV projects on landfills and technical considerations and best practices that were gathered from examining the implementation of several of these projects.

Kiatreungwattana, K.; Mosey, G.; Jones-Johnson, S.; Dufficy, C.; Bourg, J.; Conroy, A.; Keenan, M.; Michaud, W.; Brown, K.

2013-04-01T23:59:59.000Z

38

Emerging technologies for the management and utilization of landfill gas. Final report, August 1994-August 1997  

SciTech Connect (OSTI)

The report gives information on emerging technologies that are considered to be commercially available (Tier 1), currently undergoing research and development (Tier 2), or considered as potentially applicable (Tier 3), for the management of landfill gas (LFG) emissions or for the utilization of methane (CH4) and carbon dioxide (CO2) from LFG. The emerging technologies that are considered to be Tier 1 are: (1) phosphoric acid fuel cells, (2) processes for converting CH4 from LFG to compressed LFG for vehicle fuel or other fuel uses, and (3) use of LFG as a fuel source for leachate evaporation systems. The Tier 2 technologies covered in the report are: (1) operation of landfills as anaerobic bioreactors, (2) operation of landfills are aerobic bioreactors, (3) production of ethanol from LFG, (4) production of commercial CO2 from LFG, and (5) use of LFG to provide fuel for heat and CO2 enhancement in greenhouses. Tier 3 technologies, considered as potentially applicable for LFG. include Stirling and Organic Rankine Cycle engines.

Roe, S.; Reisman, J.; Strait, R.; Doorn, M.

1998-02-01T23:59:59.000Z

39

Adsorption characteristics of siloxanes in landfill gas by the adsorption equilibrium test  

SciTech Connect (OSTI)

Highlights: • Equilibrium test was attempted to evaluate adsorption characteristics of siloxane. • L2 had higher removal efficiency in carbon compared to noncarbon adsorbents. • Total adsorption capacity of siloxane was 300 mg/g by coal activated carbon. • Adsorption characteristics rely on size of siloxane molecule and adsorbent pore. • Conversion of siloxane was caused by adsorption of noncarbon adsorbents. - Abstract: Due to the increase in energy cost by constantly high oil prices and the obligation to reduce greenhouse effect gases, landfill gas is frequently used as an alternative energy source for producing heat and electricity. Most of landfill gas utility facilities, however, are experiencing problems controlling siloxanes from landfill gas as their catalytic oxidizers are becoming fouled by silicon dioxide dust. To evaluate adsorption characteristics of siloxanes, an adsorption equilibrium test was conducted and parameters in the Freundlich and Langmuir isotherms were analyzed. Coconut activated carbon (CA1), coal activated carbon (CA2), impregnated activated carbon (CA3), silicagel (NCA1), and activated alumina (NCA2) were used for the adsorption of the mixed siloxane which contained hexamethyldisiloxane (L2), octamethylcyclotetrasiloxane (D4), and decamethylcyclopentasiloxane (D5). L2 had higher removal efficiency in noncarbon adsorbents compared to carbon adsorbents. The application of Langmuir and Freundlich adsorption isotherm demonstrated that coconut based CA1 and CA3 provided higher adsorption capacity on L2. And CA2 and NCA1 provided higher adsorption capacity on D4 and D5. Based on the experimental results, L2, D4, and D5 were converted by adsorption and desorption in noncarbon adsorbents. Adsorption affinity of siloxane is considered to be affect by the pore size distribution of the adsorbents and by the molecular size of each siloxane.

Nam, Sangchul; Namkoong, Wan [Department of Environmental Engineering, Konkuk University, Hwayang-Dong, Gwangjin-Gu, Seoul 143-701 (Korea, Republic of); Kang, Jeong-Hee; Park, Jin-Kyu [Department of Environmental Engineering, Anyang University, Anyang 5-Dong, Manan-Gu, Anyang-Si, Gyeonggi-Do 430-714 (Korea, Republic of); Lee, Namhoon, E-mail: nhlee@anyang.ac.kr [Department of Environmental Engineering, Anyang University, Anyang 5-Dong, Manan-Gu, Anyang-Si, Gyeonggi-Do 430-714 (Korea, Republic of)

2013-10-15T23:59:59.000Z

40

Influence of Physical Parameters on Methane Oxidation in Landfill Cover Soils  

E-Print Network [OSTI]

.......................................................................... 5 1.4 Phases of Landfill Gas Production

Fischlin, Andreas

Note: This page contains sample records for the topic "landfill gas solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Landfill gas cleanup for carbonate fuel cell power generation. CRADA final report  

SciTech Connect (OSTI)

The overall objective of the work reported here was to evaluate the extent to which conventional contaminant removal processes could be combined to economically reduce contaminant levels to the specifications for carbonate fuel cells. The technical effort was conducted by EPRI, consultant David Thimsen, Kaltec of Minnesota, Energy Research Corporation (ERC) and Interpoll Laboratories. The Electric Power Research Institute (EPRI) made available two test skids originally used to test an ERC 30 kW carbonate fuel cell at the Destec Coal Gasification Plan in Plaquemine, LA. EPRI`s carbonate fuel cell pilot plant was installed at the Anoka County Regional Landfill in Ramsey, Minnesota. Additional gas cleaning equipment was installed to evaluate a potentially inexpensive, multi-stage gas cleaning process to remove sulfur and chlorine in the gas to levels acceptable for long-term, economical carbonate fuel cell operation. The pilot plant cleaned approximately 970,000 scf (27,500 Nm{sup 3}) of gas over 1,000 hours of operation. The testing showed that the process could achieve the following polished gas concentrations. Less than 80 ppbv hydrogen sulfide; less than 1 ppmv (the detection limit) organic sulfur; less than 300 ppbv hydrogen chloride; less than 20--80 ppbv of any individual chlorined hydrocarbon; and 1.5 ppm sulfur dioxide. These were the detection limits of the analytical procedures employed. It is probable that the actual concentrations are below these analytical limits.

Steinfeld, G.; Sanderson, R.

1998-02-01T23:59:59.000Z

42

Landfill Gas Conversion to LNG and LCO{sub 2}. Phase II Final Report for January 25, 1999 - April 30, 2000  

SciTech Connect (OSTI)

This report summarizes work on the development of a process to produce LNG (liquefied methane) for heavy vehicle use from landfill gas (LFG) using Acrion's CO{sub 2} wash process for contaminant removal and CO{sub 2} recovery.

Brown, W. R.; Cook, W. J.; Siwajek, L. A.

2000-10-20T23:59:59.000Z

43

Electric power generation using a phosphoric acid cell on a municipal solid waste landfill gas stream. Technology verification report, November 1997--July 1998  

SciTech Connect (OSTI)

The report gives results of tests to verify the performance of a landfill gas pretreatment unit (GPU) and a phosphoric acid fuel cell system. The complete system removes contaminants from landfill gas and produces electricity for on-site use or connection to an electric grid. Performance data were collected at two sites determined to be representative of the U.S. landfill market. The Penrose facility, in Los Angeles, CA, was the first test site. The landfill gas at this site represented waste gas recovery from four nearby landfills, consisting primarily of industrial waste material. It produced approximately 3000 scf of gas/minute, and had a higher heating value of 446 Btu/scf at about 44% methane concentration. The second test site, in Groton, CT, was a relatively small landfill, but with greater heat content gas (methane levels were about 57% and the average heating value was 585 Btu/scf). The verification test addressed contaminant removal efficiency, flare destruction efficiency, and the operational capability of the cleanup system, and the power production capability of the fuel cell system.

Masemore, S.; Piccot, S.

1998-08-01T23:59:59.000Z

44

Well-to-Wheels analysis of landfill gas-based pathways and their addition to the GREET model.  

SciTech Connect (OSTI)

Today, approximately 300 million standard cubic ft/day (mmscfd) of natural gas and 1600 MW of electricity are produced from the decomposition of organic waste at 519 U.S. landfills (EPA 2010a). Since landfill gas (LFG) is a renewable resource, this energy is considered renewable. When used as a vehicle fuel, compressed natural gas (CNG) produced from LFG consumes up to 185,000 Btu of fossil fuel and generates from 1.5 to 18.4 kg of carbon dioxide-equivalent (CO{sub 2}e) emissions per million Btu of fuel on a 'well-to-wheel' (WTW) basis. This compares with approximately 1.1 million Btu and 78.2 kg of CO{sub 2}e per million Btu for CNG from fossil natural gas and 1.2 million Btu and 97.5 kg of CO{sub 2}e per million Btu for petroleum gasoline. Because of the additional energy required for liquefaction, LFG-based liquefied natural gas (LNG) requires more fossil fuel (222,000-227,000 Btu/million Btu WTW) and generates more GHG emissions (approximately 22 kg CO{sub 2}e /MM Btu WTW) if grid electricity is used for the liquefaction process. However, if some of the LFG is used to generate electricity for gas cleanup and liquefaction (or compression, in the case of CNG), vehicle fuel produced from LFG can have no fossil fuel input and only minimal GHG emissions (1.5-7.7 kg CO{sub 2}e /MM Btu) on a WTW basis. Thus, LFG-based natural gas can be one of the lowest GHG-emitting fuels for light- or heavy-duty vehicles. This report discusses the size and scope of biomethane resources from landfills and the pathways by which those resources can be turned into and utilized as vehicle fuel. It includes characterizations of the LFG stream and the processes used to convert low-Btu LFG into high-Btu renewable natural gas (RNG); documents the conversion efficiencies and losses of those processes, the choice of processes modeled in GREET, and other assumptions used to construct GREET pathways; and presents GREET results by pathway stage. GREET estimates of well-to-pump (WTP), pump-to-wheel (PTW), and WTW energy, fossil fuel, and GHG emissions for each LFG-based pathway are then summarized and compared with similar estimates for fossil natural gas and petroleum pathways.

Mintz, M.; Han, J.; Wang, M.; Saricks, C.; Energy Systems

2010-06-30T23:59:59.000Z

45

Renewable Energy 32 (2007) 12431257 Methane generation in landfills  

E-Print Network [OSTI]

. Some of the modern regulated landfills attempt to capture and utilize landfill biogas, a renewable collecting landfill biogas worldwide. The landfills that capture biogas in the US collect about 2.6 million. All rights reserved. Keywords: Landfill gas; Renewable energy; Municipal solid waste; Biogas; Methane

Columbia University

46

For more information about North Carolina Solar Center programs, go to www.ncsc.ncsu.edu  

E-Print Network [OSTI]

For more information about North Carolina Solar Center programs, go to www.ncsc.ncsu.edu Developing Landfill Gas to Energy Capacity in North Carolina Landfill gas (LFG) is created as solid waste decomposes) for niche applications in the surrounding area. For example, gas from North Carolina's Yancey

47

Feasibility Study of Economics and Performance of Solar Photovoltaics at the Refuse Hideaway Landfill in Middleton, Wisconsin  

SciTech Connect (OSTI)

This report presents the results of an assessment of the technical and economic feasibility of deploying a photovoltaics (PV) system on a brownfield site at the Refuse Hideaway Landfill in Middleton, Wisconsin. The site currently has a PV system in place and was assessed for further PV installations. The cost, performance, and site impacts of different PV options were estimated. The economics of the potential systems were analyzed using an electric rate of $0.1333/kWh and incentives offered by the State of Wisconsin and by the serving utility, Madison Gas and Electric. According to the site production calculations, the most cost-effective system in terms of return on investment is the thin-film fixed-tilt technology. The report recommends financing options that could assist in the implementation of such a system.

Salasovich, J.; Mosey, G.

2011-08-01T23:59:59.000Z

48

Photovoltaic olar nergy Development on Landfills  

E-Print Network [OSTI]

Photovoltaic olar nergy Development on Landfills ENVIRONMENTAL AREA RESEARCH PIER Environmental of a selfballasting photovoltaic solar racking system will affect a closed landfills dirt cap. The effects experiment wherein single racks with photovoltaic modules will be placed on a landfill cap

49

Economic Feasibility of Converting Landfill Gas to Natural Gas for Use as a Transportation Fuel in Refuse Trucks  

E-Print Network [OSTI]

to global climate change, diesel-fueled refuse trucks are one of the most concentrated sources of health-threatening air pollution in most cities. The landfills that they ultimately place their waste in are the second largest source of human-related methane...

Sprague, Stephen M.

2011-02-22T23:59:59.000Z

50

New Funding Boosts Carbon Capture, Solar Energy and High Gas...  

Office of Environmental Management (EM)

Boosts Carbon Capture, Solar Energy and High Gas Mileage Cars and Trucks New Funding Boosts Carbon Capture, Solar Energy and High Gas Mileage Cars and Trucks June 11, 2009 -...

51

Experimental and life cycle assessment analysis of gas emission from mechanically–biologically pretreated waste in a landfill with energy recovery  

SciTech Connect (OSTI)

Highlights: • Bio-methane landfill emissions from different period (0, 4, 8, 16 weeks) MTB waste have been evaluated. • Electrical energy recoverable from landfill gas ranges from 11 to about 90 kW h/tonne. • Correlation between oxygen uptake, energy recovery and anaerobic gas production shows R{sup 2} ranging from 0.78 to 0.98. • LCA demonstrate that global impact related to gaseous emissions achieve minimum for 4 week of MBT. - Abstract: The global gaseous emissions produced by landfilling the Mechanically Sorted Organic Fraction (MSOF) with different weeks of Mechanical Biological Treatment (MBT) was evaluated for an existing waste management system. One MBT facility and a landfill with internal combustion engines fuelled by the landfill gas for electrical energy production operate in the waste management system considered. An experimental apparatus was used to simulate 0, 4, 8 and 16 weeks of aerobic stabilization and the consequent biogas potential (Nl/kg) of a large sample of MSOF withdrawn from the full-scale MBT. Stabilization achieved by the waste was evaluated by dynamic oxygen uptake and fermentation tests. Good correlation coefficients (R{sup 2}), ranging from 0.7668 to 0.9772, were found between oxygen uptake, fermentation and anaerobic test values. On the basis of the results of several anaerobic tests, the methane production rate k (year{sup ?1}) was evaluated. k ranged from 0.436 to 0.308 year{sup ?1} and the bio-methane potential from 37 to 12 N m{sup 3}/tonne, respectively, for the MSOF with 0 and 16 weeks of treatment. Energy recovery from landfill gas ranged from about 11 to 90 kW h per tonne of disposed MSOF depending on the different scenario investigated. Life cycle analysis showed that the scenario with 0 weeks of pre-treatment has the highest weighted global impact even if opposite results were obtained with respect to the single impact criteria. MSOF pre-treatment periods longer than 4 weeks showed rather negligible variation in the global impact of system emissions.

Di Maria, Francesco, E-mail: francesco.dimaria@unipg.it; Sordi, Alessio; Micale, Caterina

2013-11-15T23:59:59.000Z

52

Influence of mechanical-biological waste pre-treatment methods on the gas formation in landfills  

SciTech Connect (OSTI)

In order to minimise emissions and environmental impacts, only pre-treated waste should be disposed of. For the last six years, a series of continuous experiments has been conducted at the Institute WAR, TU Darmstadt, in order to determine the emissions from pre-treated waste. Different kinds of pre-treated waste were incubated in several reactors and various data, including production and composition of the gas and the leachate, were collected. In this paper, the interim results of gas production and the gas composition from different types of waste after a running time of six years are presented and discussed.

Bockreis, A. [Technische Universitaet Darmstadt, Darmstadt University of Technology, Institute for Water Supply and Groundwater Protection, Wastewater Technology, Waste Management, Industrial Material Flows and Environmental Planning (Institute WAR), Chair of Waste Management and Waste Technology, Darmstadt (Germany)]. E-mail: a.bockreis@iwar.tu-darmstadt.de; Steinberg, I. [Technische Universitaet Darmstadt, Darmstadt University of Technology, Institute for Water Supply and Groundwater Protection, Wastewater Technology, Waste Management, Industrial Material Flows and Environmental Planning (Institute WAR), Chair of Waste Management and Waste Technology, Darmstadt (Germany)

2005-07-01T23:59:59.000Z

53

Innovative gas energy systems for use with passive solar residences  

SciTech Connect (OSTI)

The GRI asked Booz, Allen, and Hamilton to analyze the integration of passive solar with gas-fired energy systems for heating and cooling homes. Direct gain, trombe wall, thermosiphon and thermal roof storage heating systems were studied. Solar load control, evaporative cooling, earth coupling, and night radiation cooling systems were investigated. The drawbacks of conventional gas backup systems are discussed. Innovative passive/gas combinations are recommended. These include multizone gas furnace, decentralized gas space heater, gas desiccant dehumidifier, and gas dehumidifier for basement drying. The multizone furnace saves $1500, and is recommended for Pilot Version development.

Hartman, D.; Kosar, D.

1983-06-01T23:59:59.000Z

54

LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL  

SciTech Connect (OSTI)

''Conventional'' waste landfills emit methane, a potent greenhouse gas, in quantities such that landfill methane is a major factor in global climate change. Controlled landfilling is a novel approach to manage landfills for rapid completion of total gas generation, maximizing gas capture and minimizing emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated and brought to much earlier completion by improving conditions for biological processes (principally moisture levels) in the landfill. Gas recovery efficiency approaches 100% through use of surface membrane cover over porous gas recovery layers operated at slight vacuum. A field demonstration project's results at the Yolo County Central Landfill near Davis, California are, to date, highly encouraging. Two major controlled landfilling benefits would be the reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role in reduction of US greenhouse gas emissions.

Don Augenstein

1999-01-11T23:59:59.000Z

55

Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power  

E-Print Network [OSTI]

Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power Over the last thirty years, moreMineLand Rehabilitation · PowerGeneration · System/PlantOperation andMaintenance · AuxiliaryNaturalGas Combustion · Coal-scale concentrating solar power (CSP) systems. These LCAs have yielded wide-ranging results. Variation could

56

Property:Building/SPPurchasedEngyPerAreaKwhM2DigesterLandfillGas | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformationInyo County,Information SPPurchasedEngyNrmlYrMwhYrTownGas Jump to:Energy

57

Gas Turbine/Solar Parabolic Trough Hybrid Designs: Preprint  

SciTech Connect (OSTI)

A strength of parabolic trough concentrating solar power (CSP) plants is the ability to provide reliable power by incorporating either thermal energy storage or backup heat from fossil fuels. Yet these benefits have not been fully realized because thermal energy storage remains expensive at trough operating temperatures and gas usage in CSP plants is less efficient than in dedicated combined cycle plants. For example, while a modern combined cycle plant can achieve an overall efficiency in excess of 55%; auxiliary heaters in a parabolic trough plant convert gas to electricity at below 40%. Thus, one can argue the more effective use of natural gas is in a combined cycle plant, not as backup to a CSP plant. Integrated solar combined cycle (ISCC) systems avoid this pitfall by injecting solar steam into the fossil power cycle; however, these designs are limited to about 10% total solar enhancement. Without reliable, cost-effective energy storage or backup power, renewable sources will struggle to achieve a high penetration in the electric grid. This paper describes a novel gas turbine / parabolic trough hybrid design that combines solar contribution of 57% and higher with gas heat rates that rival that for combined cycle natural gas plants. The design integrates proven solar and fossil technologies, thereby offering high reliability and low financial risk while promoting deployment of solar thermal power.

Turchi, C. S.; Ma, Z.; Erbes, M.

2011-03-01T23:59:59.000Z

58

Southwest Gas Corporation- Smarter Greener Better Solar Water Heating Program  

Broader source: Energy.gov [DOE]

Southwest Gas is offering rebates to Nevada customers for solar water heating systems installed in private residential, small business, public and other properties. Rebates are based on the amount...

59

Questar Gas- Residential Solar Assisted Water Heating Rebate Program  

Broader source: Energy.gov [DOE]

Questar gas provides incentives for residential customers to purchase and install solar water heating systems on their homes. Rebates of $750 per system are provided to customers of Questar who...

60

Texas Gas Service- Residential Solar Water Heating Rebate Program (Texas)  

Broader source: Energy.gov [DOE]

Texas Gas Service offers a flat rebate of $750 for its residential customers within the Austin and Sunset Valley city limits for the installation and purchase of a new solar water heater with...

Note: This page contains sample records for the topic "landfill gas solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Questar Gas- Residential Solar Assisted Water Heating Rebate Program (Idaho)  

Broader source: Energy.gov [DOE]

Questar gas provides incentives for residential customers to purchase and install solar water heating systems on their homes. Rebates of $750 per system are provided to customers of Questar who...

62

Life Cycle Greenhouse Gas Emissions from Solar Photovoltaics  

E-Print Network [OSTI]

Life Cycle Greenhouse Gas Emissions from Solar Photovoltaics Over the last thirty years, hundreds and utility-scale solar photovoltaic (PV) systems. These LCAs have yielded wide-ranging results. Variation of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. ~40 g CO2

63

Method of coverning the working gas temperature of a solar heated hot gas engine  

SciTech Connect (OSTI)

A closed-cycle hot gas engine heated by solar radiation is provided with a governing system varying the working gas pressure so as to vary the power output at a constant high temperature level of the working gas and-at least partly-at a constant engine speed.

Almstrom, S.-H.; Nelving, H.G.

1984-07-03T23:59:59.000Z

64

Method of governing the working gas temperature of a solar heated hot gas engine  

SciTech Connect (OSTI)

A closed-cycle hot gas engine heated by solar radiation is provided with a governing system varying the working gas pressure so as to vary the power output at a constant high temperature level of the working gas and-at least partly-at a constant engine speed.

Almstrom, S.H.; Nelving, H.G.

1984-07-03T23:59:59.000Z

65

UNFCCC-Consolidated baseline and monitoring methodology for landfill...  

Open Energy Info (EERE)

baseline and monitoring methodology for landfill gas project activities Jump to: navigation, search Tool Summary LAUNCH TOOL Name: UNFCCC-Consolidated baseline and monitoring...

66

Solar/gas systems impact analysis study. Final report, September 1982-July 1984  

SciTech Connect (OSTI)

The impacts of solar/gas technologies on gas consumers and on gas utilities was measured separately and compared against the impacts of competing gas and electric systems in four climatic regions of the U.S. A methodology was developed for measuring the benefits or penalties of solar/gas systems on a combined basis for consumers and distribution companies. The authors analysis shows that the combined benefits associated with solar/gas systems are generally greatest when the systems are purchased by customers who would have otherwise chosen high-efficiency electric systems (were solar/gas systems not available in the market place). The role of gas utilities in encouraging consumer acceptance of solar/gas systems was also examined in a qualitative fashion. The authors then developed a decision framework for analyzing the type and level of utility involvement in solar/gas technologies.

Hahn, E.F.; Preble, B.; Neill, C.P.; Loose, J.C.; Poe, T.E.

1984-07-01T23:59:59.000Z

67

Solar coal gasification reactor with pyrolysis gas recycle  

DOE Patents [OSTI]

Coal (or other carbonaceous matter, such as biomass) is converted into a duct gas that is substantially free from hydrocarbons. The coal is fed into a solar reactor (10), and solar energy (20) is directed into the reactor onto coal char, creating a gasification front (16) and a pyrolysis front (12). A gasification zone (32) is produced well above the coal level within the reactor. A pyrolysis zone (34) is produced immediately above the coal level. Steam (18), injected into the reactor adjacent to the gasification zone (32), reacts with char to generate product gases. Solar energy supplies the energy for the endothermic steam-char reaction. The hot product gases (38) flow from the gasification zone (32) to the pyrolysis zone (34) to generate hot char. Gases (38) are withdrawn from the pyrolysis zone (34) and reinjected into the region of the reactor adjacent the gasification zone (32). This eliminates hydrocarbons in the gas by steam reformation on the hot char. The product gas (14) is withdrawn from a region of the reactor between the gasification zone (32) and the pyrolysis zone (34). The product gas will be free of tar and other hydrocarbons, and thus be suitable for use in many processes.

Aiman, William R. (Livermore, CA); Gregg, David W. (Morago, CA)

1983-01-01T23:59:59.000Z

68

LANDFILL GAS CONVERSION TO LNG AND LCO{sub 2}. PHASE 1, FINAL REPORT FOR THE PERIOD MARCH 1998-FEBRUARY 1999  

SciTech Connect (OSTI)

Process designs and economics were developed to produce LNG and liquid carbon dioxide (CO{sub 2}) from landfill gas (LFG) using the Acrion CO{sub 2} wash process. The patented Acrion CO{sub 2} wash process uses liquid CO{sub 2} to absorb contaminants from the LFG. The process steps are compression, drying, CO{sub 2} wash contaminant removal and CO{sub 2} recovery, residual CO{sub 2} removal and methane liquefaction. Three flowsheets were developed using different residual CO{sub 2} removal schemes. These included physical solvent absorption (methanol), membranes and molecular sieves. The capital and operating costs of the flowsheets were very similar. The LNG production cost was around ten cents per gallon. In parallel with process flowsheet development, the business aspects of an eventual commercial project have been explored. The process was found to have significant potential commercial application. The business plan effort investigated the economics of LNG transportation, fueling, vehicle conversion, and markets. The commercial value of liquid CO{sub 2} was also investigated. This Phase 1 work, March 1998 through February 1999, was funded under Brookhaven National laboratory contract 725089 under the research program entitled ``Liquefied Natural Gas as a Heavy Vehicle Fuel.'' The Phase 2 effort will develop flowsheets for the following: (1) CO{sub 2} and pipeline gas production, with the pipeline methane being liquefied at a peak shaving site, (2) sewage digester gas as an alternate feedstock to LFG and (3) the use of mixed refrigerants for process cooling. Phase 2 will also study the modification of Acrion's process demonstration unit for the production of LNG and a market site for LNG production.

COOK,W.J.; NEYMAN,M.; SIWAJEK,L.A.; BROWN,W.R.; VAN HAUWAERT,P.M.; CURREN,E.D.

1998-02-25T23:59:59.000Z

69

Photovoltaics on Landfills in Puerto Rico  

SciTech Connect (OSTI)

The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Commonwealth of Puerto Rico for a feasibility study of m0treAlables on several brownfield sites. The EPA defines a brownfield as 'a property, the expansion, redevelopment, or reuse of which may be complicated by the presence or potential presence of a hazardous substance, pollutant, or contaminant.' All of the brownfields in this study are landfill sites. Citizens of Puerto Rico, city planners, and site managers are interested in redevelopment uses for landfills in Puerto Rico, which are particularly well suited for solar photovoltaic (PV) installation. The purpose of this report is to assess the landfills with the highest potential for possible solar PV installation and estimate cost, performance, and site impacts of three different PV options: crystalline silicon (fixed-tilt), crystalline silicon (single-axis tracking), and thin film (fixed-tilt). Each option represents a standalone system that can be sized to use an entire available site area. In addition, the report outlines financing options that could assist in the implementation of a system. The feasibility of PV systems installed on landfills is highly impacted by the available area for an array, solar resource, operating status, landfill cap status, distance to transmission lines, and distance to major roads. All of the landfills in Puerto Rico were screened according to these criteria in order to determine the sites with the greatest potential. Eight landfills were chosen for site visits based on the screening criteria and location. Because of time constraints and the fact that Puerto Rico is a relatively large island, the eight landfills for this visit were all located in the eastern half of the island. The findings from this report can be applied to landfills in the western half of the island. The economics of a potential PV system on landfills in Puerto Rico depend greatly on the cost of electricity. Currently, PREPA has an average electric rate of $0.119/kWh. Based on past electric rate increases in Puerto Rico and other islands in the Caribbean, this rate could increase to $0.15/kWh or higher in a relatively short amount of time. In the coming years, increasing electrical rates and increased necessity for clean power will continue to improve the feasibility of implementing solar PV systems at these sites.

Salasovich, J.; Mosey, G.

2011-01-01T23:59:59.000Z

70

Landfill Disamenities And Better Utilization of Waste Resources Presented to the Wisconsin Governor's Task Force on Waste Materials Recovery  

E-Print Network [OSTI]

emissions. I recently saw an exhibit of a landfill gas carbon adsorber designed to remove siloxanes and air toxics from landfill gas prior to engine burning, to reduce wear on the engine. They later stripped this is a common practice. Most landfill gas energy combustion systems are uncontrolled. In 1998, a New York State

Columbia University

71

Theoretical study of gas heated in a porous material subjected to a concentrated solar radiation (*)  

E-Print Network [OSTI]

W solar furnace of Solar Energy Laboratory in Odeillo (France). Revue Phys. Appl. 15 (1980) 423-426 MARS423 Theoretical study of gas heated in a porous material subjected to a concentrated solar exposed to the solar radiation. These quantities may be expressed in any set consistent units. 1

Paris-Sud XI, Université de

72

Aerobic landfill bioreactor  

DOE Patents [OSTI]

The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

Hudgins, Mark P (Aiken, SC); Bessette, Bernard J (Aiken, SC); March, John (Winterville, GA); McComb, Scott T. (Andersonville, SC)

2000-01-01T23:59:59.000Z

73

Aerobic landfill bioreactor  

DOE Patents [OSTI]

The present invention includes a system of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

Hudgins, Mark P (Aiken, SC); Bessette, Bernard J (Aiken, SC); March, John C (Winterville, GA); McComb, Scott T. (Andersonville, SC)

2002-01-01T23:59:59.000Z

74

LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL  

SciTech Connect (OSTI)

Controlled landfilling is an approach to manage solid waste landfills, so as to rapidly complete methane generation, while maximizing gas capture and minimizing the usual emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated to more rapid and earlier completion to full potential by improving conditions (principally moisture, but also temperature) to optimize biological processes occurring within the landfill. Gas is contained through use of surface membrane cover. Gas is captured via porous layers, under the cover, operated at slight vacuum. A field demonstration project has been ongoing under NETL sponsorship for the past several years near Davis, CA. Results have been extremely encouraging. Two major benefits of the technology are reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times, more predictably, than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role both in reduction of US greenhouse gas emissions and in US renewable energy. The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional landfills. This is the highest methane recovery rate per unit waste, and thus progress toward stabilization, documented anywhere for such a large waste mass. This high recovery rate is attributed to moisture, and elevated temperature attained inexpensively during startup. Economic analyses performed under Phase I of this NETL contract indicate ''greenhouse cost effectiveness'' to be excellent. Other benefits include substantial waste volume loss (over 30%) which translates to extended landfill life. Other environmental benefits include rapidly improved quality and stabilization (lowered pollutant levels) in liquid leachate which drains from the waste.

Don Augenstein; Ramin Yazdani; Rick Moore; Michelle Byars; Jeff Kieffer; Professor Morton Barlaz; Rinav Mehta

2000-02-26T23:59:59.000Z

75

E-Print Network 3.0 - areas treating landfill Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conference COMPARISON OF AIR EMISSIONS FROM WASTE MANAGEMENT FACILITIES Summary: .K. dioxins emissions have been reported in the fugitive gas emissions from landfills as well as...

76

PROOF-OF-CONCEPT OF A DUAL-FIRED (SOLAR & NATURAL GAS) GENERATOR  

E-Print Network [OSTI]

End-Use Energy Efficiency · Industrial/Agricultural/Water End-Use Energy Efficiency · Renewable EnergyPROOF-OF-CONCEPT OF A DUAL-FIRED (SOLAR & NATURAL GAS) GENERATOR FOR USE IN A SPACE-COOLING SYSTEM REPORT (FAR) PROOF-OF-CONCEPT OF A DUAL-FIRED (SOLAR & NATURAL GAS) GENERATOR FOR USE IN A SPACE COOLING

77

Landfill Gas | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey, Washington:Lakeville, MN) Jump to:LamarJump to:Lanco

78

Critical issues in the development of hybrid solar/gas receivers for dish/Stirling systems  

SciTech Connect (OSTI)

A hybrid solar/gas receiver system will allow Stirling engines to operate with combined solar and gas power sources. One of the most attractive options for building a hybrid system is to integrate a gas-fired heat pipe directly into a heat-pipe solar receiver. Before this union can take place, however, a number of technical issues must be resolved. A design must be found that properly distributes the heat-pipe's working fluid over the heated surfaces and prevents fluid from accumulating at undesirable locations in the heat pipe. Experience that has been gained in developing solar receivers and gas-fired heat pipes under recent Department of Energy solar-thermal dish-electric programs is used in this paper to address many of the technical obstacles to building receiver systems. 16 refs.

Adkins, D.R.; Rawlinson, K.S.

1991-01-01T23:59:59.000Z

79

Request for Qualifications for Sacramento Landfill  

Broader source: Energy.gov [DOE]

This Request for Qualifications (RFQ) solicits experienced companies to design, permit, finance, build, and operate a solar photovoltaic farm (SPV Farm) on the City of Sacramento’s 28th Street Landfill. Respondents to this RFQ must demonstrate experience and capacity to design, permit, finance, build, and operate a SPV Farm that generates electricity that can be sold for electrical use through a power-purchase agreement. Submittals must be prepared and delivered in accordance with the requirements set forth in this document.

80

Gas Turbine/Solar Parabolic Trough Hybrid Design Using Molten Salt Heat Transfer Fluid: Preprint  

SciTech Connect (OSTI)

Parabolic trough power plants can provide reliable power by incorporating either thermal energy storage (TES) or backup heat from fossil fuels. This paper describes a gas turbine / parabolic trough hybrid design that combines a solar contribution greater than 50% with gas heat rates that rival those of natural gas combined-cycle plants. Previous work illustrated benefits of integrating gas turbines with conventional oil heat-transfer-fluid (HTF) troughs running at 390?C. This work extends that analysis to examine the integration of gas turbines with salt-HTF troughs running at 450 degrees C and including TES. Using gas turbine waste heat to supplement the TES system provides greater operating flexibility while enhancing the efficiency of gas utilization. The analysis indicates that the hybrid plant design produces solar-derived electricity and gas-derived electricity at lower cost than either system operating alone.

Turchi, C. S.; Ma, Z.

2011-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "landfill gas solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Design of a High Temperature Small Particle Solar Receiver for Powering a Gas Turbine Engine  

E-Print Network [OSTI]

Design of a High Temperature Small Particle Solar Receiver for Powering a Gas Turbine Engine Dr. Fletcher Miller SDSU Department of Mechanical Engineering Abstract Solar thermal power for electricity for the California desert and in other appro- priate regions worldwide. Current technology relies on steam Rankine

Ponce, V. Miguel

82

Rapid Solar-thermal Dissociation of Natural Gas in an Aerosol Flow Reactor  

E-Print Network [OSTI]

/or hydrogen powered fuel cell vehicles could help to mitigate the energy supply and environmental problems black production. For solar-thermal processing, where carbon black is sold, fossil energy usageRapid Solar-thermal Dissociation of Natural Gas in an Aerosol Flow Reactor Jaimee Dahl a , Karen

83

Welcome FUPWG- Natural Gas Overview  

Broader source: Energy.gov [DOE]

Presentation—given at the Federal Utility Partnership Working Group (FUPWG) Fall 2008 meeting—provides an overview of natural gas, including emissions, compressed natural gas (CNG) vehicles, and landfill gas supplement for natural gas system.

84

Livingston Parish Landfill Methane Recovery Project (Feasibility Study)  

SciTech Connect (OSTI)

The Woodside Landfill is owned by Livingston Parish, Louisiana and is operated under contract by Waste Management of Louisiana LLC. This public owner/private operator partnership is commonplace in the solid waste industry today. The landfill has been in operation since approximately 1988 and has a permitted capacity of approximately 41 million cubic yards. Based on an assumed in-place waste density of 0.94 ton per cubic yard, the landfill could have an expected design capacity of 39.3 million tons. The landfill does have an active landfill gas collection and control system (LFGCCS) in place because it meets the minimum thresholds for the New Source Performance Standards (NSPS). The initial LFGCS was installed prior to 2006 and subsequent phases were installed in 2007 and 2010. The Parish received a grant from the United States Department of Energy in 2009 to evaluate the potential for landfill gas recovery and utilization at the Woodside Landfill. This includes a technical and economic feasibility study of a project to install a landfill gas to energy (LFGTE) plant and to compare alternative technologies. The LFGTE plant can take the form of on-site electrical generation, a direct use/medium Btu option, or a high-Btu upgrade technology. The technical evaluation in Section 2 of this report concludes that landfill gas from the Woodside landfill is suitable for recovery and utilization. The financial evaluations in sections 3, 4, and 5 of this report provide financial estimates of the returns for various utilization technologies. The report concludes that the most economically viable project is the Electricity Generation option, subject to the Parish’s ability and willingness to allocate adequate cash for initial capital and/or to obtain debt financing. However, even this option does not present a solid return: by our estimates, there is a 19 year simple payback on the electricity generation option. All of the energy recovery options discussed in this report economically stressed. The primary reason for this is the recent fundamental shift in the US energy landscape. Abundant supplies of natural gas have put downward pressure on any project that displaces natural gas or natural gas substitutes. Moreover, this shift appears long-term as domestic supplies for natural gas may have been increased for several hundred years. While electricity prices are less affected by natural gas prices than other thermal projects, they are still significantly affected since much of the power in the Entergy cost structure is driven by natural gas-fired generation. Consequently, rates reimbursed by the power company based on their avoided cost structure also face downward pressure over the near and intermediate term. In addition, there has been decreasing emphasis on environmental concerns regarding the production of thermal energy, and as a result both the voluntary and mandatory markets that drive green attribute prices have softened significantly over the past couple of years. Please note that energy markets are constantly changing due to fundamental supply and demand forces, as well as from external forces such as regulations and environmental concerns. At any point in the future, the outlook for energy prices may change and could deem either the electricity generation or pipeline injection project more feasible. This report is intended to serve as the primary background document for subsequent decisions made at Parish staff and governing board levels.

White, Steven

2012-11-15T23:59:59.000Z

85

Risk assessment of landfill disposal sites - State of the art  

SciTech Connect (OSTI)

A risk assessment process can assist in drawing a cost-effective compromise between economic and environmental costs, thereby assuring that the philosophy of 'sustainable development' is adhered to. Nowadays risk analysis is in wide use to effectively manage environmental issues. Risk assessment is also applied to other subjects including health and safety, food, finance, ecology and epidemiology. The literature review of environmental risk assessments in general and risk assessment approaches particularly regarding landfill disposal sites undertaken by the authors, reveals that an integrated risk assessment methodology for landfill gas, leachate or degraded waste does not exist. A range of knowledge gaps is discovered in the literature reviewed to date. From the perspective of landfill leachate, this paper identifies the extent to which various risk analysis aspects are absent in the existing approaches.

Butt, Talib E. [Sustainability Centre in Glasgow (SCG), George Moore Building, 70 Cowcaddens Road, Glasgow Caledonian University, Glasgow G4 0BA, Scotland (United Kingdom)], E-mail: t_e_butt@hotmail.com; Lockley, Elaine [Be Environmental Ltd. Suite 213, Lomeshaye Business Village, Turner Road, Nelson, Lancashire, BB9 7DR, England (United Kingdom); Oduyemi, Kehinde O.K. [Built and Natural Environment, Baxter Building, University of Abertay Dundee, Bell Street, Dundee DD1 1HG, Scotland (United Kingdom)], E-mail: k.oduyemi@abertay.ac.uk

2008-07-01T23:59:59.000Z

86

LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL  

SciTech Connect (OSTI)

The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional landfills. This is the highest methane recovery rate per unit waste, and thus progress toward stabilization, documented anywhere for such a large waste mass. This high recovery rate is attributed to moisture, and elevated temperature attained inexpensively during startup. Economic analyses performed under Phase I of this NETL contract indicate ''greenhouse cost effectiveness'' to be excellent. Other benefits include substantial waste volume loss (over 30%) which translates to extended landfill life. Other environmental benefits include rapidly improved quality and stabilization (lowered pollutant levels) in liquid leachate which drains from the waste.

Don Augenstein

2001-02-01T23:59:59.000Z

87

Recirculation of municipal landfill leachate  

E-Print Network [OSTI]

RECIRCULATION OF MUNICIPAL LANDFILL LEACHATE A Thesis by BRIAN JUDE PINKO4ISKI Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1987 Major Subject...: Civil Engineering RECIRCULATION OF MUNICIPAL LANDFILL LEACHATE A Thesis by BRIAN JUDE PINKOWSKI Approved as to style and content by: Charles P. Giammona (Chair of Committee) Roy . Harm, (Member) Kirk W. Brown (Member) Donald A. Maxwel...

Pinkowski, Brian Jude

2012-06-07T23:59:59.000Z

88

CAST solar axion search with 3^He buffer gas: Closing the hot dark matter gap  

E-Print Network [OSTI]

The CERN Axion Solar Telescope (CAST) has finished its search for solar axions with 3^He buffer gas, covering the search range 0.64 eV < m_a <1.17 eV. This closes the gap to the cosmological hot dark matter limit and actually overlaps with it. From the absence of excess X-rays when the magnet was pointing to the Sun we set a typical upper limit on the axion-photon coupling of g_ag < 3.3 x 10^{-10} GeV^{-1} at 95% CL, with the exact value depending on the pressure setting. Future direct solar axion searches will focus on increasing the sensitivity to smaller values of g_a, for example by the currently discussed next generation helioscope IAXO.

M. Arik; S. Aune; K. Barth; A. Belov; S. Borghi; H. Brauninger; G. Cantatore; J. M. Carmona; S. A. Cetin; J. I. Collar; E. Da Riva; T. Dafni; M. Davenport; C. Eleftheriadis; N. Elias; G. Fanourakis; E. Ferrer-Ribas; P. Friedrich; J. Galan; J. A. Garcia; A. Gardikiotis; J. G. Garza; E. N. Gazis; T. Geralis; E. Georgiopoulou; I. Giomataris; S. Gninenko; H. Gomez; M. Gomez Marzoa; E. Gruber; T. Guthorl; R. Hartmann; S. Hauf; F. Haug; M. D. Hasinoff; D. H. H. Hoffmann; F. J. Iguaz; I. G. Irastorza; J. Jacoby; K. Jakovcic; M. Karuza; K. Konigsmann; R. Kotthaus; M. Krcmar; M. Kuster; B. Lakic; P. M. Lang; J. M. Laurent; A. Liolios; A. Ljubicic; V. Lozza; G. Luzon; S. Neff; T. Niinikoski; A. Nordt; T. Papaevangelou; M. J. Pivovaroff; G. Raffelt; H. Riege; A. Rodriguez; M. Rosu; J. Ruz; I. Savvidis; I. Shilon; P. S. Silva; S. K. Solanki; L. Stewart; A. Tomas; M. Tsagri; K. van Bibber; T. Vafeiadis; J. Villar; J. K. Vogel; S. C. Yildiz; K. Zioutas

2014-09-15T23:59:59.000Z

89

Solar Thermal Conversion of Biomass to Synthesis Gas: Cooperative Research and Development Final Report, CRADA Number CRD-09-00335  

SciTech Connect (OSTI)

The CRADA is established to facilitate the development of solar thermal technology to efficiently and economically convert biomass into useful products (synthesis gas and derivatives) that can replace fossil fuels. NREL's High Flux Solar Furnace will be utilized to validate system modeling, evaluate candidate reactor materials, conduct on-sun testing of the process, and assist in the development of solar process control system. This work is part of a DOE-USDA 3-year, $1M grant.

Netter, J.

2013-08-01T23:59:59.000Z

91

Fluxes of methane between landfills and the atmosphere: Natural and engineered controls  

SciTech Connect (OSTI)

Field measurement of landfill methane emissions indicates natural variability spanning more than 2 seven orders of magnitude, from approximately 0.0004 to more than 4000 g m{sub -2} day{sup -1}. This wide range reflects net emissions resulting from production (methanogenesis), consumption (methanotrophic oxidation), and gaseous transport processes. The determination of an {open_quotes}average{close_quotes} emission rate for a given field site requires sampling designs and statistical techniques which consider spatial and temporal variability. Moreover, particularly at sites with pumped gas recovery systems, it is possible for methanotrophic microorganisms in aerated cover soils to oxidize all of the methane from landfill sources below and, additionally, to oxidize methane diffusing into cover soils from atmospheric sources above. In such cases, a reversed soil gas concentration gradient is observed in shallow cover soils, indicating bidirectional diffusional transport to the depth of optimum methane oxidation. Rates of landfill methane oxidation from field and laboratory incubation studies range up to 166 g m{sup -2} day{sup -1} among the highest for any natural setting, providing an effective natural control on net emissions. Estimates of worldwide landfill methane emissions to the atmosphere have ranged from 9 to 70 Tg yr{sup -1}, differing mainly in assumed methane yields from estimated quantities of landfilled refuse. At highly controlled landfill sites in developed countries, landfill methane is often collected via vertical wells or horizontal collectors. Recovery of landfill methane through engineered systems can provide both environmental and energy benefits by mitigating subsurface migration, reducing surface emissions, and providing an alternative energy resource for industrial boiler use, on-site electrical generation, or upgrading to a substitute natural gas.

Bogner, J. [Argonne National Lab., IL (United States); Meadows, M. [ETSU, Harwell, Oxfordshire (United Kingdom); Czepiel, P. [Harvard Univ., Cambridge, MA (United States)

1997-08-01T23:59:59.000Z

92

Estimating water content in an active landfill with the aid of GPR  

SciTech Connect (OSTI)

Highlights: • Limited information in the literature on the use of GPR to measure in situ water content in a landfill. • Developed GPR method allows measurement of in situ water content in a landfill. • Developed GPR method is appealing to waste management professionals operating landfills. - Abstract: Landfill gas (LFG) receives a great deal of attention due to both negative and positive environmental impacts, global warming and a green energy source, respectively. However, predicting the quantity of LFG generated at a given landfill, whether active or closed is difficult due to the heterogeneities present in waste, and the lack of accurate in situ waste parameters like water content. Accordingly, ground penetrating radar (GPR) was evaluated as a tool for estimating in situ water content. Due to the large degree of subsurface heterogeneity and the electrically conductive clay cap covering landfills, both of which affect the transmission of the electromagnetic pulses, there is much scepticism concerning the use of GPR to quantify in situ water content within a municipal landfill. Two landfills were studied. The first landfill was used to develop the measurement protocols, while the second landfill provided a means of confirming these protocols. GPR measurements were initially completed using the surface GPR approach, but the lack of success led to the use of borehole (BH) GPR. Both zero offset profiling (ZOP) and multiple offset gathers (MOG) modes were tried, with the results indicating that BH GPR using the ZOP mode is the most simple and efficient method to measure in situ water content. The best results were obtained at a separation distance of 2 m, where higher the water content, smaller the effective separation distance. However, an increase in water content did appear to increase the accuracy of the GPR measurements. For the effective separation distance of 2 m at both landfills, the difference between GPR and lab measured water contents were reasonable at 33.9% for the drier landfill and 18.1% for the wetter landfill. Infiltration experiments also showed the potential to measure small increases in water content.

Yochim, April, E-mail: ayochim@regionofwaterloo.ca [Region of Waterloo Waste Management Division, 925 Erb Street West, Waterloo, ON N2J 3Z4 (Canada); Zytner, Richard G., E-mail: rzytner@uoguelph.ca [School of Engineering, University of Guelph, Guelph, ON N1G 2W1 (Canada); McBean, Edward A., E-mail: emcbean@uoguelph.ca [School of Engineering, University of Guelph, Guelph, ON N1G 2W1 (Canada); Endres, Anthony L., E-mail: alendres@sciborg.uwaterloo.ca [Dept. of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON N2L 3G1 (Canada)

2013-10-15T23:59:59.000Z

93

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network [OSTI]

and Girard, J. W. , 2001, “HCCI combustion: analysis andratio effect on methane HCCI combustion,” Journal ofEquivalence ratio-EGR control of HCCI engine operation and

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

94

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network [OSTI]

from combustion of fuel Power loss from evacuated exhaustturbo and ATA Engine power losses Power rejected by enginesteady state operation Power loss from escaping exhaust

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

95

LATERAL LANDFILL GAS MIGRATION: CHARACTERIZATION AND  

E-Print Network [OSTI]

, where waste was buried without building a compacted clay liner at the bottom of the cells. Exploitation of the site. After capping the old cells with a geosynthetic liner, areas of poor crop production (zone Zl and transversal section studied. The site was initially exploited for clay and later filled with domestic waste

Boyer, Edmond

96

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network [OSTI]

Fundamentals of the Internal Combustion engine,” Prenticemany aspects of internal combustion engine design. Involvedof ICEF2006 ASME Internal Combustion Engine Division 2006

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

97

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network [OSTI]

chemical- kinetic model of propane HCCI combustion,” SAEof a four-cylinder 1.9 l propane- fueled homogeneous chargethe fuel line can use propane from a tank and NG from the

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

98

EA-1707: Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste Landfill, Hanford Site, Richland, Washington  

Broader source: Energy.gov [DOE]

This EA evaluates the potential environmental impacts of closing the Nonradioactive Dangerous Waste Landfill and the Solid Waste Landfill. The Washington State Department of Ecology is a cooperating agency in preparing this EA.

99

Settlement Prediction, Gas Modeling and Slope Stability Analysis  

E-Print Network [OSTI]

Settlement Prediction, Gas Modeling and Slope Stability Analysis in Coll Cardús Landfill Li Yu UNIVERSIDAD POLITÉCNICA DE CATALUÑA April, 2007 GEOMODELS #12;Introduction to Coll Cardús landfill Prediction of settlement in Coll Cardús landfill 1) Settlement prediction by empirical method 2) Settlement prediction

Politècnica de Catalunya, Universitat

100

Feasibility Study & Design of Brightfield Solar Farm  

SciTech Connect (OSTI)

This Congressionally Directed Project originally provided funds to the Township of Lower Providence, Pennsylvania for the purpose of investigating the potential for a renewable energy generation facility to make beneficial reuse of a closed landfill located within the Township, known as Moyer Landfill. Early in the course of the project, it was determined through collaboration and discussion with DOE to alter the scope of the project to include a feasibility assessment of a landfill solar project, as well as to construct a demonstration solar project at the municipal facilities to provide an educational and community outreach opportunity for the Township to offer regarding solar photovoltaic (“PV”) electricity generation.

Law, Susan

2014-09-28T23:59:59.000Z

Note: This page contains sample records for the topic "landfill gas solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Solar powered desalination system  

E-Print Network [OSTI]

As a clean energy source, solar power is inexhaustible,renewables for energy sources, including solar power. Also,Requirements Energy Source Natural Gas Nuclear Solar Wind

Mateo, Tiffany Alisa

2011-01-01T23:59:59.000Z

102

Bioreactor Landfill Research and Demonstration Project Northern Oaks Landfill, Harrison, MI  

SciTech Connect (OSTI)

A bioreactor landfill cell with 1.2-acre footprint was constructed, filled, operated, and monitored at Northern Oaks Recycling and Disposal Facility (NORDF) at Harrison, MI. With a filled volume of 74,239 cubic yards, the cell contained approximately 35,317 tons of municipal solid waste (MSW) and 20,777 tons of cover soil. It was laid on the slope of an existing cell but separated by a geosynthetic membrane liner. After the cell reached a design height of 60 feet, it was covered with a geosynthetic membrane cap. A three-dimensional monitoring system to collect data at 48 different locations was designed and installed during the construction phase of the bioreactor cell. Each location had a cluster of monitoring devices consisting of a probe to monitor moisture and temperature, a leachate collection basin, and a gas sampling port. An increase in moisture content of the MSW in the bioreactor cell was achieved by pumping leachate collected on-site from various other cells, as well as recirculation of leachate from the bioreactor landfill cell itself. Three types of leachate injection systems were evaluated in this bioreactor cell for their efficacy to distribute pumped leachate uniformly: a leachate injection pipe buried in a 6-ft wide horizontal stone mound, a 15-ft wide geocomposite drainage layer, and a 60-ft wide geocomposite drainage layer. All leachate injection systems were installed on top of the compacted waste surface. The distribution of water and resulting MSW moisture content throughout the bioreactor cell was found to be similar for the three designs. Water coming into and leaving the cell (leachate pumped in, precipitation, snow, evaporation, and collected leachate) was monitored in order to carry out a water balance. Using a leachate injection rate of 26 – 30 gal/yard3, the average moisture content increased from 25% to 35% (wet based) over the period of this study. One of the key aspects of this bioreactor landfill study was to evaluate bioreactor start up and performance in locations with colder climate. For lifts filled during the summer months, methane generation started within three months after completion of the lift. For lifts filled in winter months, very little methane production occurred even eight months after filling. The temperature data indicated that subzero or slightly above zero (oC) temperatures persisted for unusually long periods (more than six months) in the lifts filled during winter months. This was likely due to the high thermal insulation capability of the MSW and the low level of biological activity during start up. This observation indicates that bioreactor landfills located in cold climate and filled during winter months may require mechanisms to increase temperature and initiate biodegradation. Thus, besides moisture, temperature may be the next important factor controlling the biological decomposition in anaerobic bioreactor landfills. Spatial and temporal characterization of leachate samples indicated the presence of low levels of commonly used volatile organic compounds (including acetone, methyl ethyl ketone, methyl isobutyl ketone, and toluene) and metals (including arsenic, chromium, and zinc). Changes and leachate and gaseous sample characteristics correlated with enhanced biological activity and increase in temperature. Continued monitoring of this bioreactor landfill cell is expected to yield critical data needed for start up, design, and operation of this emerging process.

Zhao, Xiando; Voice, Thomas; and Hashsham, Syed A.

2006-08-29T23:59:59.000Z

103

Industrial Solid Waste Landfill Facilities (Ohio)  

Broader source: Energy.gov [DOE]

This chapter of the law establishes that the Ohio Environmental Protection Agency provides rules and guidelines for landfills, including those that treat waste to generate electricity. The law...

104

CHP and Bioenergy Systems for Landfills and Wastewater Treatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems for Landfills and Wastewater Treatment Plants CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants There are important issues to consider when selecting...

105

CHP and Bioenergy for Landfills and Wastewater Treatment Plants...  

Broader source: Energy.gov (indexed) [DOE]

for Landfills and Wastewater Treatment Plants: Market Opportunities CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities This document explores...

106

Landfill Methane Project Development Handbook | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories on climateJuno Beach,October, 2012 - 08:20EmissionLandfill Methane

107

The environmental comparison of landfilling vs. incineration of MSW accounting for waste diversion  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Residential waste diversion initiatives are more successful with organic waste. Black-Right-Pointing-Pointer Using a incineration to manage part of the waste is better environmentally. Black-Right-Pointing-Pointer Incineration leads to more power plant emission offsets. Black-Right-Pointing-Pointer Landfilling all of the waste would be preferred financially. - Abstract: This study evaluates the environmental performance and discounted costs of the incineration and landfilling of municipal solid waste that is ready for the final disposal while accounting for existing waste diversion initiatives, using the life cycle assessment (LCA) methodology. Parameters such as changing waste generation quantities, diversion rates and waste composition were also considered. Two scenarios were assessed in this study on how to treat the waste that remains after diversion. The first scenario is the status quo, where the entire residual waste was landfilled whereas in the second scenario approximately 50% of the residual waste was incinerated while the remainder is landfilled. Electricity was produced in each scenario. Data from the City of Toronto was used to undertake this study. Results showed that the waste diversion initiatives were more effective in reducing the organic portion of the waste, in turn, reducing the net electricity production of the landfill while increasing the net electricity production of the incinerator. Therefore, the scenario that incorporated incineration performed better environmentally and contributed overall to a significant reduction in greenhouse gas emissions because of the displacement of power plant emissions; however, at a noticeably higher cost. Although landfilling proves to be the better financial option, it is for the shorter term. The landfill option would require the need of a replacement landfill much sooner. The financial and environmental effects of this expenditure have yet to be considered.

Assamoi, Bernadette [Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5 (Canada); Lawryshyn, Yuri, E-mail: yuri.lawryshyn@utoronto.ca [Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5 (Canada)

2012-05-15T23:59:59.000Z

108

Technical Potential of Solar Water Heating to Reduce Fossil Fuel Use and Greenhouse Gas Emissions in the United States  

SciTech Connect (OSTI)

Use of solar water heating (SWH) in the United States grew significantly in the late 1970s and early 1980s, as a result of increasing energy prices and generous tax credits. Since 1985, however, expiration of federal tax credits and decreased energy prices have virtually eliminated the U.S. market for SWH. More recently, increases in energy prices, concerns regarding emissions of greenhouse gases, and improvements in SWH systems have created new interest in the potential of this technology. SWH, which uses the sun to heat water directly or via a heat-transfer fluid in a collector, may be particularly important in its ability to reduce natural gas use. Dependence on natural gas as an energy resource in the United States has significantly increased in the past decade, along with increased prices, price volatility, and concerns about sustainability and security of supply. One of the readily deployable technologies available to decrease use of natural gas is solar water heating. This report provides an overview of the technical potential of solar water heating to reduce fossil fuel consumption and associated greenhouse gas emissions in U.S. residential and commercial buildings.

Denholm, P.

2007-03-01T23:59:59.000Z

109

Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuels in ItsStationHydrogenNatural Gas Landfills

110

Municipal Solid Waste Landfills The following Oklahoma landfills currently accept dead livestock. As each facility has different guidelines and  

E-Print Network [OSTI]

Municipal Solid Waste Landfills The following Oklahoma landfills currently accept dead livestock-581-3468 Garfield City of Enid Landfill 580-249-4917 Garvin Foster Waste Disposal Landfill 405-238-2012 Jackson City-436-1403 Call ahead, may limit qty. Pottawatomie Absolute Waste Solutions 405-598-3893 Call ahead Seminole

Balasundaram, Balabhaskar "Baski"

111

Franklin County Sanitary Landfill - Landfill Gas (LFG) to Liquefied Natural Gas (LNG) - Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds" GiveFuture ofFRANKLIN COUNTY SANITARY

112

Waste management health risk assessment: A case study of a solid waste landfill in South Italy  

SciTech Connect (OSTI)

An integrated risk assessment study has been performed in an area within 5 km from a landfill that accepts non hazardous waste. The risk assessment was based on measured emissions and maximum chronic population exposure, for both children and adults, to contaminated air, some foods and soil. The toxic effects assessed were limited to the main known carcinogenic compounds emitted from landfills coming both from landfill gas torch combustion (e.g., dioxins, furans and polycyclic aromatic hydrocarbons, PAHs) and from diffusive emissions (vinyl chloride monomer, VCM). Risk assessment has been performed both for carcinogenic and non-carcinogenic effects. Results indicate that cancer and non-cancer effects risk (hazard index, HI) are largely below the values accepted from the main international agencies (e.g., WHO, US EPA) and national legislation ( and ).

Davoli, E., E-mail: enrico.davoli@marionegri.i [Istituto di Ricerche Farmacologiche 'Mario Negri', Environmental Health Sciences Department, Via Giuseppe La Masa 19, 20156 Milano (Italy); Fattore, E.; Paiano, V.; Colombo, A.; Palmiotto, M. [Istituto di Ricerche Farmacologiche 'Mario Negri', Environmental Health Sciences Department, Via Giuseppe La Masa 19, 20156 Milano (Italy); Rossi, A.N.; Il Grande, M. [Progress S.r.l., Via Nicola A. Porpora 147, 20131 Milano (Italy); Fanelli, R. [Istituto di Ricerche Farmacologiche 'Mario Negri', Environmental Health Sciences Department, Via Giuseppe La Masa 19, 20156 Milano (Italy)

2010-08-15T23:59:59.000Z

113

Geohydrology and groundwater geochemistry at a sub-arctic landfill, Fairbanks, Alaska  

SciTech Connect (OSTI)

The Fairbanks-North Star Borough, Alaska, landfill is located on silt, sand, and gravel deposits of the Tanana River flood plain, about 3 miles south of the city of Fairbanks water supply wells. The landfill has been in operation for about 25 years in this sub-arctic region of discontinuous permafrost. The cold climate limits biological activity within the landfill with corresponding low gas and leachate production. Chloride concentrations, specific conductance, water temperature, and earth conductivity measurements indicate a small plume of leachate flowing to the northwest from the landfill. The leachate remains near the water table as it flows northwestward toward a drainage ditch. Results of computer modeling of this local hydrologic system indicate that some of the leachate may be discharging to the ditch. Chemical data show that higher-than-background concentrations of several ions are present in the plume. However, the concentrations appear to be reduced to background levels within a short distance along the path of groundwater flow from the landfill, and thus the leachate is not expected to affect the water supply wells. 11 refs., 21 figs., 2 tabs.

Downey, J.S.; Sinton, P.O.

1990-01-01T23:59:59.000Z

114

kjkj kjkjkjkj kj Path: T:\\Projects\\CEC\\TLPP_Maps\\Statewide PP\\ARCGIS\\State OpPP_A.mxdDate: 8/28/2012  

E-Print Network [OSTI]

!( OIL/GAS kj SOLAR ã WIND " BIOMASS # COAL $1 DIGESTER GAS ^_ GEOTHERMAL # HYDRO %, LANDFILL GAS Legend

115

If current capacity were to be expanded so that all of the non-recycled municipal solid waste that is currently sent to U.S. landfills each year could instead be converted to energy, we could generate enough electricity  

E-Print Network [OSTI]

so that we could convert our non-recycled waste to alternative energy instead of landfilling it, we-recycled waste into energy instead of landfilling it, we could reduce greenhouse gas (GHG) emissions by nearly our roads. The Power of Waste GARBAGE ENERGY REDUCES 123M TONS CO2 = 23M LESS CARS PLASTICS 5.7B

116

Synthesis Gas Production by Rapid Solar Thermal Gasification of Corn Stover  

SciTech Connect (OSTI)

Biomass resources hold great promise as renewable fuel sources for the future, and there exists great interest in thermochemical methods of converting these resources into useful fuels. The novel approach taken by the authors uses concentrated solar energy to efficiently achieve temperatures where conversion and selectivity of gasification are high. Use of solar energy removes the need for a combustion fuel and upgrades the heating value of the biomass products. The syngas product of the gasification can be transformed into a variety of fuels useable with today?s infrastructure. Gasification in an aerosol reactor allows for rapid kinetics, allowing efficient utilization of the incident solar radiation and high solar efficiency.

Perkins, C. M.; Woodruff, B.; Andrews, L.; Lichty, P.; Lancaster, B.; Weimer, A. W.; Bingham, C.

2008-03-01T23:59:59.000Z

117

Coupling of the Photosphere to the Solar Corona: A laboratory and observational study of Alfvén wave interaction with a neutral gas  

SciTech Connect (OSTI)

The grant funded a three year project to investigate the role of Alfvén waves as a possible mechanism heating plasmas, with relevance to solar coronal heating. Evidence suggests that there is strong coupling between the solar photosphere, corona and solar wind through Alfvén wave interaction with the neutral gas particles. A laboratory experimental and solar observational plan was designed to investigate in detail this interaction. Although many of the original research goals were met, difficulties in detecting the Alfvén wave signature meant that much of the research was stymied. This report summaries the work during the grant period, the challenges encountered and overcome, and the future research directions.

watts, Christopher

2010-01-31T23:59:59.000Z

118

Reducing Open Cell Landfill Methane Emissions with a Bioactive Alternative Daily  

SciTech Connect (OSTI)

Methane and carbon dioxide are formed in landfills as wastes degrade. Molecule-for-molecule, methane is about 20 times more potent than carbon dioxide at trapping heat in the earth's atmosphere, and thus, it is the methane emissions from landfills that are scrutinized. For example, if emissions composed of 60% methane and 40% carbon dioxide were changed to a mix that was 40% methane and 60% carbon dioxide, a 30% reduction in the landfill's global warming potential would result. A 10% methane, 90% carbon dioxide ratio will result in a 75% reduction in global warming potential compared to the baseline. Gas collection from a closed landfill can reduce emissions, and it is sometimes combined with a biocover, an engineered system where methane oxidizing bacteria living in a medium such as compost, convert landfill methane to carbon dioxide and water. Although methane oxidizing bacteria merely convert one greenhouse gas (methane) to another (carbon dioxide), this conversion can offer significant reductions in the overall greenhouse gas contribution, or global warming potential, associated with the landfill. What has not been addressed to date is the fact that methane can also escape from a landfill when the active cell is being filled with waste. Federal regulations require that newly deposited solid waste to be covered daily with a 6 in layer of soil or an alternative daily cover (ADC), such as a canvas tarp. The aim of this study was to assess the feasibility of immobilizing methane oxidizing bacteria into a tarp-like matrix that could be used for alternative daily cover at open landfill cells to prevent methane emissions. A unique method of isolating methanotrophs from landfill cover soil was used to create a liquid culture of mixed methanotrophs. A variety of prospective immobilization techniques were used to affix the bacteria in a tarp-like matrix. Both gel encapsulation of methanotrophs and gels with liquid cores containing methanotrophs were readily made but prone to rapid desiccation. Bacterial adsorption onto foam padding, natural sponge, and geotextile was successful. The most important factor for success appeared to be water holding capacity. Prototype biotarps made with geotextiles plus adsorbed methane oxidizing bacteria were tested for their responses to temperature, intermittent starvation, and washing (to simulate rainfall). The prototypes were mesophilic, and methane oxidation activity remained strong after one cycle of starvation but then declined with repeated cycles. Many of the cells detached with vigorous washing, but at least 30% appeared resistant to sloughing. While laboratory landfill simulations showed that four-layer composite biotarps made with two different types of geotextile could remove up to 50% of influent methane introduced at a flux rate of 22 g m{sup -2} d{sup -1}, field experiments did not yield high activity levels. Tests revealed that there were high hour-to-hour flux variations in the field, which, together with frequent rainfall events, confounded the field testing. Overall, the findings suggest that a methanotroph embedded biotarp appears to be a feasible strategy to mitigate methane emission from landfill cells, although the performance of field-tested biotarps was not robust here. Tarps will likely be best suited for spring and summer use, although the methane oxidizer population may be able to shift and adapt to lower temperatures. The starvation cycling of the tarp may require the capacity for intermittent reinoculation of the cells, although it is also possible that a subpopulation will adapt to the cycling and become dominant. Rainfall is not expected to be a major factor, because a baseline biofilm will be present to repopulate the tarp. If strong performance can be achieved and documented, the biotarp concept could be extended to include interception of other compounds beyond methane, such as volatile aromatic hydrocarbons and chlorinated solvents.

Helene Hilger; James Oliver; Jean Bogner; David Jones

2009-03-31T23:59:59.000Z

119

Wasting Time : a leisure infrastructure for mega-landfill  

E-Print Network [OSTI]

Landfills are consolidating into fewer, taller, and more massive singular objects in the exurban landscape.This thesis looks at one instance in Virginia, the first regional landfill in the state to accept trash from New ...

Nguyen, Elizabeth M. (Elizabeth Margaret)

2007-01-01T23:59:59.000Z

120

Landfill Instability and Its Implications Operation, Construction, and Design  

E-Print Network [OSTI]

landfill waste slide, a 300,000 cubic yard landfill failure involving a geosynthetic clay liner, and a 100 occurred involving liner systems during construction and waste containment closures. Recently an older

Note: This page contains sample records for the topic "landfill gas solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Landfill stabilization focus area: Technology summary  

SciTech Connect (OSTI)

Landfills within the DOE Complex as of 1990 are estimated to contain 3 million cubic meters of buried waste. The DOE facilities where the waste is predominantly located are at Hanford, the Savannah River Site (SRS), the Idaho National Engineering Laboratory (INEL), the Los Alamos National Laboratory (LANL), the Oak Ridge Reservation (ORR), the Nevada Test Site (NTS), and the Rocky Flats Plant (RFP). Landfills include buried waste, whether on pads or in trenches, sumps, ponds, pits, cribs, heaps and piles, auger holes, caissons, and sanitary landfills. Approximately half of all DOE buried waste was disposed of before 1970. Disposal regulations at that time permitted the commingling of various types of waste (i.e., transuranic, low-level radioactive, hazardous). As a result, much of the buried waste throughout the DOE Complex is presently believed to be contaminated with both hazardous and radioactive materials. DOE buried waste typically includes transuranic-contaminated radioactive waste (TRU), low-level radioactive waste (LLW), hazardous waste per 40 CFR 26 1, greater-than-class-C waste per CFR 61 55 (GTCC), mixed TRU waste, and mixed LLW. The mission of the Landfill Stabilization Focus Area is to develop, demonstrate, and deliver safer,more cost-effective and efficient technologies which satisfy DOE site needs for the remediation and management of landfills. The LSFA is structured into five technology areas to meet the landfill remediation and management needs across the DOE complex. These technology areas are: assessment, retrieval, treatment, containment, and stabilization. Technical tasks in each of these areas are reviewed.

NONE

1995-06-01T23:59:59.000Z

122

Full Scale Bioreactor Landfill for Carbon Sequestration and Greenhouse Emission Control  

SciTech Connect (OSTI)

The Yolo County Department of Planning and Public Works constructed a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective was to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entailed the construction of a 12-acre module that contained a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells were highly instrumented to monitor bioreactor performance. Liquid addition commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell and biofilter has been completed. The current project status and preliminary monitoring results are summarized in this report.

Ramin Yazdani; Jeff Kieffer; Kathy Sananikone; Don Augenstein

2005-03-30T23:59:59.000Z

123

FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL  

SciTech Connect (OSTI)

The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches while providing superior environmental protection. The overall objective is to manage landfill solid waste for rapid waste decomposition, maximum landfill gas generation and capture, and minimum long-term environmental consequences. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Construction is complete on the 3.5 acre anaerobic cell and liquid addition has commenced. Construction of the 2.5 acre aerobic cell is nearly complete with only the blower station and biofilter remaining. Waste placement and instrumentation installation is ongoing in the west-side 6-acre anaerobic cell. The current project status and preliminary monitoring results are summarized in this report.

Ramin Yazdani; Jeff Kieffer; Heather Akau

2002-04-01T23:59:59.000Z

124

FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL  

SciTech Connect (OSTI)

The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Construction is complete on the 3.5-acre anaerobic cell and liquid addition has commenced. Construction of the 2.5-acre aerobic cell is nearly complete with only the biofilter remaining and construction of the west-side 6-acre anaerobic cell is nearly complete with only the liquid addition system remaining. The current project status and preliminary monitoring results are summarized in this report.

Ramin Yazdani; Jeff Kieffer; Heather Akau

2003-05-01T23:59:59.000Z

125

FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL  

SciTech Connect (OSTI)

The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Construction is complete on the 3.5-acre anaerobic cell and liquid addition has commenced. Construction of the 2.5 acre aerobic cell is nearly complete with only the blower station and biofilter remaining. Waste placement and instrumentation installation is ongoing in the west-side 6-acre anaerobic cell. The current project status and preliminary monitoring results are summarized in this report.

Ramin Yazdani; Jeff Kieffer; Heather Akau

2002-08-01T23:59:59.000Z

126

FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL  

SciTech Connect (OSTI)

The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Liquid addition has commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell is nearly complete with only the biofilter remaining and is scheduled to be complete by the end of August 2003. The current project status and preliminary monitoring results are summarized in this report.

Ramin Yazdani; Jeff Kieffer; Heather Akau

2003-08-01T23:59:59.000Z

127

FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL  

SciTech Connect (OSTI)

The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Liquid addition has commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell and biofilter has been completed. The remaining task to be completed is to test the biofilter prior to operation, which is currently anticipated to begin in January 2004. The current project status and preliminary monitoring results are summarized in this report.

Ramin Yazdani; Jeff Kieffer; Heather Akau

2003-12-01T23:59:59.000Z

128

Soil Insulation For Barrier Layer Protection In Landfill Covers  

E-Print Network [OSTI]

Landfill covers are designed to isolate waste from the environment by incorporating low-permeability barrier layers. The barrier layer minimizes and controls gas escaping from the waste and the amount of infiltrating moisture available for leachate generation. Barrier layers are typically designed and constructed of a thick layer of compacted fine-grain native soil material or a manufactured geosynthetic clay liner. The barrier layer must be protected from frost damage. Freezing of a compacted soil layer has been shown to cause quick and irreversible degradation. Large increases in permeability have been demonstrated in compacted clay barriers subjected to a minimum number of freezing and thawing cycles. Design methods to protect the barrier layer from frost damage have not been addressed in the research literature. A design procedure is addressed in this paper that determines the thickness of soil required to protect a barrier layer. The procedure is based on sitespecific temperature ...

Gregory Smith Roy

129

Turning waste into energy beats landfilling  

E-Print Network [OSTI]

, not incineration. Miller and others also refer to incineration as a source of dioxins, and they're right. But let's put things in perspective. In Sweden, which has 30 incineration plants, the total amount of dioxins that the landfills throughout Ontario and Michigan release fewer dioxins than that, he needs to hire better advisers

Columbia University

130

Southwest Gas Corporation- Smarter Greener Better Solar Water Heating Program (Arizona)  

Broader source: Energy.gov [DOE]

'''''Note: Effective July 15, 2013, Southwest Gas is no longer accepting applications for the current program year. Systems installed during the current program year will not be eligible for a...

131

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

Power Plant Solar Power Ideal Gas Turbine Topping Braytonwill require higher parasitic power for gas circulation. Theefficiency of a solar power plant with gas-turbine topping

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

132

Geohydrology and ground-water geochemistry at a sub-Arctic Landfill, Fairbanks, Alaska. Water resources investigation  

SciTech Connect (OSTI)

The Fairbanks-North Star Borough landfill is located on silt, sand, and gravel deposits of the Tanana River flood plain, about 3 miles south of the city of Fairbanks water-supply wells. The landfill has been in operation for about 25 years in this sub-arctic region of discontinuous permafrost. The cold climate limits biological activity within the landfill with corresponding low gas and leachate production. Chloride concentrations, specific conductance, water temperatures, and earth conductivity measurements indicate a small plume of leachate flowing to the northwest from the landfill. The leachate remains near the water table as it flows northwestward toward a drainage ditch. Results of computer modeling of this local hydrologic system indicate that some of the leachate may be discharging to the ditch. Chemical data show that higher-than-background concentrations of several ions are present in the plume. However, the concentrations appear to be reduced to background levels within a short distance along the path of ground-water flow from the landfill, and thus the leachate is not expected to affect the water-supply wells.

Downey, J.S.; Sinton, P.O.

1990-01-01T23:59:59.000Z

133

Accepted for publication in Energy Policy Greenhouse-gas Emissions from Solar Electric-and Nuclear Power: A Life-cycle  

E-Print Network [OSTI]

Accepted for publication in Energy Policy Greenhouse-gas Emissions from Solar Electric- and Nuclear, photovoltaic, nuclear, life cycle 1 #12;Introduction The production of energy by burning fossil fuels generates, it is envisioned that expanding generation technologies based on nuclear power and renewable energy sources would

134

Field performance of a geosynthetic clay liner landfill capping system under simulated waste subsidence  

SciTech Connect (OSTI)

A flexible landfill capping system consisting of a 3-D-geocore composite for gas vent, a Geosynthetic Clay Liner (GCL) for sealing and a 3-D-geocore composite for drainage of the vegetation soil was built on a test field at Michelshoehe landfill near Weimar, Germany. At four locations airbags were installed underneath the thin capping system to simulate subsidences. On top of three of these airbags overlaps of the GCL were positioned, for comparison there was no overlap at the fourth location. After hydratation of the GCL the airbags were de-aerated and subsidences occurred with app. 5 % tensile strain in the GCL. For three weeks the test field was intensively sprinkled in intervals. Then horizontal and vertical deformations were measured, but not displacements were registered in the overlaps. The evaluation of the GCL`s permeability showed no significant difference between the locations with and without overlaps.

Weiss, W. [Hochschule fur Architektur und Bauwesen (Germany); Siegmund, M. [Materialforschungs - und, Prufanstalt (Germany); Alexiew, D.

1995-10-01T23:59:59.000Z

135

Hydrogeological Environmental Assessment of Sanitary Landfill Project at Jammu City, India  

E-Print Network [OSTI]

of Sanitary Landfill Project at Jammu City, India Bharata proposed landfill facility for the city of Jammu in India.landfill projects have been conceived, designed, and completed in India.

Nagar, Bharat Bhushan; Mirza, Umar Karim

2002-01-01T23:59:59.000Z

136

Evaluation of three geophysical methods to locate undocumented landfills  

E-Print Network [OSTI]

Metal Object. The Arrows Are Vectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Figure 45: Magnetic Profile over Area Fill, Station 19, Brenham Landfill. 84 Figure 46: Magnetic Profile over Undisturbed Area, Station... and the road. Thus the northern portion of the entrance way loop especially on the western side was not landfilled. The pond on the north western boundary of the landfill in the well buffer zone was installed for fire control purposes. After the entrance...

Brand, Stephen Gardner

1991-01-01T23:59:59.000Z

137

DOE EM Landfill Workshop and Path Forward - July 2009  

Office of Environmental Management (EM)

SSAB Teleconference: 2. DOE EM Landfill Workshop & Path Forward Office of Groundwater and Soil Remediation US Department of Energy July 2009 Slides prepared by CRESP DOE EM...

138

E-Print Network 3.0 - ardeer landfill scotland Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

...28 Are there risks associated with landfilling of air pollution control residues... . 79% went to landfill sites, 21% to ash processors to make into...

139

E-Print Network 3.0 - ammonium-rich sanitary landfill Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Objective With engineered sanitary landfills... , biogas generation from garbage, pyrolysis and sanitary landfills. These methods include efforts... method in Indian cities....

140

Landfill Disposal of CCA-Treated Wood with Construction and  

E-Print Network [OSTI]

Landfill Disposal of CCA-Treated Wood with Construction and Demolition (C&D) Debris: Arsenic phased out of many residential uses in the United States, the disposal of CCA-treated wood remains. Catastrophic events have also led to the concentrated disposal of CCA-treated wood, often in unlined landfills

Florida, University of

Note: This page contains sample records for the topic "landfill gas solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

"Maximum recycling of Material and Energy, Minimum of Landfilling"  

E-Print Network [OSTI]

in "Recycling". "Waste-to-Energy" is now defined as Recycling, when energy efficiency is > 0,65 Prevention Reuse Recycling and Waste-to Energy? #12;6 European Policies on Landfill Ban The EU Landfill Directive The amount Ban decided upon in 2000, in force in 2005. A very strong effect, with a strong increase of Waste-to-Energy

Columbia University

142

Aluminum Reactions and Problems in Municipal Solid Waste Landfills  

E-Print Network [OSTI]

Aluminum Reactions and Problems in Municipal Solid Waste Landfills G. Vincent Calder, Ph.D.1 ; and Timothy D. Stark, Ph.D., P.E., F.ASCE2 Abstract: Aluminum enters municipal solid waste MSW landfills from untreated raw curbside trash MSW , industrial waste, and aluminum production wastes variously called dross

143

Aluminum Waste Reaction Indicators in a Municipal Solid Waste Landfill  

E-Print Network [OSTI]

Aluminum Waste Reaction Indicators in a Municipal Solid Waste Landfill Timothy D. Stark, F.ASCE1 landfills may contain aluminum from residential and commercial solid waste, industrial waste, and aluminum pro- duction wastes. Some aluminum-bearing waste materials, particularly aluminum production wastes

144

LESSONS LEARNED FROM A LANDFILL SLOPE FAILURE INVOLVING  

E-Print Network [OSTI]

LESSONS LEARNED FROM A LANDFILL SLOPE FAILURE INVOLVING GEOSYTNTHETICS Virginia L. Wilson: Geosynthetics: Lessons Learned from Failures International Geosynthetics Society editors J.P. Giroud, K.L. Soderman and G.P. Raymond November 12, 1998 #12;LESSONS LEARNED FROM A LANDFILL SLOPE FAILURE INVOLVING

145

Life Cycle Greenhouse Gas Emissions of Trough and Tower Concentrating Solar Power Electricity Generation: Systematic Review and Harmonization  

SciTech Connect (OSTI)

In reviewing life cycle assessment (LCA) literature of utility-scale concentrating solar power (CSP) systems, this analysis focuses on reducing variability and clarifying the central tendency of published estimates of life cycle greenhouse gas (GHG) emissions through a meta-analytical process called harmonization. From 125 references reviewed, 10 produced 36 independent GHG emissions estimates passing screens for quality and relevance: 19 for parabolic trough (trough) technology and 17 for power tower (tower) technology. The interquartile range (IQR) of published estimates for troughs and towers were 83 and 20 grams of carbon dioxide equivalent per kilowatt-hour (g CO2-eq/kWh),1 respectively; median estimates were 26 and 38 g CO2-eq/kWh for trough and tower, respectively. Two levels of harmonization were applied. Light harmonization reduced variability in published estimates by using consistent values for key parameters pertaining to plant design and performance. The IQR and median were reduced by 87% and 17%, respectively, for troughs. For towers, the IQR and median decreased by 33% and 38%, respectively. Next, five trough LCAs reporting detailed life cycle inventories were identified. The variability and central tendency of their estimates are reduced by 91% and 81%, respectively, after light harmonization. By harmonizing these five estimates to consistent values for global warming intensities of materials and expanding system boundaries to consistently include electricity and auxiliary natural gas combustion, variability is reduced by an additional 32% while central tendency increases by 8%. These harmonized values provide useful starting points for policy makers in evaluating life cycle GHG emissions from CSP projects without the requirement to conduct a full LCA for each new project.

Burkhardt, J. J.; Heath, G.; Cohen, E.

2012-04-01T23:59:59.000Z

146

Coal and Gas Industries in Australia a. Overview of Australian coal and gas industries  

E-Print Network [OSTI]

. Wastewater industry and research b. Site visit to Queensland Center for Advanced Technology · Biofuel a. Cellulose biomass resources and utilization b. Ethanol and biofuels c. Biodiesel from Pongemia oil seeds d. Biogas from landfills e. Site visit to Pinjarra Hills biofuel laboratory · Solar Energy a. UQ Solar Array

Subramanian, Venkat

147

Feasibility Study of Economics and Performance of Solar Photovoltaics at the Vincent Mullins Landfill in Tucson, Arizona. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites  

SciTech Connect (OSTI)

The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Vincent Mullins Landfill in Tucson, Arizona, for a feasibility study of renewable energy production. Under the RE-Powering America's Land initiative, the EPA provided funding to the National Renewable Energy Laboratory (NREL) to support the study. NREL provided technical assistance for this project but did not assess environmental conditions at the site beyond those related to the performance of a photovoltaic (PV) system. The purpose of this report is to assess the site for a possible PV installation and estimate the cost and performance of different PV configurations, as well as to recommend financing options that could assist in the implementation of a PV system. In addition to the Vincent Mullins site, four similar landfills in Tucson are included as part of this study.

Steen, M.; Lisell, L.; Mosey, G.

2013-01-01T23:59:59.000Z

148

Planning document for the Advanced Landfill Cover Demonstration  

SciTech Connect (OSTI)

The Department of Energy and Department of Defense are faced with the closure of thousands of decommissioned radioactive, hazardous, and mixed waste landfills as a part of ongoing Environmental Restoration activities. Regulations on the closure of hazardous and radioactive waste landfills require the construction of a ``low-permeability`` cover over the unit to limit the migration of liquids into the underlying waste. These landfills must be maintained and monitored for 30 years to ensure that hazardous materials are not migrating from the landfill. This test plan is intended as an initial road map for planning, designing, constructing, evaluating, and documenting the Advanced Landfill Cover Demonstration (ALCD). It describes the goals/ objectives, scope, tasks, responsibilities, technical approach, and deliverables for the demonstration.

Hakonson, T.E. [Colorado State Univ., Fort Collins, CO (United States). Center for Ecological Risk Assessment & Management; Bostick, K.V. [Los Alamos National Lab., NM (United States). Environmental Science Group

1994-10-01T23:59:59.000Z

149

Construction Costs of Six Landfill Cover Designs  

SciTech Connect (OSTI)

A large-scale field demonstration comparing and contrasting final landfill cover designs has been constructed and is currently being monitored. Four alternative cover designs and two conventional designs (a RCRA Subtitle `D' Soil Cover and a RCRA Subtitle `C' Compacted Clay Cover) were constructed side-by-side for direct comparison. The demonstration is intended to evaluate the various cover designs based on their respective water balance performance, ease and reliability of construction, and cost. This paper provides an overview of the construction costs of each cover design.

Dwyer, S.F.

1998-12-23T23:59:59.000Z

150

Cost comparisons of alternative landfill final covers  

SciTech Connect (OSTI)

A large-scale field demonstration comparing and contrasting final landfill cover designs has been constructed and is currently being monitored. Four alternative cover designs and two conventional designs (a RCRA Subtitle ``D`` Soil Cover and a RCRA Subtitle ``C`` Compacted Clay Cover) were constructed of uniform size, side-by-side. The demonstration is intended to evaluate the various cover designs based on their respective water balance performance, ease and reliability of construction, and cost. This paper provides an overview of the construction costs of each cover design.

Dwyer, S.F.

1997-02-01T23:59:59.000Z

151

Meta-Analysis of Estimates of Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power: Preprint  

SciTech Connect (OSTI)

In reviewing life cycle assessment (LCA) literature of utility-scale CSP systems, this analysis focuses on clarifying central tendency and reducing variability in estimates of life cycle greenhouse gas (GHG) emissions through a meta-analytical process called harmonization. From 125 references reviewed, 10 produced 36 independent GHG emission estimates passing screens for quality and relevance: 19 for parabolic trough technology and 17 for power tower technology. The interquartile range (IQR) of published GHG emission estimates was 83 and 20 g CO2eq/kWh for trough and tower, respectively, with medians of 26 and 38 g CO2eq/kWh. Two levels of harmonization were applied. Light harmonization reduced variability in published estimates by using consistent values for key parameters pertaining to plant design and performance. Compared to the published estimates, IQR was reduced by 69% and median increased by 76% for troughs. IQR was reduced by 26% for towers, and median was reduced by 34%. A second level of harmonization was applied to five well-documented trough LC GHG emission estimates, harmonizing to consistent values for GHG emissions embodied in materials and from construction activities. As a result, their median was further reduced by 5%, while the range increased by 6%. In sum, harmonization clarified previous results.

Heath, G. A.; Burkhardt, J. J.

2011-09-01T23:59:59.000Z

152

Industrial Waste Landfill IV upgrade package  

SciTech Connect (OSTI)

The Y-12 Plant, K-25 Site, and ORNL are managed by DOE`s Operating Contractor (OC), Martin Marietta Energy Systems, Inc. (Energy Systems) for DOE. Operation associated with the facilities by the Operating Contractor and subcontractors, DOE contractors and the DOE Federal Building result in the generation of industrial solid wastes as well as construction/demolition wastes. Due to the waste streams mentioned, the Y-12 Industrial Waste Landfill IV (IWLF-IV) was developed for the disposal of solid industrial waste in accordance to Rule 1200-1-7, Regulations Governing Solid Waste Processing and Disposal in Tennessee. This revised operating document is a part of a request for modification to the existing Y-12 IWLF-IV to comply with revised regulation (Rule Chapters 1200-1-7-.01 through 1200-1-7-.08) in order to provide future disposal space for the ORR, Subcontractors, and the DOE Federal Building. This revised operating manual also reflects approved modifications that have been made over the years since the original landfill permit approval. The drawings referred to in this manual are included in Drawings section of the package. IWLF-IV is a Tennessee Department of Environmental and Conservation/Division of Solid Waste Management (TDEC/DSWM) Class 11 disposal unit.

Not Available

1994-03-29T23:59:59.000Z

153

The Municipal Solid Waste Landfill as a Source of Montreal Protocol-restricted Halocarbons in the  

E-Print Network [OSTI]

The Municipal Solid Waste Landfill as a Source of Montreal Protocol-restricted Halocarbons of Geophysics #12;2 #12;The Municipal Solid Waste Landfill as a Source of Montreal Protocol municipal solid waste (MSW) landfills. With several hundred MSW landfills in both the US and UK, estimating

154

GHG emission factors developed for the collection, transport and landfilling of municipal waste in South African municipalities  

SciTech Connect (OSTI)

Highlights: ? An average GHG emission factor for the collection and transport of municipal solid waste in South Africa is calculated. ? A range of GHG emission factors for different types of landfills (including dumps) in South Africa are calculated. ? These factors are compared internationally and their implications for South Africa and developing countries are discussed . ? Areas for new research are highlighted. - Abstract: Greenhouse gas (GHG) emission factors are used with increased frequency for the accounting and reporting of GHG from waste management. However, these factors have been calculated for developed countries of the Northern Hemisphere and are lacking for developing countries. This paper shows how such factors have been developed for the collection, transport and landfilling of municipal waste in South Africa. As such it presents a model on how international results and methodology can be adapted and used to calculate country-specific GHG emission factors from waste. For the collection and transport of municipal waste in South Africa, the average diesel consumption is around 5 dm{sup 3} (litres) per tonne of wet waste and the associated GHG emissions are about 15 kg CO{sub 2} equivalents (CO{sub 2} e). Depending on the type of landfill, the GHG emissions from the landfilling of waste have been calculated to range from ?145 to 1016 kg CO{sub 2} e per tonne of wet waste, when taking into account carbon storage, and from 441 to 2532 kg CO{sub 2} e per tonne of wet waste, when carbon storage is left out. The highest emission factor per unit of wet waste is for landfill sites without landfill gas collection and these are the dominant waste disposal facilities in South Africa. However, cash strapped municipalities in Africa and the developing world will not be able to significantly upgrade these sites and reduce their GHG burdens if there is no equivalent replacement of the Clean Development Mechanism (CDM) resulting from the Kyoto agreement. Other low cost avenues need to be investigated to suit local conditions, in particular landfill covers which enhance methane oxidation.

Friedrich, Elena, E-mail: Friedriche@ukzn.ac.za [CRECHE Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Engineering, Civil Engineering Programme, University of KwaZulu-Natal, Howard College Campus, Durban (South Africa); Trois, Cristina [CRECHE Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Engineering, Civil Engineering Programme, University of KwaZulu-Natal, Howard College Campus, Durban (South Africa)

2013-04-15T23:59:59.000Z

155

PERFORMANCE ANALYSIS OF A WINDOWED HIGH TEMPERATURE GAS RECEIVER USING A SUSPENSION OF ULTRAFINE CARBON PARTICLES AS THE SOLAR ABSORBER  

E-Print Network [OSTI]

with a regenerated gas turbine sys- tem providing severaltemperature for powering a gas turbine or to supply indus-from the compressor of a gas turbine and passes on to the

Fisk, William J.

2012-01-01T23:59:59.000Z

156

High Efficiency CdTe/CdS Thin Film Solar Cells Prepared by Treating CdTe Films with a Freon Gas in Substitution of CdCl2  

E-Print Network [OSTI]

High Efficiency CdTe/CdS Thin Film Solar Cells Prepared by Treating CdTe Films with a Freon Gas delle Scienze, 37/A-43010 Fontanini, Parma, Italy ABSTRACT: CdTe/CdS thin film solar cells have reached in the preparation of high efficiency CdTe/CdS solar cells is the activation treatment of CdTe film. Most research

Romeo, Alessandro

157

Biomass gasification project gets funding to solve black liquor safety and landfill problems  

SciTech Connect (OSTI)

This paper reports on biomass gasifications. The main by-product in pulp making is black liquor from virgin fiber; the main by-product in paper recycling is fiber residue. Although the black liquor is recycled for chemical and energy recovery, safety problems plague the boilers currently used to do this. The fiber residue is usually transported to a landfill. The system being developed by MTCI will convert black liquor and fiber residue into a combustible gas, which can then be used for a wide variety of thermal or power generation applications.

Black, N.P.

1991-02-01T23:59:59.000Z

158

Olinda Landfill Gas Recovery Plant Biomass Facility | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty, Michigan: Energy ResourcesCoMaine: Energy Resources

159

Lopez Landfill Gas Utilization Project Biomass Facility | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(Monaster AndLittletown,Longwei Silicon Co Ltd JumpEnergy

160

Hartford Landfill Gas Utilization Proj Biomass Facility | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer County is8584°,HardyIowa Dunlap,Hart County is a

Note: This page contains sample records for the topic "landfill gas solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Powering Microturbines With Landfill Gas, October 2002 | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment ofOil'sof Energy Jun Luof05/20/14WhatEnergy Powering

162

Landfill Gas Resources and Technologies | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIanJennifer SomersKnownLabor StandardsSite | Department

163

Winnebago County Landfill Gas Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative JumpWilliamson County,Bay, OR) JumpPhotoSouthWing, NorthWinn,

164

Woodland Landfill Gas Recovery Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative JumpWilliamson County,Bay,°Trap,Woodhull, New York:WoodlandRecovery

165

Penrose Landfill Gas Conversion LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine: Energy Resources Jump to: navigation, search

166

ITP Industrial Distributed Energy: Powering Microturbines With Landfill Gas  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department ofIOWA1999) | Department2009 | Thehigh-tech

167

Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuelsPropane Tank Overfill Safety AdvisoryRefuse

168

RCWMD Badlands Landfill Gas Project Biomass Facility | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColoradosource History View New Pages Recent36 -Act

169

Spadra Landfill Gas to Energy Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd JumpGTZHolland, Illinois:5717551°Farms LtdLLC JumpSouthwoodSoyEnergySpadra

170

Landfill mining: A critical review of two decades of research  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer We analyze two decades of landfill mining research regarding trends and topics. Black-Right-Pointing-Pointer So far landfill mining has mainly been used to solve waste management issues. Black-Right-Pointing-Pointer A new perspective on landfills as resource reservoirs is emerging. Black-Right-Pointing-Pointer The potential of resource extraction from landfills is significant. Black-Right-Pointing-Pointer We outline several key challenges for realization of resource extraction from landfills. - Abstract: Landfills have historically been seen as the ultimate solution for storing waste at minimum cost. It is now a well-known fact that such deposits have related implications such as long-term methane emissions, local pollution concerns, settling issues and limitations on urban development. Landfill mining has been suggested as a strategy to address such problems, and in principle means the excavation, processing, treatment and/or recycling of deposited materials. This study involves a literature review on landfill mining covering a meta-analysis of the main trends, objectives, topics and findings in 39 research papers published during the period 1988-2008. The results show that, so far, landfill mining has primarily been seen as a way to solve traditional management issues related to landfills such as lack of landfill space and local pollution concerns. Although most initiatives have involved some recovery of deposited resources, mainly cover soil and in some cases waste fuel, recycling efforts have often been largely secondary. Typically, simple soil excavation and screening equipment have therefore been applied, often demonstrating moderate performance in obtaining marketable recyclables. Several worldwide changes and recent research findings indicate the emergence of a new perspective on landfills as reservoirs for resource extraction. Although the potential of this approach appears significant, it is argued that facilitating implementation involves a number of research challenges in terms of technology innovation, clarifying the conditions for realization and developing standardized frameworks for evaluating economic and environmental performance from a systems perspective. In order to address these challenges, a combination of applied and theoretical research is required.

Krook, Joakim, E-mail: joakim.krook@liu.se [Department of Management and Engineering, Environmental Technology and Management, Linkoeping University, SE-581 83 Linkoeping (Sweden); Svensson, Niclas; Eklund, Mats [Department of Management and Engineering, Environmental Technology and Management, Linkoeping University, SE-581 83 Linkoeping (Sweden)

2012-03-15T23:59:59.000Z

171

Environmental Assessment and Metrics for Solar: Case Study of SolFocus Solar Concentrator Systems  

E-Print Network [OSTI]

Greenhouse gas analysis of solar-thermal electricity gen-CdTe Concentrator PV Solar Thermal Wind Coal CC Gas Turbinefor the assessment of thermal solar systems,” Proceedings of

Reich-Weiser, Corinne; Dornfeld, David; Horne, Steve

2008-01-01T23:59:59.000Z

172

Recharging U.S. Energy Policy: Advocating for a National Renewable Portfolio Standard  

E-Print Network [OSTI]

electricity generated from the following sources qualifies as renewable energy: "solar thermal electric, photovoltaics, landfill gas, wind, biomass, geothermal

Lunt, Robin J.

2007-01-01T23:59:59.000Z

173

Feasibility Study of Economics and Performance of Solar Photovoltaics at the Crazy Horse Landfill Site in Salinas, California. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites  

SciTech Connect (OSTI)

The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Crazy Horse Landfill site in Salinas, California, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) was contacted to provide technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, operation and maintenance requirements, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

Stoltenberg, B.; Konz, C.; Mosey, G.

2013-03-01T23:59:59.000Z

174

Feasibility Study of Economics and Performance of Solar Photovoltaics at the Kolthoff Landfill in Cleveland, Ohio. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites  

SciTech Connect (OSTI)

The U.S. Environmental Protection Agency (EPA), Region 5, in accordance with the RE-Powering America's Land initiative, selected the Kolthoff Landfill site in Cleveland, Ohio, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

Salasovich, J.; Geiger, J.; Mosey, G.; Healey, V.

2013-06-01T23:59:59.000Z

175

Feasibility Study of Economics and Performance of Solar Photovoltaics at the Sky Park Landfill Site in Eau Claire, Wisconsin. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites  

SciTech Connect (OSTI)

The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Sky Park Landfill site in Eau Claire, Wisconsin, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

Simon, J.; Mosey, G.

2013-01-01T23:59:59.000Z

176

Feasibility Study of Economics and Performance of Solar Photovoltaics at the Snohomish County Cathcart Landfill Site in Snohomish County, Washington. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites  

SciTech Connect (OSTI)

The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Snohomish County Cathcart Landfill Site in Snohomish County, Washington, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

Olis, D.; Salasovich, J.; Mosey, G.; Healey, V.

2013-04-01T23:59:59.000Z

177

Feasibility Study of Economics and Performance of Solar Photovoltaics at the Price Landfill Site in Pleasantville, New Jersey. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites  

SciTech Connect (OSTI)

The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Price Landfill site in Pleasantville, New Jersey, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site. This study did not assess environmental conditions at the site.

Salasovich, J.; Geiger, J.; Mosey, G.; Healey, V.

2013-05-01T23:59:59.000Z

178

Solar Power in the Desert: Are the current large-scale solar developments really improving California’s environment?  

E-Print Network [OSTI]

Jenerette. 2010. Box 11: Two paths towards solar energy:Photovoltaic vs Solar Thermal. In: Planetary Stewardship.government betting on the wrong solar horse. Natural Gas &

Allen, Michael F.; McHughen, Alan

2011-01-01T23:59:59.000Z

179

Sandia National Laboratories: No More Green Waste in the Landfill  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

No More Green Waste in the Landfill June 09, 2011 Dump Truck Image On the heels of Sandia National Laboratories' successful food waste composting program, Pollution Prevention (P2)...

180

Modeling of leachate generation in municipal solid waste landfills  

E-Print Network [OSTI]

parameters specified by the user. Ultimately, this model will strive to replace the time the user requires to generate and fill a given landfill geometry with time spent running and evaluating trials to yield the best design....

Beck, James Bryan

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "landfill gas solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Installation of geosynthetic clay liners at California MSW landfills  

SciTech Connect (OSTI)

The California regulations for liner systems at municipal solid waste (MSW) landfills require that alternatives to the prescriptive federal Subtitle D liner system have a containment capability greater than that of the prescriptive system. Regulators may also require a demonstration that use of the prescriptive system is burdensome prior to approval of an alternative liner design. This paper presents seven case histories of the design and installation of geosynthetic clay liners (GCL) as an alternative to the low-permeability soil component of the prescriptive Subtitle D composite liner system at MSW landfills in California. These case histories cover GCLs from different manufacturers and landfill sites with a wide range of conditions including canyon landfills with slopes as steep as 1H:1V.

Snow, M.; Jesionek, K.S.; Dunn, R.J.; Kavazanjian, E. Jr.

1997-11-01T23:59:59.000Z

182

Brownfield landfill remediation under the Illinois EPA site remediation program  

SciTech Connect (OSTI)

Brownfield type landfill remediation was completed at the Ft. Sheridan Historic Landmark District, a former Army Base Realignment and Closure Facility, in conjunction with the future development of 551 historic and new homes at this site. The project was completed during 1998 under the Illinois Environmental Protection Agency (Illinois EPA) Site Remediation Program. This paper highlights the Illinois EPA's Site Remediation Program and the remediation of Landfills 3 and 4 at Fort Sheridan. The project involved removal of about 200,000 cubic yards of landfill waste, comprised of industrial and domestic refuse and demolition debris, and post-removal confirmation sampling of soils, sediment, surface water, and groundwater. The sample results were compared to the Illinois Risk-Based Cleanup levels for residential scenarios. The goal of the removal project was to obtain a No Further Remediation letter from the Illinois EPA to allow residential development of the landfill areas.

Beck, J.; Bruce, B.; Miller, J.; Wey, T.

1999-07-01T23:59:59.000Z

183

IlIl RecuperoRecupero EnergeticoEnergetico deldel RifuitiRifuiti  

E-Print Network [OSTI]

.J. Themelis and P. Ulloa, "Capture and Utilization of Landfill Gas", in Renewable Energy 2005) THE GLOBAL LANDFILLING PICTURE · MSW to global landfills: 1.25 billion tonnes/y * * ·Landfill Gas (LFG) generation: 70.0% Landfill gas (from 64.1% of the MSW) 6.65 13.8% Wood/other biomass 8.37 17.4% Solar thermal 0.87 1.8% Solar

Columbia University

184

E-Print Network 3.0 - air force landfill Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Driving Forces towards Materials... lack of Waste-to-Energy capacity. 12;9 Austria As Germany, but Ban in force already in 2002. Landfill... Landfill Ban in force already in...

185

Risk mitigation methodology for solid waste landfills. Doctoral thesis  

SciTech Connect (OSTI)

Several recent models have attempted to simulate or assess the probability and consequences of the leakage of aqueous contaminant leakage from solid waste landfills. These models incorporate common factors, including climatological and geological characteristics. Each model, however, employs a unique approach to the problem, assigns different relative weights to factors, and relies upon extrapolated small-scale experimental data and/or subjective judgment in predicting the full-scale landfill failure mechanisms leading to contaminant migration. As a result, no two models are likely to equally assess a given landfill, and no one model has been validated as a predictor of long-term performance. The United States Air Force maintains a database for characterization of potential hazardous waste sites. Records include more than 500 landfills, providing such information as waste, soil, aquifer, monitoring location data, and the results of sample testing. Through analysis of this information, nearly 300 landfills were assessed to have sufficiently, partially, or inadequately contained hazardous constituents of the wastes placed within them.

Nixon, W.B.

1995-05-01T23:59:59.000Z

186

Acute and chronic toxicity of municipal landfill leachate as determined with bioassays and chemical analysis  

E-Print Network [OSTI]

municipal landfill leachates were determined to have mean estimated cumulative cancer risks on the same order of magnitude (10 4) as leachates from co-disposal and hazardous waste landfills. The use of a battery of acute and chronic toxicity bioassays..., chemical analysis, and an estimated cancer risk calculation resulted in data providing evidence that municipal solid waste landfill leachates are as acutely and chronically toxic as co-disposal and hazardous waste landfill leachates. ACKNOWLEDGEMENTS...

Schrab, Gregory Ernst

1990-01-01T23:59:59.000Z

187

11. GEOELECTRICAL CHARACTERIZATION OF COVERED LANDFILL SITES: A PROCESS-ORIENTED MODEL AND  

E-Print Network [OSTI]

in disused quarries or special purpose-built structures but not all past landfill operations were adequately

Meju, Max

188

Intelligent Bioreactor Management Information System (IBM-IS) for Mitigation of Greenhouse Gas Emissions  

SciTech Connect (OSTI)

Methane is an important contributor to global warming with a total climate forcing estimated to be close to 20% that of carbon dioxide (CO2) over the past two decades. The largest anthropogenic source of methane in the US is 'conventional' landfills, which account for over 30% of anthropogenic emissions. While controlling greenhouse gas emissions must necessarily focus on large CO2 sources, attention to reducing CH4 emissions from landfills can result in significant reductions in greenhouse gas emissions at low cost. For example, the use of 'controlled' or bioreactor landfilling has been estimated to reduce annual US greenhouse emissions by about 15-30 million tons of CO2 carbon (equivalent) at costs between $3-13/ton carbon. In this project we developed or advanced new management approaches, landfill designs, and landfill operating procedures for bioreactor landfills. These advances are needed to address lingering concerns about bioreactor landfills (e.g., efficient collection of increased CH4 generation) in the waste management industry, concerns that hamper bioreactor implementation and the consequent reductions in CH4 emissions. Collectively, the advances described in this report should result in better control of bioreactor landfills and reductions in CH4 emissions. Several advances are important components of an Intelligent Bioreactor Management Information System (IBM-IS).

Paul Imhoff; Ramin Yazdani; Don Augenstein; Harold Bentley; Pei Chiu

2010-04-30T23:59:59.000Z

189

Results of Hazardous and Mixed Waste Excavation from the Chemical Waste Landfill  

SciTech Connect (OSTI)

This paper describes the results of the excavation of a 1.9-acre hazardous and mixed waste landfill operated for 23 years at Sandia National Laboratories, Albuquerque, New Mexico. Excavation of the landfill was completed in 2 1/2 years without a single serious accident or injury. Approximately 50,000 cubic yards of soil contaminated with volatile and semi-volatile organics, metals, polychlorinated biphenyl compounds, and radioactive constituents was removed. In addition, over 400 cubic yards of buried debris was removed, including bulk debris, unknown chemicals, compressed gas cylinders, thermal and chemical batteries, explosive and ordnance debris, pyrophoric materials and biohazardous waste. Removal of these wastes included negotiation of multiple regulations and guidances encompassed in the Resource Conservation and Recovery Act (RCRA), the Toxic Substances Control Act (TSCA), and risk assessment methodology. RCRA concepts that were addressed include the area of contamination, permit modification, emergency treatment provision, and listed waste designation. These regulatory decisions enabled the project to overcome logistical and programmatic needs such as increased operational area, the ability to implement process improvements while maintaining a record of decisions and approvals.

Young, S. G.; Schofield, D. P.; Kwiecinski, D.; Edgmon, C. L.; Methvin, R.

2002-02-27T23:59:59.000Z

190

Sepiolite as an Alternative Liner Material in Municipal Solid Waste Landfills  

E-Print Network [OSTI]

Sepiolite as an Alternative Liner Material in Municipal Solid Waste Landfills Yucel Guney1 ; Savas in municipal solid waste landfills. However, natural clays may not always provide good contaminant sorption in solid waste landfills. DOI: 10.1061/ ASCE 1090-0241 2008 134:8 1166 CE Database subject headings

Aydilek, Ahmet

191

Sanitary Landfill groundwater monitoring report. First quarter 1993  

SciTech Connect (OSTI)

This report contains analytical data for samples taken during first quarter 1993 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site. The data are submitted in reference to the Sanitary Landfill Operating Permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established by the US Environmental Protection Agency, the South Carolina final Primary Drinking Water Standards for lead or the SRS flagging criteria.

Not Available

1993-05-01T23:59:59.000Z

192

Sanitary Landfill groundwater monitoring report. Second quarter 1994  

SciTech Connect (OSTI)

This report contains analytical data for samples taken during second quarter 1994 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site (SRS). The data are submitted in reference to the Sanitary Landfill Operating Permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established by the US Environmental Protection Agency (Appendix A), the South Carolina final Primary Drinking Water Standard for lead (Appendix A), or the SRS flagging criteria (Appendix B).

Not Available

1994-08-01T23:59:59.000Z

193

Sanitary landfill groundwater monitoring report. Third quarter 1995  

SciTech Connect (OSTI)

This report contains analytical data for samples taken during third quarter 1995 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site (SRS). The data are submitted in reference to the Sanitary Landfill Operating Permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established by the U.S. Environmental Protection Agency, the South Carolina final Primary Drinking Water Standard for lead, or the SRS flagging criteria.

NONE

1995-11-01T23:59:59.000Z

194

Sanitary Landfill groundwater monitoring report. Third quarter 1993  

SciTech Connect (OSTI)

This report contains analytical data for samples taken during third quarter 1993 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site. The data are submitted in reference to the Sanitary Landfill Operating Permit. The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards or screening levels, established by the US Environmental Protection Agency, the South Carolina final Primary Drinking Water Standard for lead, or the SRS flagging criteria.

Not Available

1993-11-01T23:59:59.000Z

195

Sanitary landfill groundwater monitoring report (U): second quarter 1996  

SciTech Connect (OSTI)

This report contains analytical data for samples taken during second quarter 1996 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site (SRS). The data are submitted in reference to the Sanitary Landfill Operating Permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established by the U.S. Environmental Protection Agency (Appendix A), the South Carolina final Primary Drinking Water Standard for lead (Appendix A), or the SRS flagging criteria (Appendix B).

NONE

1996-08-01T23:59:59.000Z

196

Sanitary Landfill Groundwater Monitoring Report. Second Quarter 1995  

SciTech Connect (OSTI)

This report contains analytical data for samples taken during second quarter 1995 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site (SRS). The data are submitted in reference to the Sanitary landfill Operating Permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Water Standards (PDWS) or screening levels, established by the US Environmental Protection Agency (Appendix A), the South Carolina final Primary Drinking Water Standard for lead (Appendix A), or the SRS flagging criteria (Appendix B).

Chase, J.A.

1995-08-01T23:59:59.000Z

197

Sanitary Landfill groundwater monitoring report. Second quarter 1993  

SciTech Connect (OSTI)

This report contains analytical data for samples taken during second quarter 1993 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site. The data are submitted in reference to the Sanitary Landfill Operating Permit (DWP-087A). The report represents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established by the US Environmental Protection Agency the South Carolina final Primary Drinking Water Standards for lead or the SRS flagging criteria.

Not Available

1993-08-01T23:59:59.000Z

198

Sanitary landfill groundwater monitoring report, Third Quarter 1999  

SciTech Connect (OSTI)

This report contains analytical data for samples taken during Third Quarter 1999 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site. The data are submitted in reference to the Sanitary Landfill Operating Permit. The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards or screening levels, established by the U.S. Environmental Protection Agency, the South Carolina final Primary Drinking Water Standard for lead, or the SRS flagging criteria.

Chase, J.

1999-12-08T23:59:59.000Z

199

Sanitary Landfill groundwater monitoring report: Third quarter 1994  

SciTech Connect (OSTI)

This report contains analytical data for samples taken during third quarter 1994 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site (SRS). The data are submitted in reference to the Sanitary Landfill Operating Permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established the US Environmental Protection Agency, the South Carolina final PDWS for lead (Appendix A), or the SRS flagging criteria.

Not Available

1994-11-01T23:59:59.000Z

200

Sanitary Landfill Groundwater Monitoring Report, Second Quarter 1999  

SciTech Connect (OSTI)

This report contains analytical data for samples taken during Second Quarter 1999 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site. The data are submitted in reference to the Sanitary Landfill Operating Permit. The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards or screening levels, established by the US Environmental Protection Agency, the South Carolina final Primary Drinking Water Standard for lead, or the SRS flagging criteria.

Chase, J.

1999-07-29T23:59:59.000Z

Note: This page contains sample records for the topic "landfill gas solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Sanitary landfill groundwater monitoring report: Third quarter 1996  

SciTech Connect (OSTI)

This report contains analytical data for samples taken during third quarter 1996 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site (SRS). The data are submitted in reference to the Sanitary Landfill Operating Permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established by the US Environmental Protection Agency (Appendix A), the South Carolina final Primary Drinking Water Standard for lead (Appendix A), or the SRS flagging criteria (Appendix B).

NONE

1996-11-01T23:59:59.000Z

202

Madison, Wisconsin: Solar in Action (Brochure), Solar America...  

Broader source: Energy.gov (indexed) [DOE]

* Partnered with its utility, Madison Gas & Electric, to install visible on-site solar systems * Installed 100 solar systems producing 16,558 therms for heating water and 8,073...

203

SOLAR HEATING OF TANK BOTTOMS Application of Solar Heating to Asphaltic and Parrafinic Oils Reducing Fuel Costs and Greenhouse Gases Due to Use of Natural Gas and Propane  

SciTech Connect (OSTI)

The sale of crude oil requires that the crude meet product specifications for BS&W, temperature, pour point and API gravity. The physical characteristics of the crude such as pour point and viscosity effect the efficient loading, transport, and unloading of the crude oil. In many cases, the crude oil has either a very high paraffin content or asphalt content which will require either hot oiling or the addition of diluents to the crude oil to reduce the viscosity and the pour point of the oil allowing the crude oil to be readily loaded on to the transport. Marginal wells are significantly impacted by the cost of preheating the oil to an appropriate temperature to allow for ease of transport. Highly paraffinic and asphaltic oils exist throughout the D-J basin and generally require pretreatment during cold months prior to sales. The current study addresses the use of solar energy to heat tank bottoms and improves the overall efficiency and operational reliability of stripper wells.

Eugene A. Fritzler

2005-09-01T23:59:59.000Z

204

851 S.W. Sixth Avenue, Suite 1100 Steve Crow 503-222-5161 Portland, Oregon 97204-1348 Executive Director 800-452-5161  

E-Print Network [OSTI]

, Photovoltaics, Landfill Gas, Wind, Biomass, Hydroelectric, Geothermal Electric, Geothermal Heat Pumps, CHP, Small Hydroelectric, Tidal, Wave, Ocean Thermal, Biodiesel, Fuel Cells Using Renewable Fuels September% by 2020 Solar Thermal Electric, Photovoltaics, Landfill Gas, Wind, Biomass, Hydroelectric, Geothermal

205

Colton Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreisVolcanicPowerRaft RiverInformationColorado

206

Geosynthetics in Landfills Prepared by M. Bouazza and J. Zornberg  

E-Print Network [OSTI]

; · geosynthetic clay liners (GCLs), which are composite materials consisting of bentonite and geosynthetics and a #12;geomembrane/compacted clay liner composite as the secondary liner system. The leak detectionGeosynthetics in Landfills Prepared by M. Bouazza and J. Zornberg Geosynthetics are extensively

Zornberg, Jorge G.

207

Anaerobic Methane Oxidation in a Landfill-Leachate Plume  

E-Print Network [OSTI]

Anaerobic Methane Oxidation in a Landfill-Leachate Plume E T H A N L . G R O S S M A N , * , L U I, and methane, and (2) negligible oxygen, nitrate, and sulfate concentrations. Methane concentrations and stable carbon isotope (13C) values suggest anaerobic methane oxidation was occurring within the plume and at its

Grossman, Ethan L.

208

Acute and Genetic Toxicity of Municipal Landfill Leachate  

E-Print Network [OSTI]

to be representative of landfills of differing ages and types of wastes. Each sample was tested through three genetic toxicity bioassays (The Aspergillus diploid assay, the Bacillus DNA repair assay and the Salmonella/microsome assay) to measure the ability of each...

Brown, K.W.; Schrab, G.E.; Donnelly, K.C.

209

Biological Removal of Siloxanes from Landfill and Digester Gases  

E-Print Network [OSTI]

volatilize from waste at landfills and wastewater treatment plants (1). As a result, biogas produced, as well as an increase in maintenance costs (6, 7). The presence of VMSs in biogas is thus a challenge recommended by most equipment manufacturers for un- hindered use (6). Of all VMSs in biogas

210

An XMM-Newton Observation of NGC 1399 Reveals Two Phases of Hot Gas and Super-Solar Abundances in the Central Regions  

E-Print Network [OSTI]

We present an initial analysis of a new XMM observation of NGC 1399, the central elliptical galaxy of the Fornax group. Spectral fitting of the spatially resolved spectral data of the EPIC MOS and pn CCDs reveals that a two-temperature model (2T) of the hot gas is favored over single-phase and cooling flow models within the central ~20 kpc. The preference for the 2T model applies whether or not the data are deprojected. The cooler component has a temperature (~0.9 keV) similar to the kinetic temperature of the stars while the hotter component has a temperature (~1.5 keV) characteristic of the virial temperature of a ~10^{13} M_sun halo. The two-phase model (and other multitemperature models) removes the ``Fe Bias'' within r < ~20 kpc and gives Z_Fe/Z_sun 1.5-2. At larger radii the iron abundance decreases until Z_Fe/Z_sun \\~0.5 for r ~50 kpc. The Si abundance is super-solar (1.2-1.7 solar) within the central regions while Z_Si/Z_Fe ~0.8 over the entire region studied. These Fe and Si abundances imply that ~80% of the Fe mass within r ~50 kpc originates from Type Ia supernovae (SNIa). This SNIa fraction is similar to that inferred for the Sun and therefore suggests a stellar initial mass function similar to the Milky Way.

David A. Buote

2002-06-24T23:59:59.000Z

211

SOLAR ENERGY PROGRAM: CHAPTER FROM THE ENERGY AND ENVIRONMENT ANNUAL REPORT 1979  

E-Print Network [OSTI]

Particle Suspensions for Solar Energy Collection A.Sensible Heat Storage for a Solar Thermal Power Plant T.and A. Pfeiffhofer • . Solar Heated Gas Turbine Process

Authors, Various

2010-01-01T23:59:59.000Z

212

Acme Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskeyEnergy InformationAclara Jump to: navigation,Biomass

213

Solar Water Heating Incentive Program  

Broader source: Energy.gov [DOE]

Beginning in the fall of 2003, Energy Trust of Oregon's Solar Water Heating (SWH) Incentive Program offers incentives to customers of Pacific Power, PGE, NW Natural Gas and Cascade Natural Gas who...

214

Solar heat receiver  

DOE Patents [OSTI]

A receiver is described for converting solar energy to heat a gas to temperatures from 700 to 900/sup 0/C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

Hunt, A.J.; Hansen, L.J.; Evans, D.B.

1982-09-29T23:59:59.000Z

215

Passive soil venting at the Chemical Waste Landfill Site at Sandia National Laboratories, Albuquerque, New Mexico  

SciTech Connect (OSTI)

Passive Soil Vapor Extraction was tested at the Chemical Waste Landfill (CWL) site at Sandia National Laboratories, New Mexico (SNLIW). Data collected included ambient pressures, differential pressures between soil gas and ambient air, gas flow rates into and out of the soil and concentrations of volatile organic compounds (VOCS) in vented soil gas. From the differential pressure and flow rate data, estimates of permeability were arrived at and compared with estimates from other studies. Flow, differential pressure, and ambient pressure data were collected for nearly 30 days. VOC data were collected for two six-hour periods during this time. Total VOC emissions were calculated and found to be under the limit set by the Resource Conservation and Recovery Act (RCRA). Although a complete process evaluation is not possible with the data gathered, some of the necessary information for designing a passive venting process was determined and the important parameters for designing the process were indicated. More study is required to evaluate long-term VOC removal using passive venting and to establish total remediation costs when passive venting is used as a polishing process following active soil vapor extraction.

Phelan, J.M.; Reavis, B.; Cheng, W.C.

1995-05-01T23:59:59.000Z

216

Mixed waste landfill annual groundwater monitoring report April 2005.  

SciTech Connect (OSTI)

Annual groundwater sampling was conducted at the Sandia National Laboratories' Mixed Waste Landfill (MWL) in April 2005. Seven monitoring wells were sampled using a Bennett{trademark} pump in accordance with the April 2005 Mini-Sampling and Analysis Plan for the MWL (SNL/NM 2005). The samples were analyzed off site at General Engineering Laboratories, Inc. for a broad suite of radiochemical and chemical parameters, and the results are presented in this report. Sample splits were also collected from several of the wells by the New Mexico Environment Department U.S. Department of Energy Oversight Bureau; however, the split sample results are not included in this report. The results of the April 2005 annual groundwater monitoring conducted at the MWL showed constituent concentrations within the historical ranges for the site and indicated no evidence of groundwater contamination from the landfill.

Lyon, Mark L.; Goering, Timothy James (GRAM, Inc., Albuquerque, NM)

2006-01-01T23:59:59.000Z

217

Emissions inventories for MSW landfills under Title V  

SciTech Connect (OSTI)

In the past, many states were either not concerned with, or unaware that, municipal solid waste landfills (MSWLFs) were potential sources of regulated air pollutants. This philosophy is rapidly changing, in part due to US EPA policy documents concerning (and defining) fugitive and non-fugitive emissions from MSWLFs, the attention given to the newly released New Source Performance Standards and a recent lawsuit that gained national notoriety involving landfill air emissions and air permitting applicability issues. Most states now recognize that MSWLFs are sources of regulated air pollutants and are subject to permitting requirements (and pollutant emission fees) as other industries; i.e., state-level minor- and major-source operating permit programs, and the 1990 Clean Air Act Amendments Title V Operating Permits Program (Title V).

Vogt, W.G. [SCS Engineers, Reston, VA (United States); Peyser, T.R. [SCS Engineers, Birmingham, AL (United States); Hamilton, S.M. [SCS Engineers, Tampa, FL (United States)

1996-05-01T23:59:59.000Z

218

Y-12 Industrial Landfill V. Permit application modifications  

SciTech Connect (OSTI)

This report contains the modifications in operations and design to meet the Tennessee Department of Environment and Conversation (TDEC) July 10, 1993, amendments to the regulations for Class 2 landfills. These modifications, though extensive in design and construction cost, are considered minor revisions and should not require a processing fee. Area 1 of ILF V, comprising approximately 20% of the ILF V footprint, was designed and submitted to TDEC prior to the implementation of current regulations. This initial area was constructed with a compacted clay liner and leachate collection system, and became operational in April 1994. The current regulations require landfills to have a composite liner with leachate collection system and closure cap. Modifications to upgrade Areas 2 and 3 of ILF V to meet the current TDEC requirements are included.

NONE

1995-09-01T23:59:59.000Z

219

Sanitary Landfill Groundwater Monitoring Report (Data Only) - First Quarter 1999  

SciTech Connect (OSTI)

This report contains analytical data for samples taken during First Quarter 1999 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site (SRS). This report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards or screening levels, established by the U.S. Environmental Proteciton Agency, the South Carolina final Primary Drinking Water Standard for lead, or the SRS flagging criteria.

Chase, J.

1999-05-26T23:59:59.000Z

220

Sanitary landfill groundwater monitoring report. First Quarter 1995  

SciTech Connect (OSTI)

This report contains analytical data for samples taken during first quarter 1994 from wells of the LFW series located at the Sanitary Landfill Operating permit (DWP-0874A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established by the US Environmental Protection Agency, the South Carolina final Primary Drinking Water Standard for lead, or the SRS flagging criteria.

NONE

1995-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "landfill gas solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Inferred performance of surface hydraulic barriers from landfill operational data  

SciTech Connect (OSTI)

There are few published data on the field performance of surface hydraulic barriers (SHBs) used in waste containment or remediation applications. In contrast, operational data for liner systems used beneath landfills are widely available. These data are frequently collected and reported as a facility permit condition. This paper uses leachate collection system (LCS) and leak detection system (LDS) liquid flow rate and chemical quality data collected from modem landfill double-liner systems to infer the likely hydraulic performance of SHBs. Operational data for over 200 waste management unit liner systems are currently being collected and evaluated by the authors as part of an ongoing research investigation for the United States Environmental Protection Agency (USEPA). The top liner of the double-liner system for the units is either a geomembrane (GMB) alone, geomembrane overlying a geosynthetic clay liner (GMB/GCL), or geomembrane overlying a compacted clay liner (GMB/CCL). In this paper, select data from the USEPA study are used to: (i) infer the likely efficiencies of SHBs incorporating GMBs and overlain by drainage layers; and (ii) evaluate the effectiveness of SHBs in reducing water infiltration into, and drainage from, the underlying waste (i.e., source control). SHB efficiencies are inferred from calculated landfill liner efficiencies and then used to estimate average water percolation rates through SHBs as a function of site average annual rainfall. The effectiveness of SHBs for source control is investigated by comparing LCS liquid flow rates for open and closed landfill cells. The LCS flow rates for closed cells are also compared to the estimated average water percolation rates through SHBs presented in the paper.

Gross, B.A. [GeoSyntec Consultants, Austin, TX (United States); Bonaparte, R.; Othman, M.A. [GeoSyntec Consultants, Atlanta, GA (United States)

1997-12-31T23:59:59.000Z

222

Ocean County Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company)ReferencesNuiqsut,Place,Oakmont,ObionAcres, New56°,Landfill

223

Sanitary landfill groundwater monitoring report: First quarter 1997  

SciTech Connect (OSTI)

This report contains analytical data for samples taken during first quarter 1997 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site (SRS). The data are submitted in reference to the Sanitary Landfill Operating permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final primary Drinking Water Standards (PDWS) or screening levels, established by the U.S. Environmental Protection Agency, the South Carolina final Primary Drinking Water Standard for lead, or the SRS flagging criteria. Wells LFW6R, LFW8R, LFW10A, LFW18, LFW21, and LFW23R were not sampled due to their proximity to the Sanitary Landfill Closure Cap activities. Wells LFW61D and LFW62D are Purge Water Containment Wells and contain mercury. These wells were not sampled since the purge water cannot be treated at the M-1 Air Stripper until the NPDES permit for the stripper is modified.

Chase, J.A.

1997-05-01T23:59:59.000Z

224

488-4D ASH LANDFILL CLOSURE CAP HELP MODELING  

SciTech Connect (OSTI)

At the request of Area Completion Projects (ACP) in support of the 488-4D Landfill closure, the Savannah River National Laboratory (SRNL) has performed Hydrologic Evaluation of Landfill Performance (HELP) modeling of the planned 488-4D Ash Landfill closure cap to ensure that the South Carolina Department of Health and Environmental Control (SCDHEC) limit of no more than 12 inches of head on top of the barrier layer (saturated hydraulic conductivity of no more than 1.0E-05 cm/s) in association with a 25-year, 24-hour storm event is not projected to be exceeded. Based upon Weber 1998 a 25-year, 24-hour storm event at the Savannah River Site (SRS) is 6.1 inches. The results of the HELP modeling indicate that the greatest peak daily head on top of the barrier layer (i.e. geosynthetic clay liner (GCL) or high density polyethylene (HDPE) geomembrane) for any of the runs made was 0.079 inches associated with a peak daily precipitation of 6.16 inches. This is well below the SCDHEC limit of 12 inches.

Phifer, M.

2014-11-17T23:59:59.000Z

225

Benchmark experiments with global climate models applicable to extra-solar gas giant planets in the shallow atmosphere approximation  

E-Print Network [OSTI]

The growing field of exoplanetary atmospheric modelling has seen little work on standardised benchmark tests for its models, limiting understanding of the dependence of results on specific models and conditions. With spatially resolved observations as yet difficult to obtain, such a test is invaluable. Although an intercomparison test for models of tidally locked gas giant planets has previously been suggested and carried out, the data provided were limited in terms of comparability. Here, the shallow PUMA model is subjected to such a test, and detailed statistics produced to facilitate comparison, with both time means and the associated standard deviations displayed, removing the time dependence and providing a measure of the variability. Model runs have been analysed to determine the variability between resolutions, and the effect of resolution on the energy spectra studied. Superrotation is a robust and reproducible feature at all resolutions.

Bending, V L; Kolb, U

2012-01-01T23:59:59.000Z

226

E-Print Network 3.0 - assessing landfill performance Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

, either in designated monofills or co-disposal landfills, significant leaching of dioxins and furans Source: Columbia University - Waste-to-Energy Research and Technology...

227

E-Print Network 3.0 - annual international landfill Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

leachate are pollution of groundwater and surface waters. Landfill leachate contains pollutants that can Source: Barlaz, Morton A. - Department of Civil, Construction, and...

228

INDEPENDENT VERIFICATION SURVEY REPORT FOR THE OPERABLE UNIT-1 LANDFILL TRENCHES, MIAMISBURG CLOSURE PROJECT  

SciTech Connect (OSTI)

INDEPENDENT VERIFICATION SURVEY REPORT FOR THE OPERABLE UNIT-1 LANDFILL TRENCHES, MIAMISBURG CLOSURE PROJECT, MIAMISBURG, OHIO DCN: 0468-SR-02-0

W.C. Adams

2010-05-24T23:59:59.000Z

229

INDEPENDENT VERIFICATION SURVEY REPORT OPERABLE UNIT-1 LANDFILL TRENCHES, MIAMISBURG CLOSURE PROJECT  

SciTech Connect (OSTI)

INDEPENDENT VERIFICATION SURVEY REPORT FOR THE OPERABLE UNIT-1 LANDFILL TRENCHES, MIAMISBURG CLOSURE PROJECT, MIAMISBURG, OHIO DCN: 0468-SR-03-0

W.C. Adams

2010-07-21T23:59:59.000Z

230

Application of landfill gas as a liquefied natural gas fuel for refuse trucks in Texas  

E-Print Network [OSTI]

sludge, and non hazardous industrial waste (8,9). The solid waste materials are classified under Subtitle D of the Resource Conservation and Recovery Act (10). The next section describes different methods used for managing... REVIEW.......................................................................................4 Solid Waste Management.................................................................................4 LFG Cleaning Processes...

Gokhale, Bhushan

2007-04-25T23:59:59.000Z

231

Tapping Landfill Gas to Provide Significant Energy Savings and Greenhouse Gas Reductions  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from the GridwiseSiteDepartmentChallengeCompliance7/109THETTU U . . S S .Tapping

232

ENHANCED GROWTH RATE AND SILANE UTILIZATION IN AMORPHOUS SILICON AND NANOCRYSTALLINE-SILICON SOLAR CELL DEPOSITION VIA GAS PHASE ADDITIVES  

SciTech Connect (OSTI)

Air Products set out to investigate the impact of additives on the deposition rate of both ���µCSi and ���±Si-H films. One criterion for additives was that they could be used in conventional PECVD processing, which would require sufficient vapor pressure to deliver material to the process chamber at the required flow rates. The flow rate required would depend on the size of the substrate onto which silicon films were being deposited, potentially ranging from 200 mm diameter wafers to the 5.7 m2 glass substrates used in GEN 8.5 flat-panel display tools. In choosing higher-order silanes, both disilane and trisilane had sufficient vapor pressure to withdraw gas at the required flow rates of up to 120 sccm. This report presents results obtained from testing at Air Products�¢���� electronic technology laboratories, located in Allentown, PA, which focused on developing processes on a commercial IC reactor using silane and mixtures of silane plus additives. These processes were deployed to compare deposition rates and film properties with and without additives, with a goal of maximizing the deposition rate while maintaining or improving film properties.

Ridgeway, R.G.; Hegedus, S.S.; Podraza, N.J.

2012-08-31T23:59:59.000Z

233

Sardinia 2007, Eleventh International Waste Management and Landfill Symposium Potential for Reducing Global Methane Emissions  

E-Print Network [OSTI]

for Reducing Global Methane Emissions From Landfills, 2000-2030 E. MATTHEWS1 , N. J. THEMELIS2 1 NASA Goddard methane (CH4 )annually to the world's total CH4 emission of ~550 Tg/yr. Recycling and thermal treatment destined for landfills and to mitigating CH4 emission. Waste generation is estimated to more than double

Columbia University

234

SERVICE LIFE OF A LANDFILL LINER SYSTEM SUBJECTED TO ELEVATED TEMPERATURES  

E-Print Network [OSTI]

SERVICE LIFE OF A LANDFILL LINER SYSTEM SUBJECTED TO ELEVATED TEMPERATURES Timothy D. Stark, Ph and possible publication in the ASCE Journal of Hazardous, Toxic, and Radioactive Waste Management April 14-Engineered-Components-ServiceLife-Submission_2.pdf #12;2 SERVICE LIFE OF LANDFILL LINER SYSTEMS SUBJECTED TO ELEVATED1 TEMPERATURES2 Timothy D

235

State of the art design: A closure system for the largest hazardous waste landfill at the Savannah River Site  

SciTech Connect (OSTI)

This paper discusses the cover system proposed for a 55-acre, hazardous waste closure of the sanitary landfill at the Savannah River Site, near Aiken, South Carolina. The proposed cover system has been designed to accommodate a significant amount of post-closure settlement while maintaining a permeability of 1 {times} 10{sup {minus}7} cm/s or less throughout its 30-year, regulatory lifetime. A composite cover consisting of a geomembrane (GM) underlain by a geosynthetic clay liner (GCL) was selected because of its extremely low permeability, ability to elongate without tearing, and capacity to ``self-heal`` if punctured. These characteristics will enable the cover system to accommodate differential settlement without cracking or tearing, this providing long-term protection with minimal maintenance. Also, to improve the ability of the cover system to span voids that may develop in the underlying waste, a geogrid has been included in the foundation layer. A gas vent layer has been included to allow for the safe collection and venting of landfill gases.

Bartlett, S.F.; Serrato, M.G.; McMullin, S.R.

1992-12-31T23:59:59.000Z

236

State of the art design: A closure system for the largest hazardous waste landfill at the Savannah River Site  

SciTech Connect (OSTI)

This paper discusses the cover system proposed for a 55-acre, hazardous waste closure of the sanitary landfill at the Savannah River Site, near Aiken, South Carolina. The proposed cover system has been designed to accommodate a significant amount of post-closure settlement while maintaining a permeability of 1 [times] 10[sup [minus]7] cm/s or less throughout its 30-year, regulatory lifetime. A composite cover consisting of a geomembrane (GM) underlain by a geosynthetic clay liner (GCL) was selected because of its extremely low permeability, ability to elongate without tearing, and capacity to self-heal'' if punctured. These characteristics will enable the cover system to accommodate differential settlement without cracking or tearing, this providing long-term protection with minimal maintenance. Also, to improve the ability of the cover system to span voids that may develop in the underlying waste, a geogrid has been included in the foundation layer. A gas vent layer has been included to allow for the safe collection and venting of landfill gases.

Bartlett, S.F.; Serrato, M.G.; McMullin, S.R.

1992-01-01T23:59:59.000Z

237

Superfund Record of Decision (EPA Region 3): Moyer Landfill Site, Collegeville, Pennsylvania, September 1985. Final report  

SciTech Connect (OSTI)

The Moyer Landfill is an inactive privately owned landfill located in Lower Providence Township in Montgomery County, Pennsylvania. The site was operated as a municipal landfill from the 1940's until April 1981, during which time it received municipal refuse and sewage sludges. According to local Federal Bureau of Investigation (FBI) officials, the landfill accepted a variety of solid and liquid hazardous wastes, including polychlorinated biphenyls (PCBs), solvents, paints, low-level radioactive wastes, and incinerated materials in bulk form and/or containerized in drums. In 1972, when the Pennsylvania Dept. of Environmental Resources (PADER) rules and regulations became more restrictive, this landfill was cited, and finally in 1981, it was closed and brought into receivership of the U.S. District Court.

Not Available

1985-09-30T23:59:59.000Z

238

DOE - Office of Legacy Management -- West Lake Landfill - MO 05  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntown Site -Miami -New JerseyLake Landfill -

239

DOE - Office of Legacy Management -- Woburn Landfill - MA 07  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntown Site -Miami -NewPlant -Woburn Landfill -

240

Sandia National Laboratories: No More Green Waste in the Landfill  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-Salt StorageNo More Green Waste in the Landfill June 09,

Note: This page contains sample records for the topic "landfill gas solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

The Solar Argon Abundance  

E-Print Network [OSTI]

The solar argon abundance cannot be directly derived by spectroscopic observations of the solar photosphere. The solar Ar abundance is evaluated from solar wind measurements, nucleosynthetic arguments, observations of B stars, HII regions, planetary nebulae, and noble gas abundances measured in Jupiter's atmosphere. These data lead to a recommended argon abundance of N(Ar) = 91,200(+/-)23,700 (on a scale where Si = 10^6 atoms). The recommended abundance for the solar photosphere (on a scale where log N(H) = 12) is A(Ar)photo = 6.50(+/-)0.10, and taking element settling into account, the solar system (protosolar) abundance is A(Ar)solsys = 6.57(+/-)0.10.

Katharina Lodders

2007-10-24T23:59:59.000Z

242

Solar Rights  

Broader source: Energy.gov [DOE]

In June 2010, Louisiana enacted solar rights legislation (HB 751) that prohibits certain entities from unreasonably restricting a property owner from installing a solar collector. Solar collectors...

243

Coal combustion waste management at landfills and surface impoundments 1994-2004.  

SciTech Connect (OSTI)

On May 22, 2000, as required by Congress in its 1980 Amendments to the Resource Conservation and Recovery Act (RCRA), the U.S. Environmental Protection Agency (EPA) issued a Regulatory Determination on Wastes from the Combustion of Fossil Fuels. On the basis of information contained in its 1999 Report to Congress: Wastes from the Combustion of Fossil Fuels, the EPA concluded that coal combustion wastes (CCWs), also known as coal combustion by-products (CCBs), did not warrant regulation under Subtitle C of RCRA, and it retained the existing hazardous waste exemption for these materials under RCRA Section 3001(b)(3)(C). However, the EPA also determined that national regulations under Subtitle D of RCRA were warranted for CCWs that are disposed of in landfills or surface impoundments. The EPA made this determination in part on the basis of its findings that 'present disposal practices are such that, in 1995, these wastes were being managed in 40 percent to 70 percent of landfills and surface impoundments without reasonable controls in place, particularly in the area of groundwater monitoring; and while there have been substantive improvements in state regulatory programs, we have also identified gaps in State oversight' (EPA 2000). The 1999 Report to Congress (RTC), however, may not have reflected the changes in CCW disposal practices that occurred since the cutoff date (1995) of its database and subsequent developments. The U.S. Department of Energy (DOE) and the EPA discussed this issue and decided to conduct a joint DOE/EPA study to collect new information on the recent CCW management practices by the power industry. It was agreed that such information would provide a perspective on the chronological adoption of control measures in CCW units based on State regulations. A team of experts from the EPA, industry, and DOE (with support from Argonne National Laboratory) was established to develop a mutually acceptable approach for collecting and analyzing data on CCW disposal practices and State regulatory requirements at landfills and surface impoundments that were permitted, built, or laterally expanded between January 1, 1994, and December 31, 2004. The scope of the study excluded waste units that manage CCWs in active or abandoned coal mines. The EPA identified the following three areas of interest: (1) Recent and current CCW industry surface disposal management practices, (2) State regulatory requirements for CCW management, and (3) Implementation of State requirements (i.e., the extent to which States grant or deny operator requests to waive or vary regulatory requirements and the rationales for doing so). DOE and the EPA obtained data on recent and current disposal practices from a questionnaire that the Utility Solid Waste Activities Group (USWAG) distributed to its members that own or operate coal-fired power plants. USWAG, formed in 1978, is responsible for addressing solid and hazardous waste issues on behalf of the utility industry. It is an informal consortium of approximately 80 utility operating companies, the Edison Electric Institute (EEI), the National Rural Electric Cooperative Association (NRECA), the American Public Power Association (APPA), and the American Gas Association (AGA). EEI is the principal national association of investor-owned electric power and light companies. NRECA is the national association of rural electric cooperatives. APPA is the national association of publicly owned electric utilities. AGA is the national association of natural gas utilities. Together, USWAG member companies and trade associations represent more than 85% of the total electric generating capacity of the United States and service more than 95% of the nation's consumers of electricity. To verify the survey findings, the EPA also asked State regulators from nine selected States that are leading consumers of coal for electricity generation for information on disposal units that may not have been covered in the USWAG survey. The selected States were Georgia, Illinois, Indiana, Michigan, Missouri, North Carolina, North Da

Elcock, D.; Ranek, N. L.; Environmental Science Division

2006-09-08T23:59:59.000Z

244

Baseload Solar Power for California? Ammonia-based Solar Energy Storage Using Trough Concentrators  

E-Print Network [OSTI]

Baseload Solar Power for California? Ammonia-based Solar Energy Storage Using Trough Concentrators to eventually optimise the reactor geometry for ammonia-based solar energy storage with troughs, which.1. Storing Solar Energy with Ammonia H2 / N2 gas liquid NH3 Heat Exchangers Power Generation (Steam Cycle

245

Landfill CH sub 4 : Rates, fates, and role in global carbon cycle  

SciTech Connect (OSTI)

Published estimates for worldwide landfill methane emissions range from 9 to 70 Tg yr{sup {minus}1}. Field and laboratory studies suggest that maximum methane yields from lanfilled refuse are about 0.06 to 0.09 m{sup 3} (dry Kg){sup {minus}1} refuse, depending on moisture content and other variables, such as organic loading, buffering capacity, and nutrients in landfill microevnironments. Methane yields may vary by more than an order of magnitude within a given site. Fates for landfill methane include (1) direct or delayed emission to the atmosphere through landfill cover materials or surface soils; (2) oxidation by methanotrophs in cover soils, with resulting emission of carbon dioxide; or (3) recovery of methane followed by combustion to produce carbon dioxide. The percent methane assigned to each pathway will vary among field sites and, for individual sites, through time. Nevertheless, a general framework for a landfill methane balance can be developed by consideration of landfill age, engineering and management practices, cover soil characteristics, and water balance. Direct measurements of landfill methane emissions are sparse, with rates between 10{sup {minus}6} and 10{sup {minus}8} g cm{sup {minus}2} s{sup {minus}1}; very high rates of 400 kg m{sup {minus}2} yr{sup {minus}1} have been measured at a semiarid unvegetated site. The proportion of landfill carbon that is ultimately converted to methane and carbon dioxide is problematical; the literature suggests that, at best, 25% to 40% of refuse carbon can be converted to biogas carbon. Cellulose contributes the major portion of the methane potential. Routine excavation of nondecomposed cellulosic materials after one or two decades of landfill burial suggests that uniformly high conversion rates are rarely attained at field sites.

Bogner, J.; Spokas, K.

1991-01-01T23:59:59.000Z

246

Landfill CH{sub 4}: Rates, fates, and role in global carbon cycle  

SciTech Connect (OSTI)

Published estimates for worldwide landfill methane emissions range from 9 to 70 Tg yr{sup {minus}1}. Field and laboratory studies suggest that maximum methane yields from lanfilled refuse are about 0.06 to 0.09 m{sup 3} (dry Kg){sup {minus}1} refuse, depending on moisture content and other variables, such as organic loading, buffering capacity, and nutrients in landfill microevnironments. Methane yields may vary by more than an order of magnitude within a given site. Fates for landfill methane include (1) direct or delayed emission to the atmosphere through landfill cover materials or surface soils; (2) oxidation by methanotrophs in cover soils, with resulting emission of carbon dioxide; or (3) recovery of methane followed by combustion to produce carbon dioxide. The percent methane assigned to each pathway will vary among field sites and, for individual sites, through time. Nevertheless, a general framework for a landfill methane balance can be developed by consideration of landfill age, engineering and management practices, cover soil characteristics, and water balance. Direct measurements of landfill methane emissions are sparse, with rates between 10{sup {minus}6} and 10{sup {minus}8} g cm{sup {minus}2} s{sup {minus}1}; very high rates of 400 kg m{sup {minus}2} yr{sup {minus}1} have been measured at a semiarid unvegetated site. The proportion of landfill carbon that is ultimately converted to methane and carbon dioxide is problematical; the literature suggests that, at best, 25% to 40% of refuse carbon can be converted to biogas carbon. Cellulose contributes the major portion of the methane potential. Routine excavation of nondecomposed cellulosic materials after one or two decades of landfill burial suggests that uniformly high conversion rates are rarely attained at field sites.

Bogner, J.; Spokas, K.

1991-12-31T23:59:59.000Z

247

Construction and operation of an industrial solid waste landfill at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio  

SciTech Connect (OSTI)

The US Department of Energy (DOE), Office of Waste Management, proposes to construct and operate a solid waste landfill within the boundary of the Portsmouth Gaseous Diffusion Plant (PORTS), Piketon, Ohio. The purpose of the proposed action is to provide PORTS with additional landfill capacity for non-hazardous and asbestos wastes. The proposed action is needed to support continued operation of PORTS, which generates non-hazardous wastes on a daily basis and asbestos wastes intermittently. Three alternatives are evaluated in this environmental assessment (EA): the proposed action (construction and operation of the X-737 landfill), no-action, and offsite shipment of industrial solid wastes for disposal.

NONE

1995-10-01T23:59:59.000Z

248

Mississippi Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind...

249

Illinois Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind...

250

North Carolina Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind...

251

Wisconsin Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind...

252

Tennessee Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind...

253

Michigan Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind...

254

Texas Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind...

255

California Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind...

256

Louisiana Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind...

257

Arkansas Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind...

258

New York Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind...

259

South Carolina Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind...

260

New Hampshire Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind...

Note: This page contains sample records for the topic "landfill gas solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Alabama Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind...

262

Ohio Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind...

263

Massachusetts Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind...

264

Connecticut Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind...

265

Maryland Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind...

266

Vermont Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind...

267

Kansas Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind...

268

Minnesota Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind...

269

Arizona Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind...

270

Washington Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind...

271

Virginia Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind...

272

Nebraska Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind...

273

Pennsylvania Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind...

274

Florida Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind...

275

Missouri Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind...

276

Iowa Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind...

277

New Jersey Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind...

278

Georgia Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind...

279

RENEWABLE ENERGY RESOURCES PROCUREMENT PLAN This Renewable Energy Resources Procurement Plan ("RPS Procurement Plan" or  

E-Print Network [OSTI]

, and tidal current Biogas Geothermal Photovoltaic Biomass Hydroelectric incremental generation from efficiency improvements Small hydroelectric (30 megawatts or less) Conduit hydroelectric Landfill gas Solar

280

California Energy Commission STAFF REPORT  

E-Print Network [OSTI]

hydroelectric, digester gas, electrolysis, eligibility, fuel cell, gasification, geothermal, hydrogen, landfill, retail sales, small hydroelectric, Self- Generation Incentive Program, solar thermal, supplemental energy

Note: This page contains sample records for the topic "landfill gas solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Renewable Energy Property Tax Exemption  

Broader source: Energy.gov [DOE]

This statute exempts renewable energy equipment from property taxes. Renewable energy includes wind, solar thermal electric, photovoltaic, biomass, hydropower, geothermal, and landfill gas...

282

Hydrogen | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

electric cooperatives* to offer net metering to customers who generate electricity using solar energy, wind energy, hydropower, hydrogen, biomass, landfill gas, geothermal energy,...

283

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Sources: Form EIA-860, "Annual...

284

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual...

285

State Nuclear Profiles 2010  

U.S. Energy Information Administration (EIA) Indexed Site

municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual...

286

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source:Form EIA-860, "Annual...

287

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

all municipal waste, landfill gas, other biomass, solar, wind, pumped storage, and fuel cells. h IHSGI cumulative capacity retirements are calculated from annual totals....

288

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

CHP plants. f "Other" includes conventional hydro, geothermal, wood, wood waste, all municipal waste, landfill gas, other biomass, solar, wind power, pumped storage, and fuel cells...

289

Radiological survey of the Shpack Landfill, Norton, Massachusetts  

SciTech Connect (OSTI)

The results of a radiological survey of the Shpack Landfill, Norton, Massachusetts, are given in this report. The survey was conducted over approximately eight acres which had received radioactive wastes from 1946 to 1965. The survey included measurement of the following: external gamma radiation at the surface and at 1 m (3 ft) above the surface throughout the site; beta-gamma exposure rates at 1 cm (0.4 in.) from the surface throughout the site; concentrations of /sup 226/Ra, /sup 238/U, and /sup 235/U in surface and subsurface soil on the site; and concentrations of /sup 226/Ra, /sup 238/U, /sup 235/U, /sup 230/Th, and /sup 210/Pb in groundwater on the site and in surface water on and near the site. Results indicate that the radioactive contamination is confined to the site and to the swamp immediately adjacent to the site.

Cottrell, W.D.; Haywood, F.F.; Witt, D.A.; Myrick, T.E.; Goldsmith, W.A.; Shinpaugh, W.H.; Loy, E.T.

1981-12-01T23:59:59.000Z

290

MONITORING LANDFILL COVER BY ELECTRICAL RESISTIVITY1 TOMOGRAPHY ON AN EXPERIMENTAL SITE2  

E-Print Network [OSTI]

with geosynthetics44 (geomembranes or Geosynthetic Clay Liners), depending on the date of closure (Silvestre et45 al: landfill cover, gravelly clay material, heterogeneity, compaction, electrical30 resistivity, multivariate

Paris-Sud XI, Université de

291

Methane production during the anaerobic decomposition of composted and raw organic refuse in simulated landfill cells  

E-Print Network [OSTI]

Methane contributes 20% annually to increases in global warming, and is explosive at concentrations of 5-15% in air. Landfills contribute 15% to total methane emissions. This study was conducted to determine the potential decrease in methane...

West, Margrit Evelyn

1995-01-01T23:59:59.000Z

292

Pricing landfill externalities: Emissions and disamenity costs in Cape Town, South Africa  

SciTech Connect (OSTI)

Highlights: > The paper estimates landfill externalities associated with emissions, disamenities and transport. > Transport externalities vary from 24.22 to 31.42 Rands per tonne. > Costs of emissions (estimated using benefits transfer) vary from 0.07 to 28.91 Rands per tonne. > Disamenities (estimated using hedonic pricing) vary from 0.00 to 57.46 Rands per tonne. > Overall, external costs for urban landfills exceed those of a regional landfill. - Abstract: The external (environmental and social) costs of landfilling (e.g. emissions to air, soil and water; and 'disamenities' such as odours and pests) are difficult to quantify in monetary terms, and are therefore not generally reflected in waste disposal charges or taken into account in decision making regarding waste management options. This results in a bias against alternatives such as recycling, which may be more expensive than landfilling from a purely financial perspective, but preferable from an environmental and social perspective. There is therefore a need to quantify external costs in monetary terms, so that different disposal options can be compared on the basis of their overall costs to society (financial plus external costs). This study attempts to estimate the external costs of landfilling in the City of Cape Town for different scenarios, using the benefits transfer method (for emissions) and the hedonic pricing method (for disamenities). Both methods (in particular the process of transferring and adjusting estimates from one study site to another) are described in detail, allowing the procedures to be replicated elsewhere. The results show that external costs are currently R111 (in South African Rands, or approximately US$16) per tonne of waste, although these could decline under a scenario in which energy is recovered, or in which the existing urban landfills are replaced with a new regional landfill.

Nahman, Anton, E-mail: anahman@csir.co.za [Environmental and Resource Economics Group, Natural Resources and the Environment, Council for Scientific and Industrial Research, P.O. Box 320, Stellenbosch 7599 (South Africa)

2011-09-15T23:59:59.000Z

293

Ground-water monitoring compliance plan for the Hanford Site Solid Waste Landfill  

SciTech Connect (OSTI)

Washington state regulations required that solid waste landfill facilities have ground-water monitoring programs in place by May 27, 1987. This document describes the well locations, installation, characterization studies and sampling and analysis plan to be followed in implementing the ground-water monitoring program at the Hanford Site Solid Waste Landfill (SWL). It is based on Washington Administrative Code WAC 173-304-490. 11 refs., 19 figs., 4 tabs.

Fruland, R.M.

1986-10-01T23:59:59.000Z

294

Solar Policy Environment: San Francisco  

Broader source: Energy.gov [DOE]

The City and County of San Francisco’s “Solar San Francisco” Initiative will strive to remove barriers to the deployment of solar technologies in San Francisco as part of its effort to reduce its overall greenhouse gas emissions to 20% below 1990 levels by the year 2012.

295

Unconventional gas outlook: resources, economics, and technologies  

SciTech Connect (OSTI)

The report explains the current and potential of the unconventional gas market including country profiles, major project case studies, and new technology research. It identifies the major players in the market and reports their current and forecasted projects, as well as current volume and anticipated output for specific projects. Contents are: Overview of unconventional gas; Global natural gas market; Drivers of unconventional gas sources; Forecast; Types of unconventional gas; Major producing regions Overall market trends; Production technology research; Economics of unconventional gas production; Barriers and challenges; Key regions: Australia, Canada, China, Russia, Ukraine, United Kingdom, United States; Major Projects; Industry Initiatives; Major players. Uneconomic or marginally economic resources such as tight (low permeability) sandstones, shale gas, and coalbed methane are considered unconventional. However, due to continued research and favorable gas prices, many previously uneconomic or marginally economic gas resources are now economically viable, and may not be considered unconventional by some companies. Unconventional gas resources are geologically distinct in that conventional gas resources are buoyancy-driven deposits, occurring as discrete accumulations in structural or stratigraphic traps, whereas unconventional gas resources are generally not buoyancy-driven deposits. The unconventional natural gas category (CAM, gas shales, tight sands, and landfill) is expected to continue at double-digit growth levels in the near term. Until 2008, demand for unconventional natural gas is likely to increase at an AAR corresponding to 10.7% from 2003, aided by prioritized research and development efforts. 1 app.

Drazga, B. (ed.)

2006-08-15T23:59:59.000Z

296

Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings  

E-Print Network [OSTI]

panels, solar thermal equipment, and storage systems. Consequently, natural gas purchases for heating

Stadler, Michael

2010-01-01T23:59:59.000Z

297

Cost savings associated with landfilling wastes containing very low levels of uranium  

SciTech Connect (OSTI)

The Paducah Gaseous Diffusion Plant (PGDP) has operated captive landfills (both residential and construction/demolition debris) in accordance with the Commonwealth of Kentucky regulations since the early 1980s. Typical waste streams allowed in these landfills include nonhazardous industrial and municipal solid waste (such as paper, plastic, cardboard, cafeteria waste, clothing, wood, asbestos, fly ash, metals, and construction debris). In July 1992, the U.S. Environmental Protection Agency issued new requirements for the disposal of sanitary wastes in a {open_quotes}contained landfill.{close_quotes} These requirements were promulgated in the 401 Kentucky Administrative Record Chapters 47 and 48 that became effective 30 June 1995. The requirements for a new contained landfill include a synthetic liner made of high-density polyethylene in addition to the traditional 1-meter (3-foot) clay liner and a leachate collection system. A new landfill at Paducah would accept waste streams similar to those that have been accepted in the past. The permit for the previously existing landfills did not include radioactivity limits; instead, these levels were administratively controlled. Typically, if radioactivity was detected above background levels, the waste was classified as low-level waste (LLW), which would be sent off-site for disposal.

Boggs, C.J. [Argonne National Lab., Germantown, MD (United States); Shaddoan, W.T. [Lockheed Martin Energy Systems, Paducah, KY (United States)

1996-03-01T23:59:59.000Z

298

Solar Easements  

Broader source: Energy.gov [DOE]

New Hampshire's "solar skyspace easement" provisions allow property owners to create solar easements in order to create and preserve a right to unobstructed access to solar energy. Easements remain...

299

Solar Easements  

Broader source: Energy.gov [DOE]

Virginia's solar easement law is similar to those in effect in other states. The Virginia Solar Easements Act of 1978 allows property owners to create binding solar easements for the purpose of...

300

COMMISSION GUIDEBOOK RENEWABLES PORTFOLIO  

E-Print Network [OSTI]

pipeline, conduit hydroelectric, digester gas, electrolysis, eligibility, energy storage, fuel cell, gasification, geothermal, hydroelectric, hydrogen, incremental generation, landfill gas, multifuel, municipal Standard, repowered, retail sales, small hydroelectric, SelfGeneration Incentive Program, solar, solar

Note: This page contains sample records for the topic "landfill gas solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

STAFF FINAL GUIDEBOOK RENEWABLES PORTFOLIO  

E-Print Network [OSTI]

hydroelectric, digester gas, electrolysis, eligibility, energy storage, fuel cell, gasification, geothermal, hydroelectric, hydrogen, incremental generation, landfill gas, multifuel, municipal solid waste, ocean wave, retail sales, small hydroelectric, SelfGeneration Incentive Program, solar, solar thermal, supplemental

302

Solar composition from the Genesis Discovery Mission  

E-Print Network [OSTI]

Solar composition from the Genesis Discovery Mission D. S. Burnett1 and Genesis Science Team2: the isoto- pic compositions of O, N, and noble gases differ in the Sun from other inner solar system objects in the noble gas data from solar wind implanted in lunar soils. (ii) The most advanced analytical instruments

303

CALIFORNIA SOLAR DATA MANUAL  

E-Print Network [OSTI]

Estimating Unmeasured Solar Radiation Quantities . . . . . .Appendix C - Appendix 0 - Solar Radiation Glossary. ConversSolar Data a. Solar Radiation. , , . , . . , , , , . , . . .

Berdahl, P.

2010-01-01T23:59:59.000Z

304

Community Shared Solar with Solarize  

Broader source: Energy.gov [DOE]

An overview of the concept behind The Solarize Guidebook, which offers neighborhoods a plan for getting volume discounts when making group purchases of rooftop solar energy systems.

305

CCA-Treated wood disposed in landfills and life-cycle trade-offs with waste-to-energy and MSW landfill disposal  

E-Print Network [OSTI]

CCA-Treated wood disposed in landfills and life-cycle trade-offs with waste-to-energy and MSW in waste-to-energy (WTE) facilities. In other countries, the predominant disposal option for wood, others have not, and the product continues to enter the waste stream from construction, demolition

Florida, University of

306

Field Performance of Three Compacted Clay Landfill Covers  

SciTech Connect (OSTI)

A study was conducted at sites in subtropical Georgia, seasonal and humid Iowa, and arid southeastern California to evaluate the field hydrology of compacted clay covers for final closure of landfills.Water balance of the covers was monitored with large (10 by 20 m), instrumented drainage lysimeters for 2 to 4 yr. Initial drainage at the Iowa and California sites was ,32 mm yr21 (i.e., unit gradient flow for a hydraulic conductivity of 1027 cm s21, the regulatory standard for the clay barriers in this study); initial drainage rate at the Georgia site was about 80 mm yr21. The drainage rate at all sites increased by factors ranging from 100 to 750 during the monitoring periods and in each case the drainage rate exceeded 32 mm yr21 by the end of the monitoring period. The drainage rates developed a rapid response to precipitation events, suggesting that increases in drainage rate were the result of preferential flow. Although no direct observations of preferential flow paths were made, field measurements of water content and temperature at all three sites suggested that desiccation or freeze–thaw cycling probably resulted in formation of preferential flow paths through the barrier layers. Data from all three sites showed the effectiveness of all three covers as hydraulic barriers diminished during the 2 to 4 yr monitoring period, which was short compared with the required design life (often 30 yr) of most waste containment facilities.

Albright, William H.; Benson, Craig H.; Gee, Glendon W.; Abichou, Tarek; Tyler, Scott W.; Rock, Steven

2006-11-01T23:59:59.000Z

307

Environmental geophysics at Kings Creek Disposal Site and 30th Street Landfill, Aberdeen Proving Ground, Maryland  

SciTech Connect (OSTI)

Geophysical studies on the Bush River Peninsula in the Edgewood Area of Aberdeen Proving Ground, Maryland, delineate landfill areas and provide diagnostic signatures of the hydrogeologic framework and possible contaminant pathways. These studies indicate that, during the Pleistocene Epoch, alternating stands of high and low seal levels resulted in a complex pattern of shallow channel-fill deposits in the Kings Creek area. Ground-penetrating radar studies reveal a paleochannel greater than 50 ft deep, with a thalweg trending offshore in a southwest direction into Kings Creek. Onshore, the ground-penetrating radar data indicate a 35-ft-deep branch to the main channel, trending to the north-northwest directly beneath the 30th Street Landfill. Other branches are suspected to meet the offshore paleochannel in the wetlands south and east of the 30th Street Landfill. This paleochannel depositional system is environmentally significant because it may control the shallow groundwater flow regime beneath the site. Electromagnetic surveys have delineated the pre-fill lowland area currently occupied by the 30th Street Landfill. Magnetic and conductive anomalies outline surficial and buried debris throughout the study area. On the basis of geophysical data, large-scale dumping has not occurred north of the Kings Creek Disposal Site or east of the 30th Street Landfill.

Davies, B.E.; Miller, S.F.; McGinnis, L.D.; Daudt, C.R.; Thompson, M.D.; Stefanov, J.E.; Benson, M.A.; Padar, C.A.

1995-01-01T23:59:59.000Z

308

Philadelphia, Pennsylvania: Solar in Action (Brochure), Solar...  

Broader source: Energy.gov (indexed) [DOE]

Philadelphia, Pennsylvania: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Philadelphia, Pennsylvania: Solar in Action (Brochure),...

309

NREL and Industry Advance Low-Cost Solar Water Heating R&D (Fact Sheet)  

SciTech Connect (OSTI)

NREL and Rhotech develop cost-effective solar water heating prototype to rival natural gas water heater market.

Not Available

2014-08-01T23:59:59.000Z

310

Gas Separations using Ceramic Membranes  

SciTech Connect (OSTI)

This project has been oriented toward the development of a commercially viable ceramic membrane for high temperature gas separations. A technically and commercially viable high temperature gas separation membrane and process has been developed under this project. The lab and field tests have demonstrated the operational stability, both performance and material, of the gas separation thin film, deposited upon the ceramic membrane developed. This performance reliability is built upon the ceramic membrane developed under this project as a substrate for elevated temperature operation. A comprehensive product development approach has been taken to produce an economically viable ceramic substrate, gas selective thin film and the module required to house the innovative membranes for the elevated temperature operation. Field tests have been performed to demonstrate the technical and commercial viability for (i) energy and water recovery from boiler flue gases, and (ii) hydrogen recovery from refinery waste streams using the membrane/module product developed under this project. Active commercializations effort teaming with key industrial OEMs and end users is currently underway for these applications. In addition, the gas separation membrane developed under this project has demonstrated its economical viability for the CO2 removal from subquality natural gas and landfill gas, although performance stability at the elevated temperature remains to be confirmed in the field.

Paul KT Liu

2005-01-13T23:59:59.000Z

311

TECHNICAL REPORTS The greenhouse gas (GHG) impact of composting a range  

E-Print Network [OSTI]

TECHNICAL REPORTS 1396 The greenhouse gas (GHG) impact of composting a range of potential by composting and GHG emissions during composting. The primary carbon credits associated with composting are through CH4 avoidance when feedstocks are composted instead of landfilled (municipal solid waste

Brown, Sally

312

Superfund explanation of significant difference for the record of decision (EPA Region 5): Tri-County Landfill/Waste Management Illinois, South Elgin, IL, April 23, 1998  

SciTech Connect (OSTI)

The Tri-County/Elgin Landfill Superfund Site (TCLF) encompasses both the Tri-County and Elgin Landfills. The purpose of this ESD is to explain why the design for the landfill cap component of the remedy differs from that set forth in the ROD (PB93-964133) and to address the cost differentials associated with the change.

NONE

1999-03-01T23:59:59.000Z

313

An integrated analytical framework for quantifying the LCOE of waste-to-energy facilities for a range of greenhouse gas emissions policy and technical factors  

SciTech Connect (OSTI)

This study presents a novel integrated method for considering the economics of waste-to-energy (WTE) facilities with priced greenhouse gas (GHG) emissions based upon technical and economic characteristics of the WTE facility, MSW stream, landfill alternative, and GHG emissions policy. The study demonstrates use of the formulation for six different policy scenarios and explores sensitivity of the results to ranges of certain technical parameters as found in existing literature. The study shows that details of the GHG emissions regulations have large impact on the levelized cost of energy (LCOE) of WTE and that GHG regulations can either increase or decrease the LCOE of WTE depending on policy choices regarding biogenic fractions from combusted waste and emissions from landfills. Important policy considerations are the fraction of the carbon emissions that are priced (i.e. all emissions versus only non-biogenic emissions), whether emissions credits are allowed due to reducing fugitive landfill gas emissions, whether biogenic carbon sequestration in landfills is credited against landfill emissions, and the effectiveness of the landfill gas recovery system where waste would otherwise have been buried. The default landfill gas recovery system effectiveness assumed by much of the industry yields GHG offsets that are very close to the direct non-biogenic GHG emissions from a WTE facility, meaning that small changes in the recovery effectiveness cause relatively larger changes in the emissions factor of the WTE facility. Finally, the economics of WTE are dependent on the MSW stream composition, with paper and wood being advantageous, metal and glass being disadvantageous, and plastics, food, and yard waste being either advantageous or disadvantageous depending upon the avoided tipping fee and the GHG emissions price.

Townsend, Aaron K., E-mail: aarontownsend@utexas.edu [Department of Mechanical Engineering, University of Texas at Austin, 1 University Station C2200, Austin, TX 78712 (United States); Webber, Michael E. [Department of Mechanical Engineering, University of Texas at Austin, 1 University Station C2200, Austin, TX 78712 (United States)

2012-07-15T23:59:59.000Z

314

Public health assessment for Kentwood Landfill, Kentwood, Kent County, Michigan, Region 5. Cerclis No. MID000260281. Final report  

SciTech Connect (OSTI)

The Kentwood Landfill site encompasses approximately 72 acres and was operated as a licensed landfill prior to 1976. It accepted domestic and industrial waste including unidentified hazardous wastes from heavy manufacturing and refining. Shallow ground water and leachate from the landfill are contaminated with heavy metals and organic compounds. On numerous occasions, leachate has been observed seeping out of the landfill and entering Plaster Creek. While significant exposure does not appear to have occurred or to be presently occurring, the Kentwood Landfill poses a public health hazard because of possible future exposures to contaminants. Nearby residents' ground water supplies could become contaminated should the contaminant plume shift or new wells be drilled into the plume. A lesser hazard is that trespassers could come into direct contact with contaminated surface materials on the site.

Not Available

1994-01-18T23:59:59.000Z

315

Capping as an alternative for remediating radioactive and mixed waste landfills  

SciTech Connect (OSTI)

This report describes some of the regulatory and technical issues concerning the use of capping as a containment strategy for radioactive and hazardous waste. Capping alternatives for closure of landfills is not just an engineering problem, but rather involves complex physical, biological, and chemical processes requiring a multidisciplinary approach to develop designs that will work over the long haul and are cost-effective. Much of the information has been distilled from regulatory and guidance documents and a compilation of research activities on waste disposal, contaminant transport processes, and technology development for landfills that has been conducted over the last 21 years.

Hakonson, T.E. [Colorado State Univ., Fort Collins, CO (United States). Dept. of Fishery and Wildlife Biology

1994-03-01T23:59:59.000Z

316

Property:Building/SPPurchasedEngyForPeriodMwhYrDigesterLandfillGas | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformationInyo County, California |SPElectrtyUsePercRefrigeration Jump to: navigation,Energy

317

Property:Building/SPPurchasedEngyNrmlYrMwhYrDigesterLandfillGas | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformationInyo County, CaliforniaInformation SPPurchasedEngyForPeriodMwhYrWoodChips Jump

318

Renewable LNG: Update on the World's Largest Landfill Gas to LNG Plant |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartmentnews-flashes OfficeTexasEnergyFuelHydrogen:

319

Solar Easements  

Broader source: Energy.gov [DOE]

Rhode Island allows property owners to establish solar easements in the same manner and with the same effect as a conveyance of an interest in real property. Solar easements must be created in...

320

Solar Forecasting  

Broader source: Energy.gov [DOE]

On December 7, 2012, DOE announced $8 million to fund two solar projects that are helping utilities and grid operators better forecast when, where, and how much solar power will be produced at U.S....

Note: This page contains sample records for the topic "landfill gas solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Solar Easements  

Broader source: Energy.gov [DOE]

Kansas' solar easement provisions do not create an automatic right to sunlight. Rather, they allow parties to voluntarily enter into solar easement contracts for the purpose of ensuring adequate...

322

Solar Rights  

Broader source: Energy.gov [DOE]

Cities and counties in North Carolina generally may not adopt ordinances prohibiting the installation of "a solar collector that gathers solar radiation as a substitute for traditional energy for...

323

Illinois Turning Landfill Trash into Future Cash | Department...  

Broader source: Energy.gov (indexed) [DOE]

to 8,000 homes. The future revenue generated from the sale of the gas and the sale of the electricity could reach 1 million annually. County Executive Larry Walsh praised this...

324

Optimal investment in wind and solar power in California.  

E-Print Network [OSTI]

?? Wind and solar electricity are increasingly attractive as their costs decline and greater value is given to avoiding greenhouse gas emissions. However, these technologies… (more)

Fripp, Matthias

2010-01-01T23:59:59.000Z

325

Energy payback and CO{sub 2} gas emissions from fusion and solar photovoltaic electric power plants. Final report to Department of Energy, Office of Fusion Energy Sciences  

SciTech Connect (OSTI)

A cradle-to-grave net energy and greenhouse gas emissions analysis of a modern photovoltaic facility that produces electricity has been performed and compared to a similar analysis on fusion. A summary of the work has been included in a Ph.D. thesis titled ''Life-cycle assessment of electricity generation systems and applications for climate change policy analysis'' by Paul J. Meier, and a synopsis of the work was presented at the 15th Topical meeting on Fusion Energy held in Washington, DC in November 2002. In addition, a technical note on the effect of the introduction of fusion energy on the greenhouse gas emissions in the United States was submitted to the Office of Fusion Energy Sciences (OFES).

Kulcinski, G.L.

2002-12-01T23:59:59.000Z

326

Solar powered dehumidifier apparatus  

DOE Patents [OSTI]

A thermally insulated light transmitting housing forms a chamber containing a desiccant and having a first gas port open to the ambient and a second gas port connected by a two way valve to a volume to be dried. Solar energy transmitted through the housing heats and dries the desiccant. The increased air pressure due to the heating of the volume to be dried causes the air from the volume to be expelled through the valve into the chamber. The desiccant is then cooled by shielding it from solar energy before the volume cools thereby increasing its moisture absorbing capacity. Then the volume is allowed to cool drawing dehumidified air through the desiccant and the valve into the volume to be dried. This cycle is then repeated.

Jebens, Robert W. (Skillman, NJ)

1980-12-30T23:59:59.000Z

327

Superfund Record of Decision (EPA Region 5): Tri County/Elgin Landfill Site, Elgin, IL. (First remedial action), September 1992. Final report  

SciTech Connect (OSTI)

The 66-acre Tri County Landfill (TCL) site comprises two former landfills the Tri County Landfill and the Elgin Landfill, located near the junction of Kane, Cook and DuPage Counties, Illinois. The two disposal operations overlapped to the point where the two landfills were indistinguishable. Land use in the area is predominantly agricultural. The local residents and businesses use private wells as their drinking water supply. Prior to the 1940's, both landfills were used for gravel mining operations. From 1968 to 1976, the TCL received liquid and industrial waste. State and county inspection reports revealed that open dumping, area filling, and dumping into the abandonded gravel quarry had occurred at the site. In addition, confined dumping, inadequate daily cover, blowing litter, fires, lack of access restrictions, and leachate flows were typical problems reported. In 1981, the landfill was closed with a final cover.

Not Available

1992-09-30T23:59:59.000Z

328

Solar solids reactor  

DOE Patents [OSTI]

A solar powered kiln is provided, that is of relatively simple design and which efficiently uses solar energy. The kiln or solids reactor includes a stationary chamber with a rearward end which receives solid material to be reacted and a forward end through which reacted material is disposed of, and a screw conveyor extending along the bottom of the chamber for slowly advancing the material between the chamber ends. Concentrated solar energy is directed to an aperture at the forward end of the chamber to heat the solid material moving along the bottom of the chamber. The solar energy can be reflected from a mirror facing at an upward incline, through the aperture and against a heat-absorbing material near the top of the chamber, which moves towards the rear of the chamber to distribute heat throughout the chamber. Pumps at the forward and rearward ends of the chamber pump heated sweep gas through the length of the chamber, while minimizing the flow of gas through an open aperture through which concentrated sunlight is received.

Yudow, B.D.

1986-02-24T23:59:59.000Z

329

Solar solids reactor  

DOE Patents [OSTI]

A solar powered kiln is provided, that is of relatively simple design and which efficiently uses solar energy. The kiln or solids reactor includes a stationary chamber with a rearward end which receives solid material to be reacted and a forward end through which reacted material is disposed of, and a screw conveyor extending along the bottom of the chamber for slowly advancing the material between the chamber ends. Concentrated solar energy is directed to an aperture at the forward end of the chamber to heat the solid material moving along the bottom of the chamber. The solar energy can be reflected from a mirror facing at an upward incline, through the aperture and against a heat-absorbing material near the top of the chamber, which moves towards the rear of the chamber to distribute heat throughout the chamber. Pumps at the forward and rearward ends of the chamber pump heated sweep gas through the length of the chamber, while minimizing the flow of gas through an open aperture through which concentrated sunlight is received.

Yudow, Bernard D. (Chicago, IL)

1987-01-01T23:59:59.000Z

330

Blackburn Landfill Co-Generation Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHIS PAGE ISJump to:

331

Sanitary Landfill Groundwater Monitoring Report - Fourth Quarter 1998 and 1998 Summary  

SciTech Connect (OSTI)

A maximum of fifty-three wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Water permit and as part of the SRS Groundwater Monitoring Program.

Chase, J.

1999-04-09T23:59:59.000Z

332

Landfills a thing of the past in Germany where advanced waste management By Evridiki Bersi -Kathimerini  

E-Print Network [OSTI]

Landfills a thing of the past in Germany where advanced waste management rules By Evridiki Bersi but that day has already come in Germany. On June 1, 2005, Germany imposed a ban on traditional garbage dumps, replacing them with one of the most advanced waste-management systems in the world. In the 1970s, Germany

Columbia University

333

REACTION AND COMBUSTION INDICATORS IN MSW LANDFILLS Jeffrey W. Martin1  

E-Print Network [OSTI]

, Ohio. ABSTRACT Municipal Solid Waste (MSW) landfills may contain aluminum from residential and commercial solid waste, industrial waste, and aluminum production wastes. Some aluminum-bearing waste municipal solid waste, industrial wastes, and aluminum production waste such as dross, salt cake, baghouse

334

Comparison of four composite landfill liner systems considering leakage rate and mass flux  

E-Print Network [OSTI]

systems, i.e., Subtitle D com- posite liner system, composite liner system with a geosynthetic clay liner (with a 61 cm (2 feet) or 91.5 cm (3 feet) thick compacted clay liner), were evaluated in termsComparison of four composite landfill liner systems considering leakage rate and mass flux T

335

Results of the radiological survey at the Town of Tonawanda Landfill, Tonawanda, New York (TNY001)  

SciTech Connect (OSTI)

At the request of the US Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted a radiological survey at the Town of Tonawanda Landfill, Tonawanda, New York. The survey was performed in September 1991. The purpose of the survey was to determine if radioactive materials from work performed under government contract at the Linde Air Products Division of Union Carbide Corporation, Tonawanda, New York, had been deposited in the landfill. The survey included a surface gamma scan and the collection of soil samples for radionuclide analyses. Results of the survey suggest that material originating at the Linde plant may have been deposited in the landfill. Soil samples S54 and B12 contained technologically enhanced levels of [sup 238]U not unlike the product formerly produced by the Linde plant. In contrast, samples B4A, B5A and B7B, containing elevated concentrations of [sup 226]Ra and [sup 230]Th with much lower concentrations of [sup 238]U, were similar to the residue or byproduct of the refinery operation conducted at the Linde plant. In 24 instances, soil samples from the Town of Tonawanda Landfill exceeded DOE guideline values for [sup 238]U, [sup 226]Ra, and/or [sup 230]Th in surface or subsurface soil. Nine of these samples contained radionuclide concentrations more than 30 times the guideline value.

Rodriguez, R.E.; Murray, M.E.; Uziel, M.S.

1992-10-01T23:59:59.000Z

336

Results of the radiological survey at the Town of Tonawanda Landfill, Tonawanda, New York (TNY001)  

SciTech Connect (OSTI)

At the request of the US Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted a radiological survey at the Town of Tonawanda Landfill, Tonawanda, New York. The survey was performed in September 1991. The purpose of the survey was to determine if radioactive materials from work performed under government contract at the Linde Air Products Division of Union Carbide Corporation, Tonawanda, New York, had been deposited in the landfill. The survey included a surface gamma scan and the collection of soil samples for radionuclide analyses. Results of the survey suggest that material originating at the Linde plant may have been deposited in the landfill. Soil samples S54 and B12 contained technologically enhanced levels of {sup 238}U not unlike the product formerly produced by the Linde plant. In contrast, samples B4A, B5A and B7B, containing elevated concentrations of {sup 226}Ra and {sup 230}Th with much lower concentrations of {sup 238}U, were similar to the residue or byproduct of the refinery operation conducted at the Linde plant. In 24 instances, soil samples from the Town of Tonawanda Landfill exceeded DOE guideline values for {sup 238}U, {sup 226}Ra, and/or {sup 230}Th in surface or subsurface soil. Nine of these samples contained radionuclide concentrations more than 30 times the guideline value.

Rodriguez, R.E.; Murray, M.E.; Uziel, M.S.

1992-10-01T23:59:59.000Z

337

WESTLAKE LANDFILL EPA Region 7 03/29/2012 City: Bridgeton  

E-Print Network [OSTI]

was quarried on the site. Beginning in 1962, portions of the property were used for landfilling of municipal solid waste and construction debris. Two areas became radiologically contaminated in 1973 when soils. An adjacent property has also been impacted by erosional migration of radiologically-contaminated material

338

Call for Nominations to the WTERT/SUR 2010 Awards -February 22, 2010  

E-Print Network [OSTI]

/other heating from WTE/EfW: Tons of MSW landfilled: Tons of MSW landfilled with Landfill Gas Recovery: MWh

Columbia University

339

Final Technical Report, City of Brockton Solar Brightfield: Deploying a Solar Array on a Brockton Brownfield  

SciTech Connect (OSTI)

The City of Brockton, Massachusetts sought to install New England’s largest solar array at a remediated brownfield site on Grove Street. The 425-kilowatt solar photovoltaic array – or “Brightfield” – was installed in an urban park setting along with interpretive displays to maximize the educational opportunities. The “Brightfield” project included 1,395 310-Watt solar panels connected in “strings” that span the otherwise unusable 3.7-acre site. The project demonstrated that it is both technically and economically feasible to install utility scale solar photovoltaics on a capped landfill site. The US Department of Energy conceived the Brightfields program in 2000, and Brockton’s Brightfield is the largest such installation nationwide. Brockton’s project demonstrated that while it was both technically and economically feasible to perform such a project, the implementation was extremely challenging due to the state policy barriers, difficulty obtaining grant funding, and level of sophistication required to perform the financing and secure required state approvals. This demonstration project can be used as a model for other communities that wish to implement “Brownfields to Brightfields” projects; 2) implementing utility scale solar creates economies of scale that can help to decrease costs of photovoltaics; 3) the project is an aesthetic, environmental, educational and economic asset for the City of Brockton.

Ribeiro, Lori

2007-08-23T23:59:59.000Z

340

CALIFORNIA SOLAR DATA MANUAL  

E-Print Network [OSTI]

Estimating Unmeasured Solar Radiation Quantities . . . . . .Weather Data . . . . . , . , . . . . . . . . . .Solar DataB. l'he Solar Constant. . . . . . C. Solar Time and Standard

Berdahl, P.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "landfill gas solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Solar forecasting review  

E-Print Network [OSTI]

and forecasting of solar radiation data: a review,”forecasting of solar- radiation data,” Solar Energy, vol.sequences of global solar radiation data for isolated sites:

Inman, Richard Headen

2012-01-01T23:59:59.000Z

342

Recovery Act milestone: Excavation begins at Manhattan Project landfill  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromising ScienceRecent SREL ReprintsHeaviestRecovery Act

343

US EPA Landfill Methane Outreach Program | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save Energy Now Jump to:Development ReportsAssessmentsbyEIA

344

Solar Mapper  

Broader source: Energy.gov [DOE]

Interactive, online mapping tool providing access to spatial data related to siting utility-scale solar facilities in the southwestern United States.

345

Solar Rights  

Broader source: Energy.gov [DOE]

Maine law requires that any municipal ordinance, bylaw, or regulation adopted after September 30, 2009 regulating solar energy devices on residential property follow certain requirements. The rules...

346

Solar Energy.  

E-Print Network [OSTI]

??This thesis is about Photovoltaic (PV) cells and its stresses in various directions by calculating the power generated using solar cells under different conditions to… (more)

Bafana, Ramzi

2014-01-01T23:59:59.000Z

347

Solar Car  

SciTech Connect (OSTI)

Des Moines Central Academy Middle School students compete in the Solar Car Challenge at the National Science Bowl, May 2 in Washington D.C.

None

2010-01-01T23:59:59.000Z

348

Effects of adding wash tower effluent to Ano Liossia landfill to enhance bioreaction c by Olympia Galenianou.  

E-Print Network [OSTI]

A theoretical study was performed on the effects of adding sulfate-rich wash tower effluent from the Athens hospital waste incinerator to the Ano Liossia landfill of Athens. The method of mass balance was used to examine ...

Galenianou, Olympia

2006-01-01T23:59:59.000Z

349

EA-0767: Construction and Experiment of an Industrial Solid Waste Landfill at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of a proposal to construct and operate a solid waste landfill within the boundary at the U.S. Department of Energy's Portsmouth Gaseous Diffusion plant...

350

Annual Performance Assessment and Composite Analysis Review for the ICDF Landfill FY 2008  

SciTech Connect (OSTI)

This report addresses low-level waste disposal operations at the Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility (ICDF) landfill from the start of operations in Fiscal Year 2003 through Fiscal Year 2008. The ICDF was authorized in the Operable Unit 3-13 Record of Decision for disposal of waste from the Idaho National Laboratory Site CERCLA environmental restoration activities. The ICDF has been operating since 2003 in compliance with the CERCLA requirements and the waste acceptance criteria developed in the CERCLA process. In developing the Operable Unit 3-13 Record of Decision, U.S. Department of Energy Order (DOE) 435.1, 'Radioactive Waste Management', was identified as a 'to be considered' requirement for the ICDF. The annual review requirement under DOE Order 435.1 was determined to be an administrative requirement and, therefore, annual reviews were not prepared on an annual basis. However, the landfill has been operating for 5 years and, since the waste forms and inventories disposed of have changed from what was originally envisioned for the ICDF landfill, the ICDF project team has decided that this annual review is necessary to document the changes and provide a basis for any updates in analyses that may be necessary to continue to meet the substantive requirements of DOE Order 435.1. For facilities regulated under DOE Order 435.1-1, U.S. DOE Manual 435.1-1, 'Radioactive Waste Management', IV.P.(4)(c) stipulates that annual summaries of low-level waste disposal operations shall be prepared with respect to the conclusions and recommendations of the performance assessment and composite analysis. Important factors considered in this review include facility operations, waste receipts, and results from monitoring and research and development programs. There have been no significant changes in operations at the landfill in respect to the disposal geometry, the verification of waste characteristics, and the tracking of inventories against total limits that would affect the results and conclusions of the performance assessment. Waste receipts to date and projected waste receipts through Fiscal Year 2012 are both greater than the inventory assessed in the performance assessment and composite analysis. The waste forms disposed of to the landfill are different from the waste form (compacted soil) assessed in the performance assessment. The leak detection system and groundwater monitoring results indicate the landfill has not leaked. The results of the performance assessment/composite analysis are valid (i.e., there is still a reasonable expectation of meeting performance objectives) but the new information indicates less conservatism in the results than previously believed.

Karen Koslow

2009-08-31T23:59:59.000Z

351

Alfv'en Wave Solitons and Solar Intermediate Drift Bursts  

E-Print Network [OSTI]

propagate at velocities of the order of the Alfv'en velocity in a direction inclined to the magnetic field to be magnetized, as e.g. the solar atmosphere, the solar and stellar coronae, the solar wind, accretion disks'en speed v A , a fundamental plasma parameter depending on the gas and the magnetic pressures. It has been

Guedel, Manuel

352

Engineering Project Solar-Boosted  

E-Print Network [OSTI]

at the Australian National University. #12;4 Abstract Solar gasification of biomass presents an attractive avenue fuels and chemicals derived via the Fischer-Tropsch process (Dry 2002). Supercritical water gasification (SCWG) has been shown to rapidly achieve char-free gasification, yielding a gas rich in H2, CH4, CO

353

Liquefied Natural Gas for Trucks and Buses  

SciTech Connect (OSTI)

Liquefied natural gas (LNG) is being developed as a heavy vehicle fuel. The reason for developing LNG is to reduce our dependency on imported oil by eliminating technical and costs barriers associated with its usage. The U.S. Department of Energy (DOE) has a program, currently in its third year, to develop and advance cost-effective technologies for operating and refueling natural gas-fueled heavy vehicles (Class 7-8 trucks). The objectives of the DOE Natural Gas Vehicle Systems Program are to achieve market penetration by reducing vehicle conversion and fuel costs, to increase consumer acceptance by improving the reliability and efficiency, and to improve air quality by reducing tailpipe emissions. One way to reduce fuel costs is to develop new supplies of cheap natural gas. Significant progress is being made towards developing more energy-efficient, low-cost, small-scale natural gas liquefiers for exploiting alternative sources of natural gas such as from landfill and remote gas sites. In particular, the DOE program provides funds for research and development in the areas of; natural gas clean up, LNG production, advanced vehicle onboard storage tanks, improved fuel delivery systems and LNG market strategies. In general, the program seeks to integrate the individual components being developed into complete systems, and then demonstrate the technology to establish technical and economic feasibility. The paper also reviews the importance of cryogenics in designing LNG fuel delivery systems.

James Wegrzyn; Michael Gurevich

2000-06-19T23:59:59.000Z

354

06-GA50035c_2-col.p65  

Broader source: Energy.gov (indexed) [DOE]

Coal, 50% Nuclear, 20% Natural Gas, 17% Hydro, 7% Oil, 3% Other Industrial, 1% wood, wind, solar, 2% Landfill gas, geothermal, G NEP will build on the recent advances made by the...

355

Development of risk-assessment methodology for municipal-sludge landfilling. Final report  

SciTech Connect (OSTI)

This is one of a series of reports that present methodologies for assessing the potential risks to humans or other organisms from the disposal or reuse of municipal sludge. The sludge management practices addressed by this series include land application practices, distribution and marketing programs, landfilling, incineration and ocean disposal. These reports provide methods for evaluating potential health and environmental risks from toxic chemicals that may be present in sludge. The document addresses risks from chemicals associated with landfilling of municipal sludge. These proposed risk assessment procedures are designed as tools to assist in the development of regulations for sludge management practices. The criteria may address management practices (such as site design or process control specifications), limits on sludge disposal rates or limits on toxic chemical concentrations in the sludge.

Not Available

1989-08-01T23:59:59.000Z

356

Sanitary landfill groundwater monitoring report. Fourth quarter 1994 and 1994 summary  

SciTech Connect (OSTI)

Eighty-nine wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Waste Permit DWP-087A and as part of the SRS Groundwater Monitoring Program. Dichloromethane, a common laboratory contaminant, and trichloroethylene were the most widespread constituents exceeding standards during 1994. Benzene, chloroethene (vinyl chloride), 1,2-dichloroethane, 1,1-dichloroethylene, 1,2-dichloropropane, gross alpha, mercury, nonvolatile beta, tetrachloroethylene, and tritium also exceeded standards in one or more wells. The groundwater flow direction in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill was to the southeast (universal transverse Mercator coordinates). The flow rate in this unit was approximately 140 ft/year during first and fourth quarters 1994.

NONE

1995-02-01T23:59:59.000Z

357

Sanitary Landfill Groundwater Monitoring Report. Fourth Quarter 1997 and 1997 Summary  

SciTech Connect (OSTI)

A maximum of forty-eight wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Water Permit DWP-087A and as part of the SRS Groundwater Monitoring Program. Chloroethene (vinyl chloride) and trichloroethylene were the most widespread constituents exceeding standards during 1997. Lead (total recoverable), 1,4-dichlorobenzene, mercury, benzene, dichloromethane (methylene chloride), a common laboratory contaminant, tetrachloroethylene, 1,2-dichloroethane, gross alpha, tritium, and 1.2-dichloropropane also exceeded standards in one or more wells. The groundwater flow direction in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill was to the southeast (universal transverse Mercator coordinates). The flow rate in this unit was approximately 139 ft/year during first quarter 1997 and 132 ft/year during fourth quarter.

Chase, J. [Westinghouse Savannah River Company, AIKEN, SC (United States)

1998-02-01T23:59:59.000Z

358

Title I conceptual design for Pit 6 landfill closure at Lawrence Livermore National Laboratory Site 300  

SciTech Connect (OSTI)

The objective of this design project is to evaluate and prepare design and construction documents for a closure cover cap for the Pit 6 Landfill located at Lawrence Livermore National Laboratory Site 300. This submittal constitutes the Title I Design (Conceptual Design) for the closure cover of the Pit 6 Landfill. A Title I Design is generally 30 percent of the design effort. Title H Design takes the design to 100 percent complete. Comments and edits to this Title I Design will be addressed in the Title II design submittal. Contents of this report are as follows: project background; design issues and engineering approach; design drawings; calculation packages; construction specifications outline; and construction quality assurance plan outline.

MacDonnell, B.A.; Obenauf, K.S. [Golder Associates, Inc., Alameda, CA (United States)

1996-08-01T23:59:59.000Z

359

Superfund record of decision (EPA Region 5): Southside Sanitary Landfill, Indianapolis, IN, September 28, 1995  

SciTech Connect (OSTI)

This decision document presents the selected remedial action for the Southside Sanitary Landfill (SSL) site, in Indianapolis, Indiana. The results of the Remedial Investigation showed the previous measures were adequate to protect human health and the environment and no unacceptable risk remains at the site. Therefore, the selected remedy for this site is a no further action. The operators of SSL have undertaken specific remedial measures in an attempt to decrease any threat of release of contaminants from the site.

NONE

1996-03-01T23:59:59.000Z

360

I 95 Municipal Landfill Phase I Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia: Energythe Second WorkshopLakeCorporation |Landfill

Note: This page contains sample records for the topic "landfill gas solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Sanitary Landfill Groundwater Monitoring Report - Third and Fourth Quarters 2000 and 2000 Summary  

SciTech Connect (OSTI)

A maximum of forty wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill Area at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Waste Permit DWP-087A and as part of the Sanitary Landfill Groundwater Quality Assessment Plan. Chloroethene (vinyl chloride) and trichloroethylene were the most widespread constituent exceeding the Final Primary Drinking Water Standards during the calendar year 2000. 1,4-Dichlorobenzene, benzene, dichloromethane (methylene chloride), gross alpha, lead (total recoverable) mercury (total recoverable), thallium (total recoverable), and tritium also exceeded standards in one or more wells. The groundwater flow direction in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill is to the southeast (universal transverse Mercator coordinates). The flow rate at this unit was approximately 122.64 ft/year during first quarter 2000 and 132.28 ft/year during fourth quarter 2000.

Chase, J.A.

2001-03-07T23:59:59.000Z

362

Construction quality assurance for Pit 6 landfill closure, Lawrence Livermore National Laboratory, Site 300  

SciTech Connect (OSTI)

Golder Construction Services, Inc. (GCS), under contract to the Regents of the University of California, Lawrence Livermore National Laboratory (LLNL), provided the construction quality assurance (CQA) observation and testing during the construction of the Site 300, Pit 6 landfill closure cover. The cap construction was performed as a CERCLA non-time-critical removal action from June 2 to August 29, 1997. the project site is located 18 miles east of Livermore on Tesla Road and approximately 10 miles southwest of Tracy on Corral Hollow Road in San Joaquin County, California. This report certifies that the LLNL, Site 300, Pit 6, Landfill Closure was constructed in accordance with the construction specifications and design drawings. This report documents construction activities and CQA monitoring and testing for construction of the Pit 6 Landfill Closure. Golder Associates, Inc. of Oakland, California was the design engineering firm responsible for preparation of the drawings and specifications. CQA services were provided by GCS, of Roseville, California, under supervision of a California registered civil Engineer.

NONE

1997-10-30T23:59:59.000Z

363

Investigation of Solar Energy Transfer through Plasmonic Au Nanoparticle-doped Sol-derived TiO? Thin Films in Photocatalysis and Photovoltaics /  

E-Print Network [OSTI]

Nanoparticles in Dye-Sensitized Solar Cells. ACS Nano. 2012,to the operation of a Dye-Sensitized solar cell. Figure 13:gas sensors, Dye Sensitized Solar Cells, and optical

Zelinski, Andrew

2013-01-01T23:59:59.000Z

364

Solar Rights  

Broader source: Energy.gov [DOE]

Hawaii law prohibits the creation of any covenant or restriction contained in any document restricting the installation or use of a solar energy system on a residential dwelling or townhouse. ...

365

Mixed waste landfill cell construction at energy solutions LLC: a regulator's perspective  

SciTech Connect (OSTI)

A small percentage of the property that EnergySolutions' (formerly Envirocare) operates at Clive, Utah is permitted by the State of Utah as a treatment, storage and disposal facility for mixed waste. Mixed Waste is defined as a hazardous waste (Title 40 Code of Federal Regulations Part 261.3) that also has a radioactive component. Typically, the waste EnergySolutions receives at its mixed waste facility is contaminated with heavy metals and organic compounds while also contaminated with radioactivity. For EnergySolutions, the largest generator of mixed waste is the United States Department of Energy. However, EnergySolutions also accepts a wide variety of mixed waste from other generators. For many wastes, EnergySolutions goes through the process of characterization and acceptance (if appropriate) of the waste, treating the waste (if necessary), confirmation that the waste meets Land Disposal Restriction, and disposal of the waste in its mixed waste landfill cell (MWLC). EnergySolutions originally received its State-issued Part B (RCRA) permit in 1990. The Permit allows a mixed waste landfill cell footprint that covers roughly 10 hectares and includes 20 individual 'sumps'. EnergySolutions chose to build small segments of the landfill cell as waste receipts dictated. Nearly 16 years later, EnergySolutions has just completed its Phase V construction project. 18 of the 20 sumps in the original design have been constructed. The last two sumps are anticipated to be its Phase VI construction project. Further expansion of its mixed waste disposal landfill capacity beyond the current design would require a permit modification request and approval by the Executive Secretary of the Utah Solid and Hazardous Waste Control Board. Construction of the landfill cell is governed by the Construction Quality Assurance/Quality Control manual of its State-issued Permit. The construction of each sump is made up of (from the bottom up): a foundation; three feet of engineered clay; primary and secondary geo-synthetics (60 mil HDPE, geo-fabric and geo-textile); a two foot soil protective cover; tertiary geo-synthetics (80 mil HDPE, geo-fabric and geo-textile); and a final two foot soil protective cover. The Utah Department of Environmental Quality Division of Solid and Hazardous Waste (UDEQ/DSHW) oversees the construction process and reviews the documentation after the construction is complete. If all aspects of the construction process are met, the Executive Secretary of the Utah Solid and Hazardous Waste Control Board approves the landfill cell for disposal. It is the role of the regulator to ensure to the stakeholders that the landfill cell has been constructed in accordance with the State-issued permit and that the cell is protective of human health and the environment. A final determination may require conflict resolution between the agency and the facility. (authors)

Lukes, G.C.; Willoughby, O.H. [Utah Department of Environmental Quality, Div. of Solid and Hazardous Waste (United States)

2007-07-01T23:59:59.000Z

366

Samson Sherman President Obama's Energy Plan & Natural Gas  

E-Print Network [OSTI]

Samson Sherman President Obama's Energy Plan & Natural Gas The Plan On March 30, President Obama" but includes wind, solar, nuclear, natural gas, and coal plants that can capture and store CO2 emissions period. Natural Gas Natural gas is considered the cleanest of all fossil fuels. Mostly comprised

Toohey, Darin W.

367

Can carbon finance contribute to the promotion of solar water heating in Bolivia?   

E-Print Network [OSTI]

Residential applications of renewable energy can contribute to reducing greenhouse gas emissions while improving the quality of life for households. Thermosiphon solar water heaters are passive systems using solar energy to supply hot water...

Hayek, Niklas

2011-11-24T23:59:59.000Z

368

Solar forecasting review  

E-Print Network [OSTI]

2.1.2 European Solar Radiation Atlas (ESRA)2.4 Evaluation of Solar Forecasting . . . . . . . . .2.4.1 Solar Variability . . . . . . . . . . . . .

Inman, Richard Headen

2012-01-01T23:59:59.000Z

369

Residential Solar Valuation Rates  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Residential Solar Valuation Rates Karl R. Rbago Rbago Energy LLC 1 The Ideal Residential Solar Tariff Fair to the utility and non-solar customers Fair compensation to...

370

CALIFORNIA SOLAR DATA MANUAL  

E-Print Network [OSTI]

for Daily Solar Radiation Data. Proceedings of the 1977from total horizontal radiation data, they both suffer froma. SOLAR RADIATION Solar radiation data provide a measure of

Berdahl, P.

2010-01-01T23:59:59.000Z

371

Solar powered desalination system  

E-Print Network [OSTI]

2008, uses concentrated solar power to split water. Figurethe main reason the potential for solar power is boundless.a clean energy source, solar power is inexhaustible, fairly

Mateo, Tiffany Alisa

2011-01-01T23:59:59.000Z

372

CALIFORNIA SOLAR DATA MANUAL  

E-Print Network [OSTI]

Solar Energy Laboratory 1303 Engineering Research Building UniversitySolar Energy Laboratory 1303 Engineering Research laboratory UniversitySolar Energy Group, Energy and Lawrence Berkeley Laboratory University

Berdahl, P.

2010-01-01T23:59:59.000Z

373

Nanocrystal Solar Cells  

E-Print Network [OSTI]

Nov, 2005). Chapter 4 Hybrid solar cells with 3-dimensionalinorganic nanocrystal solar cells 5.1 Introduction In recentoperation of organic based solar cells and distinguish them

Gur, Ilan

2006-01-01T23:59:59.000Z

374

CALIFORNIA SOLAR DATA MANUAL  

E-Print Network [OSTI]

room )I I( I I ,i I CALIFORNIA SOLAR DATA MANUAL I. ! I ienergy resource. The California Solar Data Manual describestowards fulfilling California's solar data needs is the

Berdahl, P.

2010-01-01T23:59:59.000Z

375

CALIFORNIA SOLAR DATA MANUAL  

E-Print Network [OSTI]

for Reno, Nevada . . . . . (Q) Solar Data for China Lake/using Nominal Solar Profiles China Lake/Inyokern ANGLE OFStations - China Lake, Edwards Monthly Latitude: Jan SOLAR

Berdahl, P.

2010-01-01T23:59:59.000Z

376

Solar forecasting review  

E-Print Network [OSTI]

Figure 6.3: Birds-eye view of solar array deployment siteBirds-eye 7. Birds-eye view of of solar solar array array

Inman, Richard Headen

2012-01-01T23:59:59.000Z

377

Solar Contractor Licensing  

Broader source: Energy.gov [DOE]

The California Contractors State License Board administers contractor licenses. The C-46 Solar Contractor license covers active solar water and space heating systems, solar pool heating systems,...

378

Solar forecasting review  

E-Print Network [OSTI]

2.1.2 European Solar Radiation Atlas (ESRA)for supplementing solar radiation network data,” FinalEstimating incident solar radiation at the surface from geo-

Inman, Richard Headen

2012-01-01T23:59:59.000Z

379

Solar Resource Assessment  

Broader source: Energy.gov [DOE]

DOE solar resource research focuses on understanding historical solar resource patterns and making future predictions, both of which are needed to support reliable power system operation. As solar...

380

Mixed waste storage facility CDR review, Paducah Gaseous Diffusion Plant; Solid waste landfill CDR review, Paducah Gaseous Diffusion Plant  

SciTech Connect (OSTI)

This report consists of two papers reviewing the waste storage facility and the landfill projects proposed for the Paducah Gaseous Diffusion Plant complex. The first paper is a review of DOE`s conceptual design report for a mixed waste storage facility. This evaluation is to review the necessity of constructing a separate mixed waste storage facility. The structure is to be capable of receiving, weighing, sampling and the interim storage of wastes for a five year period beginning in 1996. The estimated cost is assessed at approximately $18 million. The review is to help comprehend and decide whether a new storage building is a feasible approach to the PGDP mixed waste storage problem or should some alternate approach be considered. The second paper reviews DOE`s conceptual design report for a solid waste landfill. This solid waste landfill evaluation is to compare costs and the necessity to provide a new landfill that would meet State of Kentucky regulations. The assessment considered funding for a ten year storage facility, but includes a review of other facility needs such as a radiation detection building, compactor/baler machinery, material handling equipment, along with other personnel and equipment storage buildings at a cost of approximately $4.1 million. The review is to help discern whether a landfill only or the addition of compaction equipment is prudent.

NONE

1998-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "landfill gas solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Study of vinyl chloride formation at landfill sites in California. Final report, 16 July 1985-15 January 1987  

SciTech Connect (OSTI)

The purpose of this study was to determine if vinyl chloride (VC) detected in air above California landfills is produced in situ. Experiments were performed with N and S California landfill samples and anaerobic-digestor sewage sludge. Test materials were incubated with various chlorocarbons and with /sup 13/C-trichloroethylene (TCE) to confirm biological production of /sup 13/C-VC. These experiments confirmed the biological dechlorination of chloroethylenes as the most likely route for VC emission from landfills, rather than chemical or photochemical routes, or PVC degradation. Leaching from PVC could be a minor source of VC, though there was less than 0.1% (estimated) plastic in the landfill samples, containing at most 330 ppm of VC monomer. A landfill sample known to produce VC was used to start an anaerobic chemostat using methanol as sole carbon source. The enriched culture resulting was homogeneous, and when incubated with /sup 13/C-TCE, produced (13)C-VC, confirmed by GC/MS.

Molton, P.M.; Hallen, R.T.; Payne, J.W.

1987-01-01T23:59:59.000Z

382

Natural gas recovery, storage, and utilization SBIR program  

SciTech Connect (OSTI)

A Fossil Energy natural-gas topic has been a part of the DOE Small Business Innovation Research (SBIR) program since 1988. To date, 50 Phase SBIR natural-gas applications have been funded. Of these 50, 24 were successful in obtaining Phase II SBIR funding. The current Phase II natural-gas research projects awarded under the SBIR program and managed by METC are presented by award year. The presented information on these 2-year projects includes project title, awardee, and a project summary. The 1992 Phase II projects are: landfill gas recovery for vehicular natural gas and food grade carbon dioxide; brine disposal process for coalbed gas production; spontaneous natural as oxidative dimerization across mixed conducting ceramic membranes; low-cost offshore drilling system for natural gas hydrates; motorless directional drill for oil and gas wells; and development of a multiple fracture creation process for stimulation of horizontally drilled wells.The 1993 Phase II projects include: process for sweetening sour gas by direct thermolysis of hydrogen sulfide; remote leak survey capability for natural gas transport storage and distribution systems; reinterpretation of existing wellbore log data using neural-based patter recognition processes; and advanced liquid membrane system for natural gas purification.

Shoemaker, H.D.

1993-12-31T23:59:59.000Z

383

Application of a NAPL partitioning interwell tracer test (PITT) to support DNAPL remediation at the Sandia National Laboratories/New Mexico chemical waste landfill  

SciTech Connect (OSTI)

Chlorinated solvents as dense non-aqueous phase liquid (DNAPL) are present at a large number of hazardous waste sites across the U.S. and world. DNAPL is difficult to detect in the subsurface, much less characterize to any degree of accuracy. Without proper site characterization, remedial decisions are often difficult to make and technically effective, cost-efficient remediations are even more difficult to obtain. A new non-aqueous phase liquid (NAPL) characterization technology that is superior to conventional technologies has been developed and applied at full-scale. This technology, referred to as the Partitioning Interwell Tracer Test (PITT), has been adopted from oil-field practices and tailored to environmental application in the vadose and saturated zones. A PITT has been applied for the first time at full-scale to characterize DNAPL in the vadose zone. The PITT was applied in December 1995 beneath two side-by-side organic disposal pits at Sandia National Laboratories/New Mexico (SNL/NM) RCRA Interim Status Chemical Waste Landfill (CWL), located in Albuquerque, New Mexico. DNAPL, consisting of a mixture of chlorinated solvents, aromatic hydrocarbons, and PCE oils, is known to exist in at least one of the two buried pits. The vadose zone PITT was conducted by injecting a slug of non-partitioning and NAPL-partitioning tracers into and through a zone of interest under a controlled forced gradient. The forced gradient was created by a balanced extraction of soil gas at a location 55 feet from the injector. The extracted gas stream was sampled over time to define tracer break-through curves. Soil gas sampling ports from multilevel monitoring installations were sampled to define break-through curves at specific locations and depths. Analytical instrumentation such as gas chromatographs and a photoacoustical analyzers operated autonomously, were used for tracer detection.

Studer, J.E. [INTERA Inc., Albuquerque, NM (United States); Mariner, P.; Jin, M. [INTERA Inc., Austin, TX (United States)] [and others

1996-05-01T23:59:59.000Z

384

Statewide Air Emissions Calculations from Wind and other Renewables, Summary Report  

E-Print Network [OSTI]

; ? Analysis of emissions reduction from wind farms; ? Updates on degradation analysis; ? Analysis of other renewables, including: PV, solar thermal, hydroelectric, geothermal and landfill gas; ? Review of electricity generation by renewable sources... were conducted on five specific categories which include solar photovoltaic, solar thermal, geothermal, hydroelectric, and Landfill Gas-Fired Power Plants. Many newly located renewable energy projects are assembled for inclusion in this report (Table...

Haberl, J.; Liu, Z.; Baltazar-Cervantes, J. C.; Gilman, D.; Culp, C.; Yazdani, B.; Claridge, D.; Mao, C.; Sun, Y.; Narayanaswamy, A.; Do, S.; Kim, K

385

Texas Emissions Reductions Program (TERP) Energy Efficiency/Renewable Energy (EE/RE) Update  

E-Print Network [OSTI]

Electricity Generated in Texas by Renewable Sources Solar Biomass Landfill gas Hydro RENEWABLES: WHAT ARE THEY? Wind energy is the largest portion. Landfill gas, hydro are next. Biomass, solar are smallest 0 5,000,000 10,000,000 15,000,000 20...,000,000 25,000,000 30,000,000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 E le ct ri ci ty G en er at ed in M W h Year Annual Electricity Generated in Texas by Renewable Sources Solar Biomass Landfill gas Hydro Wind 0 20000...

Haberl, J. S.; Yazdani, B.; Culp, C.

2011-01-01T23:59:59.000Z

386

Liquid balance monitoring inside conventional, Retrofit, and bio-reactor landfill cells  

SciTech Connect (OSTI)

Highlights: • The Retrofit, Control, and As-Built cells received 48, 14, and 213 L Mg{sup ?1} (liters of liquids per metric ton of waste). • The leachate collection system yielded 60, 57 and 198 L Mg{sup ?1} from the Retrofit, Control, and As-Built cells. • The head on liner in all cells was below regulatory limits. • Measured moisture content of the waste samples was consistent with that calculated from accumulated liquid by balance. • The in-place saturated hydraulic conductivity of the MSW was calculated to be in the range of 10{sup ?8} to 10{sup ?7} m s{sup ?1}. - Abstract: The Outer Loop landfill bioreactor (OLLB) in Louisville, KY, USA has been the site of a study to evaluate long-term bioreactor performance at a full-scale operational landfill. Three types of landfill units were studied including a conventional landfill (Control cell), a new landfill area that had an air addition and recirculation piping network installed as waste was being placed (As-Built cell), and a conventional landfill that was modified to allow for liquids recirculation (Retrofit cell). During the monitoring period, the Retrofit, Control, and As-Built cells received 48, 14, and 213 L Mg{sup ?1} (liters of liquids per metric ton of waste), respectively. The leachate collection system yielded 60, 57 and 198 L Mg{sup ?1} from the Retrofit, Control, and As-Built cells, respectively. The head on liner in all cells was below regulatory limits. In the Control and As-Built cells, leachate head on liner decreased once waste placement stopped. The measured moisture content of the waste samples was consistent with that calculated from the estimate of accumulated liquid by the liquid balance. Additionally, measurements on excavated solid waste samples revealed large spatial variability in waste moisture content. The degree of saturation in the Control cells decreased from 85% to 75%. The degree of saturation increased from 82% to 83% due to liquids addition in the Retrofit cells and decreased back to 80% once liquid addition stopped. In the As-Built cells, the degree of saturation increased from 87% to 97% during filling activities and then started to decrease soon after filling activities stopped to reach 92% at the end of the monitoring period. The measured leachate generation rates were used to estimate an in-place saturated hydraulic conductivity of the MSW in the range of 10{sup ?8} to 10{sup ?7} m s{sup ?1} which is lower than previous reports. In the Control and Retrofit cells, the net loss in liquids, 43 and 12 L Mg{sup ?1}, respectively, was similar to the measured settlement of 15% and 5–8% strain, respectively (Abichou et al., 2013). The increase in net liquid volume in the As-Built cells indicates that the 37% (average) measured settlement strain in these cells cannot be due to consolidation as the waste mass did not lose any moisture but rather suggests that settlement was attributable to lubrication of waste particle contacts, softening of flexible porous materials, and additional biological degradation.

Abichou, Tarek, E-mail: abichou@eng.fsu.edu [Department of Civil and Environmental Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, FL 32311 (United States); Barlaz, Morton A. [Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Green, Roger; Hater, Gary [Waste Management Inc., Cincinnati, OH 45211 (United States)

2013-10-15T23:59:59.000Z

387

Interim site characterization report and ground-water monitoring program for the Hanford site solid waste landfill  

SciTech Connect (OSTI)

Federal and state regulations governing the operation of landfills require utilization of ground-water monitoring systems to determine whether or not landfill operations impact ground water at the point of compliance (ground water beneath the perimeter of the facility). A detection-level ground-water monitoring system was designed, installed, and initiated at the Hanford Site Solid Waste Landfill (SWL). Chlorinated hydrocarbons were detected at the beginning of the ground-water monitoring program and continue to be detected more than 1 year later. The most probable source of the chlorinated hydrocarbons is washwater discharged to the SWL between 1985 and 1987. This is an interim report and includes data from the characterization work that was performed during well installation in 1987, such as field observations, sediment studies, and geophysical logging results, and data from analyses of ground-water samples collected in 1987 and 1988, such as field parameter measurements and chemical analyses. 38 refs., 27 figs., 8 tabs.

Fruland, R.M.; Hagan, R.A.; Cline, C.S.; Bates, D.J.; Evans, J.C.; Aaberg, R.L.

1989-07-01T23:59:59.000Z

388

Solar ADEPT: Efficient Solar Energy Systems  

SciTech Connect (OSTI)

Solar ADEPT Project: The 7 projects that make up ARPA-E's Solar ADEPT program, short for 'Solar Agile Delivery of Electrical Power Technology,' aim to improve the performance of photovoltaic (PV) solar energy systems, which convert the sun's rays into electricity. Solar ADEPT projects are integrating advanced electrical components into PV systems to make the process of converting solar energy to electricity more efficient.

None

2011-01-01T23:59:59.000Z

389

EXPEDITING THE PATH TO CLOSURE THE CHEMICAL WASTE LANDFILL, SANDIA NATIONAL LABORATORIES, NEW MEXICO  

SciTech Connect (OSTI)

The Chemical Waste Landfill (CWL) at Sandia National Laboratories, New Mexico (SNL/NM) is undergoing closure subject to the requirements of Subtitle C of RCRA. This paper identifies regulatory mechanisms that have and continue to expedite and simplify the closure of the CWL. These include (1) the Environmental Restoration (ER) Programmatic effort to achieve progress quickly with respect to the standard regulatory processes, which resulted in the performance of voluntary corrective measures at the CWL years in advance of the standard process schedule, (2) the management and disposal of CWL remediation wastes and materials according to the risks posed, and (3) the combination of multiple regulatory requirements into a single submittal.

Young, S.G.; Schofield, D.P.; Davis, M.J.; Methvin, R.; Mitchell, M.

2003-02-27T23:59:59.000Z

390

Assessment of an active dry barrier for a landfill cover system  

SciTech Connect (OSTI)

A dry barrier is a layer of geologic material that is dried by air flow. An active dry barrier system can be designed, installed, and operated as part of a landfill cover system. An active system uses blowers and fans to move air through a high-permeability layer within the cover system. Depending principally on the air-flow rate, it is possible for a dry barrier to remove enough water to substantially reduce the likelihood of water percolating through the cover system. If a material with a relatively great storage capacity, such as processed tuff, is used as the coarse layer, then the efficiency of the dry barrier will be increased.

Stormont, J.C. [Sandia National Labs., Albuquerque, NM (United States); Ankeny, M.D.; Burkhard, M.E.; Tansey, M.K.; Kelsey, J.A. [Stephens (Daniel B.) and Associates, Inc., Albuquerque, NM (United States)

1994-03-01T23:59:59.000Z

391

Large-Scale Field Study of Landfill Covers at Sandia National Laboratories  

SciTech Connect (OSTI)

A large-scale field demonstration comparing final landfill cover designs has been constructed and is currently being monitored at Sandia National Laboratories in Albuquerque, New Mexico. Two conventional designs (a RCRA Subtitle `D' Soil Cover and a RCRA Subtitle `C' Compacted Clay Cover) were constructed side-by-side with four alternative cover test plots designed for dry environments. The demonstration is intended to evaluate the various cover designs based on their respective water balance performance, ease and reliability of construction, and cost. This paper presents an overview of the ongoing demonstration.

Dwyer, S.F.

1998-09-01T23:59:59.000Z

392

Solar Thermochemical Advanced Reactor System, Wins R&D 100 Award...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

National Laboratory, the Solar Thermochemical Advanced Reactor System, or STARS, converts natural gas and sunlight into a more energy-rich fuel called syngas, which power plants...

393

Solar Water Heater Roadmap Leads Path to Market Expansion (Fact Sheet)  

SciTech Connect (OSTI)

Innovative strategy to reduce installed cost of solar water heater systems can rival conventional natural gas water heaters in the marketplace.

Not Available

2012-09-01T23:59:59.000Z

394

Concentrating Solar Power  

SciTech Connect (OSTI)

Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

Not Available

2008-09-01T23:59:59.000Z

395

CUTTING SOLAR RED TAPECUTTING SOLAR RED TAPE Evergreen State Solar PartnershipEvergreen State Solar Partnership  

E-Print Network [OSTI]

CUTTING SOLAR RED TAPECUTTING SOLAR RED TAPE Evergreen State Solar PartnershipEvergreen State Solar Partnership Rooftop Solar Challenge 1 Sunshot #12;WASHINGTON PV CONTEXTWASHINGTON PV CONTEXT 285 cities, 39 Installations happen where process is easier #12;EVERGREEN STATE SOLAR PARTNERSHIP Commerce NWSEEDEdmonds

396

SOLAR ENERGY FOR ACADEMIC INSTITUTIONS Solar Suitability Assessment  

E-Print Network [OSTI]

SOLAR ENERGY FOR ACADEMIC INSTITUTIONS Solar Suitability Assessment of Dalhousie University.................................................................................................. 2 2.2 Solar Radiation Data for Calculating Solar Energy Resource .................... 3 3 Campus.1 Evaluation of Suitability for Solar Energy Generation................................ 12 4.2 Solar

Brownstone, Rob

397

Sanitary landfill groundwater monitoring report. Fourth quarter 1996 and 1996 summary  

SciTech Connect (OSTI)

A maximum of eighty-nine wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Waste Permit DWP-087A and as part of the SRS Groundwater Monitoring Program. Dichloromethane, a common laboratory contaminant, and chloroethene (vinyl chloride) were the most widespread constituents exceeding standards during 1996. Benzene, trichloroethylene, 1,4-dichlorobenzene, 1,1-dichloroethylene, lead (total recoverable), gross alpha, mercury (total recoverable), tetrachloroethylene, fluoride, thallium, radium-226, radium-228, and tritium also exceeded standards in one or more wells. The groundwater flow direction in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill was to the southeast (universal transverse Mercator coordinates). The flow rate in this unit was approximately 141 ft/year during first quarter 1996 and 132 ft/year during fourth quarter 1996

NONE

1997-02-01T23:59:59.000Z

398

Determination of operating limits for radionuclides for a proposed landfill at Paducah Gaseous Diffusion Plant  

SciTech Connect (OSTI)

The operating limits for radionuclides in sanitary and industrial wastes were determined for a proposed landfill at the Paducah Gaseous Diffusion Plant (PGDP), Kentucky. These limits, which may be very small but nonzero, are not mandated by law or regulation but are needed for rational operation. The approach was based on analyses of the potential contamination of groundwater at the plant boundary and the potential exposure to radioactivity of an intruder at the landfill after closure. The groundwater analysis includes (1) a source model describing the disposal of waste and the release of radionuclides from waste to the groundwater, (2) site-specific groundwater flow and contaminant transport calculations, and (3) calculations of operating limits from the dose limit and conversion factors. The intruder analysis includes pathways through ingestion of contaminated vegetables and soil, external exposure to contaminated soil, and inhalation of suspended activity from contaminated soil particles. In both analyses, a limit on annual effective dose equivalent of 4 mrem (0.04 mSv) was adopted. The intended application of the results is to refine the radiological monitoring standards employed by the PGDP Health Physics personnel to determine what constitutes radioactive wastes, with concurrence of the Commonwealth of Kentucky.

Wang, J.C.; Lee, D.W.; Ketelle, R.H.; Lee, R.R.; Kocher, D.C.

1994-05-24T23:59:59.000Z

399

Operating limit study for the proposed solid waste landfill at Paducah Gaseous Diffusion Plant  

SciTech Connect (OSTI)

A proposed solid waste landfill at Paducah Gaseous Diffusion Plant (PGDP) would accept wastes generated during normal operations that are identified as non-radioactive. These wastes may include small amounts of radioactive material from incidental contamination during plant operations. A site-specific analysis of the new solid waste landfill is presented to determine a proposed operating limit that will allow for waste disposal operations to occur such that protection of public health and the environment from the presence of incidentally contaminated waste materials can be assured. Performance objectives for disposal were defined from existing regulatory guidance to establish reasonable dose limits for protection of public health and the environment. Waste concentration limits were determined consistent with these performance objectives for the protection of off-site individuals and inadvertent intruders who might be directly exposed to disposed wastes. Exposures of off-site individuals were estimated using a conservative, site-specific model of the groundwater transport of contamination from the wastes. Direct intrusion was analyzed using an agricultural homesteader scenario. The most limiting concentrations from direct intrusion or groundwater transport were used to establish the concentration limits for radionuclides likely to be present in PGDP wastes.

Lee, D.W.; Wang, J.C.; Kocher, D.C.

1995-06-01T23:59:59.000Z

400

Sanitary Landfill Groundwater Monitoring Report, Fourth Quarter 1999 and 1999 Summary  

SciTech Connect (OSTI)

A maximum of thirty eight-wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill Area at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Water Permit DWP-087A and as part of the SRS Groundwater Monitoring Program. Iron (Total Recoverable), Chloroethene (Vinyl Chloride) and 1,1-Dichloroethane were the most widespread constituents exceeding the Final Primary Drinking Water Standards during 1999. Trichloroethylene, 1,1-Dichloroethylene, 1,2-Dichloroethane, 1,4-Dichlorobenzene, Aluminum (Total Recoverable), Benzene, cis-1,2-Dichloroethylene, Dichlorodifluoromethane, Dichloromethane (Methylene Chloride), Gross Alpha, Mercury (Total Recoverable), Nonvolatile Beta, Tetrachloroethylene, Total Organic Halogens, Trichlorofluoromethane, Tritium also exceeded standards in one or more wells. The groundwater flow direction in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill is to the southeast (universal transverse Mercator coordinates). The flow rate in this unit was approximately 144.175 ft/year during first quarter 1999 and 145.27 ft/year during fourth quarter 1999.

Chase, J.

2000-03-13T23:59:59.000Z

Note: This page contains sample records for the topic "landfill gas solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Boston Massachusetts: Solar in Action (Brochure), Solar America...  

Broader source: Energy.gov (indexed) [DOE]

Solar America Cities, Energy Efficiency & Renewable Energy (EERE) San Francisco, California: Solar in Action (Brochure), Solar America Cities, Energy Efficiency &...

402

Solar Impulse's Solar-Powered Plane  

ScienceCinema (OSTI)

Solar Impulse lands in Washington, DC at Washington Dulles International Airport as part of its journey across the United States. Secretary Ernest Moniz speaks about how advancements like those at the Department of Energy are leading the way for innovations like the solar-powered plane. Footage of the solar-powered plane courtesy of Solar Impulse.

Moniz, Ernest; Piccard, Bertrand; Reicher, Dan

2014-01-07T23:59:59.000Z

403

Petrovay: Solar physics Helioseismology SOLAR OSCILLATIONS: INTRODUCTION  

E-Print Network [OSTI]

: Solar oscillations first observed by both Doppler and intensity method (Leighton, Noyes & Simon 1962: ApPetrovay: Solar physics Helioseismology SOLAR OSCILLATIONS: INTRODUCTION Small departures from hydrostatic equilibrium caused by ­ turbulent convection ­ localized events related to solar activity (e

Petrovay, Kristóf

404

Solar Impulse's Solar-Powered Plane  

SciTech Connect (OSTI)

Solar Impulse lands in Washington, DC at Washington Dulles International Airport as part of its journey across the United States. Secretary Ernest Moniz speaks about how advancements like those at the Department of Energy are leading the way for innovations like the solar-powered plane. Footage of the solar-powered plane courtesy of Solar Impulse.

Moniz, Ernest; Piccard, Bertrand; Reicher, Dan

2013-07-08T23:59:59.000Z

405

Berkeley, California: Solar in Action (Brochure), Solar America...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Berkeley, California: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Berkeley, California: Solar in Action (Brochure), Solar America...

406

China Glass Solar aka CG Solar formerly Weihai Bluestar Terra...  

Open Energy Info (EERE)

Solar aka CG Solar formerly Weihai Bluestar Terra Photovoltaic Co Ltd Jump to: navigation, search Name: China Glass Solar (aka CG Solar, formerly Weihai Bluestar Terra Photovoltaic...

407

Tucson, Arizona: Solar in Action (Brochure), Solar America Cities...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Tucson, Arizona: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Tucson, Arizona: Solar in Action (Brochure), Solar America Cities,...

408

Austin, Texas: Solar in Action (Brochure), Solar America Cities...  

Broader source: Energy.gov (indexed) [DOE]

Austin, Texas: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Austin, Texas: Solar in Action (Brochure), Solar America Cities, Energy...

409

Pittsburgh, Pennsylvania: Solar in Action (Brochure), Solar America...  

Energy Savers [EERE]

Pittsburgh, Pennsylvania: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Pittsburgh, Pennsylvania: Solar in Action (Brochure), Solar...

410

Seattle, Washington: Solar in Action (Brochure), Solar America...  

Broader source: Energy.gov (indexed) [DOE]

Seattle, Washington: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Seattle, Washington: Solar in Action (Brochure), Solar America...

411

Knoxville, Tennessee: Solar in Action (Brochure), Solar America...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Knoxville, Tennessee: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Knoxville, Tennessee: Solar in Action (Brochure), Solar America...

412

EIS-0449: Solar Millennium Blythe Solar Power Project in Riverside...  

Broader source: Energy.gov (indexed) [DOE]

9: Solar Millennium Blythe Solar Power Project in Riverside County, CA EIS-0449: Solar Millennium Blythe Solar Power Project in Riverside County, CA December 10, 2010 EIS-0449:...

413

EA-1683: Abengoa Solar's Solana Concentrating Solar Power Facility...  

Broader source: Energy.gov (indexed) [DOE]

83: Abengoa Solar's Solana Concentrating Solar Power Facility, Gila Bend, AZ EA-1683: Abengoa Solar's Solana Concentrating Solar Power Facility, Gila Bend, AZ May 3, 2010 EA-1683:...

414

San Antonio, Texas: Solar in Action (Brochure), Solar America...  

Energy Savers [EERE]

San Antonio, Texas: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) San Antonio, Texas: Solar in Action (Brochure), Solar America...

415

Denver, Colorado: Solar in Action (Brochure), Solar America Cities...  

Energy Savers [EERE]

Denver, Colorado: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Denver, Colorado: Solar in Action (Brochure), Solar America Cities,...

416

Milwaukee, Wisconsin: Solar in Action (Brochure), Solar America...  

Energy Savers [EERE]

Milwaukee, Wisconsin: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Milwaukee, Wisconsin: Solar in Action (Brochure), Solar America...

417

San Diego, California: Solar in Action (Brochure), Solar America...  

Broader source: Energy.gov (indexed) [DOE]

San Diego, California: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) San Diego, California: Solar in Action (Brochure), Solar...

418

Ann Arbor, Michigan: Solar in Action (Brochure), Solar America...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ann Arbor, Michigan: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Ann Arbor, Michigan: Solar in Action (Brochure), Solar America...

419

Madison, Wisconsin: Solar in Action (Brochure), Solar America...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Madison, Wisconsin: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Madison, Wisconsin: Solar in Action (Brochure), Solar America...

420

Solar Neutrinos  

E-Print Network [OSTI]

Experimental work with solar neutrinos has illuminated the properties of neutrinos and tested models of how the sun produces its energy. Three experiments continue to take data, and at least seven are in various stages of planning or construction. In this review, the current experimental status is summarized, and future directions explored with a focus on the effects of a non-zero theta-13 and the interesting possibility of directly testing the luminosity constraint. Such a confrontation at the few-percent level would provide a prediction of the solar irradiance tens of thousands of years in the future for comparison with the present-day irradiance. A model-independent analysis of existing low-energy data shows good agreement between the neutrino and electromagnetic luminosities at the +/- 20 % level.

R. G. H. Robertson

2006-02-05T23:59:59.000Z

Note: This page contains sample records for the topic "landfill gas solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Solar collector  

SciTech Connect (OSTI)

A solar collector unit comprises a body of rigid thermally insulating material having a surface in the shape of about half a cylindrical parabola, the parabolic surface being provided with a reflective surface, a conduit being positioned with its long axis in the median plane of the parabola, said conduit serving as conduit for the heat-exchange medium, the surface of said conduit facing the parabolic surface being a selective surface, a transparent cover being provided on top of the device.

Dostrovsky, I.

1981-02-10T23:59:59.000Z

422

Solar Blog  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and ResponseStaffServicesFuture |Assurance PlanCD-4),Solar96426

423

Economic Analysis of Solar Water Heaters in GuangZhou  

E-Print Network [OSTI]

,gas water heater and electrical water heater in Guangzhou was compared and the Annual Cost Calculation Method (ACCM)was introduced to explain the remarkable economic benefits. The social benefits of the solar water heater were introduced from a scientific...

Wang, Y.; Zhao, L.

2006-01-01T23:59:59.000Z

424

Reliability Evaluation of Electric Power Generation Systems with Solar Power  

E-Print Network [OSTI]

Conventional power generators are fueled by natural gas, steam, or water flow. These generators can respond to fluctuating load by varying the fuel input that is done by a valve control. Renewable power generators such as wind or solar, however...

Samadi, Saeed

2013-11-08T23:59:59.000Z

425

FLORIDA SOLAR ENERGY CENTER Creating Energy Independence Since 1975  

E-Print Network [OSTI]

FLORIDA SOLAR ENERGY CENTER Creating Energy Independence Since 1975 A Research Institute at temperatures as low as -40°C Employ gas permeable matrices for the pigment encapsulation that make them

426

Rapid and extensive warming following cessation of solar radiation management  

E-Print Network [OSTI]

Solar radiation management (SRM) has been proposed as a means to alleviate the climate impacts of ongoing anthropogenic greenhouse gas (GHG) emissions. However, its efficacy depends on its indefinite maintenance, without ...

McCusker, Kelly E

427

Leachate treatment system using constructed wetlands, Town of Fenton sanitary landfill, Broome County, New York. Final report  

SciTech Connect (OSTI)

Municipal sanitary landfills generate leachate that New York State regulations require to be collected and treated to avoid contaminating surface water and groundwater. One option for treating leachate is to haul it to municipal wastewater treatment facility. This option may be expensive, may require excessive energy for transportation, and may require pretreatment to protect the receiving facility`s processes. An alternative is on-site treatment and discharge. Personnel from the Town of Fenton, New York; Hawk Engineering, P.C.; Cornell University; and Ithaca College designed, built, and operated a pilot constructed wetland for treating leachate at the Town of Fenton`s municipal landfill. The system, consisting of two overland flow beds and two subsurface flow beds has been effective for 18 months in reducing levels of ammonia (averaging 85% removal by volatilization and denitrification) and total iron (averaging 95% removal by precipitation and sedimentation), two key constituents of the Fenton landfill`s leachate. The system effects these reductions with zero chemical and energy inputs and minimal maintenance. A third key constituent of the leachate, manganese, apparently passes through the beds with minimal removal. Details and wetland considerations are described.

Not Available

1993-11-01T23:59:59.000Z

428

Integrating multi-criteria decision analysis for a GIS-based hazardous waste landfill sitting in Kurdistan Province, western Iran  

SciTech Connect (OSTI)

The evaluation of a hazardous waste disposal site is a complicated process because it requires data from diverse social and environmental fields. These data often involve processing of a significant amount of spatial information which can be used by GIS as an important tool for land use suitability analysis. This paper presents a multi-criteria decision analysis alongside with a geospatial analysis for the selection of hazardous waste landfill sites in Kurdistan Province, western Iran. The study employs a two-stage analysis to provide a spatial decision support system for hazardous waste management in a typically under developed region. The purpose of GIS was to perform an initial screening process to eliminate unsuitable land followed by utilization of a multi-criteria decision analysis (MCDA) to identify the most suitable sites using the information provided by the regional experts with reference to new chosen criteria. Using 21 exclusionary criteria, as input layers, masked maps were prepared. Creating various intermediate or analysis map layers a final overlay map was obtained representing areas for hazardous waste landfill sites. In order to evaluate different landfill sites produced by the overlaying a landfill suitability index system was developed representing cumulative effects of relative importance (weights) and suitability values of 14 non-exclusionary criteria including several criteria resulting from field observation. Using this suitability index 15 different sites were visited and based on the numerical evaluation provided by MCDA most suitable sites were determined.

Sharifi, Mozafar [Razi University Center for Environmental Studies, Faculty of Science, Baghabrisham 67149, Kermanshah (Iran, Islamic Republic of)], E-mail: sharifimozafar@gmail.com; Hadidi, Mosslem [Academic Center for Education, Culture and Research, Kermanshah (Iran, Islamic Republic of)], E-mail: hadidi_moslem@yahoo.com; Vessali, Elahe [Paradise Ave, Azad University, School of Agriculture, Shiraz (Iran, Islamic Republic of)], E-mail: elahe_vesali@yahoo.com; Mosstafakhani, Parasto [Razi University Centre for Environmental Studies, Faculty of Science, Baghabrisham 67149, Kermanshah (Iran, Islamic Republic of)], E-mail: mostafakhany2003@yahoo.com; Taheri, Kamal [Regional office of Water Resource Management, Zan Boulevard, Kermanshah (Iran, Islamic Republic of)], E-mail: taheri.kamal@gmail.com; Shahoie, Saber [Department of Soil Science, Faculty of Agriculture, Kurdistan University, University Boulevard, Sanandadj (Iran, Islamic Republic of)], E-mail: shahoei@yahoo.com; Khodamoradpour, Mehran [Regional office of Climatology, Sanandaj (Iran, Islamic Republic of)], E-mail: mehrankhodamorad@yahoo.com

2009-10-15T23:59:59.000Z

429

1st International Conference on Final Sinks, September 23-25, 2010 Vienna, Austria From Sanitary to Sustainable Landfilling  

E-Print Network [OSTI]

of VOCs in Biogas from Solid Waste Disposal Sites Torleif Bramryd (SE) Impact of Sustainable Landfilling: Results of Lysimeter Test Fields in Bavaria (Germany) 15:40 - 16:00 Coffee Break 16:00 - 17:40 Session G, Complexity and Biogas Risk Assessment Roland Weber (DE) Persistent

Szmolyan, Peter

430

Hybrid solar central receiver for combined cycle power plant  

DOE Patents [OSTI]

A hybrid combined cycle power plant is described including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production. 1 figure.

Bharathan, D.; Bohn, M.S.; Williams, T.A.

1995-05-23T23:59:59.000Z

431

Hybrid solar central receiver for combined cycle power plant  

DOE Patents [OSTI]

A hybrid combined cycle power plant including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production.

Bharathan, Desikan (Lakewood, CO); Bohn, Mark S. (Golden, CO); Williams, Thomas A. (Arvada, CO)

1995-01-01T23:59:59.000Z

432

Solar Innovator | Alta Devices  

ScienceCinema (OSTI)

Selected to participate in the Energy Department's SunShot Initiative, Alta Devices produces solar cells that convert sunlight into electricity at world record-breaking levels of efficiency. Through its innovative solar technology Alta is helping bring down the cost of solar. Learn more about the Energy Department's efforts to advance solar technology at energy.gov/solar .

Mattos, Laila; Le, Minh

2013-05-29T23:59:59.000Z

433

Videos of Experiments from ORNL Gas Hydrate Research  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Gas hydrate research performed by the Environmental Sciences Division utilizes the ORNL Seafloor Process Simulator, the Parr Vessel, the Sapphire Cell, a fiber optic distributed sensing system, and Raman spectroscopy. The group studies carbon sequestration in the ocean, desalination, gas hydrates in the solar system, and nucleation and dissociation kinetics. The videos available at the gas hydrates website are very short clips from experiments.

434

Solar neutrinos and the solar composition problem  

E-Print Network [OSTI]

Standard solar models (SSM) are facing nowadays a new puzzle: the solar composition problem. New determinations of solar metal abundances lead SSM calculations to conflict with helioseismological measurements, showing discrepancies that extend from the convection zone to the solar core and can not be easily assigned to deficiencies in the modelling of the solar convection zone. We present updated solar neutrino fluxes and uncertainties for two SSM with high (old) and low (new) solar metallicity determinations. The uncertainties in iron and carbon abundances are the largest contribution to the uncertainties of the solar neutrino fluxes. The uncertainty on the ^14N+p -> ^15O+g rate is the largest of the non-composition uncertainties to the CNO neutrino fluxes. We propose an independent method to help identify which SSM is the correct one. Present neutrino data can not distinguish the solar neutrino predictions of both models but ongoing measurements can help to solve the puzzle.

Carlos Pena-Garay; Aldo Serenelli

2008-11-16T23:59:59.000Z

435

851 S.W. Sixth Avenue, Suite 1100 Steve Crow 503-222-5161 Portland, Oregon 97204-1348 Executive Director 800-452-5161  

E-Print Network [OSTI]

efficiency improvements, SnoPUD is involved in small hydro, biomass, landfill gas, wind, geothermal, solar of low-impact hydro projects; · our conservation programs are second to none; this past year we exceeded

436

E-Print Network 3.0 - ammonia gas sensor Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

thin films have a very low... and structural requirements of their applications in gas sensors and solar cells. The rapid photothermal... that resistance change airgas RRR -...

437

Internal absorber solar collector  

DOE Patents [OSTI]

Thin solar collecting panels are described made from arrays of small rod collectors consisting of a refracting dielectric rod lens with an absorber imbedded within it and a reflecting mirror coated on the back side of the dielectric rod. Non-tracking collector panels on vertical walls or roof tops receive approximately 90% of solar radiation within an acceptance zone 60.degree. in elevation angle by 120.degree. or more in the azimuth sectors with a collector concentration ratio of approximately 3.0. Miniaturized construction of the circular dielectric rods with internal absorbers reduces the weight per area of glass, plastic and metal used in the collector panels. No external parts or insulation are needed as heat losses are low due to partial vacuum or low conductivity gas surrounding heated portions of the collector. The miniature internal absorbers are generally made of solid copper with black selective surface and the collected solar heat is extracted at the collector ends by thermal conductivity along the absorber rods. Heat is removed from end fittings by use of liquid circulants. Several alternate constructions are provided for simplifying collector panel fabrication and for preventing the thermal expansion and contraction of the heated absorber or circulant tubes from damaging vacuum seals. In a modified version of the internal absorber collector, oil with temperature dependent viscosity is pumped through a segmented absorber which is now composed of closely spaced insulated metal tubes. In this way the circulant is automatically diverted through heated portions of the absorber giving higher collector concentration ratios than theoretically possible for an unsegmented absorber.

Sletten, Carlyle J. (106 Nagog Hill Rd., Acton, MA 01720); Herskovitz, Sheldon B. (88 Hammond St., Acton, MA 01720); Holt, F. S. (46 Emerson Rd., Winchester, MA 01890); Sletten, E. J. (Chestnut Hill Rd. R.F.D. Rte. #4, Amherst, NH 03031)

1981-01-01T23:59:59.000Z

438

Solar Decathlon  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScoping Study |4 Solar Background Document 4U.S.

439

Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSite CulturalDepartment ofatRenewable Energy »Buildings Solar

440

Sanitary Landfill groundwater monitoring report. Fourth quarterly report and summary 1993  

SciTech Connect (OSTI)

Fifty-seven wells of the LFW series monitor groundwater quality in Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Waste Permit DWP-087A and as part of the SRS Groundwater Monitoring Program. Dichloromethane a common laboratory contaminant, and trichloroethylene were the most widespread constituents exceeding standards during 1993. Benzene, chlorobenzene, chloroethene 1,2 dichloroethane, 1,1-dichloroethylene, 1,2-dichloropropane, gross alpha, lindane, mercury, tetrachloroethylene, and tritium also exceeded standards in one or more wells. No groundwater contaminants were observed in wells screened in the lower section of Steed Pond Aquifer.

Not Available

1994-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "landfill gas solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Nanocrystal Solar Cells  

E-Print Network [OSTI]

Nov, 2005). Chapter 4 Hybrid solar cells with 3-dimensional5 All-inorganic nanocrystal solar cells 5.1 Introduction Inoperation of organic based solar cells and distinguish them

Gur, Ilan

2006-01-01T23:59:59.000Z

442

Solar forecasting review  

E-Print Network [OSTI]

P(t) and the boring solar sensor. Denoting the bulk veloci ¯equipped with solar irradiance sensors, see Figure 10.3.f that utilizes the low solar cost sensor network deployment

Inman, Richard Headen

2012-01-01T23:59:59.000Z

443

Solar Energy Entrepreneurs  

E-Print Network [OSTI]

Solar Energy Entrepreneurs Meeting MD, DC, DE, VA Region May 31, 2012 #12;Solar Energy Entrepreneurs Meeting MD, DC, DE, VA Region Meeting Objectives should attend if you.... · ... work in the solar energy market

Rubloff, Gary W.

444

Solar Equipment Certification  

Broader source: Energy.gov [DOE]

Under the Solar Energy Standards Act of 1976, the Florida Solar Energy Center (FSEC) is responsible for certifying all solar equipment sold in Florida. A manufacturer who wishes to have their...

445

Solar Contractor Licensing  

Broader source: Energy.gov [DOE]

Nevada law requires that solar energy system installers be licensed by the Nevada State Contractors Board. Contractors may be licensed under License Classification C-37 (solar contracting for solar...

446

Solar Heating Contractor Licensing  

Broader source: Energy.gov [DOE]

Michigan offers a solar heating contractor specialty license to individuals who have at least three years of experience installing solar equipment under the direction of a licensed solar contractor...

447

JEA- Solar Incentive Program  

Broader source: Energy.gov [DOE]

The JEA Solar Incentive Program provides rebates to JEA's residential customers who install new and retrofit solar hot water heaters on their homes. The rebate is worth $800 for new solar thermal...

448

Field Performance of A Compacted Clay Landfill Final cover At A Humid Site  

SciTech Connect (OSTI)

A study was conducted in southern Georgia, USA to evaluate how the hydraulic properties of the compacted clay barrier layer in a landfill final cover changed over a 4-yr service life. The cover was part of a test section constructed in a large drainage lysimeter that allowed CE Database subject headings: landfill, hydrogeology, compacted soils, lysimeters, desiccation continuous monitoring of the water balance. Patterns in the drainage (i.e., flow from the bottom of the cover) record suggest that preferential flow paths developed in the clay barrier soon after construction, apparently in response to desiccation cracking. After four years, the clay barrier was excavated and examined for changes in soil structure and hydraulic conductivity. Tests were conducted in situ with a sealed double-ring infiltrometer and two-stage borehole permeameters and in the laboratory on hand-carved blocks taken during construction and after four years of service. The in situ and laboratory tests indicated that the hydraulic conductivity increased approximately three orders of magnitude (from ? 10-7 to ? 10-4 cm s-1) during the service life. A dye tracer test and soil structure analysis showed that extensive cracking and root development occurred throughout the entire depth of the barrier layer. Laboratory tests on undisturbed specimens of the clay barrier indicated that the hydraulic conductivity of damaged clay barriers can be under-estimated significantly if small specimens (e.g., tube samples) are used for hydraulic conductivity assessment. The findings also indicate that clay barriers must be protected from desiccation and root intrusion if they are expected to function as intended, even at sites in warm, humid locations.

Albright, William H.; Benson, Craig H.; Gee, Glendon W.; Abichou, Tarek; Mcdonald, Eric V.; Tyler, Scott W.; Rock, Steven

2006-11-01T23:59:59.000Z

449

Siting landfills and incinerators in areas of historic unpopularity: Surveying the views of the next generation  

SciTech Connect (OSTI)

Highlights: • Opinions and knowledge of young people in Italy about waste were studied. • Historic opposition to construction of waste facilities is difficult to overcome. • Awareness of waste management develops with knowledge of environmental issues. • Many stakeholders’ views are needed when siting a new waste management facility. • Respondents’ opinions were influenced by their level of environmental knowledge. - Abstract: The Campania Region in Southern Italy has suffered many problems with municipal solid waste management since the mid-1990s, leading to significant public disturbances and subsequent media coverage. This paper reports on the current views and knowledge of young people (university students) in this region about waste management operations and facilities, specifically the siting of landfills and incinerators. By means of a structured questionnaire, opinion and knowledge were systematically examined by degree type and course year. The study took place in 2011 at the University of Salerno campus. A sample of 900 students, comprising 100 students for each of the nine considered faculties, and 20 students for every academic course year, was randomly selected. Only about a quarter of respondents were not opposed to the siting of a landfill or an incinerator in their city. This clearly highlights that historic opposition to the construction of waste facilities is difficult to overcome and that distrust for previous poor management or indiscretions is long-lived and transcends generations. Students from technical faculties expressed the most reasonable opinion; opinion and knowledge were statistically related (Chi-square test, p < 0.05) to the attended faculty, and the knowledge grew linearly with progression through the university. This suggests that awareness of waste management practices develops with experience and understanding of environmental issues. There is general acceptance that many stakeholders – technicians, politicians and citizens – all have to be part of the decision process when siting a new waste management facility. The opinions of the young respondents were significantly influenced by their level of environmental knowledge.

De Feo, Giovanni, E-mail: g.defeo@unisa.it [Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (Italy); Williams, Ian D. [Waste Management Research Group, Faculty of Engineering and the Environment, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom)

2013-12-15T23:59:59.000Z

450

Chapter 10. SOLAR ENERGY AND ITS BIOLOGICALPHYSICAL INTERACTIONS IN THE SEA  

E-Print Network [OSTI]

401 Chapter 10. SOLAR ENERGY AND ITS BIOLOGICAL­PHYSICAL INTERACTIONS IN THE SEA TOMMY D. DICKEY's history. The angu- lar distribution of radiant energy and the seasonal variations in solar radiation drive of solar energy, atmospheric gas composition, and planetary albedo. These processes are inex- tricably

Fabrikant, Sara Irina

451

Prospective Article Materials processing strategies for colloidal quantum dot solar cells  

E-Print Network [OSTI]

energy sources, particularly with cheap and plentiful natural gas, solar photovoltaic systems must cost of the solar panels themselves. Third-generation photovoltaic systems, including organic, dye-sensitized, and colloidal quantum dot (CQD) solar cells, offer a path to low-weight, low-cost, and prospectively high

452

1 MWt bench model solar receiver test program J. Gintz, D. Bartlett and R. Zentner  

E-Print Network [OSTI]

a scale model of a Brayton cycle solar electric plant receiver. The program span from initiation of design and transients; and demonstrations of solar load following. Design thermal efficiency predictions were achieved in high temperature, gas cooled, solar central receiver concepts under direction of the Electric Power

Boyer, Edmond

453

Solar water heating technical support. Technical report for November 1997--April 1998 and final report  

SciTech Connect (OSTI)

This progress report covers the time period November 1, 1997 through April 30, 1998, and also summarizes the project as the final report. The topics of the report include certification of solar collectors for water heating systems, modeling and testing of solar collectors and gas water heater backup systems, ratings of collectors for specific climates, and solar pool heating systems.

Huggins, J.

1998-10-01T23:59:59.000Z

454

Solar collector  

DOE Patents [OSTI]

The field of this invention is solar collectors, and more particularly, the invention pertains to a flat plate collector that employs high performance thin films. The solar collector of this invention overcomes several problems in this field, such as excessive hardware, cost and reliability, and other prior art drawbacks outlined in the specification. In the preferred form, the apparatus features a substantially rigid planar frame (14). A thin film window (42) is bonded to one planar side of the frame. An absorber (24) of laminate construction is comprised of two thin film layers (24a, 24b) that are sealed perimetrically. The layers (24a, 24b) define a fluid-tight planar envelope (24c) of large surface area to volume through which a heat transfer fluid flows. Absorber (24) is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

Wilhelm, William G. (Cutchogue, NY)

1982-01-01T23:59:59.000Z

455

Solar skylight  

DOE Patents [OSTI]

A reflective shutter rotates within a skylight housing in such a fashion as to control solar energy thereby providing a combination of heating, lighting, and ventilation. The skylight housing has three faces: a glazed southern face, a glazed northern face, and an open downwardly oriented face to the interior of the structure. Counter-weighted pivot arms support the shutter at either end causing the center of rotation to pass through the center of gravity. The shutter has three basic positions: In the first position, during the winter day, the shutter closes off the northern face, allowing solar energy to enter directly into the supporting structure providing heat gain and daylighting. In the second position, during the winter night, the shutter closes off the open face to the interior, providing insulation between the structure and the skylight housing. In the third position, during the non-heating season, the shutter closes off the southern face blocking unwanted heat gain but allowing diffuse northern light to penetrate for daylighting. In this last position, a means is provided for ventilating by natural convection. The apparatus can be operated either manually or by motor.

Adamson, James C. (Osprey La., Rumson, NJ 07760)

1984-01-01T23:59:59.000Z

456

BP Solar Project Timothy M Green  

E-Print Network [OSTI]

, clean energy jobs Contributes to U.S. energy diversity and security Advances solar photovoltaic - Goals of the RFP Diversify its energy resources Reduce dependency on fossil fuels Improve energy to its Long Island customers Avoids greenhouse gas emissions / other air pollutants Creates local

Homes, Christopher C.

457

Solar Industry At Work: Streamlining Home Solar Installation...  

Broader source: Energy.gov (indexed) [DOE]

Solar Industry At Work: Streamlining Home Solar Installation Solar Industry At Work: Streamlining Home Solar Installation June 12, 2012 - 11:59am Addthis Sunrun is a home solar...

458

Concentrated Solar Thermoelectric Power  

Broader source: Energy.gov (indexed) [DOE]

CONCENTRATING SOLAR POWER PROGRAM REVIEW 2013 Concentrated Solar Thermoelectric Power Principal Investigator: Prof. Gang Chen Massachusetts Institute of Technology Cambridge, MA...

459

Solar heating in Colombia.  

E-Print Network [OSTI]

?? This report describes the process of a thesis implemented in Colombia concerning solar energy. The project was to install a self-circulating solar heating system,… (more)

Skytt, Johanna

2012-01-01T23:59:59.000Z

460

Solar | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Concentrating Solar Power Plant The Ivanpah Solar Energy Generating System has the capacity to generate 392 megawattsof clean electricity -- enough to power 94,400 average...

Note: This page contains sample records for the topic "landfill gas solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Application of solar energy.  

E-Print Network [OSTI]

??The purpose of the project is to learn the principle and application of solar energy and to know the situation of solar energy in China… (more)

Li, Jingcheng

2010-01-01T23:59:59.000Z

462

Solar Contractor Licensing  

Broader source: Energy.gov [DOE]

Hawaii offers several specialty licenses for solar contractors through Hawaii’s Department of Commerce and Consumer Affairs. The following specialty licenses are available: Solar Power Systems...

463

Your Solar Home  

Broader source: Energy.gov [DOE]

Solar Schoolhouse Education supplement for the Sacramento Bee to introduce solar to elementary school children and introduce the design and AD contest for local students.

464

Residential Solar Rights  

Broader source: Energy.gov [DOE]

In 2007, New Jersey enacted legislation preventing homeowners associations from prohibiting the installation of solar collectors on certain types of residential properties. The term "solar...

465

Department of Energy - Solar  

Broader source: Energy.gov (indexed) [DOE]

307 en Using Passive Solar Design to Save Money and Energy http:energy.govenergysaverarticlesusing-passive-solar-design-save-money-and-energy

466

Subsidizing Global Solar Power.  

E-Print Network [OSTI]

?? With national cuts on solar PV subsidies and the current “oversupply” of panels, the global solar market is clearly threatened by a contraction. Yet,… (more)

Arnesson, Daniel

2013-01-01T23:59:59.000Z

467

Concentrated Solar Power Generation.  

E-Print Network [OSTI]

??Solar power generation is the most promising technology to transfer energy consumption reliance from fossil fuel to renewable sources. Concentrated solar power generation is a… (more)

Jin, Zhilei

2013-01-01T23:59:59.000Z

468

Solar power satellites.  

E-Print Network [OSTI]

??During energy crisis at the end of the Sixties, a new idea to exploit solar energy arose: Solar Power Satellites. These satellites need a huge… (more)

Palmas, Alessandro

2013-01-01T23:59:59.000Z

469

Integrated Combined Heat and Power/Advanced Reciprocating Internal Combustion Engine System for Landfill Gas to Power Applications  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIan Kalin About32C:\Documents andINTEGRATED

470

Philadelphia, Pennsylvania: Solar in Action (Brochure), Solar...  

Broader source: Energy.gov (indexed) [DOE]

October 2011 Solar in Action Philadelphia was designated by the U.S. Department of Energy (DOE) on March 28, 2008, as Solar America City. At that time, the city presented a...

471

Working fluid selection for an increased efficiency hybridized geothermal-solar thermal power plant in Newcastle, Utah.  

E-Print Network [OSTI]

??Renewable sources of energy are of extreme importance to reduce greenhouse gas emissions from traditional power plants. Such renewable sources include geothermal and solar thermal… (more)

Carnell, John Walter

2012-01-01T23:59:59.000Z

472

Dump fire leaves toxic air, sludge A fire which burned for four days at a landfill site in Thessaloniki, sending thick black  

E-Print Network [OSTI]

Dump fire leaves toxic air, sludge A fire which burned for four days at a landfill site to break. This led to sludge flowing into some nearby houses. Authorities are due to begin the cleanup

Columbia University

473

Apparatus and method for solar coal gasification  

DOE Patents [OSTI]

Apparatus for using focused solar radiation to gasify coal and other carbonaceous materials. Incident solar radiation is focused from an array of heliostats onto a tower-mounted secondary mirror which redirects the focused solar radiation down through a window onto the surface of a vertically-moving bed of coal, or a fluidized bed of coal, contained within a gasification reactor. The reactor is designed to minimize contact between the window and solids in the reactor. Steam introduced into the gasification reactor reacts with the heated coal to produce gas consisting mainly of carbon monoxide and hydrogen, commonly called "synthesis gas", which can be converted to methane, methanol, gasoline, and other useful products. One of the novel features of the invention is the generation of process steam at the rear surface of the secondary mirror.

Gregg, David W. (Moraga, CA)

1980-01-01T23:59:59.000Z

474

Solar in Cold, Cloudy Climates  

Broader source: Energy.gov [DOE]

Presentation delivered by Chuck Marken during the 2009 Northeastern Solar Cities Conference Solar Survey session.

475

Sandia National Laboratories: Solar Resource Assessment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tagged with: Energy * photovoltaic * Photovoltaics * PV * Renewable Energy * solar * Solar Energy * Solar Research * Solar Resource Assessment Comments are closed. Renewable...

476

Future Directions in Simulating Solar Geoengineering  

SciTech Connect (OSTI)

Solar geoengineering is a proposed set of technologies to temporarily alleviate some of the consequences of anthropogenic greenhouse gas emissions. The Geoengineering Model Intercomparison Project (GeoMIP) created a framework of geoengineering simulations in climate models that have been performed by modeling centers throughout the world (B. Kravitz et al., The Geoengineering Model Intercomparison Project (GeoMIP), Atmospheric Science Letters, 12(2), 162-167, doi:10.1002/asl.316, 2011). These experiments use state-of-the-art climate models to simulate solar geoengineering via uniform solar reduction, creation of stratospheric sulfate aerosol layers, or injecting sea spray into the marine boundary layer. GeoMIP has been quite successful in its mission of revealing robust features and key uncertainties of the modeled effects of solar geoengineering.

Kravitz, Benjamin S.; Robock, Alan; Boucher, Olivier

2014-08-05T23:59:59.000Z

477

Concentrating Solar Power: Technology Overview  

SciTech Connect (OSTI)

Concentrating Solar Power (CSP) has the potential to contribute significantly to the generation of electricity by renewable energy resources in the U.S.. Thermal storage can extend the duty cycle of CSP beyond daytime hours to early evening where the value of electricity is often the highest. The potential solar resource for the southwest U.S. is identified, along with the need to add power lines to bring the power to consumers. CSP plants in the U.S. and abroad are described. The CSP cost of electricity at the busbar is discussed. With current incentives, CSP is approaching competiveness with conventional gas-fired systems during peak-demand hours when the price of electricity is the highest. It is projected that a mature CSP industry of over 4 GWe will be able to reduce the energy cost by about 50%, and that U.S. capacity could be 120 GW by 2050.

Mehos, M.

2008-01-01T23:59:59.000Z

478

Cultural Resources Review for Closure of the nonradioactive Dangerous Waste Landfill and Solid Waste Landfill in the 600 Area, Hanford Site, Benton County, Washington, HCRC# 2010-600-018R  

SciTech Connect (OSTI)

The U.S. Department of Energy Richland Operations Office is proposing to close the Nonradioactive Dangerous Waste Landfill (NRDWL) and Solid Waste Landfill (SWL) located in the 600 Area of the Hanford Site. The closure of the NRDWL/SWL entails the construction of an evapotranspiration cover over the landfill. This cover would consist of a 3-foot (1-meter) engineered layer of fine-grained soil, modified with 15 percent by weight pea gravel to form an erosion-resistant topsoil that will sustain native vegetation. The area targeted for silt-loam borrow soil sits in Area C, located in the northern central portion of the Fitzner/Eberhardt Arid Lands Ecology (ALE) Reserve Unit. The pea gravel used for the mixture will be obtained from both off-site commercial sources and an active gravel pit (Pit #6) located just west of the 300 Area of the Hanford Site. Materials for the cover will be transported along Army Loop Road, which runs from Beloit Avenue (near the Rattlesnake Barricade) east-northeast to the NRDWL/SWL, ending at State Route 4. Upgrades to Army Loop Road are necessary to facilitate safe bidirectional hauling traffic. This report documents a cultural resources review of the proposed activity, conducted according to Section 106 of the National Historic Preservation Act of 1966.

Gutzeit, Jennifer L.; Kennedy, Ellen P.; Bjornstad, Bruce N.; Sackschewsky, Michael R.; Sharpe, James J.; DeMaris, Ranae; Venno, M.; Christensen, James R.

2011-02-02T23:59:59.000Z

479

ADVANTAGES AND DISADVANTAGES TO OPERATING AN ON-SITE LABORATORY AT THE SANDIA NATIONAL LABORATORIES CHEMICAL WASTE LANDFILL  

SciTech Connect (OSTI)

During the excavation of the Sandia National Laboratories, New Mexico (SNL/NM) Chemical Waste Landfill (CWL), operations were realized by the presence of URS' (formerly known as United Research Services) On-site Mobile Laboratory (OSML) and the close proximity of the SNL/NM Environmental Restoration Chemical Laboratory (ERCL). The laboratory was located adjacent to the landfill in order to provide soil characterization, health and safety support, and waste management data. Although the cost of maintaining and operating an analytical laboratory can be higher than off-site analysis, there are many benefits to providing on site analytical services. This paper describes the synergies between the laboratory, as well as the advantages and disadvantages to having a laboratory on-site during the excavation of SNL/NM CWL.

Young, S.G.; Creech, M.N.

2003-02-27T23:59:59.000Z

480

Cultural Resource Assessment of the Test Area North Demolition Landfill at the Idaho National Engineering and Environmental Laboratory  

SciTech Connect (OSTI)

The proposed new demolition landfill at Test Area North on the Idaho National Engineering and Environmental Laboratory (INEEL) will support ongoing demolition and decontamination within the facilities on the north end of the INEEL. In June of 2003, the INEEL Cultural Resource Management Office conducted archival searches, field surveys, and coordination with the Shoshone-Bannock Tribes to identify all cultural resources that might be adversely affected by the project and to provide recommendations to protect those listed or eligible for listing on the National Register of Historic Places. These investigations showed that landfill construction and operation would affect two significant cultural resources. This report outlines protective measures to ensure that these effects are not adverse.

Brenda R. Pace

2003-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "landfill gas solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Health assessment for Shpack Landfill, Attleboro/North, Massachusetts, Region 1. CERCLIS No. MAD980503973. Preliminary report  

SciTech Connect (OSTI)

The Shpack Landfill site is on the National Priorities List (NPL). The landfill received both domestic and industrial waste, including inorganic and organic chemicals as well as radioactive waste. Ground water contains vinyl chloride, trichloroethylene, trans-1,2-dichloroethylene, tetrachloroethylene, chromium, barium, copper, nickel, manganese, arsenic, cadmium, lead, polychlorinated biphenyl-1260 (Aroclor-1260), radium-226, alpha particles and beta particles. Surface and subsurface soil samples contained radium-226, uranium-238, uranium-235, uranium-234, and visual evidence of metal plating waste sludges. The site is considered to be of potential health concern because of the risk to human health caused by the potential for exposure to hazardous substances via ingestion of contaminated soils at the site and future ingestion of contaminated domestic well water.

Not Available

1989-04-18T23:59:59.000Z

482

Closure Report (CR) for Corrective Action Unit (CAU) 41: Area 27 Landfills with Errata Sheet, Revision 0  

SciTech Connect (OSTI)

The closure report for CAU 41 is just a one page summary listing the coordinates of the landfill which were given at the time (1996) in Nevada State Plan Coordinates - North American Datum of 1983. The drawing of the use restricted site also listed the coordinates in Nevada State Plan Coordinates - North American Datum of 1983. In the ensuing years the reporting of coordinates has been standardized so that all coordinates are reported in the same manner, which is: NAD 27 UTM Zone 11 N, meters. This Errata Sheet updates the coordinate reporting to the currently accepted method and includes an aerial photo showing the landfill with the coordinates listed showing the use restricted area.

Navarro Nevada Environmental Services

2010-08-10T23:59:59.000Z

483

ENERGIA SOLAR Introduccio  

E-Print Network [OSTI]

ENERGIA SOLAR · Introducci´o · Usos t`ermics. Baixa temperatura · Sistemes de conversi´o t) Cuines Solars http://www.solarcooking.org #12;DESSALADORS SOLARS #12;APLICACIONS T`ERMIQUES BAIXA TEMPERATURA Col.lectors solars plans per a ACS #12;CONVERSI´O DIRECTA EN ELECTRICITAT C`el.lules i panells

Batiste, Oriol

484

SOLAR ENERGY Andrew Blakers  

E-Print Network [OSTI]

and conversion methods usually entail few environmental problems. Solar energy includes both direct radiationSOLAR ENERGY Andrew Blakers Director, Centre for Sustainable Energy Systems Australian National Solar energy is special. It is vast, ubiquitous and indefinitely sustainable. The solar resource

485

Solar Policy Environment: Houston  

Broader source: Energy.gov [DOE]

The City of Houston is committed to achieving a sustainable solar infrastructure through strategic partnerships that address market barriers for solar energy through the Houston Solar Initiative. The initiative is dedicated to this long-term goal while focusing on near- and mid-term results that go beyond demonstration solar projects.

486

Solar Policy Environment: Sacramento  

Broader source: Energy.gov [DOE]

The City of Sacramento and the greater Sacramento region is the home of a long standing history of commitment to solar. Sacramento Solar Access seeks to further widespread adoption of solar energy by addressing current market barriers and preparing, through design guidelines and education, the infrastructure that will optimize solar production in the future.

487

Solar Policy Environment: Boston  

Broader source: Energy.gov [DOE]

City of Boston’s objective in creating Solar Boston is to maximize solar technology’s role in the City’s sustainable development, educational and emergency preparedness policies. Solar Boston’s objective is the installation of solar technology on all feasible and appropriate locations throughout Boston.

488

Solar powered desalination system  

E-Print Network [OSTI]

USA, Jacksonville, FL Jacksonville Solar Energy Generation Facility Constructed Systems that produce electricity

Mateo, Tiffany Alisa

2011-01-01T23:59:59.000Z

489

J. Phys III FYance 7 (1997) 463-472 MARCH 1997, PAGE 463 The Use of Solar Energy for the Production of Fullerenes and  

E-Print Network [OSTI]

with the Odeillo (finance) solar furnace facilities, can be used to vaporize graphite in inert gas atmosphere effect The high intensity of solar radiation, obtained with the Odeillo solar furnace facilities can followed by condensation in the cold part of the reactor. The main advantage of using the solar furnace

Paris-Sud XI, Université de

490

Reduction of COD in leachate from a hazardous waste landfill adjacent to a coke-making facility  

SciTech Connect (OSTI)

A hazardous waste landfill adjacent to a coke manufacturing facility was in operation between July 1990 and December 1991. A system was constructed to collect and treat the leachate from the landfill prior to discharge to the river. Occasionally, the discharge from the treatment facility exceeded the permit limitations for Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), and Total Organic Carbon (TOC). The objectives of this study were to determine treatment methods which would enable compliance with the applicable discharge limits; to establish the desired operating conditions of the process; and to investigate the effect of various parameters such as pH, catalyst dosage, and reaction time on the COD destruction efficiency. The characteristics of the landfill leachate in question were significantly variable in terms of chemical composition. A review of the influent quality data suggests that the COD concentration ranges between 80 and 390 mg/l. The oxidation processes using Fenton`s reagent or a combination of UV/hydrogen peroxide/catalyst are capable of reducing the COD concentration of the leachate below the discharge limitation of 35 mg/l. The estimated capital cost associated with the Fenton`s reagent process is approximately $525,000, and the annual operating and maintenance cost is $560,000. The estimated capital cost for the UV/hydrogen peroxide/catalyst treatment system is $565,000. The annual operating and maintenance cost of this process would be approximately $430,000.

Banerjee, K.; O`Toole, T.J. [Chester Environmental, Moon Township, PA (United States)

1995-12-01T23:59:59.000Z

491

Town of Hague landfill reclamation study: Research ways to increase waste heating value and reduce waste volume. Final report  

SciTech Connect (OSTI)

Monitored composing was studied as a method for reducing the quantity of waste requiring disposed from a landfill reclamation project. After each of two re-screening steps, composted {open_quotes}soil{close_quotes} from a single long windrow of varying depths and moisture content was subjected to analytical testing to determine its suitability to remain as backfill in a reclaimed landfill site. The remaining uncomposted waste was combusted at a waste-to-energy facility to determine if Btu values were improved. Results indicate that a full-scale composting operation could result in a net decrease of approximately 11 percent in disposal costs. The Btu value of the reclaimed waste was calculated to be 4,500 to 5,000 Btu/lb. The feasibility of composting reclaimed waste at other landfill reclamation projects will depend upon site-specific technical and economic factors, including size and nature of the organic fraction of the waste mass, local processing costs, and the cost of waste disposal alternatives.

Salerni, E. [SSB Environmental Inc., Albany, NY (United States)

1997-01-01T23:59:59.000Z

492

Solar Policy Environment: Pittsburgh  

Broader source: Energy.gov [DOE]

In this project, Pittsburgh plans to build on its reputation as a national leader in green practices. Its Solar America Cities project will develop a distributed approach to adoption of solar energy technologies. Pittsburgh’s partnership includes universities, non-profit organizations, and business, labor and foundation communities. The city plans to transform the solar energy market and stimulate early adoption of solar technology, to show that solar technology works in a northern city.

493

Non-biodegradable landfill leachate treatment by combined process of agitation, coagulation, SBR and filtration  

SciTech Connect (OSTI)

Highlights: • A novel method of stripping (agitation) was investigated for NH{sub 3}-N removal. • PFS coagulation followed agitation process enhanced the leachate biodegradation. • Nitrification–denitrification achieved by changing operation process in SBR treatment. • A dual filter of carbon-sand is suitable as a polishing treatment of leachate. • Combined treatment success for the complete treatment of non-biodegradable leachate. - Abstract: This study describes the complete treatment of non-biodegradable landfill leachate by combined treatment processes. The processes consist of agitation as a novel stripping method used to overcome the ammonia toxicity regarding aerobic microorganisms. The NH{sub 3}-N removal ratio was 93.9% obtained at pH 11.5 and a gradient velocity (G) 150 s{sup ?1} within a five-hour agitation time. By poly ferric sulphate (PFS) coagulation followed the agitation process; chemical oxygen demand (COD) and biological oxygen demand (BOD{sub 5}) were removed at 70.6% and 49.4%, respectively at an optimum dose of 1200 mg L{sup ?1} at pH 5.0. The biodegradable ratio BOD{sub 5}/COD was improved from 0.18 to 0.31 during pretreatment step by agitation and PFS coagulation. Thereafter, the effluent was diluted with sewage at a different ratio before it was subjected to sequencing batch reactor (SBR) treatment. Up to 93.3% BOD{sub 5}, 95.5% COD and 98.1% NH{sub 3}-N removal were achieved by SBR operated under anoxic–aerobic–anoxic conditions. The filtration process was carried out using sand and carbon as a dual filter media as polishing process. The final effluent concentration of COD, BOD{sub 5}, suspended solid (SS), NH{sub 3}-N and total organic carbon (TOC) were 72.4 mg L{sup ?1}, 22.8 mg L{sup ?1}, 24.2 mg L{sup ?1}, 18.4 mg L{sup ?1} and 50.8 mg L{sup ?1} respectively, which met the discharge standard. The results indicated that a combined process of agitation-coagulation-SBR and filtration effectively eliminated pollutant loading from landfill leachate.

Abood, Alkhafaji R. [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); Thi Qar University, Nasiriyah (Iraq); Bao, Jianguo, E-mail: bjianguo888@126.com [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); Du, Jiangkun; Zheng, Dan; Luo, Ye [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China)

2014-02-15T23:59:59.000Z

494

CPS Energy Prospective on the EPA Proposed Carbon Rule  

E-Print Network [OSTI]

Operation Wind 1,059.1 MW Landfill Gas 13.8 MW Solar 129.0 MW Total 1,201.9 MW Projects in Development Solar 315.3 MW Total 315.3 MW Renewable Projects Under Contract Wind 1,059.1 MW Landfill Gas 13.8 MW Solar 444.3 MW Total 1,517.2 MW Solar OCI Projects... ENERGY GRAND OPENING 17 Event held on 9/22/14 • 400 MW Solar • 200 MW cell & panel manufacturing plant • N. American HQ for OCISP and Nexolon America • 800 Permanent jobs • Capital investment - ~$100M • Educational investments ESL-KT-14-11-18 CATEE 2014...

Smith, R.

2014-01-01T23:59:59.000Z

495

Boston Massachusetts: Solar in Action (Brochure), Solar America...  

Broader source: Energy.gov (indexed) [DOE]

Initiative) Solar installation goal: 25 megawatts (MW) cumulative installed solar capacity in the city by 2015 The reinvigorated Solar Boston Partnership builds on the work of...

496

Salt Lake City, Utah: Solar in Action (Brochure), Solar America...  

Broader source: Energy.gov (indexed) [DOE]

a lack of understanding about solar contributed to preventing the widespread adoption of solar energy in all markets. Salt Lake City's prior solar successes with support from...

497

San Francisco, California: Solar in Action (Brochure), Solar...  

Broader source: Energy.gov (indexed) [DOE]

San Francisco, California: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) San Francisco, California: Solar in Action (Brochure),...

498

Portland, Oregon: Solar in Action (Brochure), Solar America Cities...  

Broader source: Energy.gov (indexed) [DOE]

Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) San Francisco, California: Solar in Action (Brochure), Solar America Cities, Energy Efficiency...

499

Introduction The Sun is a mass of incandescent gas  

E-Print Network [OSTI]

Chapter 1 Introduction The Sun is a mass of incandescent gas A gigantic nuclear furnace Building that our bodies contain atoms that, like most elements and their isotopes in the Solar System, were part of the molecular cloud from which the Solar System condensed, and were trapped in primitive

Nittler, Larry R.

500

Combustion System Development for Medium-Sized Industrial Gas Turbines: Meeting Tight Emission Regulations while Using  

E-Print Network [OSTI]

Combustion System Development for Medium-Sized Industrial Gas Turbines: Meeting Tight Emission Regulations while Using a Broad Range of Alternative Fuels Luke Cowell. Solar Turbines Abstract: Solar Turbines Incorporated is a leading manufacturer of industrial gas turbine packages for the power generation

Ponce, V. Miguel