Powered by Deep Web Technologies
Note: This page contains sample records for the topic "landfill gas methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Methane Gas Utilization Project from Landfill at Ellery (NY)  

DOE Green Energy (OSTI)

Landfill Gas to Electric Energy Generation and Transmission at Chautauqua County Landfill, Town of Ellery, New York. The goal of this project was to create a practical method with which the energy, of the landfill gas produced by the decomposing waste at the Chautauqua County Landfill, could be utilized. This goal was accomplished with the construction of a landfill gas to electric energy plant (originally 6.4MW and now 9.6MW) and the construction of an inter-connection power-line, from the power-plant to the nearest (5.5 miles) power-grid point.

Pantelis K. Panteli

2012-01-10T23:59:59.000Z

2

Renewable Energy 32 (2007) 12431257 Methane generation in landfills  

E-Print Network (OSTI)

2006 Abstract Methane gas is a by-product of landfilling municipal solid wastes (MSW). Most tonnes of methane annually, 70% of which is used to generate heat and/or electricity. The landfill gas. All rights reserved. Keywords: Landfill gas; Renewable energy; Municipal solid waste; Biogas; Methane

Columbia University

3

LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL  

SciTech Connect

''Conventional'' waste landfills emit methane, a potent greenhouse gas, in quantities such that landfill methane is a major factor in global climate change. Controlled landfilling is a novel approach to manage landfills for rapid completion of total gas generation, maximizing gas capture and minimizing emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated and brought to much earlier completion by improving conditions for biological processes (principally moisture levels) in the landfill. Gas recovery efficiency approaches 100% through use of surface membrane cover over porous gas recovery layers operated at slight vacuum. A field demonstration project's results at the Yolo County Central Landfill near Davis, California are, to date, highly encouraging. Two major controlled landfilling benefits would be the reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role in reduction of US greenhouse gas emissions.

Don Augenstein

1999-01-11T23:59:59.000Z

4

Quantifying methane oxidation in a landfill-cover soil by gas push-pull tests  

SciTech Connect

Methane (CH{sub 4}) oxidation by aerobic methanotrophs in landfill-cover soils decreases emissions of landfill-produced CH{sub 4} to the atmosphere. To quantify in situ rates of CH{sub 4} oxidation we performed five gas push-pull tests (GPPTs) at each of two locations in the cover soil of the Lindenstock landfill (Liestal, Switzerland) over a 4 week period. GPPTs consist of the injection of a gas mixture containing CH{sub 4}, O{sub 2} and noble gas tracers followed by extraction from the same location. Quantification of first-order rate constants was based upon comparison of breakthrough curves of CH{sub 4} with either Ar or CH{sub 4} itself from a subsequent inactive GPPT containing acetylene as an inhibitor of CH{sub 4} oxidation. The maximum calculated first-order rate constant was 24.8 {+-} 0.8 h{sup -1} at location 1 and 18.9 {+-} 0.6 h{sup -1} at location 2. In general, location 2 had higher background CH{sub 4} concentrations in vertical profile samples than location 1. High background CH{sub 4} concentrations in the cover soil during some experiments adversely affected GPPT breakthrough curves and data interpretation. Real-time PCR verified the presence of a large population of methanotrophs at the two GPPT locations and comparison of stable carbon isotope fractionation of CH{sub 4} in an active GPPT and a subsequent inactive GPPT confirmed that microbial activity was responsible for the CH{sub 4} oxidation. The GPPT was shown to be a useful tool to reproducibly estimate in situ rates of CH{sub 4} oxidation in a landfill-cover soil when background CH{sub 4} concentrations were low.

Gomez, K.E. [Institute of Biogeochemistry and Pollutant Dynamics, ETH Zuerich, Universitaetstrasse 16, 8092 Zuerich (Switzerland)], E-mail: gomezke@hotmail.com; Gonzalez-Gil, G.; Lazzaro, A. [Institute of Biogeochemistry and Pollutant Dynamics, ETH Zuerich, Universitaetstrasse 16, 8092 Zuerich (Switzerland); Schroth, M.H. [Institute of Biogeochemistry and Pollutant Dynamics, ETH Zuerich, Universitaetstrasse 16, 8092 Zuerich (Switzerland)], E-mail: martin.schroth@env.ethz.ch

2009-09-15T23:59:59.000Z

5

Feasibility of methane-gas recovery at the St. John's Landfill  

DOE Green Energy (OSTI)

All facets reviewed in assessing the feasibility of a commercial landfill gas recovery system at the St. Johns Landfill in Portland, Oregon are discussed. Included are: landfill operational history, step-by-step descriptions of the field testing (and all results therein), landfill gas production/recovery predictions, results of the preliminary market research, cost matrices for primary utilization modes, and conclusions and recommendations based on analysis of the data gathered. Tables and figures are used to illustrate various aspects of the report.

Not Available

1983-03-01T23:59:59.000Z

6

Landfill Methane Project Development Handbook | Open Energy Information  

Open Energy Info (EERE)

Landfill Methane Project Development Handbook Landfill Methane Project Development Handbook Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Landfill Methane Project Development Handbook Agency/Company /Organization: United States Environmental Protection Agency Sector: Climate, Energy Focus Area: Biomass, - Landfill Gas Phase: Determine Baseline, Evaluate Options, Get Feedback Resource Type: Guide/manual User Interface: Website Website: www.epa.gov/lmop/publications-tools/handbook.html Cost: Free References: Project Development Handbook[1] The handbook describes the process of implementing a waste-to-energy landfill gas project. Overview "Approximately 250 million tons of solid waste was generated in the United States in 2008 with 54 percent deposited in municipal solid waste (MSW)

7

Neural network prediction model for the methane fraction in biogas from field-scale landfill bioreactors  

Science Conference Proceedings (OSTI)

In this study we present a neural network model for predicting the methane fraction in landfill gas originating from field-scale landfill bioreactors. Landfill bioreactors were constructed at the Odayeri Sanitary Landfill, Istanbul, Turkey, and operated ... Keywords: Anaerobic digestion, Landfill gas, Leachate, Methane fraction, Modeling, Neural network

Bestamin Ozkaya; Ahmet Demir; M. Sinan Bilgili

2007-06-01T23:59:59.000Z

8

Landfill methane recovery. Part II: gas characterization. Final report, December 1981-December 1982  

SciTech Connect

This study addresses field sampling, analytical testing, and data generation for the characterization of both raw and processed landfill gas. Standardized protocols were developed for the sampling and analysis of the landfill gas for trace constituents and are presented as Appendices A-C. A nationwide survey was conducted in which gas samples were collected at nine landfill sites and tested for trace volatile organic compounds (VOC), trace volatile mercury, and human pathogenic viruses and bacteria. Surface-gas flux measurements at the landfill surface were also made. Repetitive sampling and analysis for each of the nice sites porvided the opportunity to evaluate agreement (or variations) within a laboratory and between two analytical laboratories. Sampling and analytical protocols used by both laboratories were identical, however, the analytical hardware and interpretive computer hardware and software were different.

Lytwynyshyn, G.R.; Zimmerman, R.E.; Flynn, N.W.; Wingender, R.; Olivieri, V.

1982-12-01T23:59:59.000Z

9

Greenhouse gas reduction by recovery and utilization of landfill methane and CO{sub 2} technical and market feasibility study, Boului Landfill, Bucharest, Romania. Final report, September 30, 1997--September 19, 1998  

SciTech Connect

The project is a landfill gas to energy project rated at about 4 megawatts (electric) at startup, increasing to 8 megawatts over time. The project site is Boului Landfill, near Bucharest, Romania. The project improves regional air quality, reduces emission of greenhouse gases, controls and utilizes landfill methane, and supplies electric power to the local grid. The technical and economic feasibility of pre-treating Boului landfill gas with Acrion`s new landfill gas cleanup technology prior to combustion for power production us attractive. Acrion`s gas treatment provides several benefits to the currently structured electric generation project: (1) increase energy density of landfill gas from about 500 Btu/ft{sup 3} to about 750 Btu/ft{sup 3}; (2) remove contaminants from landfill gas to prolong engine life and reduce maintenance;; (3) recover carbon dioxide from landfill gas for Romanian markets; and (4) reduce emission of greenhouse gases methane and carbon dioxide. Greenhouse gas emissions reduction attributable to successful implementation of the landfill gas to electric project, with commercial liquid CO{sub 2} recovery, is estimated to be 53 million metric tons of CO{sub 2} equivalent of its 15 year life.

Cook, W.J.; Brown, W.R.; Siwajek, L. [Acrion Technologies, Inc., Cleveland, OH (United States); Sanders, W.I. [Power Management Corp., Bellevue, WA (United States); Botgros, I. [Petrodesign, SA, Bucharest (Romania)

1998-09-01T23:59:59.000Z

10

Landfill Gas Sequestration in Kansas  

NLE Websites -- All DOE Office Websites (Extended Search)

Road Road P.O. Box 880 Morgantown, WV 26505-0880 304-285-4132 Heino.beckert@netl.doe.gov David newell Principal Investigator Kansas Geological Survey 1930 Constant Avenue Lawrence, KS 66045 785-864-2183 dnewall@kgs.uk.edu LandfiLL Gas sequestration in Kansas Background Municipal solid waste landfills are the largest source of anthropogenic methane emissions in the United States, accounting for about 34 percent of these emissions in 2004. Most methane (CH 4 ) generated in landfills and open dumps by anaerobic decomposition of the organic material in solid-waste-disposal landfills is either vented to the atmosphere or converted to carbon dioxide (CO 2 ) by flaring. The gas consists of about 50 percent methane (CH 4 ), the primary component of natural gas, about 50 percent carbon dioxide (CO

11

Landfill Gas | Open Energy Information  

Open Energy Info (EERE)

Landfill Gas Jump to: navigation, search TODO: Add description List of Landfill Gas Incentives Retrieved from "http:en.openei.orgwindex.php?titleLandfillGas&oldid267173"...

12

LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL  

Science Conference Proceedings (OSTI)

Controlled landfilling is an approach to manage solid waste landfills, so as to rapidly complete methane generation, while maximizing gas capture and minimizing the usual emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated to more rapid and earlier completion to full potential by improving conditions (principally moisture, but also temperature) to optimize biological processes occurring within the landfill. Gas is contained through use of surface membrane cover. Gas is captured via porous layers, under the cover, operated at slight vacuum. A field demonstration project has been ongoing under NETL sponsorship for the past several years near Davis, CA. Results have been extremely encouraging. Two major benefits of the technology are reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times, more predictably, than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role both in reduction of US greenhouse gas emissions and in US renewable energy. The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional landfills. This is the highest methane recovery rate per unit waste, and thus progress toward stabilization, documented anywhere for such a large waste mass. This high recovery rate is attributed to moisture, and elevated temperature attained inexpensively during startup. Economic analyses performed under Phase I of this NETL contract indicate ''greenhouse cost effectiveness'' to be excellent. Other benefits include substantial waste volume loss (over 30%) which translates to extended landfill life. Other environmental benefits include rapidly improved quality and stabilization (lowered pollutant levels) in liquid leachate which drains from the waste.

Don Augenstein; Ramin Yazdani; Rick Moore; Michelle Byars; Jeff Kieffer; Professor Morton Barlaz; Rinav Mehta

2000-02-26T23:59:59.000Z

13

Comparison of models for predicting landfill methane recovery. Final report  

DOE Green Energy (OSTI)

Landfill methane models are tools used to project methane generation over time from a mass of landfilled waste. These models are used for sizing landfill gas (LFG) collection systems, evaluations and projections of LFG energy uses, and regulatory purposes. The objective of this project was to select various landfill methane models and to provide a comparison of model outputs to actual long-term gas recovery data from a number of well managed and suitable landfills. Another objective was to use these data to develop better estimates of confidence limits that can be assigned to model projections. This project assessed trial model forms against field data from available landfills where methane extraction was maximized, waste filling history was well-documented, and other pertinent site information was of superior quality. Data were obtained from 18 US landfills. Four landfill methane models were compared: a zero-order, a simple first order, a modified first order, and a multi-phase first order model. Models were adjusted for best fit to field data to yield parameter combinations based on the minimized residual errors between predicted and experienced methane recovery. The models were optimized in this way using two data treatments: absolute value of the differences (arithmetic error minimization) and absolute value of the natural log of the ratios (logarithmic error minimization).

Vogt, W.G. [SCS Engineers, Reston, VA (United States); Augenstein, D. [Institute for Environmental Management, Palo Alto, CA (United States)

1997-03-01T23:59:59.000Z

14

Landfill Gas Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Landfill Gas Resources and Technologies Landfill Gas Resources and Technologies Landfill Gas Resources and Technologies October 7, 2013 - 9:27am Addthis Photo of a bulldozer on top of a large trash mound in a landfill with a cloudy sky in the backdrop. Methane and other gases produced from landfill decomposition can be leveraged for energy. This page provides a brief overview of landfill gas energy resources and technologies supplemented by specific information to apply landfill gas energy within the Federal sector. Overview Landfill gases are a viable energy resource created during waste decomposition. Landfills are present in most communities. These resources can be tapped to generate heat and electricity. As organic waste decomposes, bio-gas is produced made up of roughly half methane, half carbon dioxide, and small amounts of non-methane organic

15

Development of computer simulations for landfill methane recovery  

DOE Green Energy (OSTI)

Two- and three-dimensional finite-difference computer programs simulating methane recovery systems in landfills have been developed. These computer programs model multicomponent combined pressure and diffusional flow in porous media. Each program and the processes it models are described in this report. Examples of the capabilities of each program are also presented. The two-dimensional program was used to simulate methane recovery systems in a cylindrically shaped landfill. The effects of various pump locations, geometries, and extraction rates were determined. The three-dimensional program was used to model the Puente Hills landfill, a field test site in southern California. The biochemical and microbiological details of methane generation in landfills are also given. Effects of environmental factors, such as moisture, oxygen, temperature, and nutrients on methane generation are discussed and an analytical representation of the gas generation rate is developed.

Massmann, J.W.; Moore, C.A.; Sykes, R.M.

1981-12-01T23:59:59.000Z

16

Landfill Gas-to-Electricity Demonstration Project  

DOE Green Energy (OSTI)

Medium Btu methane gas is a naturally occurring byproduct of anaerobic digestion of landfilled municipal solid waste. The energy potential of landfill gas in New York State is estimated to be 61 trillion Btu's per year or the equivalent of 10% of the natural gas used annually in the state. The 18-month Landfill Gas-to-Electricity Demonstration Project conducted at the Fresh Kills Landfill in Staten Island, New York conclusively demonstrated that landfill gas is an acceptable fuel for producing electricity using an internal combustion engine/generator set. Landfill gas proved to be a reliable and consistent fuel source during a six-month field test program. Engine exhaust emissions were determined to be comparable to that of natural gas and no unusually high corrosion rates on standard pipeline material were found.

Not Available

1982-10-01T23:59:59.000Z

17

Landfill gas emission prediction using Voronoi diagrams and importance sampling  

Science Conference Proceedings (OSTI)

Municipal solid waste (MSW) landfills are among the nation's largest emitters of methane, a key greenhouse gas, and there is considerable interest in quantifying the surficial methane emissions from landfills. There are limitations in obtaining accurate ... Keywords: Air dispersion modeling, Delaunay tessellation, Kriging, Least squares, MSW landfill, Voronoi diagram

K. R. Mackie; C. D. Cooper

2009-10-01T23:59:59.000Z

18

Sardinia 2007, Eleventh International Waste Management and Landfill Symposium Potential for Reducing Global Methane Emissions  

E-Print Network (OSTI)

landfills, we developed reference projections of waste generation, recycling and landfill-gas captureSardinia 2007, Eleventh International Waste Management and Landfill Symposium 1 Potential for Reducing Global Methane Emissions From Landfills, 2000-2030 E. MATTHEWS1 , N. J. THEMELIS2 1 NASA Goddard

Columbia University

19

Passive drainage and biofiltration of landfill gas: Australian field trial  

SciTech Connect

In Australia a significant number of landfill waste disposal sites do not incorporate measures for the collection and treatment of landfill gas. This includes many old/former landfill sites, rural landfill sites, non-putrescible solid waste and inert waste landfill sites, where landfill gas generation is low and it is not commercially viable to extract and beneficially utilize the landfill gas. Previous research has demonstrated that biofiltration has the potential to degrade methane in landfill gas, however, the microbial processes can be affected by many local conditions and factors including moisture content, temperature, nutrient supply, including the availability of oxygen and methane, and the movement of gas (oxygen and methane) to/from the micro-organisms. A field scale trial is being undertaken at a landfill site in Sydney, Australia, to investigate passive drainage and biofiltration of landfill gas as a means of managing landfill gas emissions at low to moderate gas generation landfill sites. The design and construction of the trial is described and the experimental results will provide in-depth knowledge on the application of passive gas drainage and landfill gas biofiltration under Sydney (Australian) conditions, including the performance of recycled materials for the management of landfill gas emissions.

Dever, S.A. [School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052 (Australia) and GHD Pty. Ltd., 10 Bond Street, Sydney, NSW 2000 (Australia)]. E-mail: stuart_dever@ghd.com.au; Swarbrick, G.E. [School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052 (Australia)]. E-mail: g.swarbrick@unsw.edu.au; Stuetz, R.M. [School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052 (Australia)]. E-mail: r.stuetz@unsw.edu.au

2007-07-01T23:59:59.000Z

20

Understanding landfill gas generation and migration  

DOE Green Energy (OSTI)

Landfill gas research in the US Department of Energy (DOE) from Municipal Waste (EMW) Program is focusing on two major areas of investigation: (1) Landfill gas migration processes; and (2) Landfill gas generation. With regard to gas migration, a field investigation is examining bidirectional gas movement through landfill cover materials by processes of pressure and diffusional flow. The overall purpose of the study is to quantify gas loss from the landfill reservoir by natural venting and air influx due to pumping on recovery wells. Two field sites--a humid site with clay cover and a semiarid site with sand cover--have been instrumented to examine vertical gas movement through cover materials. Results from the humid site indicate that: (1) concentrations of methane, carbon dioxide, oxygen and nitrogen in soil gas vary seasonally with soil moisture; (2) based on average methane gradients in soil gas and a simple diffusion model, up to 10E5 g methane m/sup /minus /2/ yr/sup /minus/1/ are vented through the cover materials at the humid site (area of 17 ht); and (3) during prolonged wet weather, pressure gradients of more than 2 kPa may develop between the cover materials and top of refuse, indicating that pressure flow is periodically an important mechanism for gas transport. The second project is addressing landfill gas generation. The major goal is to develop simple assay techniques to examine the gas production potential of landfilled refuse. Refuse samples extracted from various depths in a landfill are being leached by three different methods to separate microbial mass and substrate. The leachates are being subjected to Biochemical Methane Production (BMP) assays with periodic qualitative examination of microbial populations using fluorescence microscopy of live cultures and scanning electron microscopy (SEM).

Bogner, J.; Rose, C.; Vogt, M.; Gartman, D.

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "landfill gas methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

The landfill methane balance: Model and practical applications  

SciTech Connect

A rational mass-balance framework is described for improved quantification of landfill methane processes at a given site. The methane balance model examines the partitioning of methane generated into methane recovered (via extraction systems), methane emitted, methane oxidized, methane migrated, and methane storage. This model encourages use of field-based data to better quantify rates of methane recovery and emissions.

Bogner, J.; Spokas, K.

1995-10-01T23:59:59.000Z

22

Soil gas investigations at the Sanitary Landfill  

SciTech Connect

A soil gas survey was performed at the 740-G Sanitary Landfill of Savannah River Plant during December, 1990. The survey monitored the presence and distribution of the C[sub 1]C[sub 4] hydrocarbons; the C[sub 5]-C[sub 10] normal paraffins; the aromatic hydrocarbons, BTXE; selected chlorinated hydrocarbons; and mercury. Significant levels of several of these contaminants were found associated with the burial site. In the northern area of the Landfill, methane concentrations ranged up to 63% of the soil gas and were consistently high on the western side of the access road. To the east of the access road in the northern and southern area high concentrations of methane were encountered but were not consistently high. Methane, the species found in highest concentration in the landfill, was generated in the landfill as the result of biological oxidation of cellulose and other organics to carbon dioxide followed by reduction of the carbon dioxide to methane. Distributions of other species are the result of burials in the landfill of solvents or other materials.

Wyatt, D.E.; Pirkle, R.J.; Masdea, D.J.

1992-07-01T23:59:59.000Z

23

Soil gas investigations at the Sanitary Landfill  

SciTech Connect

A soil gas survey was performed at the 740-G Sanitary Landfill of Savannah River Plant during December, 1990. The survey monitored the presence and distribution of the C{sub 1}C{sub 4} hydrocarbons; the C{sub 5}-C{sub 10} normal paraffins; the aromatic hydrocarbons, BTXE; selected chlorinated hydrocarbons; and mercury. Significant levels of several of these contaminants were found associated with the burial site. In the northern area of the Landfill, methane concentrations ranged up to 63% of the soil gas and were consistently high on the western side of the access road. To the east of the access road in the northern and southern area high concentrations of methane were encountered but were not consistently high. Methane, the species found in highest concentration in the landfill, was generated in the landfill as the result of biological oxidation of cellulose and other organics to carbon dioxide followed by reduction of the carbon dioxide to methane. Distributions of other species are the result of burials in the landfill of solvents or other materials.

Wyatt, D.E.; Pirkle, R.J.; Masdea, D.J.

1992-07-01T23:59:59.000Z

24

Feasibility study: utilization of landfill gas for a vehicle fuel system, Rossman's landfill, Clackamas County, Oregon  

SciTech Connect

In 1978, a landfill operator in Oregon became interested in the technical and economic feasibility of recovering the methane generated in the landfill for the refueling of vehicles. DOE awarded a grant for a site-specific feasibility study of this concept. This study investigated the expected methane yield and the development of a conceptual gas-gathering system; gas processing, compressing, and storage systems; and methane-fueled vehicle systems. Cost estimates were made for each area of study. The results of the study are presented. Reasoning that gasoline prices will continue to rise and that approximately 18,000 vehicles in the US have been converted to operate on methane, a project is proposed to use this landfill as a demonstration site to produce and process methane and to fuel a fleet (50 to 400) vehicles with the gas produced in order to obtain performance and economic data on the systems used from gas collection through vehicle operation. (LCL)

Not Available

1981-01-01T23:59:59.000Z

25

LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL  

Science Conference Proceedings (OSTI)

The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional landfills. This is the highest methane recovery rate per unit waste, and thus progress toward stabilization, documented anywhere for such a large waste mass. This high recovery rate is attributed to moisture, and elevated temperature attained inexpensively during startup. Economic analyses performed under Phase I of this NETL contract indicate ''greenhouse cost effectiveness'' to be excellent. Other benefits include substantial waste volume loss (over 30%) which translates to extended landfill life. Other environmental benefits include rapidly improved quality and stabilization (lowered pollutant levels) in liquid leachate which drains from the waste.

Don Augenstein

2001-02-01T23:59:59.000Z

26

U. S. landfill gas research  

DOE Green Energy (OSTI)

This paper surveys US landfill gas RandD programs and presents some technical details of work being conducted at Argonne National Laboratory (Argonne, Illinois) through the support of the US Department of Energy. The two projects at Argonne include (1) a study of bidirectional gas movement through landfill cover materials and (2) development of standardized techniques to assay gas production from landfilled refuse (including qualitative microbiology of refuse assays).

Bogner, J.; Vogt, M.; Piorkowski, R.; Rose, C.; Hsu, M.

1988-01-01T23:59:59.000Z

27

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network (OSTI)

USA ICEF2006-1578 LANDFILL GAS FUELED HCCI DEMONSTRATIONengine that runs on landfill gas. The project team led bygas and simulated landfill gas as a fuel source. This

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

28

Landfill gas recovery: a technology status report  

DOE Green Energy (OSTI)

Landfill gas, which consists mainly of methane and carbon dioxide, can be recovered and used as a fuel. Processing will upgrade it to a high-Btu gas of pipeline quality. There are more than a dozen commercial landfill-gas recovery facilities in the US at present, all at relatively large sites. The amount of gas produced by a given site is a function of size, composition, and age of the landfill. Various techniques can be used to enhance gas production and yield, including controlled addition of moisture and nutrients; bacterial seeding and pH control also appear useful. Several computer models have been developed to examine the effects of various parameters on gas production and yield; these can aid in predicting optimum gas recovery and in maintaining the proper chemical balance within the producing portion of the landfill. Economically, a site's viability depends on its location and potential users, current competing energy costs, and legislation governing the site's operation. Legal problems of site operation can occur because of environmental and safety issues, as well as from questions of gas ownership, liability, and public utility commission considerations. Currently, R and D is under way to improve present recovery techniques and to develop new technologies and concepts. Cost comparisons and potential environmental impacts are being examined. Additional research is needed in the areas of gas enhancement, decompositional analysis, computer modeling, gas characterization, instrumentation, and engineering cost analysis. 77 references, 11 figures, 23 tables.

Zimmermann, R.E.; Lytwynyshyn, G.R.; Wilkey, M.L.

1983-08-01T23:59:59.000Z

29

Fluxes of methane between landfills and the atmosphere: Natural and engineered controls  

SciTech Connect

Field measurement of landfill methane emissions indicates natural variability spanning more than 2 seven orders of magnitude, from approximately 0.0004 to more than 4000 g m{sub -2} day{sup -1}. This wide range reflects net emissions resulting from production (methanogenesis), consumption (methanotrophic oxidation), and gaseous transport processes. The determination of an {open_quotes}average{close_quotes} emission rate for a given field site requires sampling designs and statistical techniques which consider spatial and temporal variability. Moreover, particularly at sites with pumped gas recovery systems, it is possible for methanotrophic microorganisms in aerated cover soils to oxidize all of the methane from landfill sources below and, additionally, to oxidize methane diffusing into cover soils from atmospheric sources above. In such cases, a reversed soil gas concentration gradient is observed in shallow cover soils, indicating bidirectional diffusional transport to the depth of optimum methane oxidation. Rates of landfill methane oxidation from field and laboratory incubation studies range up to 166 g m{sup -2} day{sup -1} among the highest for any natural setting, providing an effective natural control on net emissions. Estimates of worldwide landfill methane emissions to the atmosphere have ranged from 9 to 70 Tg yr{sup -1}, differing mainly in assumed methane yields from estimated quantities of landfilled refuse. At highly controlled landfill sites in developed countries, landfill methane is often collected via vertical wells or horizontal collectors. Recovery of landfill methane through engineered systems can provide both environmental and energy benefits by mitigating subsurface migration, reducing surface emissions, and providing an alternative energy resource for industrial boiler use, on-site electrical generation, or upgrading to a substitute natural gas.

Bogner, J. [Argonne National Lab., IL (United States); Meadows, M. [ETSU, Harwell, Oxfordshire (United Kingdom); Czepiel, P. [Harvard Univ., Cambridge, MA (United States)

1997-08-01T23:59:59.000Z

30

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network (OSTI)

operations with natural gas: Fuel composition implications,”of Natural gas testing LANDFILL GAS COMPOSITION Tapping into

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

31

LIQUID NATURAL GAS (LNG): AN ALTERNATIVE FUEL FROM LANDFILL GAS (LFG) AND WASTEWATER DIGESTER GAS  

DOE Green Energy (OSTI)

This Research and Development Subcontract sought to find economic, technical and policy links between methane recovery at landfill and wastewater treatment sites in New York and Maryland, and ways to use that methane as an alternative fuel--compressed natural gas (CNG) or liquid natural gas (LNG) -- in centrally fueled Alternative Fueled Vehicles (AFVs).

VANDOR,D.

1999-03-01T23:59:59.000Z

32

Understanding natural and induced gas migration through landfill cover materials: the basis for improved landfill gas recovery  

DOE Green Energy (OSTI)

Vertical pressure and concentration gradients in landfill cover materials are being examined at the Mallard North Landfill in Dupage County, IL. The goal of this project is to understand venting of landfill gas and intrusion of atmospheric gases into the landfill in response to changing meteorological conditions (particularly barometric pressure and precipitation) and pumping rates at recovery wells. Nests of probes for directly measuring soil gas pressures have been installed in areas of fractured and unfractured silty clay till cover materials. The probes are at three depths: shallow (0.6 m), intermediate (1.2 m), and deep (in the top of the refuse). Preliminary results from fall 1985 suggest that soil gas pressures respond quickly to changes in barometric pressure but that concentrations of methane, carbon dioxide, nitrogen, and oxygen respond more slowly to changing soil moisture conditions. An important near-surface process that limits the total amount of methane available to a gas recovery system is the activity of methanotrophs (methane-oxidizing bacteria) in oxygenated cover materials. The results of this project will be used to quantify landfill mass balance relations, improve existing predictive models for landfill gas recovery systems, and improve landfill cover design for sites where gas recovery is anticipated.

Bogner, J.E.

1986-01-01T23:59:59.000Z

33

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network (OSTI)

Simulated Landfill Gas Intake Diagram STEADY STATE OPERATIONlandfill gas. Expanding the understanding of HCCI mode of engine operation

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

34

Microbial oxidation of methane from old landfills in biofilters  

Science Conference Proceedings (OSTI)

Landfill gas emissions are among the largest sources of the greenhouse gas methane. For this reason, the possibilities of microbial methane degradation in biofilters were investigated. Different filter materials were tested in two experimental plants, a bench-scale plant (total filter volume 51 l) and a pilot plant (total filter volume 4 m{sup 3}). Three months after the beginning of the experiment, very high degradation rates of up to 63 g CH{sub 4}/(m{sup 3}h) were observed in the bench-scale plant at mean methane concentrations of 2.5% v/v and with fine-grained compost as biofilter material. However, the degradation rates of the compost biofilter decreased in the fifth month of the experiment, probably due to the accumulation of exopolymeric substances formed by the microorganisms. A mixture of compost, peat, and wood fibers showed stable and satisfactory degradation rates around 20 g/(m{sup 3}h) at mean concentrations of 3% v/v over a period of one year. In this material, the wood fibers served as a structural material and prevented clogging of the biofilter. Extrapolation of the experimental data indicates that biofilters for methane oxidation have to be at least 100 times the volume of biofilters for odor control to obtain the same cleaning efficiency per unit volume flow of feed gas.

Streese, J.; Stegmann, R

2003-07-01T23:59:59.000Z

35

US EPA Landfill Methane Outreach Program | Open Energy Information  

Open Energy Info (EERE)

Landfill Methane Outreach Program Landfill Methane Outreach Program Jump to: navigation, search Name US EPA Landfill Methane Outreach Program Agency/Company /Organization United States Environmental Protection Agency Sector Energy, Land Focus Area Biomass Topics Policies/deployment programs, Resource assessment, Background analysis Resource Type Software/modeling tools, Workshop Website http://www.epa.gov/lmop/intern Country China, Ecuador, Mexico, Philippines, Thailand, Ukraine, Belize, Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua, Panama Eastern Asia, South America, Central America, South-Eastern Asia, South-Eastern Asia, Eastern Europe, Central America, Central America, Central America, Central America, Central America, Central America, Central America References LMOP[1]

36

Assessment of the methane oxidation capacity of compacted soils intended for use as landfill cover materials  

SciTech Connect

The microbial oxidation of methane in engineered cover soils is considered a potent option for the mitigation of emissions from old landfills or sites containing wastes of low methane generation rates. A laboratory column study was conducted in order to derive design criteria that enable construction of an effective methane oxidising cover from the range of soils that are available to the landfill operator. Therefore, the methane oxidation capacity of different soils was assessed under simulated landfill conditions. Five sandy potential landfill top cover materials with varying contents of silt and clay were investigated with respect to methane oxidation and corresponding soil gas composition over a period of four months. The soils were compacted to 95% of their specific proctor density, resulting in bulk densities of 1.4-1.7 g cm{sup -3}, reflecting considerably unfavourable conditions for methane oxidation due to reduced air-filled porosity. The soil water content was adjusted to field capacity, resulting in water contents ranging from 16.2 to 48.5 vol.%. The investigated inlet fluxes ranged from 25 to about 100 g CH{sub 4} m{sup -2} d{sup -1}, covering the methane load proposed to allow for complete oxidation in landfill covers under Western European climate conditions and hence being suggested as a criterion for release from aftercare. The vertical distribution of gas concentrations, methane flux balances as well as stable carbon isotope studies allowed for clear process identifications. Higher inlet fluxes led to a reduction of the aerated zone, an increase in the absolute methane oxidation rate and a decline of the relative proportion of oxidized methane. For each material, a specific maximum oxidation rate was determined, which varied between 20 and 95 g CH{sub 4} m{sup -2} d{sup -1} and which was positively correlated to the air-filled porosity of the soil. Methane oxidation efficiencies and gas profile data imply a strong link between oxidation capacity and diffusive ingress of atmospheric air. For one material with elevated levels of fine particles and high organic matter content, methane production impeded the quantification of methane oxidation potentials. Regarding the design of landfill cover layers it was concluded that the magnitude of the expected methane load, the texture and expected compaction of the cover material are key variables that need to be known. Based on these, a column study can serve as an appropriate testing system to determine the methane oxidation capacity of a soil intended as landfill cover material.

Rachor, Ingke, E-mail: i.rachor@ifb.uni-hamburg.de [University of Hamburg, Institute of Soil Science, Allende-Platz 2, 20146 Hamburg (Germany); Gebert, Julia; Groengroeft, Alexander; Pfeiffer, Eva-Maria [University of Hamburg, Institute of Soil Science, Allende-Platz 2, 20146 Hamburg (Germany)

2011-05-15T23:59:59.000Z

37

Winnebago County Landfill Gas Biomass Facility | Open Energy...  

Open Energy Info (EERE)

Winnebago County Landfill Gas Biomass Facility Jump to: navigation, search Name Winnebago County Landfill Gas Biomass Facility Facility Winnebago County Landfill Gas Sector Biomass...

38

Penrose Landfill Gas Conversion LLC | Open Energy Information  

Open Energy Info (EERE)

Penrose Landfill Gas Conversion LLC Jump to: navigation, search Name Penrose Landfill Gas Conversion LLC Place Los Angeles, California Product Owner of landfill gas plant....

39

Reducing Open Cell Landfill Methane Emissions with a Bioactive Alternative Daily  

Science Conference Proceedings (OSTI)

Methane and carbon dioxide are formed in landfills as wastes degrade. Molecule-for-molecule, methane is about 20 times more potent than carbon dioxide at trapping heat in the earth's atmosphere, and thus, it is the methane emissions from landfills that are scrutinized. For example, if emissions composed of 60% methane and 40% carbon dioxide were changed to a mix that was 40% methane and 60% carbon dioxide, a 30% reduction in the landfill's global warming potential would result. A 10% methane, 90% carbon dioxide ratio will result in a 75% reduction in global warming potential compared to the baseline. Gas collection from a closed landfill can reduce emissions, and it is sometimes combined with a biocover, an engineered system where methane oxidizing bacteria living in a medium such as compost, convert landfill methane to carbon dioxide and water. Although methane oxidizing bacteria merely convert one greenhouse gas (methane) to another (carbon dioxide), this conversion can offer significant reductions in the overall greenhouse gas contribution, or global warming potential, associated with the landfill. What has not been addressed to date is the fact that methane can also escape from a landfill when the active cell is being filled with waste. Federal regulations require that newly deposited solid waste to be covered daily with a 6 in layer of soil or an alternative daily cover (ADC), such as a canvas tarp. The aim of this study was to assess the feasibility of immobilizing methane oxidizing bacteria into a tarp-like matrix that could be used for alternative daily cover at open landfill cells to prevent methane emissions. A unique method of isolating methanotrophs from landfill cover soil was used to create a liquid culture of mixed methanotrophs. A variety of prospective immobilization techniques were used to affix the bacteria in a tarp-like matrix. Both gel encapsulation of methanotrophs and gels with liquid cores containing methanotrophs were readily made but prone to rapid desiccation. Bacterial adsorption onto foam padding, natural sponge, and geotextile was successful. The most important factor for success appeared to be water holding capacity. Prototype biotarps made with geotextiles plus adsorbed methane oxidizing bacteria were tested for their responses to temperature, intermittent starvation, and washing (to simulate rainfall). The prototypes were mesophilic, and methane oxidation activity remained strong after one cycle of starvation but then declined with repeated cycles. Many of the cells detached with vigorous washing, but at least 30% appeared resistant to sloughing. While laboratory landfill simulations showed that four-layer composite biotarps made with two different types of geotextile could remove up to 50% of influent methane introduced at a flux rate of 22 g m{sup -2} d{sup -1}, field experiments did not yield high activity levels. Tests revealed that there were high hour-to-hour flux variations in the field, which, together with frequent rainfall events, confounded the field testing. Overall, the findings suggest that a methanotroph embedded biotarp appears to be a feasible strategy to mitigate methane emission from landfill cells, although the performance of field-tested biotarps was not robust here. Tarps will likely be best suited for spring and summer use, although the methane oxidizer population may be able to shift and adapt to lower temperatures. The starvation cycling of the tarp may require the capacity for intermittent reinoculation of the cells, although it is also possible that a subpopulation will adapt to the cycling and become dominant. Rainfall is not expected to be a major factor, because a baseline biofilm will be present to repopulate the tarp. If strong performance can be achieved and documented, the biotarp concept could be extended to include interception of other compounds beyond methane, such as volatile aromatic hydrocarbons and chlorinated solvents.

Helene Hilger; James Oliver; Jean Bogner; David Jones

2009-03-31T23:59:59.000Z

40

Landfill Gas | OpenEI  

Open Energy Info (EERE)

Landfill Gas Landfill Gas Dataset Summary Description The UK Department of Energy and Climate Change (DECC) publishes annual renewable energy generation and capacity by region (9 regions in England, plus Wales, Scotland and Northern Ireland). Data available 2003 to 2009. Data is included in the DECC Energy Trends: September 2010 Report (available: http://www.decc.gov.uk/assets/decc/Statistics/publications/trends/558-tr...) Source UK Department of Energy and Climate Change (DECC) Date Released September 30th, 2010 (4 years ago) Date Updated Unknown Keywords Energy Generation Hydro Landfill Gas Other Biofuels Renewable Energy Consumption Sewage Gas wind Data application/zip icon 2 Excel files, 1 for generation, 1 for capacity (zip, 24.9 KiB) Quality Metrics Level of Review Peer Reviewed

Note: This page contains sample records for the topic "landfill gas methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Capture and Utilisation of Landfill Gas  

E-Print Network (OSTI)

Biomass Capture and Utilisation of Landfill Gas What is the potential for additional utilisation of landfill gas in the USA and around the world? By Nickolas Themelis and Priscilla Ulloa, Columbia University. In his 2003 review of energy recovery from landfill gas, Willumsen1 reported that as of 2001, there were

Columbia University

42

Landfill gas generation and migration: Review of current research  

DOE Green Energy (OSTI)

With regard to gas migration, a field investigation is examining bidirectional gas movement through landfill cover materials by processes of pressure and diffusional flow. The purpose of the study is to quantify gas loss from the landfill reservoir by natural venting and air influx due to pumping on recovery wells. Two field sites - a humid site with clay cover and a semiarid site with sand cover - have been instrumented to examine vertical gas movement through cover materials. Results from the humid site indicate that concentrations of methane, carbon dioxide, oxygen and nitrogen in soil gas vary seasonally with soil moisture; up to 10E5 g methane m/sup -2/ yr/sup -1/ are vented through the cover materials at the humid site (area of 17 ht); and during prolonged wet weather, pressure gradients of more than 2 kPa may develop between the cover materials and top of refuse, indicating that pressure flow is periodically an important mechanism for gas transport. Addressing landfill gas generation, the goal is to develop simple assay techniques to examined the gas production potential of landfilled refuse. Refuse samples extracted from various depths in a landfill are being leached by three different methods to separate microbial mass and substrate. The leachates are being subjected to Biochemical Methane Production (BMP) assays with periodic qualitative examination of microbial populations using fluorescence microscopy of live cultures and scanning electron microscopy (SEM). Triplicate assays of the leachates that produce insignificant quantities of biogas after 90 days incubation are being amended with sucrose, a nutrient broth, or a bacterial seed. Response of gas production to each of the three amendments was similar across all samples, regardless of the leaching method originally employed, with nutrient addition producing the most stable long-term biogas production with the highest methane content. 23 refs., 6 figs., 3 tabs.

Bogner, J.; Rose, C.; Vogt, M.; Gartman, D.

1987-01-01T23:59:59.000Z

43

Improved methodology to assess modification and completion of landfill gas management in the aftercare period  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer Performance-based evaluation of landfill gas control system. Black-Right-Pointing-Pointer Analytical framework to evaluate transition from active to passive gas control. Black-Right-Pointing-Pointer Focus on cover oxidation as an alternative means of passive gas control. Black-Right-Pointing-Pointer Integrates research on long-term landfill behavior with practical guidance. - Abstract: Municipal solid waste landfills represent the dominant option for waste disposal in many parts of the world. While some countries have greatly reduced their reliance on landfills, there remain thousands of landfills that require aftercare. The development of cost-effective strategies for landfill aftercare is in society's interest to protect human health and the environment and to prevent the emergence of landfills with exhausted aftercare funding. The Evaluation of Post-Closure Care (EPCC) methodology is a performance-based approach in which landfill performance is assessed in four modules including leachate, gas, groundwater, and final cover. In the methodology, the objective is to evaluate landfill performance to determine when aftercare monitoring and maintenance can be reduced or possibly eliminated. This study presents an improved gas module for the methodology. While the original version of the module focused narrowly on regulatory requirements for control of methane migration, the improved gas module also considers best available control technology for landfill gas in terms of greenhouse gas emissions, air quality, and emissions of odoriferous compounds. The improved module emphasizes the reduction or elimination of fugitive methane by considering the methane oxidation capacity of the cover system. The module also allows for the installation of biologically active covers or other features designed to enhance methane oxidation. A methane emissions model, CALMIM, was used to assist with an assessment of the methane oxidation capacity of landfill covers.

Morris, Jeremy W.F., E-mail: jmorris@geosyntec.com [Geosyntec Consultants, 10220 Old Columbia Road, Suite A, Columbia, MD 21046 (United States); Crest, Marion, E-mail: marion.crest@suez-env.com [Suez Environnement, 38 rue du President Wilson, 78230 Le Pecq (France); Barlaz, Morton A., E-mail: barlaz@ncsu.edu [Department of Civil, Construction, and Environmental Engineering, Campus Box 7908, North Carolina State University, Raleigh, NC 27695-7908 (United States); Spokas, Kurt A., E-mail: kurt.spokas@ars.usda.gov [United States Department of Agriculture - Agricultural Research Service, 1991 Upper Buford Circle, 439 Borlaug Hall, St. Paul, MN 55108 (United States); Akerman, Anna, E-mail: anna.akerman@sita.fr [SITA France, Tour CB 21, 16 Place de l'Iris, 92040 Paris La Defense Cedex (France); Yuan, Lei, E-mail: lyuan@geosyntec.com [Geosyntec Consultants, 10220 Old Columbia Road, Suite A, Columbia, MD 21046 (United States)

2012-12-15T23:59:59.000Z

44

Feasibility study of landfill gas recovery at seven landfill sites, Adams County/Commerce City, Colorado. Final report  

DOE Green Energy (OSTI)

This report documents the findings of a major landfill gas recovery study conducted in Adams County, Colorado. The study was performed during the period from August 1979 through September 1980. The study was broad in scope, involving a technical, economic, and institutional feasibility analysis of recovering landfill-generated methane gas from seven sanitary landfills in southwestern Adams County. The study included: field extraction testing at the seven sistes; detailed legislative research and activity; a market survey, including preliminary negotiations; and preliminary design and cost estimates for gas recovery systems at all seven sites.

Not Available

1984-07-01T23:59:59.000Z

45

Evaluation of methane emissions from Palermo municipal landfill: Comparison between field measurements and models  

Science Conference Proceedings (OSTI)

Methane (CH{sub 4}) diffuse emissions from Municipal Solid Waste (MSW) landfills represent one of the most important anthropogenic sources of greenhouse gas. CH{sub 4} is produced by anaerobic biodegradation of organic matter in landfilled MSW and constitutes a major component of landfill gas (LFG). Gas recovery is a suitable method to effectively control CH{sub 4} emissions from landfill sites and the quantification of CH{sub 4} emissions represents a good tool to evaluate the effectiveness of a gas recovery system in reducing LFG emissions. In particular, LFG emissions can indirectly be evaluated from mass balance equations between LFG production, recovery and oxidation in the landfill, as well as by a direct approach based on LFG emission measurements from the landfill surface. However, up to now few direct measurements of landfill CH{sub 4} diffuse emissions have been reported in the technical literature. In the present study, both modeling and direct emission measuring methodologies have been applied to the case study of Bellolampo landfill located in Palermo, Italy. The main aim of the present study was to evaluate CH{sub 4} diffuse emissions, based on direct measurements carried out with the flux accumulation chamber (static, non-stationary) method, as well as to obtain the CH{sub 4} contoured flux map of the landfill. Such emissions were compared with the estimate achieved by means of CH{sub 4} mass balance equations. The results showed that the emissions obtained by applying the flux chamber method are in good agreement with the ones derived by the application of the mass balance equation, and that the evaluated contoured flux maps represent a reliable tool to locate areas with abnormal emissions in order to optimize the gas recovery system efficiency.

Di Bella, Gaetano, E-mail: dibella@idra.unipa.it [Dipartimento di Ingegneria Civile, Ambientale e Aerospaziale, Universita di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Di Trapani, Daniele, E-mail: ditrapani@idra.unipa.it [Dipartimento di Ingegneria Civile, Ambientale e Aerospaziale, Universita di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Viviani, Gaspare, E-mail: gviv@idra.unipa.it [Dipartimento di Ingegneria Civile, Ambientale e Aerospaziale, Universita di Palermo, Viale delle Scienze, 90128 Palermo (Italy)

2011-08-15T23:59:59.000Z

46

Impact of different plants on the gas profile of a landfill cover  

SciTech Connect

Research highlights: > Plants influence gas profile and methane oxidation in landfill covers. > Plants regulate water content and increase the availability of oxygen for methane oxidation. > Plant species with deep roots like alfalfa showed more stimulation of methane oxidation than plants with shallow root systems like grasses. - Abstract: Methane is an important greenhouse gas emitted from landfill sites and old waste dumps. Biological methane oxidation in landfill covers can help to reduce methane emissions. To determine the influence of different plant covers on this oxidation in a compost layer, we conducted a lysimeter study. We compared the effect of four different plant covers (grass, alfalfa + grass, miscanthus and black poplar) and of bare soil on the concentration of methane, carbon dioxide and oxygen in lysimeters filled with compost. Plants were essential for a sustainable reduction in methane concentrations, whereas in bare soil, methane oxidation declined already after 6 weeks. Enhanced microbial activity - expected in lysimeters with plants that were exposed to landfill gas - was supported by the increased temperature of the gas in the substrate and the higher methane oxidation potential. At the end of the first experimental year and from mid-April of the second experimental year, the methane concentration was most strongly reduced in the lysimeters containing alfalfa + grass, followed by poplar, miscanthus and grass. The observed differences probably reflect the different root morphology of the investigated plants, which influences oxygen transport to deeper compost layers and regulates the water content.

Reichenauer, Thomas G., E-mail: thomas.reichenauer@ait.ac.at [Health and Environment Department, Environmental Resources and Technologies, AIT - Austrian Institute of Technology GmbH, 2444 Seibersdorf (Austria); Watzinger, Andrea; Riesing, Johann [Health and Environment Department, Environmental Resources and Technologies, AIT - Austrian Institute of Technology GmbH, 2444 Seibersdorf (Austria); Gerzabek, Martin H. [Institute of Soil Research, Department of Forest and Soil Sciences, University of Natural Resources and Applied Life Sciences, Peter Jordan-Strasse 82, 1190 Vienna (Austria)

2011-05-15T23:59:59.000Z

47

Modified biochemical methane potential (BMP) assays to assess biodegradation potential of landfilled refuse  

DOE Green Energy (OSTI)

Modified Biochemical Methane Potential (BMP) assays were used to assess biogas production potential of solid landfill samples. In landfill samples with visible soil content, moisture addition alone was generally as effective at stimulating biogas production as the addition of a comprehensive nutrient media. In a variety of samples from humid and semiarid landfills, addition of an aqueous nutrient media was the most effective stimulant for biogas production; however, moisture addition was almost as effective for most samples, suggesting that water addition would be the most cost-effective field approach. Onset of methanogenesis was slower in fresh refuse samples (even when inoculated with anaerobic digester sludge) than in landfill samples, indicating that the soil into which materials are landfilled is a major source of microorganisms. High volatile solids loading in fresh refuse and landfill assays retarded methanogenesis. A comparison of anaerobic and aerobic sample handling techniques showed no significant differences with regard to onset of methanogenesis and total gas production. The technique shows initial promise with regard to replication and reproducibility of results and could be a meaningful addition to landfill site evaluations where commercial gas recovery is anticipated. The BMP technique could also be adapted to assess anaerobic biodegradability of other solid waste materials for conventional anaerobic digestion applications. 9 refs., 6 figs., 2 tabs.

Bogner, J.E.; Rose, C.; Piorkowski, R.

1989-01-01T23:59:59.000Z

48

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network (OSTI)

Journal of Engineering for Gas Turbines and Power, 121:569-operations with natural gas: Fuel composition implications,”USA ICEF2006-1578 LANDFILL GAS FUELED HCCI DEMONSTRATION

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

49

Federal Energy Management Program: Landfill Gas Resources and Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Landfill Gas Landfill Gas Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Landfill Gas Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Landfill Gas Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Landfill Gas Resources and Technologies on Google Bookmark Federal Energy Management Program: Landfill Gas Resources and Technologies on Delicious Rank Federal Energy Management Program: Landfill Gas Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Landfill Gas Resources and Technologies on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies

50

Community Renewable Energy Success Stories: Landfill Gas-to-Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stories: Landfill Gas-to-Energy Projects Webinar (text version) Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects Webinar (text version) Below is the text...

51

Landfill gas generation and migration: Review of current research II  

DOE Green Energy (OSTI)

With regard to gas migration, a field investigation is examining bidirectional gas movement through landfill cover materials by processes of pressure and diffusional flow. The overall purpose of the study is to quantify gas loss from the landfill reservoir by natural venting and air influx due to pumping on recovery wells. Two field sites--a humid site, with vegetated clay cover and a semiarid site with unvegetated sandy silt cover--have been instrumented to examine vertical gas movement through cover materials. Results from the past year's work at the semiarid site indicates that rates of CH/sub 4/ flux out of the landfill surface may be as high as 2 /times/ 10/sup /minus/6/ g cm/sup /minus/2/ sec/sup /minus/1/ (6.3 /times/ 10/sup 2/ Kg m/sup /minus/1/ yr/sup /minus/1/) during dry soil conditions. Such high rates represent both the loss of an energy resource and a significance factor in global warming trends since atmospheric CH/sub 4/ contributes to the greenhouse effect. An independent estimate has suggested that 8--15% of global atmospheric CH/sub 4/ is attributable to landfill sources. The second project is addressing landfill gas generation. The major goal is to develop simple assay techniques to examine the gas production potential of landfilled refuse. Refuse samples extracted from various depths in a landfill are being subjected to Biochemical Methane Production (BMP) assays with periodic qualitative examination of microbial populations. Triplicate assays of unamended refuse (controls) are compared to assays with added moisture, nutrients, and bacterial seed. To date, moisture addition is the single most important variable in stimulating gas production, particularly in samples with visible soil content. 56 refs., 2 figs., 3 tabs.

Bogner, J.; Vogt, M.; Piorkowski, R.

1989-01-01T23:59:59.000Z

52

Landfill Gas Conversion to LNG and LCO{sub 2}. Final Report  

Science Conference Proceedings (OSTI)

This report summarizes work on the development of a process to produce LNG (liquefied methane) for heavy vehicle use from landfill gas (LFG) using Acrion's CO{sub 2} wash process for contaminant removal and CO{sub 2} recovery. Work was done in the following areas: (1) production of natural gas pipeline methane for liquefaction at an existing LNG facility, (2) production of LNG from sewage digester gas, (3) the use of mixed refrigerants for process cooling in the production of LNG, liquid CO{sub 2} and pipeline methane, (4) cost estimates for an LNG production facility at the Arden Landfill in Washington PA.

Brown, W.R.; Cook, W. J.; Siwajek, L.A.

2000-10-20T23:59:59.000Z

53

Forecast and Control Methods of Landfill Emission Gas to Atmosphere  

Science Conference Proceedings (OSTI)

The main component of landfill gas is CH4, its release is a potential hazard to the environment. To understand the gas law and landfill gas production are the prerequisite for effective control of landfill gas. This paper selects three kinds of typical ... Keywords: Landfill gas, German model, IPCC model, Marticorena dynamic model

Wang Qi; Yang Meihua; Wang Jie

2011-02-01T23:59:59.000Z

54

Capturing, Purifying, and Liquefying Landfill Gas for Transportation Fuel  

E-Print Network (OSTI)

Capturing, Purifying, and Liquefying Landfill Gas for Transportation Fuel TRANSPORTATION ENERGY alternative fuel, and purified landfill gas could provide a renewable domestic source of it. Landfills from landfills and use it in natural gas applications such as fueling motor vehicles. Project

55

Scaling methane oxidation: From laboratory incubation experiments to landfill cover field conditions  

SciTech Connect

Evaluating field-scale methane oxidation in landfill cover soils using numerical models is gaining interest in the solid waste industry as research has made it clear that methane oxidation in the field is a complex function of climatic conditions, soil type, cover design, and incoming flux of landfill gas from the waste mass. Numerical models can account for these parameters as they change with time and space under field conditions. In this study, we developed temperature, and water content correction factors for methane oxidation parameters. We also introduced a possible correction to account for the different soil structure under field conditions. These parameters were defined in laboratory incubation experiments performed on homogenized soil specimens and were used to predict the actual methane oxidation rates to be expected under field conditions. Water content and temperature corrections factors were obtained for the methane oxidation rate parameter to be used when modeling methane oxidation in the field. To predict in situ measured rates of methane with the model it was necessary to set the half saturation constant of methane and oxygen, K{sub m}, to 5%, approximately five times larger than laboratory measured values. We hypothesize that this discrepancy reflects differences in soil structure between homogenized soil conditions in the lab and actual aggregated soil structure in the field. When all of these correction factors were re-introduced into the oxidation module of our model, it was able to reproduce surface emissions (as measured by static flux chambers) and percent oxidation (as measured by stable isotope techniques) within the range measured in the field.

Abichou, Tarek, E-mail: abichou@eng.fsu.edu [Florida State University, Tallahassee, FL 32311 (United States); Mahieu, Koenraad; Chanton, Jeff [Florida State University, Tallahassee, FL 32311 (United States); Romdhane, Mehrez; Mansouri, Imane [Unite de Recherche M.A.C.S., Ecole Nationale d'Ingenieurs de Gabes, Route de Medenine, 6029 Gabes (Tunisia)

2011-05-15T23:59:59.000Z

56

Trace-chemical characterization of pollutants occurring in the production of landfill gas from the shoreline regional park sanitary landfill, Mountain View, California  

DOE Green Energy (OSTI)

A summary is presented of the results of sampling and analysis of ambient and process gas streams, and liquid and solid samples taken at different locations from the Pacific Gas and Electric Company Landfill Gas Recovery Plant in Mountain View, California. The purpose of this study is to identify environmental pollutants and characterize the trace chemistry of landfill gas recovered from the Mountain View Sanitary (Class II) Landfill. Gaseous samples, liquid condensate, and other plant products were analyzed for their trace chemical constituents, and the results indicate that certain organic and inorganic pollutants inherent to the landfill are emitted into the ambient environment and also become involved in the methane recovery process. Incorporation of condensate traps, molecular seive and charcoal filtration was found to significantly reduce both the organic and inorganic component burdens in the product gas. The environmental significances of the landfill gas recovery to the surrounding area and to worker safety are presented.

Flynn, N.W.; Guttman, M.; Hahn, J.; Payne, J.R.

1982-10-01T23:59:59.000Z

57

Trace chemical characterization of pollutants occurring in the production of landfill gas from the shoreline regional park sanitary landfill, Mountain View, California  

DOE Green Energy (OSTI)

This report summarizes the results of sampling and analysis of ambient and process gas streams, and liquid and solid samples taken at different locations from the Pacific Gas and Electric Company Landfill Gas Recovery Plant in Mountain View, California. The purpose of this study is to identify environmental pollutants and characterize the trace chemistry of landfill gas recovered from the Mountain View Sanitary (Class II) Landfill. Gaseous samples, liquid condensate and other plant products were analyzed for their trace chemical constituents, and the results indicate that certain organic and inorganic pollutants inherent to the landfill are emitted into the ambient environment and also become involved in the methane recovery process. Incorporation of condensate traps, molecular seive and charcoal filtration was found to significantly reduce both the organic and inorganic component burdens in the product gas. The environmental significances of the landfill gas recovery to the surrounding area and to worker safety are presented.

Flynn, N.W.; Guttman, M.; Hahn, J.; Payne, J.R.

1981-04-01T23:59:59.000Z

58

Using landfill gas for energy: Projects that pay  

Science Conference Proceedings (OSTI)

Pending Environmental Protection Agency regulations will require 500 to 700 landfills to control gas emissions resulting from decomposing garbage. Conversion of landfill gas to energy not only meets regulations, but also creates energy and revenue for local governments.

NONE

1995-02-01T23:59:59.000Z

59

Investigation of Integrated Subsurface Processing of Landfill Gas and Carbon Sequestration, Johnson County, Kansas  

SciTech Connect

The Johnson County Landfill in Shawnee, KS is operated by Deffenbaugh Industries and serves much of metropolitan Kansas City. Refuse, which is dumped in large plastic-underlined trash cells covering several acres, is covered over with shale shortly after burial. The landfill waste, once it fills the cell, is then drilled by Kansas City LFG, so that the gas generated by anaerobic decomposition of the refuse can be harvested. Production of raw landfill gas from the Johnson County landfill comes from 150 wells. Daily production is approximately 2.2 to 2.5 mmcf, of which approximately 50% is methane and 50% is carbon dioxide and NMVOCs (non-methane volatile organic compounds). Heating value is approximately 550 BTU/scf. A upgrading plant, utilizing an amine process, rejects the carbon dioxide and NMVOCs, and upgrades the gas to pipeline quality (i.e., nominally a heating value >950 BTU/scf). The gas is sold to a pipeline adjacent to the landfill. With coal-bearing strata underlying the landfill, and carbon dioxide a major effluent gas derived from the upgrading process, the Johnson County Landfill is potentially an ideal setting to study the feasibility of injecting the effluent gas in the coals for both enhanced coalbed methane recovery and carbon sequestration. To these ends, coals below the landfill were cored and then were analyzed for their thickness and sorbed gas content, which ranged up to 79 scf/ton. Assuming 1 1/2 square miles of land (960 acres) at the Johnson County Landfill can be utilized for coalbed and shale gas recovery, the total amount of in-place gas calculates to 946,200 mcf, or 946.2 mmcf, or 0.95 bcf (i.e., 985.6 mcf/acre X 960 acres). Assuming that carbon dioxide can be imbibed by the coals and shales on a 2:1 ratio compared to the gas that was originally present, then 1682 to 1720 days (4.6 to 4.7 years) of landfill carbon dioxide production can be sequestered by the coals and shales immediately under the landfill. Three coal--the Bevier, Fleming, and Mulberry coals--are the major coals of sufficient thickness (nominally >1-foot) that can imbibe carbon dioxide gas with an enhanced coalbed injection. Comparison of the adsorption gas content of coals to the gas desorbed from the coals shows that the degree of saturation decreases with depth for the coals.

K. David Newell; Timothy R. Carr

2007-03-31T23:59:59.000Z

60

Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils  

SciTech Connect

The overall objective of this project, 'Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils' was to develop effective, efficient, and economic methodologies by which microbial production of nitrous oxide can be minimized while also maximizing microbial consumption of methane in landfill cover soils. A combination of laboratory and field site experiments found that the addition of nitrogen and phenylacetylene stimulated in situ methane oxidation while minimizing nitrous oxide production. Molecular analyses also indicated that methane-oxidizing bacteria may play a significant role in not only removing methane, but in nitrous oxide production as well, although the contribution of ammonia-oxidizing archaea to nitrous oxide production can not be excluded at this time. Future efforts to control both methane and nitrous oxide emissions from landfills as well as from other environments (e.g., agricultural soils) should consider these issues. Finally, a methanotrophic biofiltration system was designed and modeled for the promotion of methanotrophic activity in local methane 'hotspots' such as landfills. Model results as well as economic analyses of these biofilters indicate that the use of methanotrophic biofilters for controlling methane emissions is technically feasible, and provided either the costs of biofilter construction and operation are reduced or the value of CO{sub 2} credits is increased, can also be economically attractive.

Jeremy Semrau; Sung-Woo Lee; Jeongdae Im; Sukhwan Yoon; Michael Barcelona

2010-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "landfill gas methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Mitigation of methane emission from Fakse landfill using a biowindow system  

Science Conference Proceedings (OSTI)

Landfills are significant sources of atmospheric methane (CH{sub 4}) that contributes to climate change, and therefore there is a need to reduce CH{sub 4} emissions from landfills. A promising cost efficient technology is to integrate compost into landfill covers (so-called 'biocovers') to enhance biological oxidation of CH{sub 4}. A full scale biocover system to reduce CH{sub 4} emissions was installed at Fakse landfill, Denmark using composted yard waste as active material supporting CH{sub 4} oxidation. Ten biowindows with a total area of 5000 m{sup 2} were integrated into the existing cover at the 12 ha site. To increase CH{sub 4} load to the biowindows, leachate wells were capped, and clay was added to slopes at the site. Point measurements using flux chambers suggested in most cases that almost all CH{sub 4} was oxidized, but more detailed studies on emissions from the site after installation of the biocover as well as measurements of total CH{sub 4} emissions showed that a significant portion of the emission quantified in the baseline study continued unabated from the site. Total emission measurements suggested a reduction in CH{sub 4} emission of approximately 28% at the end of the one year monitoring period. This was supported by analysis of stable carbon isotopes which showed an increase in oxidation efficiency from 16% to 41%. The project documented that integrating approaches such a whole landfill emission measurements using tracer techniques or stable carbon isotope measurements of ambient air samples are needed to document CH{sub 4} mitigation efficiencies of biocover systems. The study also revealed that there still exist several challenges to better optimize the functionality. The most important challenges are to control gas flow and evenly distribute the gas into the biocovers.

Scheutz, Charlotte, E-mail: chs@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, Miljovej - Building 113, 2800 Kongens Lyngby (Denmark); Fredenslund, Anders M., E-mail: amf@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, Miljovej - Building 113, 2800 Kongens Lyngby (Denmark); Chanton, Jeffrey, E-mail: jchanton@fsu.edu [Department of Earth, Ocean and Atmospheric Science, 117 N. Woodward Avenue, Florida State University, Tallahassee, Fl 32306-4320 (United States); Pedersen, Gitte Bukh, E-mail: gbp@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, Miljovej - Building 113, 2800 Kongens Lyngby (Denmark); Kjeldsen, Peter, E-mail: pk@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, Miljovej - Building 113, 2800 Kongens Lyngby (Denmark)

2011-05-15T23:59:59.000Z

62

Franklin County Sanitary Landfill - Landfill Gas (LFG) to Liquefied Natural Gas (LNG) - Project  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

FRANKLIN COUNTY SANITARY FRANKLIN COUNTY SANITARY LANDFILL - LANDFILL GAS (LFG) TO LIQUEFIED NATURAL GAS (LNG) - PROJECT January/February 2005 Prepared for: National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 Table of Contents Page BACKGROUND AND INTRODUCTION .......................................................................................1 SUMMARY OF EFFORT PERFORMED ......................................................................................2 Task 2B.1 - Literature Search and Contacts Made...................................................................2 Task 2B.2 - LFG Resource/Resource Collection System - Project Phase One.......................3 Conclusion.................................................................................................................................5

63

Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Natural Gas Renewable Natural Gas From Landfill Powers Refuse Vehicles to someone by E-mail Share Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Facebook Tweet about Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Twitter Bookmark Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Google Bookmark Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Delicious Rank Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Digg Find More places to share Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on AddThis.com... April 13, 2013

64

Energy potential of modern landfills  

DOE Green Energy (OSTI)

Methane produced by refuse decomposition in a sanitary landfill can be recovered for commercial use. Landfill methane is currently under-utilized, with commercial recovery at only a small percentage of US landfills. New federal regulations mandating control of landfill gas migration and atmospheric emissions are providing impetus to methane recovery schemes as a means of recovering costs for increased environmental control. The benefits of landfill methane recovery include utilization of an inexpensive renewable energy resource, removal of explosive gas mixtures from the subsurface, and mitigation of observed historic increases in atmospheric methane. Increased commercial interest in landfill methane recovery is dependent on the final form of Clean Air Act amendments pertaining to gaseous emissions from landfills; market shifts in natural gas prices; financial incentives for development of renewable energy resources; and support for applied research and development to develop techniques for increased control of the gas generation process in situ. This paper will discuss the controls on methane generation in landfills. In addition, it will address how landfill regulations affect landfill design and site management practices which, in turn, influence decomposition rates. Finally, future trends in landfilling, and their relationship to gas production, will be examined. 19 refs., 2 figs., 3 tabs.

Bogner, J.E.

1990-01-01T23:59:59.000Z

65

Migration and methanogens: A review of current landfill gas field research at ANL  

DOE Green Energy (OSTI)

Landfill gas recovery research at Argonne National Laboratory is focusing on a project studying gas movement through landfill cover materials and a pilot investigation of microbial populations in landfills. Vertical gas pressure and concentration gradients between the top of refuse and the landfill cover are being examined. In particular, changes in the vertical gradients indicative of changes in magnitude and direction of pressure or diffusional flow with time are being monitored. This study emphasizes changes in vertical pressure and concentration gradients related to barometric pressure and other meteorological variables, soil moisture changes, and pumping rates at simulated recovery wells. Preliminary results suggest that changes in soil-gas pressures in the landfill cover and top of refuse closely follow changes in barometric pressure. Measurable concentration gradients exist between the top of refuse and the cover materials indicating that diffusion is a major mechanism for gas movement, particularly during dry weather when pressure gradients are negligible. A pilot investigation has begun on microbial populations in sanitary landfills. First, a series of leachate samples from various depths at the Blackwell Forest Preserve Landfill were evaluated for microbial populations, selected chemical constituents, and methane production. Diverse motile populations of fluorescing organisms were found in selected samples. 19 refs., 6 figs., 3 tabs.

Bogner, J.; Torpy, M.; Rose, C.; Vogt, M.; Gartman, D.; Moore, C.

1986-01-01T23:59:59.000Z

66

Methane Gas Conversion Property Tax Exemption | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Methane Gas Conversion Property Tax Exemption Methane Gas Conversion Property Tax Exemption Methane Gas Conversion Property Tax Exemption < Back Eligibility Agricultural Commercial Industrial Residential Savings Category Bioenergy Program Info Start Date 01/01/2008 (retroactive) State Iowa Program Type Property Tax Incentive Rebate Amount 100% exemption for 10 years Provider Iowa Economic Development Authority '''''Note: This exemption is only available to facilities operated in connection or conjunction with a publicly-owned sanitary landfill. The exemption was available to other entities only for systems placed in service by December 31, 2012. Systems in place before this date are eligible to receive the property tax exemption for 10 years.''''' Under Iowa's methane gas conversion property tax exemption, real and

67

Methane production during the anaerobic decomposition of composted and raw organic refuse in simulated landfill cells  

E-Print Network (OSTI)

Methane contributes 20% annually to increases in global warming, and is explosive at concentrations of 5-15% in air. Landfills contribute 15% to total methane emissions. This study was conducted to determine the potential decrease in methane production from landfills if organic waste is composted prior to. The quantities and rates of methane production were measured from simulated landfill cells containing composted and raw simulated refuse. The refuse was composted in an open pile and characterized by temperature, pH, ash content and C02 evolved during aerobic respiration. Assuming a 1 0% lignin content, the labile carbon fraction was reduced by an estimated 71 % during composting. Over a of six month period, simulated landfill cells filled with raw waste generated 66 M3 methane per Mg of dry refuse, while cells containing compost produced 31 M3 methane per Mg of dry compost. Per unit weight of dry raw material, composted waste placed in a landfill produced only 23% of the methane that was generated from raw refuse.

West, Margrit Evelyn

1995-01-01T23:59:59.000Z

68

NETL: Methane Hydrates - Global Assessment of Methane Gas Hydrates  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessment of Methane Gas Hydrates Last Reviewed 6142013 DE-FE0003060 Goal The goal of this project is to develop a global assessment of methane gas hydrates that will facilitate...

69

Landfill Gas Conversion to LNG and LCO{sub 2}. Phase II Final Report for January 25, 1999 - April 30, 2000  

Science Conference Proceedings (OSTI)

This report summarizes work on the development of a process to produce LNG (liquefied methane) for heavy vehicle use from landfill gas (LFG) using Acrion's CO{sub 2} wash process for contaminant removal and CO{sub 2} recovery.

Brown, W. R.; Cook, W. J.; Siwajek, L. A.

2000-10-20T23:59:59.000Z

70

Development of a purpose built landfill system for the control of methane emissions from municipal solid waste  

E-Print Network (OSTI)

of landfill gas (LFG). Economic feasibility of the proposed system has been tested by comparing unit cost with gas recovery option. In the present paper, a methodology called purpose build landfill system (PBLF of the proposed system. A purpose built landfill system (PBLS) is a semi-engi- neered landfill with gas recovery

Columbia University

71

Texas Mandate Landfill Gas Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Texas Mandate Landfill Gas Biomass Facility Jump to: navigation, search Name Texas Mandate...

72

Above- and below-ground methane fluxes and methanotrophic activity in a landfill-cover soil  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer We quantify above- and below-ground CH{sub 4} fluxes in a landfill-cover soil. Black-Right-Pointing-Pointer We link methanotrophic activity to estimates of CH{sub 4} loading from the waste body. Black-Right-Pointing-Pointer Methane loading and emissions are highly variable in space and time. Black-Right-Pointing-Pointer Eddy covariance measurements yield largest estimates of CH{sub 4} emissions. Black-Right-Pointing-Pointer Potential methanotrophic activity is high at a location with substantial CH{sub 4} loading. - Abstract: Landfills are a major anthropogenic source of the greenhouse gas methane (CH{sub 4}). However, much of the CH{sub 4} produced during the anaerobic degradation of organic waste is consumed by methanotrophic microorganisms during passage through the landfill-cover soil. On a section of a closed landfill near Liestal, Switzerland, we performed experiments to compare CH{sub 4} fluxes obtained by different methods at or above the cover-soil surface with below-ground fluxes, and to link methanotrophic activity to estimates of CH{sub 4} ingress (loading) from the waste body at selected locations. Fluxes of CH{sub 4} into or out of the cover soil were quantified by eddy-covariance and static flux-chamber measurements. In addition, CH{sub 4} concentrations at the soil surface were monitored using a field-portable FID detector. Near-surface CH{sub 4} fluxes and CH{sub 4} loading were estimated from soil-gas concentration profiles in conjunction with radon measurements, and gas push-pull tests (GPPTs) were performed to quantify rates of microbial CH{sub 4} oxidation. Eddy-covariance measurements yielded by far the largest and probably most representative estimates of overall CH{sub 4} emissions from the test section (daily mean up to {approx}91,500 {mu}mol m{sup -2} d{sup -1}), whereas flux-chamber measurements and CH{sub 4} concentration profiles indicated that at the majority of locations the cover soil was a net sink for atmospheric CH{sub 4} (uptake up to -380 {mu}mol m{sup -2} d{sup -1}) during the experimental period. Methane concentration profiles also indicated strong variability in CH{sub 4} loading over short distances in the cover soil, while potential methanotrophic activity derived from GPPTs was high (v{sub max} {approx} 13 mmol L{sup -1}(soil air) h{sup -1}) at a location with substantial CH{sub 4} loading. Our results provide a basis to assess spatial and temporal variability of CH{sub 4} dynamics in the complex terrain of a landfill-cover soil.

Schroth, M.H., E-mail: martin.schroth@env.ethz.ch [Institute of Biogeochemistry and Pollutant Dynamics, ETH Zuerich, Universitaetstrasse 16, 8092 Zuerich (Switzerland); Eugster, W. [Institute of Agricultural Sciences, ETH Zuerich, Universitaetstrasse 2, 8092 Zuerich (Switzerland); Gomez, K.E. [Institute of Biogeochemistry and Pollutant Dynamics, ETH Zuerich, Universitaetstrasse 16, 8092 Zuerich (Switzerland); Gonzalez-Gil, G. [Laboratory for Environmental Biotechnology, EPF Lausanne, 1015 Lausanne (Switzerland); Niklaus, P.A. [Institute of Agricultural Sciences, ETH Zuerich, Universitaetstrasse 2, 8092 Zuerich (Switzerland); Oester, P. [Oester Messtechnik, Bahnhofstrasse 3, 3600 Thun (Switzerland)

2012-05-15T23:59:59.000Z

73

Case study: City of Industry landfill gas recovery operation  

DOE Green Energy (OSTI)

Development of civic, recreation, and conservation facilities throughout a 150-acre site which had been used for waste disposal from 1951 to 1970 is described. The history of the landfill site, the geology of the site, and a test well program to assess the feasibility of recoverying landfill gas economically from the site are discussed. Based on results of the test well program, the City of Industry authorized the design and installation of a full-scale landfill gas recovery system. Design, construction, and operation of the system are described. The landfill gas system provides fuel for use in boilers to meet space heating and hot water demands for site development (MCW)

None

1981-11-01T23:59:59.000Z

74

Woodland Landfill Gas Recovery Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Landfill Gas Recovery Biomass Facility Landfill Gas Recovery Biomass Facility Jump to: navigation, search Name Woodland Landfill Gas Recovery Biomass Facility Facility Woodland Landfill Gas Recovery Sector Biomass Facility Type Landfill Gas Location Kane County, Illinois Coordinates 41.987884°, -88.4016041° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.987884,"lon":-88.4016041,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

75

Lopez Landfill Gas Utilization Project Biomass Facility | Open Energy  

Open Energy Info (EERE)

Lopez Landfill Gas Utilization Project Biomass Facility Lopez Landfill Gas Utilization Project Biomass Facility Jump to: navigation, search Name Lopez Landfill Gas Utilization Project Biomass Facility Facility Lopez Landfill Gas Utilization Project Sector Biomass Facility Type Landfill Gas Location Los Angeles County, California Coordinates 34.3871821°, -118.1122679° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.3871821,"lon":-118.1122679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

76

UNFCCC-Consolidated baseline and monitoring methodology for landfill gas  

Open Energy Info (EERE)

UNFCCC-Consolidated baseline and monitoring methodology for landfill gas UNFCCC-Consolidated baseline and monitoring methodology for landfill gas project activities Jump to: navigation, search Tool Summary LAUNCH TOOL Name: UNFCCC-Consolidated baseline and monitoring methodology for landfill gas project activities Agency/Company /Organization: United Nations Framework Convention on Climate Change (UNFCCC) Sector: Climate, Energy Focus Area: Renewable Energy, Non-renewable Energy, - Landfill Gas Topics: Baseline projection, GHG inventory Resource Type: Guide/manual Website: cdm.unfccc.int/public_inputs/meth/acm0001/index.html Cost: Free Language: English References: UNFCCC-Consolidated baseline and monitoring methodology for landfill gas project activities[1] This article is a stub. You can help OpenEI by expanding it. References

77

Balefill Landfill Gas Utilization Proj Biomass Facility | Open Energy  

Open Energy Info (EERE)

Balefill Landfill Gas Utilization Proj Biomass Facility Balefill Landfill Gas Utilization Proj Biomass Facility Jump to: navigation, search Name Balefill Landfill Gas Utilization Proj Biomass Facility Facility Balefill Landfill Gas Utilization Proj Sector Biomass Facility Type Landfill Gas Location Bergen County, New Jersey Coordinates 40.9262762°, -74.07701° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.9262762,"lon":-74.07701,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

78

Olinda Landfill Gas Recovery Plant Biomass Facility | Open Energy  

Open Energy Info (EERE)

Olinda Landfill Gas Recovery Plant Biomass Facility Olinda Landfill Gas Recovery Plant Biomass Facility Jump to: navigation, search Name Olinda Landfill Gas Recovery Plant Biomass Facility Facility Olinda Landfill Gas Recovery Plant Sector Biomass Facility Type Landfill Gas Location Orange County, California Coordinates 33.7174708°, -117.8311428° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.7174708,"lon":-117.8311428,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

79

Spadra Landfill Gas to Energy Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Spadra Landfill Gas to Energy Biomass Facility Spadra Landfill Gas to Energy Biomass Facility Jump to: navigation, search Name Spadra Landfill Gas to Energy Biomass Facility Facility Spadra Landfill Gas to Energy Sector Biomass Facility Type Landfill Gas Location Los Angeles County, California Coordinates 34.3871821°, -118.1122679° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.3871821,"lon":-118.1122679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

80

Hartford Landfill Gas Utilization Proj Biomass Facility | Open Energy  

Open Energy Info (EERE)

Hartford Landfill Gas Utilization Proj Biomass Facility Hartford Landfill Gas Utilization Proj Biomass Facility Jump to: navigation, search Name Hartford Landfill Gas Utilization Proj Biomass Facility Facility Hartford Landfill Gas Utilization Proj Sector Biomass Facility Type Landfill Gas Location Hartford County, Connecticut Coordinates 41.7924343°, -72.8042797° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7924343,"lon":-72.8042797,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "landfill gas methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Albany Interim Landfill gas extraction and mobile power system: Using landfill gas to produce electricity. Final report  

DOE Green Energy (OSTI)

The Albany Interim Landfill Gas Extraction and Mobile Power System project served three research objectives: (1) determination of the general efficiency and radius of influence of horizontally placed landfill gas extraction conduits; (2) determination of cost and effectiveness of a hydrogen sulfide gas scrubber utilizing Enviro-Scrub{trademark} liquid reagent; and (3) construction and evaluation of a dual-fuel (landfill gas/diesel) 100 kW mobile power station. The horizontal gas extraction system was very successful; overall, gas recovery was high and the practical radius of influence of individual extractors was about 50 feet. The hydrogen sulfide scrubber was effective and its use appears feasible at typical hydrogen sulfide concentrations and gas flows. The dual-fuel mobile power station performed dependably and was able to deliver smooth power output under varying load and landfill gas fuel conditions.

NONE

1997-06-01T23:59:59.000Z

82

Emission assessment at the Burj Hammoud inactive municipal landfill: Viability of landfill gas recovery under the clean development mechanism  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer LFG emissions are measured at an abandoned landfill with highly organic waste. Black-Right-Pointing-Pointer Mean headspace and vent emissions are 0.240 and 0.074 l CH{sub 4}/m{sup 2} hr, respectively. Black-Right-Pointing-Pointer At sites with high food waste content, LFG generation drops rapidly after site closure. Black-Right-Pointing-Pointer The viability of LFG recovery for CDMs in developing countries is doubtful. - Abstract: This paper examines landfill gas (LFG) emissions at a large inactive waste disposal site to evaluate the viability of investment in LFG recovery through the clean development mechanism (CDM) initiative. For this purpose, field measurements of LFG emissions were conducted and the data were processed by geospatial interpolation to estimate an equivalent site emission rate which was used to calibrate and apply two LFG prediction models to forecast LFG emissions at the site. The mean CH{sub 4} flux values calculated through tessellation, inverse distance weighing and kriging were 0.188 {+-} 0.014, 0.224 {+-} 0.012 and 0.237 {+-} 0.008 l CH{sub 4}/m{sup 2} hr, respectively, compared to an arithmetic mean of 0.24 l/m{sup 2} hr. The flux values are within the reported range for closed landfills (0.06-0.89 l/m{sup 2} hr), and lower than the reported range for active landfills (0.42-2.46 l/m{sup 2} hr). Simulation results matched field measurements for low methane generation potential (L{sub 0}) values in the range of 19.8-102.6 m{sup 3}/ton of waste. LFG generation dropped rapidly to half its peak level only 4 yrs after landfill closure limiting the sustainability of LFG recovery systems in similar contexts and raising into doubt promoted CDM initiatives for similar waste.

El-Fadel, Mutasem, E-mail: mfadel@aub.edu.lb [Department of Civil and Environmental Engineering, American University of Beirut (Lebanon); Abi-Esber, Layale; Salhab, Samer [Department of Civil and Environmental Engineering, American University of Beirut (Lebanon)

2012-11-15T23:59:59.000Z

83

Recovery Act: Johnston Rhode Island Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas  

SciTech Connect

The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Central Landfill in Johnston, Rhode Island. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting project reflected a cost effective balance of the following specific sub-objectives. 1) Meet environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas. 2) Utilize proven and reliable technology and equipment. 3) Maximize electrical efficiency. 4) Maximize electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Central Landfill. 5) Maximize equipment uptime. 6) Minimize water consumption. 7) Minimize post-combustion emissions. To achieve the Project Objective the project consisted of several components. 1) The landfill gas collection system was modified and upgraded. 2) A State-of-the Art gas clean up and compression facility was constructed. 3) A high pressure pipeline was constructed to convey cleaned landfill gas from the clean-up and compression facility to the power plant. 4) A combined cycle electric generating facility was constructed consisting of combustion turbine generator sets, heat recovery steam generators and a steam turbine. 5) The voltage of the electricity produced was increased at a newly constructed transformer/substation and the electricity was delivered to the local transmission system. The Project produced a myriad of beneficial impacts. 1) The Project created 453 FTE construction and manufacturing jobs and 25 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. 2) By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). 3) The Project will annually produce 365,292 MWh?s of clean energy. 4) By destroying the methane in the landfill gas, the Project will generate CO{sub 2} equivalent reductions of 164,938 tons annually. The completed facility produces 28.3 MWnet and operates 24 hours a day, seven days a week.

Galowitz, Stephen

2013-06-30T23:59:59.000Z

84

NETL: Methane Hydrates - Global Assessment of Methane Gas Hydrates  

NLE Websites -- All DOE Office Websites (Extended Search)

Global Assessment of Methane Gas Hydrates Last Reviewed 12/18/2013 Global Assessment of Methane Gas Hydrates Last Reviewed 12/18/2013 DE-FE0003060 Goal The goal of this project is to develop a global assessment of methane gas hydrates that will facilitate informed decision-making regarding the potential development of gas hydrate resources between the scientific community and other stakeholders/decision makers. The Assessment will provide science-based information on the role of gas hydrates in natural climate change and the carbon cycle, their sensitivity to climate change, and the potential environmental and socio-economic impacts of hydrate production. Performers Stiftelsen GRID-Arendal, Arendal, Norway Funding Institutions United Nations Environment Programme (UNEP) Statoil Schlumberger United States Department of Energy (USDOE)

85

Economic Feasibility of Converting Landfill Gas to Natural Gas for Use as a Transportation Fuel in Refuse Trucks  

E-Print Network (OSTI)

Approximately 136,000 refuse trucks were in operation in the United States in 2007. These trucks burn approximately 1.2 billion gallons of diesel fuel a year, releasing almost 27 billion pounds of greenhouse gases. In addition to contributing to global climate change, diesel-fueled refuse trucks are one of the most concentrated sources of health-threatening air pollution in most cities. The landfills that they ultimately place their waste in are the second largest source of human-related methane emissions in the United States, accounting for approximately 23 percent of these emissions in 2007. At the same time, methane emissions from landfills represent a lost opportunity to capture and use a significant energy resource. Many landfill-gas-to-energy (LFGTE) projects are underway in an attempt to curb emissions and make better use of this energy. The methane that is extracted from these landfills can be converted into a transportation fuel, sold as a pipeline-quality natural gas, operate turbines for electricity, or be flared. The unique relationship that occurs between refuse trucks' constant visits to the landfill and the ability of the landfill itself to produce a transportation fuel creates an ability to accomplish emissions reduction in two sectors with the implementation of using landfill gas to fuel refuse trucks. Landfill owners and operators are very reluctant to invest in large capital LFGTE projects without knowing their long-term feasibility. The costs and benefits associated with each LFGTE project have been presented in such a way that owners/operators can make informed decisions based on economics while also implementing clean energy technology. Owners/operators benefit from larger economic returns, and the citizens of the surrounding cities benefit from better air quality. This research focused on six scenarios: converting landfill gas (LFG) to liquefied natural gas (LNG) for use as a transportation fuel, converting LFG to compressed natural gas (CNG) for use as a transportation fuel, converting LFG to pipeline-quality natural gas, converting LFG to electricity, flaring LFG, and doing nothing. For the test case of a 280-acre landfill, the option of converting LFG to CNG for use as a transportation fuel provided the best benefit-cost ratio at 5.63. Other significant benefit-cost findings involved the LFG-to-LNG option, providing a 5.51 benefit-cost ratio. Currently, the most commonly used LFGTE option of converting LFG to electricity provides only a 1.35 benefit-cost ratio while flaring which is the most common mitigation strategy provides a 1.21, further providing evidence that converting LFG to LNG/CNG for use as a transportation fuel provides greater economic benefits than the most common LFGTE option or mitigation strategy.

Sprague, Stephen M.

2009-12-01T23:59:59.000Z

86

Other States Natural Gas Coalbed Methane, Reserves Based Production...  

Gasoline and Diesel Fuel Update (EIA)

Other States Natural Gas Coalbed Methane, Reserves Based Production (Billion Cubic Feet) Other States Natural Gas Coalbed Methane, Reserves Based Production (Billion Cubic Feet)...

87

Other States Natural Gas Coalbed Methane, Proved Reserves (Billion...  

Gasoline and Diesel Fuel Update (EIA)

Other States Natural Gas Coalbed Methane, Proved Reserves (Billion Cubic Feet) Other States Natural Gas Coalbed Methane, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1...

88

Unconventional gas resources. [Eastern Gas Shales, Western Gas Sands, Coalbed Methane, Methane from Geopressured Systems  

DOE Green Energy (OSTI)

This document describes the program goals, research activities, and the role of the Federal Government in a strategic plan to reduce the uncertainties surrounding the reserve potential of the unconventional gas resources, namely, the Eastern Gas Shales, the Western Gas Sands, Coalbed Methane, and methane from Geopressured Aquifers. The intent is to provide a concise overview of the program and to identify the technical activities that must be completed in the successful achievement of the objectives.

Komar, C.A. (ed.)

1980-01-01T23:59:59.000Z

89

Turbines produce energy from L. A. landfill  

Science Conference Proceedings (OSTI)

This article describes one of the Nation's most sophisticated resource recovery projects which began operating in February at the Puente Hills Landfill Methane Energy Station as part of the County Sanitation Districts of Los Angeles County. The project is currently generating 2.8 megawatts of power which would serve the electrical needs of approximately 5600 homes. Future plans for the landfill energy project include generating enough electricity for more than 50,000 homes. Unlike other methane recovery projects that use diesel or gasoline power reciprocating engines, the Puente Hills Landfill Methane Energy Station drives its electrical generators with gas turbines. This is a first for power generation at a landfill site.

Carry, C.W.; Stahl, J.F.; Maguin, S.R.; Friess, P.L.

1984-06-01T23:59:59.000Z

90

Albany Landfill Gas Utilization Project Biomass Facility | Open Energy  

Open Energy Info (EERE)

Utilization Project Biomass Facility Utilization Project Biomass Facility Jump to: navigation, search Name Albany Landfill Gas Utilization Project Biomass Facility Facility Albany Landfill Gas Utilization Project Sector Biomass Facility Type Landfill Gas Location Albany County, New York Coordinates 42.5756797°, -73.9359821° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.5756797,"lon":-73.9359821,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

91

Mill Seat Landfill Bioreactor Renewable Green Power (NY)  

Science Conference Proceedings (OSTI)

The project was implemented at the Mill Seat landfill located in the Town of Bergen, Monroe County, New York. The landfill was previously equipped with a landfill gas collection system to collect methane gas produced by the bioreactor landfill and transport it to a central location for end use. A landfill gas to energy facility was also previously constructed at the site, which utilized generator engines, designed to be powered with landfill methane gas, to produce electricity, to be utilized on site and to be sold to the utility grid. The landfill gas generation rate at the site had exceeded the capacity of the existing generators, and the excess landfill gas was therefore being burned at a candlestick flare for destruction. The funded project consisted of the procurement and installation of two (2) additional 800 KW Caterpillar 3516 generator engines, generator sets, switchgear and ancillary equipment.

Barton & Loguidice, P.C.

2010-01-07T23:59:59.000Z

92

Survey of Landfill Gas Generation Potential: 2-MW Molten Carbonate Fuel Cell  

Science Conference Proceedings (OSTI)

Molten carbonate fuel cells can operate almost as efficiently on landfill gas as on natural gas. This study identified 749 landfills in the United States having the potential to support a total of nearly 3000 2-MW fuel cells.

1992-10-01T23:59:59.000Z

93

Bidirectional gas movement through landfill cover materials, Volume 1: Instrumentation and preliminary site investigations at Mallard North Landfill, Dupage County, Illinois  

DOE Green Energy (OSTI)

Since the first commercial landfill gas recovery system was installed in 1975 at the Palos Verdes Landfill in southern California (Zimmerman et al., 1983), there have been few systematic research efforts aimed at understanding gas dynamics in the landfill and, in particular, gas exchange between the landfill and the atmosphere through the cover materials. To maximize the amount of landfill gas available to a recovery system, the impact of processes by which gas is vented or consumed in near-surface zones must be minimized. This report describes a project undertaken to monitor the flow of gas in a landfill. Data from the observations are presented. 32 refs., 12 figs., 3 tabs.

Bogner, J.; Brubaker, K.; Tome, C.; Vogt, M.; Gartman, D.

1988-02-01T23:59:59.000Z

94

List of Landfill Gas Incentives | Open Energy Information  

Open Energy Info (EERE)

Incentives Incentives Jump to: navigation, search The following contains the list of 377 Landfill Gas Incentives. CSV (rows 1 - 377) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat Solar Water Heat Wind energy Yes Advanced Energy Fund (Ohio) Public Benefits Fund Ohio Commercial Industrial Institutional Residential Utility Biomass CHP/Cogeneration Fuel Cells Fuel Cells using Renewable Fuels Geothermal Electric

95

IEA-Renewable Energy Technologies, Bioenergy Agreement Task 37: Energy from Biogas and Landfill Gas  

E-Print Network (OSTI)

and Landfill Gas Teknologiområde: Anvendt forskning og udvikling, herunder viden formidling, -udveksling og-Bioenergy, Task 37- Energy from Biogas and Landfill Gas", via samarbejde, informationsudveksling, fælles analyser and landfill gas. I dette tidsinterval er en række aktiviteter blevet gennemført, herunder deltagelse til task

96

Feasibility study for utilization of landfill gas at the Royalton Road Landfill, Broadview Heights, Ohio. Final report  

DOE Green Energy (OSTI)

The technical viability of landfill gas recovery has been previously demonstrated at numerous sites. However, the economics of a full scale utilization system are dependent on proper market conditions, appropriate technologies, landfill gas quantity and quality, and public/purchaser acceptance. The specific objectives of this feasibility study were to determine: The available markets which might purchase landfill gas or landfill gas derived energy products; An extraction system concept design and to perform an on-site pumping test program; The landfill gas utilization technologies most appropriate for the site; Any adverse environmental, health, safety, or socioeconomic impacts associated with the various proposed technologies; The optimum project economics, based on markets and processes examined. Findings and recommendations were presented which review the feasibility of a landfill gas utilization facility on the Royalton Road Landfill. The three identified utilization alternatives are indeed technically feasible. However, current market considerations indicate that installation of a full scale system is not economically advisable at this time. This final report encompasses work performed by SCS Engineers from late 1980 to the present. Monitoring data from several extraction and monitoring wells is presented, including pumping rates and gas quality and quantity analysis. The Market Analysis Data Form, local climatological data, and barometric pressure data are included in the appendix section. 33 figures, 25 tables.

None

1983-09-01T23:59:59.000Z

97

Landfill Gas Cleanup for Carbonate Fuel Cell Power Generation: Final Report  

DOE Green Energy (OSTI)

Landfill gas represents a significant fuel resource both in the United States and worldwide. The emissions of landfill gas from existing landfills has become an environmental liability contributing to global warming and causing odor problems. Landfill gas has been used to fuel reciprocating engines and gas turbines, and may also be used to fuel carbonate fuel cells. Carbonate fuel cells have high conversion efficiencies and use the carbon dioxide present in landfill gas as an oxidant. There are, however, a number of trace contaminants in landfill gas that contain chlorine and sulfur which are deleterious to fuel cell operation. Long-term economical operation of fuel cells fueled with landfill gas will, therefore, require cleanup of the gas to remove these contaminants. The overall objective of the work reported here was to evaluate the extent to which conventional contaminant removal processes could be combined.

Steinfeld, G.; Sanderson, R.

1998-02-01T23:59:59.000Z

98

Quantification of multiple methane emission sources at landfills using a double tracer technique  

SciTech Connect

Research highlights: > Precise and reliable measurements of emissions from landfills are needed. > A tracer technique involving simultaneous release of two tracers was proven successful. > Measurements to be performed at times with low changing trends in barometric pressure. - Abstract: A double tracer technique was used successfully to quantify whole-site methane (CH{sub 4}) emissions from Fakse Landfill. Emissions from different sections of the landfill were quantified by using two different tracers. A scaled-down version of the tracer technique measuring close-by to localized sources having limited areal extent was also used to quantify emissions from on-site sources at the landfill facility, including a composting area and a sewage sludge storage pit. Three field campaigns were performed. At all three field campaigns an overall leak search showed that the CH{sub 4} emissions from the old landfill section were localized to the leachate collection wells and slope areas. The average CH{sub 4} emissions from the old landfill section were quantified to be 32.6 {+-} 7.4 kg CH{sub 4} h{sup -1}, whereas the source at the new section was quantified to be 10.3 {+-} 5.3 kg CH{sub 4} h{sup -1}. The CH{sub 4} emission from the compost area was 0.5 {+-} 0.25 kg CH{sub 4} h{sup -1}, whereas the carbon dioxide (CO{sub 2}) and nitrous oxide (N{sub 2}O) flux was quantified to be in the order of 332 {+-} 166 kg CO{sub 2} h{sup -1} and 0.06 {+-} 0.03 kg N{sub 2}O h{sup -1}, respectively. The sludge pit located west of the compost material was quantified to have an emission of 2.4 {+-} 0.63 kg h{sup -1} CH{sub 4}, and 0.03 {+-} 0.01 kg h{sup -1} N{sub 2}O.

Scheutz, C., E-mail: chs@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, Miljovej, Building 113, 2800 Kongens Lyngby (Denmark); Samuelsson, J., E-mail: jerker.samuelsson@fluxsense.se [Chalmers University of Technology/FluxSense AB, SE-412 96 Goeteborg (Sweden); Fredenslund, A.M., E-mail: amf@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, Miljovej, Building 113, 2800 Kongens Lyngby (Denmark); Kjeldsen, P., E-mail: pk@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, Miljovej, Building 113, 2800 Kongens Lyngby (Denmark)

2011-05-15T23:59:59.000Z

99

Kinetics of biological methane oxidation in the presence of non-methane organic compounds in landfill bio-covers  

SciTech Connect

In this experimental program, the effects of non-methane organic compounds (NMOCs) on the biological methane (CH{sub 4}) oxidation process were examined. The investigation was performed on compost experiments incubated with CH{sub 4} and selected NMOCs under different environmental conditions. The selected NMOCs had different concentrations and their effects were tested as single compounds and mixtures of compounds. The results from all experimental sets showed a decrease in CH{sub 4} oxidation capacity of the landfill bio-cover with the increase in NMOCs concentrations. For example, in the experiment using compost with 100% moisture content at 35 deg. C without any NMOCs the V{sub max} value was 35.0 mug CH{sub 4}h{sup -1}g{sub wetwt}{sup -1}. This value was reduced to 19.1 mug CH{sub 4}h{sup -1}g{sub wetwt}{sup -1} when mixed NMOCs were present in the batch reactors under the same environmental conditions. The experimental oxidation rates of CH{sub 4} in the presence of single and mixed NMOCs were modeled using the uncompetitive inhibition model and kinetic parameters, including the dissociation constants, were obtained. Additionally, the degradation rates of the NMOCs and co-metabolic abilities of methanotrophic bacteria were estimated.

Albanna, Muna, E-mail: muna.albanna@gju.edu.j [Department of Civil Engineering, University of Ottawa, 161 Louis Pasteur St., Ottawa, Ontario, K1N 6N5 (Canada); Warith, Mostafa; Fernandes, Leta [Department of Civil Engineering, University of Ottawa, 161 Louis Pasteur St., Ottawa, Ontario, K1N 6N5 (Canada)

2010-02-15T23:59:59.000Z

100

Numerical Early Warning Model Research of Landfill Gas Permeation and Diffusion Considering Flow-Temperature Coupling  

Science Conference Proceedings (OSTI)

Based on seepage mechanics in porous medium gas and heat transfer theory, numerical early warning model is established, which is on quantitative description of migration and release of landfill gas and penetration and diffusion of energy, and dynamic ... Keywords: component, landfill gas, flow-temperature coupling, gas pressure and temperature distribution, numerical early warning model

Xue Qiang; Feng Xia-ting; Ma Shi-jin; Zhou Xiao-jun

2009-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "landfill gas methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Methane flux and oxidation at two types of intermediate landfill covers  

SciTech Connect

Methane emissions were measured on two areas at a Florida (USA) landfill using the static chamber technique. Because existing literature contains few measurements of methane emissions and oxidation in intermediate cover areas, this study focused on field measurement of emissions at 15-cm-thick non-vegetated intermediate cover overlying 1-year-old waste and a 45-cm-thick vegetated intermediate cover overlying 7-year-old waste. The 45 cm thick cover can also simulate non-engineered covers associated with older closed landfills. Oxidation of the emitted methane was evaluated using stable isotope techniques. The arithmetic means of the measured fluxes were 54 and 22 g CH{sub 4} m{sup -2} d{sup -1} from the thin cover and the thick cover, respectively. The peak flux was 596 g m{sup -2} d{sup -1} for the thin cover and 330 g m{sup -2} d{sup -1} for the thick cover. The mean percent oxidation was significantly greater (25%) at the thick cover relative to the thin cover (14%). This difference only partly accounted for the difference in emissions from the two sites. Inverse distance weighing was used to describe the spatial variation of flux emissions from each cover type. The geospatial mean flux was 21.6 g m{sup -2} d{sup -1} for the thick intermediate cover and 50.0 g m{sup -2} d{sup -1} for the thin intermediate cover. High emission zones in the thick cover were fewer and more isolated, while high emission zones in the thin cover were continuous and covered a larger area. These differences in the emission patterns suggest that different CH{sub 4} mitigation techniques should be applied to the two areas. For the thick intermediate cover, we suggest that effective mitigation of methane emissions could be achieved by placement of individualized compost cells over high emission zones. Emissions from the thin intermediate cover, on the other hand, can be mitigated by placing a compost layer over the entire area.

Abichou, Tarek [Department of Civil and Environmental Engineering, Florida A and M University, Florida State University, College of Engineering, Tallahassee, FL 32310 (United States)]. E-mail: abichou@eng.fsu.edu; Chanton, Jeffery [Department of Oceanography, Florida State University, Tallahassee, FL 32306 (United States); Powelson, David [Department of Oceanography, Florida State University, Tallahassee, FL 32306 (United States); Fleiger, Jill [Department of Oceanography, Florida State University, Tallahassee, FL 32306 (United States); Escoriaza, Sharon [Department of Civil and Environmental Engineering, Florida A and M University, Florida State University, College of Engineering, Tallahassee, FL 32310 (United States); Lei, Yuan [Department of Civil and Environmental Engineering, Florida A and M University, Florida State University, College of Engineering, Tallahassee, FL 32310 (United States); Stern, Jennifer [Department of Geology, Florida State University, Tallahassee, FL 32306 (United States)

2006-07-01T23:59:59.000Z

102

Case Studies from the Climate Technology Partnership: Landfill Gas Projects in South Korea and Lessons Learned  

Science Conference Proceedings (OSTI)

This paper examines landfill gas projects in South Korea. Two case studies provide concrete examples of lessons learned and offer practical guidance for future projects.

Larney, C.; Heil, M.; Ha, G. A.

2006-12-01T23:59:59.000Z

103

SPONSORED PROJECTS 1. Pending: "Feasibility Studies and Training to Support Landfill Gas Recovery in Ghana"  

E-Print Network (OSTI)

SPONSORED PROJECTS 1. Pending: "Feasibility Studies and Training to Support Landfill Gas Recovery: PI. 4. "An Improved Model to Predict Gas Generation from Landfills based on Waste Composition-2015, Role: Co-PI. 3. "Field Measurement of Emissions from Natural Gas Drilling, Production, and Distribution

Texas at Arlington, University of

104

Methanation process utilizing split cold gas recycle  

DOE Patents (OSTI)

In the methanation of feed gas comprising carbon monoxide and hydrogen in multiple stages, the feed gas, cold recycle gas and hot product gas is mixed in such proportions that the mixture is at a temperature sufficiently high to avoid carbonyl formation and to initiate the reaction and, so that upon complete reaction of the carbon monoxide and hydrogen, an excessive adiabatic temperature will not be reached. Catalyst damage by high or low temperatures is thereby avoided with a process that utilizes extraordinarily low recycle ratios and a minimum of investment in operating costs.

Tajbl, Daniel G. (Evanston, IL); Lee, Bernard S. (Lincolnwood, IL); Schora, Jr., Frank C. (Palatine, IL); Lam, Henry W. (Rye, NY)

1976-07-06T23:59:59.000Z

105

Development of the utilization of combustible gas produced in existing sanitary landfills: effects of corrosion at the Mountain View, CA Landfill Gas-Recovery Plant  

DOE Green Energy (OSTI)

Corrosion of equipment has occurred at the Mountain View, California Landfill Gas Recovery Plant. Corrosion is most severe on compressor valve seats and cages, tubes in the first and second stages of the interstage gas cooler, and first and second stage piping and liquid separators. Corrosion occurs because the raw landfill gas contains water, carbon dioxide, and oxygen. Some corrosion may also result from trace concentrations of organic acids present in the landfill gas. Corrosion of the third stage compressor, cooler, and piping does not occur because the gas is dehydrated immediately prior to the third stage. Controlling corrosion is necessary to maintain the mechanical integrity of the plant and to keep the cost of the gas competitive with natural gas. Attempts to reduce corrosion rates by injecting a chemical inhibitor have proved only partially successful. Recommendations for dealing with corrosion include earlier dehydration of the gas, selection of special alloys in critical locations, chemical inhibition, and regular plant inspections.

Not Available

1982-10-01T23:59:59.000Z

106

Int. J. Environment and Pollution, V0/. IS, No.4, 2001 Economic evaluation of a landfill system with gas  

E-Print Network (OSTI)

and externalities are examined. A cost-benefit analysis of a landfill system with gas recovery (LFSGR) has been be made as follows: Yedla, S. and Parikh, 1.K. (2001) 'Economic evaluation of a landfill system with gas.K. Parikh Economic evaluation of a landfill system with gas recovery 435 Tonnes per dayMillion tonnes per

Columbia University

107

Landfill gas cleanup for carbonate fuel cell power generation. Final report  

DOE Green Energy (OSTI)

Landfill gas represents a significant fuel resource both in the US and worldwide. The emissions of landfill gas from existing landfills has become an environmental liability contributing to global warming and causing odor problems. Landfill gas has been used to fuel reciprocating engines and gas turbines, and may also be used to fuel carbonate fuel cells. Carbonate fuel cells have high conversion efficiencies and use the carbon dioxide present in landfill gas as an oxidant. There are, however, a number of trace contaminants in landfill gas that contain chlorine and sulfur which are deleterious to fuel cell operation. Long-term economical operation of fuel cells fueled with landfill gas will, therefore, require cleanup of the gas to remove these contaminants. The overall objective of the work reported here was to evaluate the extent to which conventional contaminant removal processes could be combined to economically reduce contaminant levels to the specifications for carbonate fuel cells. A pilot plant cleaned approximately 970,000 scf of gas over 1,000 hours of operation. The testing showed that the process could achieve the following polished gas concentrations: less than 80 ppbv hydrogen sulfide; less than 1 ppmv (the detection limit) organic sulfur; less than 300 ppbv hydrogen chloride; less than 20--80 ppbv of any individual chlorinated hydrocarbon; and 1.5 ppm sulfur dioxide.

Steinfield, G.; Sanderson, R.

1998-02-01T23:59:59.000Z

108

Mill Seat Landfill Bioreactor Renewable Green Power (NY)  

DOE Green Energy (OSTI)

for end use. A landfill gas to energy facility was also previously constructed at the site, which utilized generator engines, designed to be powered with landfill methane gas, to produce electricity, to be utilized on site and to be sold to the utility grid. The landfill gas generation rate at the site had exceeded the capacity of the existing generators, and the excess landfill gas was therefore being burned at a candlestick flare for destruction. The funded project consisted of the procurement and installation of two (2) additional 800 KW Caterpillar 3516 generator engines, generator sets, switchgear and ancillary equipment.

Barton & Loguidice, P.C.

2010-01-07T23:59:59.000Z

109

July 17, 2012, Webinar: Landfill Gas-to-Energy Projects | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 17, 2012, Webinar: Landfill Gas-to-Energy Projects July 17, 2012, Webinar: Landfill Gas-to-Energy Projects July 17, 2012, Webinar: Landfill Gas-to-Energy Projects This webinar, held July 17, 2012, provided information on the challenges and benefits of developing successful community landfill gas-to-energy projects in Will County, Illinois, and Escambia County, Florida. Download the presentations below, watch the webinar (WMV 112 MB) or view the text version. Find more CommRE webinars. Prairie View RDF Gas to Energy Facility: A Public/Private Partnership Will County partnered with Waste Management, using a portion of the county's DOE Energy Efficiency and Conservation Block Grant (EECBG) funding, to develop the Prairie View Recycling and Disposal Facility. A gas purchase agreement was executed in 2010 and the facility became operational

110

NETL: Methane Hydrates - Gas Hydrate Research in Deep Sea Sediments...  

NLE Websites -- All DOE Office Websites (Extended Search)

Biogeochemistry Section, Naval Research Laboratory, Washington, D.C. 20375 Background Methane is a potent greenhouse gas necessitating a better understanding of the mechanisms...

111

NETL: Methane Hydrates - 2012 Ignik Sikumi gas hydrate field...  

NLE Websites -- All DOE Office Websites (Extended Search)

fluid, by flowmeters in the Low-flow Gas Measurement Skid. Compositional analysis of methane, nitrogen, carbon dioxide, and tracers pumped during injection are being monitored...

112

Swapping Global Warming Gases for Methane in Gas Hydrate ...  

Science Conference Proceedings (OSTI)

Swapping Global Warming Gases for Methane in Gas Hydrate Layer ... would serve as energy sources as well as carbon dioxide storage sites in the ...

2006-07-20T23:59:59.000Z

113

Decomposition of methane during oxide reduction using Natural gas  

Science Conference Proceedings (OSTI)

Decomposition of methane during oxide reduction using Natural gas · DELIVERING ... Reaction mechanism and reaction rate of Sn evaporation from liquid steel.

114

Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Community Renewable Energy Success Stories: Landfill Gas-to-Energy Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects Webinar (text version) Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects Webinar (text version) Below is the text version of the Webinar titled "Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects," originally presented on July 17, 2012. Recorded Voice: The broadcast is now starting. All attendees are in listen-only mode. Sarah Busche: Hello, everyone. Good afternoon and welcome to today's webinar. This is sponsored by the U.S. Department of Energy. My name is Sarah Busche, and I'm here with Devin Egan, and we're broadcasting live from the National Renewable Energy Laboratory in Golden, Colorado. We're going to give folks

115

Photoacoustic infrared spectroscopy for conducting gas tracer tests and measuring water saturations in landfills  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer Photoacoustic infrared spectroscopy tested for measuring tracer gas in landfills. Black-Right-Pointing-Pointer Measurement errors for tracer gases were 1-3% in landfill gas. Black-Right-Pointing-Pointer Background signals from landfill gas result in elevated limits of detection. Black-Right-Pointing-Pointer Technique is much less expensive and easier to use than GC. - Abstract: Gas tracer tests can be used to determine gas flow patterns within landfills, quantify volatile contaminant residence time, and measure water within refuse. While gas chromatography (GC) has been traditionally used to analyze gas tracers in refuse, photoacoustic spectroscopy (PAS) might allow real-time measurements with reduced personnel costs and greater mobility and ease of use. Laboratory and field experiments were conducted to evaluate the efficacy of PAS for conducting gas tracer tests in landfills. Two tracer gases, difluoromethane (DFM) and sulfur hexafluoride (SF{sub 6}), were measured with a commercial PAS instrument. Relative measurement errors were invariant with tracer concentration but influenced by background gas: errors were 1-3% in landfill gas but 4-5% in air. Two partitioning gas tracer tests were conducted in an aerobic landfill, and limits of detection (LODs) were 3-4 times larger for DFM with PAS versus GC due to temporal changes in background signals. While higher LODs can be compensated by injecting larger tracer mass, changes in background signals increased the uncertainty in measured water saturations by up to 25% over comparable GC methods. PAS has distinct advantages over GC with respect to personnel costs and ease of use, although for field applications GC analyses of select samples are recommended to quantify instrument interferences.

Jung, Yoojin; Han, Byunghyun; Mostafid, M. Erfan; Chiu, Pei [Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716 (United States); Yazdani, Ramin [Yolo County Planning and Public Works Department, Division of Integrated Waste Management, Yolo County, 44090 County Rd. 28H, Woodland, CA 95776 (United States); Imhoff, Paul T., E-mail: imhoff@udel.edu [Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716 (United States)

2012-02-15T23:59:59.000Z

116

Development of gas production type curves for horizontal wells in coalbed methane reservoirs.  

E-Print Network (OSTI)

??Coalbed methane is an unconventional gas resource that consists of methane production from coal seams .The unique difference between CBM and conventional gas reservoirs is… (more)

Nfonsam, Allen Ekahnzok.

2006-01-01T23:59:59.000Z

117

EIA - Greenhouse Gas Emissions - Methane Emissions  

U.S. Energy Information Administration (EIA)

Residential wood consumption accounted for just over 45 percent of U.S. methane emissions from stationary combustion in 2009.

118

Application of landfill gas as a liquefied natural gas fuel for refuse trucks in Texas  

E-Print Network (OSTI)

The energy consumption throughout the world has increased substantially over the past few years and the trend is projected to continue indefinitely. The primary sources of energy are conventional fuels such as oil, natural gas and coal. The most apparent negative impacts of these conventional fuels are global warming, poor air-quality, and adverse health effects. Considering these negative impacts, it is necessary to develop and use non-conventional sources of energy. Landfill gas (LFG) generated at landfills can serve as a source of cleaner energy. LFG has substantial energy generation potential and, if cleaned of certain impurities, can be used for several applications such as electricity generation and conversion to high Btu gas. This thesis considers another application of LFG, which consists of using it as a vehicular fuel for refuse trucks. Currently, limited research has been performed on the development of such a methodology to evaluate the application of LFG as a vehicular fuel for refuse truck operations. The purpose of this thesis is to develop a methodology that can be used to evaluate the use of LFG generated at landfills as a Liquefied Natural Gas (LNG) fuel source for refuse trucks in Texas. The methodology simulates the gas generation process at a landfill by using standard models developed by the Environmental Protection Agency. The operations of a refuse truck fleet are replicated by using generic drive cycles developed as part of this research. The economic feasibility is evaluated by estimating the costs required for cleaning the LFG and converting the truck fleet from diesel to LNG as well as quantifying the benefits obtained due to change in fuel consumption and emission generation by the refuse trucks. The methodology was applied to a potential landfill in Texas. The results show that the methodology offers an innovative tool that allows the stakeholders to evaluate the economic feasibility of using LFG for refuse truck operations. The methodology also provides a flexible framework wherein each component can be changed or tailored to meet the specific needs of the stakeholders.

Gokhale, Bhushan

2006-12-01T23:59:59.000Z

119

DOE/EA-1624: Environmental Assessment for Auburn Landfill Gas Electric Generators and Anaerobic Digester Energy Facilities (December 2008)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Auburn Landfill Gas Electric Generators and Auburn Landfill Gas Electric Generators and Anaerobic Digester Energy Facilities Auburn, New York Final Environmental Assessment DOE/EA-1624 Prepared for: U.S. Department of Energy National Energy Technology Laboratory January 2009 INTENTIONALLY LEFT BLANK AUBURN LANDFILL GAS ELECTRIC GENERATORS AND ANAEROBIC DIGESTER ELECTRIC FACILITIES FINAL EA DOE/EA-1624 i Table of Contents 1.0 INTRODUCTION .......................................................................................................................................... 1 1.1 BACKGROUND............................................................................................................................................... 2 1.2 PURPOSE AND NEED ...................................................................................................................................... 4

120

BUNCOMBE COUNTY WASTEWATER PRE-TREATMENT AND LANDFILL GAS TO ENERGY PROJECT  

Science Conference Proceedings (OSTI)

The objective of this project was to construct a landfill gas-to-energy (LFGTE) facility that generates a renewable energy source utilizing landfill gas to power a 1.4MW generator, while at the same time reducing the amount of leachate hauled offsite for treatment. The project included an enhanced gas collection and control system, gas conditioning equipment, and a 1.4 MW generator set. The production of cleaner renewable energy will help offset the carbon footprint of other energy sources that are currently utilized.

Jon Creighton

2012-03-13T23:59:59.000Z

Note: This page contains sample records for the topic "landfill gas methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

System for recovering methane gas from liquid waste  

SciTech Connect

A system for and method of recovering methane gas from liquid waste which is stored within a pit is disclosed herein. The methane gas is produced by causing the liquid waste to undergo anaerobic fermentation. Therefore, it is necessary to close the pit in an air tight fashion. This is carried out using a cover sheet which is fixedly disposed over the pit in an air tight but readily disengagable fashion. The liquid waste within this air tight pit is preferably agitated intermittently during its storage therein whereby to increase the amount of methane gas produced.

Grabis, D.W.

1983-07-19T23:59:59.000Z

122

Landfill gas cleanup for carbonate fuel cell power generation. Final report  

DOE Green Energy (OSTI)

To utilize landfill gas for power generation using carbonate fuel cells, the LFG must be cleaned up to remove sulfur and chlorine compounds. This not only benefits the operation of the fuel cell, but also benefits the environment by preventing the emission of these contaminants to the atmosphere. Commercial technologies for gas processing are generally economical in relatively large sizes (3 MMSCFD or larger), and may not achieve the low levels of contaminants required. To address the issue of LFG clean-up for fuel cell application, a process was developed utilizing commercially available technology. A pilot-scale test facility utilizing this process was built at a landfill site in Anoka, Minnesota using the EPRI fuel cell test facility used for coal gas testing. The pilot plant was tested for 1000 hours, processing 970,000 SCF (27,500 Nm{sup 3}) of landfill gas. Testing indicated that the process could achieve the following concentrations of contaminants in the clean gas: Less than 80 ppbv hydrogen sulfide; less than 1 ppm (the detection limit) organic sulfur; less than 300 ppbv hydrogen chloride; less than 20--80 ppbv if any individual chlorinated hydrocarbon; and 1.5 ppm (average) Sulfur Dioxide. The paper describes the LFG composition for bulk and trace compounds; evaluation of various methods to clean landfill gas; design of a LFG cleanup system; field test of pilot-scale gas cleanup process; fuel cell testing on simulated landfill gas; single cell testing on landfill gas contaminants and post test analysis; and design and economic analyses of a full scale gas cleanup system.

Steinfeld, G.; Sanderson, R.

1998-02-01T23:59:59.000Z

123

Generating CO{sub 2}-credits through landfill in situ aeration  

Science Conference Proceedings (OSTI)

Landfills are some of the major anthropogenic sources of methane emissions worldwide. The installation and operation of gas extraction systems for many landfills in Europe and the US, often including technical installations for energy recovery, significantly reduced these emissions during the last decades. Residual landfill gas, however, is still continuously produced after the energy recovery became economically unattractive, thus resulting in ongoing methane emissions for many years. By landfill in situ aeration these methane emissions can be widely avoided both, during the aeration process as well as in the subsequent aftercare period. Based on model calculations and online monitoring data the amount of avoided CO{sub 2-eq}. can be determined. For an in situ aerated landfill in northern Germany, acting as a case study, 83-95% (depending on the kind and quality of top cover) of the greenhouse gas emission potential could be reduced under strictly controlled conditions. Recently the United Nations Framework Convention on Climate Change (UNFCCC) has approved a new methodology on the 'Avoidance of landfill gas emissions by in situ aeration of landfills' (). Based on this methodology landfill aeration projects might be considered for generation of Certified Emission Reductions (CERs) in the course of CDM projects. This paper contributes towards an evaluation of the potential of landfill aeration for methane emissions reduction.

Ritzkowski, M., E-mail: m.ritzkowski@tu-harburg.d [Institute of Environmental Technology and Energy Economics, Hamburg University of Technology, Harburger Schlossstr. 36, D-21079 Hamburg (Germany); Stegmann, R. [Consultants for Waste Management, Prof. R. Stegmann and Partner, Schellerdamm 19-21, D-21079 Hamburg (Germany)

2010-04-15T23:59:59.000Z

124

EIA - Greenhouse Gas Emissions - Methane Emissions  

Gasoline and Diesel Fuel Update (EIA)

oil production dropping by 28 percent from 1990 to 2009, methane emissions from petroleum exploration and production have declined by the same percentage. Residential wood...

125

NETL: Methane Hydrates - Barrow Gas Fields - North Slope Borough...  

NLE Websites -- All DOE Office Websites (Extended Search)

- Drilling and Production Testing the Methane Hydrate Resource Potential associated with the Barrow Gas Fields Last Reviewed 04062010 DE-FC26-06NT42962 Goal The goal of this...

126

Des Plaines Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Des Plaines Landfill Biomass Facility Jump to: navigation, search Name Des Plaines Landfill Biomass Facility Facility Des Plaines Landfill Sector Biomass Facility Type Landfill Gas...

127

Rodefeld Landfill Ga Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Rodefeld Landfill Ga Biomass Facility Jump to: navigation, search Name Rodefeld Landfill Ga Biomass Facility Facility Rodefeld Landfill Ga Sector Biomass Facility Type Landfill Gas...

128

NETL: Methane Hydrates - Barrow Gas Fields - North Slope Borough, Alaska  

NLE Websites -- All DOE Office Websites (Extended Search)

Phase 2- Drilling and Production Testing the Methane Hydrate Resource Potential associated with the Barrow Gas Fields Last Reviewed 04/06/2010 Phase 2- Drilling and Production Testing the Methane Hydrate Resource Potential associated with the Barrow Gas Fields Last Reviewed 04/06/2010 DE-FC26-06NT42962 Goal The goal of this project is to evaluate, design, drill, log, core and production test methane hydrate resources in the Barrow Gas Fields near Barrow, Alaska to determine its impact on future free gas production and its viability as an energy source. Photo of Barrow welcome sign Performers North Slope Borough, Barrow, Alaska 99723 Petrotechnical Resources Alaska (PRA), Fairbanks, AK 99775 University of Alaska Fairbanks, Fairbanks, AK 99775 Background Phase 1 of the Barrow Gas Fields Hydrate Study provided very strong evidence for the existence of hydrates updip of the East Barrow and Walakpa Gas Fields. Full-field history matched reservoir modeling supported the

129

Methanation of gas streams containing carbon monoxide and hydrogen  

DOE Patents (OSTI)

Carbon monoxide-containing gas streams having a relatively high concentration of hydrogen are pretreated so as to remove the hydrogen in a recoverable form for use in the second step of a cyclic, essentially two-step process for the production of methane. The thus-treated streams are then passed over a catalyst to deposit a surface layer of active surface carbon thereon essentially without the formation of inactive coke. This active carbon is reacted with said hydrogen removed from the feed gas stream to form methane. The utilization of the CO in the feed gas stream is appreciably increased, enhancing the overall process for the production of relatively pure, low-cost methane from CO-containing waste gas streams.

Frost, Albert C. (Congers, NY)

1983-01-01T23:59:59.000Z

130

Property:Building/SPPurchasedEngyForPeriodMwhYrDigesterLandfillGas | Open  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrDigesterLandfillGas SPPurchasedEngyForPeriodMwhYrDigesterLandfillGas Jump to: navigation, search This is a property of type String. Digester / landfill gas Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrDigesterLandfillGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 +

131

Property:Building/SPPurchasedEngyNrmlYrMwhYrDigesterLandfillGas | Open  

Open Energy Info (EERE)

SPPurchasedEngyNrmlYrMwhYrDigesterLandfillGas SPPurchasedEngyNrmlYrMwhYrDigesterLandfillGas Jump to: navigation, search This is a property of type String. Digester / landfill gas Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrDigesterLandfillGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 +

132

Property:Building/SPPurchasedEngyPerAreaKwhM2DigesterLandfillGas | Open  

Open Energy Info (EERE)

DigesterLandfillGas DigesterLandfillGas Jump to: navigation, search This is a property of type String. Digester / landfill gas Pages using the property "Building/SPPurchasedEngyPerAreaKwhM2DigesterLandfillGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 +

133

Title I preliminary engineering for: A. S. E. F. solid waste to methane gas  

DOE Green Energy (OSTI)

An assignment to provide preliminary engineering of an Advanced System Experimental Facility for production of methane gas from urban solid waste by anaerobic digestion is documented. The experimental facility will be constructed on a now-existing solid waste shredding and landfill facility in Pompano Beach, Florida. Information is included on: general description of the project; justification of basic need; process design; preliminary drawings; outline specifications; preliminary estimate of cost; and time schedules for design and construction of accomplishment of design and construction. The preliminary cost estimate for the design and construction phases of the experimental program is $2,960,000, based on Dec. 1975 and Jan. 1976 costs. A time schedule of eight months to complete the Detailed Design, Equipment Procurement and the Award of Subcontracts is given.

None

1976-01-01T23:59:59.000Z

134

Illinois Turning Landfill Trash into Future Cash | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Turning Landfill Trash into Future Cash Turning Landfill Trash into Future Cash Illinois Turning Landfill Trash into Future Cash September 28, 2010 - 5:35pm Addthis Illinois Turning Landfill Trash into Future Cash Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs Will County, Illinois officials yesterday formally broke ground on a new $7 million project (that includes $1 million of Energy Efficiency Conservation Block Grant funds) to turn methane gas from the Prairie View Landfill into electricity in a partnership with Waste Management. Will County will receive revenue from the sale of the gas created from decomposing garbage which will be harnessed and converted to generate 4.8 megawatts of green electrical power and used to power up to 8,000 homes. The future revenue generated from the sale of the gas and the sale of the

135

Global methane emissions from landfills: New methodology and annual estimates 19801996  

E-Print Network (OSTI)

of a large number of uncounted projects which flare gas but do not fuel a commercial project. 4. Results

Columbia University

136

NETL: Oil & Natural Gas Technologies Reference Shelf - Coalbed Methane  

NLE Websites -- All DOE Office Websites (Extended Search)

Coalbed Methane Production and Reclamation Field Tour Coalbed Methane Production and Reclamation Field Tour Coalbed Methane Production and Reclamation Field Tour Author: John Wheaton, Montana Tech of the University of Montana, Butte, MT. Venue: The tour will be conducted starting in Gillette, WY, and extend along the northern Powder River Basin, on June 3, 2007, under the auspices of the American Society for Mining and Reclamation (http://ces.ca.uky.edu/asmr/ [external site]). Abstract: This field tour will emphasize successful reclamation in an alternative type of coal industry in the Powder River Basin: coalbed methane. The tour will leave Gillette, WY, at 7:30 a.m., Sunday, June 3, 2007, and travel to Sheridan, WY, and back, touring coalbed methane production areas. Stops will include active drilling and producing areas to learn about the footprint and approach to development of coalbed methane. Reclamation includes drilling pads and linear trenching for water and gas pipelines. Produced-water management is a major expense and concern. Among the water management options we plan to see are stock-watering facilities, infiltration ponds, irrigation sites, and water treatment facilities. A landowner will join us and be able to answer questions from the ranching perspective for part of the tour. Lunches are included in the price of the tour.

137

Final Scientific/Technical Report. A closed path methane and water vapor gas analyzer  

Science Conference Proceedings (OSTI)

Robust, economical, low-power and reliable closed-path methane (CH4), carbon dioxide (CO2), and water vapor (H2O) analyzers suitable for long-term measurements are not readily available commercially. Such analyzers are essential for quantifying the amount of CH4 and CO2 released from various ecosystems (wetlands, rice paddies, forests, etc.) and other surface contexts (e.g. landfills, animal husbandry lots, etc.), and for understanding the dynamics of the atmospheric CH4 and CO2 budget and their impact on climate change and global warming. The purpose of this project is to develop a closed-path methane, carbon dioxide gas and water vapor analyzer capable of long-term measurements in remote areas for global climate change and environmental research. The analyzer will be capable of being deployed over a wide range of ecosystems to understand methane and carbon dioxide exchange between the atmosphere and the surface. Measurements of methane and carbon dioxide exchange need to be made all year-round with limited maintenance requirements. During this Phase II effort, we successfully completed the design of the electronics, optical bench, trace gas detection method and mechanical infrastructure. We are using the technologies of two vertical cavity surface emitting lasers, a multiple-pass Herriott optical cell, wavelength modulation spectroscopy and direct absorption to measure methane, carbon dioxide, and water vapor. We also have designed the instrument application software, Field Programmable Gate Array (FPGA), along with partial completion of the embedded software. The optical bench has been tested in a lab setting with very good results. Major sources of optical noise have been identified and through design, the optical noise floor is approaching -60dB. Both laser modules can be temperature controlled to help maximize the stability of the analyzer. Additionally, a piezo electric transducer has been utilized to randomize the noise introduced from potential etalons. It is expected that all original specifications contained within the initial proposal will be met. We are currently in the beginning stages of assembling the first generation prototypes and finalizing the remaining design elements. The first prototypes will initially be tested in our environmental calibration chamber in which specific gas concentrations, temperature and humidity levels can be controlled. Once operation in this controlled setting is verified, the prototypes will be deployed at LI-COR�¢����s Experimental Research Station (LERS). Deployment at the LERS site will test the instrument�¢����s robustness in a real-world situation.

Liukang, Xu; Dayle, McDermitt; Tyler, Anderson; Brad, Riensche; Anatoly, Komissarov; Julie, Howe

2012-05-01T23:59:59.000Z

138

Sources of biogenic methane to form marine gas hydrates: In situ production or upward migration?  

SciTech Connect

Potential sources of biogenic methane in the Carolina Continental Rise -- Blake Ridge sediments have been examined. Two models were used to estimate the potential for biogenic methane production: (1) construction of sedimentary organic carbon budgets, and (2) depth extrapolation of modern microbial production rates. While closed-system estimates predict some gas hydrate formation, it is unlikely that >3% of the sediment volume could be filled by hydrate from methane produced in situ. Formation of greater amounts requires migration of methane from the underlying continental rise sediment prism. Methane may be recycled from below the base of the gas hydrate stability zone by gas hydrate decomposition, upward migration of the methane gas, and recrystallization of gas hydrate within the overlying stability zone. Methane bubbles may also form in the sediment column below the depth of gas hydrate stability because the methane saturation concentration of the pore fluids decreases with increasing depth. Upward migration of methane bubbles from these deeper sediments can add methane to the hydrate stability zone. From these models it appears that recycling and upward migration of methane is essential in forming significant gas hydrate concentrations. In addition, the depth distribution profiles of methane hydrate will differ if the majority of the methane has migrated upward rather than having been produced in situ.

Paull, C.K.; Ussler, W. III; Borowski, W.S.

1993-09-01T23:59:59.000Z

139

Synthesis Gas Production from Partial Oxidation of Methane with Air in AC Electric Gas Discharge  

E-Print Network (OSTI)

depending on the ratio of hydrogen to carbon monoxide. Most synthesis gas is produced by the steam reform reaction. Industrially, steam reforming is performed over a Ni/ Al2O3 catalyst.9 The typical problemSynthesis Gas Production from Partial Oxidation of Methane with Air in AC Electric Gas Discharge K

Mallinson, Richard

140

NETL: Methane Hydrates - DOE/NETL Projects - Advanced Gas Hydrate  

NLE Websites -- All DOE Office Websites (Extended Search)

Comparative Assessment of Advanced Gas Hydrate Production Methods Last Reviewed 09/23/2009 Comparative Assessment of Advanced Gas Hydrate Production Methods Last Reviewed 09/23/2009 DE-FC26-06NT42666 Goal The goal of this project is to compare and contrast, through numerical simulation, conventional and innovative approaches for producing methane from gas hydrate-bearing geologic reservoirs. Numerical simulation is being used to assess the production of natural gas hydrates from geologic deposits using three production technologies: 1) depressurization, 2) direct CO2 exchange, and 3) dissociation-reformation CO2 exchange. Performers Battelle Pacific Northwest Division, Richland, Washington 99352 Background There are relatively few published studies of commercial production methods for gas hydrates, and all of these studies have examined essentially

Note: This page contains sample records for the topic "landfill gas methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Combined Steam Reforming and Partial Oxidation of Methane to Synthesis Gas under Electrical Discharge  

E-Print Network (OSTI)

Combined Steam Reforming and Partial Oxidation of Methane to Synthesis Gas under Electrical production from simultaneous steam reforming and partial oxidation of methane using an ac corona discharge and steam reforming has a benefit in terms of balancing the heat load. Methane conversions can be achieved

Mallinson, Richard

142

Estimation of methane flux offshore SW Taiwan and the influence of tectonics on gas hydrate accumulation  

E-Print Network (OSTI)

­510 INTRODUCTION Gas hydrates are naturally occurring solids, nonstoichio- metric clathrates, stable at relatively and in sedimentary strata of continen- tal deep sea areas and are typically composed of natural gas, mainly methane have suggested that methane concentra- tions play an important role in gas hydrate investigations. Very

Lin, Andrew Tien-Shun

143

Renewable LNG: Update on the World's Largest Landfill Gas to LNG Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

LNG LNG Update on the world's largest landfill gas to LNG plant Mike McGowan Head of Government Affairs Linde NA, Inc. June 12, 2012 $18.3 billion global sales A leading gases and engineering company Linde North America Profile $2.3 billion in gases sales revenue in North America in 2011 5,000 employees throughout the U.S., Canada and the Caribbean Supplier of compressed and cryogenic gases and technology Atmospheric gases - oxygen, nitrogen, argon Helium LNG and LPG Hydrogen Rare gases Plant engineering and supply LNG Petrochemicals Natural gas processing Atmospheric gases 3 Linde's alternative fuels portfolio Green hydrogen production - Magog, Quebec Renewable liquefied natural gas production - Altamont, CA Biogas fueling, LNG import terminal - Sweden

144

NIST: X-Ray Mass Atten. Coef. - Tissue-Equiv. Gas (Methane)  

Science Conference Proceedings (OSTI)

Table of Contents Back to table 4 Tissue-Equivalent Gas (Methane Based) HTML table format. Energy, ?/?, ? en /?. (MeV), (cm 2 /g), (cm 2 /g). ...

145

Proposal to reduce greenhouse gas emissions via landfill gas management in Greater Buenos Aires, Argentina. Final report  

DOE Green Energy (OSTI)

The purpose of this project was to evaluate the feasibility of reducing the emission of greenhouse gases by collection, flaring, and possibly beneficially using the gas from landfills in Greater Buenos Aires, Argentina (GBA). Another purpose was to prepare a proposal to the US Initiative on Joint Implementation (USIJI) for a project to collect and possibly use the landfill gas (LFG). The project was carried out from September 30, 1997 through September 30, 1998. Collection and flaring of gas is feasible provided private firms have sufficient incentive to obtain greenhouse gas emission reduction benefits. The value of those benefits that would be required to motivate funding of an LFG management project was not explicitly determined. However, one independent power producer has expressed an interest in funding the first phase of the proposed project and paid for a detailed feasibility study which was conducted in August and September of 1998. As a result of this project, a proposal was submitted to the USIJI Evaluation Panel in June, 1998. In August, 1998, an office was established for reviewing and approving joint implementation proposals. The proposal is currently under review by that office.

Jones, D.B.

1998-10-01T23:59:59.000Z

146

Design and Testing of a Landfill Gas Cleanup System for Carbonate Fuel Cell Power Plants: Volume 1: Field Test Results  

Science Conference Proceedings (OSTI)

This report presents results of an effort to develop a low-cost cleanup system that would enable landfill gas to be used in carbonate fuel cells or other power generation devices. The EPRI-developed system is now available for license to commercial applications.

1997-11-26T23:59:59.000Z

147

Landfill gas cleanup for carbonate fuel cell power generation. CRADA final report  

DOE Green Energy (OSTI)

The overall objective of the work reported here was to evaluate the extent to which conventional contaminant removal processes could be combined to economically reduce contaminant levels to the specifications for carbonate fuel cells. The technical effort was conducted by EPRI, consultant David Thimsen, Kaltec of Minnesota, Energy Research Corporation (ERC) and Interpoll Laboratories. The Electric Power Research Institute (EPRI) made available two test skids originally used to test an ERC 30 kW carbonate fuel cell at the Destec Coal Gasification Plan in Plaquemine, LA. EPRI`s carbonate fuel cell pilot plant was installed at the Anoka County Regional Landfill in Ramsey, Minnesota. Additional gas cleaning equipment was installed to evaluate a potentially inexpensive, multi-stage gas cleaning process to remove sulfur and chlorine in the gas to levels acceptable for long-term, economical carbonate fuel cell operation. The pilot plant cleaned approximately 970,000 scf (27,500 Nm{sup 3}) of gas over 1,000 hours of operation. The testing showed that the process could achieve the following polished gas concentrations. Less than 80 ppbv hydrogen sulfide; less than 1 ppmv (the detection limit) organic sulfur; less than 300 ppbv hydrogen chloride; less than 20--80 ppbv of any individual chlorined hydrocarbon; and 1.5 ppm sulfur dioxide. These were the detection limits of the analytical procedures employed. It is probable that the actual concentrations are below these analytical limits.

Steinfeld, G.; Sanderson, R.

1998-02-01T23:59:59.000Z

148

Method of producing a methane rich gas mixture from mine gas  

SciTech Connect

A pressure-swing adsorption system is used to enrich the methane content of mine gas obtained from bores around mine shafts or galleries from the customary 25 to 45% by volume to a product gas quality of 50% by volume. Using a carbon molecular sieve adsorbent, the adsorption is carried out at 5 to 8 bar and is followed by a uniflow expansion to an intermediate pressure and a counterflow expansion to a flushing pressure of 1.1 to 2 bar. Counterflow flushing is carried out with waste gas and the product gas is a mixture of the gases obtained by counterflow expansion and flushing.

Richter, E.; Giessler, K.; Knoblauch, K.; Korbacher, W.

1985-06-04T23:59:59.000Z

149

LANDFILL GAS CONVERSION TO LNG AND LCO{sub 2}. PHASE 1, FINAL REPORT FOR THE PERIOD MARCH 1998-FEBRUARY 1999  

DOE Green Energy (OSTI)

Process designs and economics were developed to produce LNG and liquid carbon dioxide (CO{sub 2}) from landfill gas (LFG) using the Acrion CO{sub 2} wash process. The patented Acrion CO{sub 2} wash process uses liquid CO{sub 2} to absorb contaminants from the LFG. The process steps are compression, drying, CO{sub 2} wash contaminant removal and CO{sub 2} recovery, residual CO{sub 2} removal and methane liquefaction. Three flowsheets were developed using different residual CO{sub 2} removal schemes. These included physical solvent absorption (methanol), membranes and molecular sieves. The capital and operating costs of the flowsheets were very similar. The LNG production cost was around ten cents per gallon. In parallel with process flowsheet development, the business aspects of an eventual commercial project have been explored. The process was found to have significant potential commercial application. The business plan effort investigated the economics of LNG transportation, fueling, vehicle conversion, and markets. The commercial value of liquid CO{sub 2} was also investigated. This Phase 1 work, March 1998 through February 1999, was funded under Brookhaven National laboratory contract 725089 under the research program entitled ``Liquefied Natural Gas as a Heavy Vehicle Fuel.'' The Phase 2 effort will develop flowsheets for the following: (1) CO{sub 2} and pipeline gas production, with the pipeline methane being liquefied at a peak shaving site, (2) sewage digester gas as an alternate feedstock to LFG and (3) the use of mixed refrigerants for process cooling. Phase 2 will also study the modification of Acrion's process demonstration unit for the production of LNG and a market site for LNG production.

COOK,W.J.; NEYMAN,M.; SIWAJEK,L.A.; BROWN,W.R.; VAN HAUWAERT,P.M.; CURREN,E.D.

1998-02-25T23:59:59.000Z

150

Method and apparatus for recovering geopressured methane gas from ocean depths  

SciTech Connect

A suggested method for recovering the estimated 50,000 trillion CF of methane that is dissolved in areas of the Gulf of Mexico at depths of 15,000 ft involves liberating the methane molecules by means of an electrolytic process. Electrodes lowered to the desired depth and insulated from the overlying saltwater establish an electrical circuit with the methane-laden water acting as the electrolyte. The a-c current density causes dissociation of the water molecules, freeing the methane gas, which rises to the ocean surface. A tent-like structure lying on the surface traps the gas for transfer to a storage facility.

Carpenter, N.

1982-08-24T23:59:59.000Z

151

Methane contamination of drinking water accompanying gas-well drilling and  

E-Print Network (OSTI)

- matically increasing natural-gas extraction. In aquifers overlying the Marcellus and Utica shale formations of drinking water associated with shale- gas extraction. In active gas-extraction areas (one or more gas wells methane sources such as the Marcellus and Utica shales at the active sites and matched gas geochemistry

152

Efficient gas-separation process to upgrade dilute methane stream for use as fuel  

DOE Patents (OSTI)

A membrane-based gas separation process for treating gas streams that contain methane in low concentrations. The invention involves flowing the stream to be treated across the feed side of a membrane and flowing a sweep gas stream, usually air, across the permeate side. Carbon dioxide permeates the membrane preferentially and is picked up in the sweep air stream on the permeate side; oxygen permeates in the other direction and is picked up in the methane-containing stream. The resulting residue stream is enriched in methane as well as oxygen and has an EMC value enabling it to be either flared or combusted by mixing with ordinary air.

Wijmans, Johannes G. (Menlo Park, CA); Merkel, Timothy C. (Menlo Park, CA); Lin, Haiqing (Mountain View, CA); Thompson, Scott (Brecksville, OH); Daniels, Ramin (San Jose, CA)

2012-03-06T23:59:59.000Z

153

Design and Testing of a Landfill Gas Cleanup System for Carbonate Fuel Cell Power Plants: Volume II: Full Scale Landfill Gas Cleanup for Carbonate Fuel Cell Power Plants (Proprietary)  

Science Conference Proceedings (OSTI)

This document is a proprietary version of section 5 of EPRI technical report TR-108043-V1. The volume contains detailed design information and operating conditions for a full-scale, low-cost cleanup system that would enable landfill gas to be used in carbonate fuel cells or other power generation devices. The EPRI-developed system is now available for license to commercial applications.

1998-02-27T23:59:59.000Z

154

NETL: Methane Hydrates - DOE/NETL Projects - GAS HYDRATE DYNAMICS...  

NLE Websites -- All DOE Office Websites (Extended Search)

the first systematic geochemical and microbiological data to constrain subseafloor methane sinks and the spatio-temporal changes in the nature of microbial systems and pore...

155

Analysis of Chemically Reacting Gas Flow and Heat Transfer in Methane Reforming Processes  

Science Conference Proceedings (OSTI)

This paper presents simulation and analysis of gas flow and heat transfer affected by chemical reactions relating to steam reforming of methane in a compact reformer. The reformer conditions such as the combined thermal boundary conditions on solid walls, ...

Guogang Yang; Danting Yue; Xinrong Lv; Jinliang Yuan

2009-10-01T23:59:59.000Z

156

NETL: Methane Hydrates - DOE/NETL Projects - Natural Gas Hydrates in  

NLE Websites -- All DOE Office Websites (Extended Search)

The National Methane Hydrates R&D Program The National Methane Hydrates R&D Program DOE/NETL Methane Hydrate Projects Natural Gas Hydrates in Permafrost and Marine Settings: Resources, Properties, and Environmental Issues Last Reviewed 12/30/2013 DE-FE0002911 Goal The objective of this DOE-USGS Interagency Agreement is to provide world-class expertise and research in support of the goals of the 2005 Energy Act for National Methane Hydrates R&D, the DOE-led U.S. interagency roadmap for gas hydrates research, and elements of the USGS mission related to energy resources, global climate, and geohazards. This project extends USGS support to the DOE Methane Hydrate R&D Program previously conducted under DE-AI26-05NT42496. Performer U.S. Geological Survey at Woods Hole, MA, Denver, CO, and Menlo Park, CA

157

APPENDIX E: METHANE EMISSIONS FROM NATURAL GAS PRODUCTION, OIL PRODUCTION, COAL MINING, AND  

E-Print Network (OSTI)

APPENDIX E: METHANE EMISSIONS FROM NATURAL GAS PRODUCTION, OIL PRODUCTION, COAL MINING, AND OTHER PRODUCTION, COAL MINING, AND OTHER SOURCES An Appendix to the Report "A Lifecycle Emissions Model (LEM of natural gas, which is mostly CH4, occurs through natural gas production, oil production, and coal mining

Delucchi, Mark

158

Contribution of oceanic gas hydrate dissociation to the formation of Arctic Ocean methane plumes  

SciTech Connect

Vast quantities of methane are trapped in oceanic hydrate deposits, and there is concern that a rise in the ocean temperature will induce dissociation of these hydrate accumulations, potentially releasing large amounts of carbon into the atmosphere. Because methane is a powerful greenhouse gas, such a release could have dramatic climatic consequences. The recent discovery of active methane gas venting along the landward limit of the gas hydrate stability zone (GHSZ) on the shallow continental slope (150 m - 400 m) west of Svalbard suggests that this process may already have begun, but the source of the methane has not yet been determined. This study performs 2-D simulations of hydrate dissociation in conditions representative of the Arctic Ocean margin to assess whether such hydrates could contribute to the observed gas release. The results show that shallow, low-saturation hydrate deposits, if subjected to recently observed or future predicted temperature changes at the seafloor, can release quantities of methane at the magnitudes similar to what has been observed, and that the releases will be localized near the landward limit of the GHSZ. Both gradual and rapid warming is simulated, along with a parametric sensitivity analysis, and localized gas release is observed for most of the cases. These results resemble the recently published observations and strongly suggest that hydrate dissociation and methane release as a result of climate change may be a real phenomenon, that it could occur on decadal timescales, and that it already may be occurring.

Reagan, M.; Moridis, G.; Elliott, S.; Maltrud, M.

2011-06-01T23:59:59.000Z

159

Simulations of Methane Hydrate Phenomena Over Geologic Timescales. Part I: Effect of Sediment Compaction Rates on Methans Hydrate and Free Gas Accumulation  

Science Conference Proceedings (OSTI)

The focus of this work is a model that describes migration and biogenic formation of methane under conditions representative of dynamic marine basins, and the conversion of soluble methane into either solid hydrate or exsolved gas. Incorporated into the overall model are an accurate phase equilibria model for seawater-methane, a methane source term based on biogenesis data, and a sediment compaction model based on porosity as a function of position, time, and the local volume fractions of hydrate solids and free gas. Simulations have shown that under some compaction scenarios, liquid overpressures reach the lithostatic limit due to permeability constraints, which can diminish the advective transfer of soluble methane within the porous sediment. As such, the formation of methane hydrate can be somewhat of a self-moderating process. The occurrence and magnitude of hydrate formation is directly tied to fundamental parameters such as the compaction/sedimentation rates, liquid advection rates, seafloor depth, geothermal gradient, etc. Results are shown for simulations covering 20 million years, wherein growth profiles for methane hydrate and free gas (neither exceeding 10 vol% at any location) are tracked within a vertical sediment column spanning over 3000 m. A case study is also presented for the Blake Ridge region (Ocean Drilling Program Leg 164, Sites 994, 995, and 997) based on simulations covering 6 Ma, wherein it is concluded that methane migration from compaction-driven advection may account for 15-30% of the total hydrate mass present in this region.

Gering, Kevin Leslie

2003-01-01T23:59:59.000Z

160

Well-to-Wheels analysis of landfill gas-based pathways and their addition to the GREET model.  

SciTech Connect

Today, approximately 300 million standard cubic ft/day (mmscfd) of natural gas and 1600 MW of electricity are produced from the decomposition of organic waste at 519 U.S. landfills (EPA 2010a). Since landfill gas (LFG) is a renewable resource, this energy is considered renewable. When used as a vehicle fuel, compressed natural gas (CNG) produced from LFG consumes up to 185,000 Btu of fossil fuel and generates from 1.5 to 18.4 kg of carbon dioxide-equivalent (CO{sub 2}e) emissions per million Btu of fuel on a 'well-to-wheel' (WTW) basis. This compares with approximately 1.1 million Btu and 78.2 kg of CO{sub 2}e per million Btu for CNG from fossil natural gas and 1.2 million Btu and 97.5 kg of CO{sub 2}e per million Btu for petroleum gasoline. Because of the additional energy required for liquefaction, LFG-based liquefied natural gas (LNG) requires more fossil fuel (222,000-227,000 Btu/million Btu WTW) and generates more GHG emissions (approximately 22 kg CO{sub 2}e /MM Btu WTW) if grid electricity is used for the liquefaction process. However, if some of the LFG is used to generate electricity for gas cleanup and liquefaction (or compression, in the case of CNG), vehicle fuel produced from LFG can have no fossil fuel input and only minimal GHG emissions (1.5-7.7 kg CO{sub 2}e /MM Btu) on a WTW basis. Thus, LFG-based natural gas can be one of the lowest GHG-emitting fuels for light- or heavy-duty vehicles. This report discusses the size and scope of biomethane resources from landfills and the pathways by which those resources can be turned into and utilized as vehicle fuel. It includes characterizations of the LFG stream and the processes used to convert low-Btu LFG into high-Btu renewable natural gas (RNG); documents the conversion efficiencies and losses of those processes, the choice of processes modeled in GREET, and other assumptions used to construct GREET pathways; and presents GREET results by pathway stage. GREET estimates of well-to-pump (WTP), pump-to-wheel (PTW), and WTW energy, fossil fuel, and GHG emissions for each LFG-based pathway are then summarized and compared with similar estimates for fossil natural gas and petroleum pathways.

Mintz, M.; Han, J.; Wang, M.; Saricks, C.; Energy Systems

2010-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "landfill gas methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Well-to-Wheels analysis of landfill gas-based pathways and their addition to the GREET model.  

SciTech Connect

Today, approximately 300 million standard cubic ft/day (mmscfd) of natural gas and 1600 MW of electricity are produced from the decomposition of organic waste at 519 U.S. landfills (EPA 2010a). Since landfill gas (LFG) is a renewable resource, this energy is considered renewable. When used as a vehicle fuel, compressed natural gas (CNG) produced from LFG consumes up to 185,000 Btu of fossil fuel and generates from 1.5 to 18.4 kg of carbon dioxide-equivalent (CO{sub 2}e) emissions per million Btu of fuel on a 'well-to-wheel' (WTW) basis. This compares with approximately 1.1 million Btu and 78.2 kg of CO{sub 2}e per million Btu for CNG from fossil natural gas and 1.2 million Btu and 97.5 kg of CO{sub 2}e per million Btu for petroleum gasoline. Because of the additional energy required for liquefaction, LFG-based liquefied natural gas (LNG) requires more fossil fuel (222,000-227,000 Btu/million Btu WTW) and generates more GHG emissions (approximately 22 kg CO{sub 2}e /MM Btu WTW) if grid electricity is used for the liquefaction process. However, if some of the LFG is used to generate electricity for gas cleanup and liquefaction (or compression, in the case of CNG), vehicle fuel produced from LFG can have no fossil fuel input and only minimal GHG emissions (1.5-7.7 kg CO{sub 2}e /MM Btu) on a WTW basis. Thus, LFG-based natural gas can be one of the lowest GHG-emitting fuels for light- or heavy-duty vehicles. This report discusses the size and scope of biomethane resources from landfills and the pathways by which those resources can be turned into and utilized as vehicle fuel. It includes characterizations of the LFG stream and the processes used to convert low-Btu LFG into high-Btu renewable natural gas (RNG); documents the conversion efficiencies and losses of those processes, the choice of processes modeled in GREET, and other assumptions used to construct GREET pathways; and presents GREET results by pathway stage. GREET estimates of well-to-pump (WTP), pump-to-wheel (PTW), and WTW energy, fossil fuel, and GHG emissions for each LFG-based pathway are then summarized and compared with similar estimates for fossil natural gas and petroleum pathways.

Mintz, M.; Han, J.; Wang, M.; Saricks, C.; Energy Systems

2010-06-30T23:59:59.000Z

162

Reduction of Non-CO2 Gas Emissions Through The In Situ Bioconversion of Methane  

SciTech Connect

The primary objectives of this research were to seek previously unidentified anaerobic methanotrophs and other microorganisms to be collected from methane seeps associated with coal outcrops. Subsurface application of these microbes into anaerobic environments has the potential to reduce methane seepage along coal outcrop belts and in coal mines, thereby preventing hazardous explosions. Depending upon the types and characteristics of the methanotrophs identified, it may be possible to apply the microbes to other sources of methane emissions, which include landfills, rice cultivation, and industrial sources where methane can accumulate under buildings. Finally, the microbes collected and identified during this research also had the potential for useful applications in the chemical industry, as well as in a variety of microbial processes. Sample collection focused on the South Fork of Texas Creek located approximately 15 miles east of Durango, Colorado. The creek is located near the subsurface contact between the coal-bearing Fruitland Formation and the underlying Pictured Cliffs Sandstone. The methane seeps occur within the creek and in areas adjacent to the creek where faulting may allow fluids and gases to migrate to the surface. These seeps appear to have been there prior to coalbed methane development as extensive microbial soils have developed. Our investigations screened more than 500 enrichments but were unable to convince us that anaerobic methane oxidation (AMO) was occurring and that anaerobic methanotrophs may not have been present in the samples collected. In all cases, visual and microscopic observations noted that the early stage enrichments contained viable microbial cells. However, as the levels of the readily substrates that were present in the environmental samples were progressively lowered through serial transfers, the numbers of cells in the enrichments sharply dropped and were eliminated. While the results were disappointing we acknowledge that anaerobic methane oxidizing (AOM) microorganisms are predominantly found in marine habitats and grow poorly under most laboratory conditions. One path for future research would be to use a small rotary rig to collect samples from deeper soil horizons, possibly adjacent to the coal-bearing horizons that may be more anaerobic.

Scott, A R; Mukhopadhyay, B; Balin, D F

2012-09-06T23:59:59.000Z

163

Using Carbon Dioxide to Enhance Recovery of Methane from Gas Hydrate Reservoirs: Final Summary Report  

Science Conference Proceedings (OSTI)

Carbon dioxide sequestration coupled with hydrocarbon resource recovery is often economically attractive. Use of CO2 for enhanced recovery of oil, conventional natural gas, and coal-bed methane are in various stages of common practice. In this report, we discuss a new technique utilizing CO2 for enhanced recovery of an unconventional but potentially very important source of natural gas, gas hydrate. We have focused our attention on the Alaska North Slope where approximately 640 Tcf of natural gas reserves in the form of gas hydrate have been identified. Alaska is also unique in that potential future CO2 sources are nearby, and petroleum infrastructure exists or is being planned that could bring the produced gas to market or for use locally. The EGHR (Enhanced Gas Hydrate Recovery) concept takes advantage of the physical and thermodynamic properties of mixtures in the H2O-CO2 system combined with controlled multiphase flow, heat, and mass transport processes in hydrate-bearing porous media. A chemical-free method is used to deliver a LCO2-Lw microemulsion into the gas hydrate bearing porous medium. The microemulsion is injected at a temperature higher than the stability point of methane hydrate, which upon contacting the methane hydrate decomposes its crystalline lattice and releases the enclathrated gas. Small scale column experiments show injection of the emulsion into a CH4 hydrate rich sand results in the release of CH4 gas and the formation of CO2 hydrate

McGrail, B. Peter; Schaef, Herbert T.; White, Mark D.; Zhu, Tao; Kulkarni, Abhijeet S.; Hunter, Robert B.; Patil, Shirish L.; Owen, Antionette T.; Martin, P F.

2007-09-01T23:59:59.000Z

164

Functionally gradient material for membrane reactors to convert methane gas into value-added products  

DOE Patents (OSTI)

A functionally gradient material for a membrane reactor for converting methane gas into value-added-products includes an outer tube of perovskite, which contacts air; an inner tube which contacts methane gas, of zirconium oxide, and a bonding layer between the perovskite and zirconium oxide layers. The bonding layer has one or more layers of a mixture of perovskite and zirconium oxide, with the layers transitioning from an excess of perovskite to an excess of zirconium oxide. The transition layers match thermal expansion coefficients and other physical properties between the two different materials. 7 figs.

Balachandran, U.; Dusek, J.T.; Kleefisch, M.S.; Kobylinski, T.P.

1996-11-12T23:59:59.000Z

165

Functionally gradient material for membrane reactors to convert methane gas into value-added products  

DOE Patents (OSTI)

A functionally gradient material for a membrane reactor for converting methane gas into value-added-products includes an outer tube of perovskite, which contacts air; an inner tube which contacts methane gas, of zirconium oxide, and a bonding layer between the perovskite and zirconium oxide layers. The bonding layer has one or more layers of a mixture of perovskite and zirconium oxide, with the layers transitioning from an excess of perovskite to an excess of zirconium oxide. The transition layers match thermal expansion coefficients and other physical properties between the two different materials.

Balachandran, Uthamalingam (Hinsdale, IL); Dusek, Joseph T. (Lombard, IL); Kleefisch, Mark S. (Napersville, IL); Kobylinski, Thadeus P. (Lisle, IL)

1996-01-01T23:59:59.000Z

166

A Low Carbon Development Guide for Local Government Actions in China  

E-Print Network (OSTI)

commercial); percentage of landfill gas (methane) that islevel. ? Percentage of landfill gas (methane) that iscarbon emissions: landfill gas capture. Landfill gas is

Zheng, Nina

2012-01-01T23:59:59.000Z

167

Analysis and Methane Gas Separations Studies for City of Marsing, Idaho An Idaho National Laboratory Technical Assistance Program Study  

Science Conference Proceedings (OSTI)

Introduction and Background Large amounts of methane in well water is a wide spread problem in North America. Methane gas from decaying biomass and oil and gas deposits escape into water wells typically through cracks or faults in otherwise non-porous rock strata producing saturated water systems. This methane saturated water can pose several problems in the delivery of drinking water. The problems range from pumps vapor locking (cavitating), to pump houses exploding. The City of Marsing requested Idaho National Laboratory (INL) to assist with some water analyses as well as to provide some engineering approaches to methane capture through the INL Technical Assistance Program (TAP). There are several engineering approaches to the removal of methane and natural gas from water sources that include gas stripping followed by compression and/or dehydration; membrane gas separators coupled with dehydration processes, membrane water contactors with dehydration processes.

Christopher Orme

2012-08-01T23:59:59.000Z

168

Methane Power Inc | Open Energy Information  

Open Energy Info (EERE)

Methane Power Inc Methane Power Inc Jump to: navigation, search Logo: Methane Power Inc. Name Methane Power Inc. Address 121 Edinburgh South Drive Place Cary, NC Zip 27511 Sector Renewable Energy Product Methane Power is a renewable energy project developer that focuses on landfill gas-to-energy projects. Currently, they are a supplier of landfill gas generated energy to Duke Energy in North Carolina. Phone number 919-297-7206 Website http://www.methanepower.net Coordinates 35.7395875°, -78.8029226° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.7395875,"lon":-78.8029226,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

169

AIRBORNE, OPTICAL REMOTE SENSNG OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION  

SciTech Connect

Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. The scope of the work involved designing and developing an airborne, optical remote sensor capable of sensing methane and, if possible, ethane for the detection of natural gas pipeline leaks. Flight testing using a custom dual wavelength, high power fiber amplifier was initiated in February 2005. Ophir successfully demonstrated the airborne system, showing that it was capable of discerning small amounts of methane from a simulated pipeline leak. Leak rates as low as 150 standard cubic feet per hour (scf/h) were detected by the airborne sensor.

Jerry Myers

2005-04-15T23:59:59.000Z

170

GAS METHANE HYDRATES-RESEARCH STATUS, ANNOTATED BIBLIOGRAPHY, AND ENERGY IMPLICATIONS  

SciTech Connect

The objective of this task as originally conceived was to compile an assessment of methane hydrate deposits in Alaska from available sources and to make a very preliminary evaluation of the technical and economic feasibility of producing methane from these deposits for remote power generation. Gas hydrates have recently become a target of increased scientific investigation both from the standpoint of their resource potential to the natural gas and oil industries and of their positive and negative implications for the global environment After we performed an extensive literature review and consulted with representatives of the U.S. Geological Survey (USGS), Canadian Geological Survey, and several oil companies, it became evident that, at the current stage of gas hydrate research, the available information on methane hydrates in Alaska does not provide sufficient grounds for reaching conclusions concerning their use for energy production. Hence, the original goals of this task could not be met, and the focus was changed to the compilation and review of published documents to serve as a baseline for possible future research at the Energy & Environmental Research Center (EERC). An extensive annotated bibliography of gas hydrate publications has been completed. The EERC will reassess its future research opportunities on methane hydrates to determine where significant initial contributions could be made within the scope of limited available resources.

James Sorensen; Jaroslav Solc; Bethany Bolles

2000-07-01T23:59:59.000Z

171

UNDERSTANDING METHANE EMISSIONS SOURCES AND VIABLE MITIGATION MEASURES IN THE NATURAL GAS TRANSMISSION SYSTEMS: RUSSIAN AND U.S. EXPERIENCE  

Science Conference Proceedings (OSTI)

This article will compare the natural gas transmission systems in the U.S. and Russia and review experience with methane mitigation technologies in the two countries. Russia and the United States (U.S.) are the world's largest consumers and producers of natural gas, and consequently, have some of the largest natural gas infrastructure. This paper compares the natural gas transmission systems in Russia and the U.S., their methane emissions and experiences in implementing methane mitigation technologies. Given the scale of the two systems, many international oil and natural gas companies have expressed interest in better understanding the methane emission volumes and trends as well as the methane mitigation options. This paper compares the two transmission systems and documents experiences in Russia and the U.S. in implementing technologies and programs for methane mitigation. The systems are inherently different. For instance, while the U.S. natural gas transmission system is represented by many companies, which operate pipelines with various characteristics, in Russia predominately one company, Gazprom, operates the gas transmission system. However, companies in both countries found that reducing methane emissions can be feasible and profitable. Examples of technologies in use include replacing wet seals with dry seals, implementing Directed Inspection and Maintenance (DI&M) programs, performing pipeline pump-down, applying composite wrap for non-leaking pipeline defects and installing low-bleed pneumatics. The research methodology for this paper involved a review of information on methane emissions trends and mitigation measures, analytical and statistical data collection; accumulation and analysis of operational data on compressor seals and other emission sources; and analysis of technologies used in both countries to mitigate methane emissions in the transmission sector. Operators of natural gas transmission systems have many options to reduce natural gas losses. Depending on the value of gas, simple, low-cost measures, such as adjusting leaking equipment components, or larger-scale measures, such as installing dry seals on compressors, can be applied.

Ishkov, A.; Akopova, Gretta; Evans, Meredydd; Yulkin, Grigory; Roshchanka, Volha; Waltzer, Suzie; Romanov, K.; Picard, David; Stepanenko, O.; Neretin, D.

2011-10-01T23:59:59.000Z

172

Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Landfills Convert Landfills Convert Biogas Into Renewable Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Google Bookmark Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Delicious Rank Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Digg Find More places to share Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on AddThis.com... May 25, 2013 Landfills Convert Biogas Into Renewable Natural Gas

173

Method of making compost and spawned compost, mushroom spawn and generating methane gas  

Science Conference Proceedings (OSTI)

Newly designed ribbon-type mixers provide an improved method for making composts, aerating composts, growing mushroom spawn, generating methane gas, and filling conveyors in the mushroom-growing industry. The mixers may be the double-ribbon type for purely mixing operations or the single-ribbon type for moving the material from one place to another. Both types can operate under pressure. In preparing compost for mushroom growing, operators can first use the airtight mixers for a preliminary anaerobic fermentation to produce methane, then by changing the atmosphere to an oxidizing one, complete the compost preparation under the necessary aerobic conditions.

Stoller, B.B.

1981-04-28T23:59:59.000Z

174

Improved Recovery from Gulf of Mexico Reservoirs, Volume 4, Comparison of Methane, Nitrogen and Flue Gas for Attic Oil. February 14, 1995 - October 13, 1996. Final Report  

SciTech Connect

Gas injection for attic oil recovery was modeled in vertical sandpacks to compare the process performance characteristics of three gases, namely methane, nitrogen and flue gas. All of the gases tested recovered the same amount of oil over two cycles of gas injection. Nitrogen and flue gas recovered oil more rapidly than methane because a large portion of the methane slug dissolved in the oil phase and less free gas was available for oil displacement. The total gas utilization for two cycles of gas injection was somewhat better for nitrogen as compared to methane and flue gas. The lower nitrogen utilization was ascribed to the lower compressibility of nitrogen.

Wolcott, Joanne; Shayegi, Sara

1997-01-13T23:59:59.000Z

175

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network (OSTI)

role of hydrogen in landfill gas utilization. Sacramento,landfills (yielding “landfill gas”) and livestock-manure-Diverted Methane in landfill gas Methane in biogas from

2007-01-01T23:59:59.000Z

176

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network (OSTI)

role of hydrogen in landfill gas utilization. Sacramento,landfills (yielding “landfill gas”) and livestock-manure-Diverted Methane in landfill gas Methane in biogas from

Farrell, Alexander E.; Sperling, Dan

2007-01-01T23:59:59.000Z

177

Numerical Modeling of Gas Recovery from Methane Hydrate Reservoirs.  

E-Print Network (OSTI)

??ABSTRACTClass 1 hydrate deposits are characterized by a hydrate bearing layer underlain by a two phase, free-gas and water, zone. A Class 1 hydrate reservoir… (more)

Silpngarmlert, Suntichai

2007-01-01T23:59:59.000Z

178

NETL: Methane Hydrates - 2012 Ignik Sikumi gas hydrate field...  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Performers ConocoPhillips Company, Houston TX and Anchorage AK ConocoPhillips Japan Oil, Gas and Metals National Corporation (JOGMEC), Japan JOGMEC...

179

NETL: Methane Hydrates - DOE/NETL Projects - Natural Gas Hydrates in  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Hydrates in Permafrost and Marine Settings: Resources, Properties, and Environmental Issues Last Reviewed 12/30/2013 Natural Gas Hydrates in Permafrost and Marine Settings: Resources, Properties, and Environmental Issues Last Reviewed 12/30/2013 DE-FE0002911 Goal The objective of this DOE-USGS Interagency Agreement is to provide world-class expertise and research in support of the goals of the 2005 Energy Act for National Methane Hydrates R&D, the DOE-led U.S. interagency roadmap for gas hydrates research, and elements of the USGS mission related to energy resources, global climate, and geohazards. This project extends USGS support to the DOE Methane Hydrate R&D Program previously conducted under DE-AI26-05NT42496. Performer U.S. Geological Survey at Woods Hole, MA, Denver, CO, and Menlo Park, CA Background The USGS Interagency Agreement (IA) involves laboratory research and

180

New Natural Gas Storage and Transportation Capabilities Utilizing Rapid Methane Hydrate Formation Techniques  

Science Conference Proceedings (OSTI)

Natural gas (methane as the major component) is a vital fossil fuel for the United States and around the world. One of the problems with some of this natural gas is that it is in remote areas where there is little or no local use for the gas. Nearly 50 percent worldwide natural gas reserves of ~6,254.4 trillion ft3 (tcf) is considered as stranded gas, with 36 percent or ~86 tcf of the U.S natural gas reserves totaling ~239 tcf, as stranded gas [1] [2]. The worldwide total does not include the new estimates by U.S. Geological Survey of 1,669 tcf of natural gas north of the Arctic Circle, [3] and the U.S. ~200,000 tcf of natural gas or methane hydrates, most of which are stranded gas reserves. Domestically and globally there is a need for newer and more economic storage, transportation and processing capabilities to deliver the natural gas to markets. In order to bring this resource to market, one of several expensive methods must be used: 1. Construction and operation of a natural gas pipeline 2. Construction of a storage and compression facility to compress the natural gas (CNG) at 3,000 to 3,600 psi, increasing its energy density to a point where it is more economical to ship, or 3. Construction of a cryogenic liquefaction facility to produce LNG, (requiring cryogenic temperatures at <-161 °C) and construction of a cryogenic receiving port. Each of these options for the transport requires large capital investment along with elaborate safety systems. The Department of Energy's Office of Research and Development Laboratories at the National Energy Technology Laboratory (NETL) is investigating new and novel approaches for rapid and continuous formation and production of synthetic NGHs. These synthetic hydrates can store up to 164 times their volume in gas while being maintained at 1 atmosphere and between -10 to -20°C for several weeks. Owing to these properties, new process for the economic storage and transportation of these synthetic hydrates could be envisioned for stranded gas reserves. The recent experiments and their results from the testing within NETL's 15-Liter Hydrate Cell Facility exhibit promising results. Introduction of water at the desired temperature and pressure through an NETL designed nozzle into a temperature controlled methane environment within the 15-Liter Hydrate Cell allowed for instantaneous formation of methane hydrates. The instantaneous and continuous hydrate formation process was repeated over several days while varying the flow rate of water, its' temperature, and the overall temperature of the methane environment. These results clearly indicated that hydrates formed immediately after the methane and water left the nozzle at temperatures above the freezing point of water throughout the range of operating conditions. [1] Oil and Gas Journal Vol. 160.48, Dec 22, 2008. [2] http://www.eia.doe.gov/oiaf/servicerpt/natgas/chapter3.html and http://www.eia.doe.gov/oiaf/servicerpt/natgas/pdf/tbl7.pdf [3] U.S. Geological Survey, “Circum-Arctic Resource Appraisal: Estimates of Undiscovered Oil and Gas North of the Arctic Circle,” May 2008.

Brown, T.D.; Taylor, C.E.; Bernardo, M.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "landfill gas methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Assessing methane oxidation under landfill covers and its contribution to the above atmospheric CO{sub 2} levels: The added value of the isotope ({delta}{sup 13}C and {delta}{sup 18}O CO{sub 2}; {delta}{sup 13}C and {delta}D CH{sub 4}) approach  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer Comparison of the isotope and mass balance approaches to evaluate the level of methane oxidation within a landfill. Black-Right-Pointing-Pointer The level of methane oxidation is not homogenous under the landfill cover and is strongly correlated to the methane flux. Black-Right-Pointing-Pointer Isotope tracking of the contribution of the methane oxidation to the CO{sub 2} concentrations in the ambient air. - Abstract: We are presenting here a multi-isotope approach ({delta}{sup 13}C and {delta}{sup 18}O of CO{sub 2}; {delta}{sup 13}C and {delta}D of CH{sub 4}) to assess (i) the level(s) of methane oxidation during waste biodegradation and its migration through a landfill cover in Sonzay (France), and (ii) its contribution to the atmospheric CO{sub 2} levels above the surface. The isotope approach is compared to the more conventional mass balance approach. Results from the two techniques are comparable and show that the CH{sub 4} oxidation under the landfill cover is heterogenous, with low oxidation percentages in samples showing high biogas fluxes, which was expected in clay covers presenting fissures, through which CH{sub 4} is rapidly transported. At shallow depth, more immobile biogas pockets show a higher level of CH{sub 4} oxidation by the methanotrophic bacteria. {delta}{sup 13}C of CO{sub 2} samples taken at different heights (from below the cover up to 8 m above the ground level) were also used to identify and assess the relative contributions of its main sources both under the landfill cover and in the surrounding atmosphere.

Widory, D., E-mail: d.widory@brgm.fr [BRGM, 3 ave Claude Guillemin, 45000 Orleans (France); Proust, E.; Bellenfant, G. [BRGM, 3 ave Claude Guillemin, 45000 Orleans (France); Bour, O. [INERIS, Parc Technologique ALATA, 60550 Verneuil-en-Halatte (France)

2012-09-15T23:59:59.000Z

182

Effects of dry bulk density and particle size fraction on gas transport parameters in variably saturated landfill cover soil  

SciTech Connect

Highlights: > The effects of soil physical properties on gas transport parameters were investigated. > Higher values of D{sub p} and k{sub a} exhibited in the '+gravel' than the '-gravel' fraction at same soil-air content ({epsilon}). > Recent power law models for D{sub p} (WLR) and k{sub a} (RPL) were modified. > Model parameters were linearly related to easily measurable dry bulk density ({rho}{sub b}). - Abstract: Landfill sites are emerging in climate change scenarios as a significant source of greenhouse gases. The compacted final soil cover at landfill sites plays a vital role for the emission, fate and transport of landfill gases. This study investigated the effects of dry bulk density, {rho}{sub b}, and particle size fraction on the main soil-gas transport parameters - soil-gas diffusivity (D{sub p}/D{sub o}, ratio of gas diffusion coefficients in soil and free air) and air permeability (k{sub a}) - under variably-saturated moisture conditions. Soil samples were prepared by three different compaction methods (Standard and Modified Proctor compaction, and hand compaction) with resulting {rho}{sub b} values ranging from 1.40 to 2.10 g cm{sup -3}. Results showed that D{sub p} and k{sub a} values for the '+gravel' fraction (<35 mm) became larger than for the '-gravel' fraction (<2 mm) under variably-saturated conditions for a given soil-air content ({epsilon}), likely due to enhanced gas diffusion and advection through less tortuous, large-pore networks. The effect of dry bulk density on D{sub p} and k{sub a} was most pronounced for the '+gravel' fraction. Normalized ratios were introduced for all soil-gas parameters: (i) for gas diffusivity D{sub p}/D{sub f}, the ratio of measured D{sub p} to D{sub p} in total porosity (f), (ii) for air permeability k{sub a}/k{sub a,pF4.1}, the ratio of measured k{sub a} to k{sub a} at 1235 kPa matric potential (=pF 4.1), and (iii) for soil-air content, the ratio of soil-air content ({epsilon}) to total porosity (f) (air saturation). Based on the normalized parameters, predictive power-law models for D{sub p}({epsilon}/f) and k{sub a}({epsilon}/f) models were developed based on a single parameter (water blockage factor M for D{sub p} and P for k{sub a}). The water blockage factors, M and P, were found to be linearly correlated to {rho}{sub b} values, and the effects of dry bulk density on D{sub p} and k{sub a} for both '+gravel' and '-gravel' fractions were well accounted for by the new models.

Wickramarachchi, Praneeth, E-mail: praneeth1977@yahoo.co.uk [Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan); Kawamoto, Ken; Hamamoto, Shoichiro [Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan); Institute for Environmental Science and Technology, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan); Nagamori, Masanao [Center for Environmental Science in Saitama, 914 Kamitanadare, Kazo, Saitama 347-0115 (Japan); Moldrup, Per [Environmental Engineering Section, Dept. of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 57, DK-9000 Aalborg (Denmark); Komatsu, Toshiko [Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan); Institute for Environmental Science and Technology, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan)

2011-12-15T23:59:59.000Z

183

NETL: Methane Hydrates - DOE/NETL Projects - Advanced Gas Hydrate...  

NLE Websites -- All DOE Office Websites (Extended Search)

Comparative Assessment of Advanced Gas Hydrate Production Methods Last Reviewed 09232009 DE-FC26-06NT42666 Goal The goal of this project is to compare and contrast, through...

184

Assessment of environmental health and safety issues associated with the commercialization of unconventional gas recovery: methane from coal seams  

Science Conference Proceedings (OSTI)

Potential public health and safety problems and the potential environmental impacts from the recovery of gas from coalbeds are identified and examined. The technology of methane recovery is described and economic and legal barriers to production are discussed. (ACR)

Ethridge, L.J.; Cowan, C.E.; Riedel, E.F.

1980-07-01T23:59:59.000Z

185

NETL: Methane Hydrates - Gas Hydrate Research in Deep Sea Sediments - New  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrate Research in Deep Sea Sediments - Chatham Rise, New Zealand Task Last Reviewed 12/30/2013 Hydrate Research in Deep Sea Sediments - Chatham Rise, New Zealand Task Last Reviewed 12/30/2013 DE-AI26-06NT42878 Goal The goal of the Interagency Agreement between the National Energy Technology Laboratory and the Naval Research Laboratory is to conduct research to enhance understanding of the extent and dynamics of gas hydrate deposits and their relation to areas of focused fluid flux at and beneath the seafloor. Performer Marine Biogeochemistry Section, Naval Research Laboratory, Washington, DC 20375 Background Methane is a potent greenhouse gas necessitating a better understanding of the mechanisms controlling its contribution to the atmospheric carbon cycle. Active methane fluxes (from deep sediment hydrates and seeps) contribute to shallow sediment biogeochemical carbon cycles, which in turn

186

NETL: Methane Hydrates - 2012 Ignik Sikumi gas hydrate field trial  

NLE Websites -- All DOE Office Websites (Extended Search)

2012 Ignik Sikumi gas hydrate field trial 2012 Ignik Sikumi gas hydrate field trial Photo of the Ignik Drilling Pad Download 2011/2012 Field Test Data Ignik Sikumi #1 "Fire in the Ice" Video Project Background Participants Ignik Sikumi Well Review CO2-Ch4 Exchange Overview August 2, 2013 - Project operations are complete. Read the Final Project Technical Report [PDF-44.1MB] February 19, 2013 - Data from the 2011/2012 field test is now available! Click here to access data. Status Report - May 7, 2012 Final abandonment of Ignik Sikumi #1 wellsite has been completed. Tubing, casing-tubing annulus, and flatpack were filled with cement per the abandonment procedure approved by the Alaska Oil and Gas Conservation Commission. To minimize effects on the landscape and leave as little trace of the operations as possible, a small area around the wellhead was

187

Trapping and migration of methane associated with the gas hydrate stability zone at the Blake Ridge Diapir  

E-Print Network (OSTI)

on lateral variations of the BGHS and BSR. This may be important for gas hydrate studies in regions of the manuscript. References Brown, K.M., 1996. The nature, distribution, and origin of gas hydrate in the ChileTrapping and migration of methane associated with the gas hydrate stability zone at the Blake Ridge

Taylor, Michael H.

188

Process for producing methane from gas streams containing carbon monoxide and hydrogen  

DOE Patents (OSTI)

Carbon monoxide-containing gas streams are passed over a catalyst capable of catalyzing the disproportionation of carbon monoxide so as to deposit a surface layer of active surface carbon on the catalyst essentially without formation of inactive coke thereon. The surface layer is contacted with steam and is thus converted to methane and CO.sub.2, from which a relatively pure methane product may be obtained. While carbon monoxide-containing gas streams having hydrogen or water present therein can be used only the carbon monoxide available after reaction with said hydrogen or water is decomposed to form said active surface carbon. Although hydrogen or water will be converted, partially or completely, to methane that can be utilized in a combustion zone to generate heat for steam production or other energy recovery purposes, said hydrogen is selectively removed from a CO--H.sub.2 -containing feed stream by partial oxidation thereof prior to disproportionation of the CO content of said stream.

Frost, Albert C. (Congers, NY)

1980-01-01T23:59:59.000Z

189

T2LBM Version 1.0: Landfill bioreactor model for TOUGH2  

DOE Green Energy (OSTI)

The need to control gas and leachate production and minimize refuse volume in landfills has motivated the development of landfill simulation models that can be used by operators to predict and design optimal treatment processes. T2LBM is a module for the TOUGH2 simulator that implements a Landfill Bioreactor Model to provide simulation capability for the processes of aerobic or anaerobic biodegradation of municipal solid waste and the associated flow and transport of gas and liquid through the refuse mass. T2LBM incorporates a Monod kinetic rate law for the biodegradation of acetic acid in the aqueous phase by either aerobic or anaerobic microbes as controlled by the local oxygen concentration. Acetic acid is considered a proxy for all biodegradable substrates in the refuse. Aerobic and anaerobic microbes are assumed to be immobile and not limited by nutrients in their growth. Methane and carbon dioxide generation due to biodegradation with corresponding thermal effects are modeled. The numerous parameters needed to specify biodegradation are input by the user in the SELEC block of the TOUGH2 input file. Test problems show that good matches to laboratory experiments of biodegradation can be obtained. A landfill test problem demonstrates the capabilities of T2LBM for a hypothetical two-dimensional landfill scenario with permeability heterogeneity and compaction.

Oldenburg, Curtis M.

2001-05-22T23:59:59.000Z

190

Metro Methane Recovery Facility Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Methane Recovery Facility Biomass Facility Methane Recovery Facility Biomass Facility Jump to: navigation, search Name Metro Methane Recovery Facility Biomass Facility Facility Metro Methane Recovery Facility Sector Biomass Facility Type Landfill Gas Location Polk County, Iowa Coordinates 41.6278423°, -93.5003454° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6278423,"lon":-93.5003454,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

191

Green Power Network: Greenhouse Gas (GHG) Offsets  

NLE Websites -- All DOE Office Websites (Extended Search)

projects include renewable electricity generation, energy efficiency measures, methane capture at landfill sites, soil carbon sequestration, and reforestation projects....

192

NETL: Methane Hydrates - DOE/NETL Projects - Estimate Gas-Hydrate  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrical Resistivity Investigation of Gas Hydrate Distribution in Mississippi Canyon Block 118, Gulf of Mexico Last Reviewed 6/14/2013 Electrical Resistivity Investigation of Gas Hydrate Distribution in Mississippi Canyon Block 118, Gulf of Mexico Last Reviewed 6/14/2013 DE-FC26-06NT42959 Goal The goal of this project is to evaluate the direct-current electrical resistivity (DCR) method for remotely detecting and characterizing the concentration of gas hydrates in the deep marine environment. This will be accomplished by adapting existing DCR instrumentation for use on the sea floor in the deep marine environment and testing the new instrumentation at Mississippi Canyon Block 118. Performer Baylor University, Waco, TX 76798 Collaborators Advanced Geosciences Inc., Austin, TX 78726 Specialty Devices Inc., Wylie, TX 75098 Background Marine occurrences of methane hydrates are known to form in two distinct

193

AIRBORNE, OPTICAL REMOTE SENSING OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION  

Science Conference Proceedings (OSTI)

Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. This six-month technical report summarizes the progress for each of the proposed tasks, discusses project concerns, and outlines near-term goals. Ophir has completed a data survey of two major natural gas pipeline companies on the design requirements for an airborne, optical remote sensor. The results of this survey are disclosed in this report. A substantial amount of time was spent on modeling the expected optical signal at the receiver at different absorption wavelengths, and determining the impact of noise sources such as solar background, signal shot noise, and electronic noise on methane and ethane gas detection. Based upon the signal to noise modeling and industry input, Ophir finalized the design requirements for the airborne sensor, and released the critical sensor light source design requirements to qualified vendors. Responses from the vendors indicated that the light source was not commercially available, and will require a research and development effort to produce. Three vendors have responded positively with proposed design solutions. Ophir has decided to conduct short path optical laboratory experiments to verify the existence of methane and absorption at the specified wavelength, prior to proceeding with the light source selection. Techniques to eliminate common mode noise were also evaluated during the laboratory tests. Finally, Ophir has included a summary of the potential concerns for project success and has established future goals.

Jerry Myers

2003-05-13T23:59:59.000Z

194

UCSD Biomass to Power Economic Feasibility Study  

E-Print Network (OSTI)

conversion methods (landfill gas?to?methane production, from the Minnesota Methane landfill gas facilities.   In conversion of sewer gas, landfill gas, or other renewable 

Cattolica, Robert

2009-01-01T23:59:59.000Z

195

AIRBORNE, OPTICAL REMOTE SENSING OF METHANE AND ETHANE FOR NATURAL GAS PIPLINE LEAK DETECTION  

SciTech Connect

Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. The third six-month technical report contains a summary of the progress made towards finalizing the design and assembling the airborne, remote methane and ethane sensor. The vendor has been chosen and is on contract to develop the light source with the appropriate linewidth and spectral shape to best utilize the Ophir gas correlation software. Ophir has expanded upon the target reflectance testing begun in the previous performance period by replacing the experimental receiving optics with the proposed airborne large aperture telescope, which is theoretically capable of capturing many times more signal return. The data gathered from these tests has shown the importance of optimizing the fiber optic receiving fiber to the receiving optic and has helped Ophir to optimize the design of the gas cells and narrowband optical filters. Finally, Ophir will discuss remaining project issues that may impact the success of the project.

Jerry Myers

2004-05-12T23:59:59.000Z

196

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

of Baltimore by using landfill gas (methane) to co-generateIt involves using landfill gas (methane) currently being

Neelis, Maarten

2008-01-01T23:59:59.000Z

197

Carbon Capital: The Political Ecology of Carbon Forestry and Development in Chiapas, Mexico  

E-Print Network (OSTI)

fuel switching; LFG = landfill gas; CMM = coal mine methane;HFCs) and landfill methane gas (LFG) (which do not transform

Osborne, Tracey Muttoo

2010-01-01T23:59:59.000Z

198

Demonstration plant engineering and design. Phase I: the pipeline gas demonstration plant. Volume 7. Plant Section 500 - shift/methanation  

Science Conference Proceedings (OSTI)

Contract No. EF-77-C-01-2542 between Conoco Inc. and the US Department of Energy provides for the design, construction, and operation of a demonstration plant capable of processing bituminous caking coals into clean pipeline quality gas. The project is currently in the design phase (Phase I). This phase is scheduled to be completed in June 1981. One of the major efforts of Phase I is the completion of the process design and the project engineering design of the Demonstration Plant. A report of the design effort is being issued in 24 volumes. This is Volume 7 which reports the design of Plant Section 500 - Shift/Methanation. The shift/methanation process is used to convert the purified synthesis gas from the Rectisol unit (Plant Section 400) into the desired high-Btu SNG product. This is accomplished in a series of fixed-bed adiabatic reactors. Water is added to the feed gas to the reactors to effect the requisite reactions. A nickel catalyst is used in the shift/methanation process, and the only reaction products are methane and carbon dioxide. The carbon dioxide is removed from the SNG in Plant Sectin 600 - CO/sub 2/ Removal. After carbon dioxide removal from the SNG, the SNG is returned to Plant Section 500 for final methanation. The product from the final methanation reactor is an SNG stream having a gross heating value of approximately 960 Btu per standard cubic foot. The shift/methanation unit at design conditions produces 19 Million SCFD of SNG from 60 Million SCFD of purified synthesis gas.

Not Available

1981-01-01T23:59:59.000Z

199

AIRBORNE, OPTICAL REMOTE SENSING OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION  

SciTech Connect

Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. This second six-month technical report summarizes the progress made towards defining, designing, and developing the hardware and software segments of the airborne, optical remote methane and ethane sensor. The most challenging task to date has been to identify a vendor capable of designing and developing a light source with the appropriate output wavelength and power. This report will document the work that has been done to identify design requirements, and potential vendors for the light source. Significant progress has also been made in characterizing the amount of light return available from a remote target at various distances from the light source. A great deal of time has been spent conducting laboratory and long-optical path target reflectance measurements. This is important since it helps to establish the overall optical output requirements for the sensor. It also reduces the relative uncertainty and risk associated with developing a custom light source. The data gathered from the optical path testing has been translated to the airborne transceiver design in such areas as: fiber coupling, optical detector selection, gas filters, and software analysis. Ophir will next, summarize the design progress of the transceiver hardware and software development. Finally, Ophir will discuss remaining project issues that may impact the success of the project.

Jerry Myers

2003-11-12T23:59:59.000Z

200

Intelligent Bioreactor Management Information System (IBM-IS) for Mitigation of Greenhouse Gas Emissions  

DOE Green Energy (OSTI)

Methane is an important contributor to global warming with a total climate forcing estimated to be close to 20% that of carbon dioxide (CO2) over the past two decades. The largest anthropogenic source of methane in the US is 'conventional' landfills, which account for over 30% of anthropogenic emissions. While controlling greenhouse gas emissions must necessarily focus on large CO2 sources, attention to reducing CH4 emissions from landfills can result in significant reductions in greenhouse gas emissions at low cost. For example, the use of 'controlled' or bioreactor landfilling has been estimated to reduce annual US greenhouse emissions by about 15-30 million tons of CO2 carbon (equivalent) at costs between $3-13/ton carbon. In this project we developed or advanced new management approaches, landfill designs, and landfill operating procedures for bioreactor landfills. These advances are needed to address lingering concerns about bioreactor landfills (e.g., efficient collection of increased CH4 generation) in the waste management industry, concerns that hamper bioreactor implementation and the consequent reductions in CH4 emissions. Collectively, the advances described in this report should result in better control of bioreactor landfills and reductions in CH4 emissions. Several advances are important components of an Intelligent Bioreactor Management Information System (IBM-IS).

Paul Imhoff; Ramin Yazdani; Don Augenstein; Harold Bentley; Pei Chiu

2010-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "landfill gas methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Plasma—Methane Reformation  

INL thermal plasma methane reformation process produces hydrogen and elemental carbon from natural gas and other hydrocarbons, such as natural gas or ...

202

Assessment of Fuel Gas Cleanup Systems for Waste Gas Fueled Power Generation  

Science Conference Proceedings (OSTI)

There are many industrial operations that have waste gas streams that are combustible. Chief among these is biogas produced by anaerobic digestion of organic wastes to produce a methane-rich biogas in landfills and anaerobic digesters. These gas streams are increasingly being used to fuel local power generators. The biogas streams, however, contain traces of a wide variety of contaminants. Removal of these contaminants may be required to either meet the manufacturer's requirements for fuel gas quality to...

2006-12-21T23:59:59.000Z

203

A Guidebook for Low-Carbon Development at the Local Level  

E-Print Network (OSTI)

level. Percentage of landfill gas (methane) that is capturedenergy and reducing carbon emissions: landfill gas capture.Landfill gas is primarily methane; thus it can be captured

Zhou, Nan

2012-01-01T23:59:59.000Z

204

Abatement of Air Pollution: Greenhouse Gas Emissions Offset Projects (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

Projects that either capture and destroy landfill methane, avoid sulfur hexafluoride emissions, sequester carbon through afforestation, provide end-use energy efficiency, or avoid methane emissions...

205

02/09/2009 16:58Warming Of Arctic Current Over 30 Years Triggers Release Of Methane Gas Page 1 of 2http://www.sciencedaily.com/releases/2009/08/090814103231.htm  

E-Print Network (OSTI)

02/09/2009 16:58Warming Of Arctic Current Over 30 Years Triggers Release Of Methane Gas Page 1 of 2 greenhouse gas, from methane hydrate stored in the sediment beneath the seabed. Scientists at the National of methane gas are rising from the seabed of the West Spitsbergen continental margin in the Arctic

Rohling, Eelco

206

MethaneHydrateRD_FC.indd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Academies 2010 One of these is methane hydrate - molecules of natural gas trapped in ice crystals. Containing vast amounts of natural gas, methane hydrate occurs in a variety...

207

Abatement of Air Pollution: Greenhouse Gas Emissions Offset Projects...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Type Environmental Regulations Projects that either capture and destroy landfill methane, avoid sulfur hexafluoride emissions, sequester carbon through afforestation, provide...

208

Heat pipe methanator  

DOE Patents (OSTI)

A heat pipe methanator for converting coal gas to methane. Gravity return heat pipes are employed to remove the heat of reaction from the methanation promoting catalyst, transmitting a portion of this heat to an incoming gas pre-heat section and delivering the remainder to a steam generating heat exchanger.

Ranken, William A. (Los Alamos, NM); Kemme, Joseph E. (Los Alamos, NM)

1976-07-27T23:59:59.000Z

209

Questions and Answers - In the chemical equation for methane gas why is  

NLE Websites -- All DOE Office Websites (Extended Search)

carbon found in all organicand inorganic matter? carbon found in all organic<br>and inorganic matter? Previous Question (Is carbon found in all organic and inorganic matter?) Questions and Answers Main Index Next Question (How do you separate tungsten from its ore?) How do you separatetungsten from its ore? In the chemical equation CH4 for methane gas why is there more hydrogen than carbon? This is a very good question, and the answer is at the heart of modern atomic physics. The nucleus is at the center of the atom, like the sun is at the center of the solar system. Electrons move around in orbits around the nucleus, like the planets around the sun. But there is an important difference: electrons can only have very special energies, which correspond to specific orbits. The orbits in the atoms are called shells, and each shell can only hold so

210

Landfill CH sub 4 : Rates, fates, and role in global carbon cycle  

SciTech Connect

Published estimates for worldwide landfill methane emissions range from 9 to 70 Tg yr{sup {minus}1}. Field and laboratory studies suggest that maximum methane yields from lanfilled refuse are about 0.06 to 0.09 m{sup 3} (dry Kg){sup {minus}1} refuse, depending on moisture content and other variables, such as organic loading, buffering capacity, and nutrients in landfill microevnironments. Methane yields may vary by more than an order of magnitude within a given site. Fates for landfill methane include (1) direct or delayed emission to the atmosphere through landfill cover materials or surface soils; (2) oxidation by methanotrophs in cover soils, with resulting emission of carbon dioxide; or (3) recovery of methane followed by combustion to produce carbon dioxide. The percent methane assigned to each pathway will vary among field sites and, for individual sites, through time. Nevertheless, a general framework for a landfill methane balance can be developed by consideration of landfill age, engineering and management practices, cover soil characteristics, and water balance. Direct measurements of landfill methane emissions are sparse, with rates between 10{sup {minus}6} and 10{sup {minus}8} g cm{sup {minus}2} s{sup {minus}1}; very high rates of 400 kg m{sup {minus}2} yr{sup {minus}1} have been measured at a semiarid unvegetated site. The proportion of landfill carbon that is ultimately converted to methane and carbon dioxide is problematical; the literature suggests that, at best, 25% to 40% of refuse carbon can be converted to biogas carbon. Cellulose contributes the major portion of the methane potential. Routine excavation of nondecomposed cellulosic materials after one or two decades of landfill burial suggests that uniformly high conversion rates are rarely attained at field sites.

Bogner, J.; Spokas, K.

1991-01-01T23:59:59.000Z

211

Landfill CH{sub 4}: Rates, fates, and role in global carbon cycle  

SciTech Connect

Published estimates for worldwide landfill methane emissions range from 9 to 70 Tg yr{sup {minus}1}. Field and laboratory studies suggest that maximum methane yields from lanfilled refuse are about 0.06 to 0.09 m{sup 3} (dry Kg){sup {minus}1} refuse, depending on moisture content and other variables, such as organic loading, buffering capacity, and nutrients in landfill microevnironments. Methane yields may vary by more than an order of magnitude within a given site. Fates for landfill methane include (1) direct or delayed emission to the atmosphere through landfill cover materials or surface soils; (2) oxidation by methanotrophs in cover soils, with resulting emission of carbon dioxide; or (3) recovery of methane followed by combustion to produce carbon dioxide. The percent methane assigned to each pathway will vary among field sites and, for individual sites, through time. Nevertheless, a general framework for a landfill methane balance can be developed by consideration of landfill age, engineering and management practices, cover soil characteristics, and water balance. Direct measurements of landfill methane emissions are sparse, with rates between 10{sup {minus}6} and 10{sup {minus}8} g cm{sup {minus}2} s{sup {minus}1}; very high rates of 400 kg m{sup {minus}2} yr{sup {minus}1} have been measured at a semiarid unvegetated site. The proportion of landfill carbon that is ultimately converted to methane and carbon dioxide is problematical; the literature suggests that, at best, 25% to 40% of refuse carbon can be converted to biogas carbon. Cellulose contributes the major portion of the methane potential. Routine excavation of nondecomposed cellulosic materials after one or two decades of landfill burial suggests that uniformly high conversion rates are rarely attained at field sites.

Bogner, J.; Spokas, K.

1991-12-31T23:59:59.000Z

212

Bioreactor Landfill Research and Demonstration Project Northern Oaks Landfill, Harrison, MI  

SciTech Connect

A bioreactor landfill cell with 1.2-acre footprint was constructed, filled, operated, and monitored at Northern Oaks Recycling and Disposal Facility (NORDF) at Harrison, MI. With a filled volume of 74,239 cubic yards, the cell contained approximately 35,317 tons of municipal solid waste (MSW) and 20,777 tons of cover soil. It was laid on the slope of an existing cell but separated by a geosynthetic membrane liner. After the cell reached a design height of 60 feet, it was covered with a geosynthetic membrane cap. A three-dimensional monitoring system to collect data at 48 different locations was designed and installed during the construction phase of the bioreactor cell. Each location had a cluster of monitoring devices consisting of a probe to monitor moisture and temperature, a leachate collection basin, and a gas sampling port. An increase in moisture content of the MSW in the bioreactor cell was achieved by pumping leachate collected on-site from various other cells, as well as recirculation of leachate from the bioreactor landfill cell itself. Three types of leachate injection systems were evaluated in this bioreactor cell for their efficacy to distribute pumped leachate uniformly: a leachate injection pipe buried in a 6-ft wide horizontal stone mound, a 15-ft wide geocomposite drainage layer, and a 60-ft wide geocomposite drainage layer. All leachate injection systems were installed on top of the compacted waste surface. The distribution of water and resulting MSW moisture content throughout the bioreactor cell was found to be similar for the three designs. Water coming into and leaving the cell (leachate pumped in, precipitation, snow, evaporation, and collected leachate) was monitored in order to carry out a water balance. Using a leachate injection rate of 26 – 30 gal/yard3, the average moisture content increased from 25% to 35% (wet based) over the period of this study. One of the key aspects of this bioreactor landfill study was to evaluate bioreactor start up and performance in locations with colder climate. For lifts filled during the summer months, methane generation started within three months after completion of the lift. For lifts filled in winter months, very little methane production occurred even eight months after filling. The temperature data indicated that subzero or slightly above zero (oC) temperatures persisted for unusually long periods (more than six months) in the lifts filled during winter months. This was likely due to the high thermal insulation capability of the MSW and the low level of biological activity during start up. This observation indicates that bioreactor landfills located in cold climate and filled during winter months may require mechanisms to increase temperature and initiate biodegradation. Thus, besides moisture, temperature may be the next important factor controlling the biological decomposition in anaerobic bioreactor landfills. Spatial and temporal characterization of leachate samples indicated the presence of low levels of commonly used volatile organic compounds (including acetone, methyl ethyl ketone, methyl isobutyl ketone, and toluene) and metals (including arsenic, chromium, and zinc). Changes and leachate and gaseous sample characteristics correlated with enhanced biological activity and increase in temperature. Continued monitoring of this bioreactor landfill cell is expected to yield critical data needed for start up, design, and operation of this emerging process.

Zhao, Xiando; Voice, Thomas; and Hashsham, Syed A.

2006-08-29T23:59:59.000Z

213

A Perspective of petroleum, natural gas, and coal bed methane on the energy security of India  

Science Conference Proceedings (OSTI)

The global energy requirement has grown at a phenomenal rate and the consumption of primary energy sources has been a very high positive growth. This article focuses on the consumption of different primary energy sources and it identifies that coal will continue to remain as the prime energy in the foreseeable future. It examines energy requirement perspectives for India and demands of petroleum, natural gas, and coal bed methane in the foreseeable future. It discusses the state of present day petroleum and petrochemical industries in the country and the latest advances in them to take over in the next few years. The regional pattern of consumption of primary energy sources shows that oil remains as the largest single source of primary energy in most parts of the world. However, gas dominates as the prime source in some parts of the world. Economic development and poverty alleviation depend on securing affordable energy sources and for the country's energy security; it is necessary to adopt the latest technological advances in petroleum and petrochemical industries by supportive government policies. But such energy is very much concerned with environmental degradation and must be driven by contemporary managerial acumen addressing environmental and social challenges effectively. Environmental laws for the abatement of environmental degradation are discussed in this paper. The paper concludes that energy security leading to energy independence is certainly possible and can be achieved through a planned manner.

Ghose, M.K.; Paul, B. [Indian School of Mines University, Dhanbad (India)

2008-07-01T23:59:59.000Z

214

UNFCCC-Consolidated baseline and monitoring methodology for landfill...  

Open Energy Info (EERE)

Facebook icon Twitter icon UNFCCC-Consolidated baseline and monitoring methodology for landfill gas project activities Jump to: navigation, search Tool Summary LAUNCH TOOL Name:...

215

Application of numerical, experimental and life cycle assessment methods to the investigation of natural gas production from methane hydrate deposits using carbon dioxide clathrate sequestration.  

E-Print Network (OSTI)

??Natural gas hydrates, commonly called methane (CH4) hydrates, are ice-like materials belonging to the family of clathrates that form at low temperature and high pressure.… (more)

Nago, Annick

2013-01-01T23:59:59.000Z

216

A New Portable Instrument for In Situ Measurement of Atmospheric Methane Mole Fraction by Applying an Improved Tin Dioxide–Based Gas Sensor  

Science Conference Proceedings (OSTI)

A new portable instrument based on a tin dioxide natural gas leak detector was developed to monitor the atmospheric methane mixing ratio in areas lacking sufficient infrastructure to sustain a conventional measurement system, such as a large ...

Hiroshi Suto; Gen Inoue

2010-07-01T23:59:59.000Z

217

Gas tracer composition and method. [Process to determine whether any porous underground methane storage site is in fluid communication with a gas producing well  

SciTech Connect

A process is described for determining whether any porous underground gaseous methane storage sites is in fluid communication with a gas producing well, and if there is fluid communication, determining which site is in the fluid communication comprising injecting a different gaseous tracer mixture into each of the sites at some location in each of the site in an amount such that the presence of the tracer mixture will be detectable in the gaseous methane stored therein, each of the mixture having the properties of (1) not occurring in natural supplies of methane, (2) diffusing through any underground methane storage site in a manner very similar in rate to methane, and (3) being substantially insoluble in petroleum distillates, after a period of time sufficient for each of the tracer mixtures to diffuse through the underground site from its injection location to the well, withdrawing a sample gaseous product from the well, testing the sample gaseous product for the presence of each of the tracer mixtures.

Malcosky, N.D.; Koziar, G.

1987-09-01T23:59:59.000Z

218

Investigations of natural attenuation in groundwater near a landfill and implications for landfill post-closure  

E-Print Network (OSTI)

-closure phase. During the post-closure phase, landfill operators need to convince environmental authorities treatment of residual greenhouse gas emissions (e.g. Scheutz et al., 2009). From an operator's perspective to be a source of cost. Therefore during the post-closure phase, landfill operators need to convince

Paris-Sud XI, Université de

219

Westchester Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Landfill Biomass Facility Landfill Biomass Facility Jump to: navigation, search Name Westchester Landfill Biomass Facility Facility Westchester Landfill Sector Biomass Facility Type Landfill Gas Location Cook County, Illinois Coordinates 41.7376587°, -87.697554° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7376587,"lon":-87.697554,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

220

Kiefer Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Kiefer Landfill Biomass Facility Kiefer Landfill Biomass Facility Jump to: navigation, search Name Kiefer Landfill Biomass Facility Facility Kiefer Landfill Sector Biomass Facility Type Landfill Gas Location Sacramento County, California Coordinates 38.47467°, -121.3541631° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.47467,"lon":-121.3541631,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "landfill gas methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Milliken Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Milliken Landfill Biomass Facility Milliken Landfill Biomass Facility Jump to: navigation, search Name Milliken Landfill Biomass Facility Facility Milliken Landfill Sector Biomass Facility Type Landfill Gas Location San Bernardino County, California Coordinates 34.9592083°, -116.419389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9592083,"lon":-116.419389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

222

Colton Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Colton Landfill Biomass Facility Colton Landfill Biomass Facility Jump to: navigation, search Name Colton Landfill Biomass Facility Facility Colton Landfill Sector Biomass Facility Type Landfill Gas Location San Bernardino County, California Coordinates 34.9592083°, -116.419389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9592083,"lon":-116.419389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

223

Girvin Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Girvin Landfill Biomass Facility Girvin Landfill Biomass Facility Jump to: navigation, search Name Girvin Landfill Biomass Facility Facility Girvin Landfill Sector Biomass Facility Type Landfill Gas Location Duval County, Florida Coordinates 30.3500511°, -81.6035062° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.3500511,"lon":-81.6035062,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

224

Acme Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Landfill Biomass Facility Landfill Biomass Facility Jump to: navigation, search Name Acme Landfill Biomass Facility Facility Acme Landfill Sector Biomass Facility Type Landfill Gas Location Contra Costa County, California Coordinates 37.8534093°, -121.9017954° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.8534093,"lon":-121.9017954,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

225

BKK Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

BKK Landfill Biomass Facility BKK Landfill Biomass Facility Jump to: navigation, search Name BKK Landfill Biomass Facility Facility BKK Landfill Sector Biomass Facility Type Landfill Gas Location Los Angeles County, California Coordinates 34.3871821°, -118.1122679° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.3871821,"lon":-118.1122679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

226

Dane County Landfill | Open Energy Information  

Open Energy Info (EERE)

Dane County Landfill Dane County Landfill Jump to: navigation, search Name Dane County Landfill Facility Dane County Landfill #2 Rodefeld Sector Biomass Facility Type Landfill Gas Location Dane County, Wisconsin Coordinates 43.0186073°, -89.5497632° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0186073,"lon":-89.5497632,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

227

Commercialization of waste gob gas and methane produced in conjunction with coal mining operations. Final report, August 1992--December 1993  

Science Conference Proceedings (OSTI)

The primary objectives of the project were to identify and evaluate existing processes for (1) using gas as a feedstock for production of marketable, value-added commodities, and (2) enriching contaminated gas to pipeline quality. The following gas conversion technologies were evaluated: (1) transformation to liquid fuels, (2) manufacture of methanol, (3) synthesis of mixed alcohols, and (4) conversion to ammonia and urea. All of these involved synthesis gas production prior to conversion to the desired end products. Most of the conversion technologies evaluated were found to be mature processes operating at a large scale. A drawback in all of the processes was the need to have a relatively pure feedstock, thereby requiring gas clean-up prior to conversion. Despite this requirement, the conversion technologies were preliminarily found to be marginally economic. However, the prohibitively high investment for a combined gas clean-up/conversion facility required that REI refocus the project to investigation of gas enrichment alternatives. Enrichment of a gas stream with only one contaminant is a relatively straightforward process (depending on the contaminant) using available technology. However, gob gas has a unique nature, being typically composed of from constituents. These components are: methane, nitrogen, oxygen, carbon dioxide and water vapor. Each of the four contaminants may be separated from the methane using existing technologies that have varying degrees of complexity and compatibility. However, the operating and cost effectiveness of the combined system is dependent on careful integration of the clean-up processes. REI is pursuing Phase 2 of this project for demonstration of a waste gas enrichment facility using the approach described above. This is expected to result in the validation of the commercial and technical viability of the facility, and the refinement of design parameters.

Not Available

1993-12-01T23:59:59.000Z

228

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Mechanisms by Which Methane Gas and Methane Hydrate Coexist In Ocean Sediments Mechanisms by Which Methane Gas and Methane Hydrate Coexist In Ocean Sediments Authors: Maa...

229

Coalbed Methane  

Energy.gov (U.S. Department of Energy (DOE))

Coalbed methane is natural gas found in coal deposits. It was once considered a nuisance and mine safety hazard, but today has become a valuable part of the U.S. energy portfolio. A major reason for this is resource characterization and the establishment of efficient recovery methods pioneered by Office of Fossil Energy R&D.

230

Drilling and Production Testing the Methane Hydrate Resource Potential Associated with the Barrow Gas Fields  

SciTech Connect

In November of 2008, the Department of Energy (DOE) and the North Slope Borough (NSB) committed funding to develop a drilling plan to test the presence of hydrates in the producing formation of at least one of the Barrow Gas Fields, and to develop a production surveillance plan to monitor the behavior of hydrates as dissociation occurs. This drilling and surveillance plan was supported by earlier studies in Phase 1 of the project, including hydrate stability zone modeling, material balance modeling, and full-field history-matched reservoir simulation, all of which support the presence of methane hydrate in association with the Barrow Gas Fields. This Phase 2 of the project, conducted over the past twelve months focused on selecting an optimal location for a hydrate test well; design of a logistics, drilling, completion and testing plan; and estimating costs for the activities. As originally proposed, the project was anticipated to benefit from industry activity in northwest Alaska, with opportunities to share equipment, personnel, services and mobilization and demobilization costs with one of the then-active exploration operators. The activity level dropped off, and this benefit evaporated, although plans for drilling of development wells in the BGF's matured, offering significant synergies and cost savings over a remote stand-alone drilling project. An optimal well location was chosen at the East Barrow No.18 well pad, and a vertical pilot/monitoring well and horizontal production test/surveillance well were engineered for drilling from this location. Both wells were designed with Distributed Temperature Survey (DTS) apparatus for monitoring of the hydrate-free gas interface. Once project scope was developed, a procurement process was implemented to engage the necessary service and equipment providers, and finalize project cost estimates. Based on cost proposals from vendors, total project estimated cost is $17.88 million dollars, inclusive of design work, permitting, barging, ice road/pad construction, drilling, completion, tie-in, long-term production testing and surveillance, data analysis and technology transfer. The PRA project team and North Slope have recommended moving forward to the execution phase of this project.

Steve McRae; Thomas Walsh; Michael Dunn; Michael Cook

2010-02-22T23:59:59.000Z

231

Methane Hydrate | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Methane Hydrate Methane Hydrate Methane Hydrate Types of Methane Hydrate Deposits Types of Methane Hydrate Deposits Methane hydrate is a cage-like lattice of ice inside of which are trapped molecules of methane, the chief constituent of natural gas. If methane hydrate is either warmed or depressurized, it will revert back to water and natural gas. When brought to the earth's surface, one cubic meter of gas hydrate releases 164 cubic meters of natural gas. Hydrate deposits may be several hundred meters thick and generally occur in two types of settings: under Arctic permafrost, and beneath the ocean floor. Methane that forms hydrate can be both biogenic, created by biological activity in sediments, and thermogenic, created by geological processes deeper within the earth.

232

Palladium-catalyzed combustion of methane: Simulated gas turbine combustion at atmospheric pressure  

Science Conference Proceedings (OSTI)

Atmospheric pressure tests were performed in which a palladium catalyst ignites and stabilizes the homogeneous combustion of methane. Palladium exhibited a reversible deactivation at temperatures above 750 C, which acted to ``self-regulate`` its operating temperature. A properly treated palladium catalyst could be employed to preheat a methane/air mixture to temperatures required for ignition of gaseous combustion (ca. 800 C) without itself being exposed to the mixture adiabatic flame temperature. The operating temperature of the palladium was found to be relatively insensitive to the methane fuel concentration or catalyst inlet temperature over a wide range of conditions. Thus, palladium is well suited for application in the ignition and stabilization of methane combustion.

Griffin, T.; Weisenstein, W. [ABB Corporate Research Center, Daettwill (Switzerland); Scherer, V. [ABB Kraftwerke, Mannheim (Germany); Fowles, M. [ICI Katalco, Cleveland (United Kingdom)

1995-04-01T23:59:59.000Z

233

NETL: Methane Hydrates - DOE/NETL Projects - Estimate Gas-Hydrate...  

NLE Websites -- All DOE Office Websites (Extended Search)

TX 78726 Specialty Devices Inc., Wylie, TX 75098 Background Marine occurrences of methane hydrates are known to form in two distinct ways. By far the most common occurrence is...

234

Design of top covers supporting aerobic in situ stabilization of old landfills - An experimental simulation in lysimeters  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Tested engineered covers as surrogate to gas extraction during and after in situ aeration. Black-Right-Pointing-Pointer Examined how covers influence gas emissions, water balance and leachate generation. Black-Right-Pointing-Pointer Investigated effect of top covers on air-distribution in waste mass during aeration. Black-Right-Pointing-Pointer We suggest criteria and cover design to meet the demands during and after aeration. Black-Right-Pointing-Pointer Such cover systems may offer greenhouse gas emission reduction also after active aeration. - Abstract: Landfill aeration by means of low pressure air injection is a promising tool to reduce long term emissions from organic waste fractions through accelerated biological stabilization. Top covers that enhance methane oxidation could provide a simple and economic way to mitigate residual greenhouse gas emissions from in situ aerated landfills, and may replace off-gas extraction and treatment, particularly at smaller and older sites. In this respect the installation of a landfill cover system adjusted to the forced-aerated landfill body is of great significance. Investigations into large scale lysimeters (2 Multiplication-Sign 2 Multiplication-Sign 3 m) under field conditions have been carried out using different top covers including compost materials and natural soils as a surrogate to gas extraction during active low pressure aeration. In the present study, the emission behaviour as well as the water balance performance of the lysimeters has been investigated, both prior to and during the first months of in situ aeration. Results reveal that mature sewage sludge compost (SSC) placed in one lysimeter exhibits in principle optimal ambient conditions for methanotrophic bacteria to enhance methane oxidation. Under laboratory conditions the mature compost mitigated CH{sub 4} loadings up to 300 l CH{sub 4}/m{sup 2} d. In addition, the compost material provided high air permeability even at 100% water holding capacity (WHC). In contrast, the more cohesive, mineral soil cover was expected to cause a notably uniform distribution of the injected air within the waste layer. Laboratory results also revealed sufficient air permeability of the soil materials (TS-F and SS-Z) placed in lysimeter C. However, at higher compaction density SS-Z became impermeable at 100% WHC. Methane emissions from the reference lysimeter with the smaller substrate cover (12-52 g CH{sub 4}/m{sup 2} d) were significantly higher than fluxes from the other lysimeters (0-19 g CH{sub 4}/m{sup 2} d) during in situ aeration. Regarding water balance, lysimeters covered with compost and compost-sand mixture, showed the lowest leachate rate (18-26% of the precipitation) due to the high water holding capacity and more favourable plant growth conditions compared to the lysimeters with mineral, more cohesive, soil covers (27-45% of the precipitation). On the basis of these results, the authors suggest a layered top cover system using both compost material as well as mineral soil in order to support active low-pressure aeration. Conventional soil materials with lower permeability may be used on top of the landfill body for a more uniform aeration of the waste due to an increased resistance to vertical gas flow. A compost cover may be built on top of the soil cover underlain by a gas distribution layer to improve methane oxidation rates and minimise water infiltration. By planting vegetation with a high transpiration rate, the leachate amount emanating from the landfill could be further minimised. The suggested design may be particularly suitable in combination with intermittent in situ aeration, in the later stage of an aeration measure, or at very small sites and shallow deposits. The top cover system could further regulate water infiltration into the landfill and mitigate residual CH{sub 4} emissions, even beyond the time of active aeration.

Hrad, Marlies [Institute of Waste Management, Department of Water-Atmosphere-Environment, University of Natural Resources and Life Sciences, Muthgasse 107, 1190 Vienna (Austria); Huber-Humer, Marion, E-mail: marion.huber-humer@boku.ac.at [Institute of Waste Management, Department of Water-Atmosphere-Environment, University of Natural Resources and Life Sciences, Muthgasse 107, 1190 Vienna (Austria); Wimmer, Bernhard; Reichenauer, Thomas G. [Health and Environment Department, Environmental Resources and Technologies, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Strasse 24, 3430 Tulln (Austria)

2012-12-15T23:59:59.000Z

235

Adsorption of methane, ethane, ethylene, and carbon dioxide on high silica pentasil zeolites and zeolite like materials using gas chromatography pulse technique  

SciTech Connect

Adsorption of methane, ethane, ethylene, and carbon dioxide in H-ZSM-5, Na-ZSM-5, H-ZSM-8, Na-ZSM-8, Silicalite, and ALPO-5 at 303-473 K has been investigated using a gas chromatography pulse technique. The zeolites have been compared for the heat of adsorption of the adsorbates at near zero adsorbate loading and also for the specific retention volume (or thermodynamic adsorption equilibrium constant) of ethane, ethylene, and carbon dioxide relative to that of methane. Among the zeolites, ALPO-5 has a high potential for the separation of methane, ethane, ethylene, and carbon dioxide from their mixture. 21 refs., 4 figs., 4 tabs.

Choudhary, V.R.; Mayadevi, S. (National Chemical Lab., Pune (India))

1993-10-01T23:59:59.000Z

236

Coalbed Methane Procduced Water Treatment Using Gas Hydrate Formation at the Wellhead  

Science Conference Proceedings (OSTI)

Water associated with coalbed methane (CBM) production is a significant and costly process waste stream, and economic treatment and/or disposal of this water is often the key to successful and profitable CBM development. In the past decade, advances have been made in the treatment of CBM produced water. However, produced water generally must be transported in some fashion to a centralized treatment and/or disposal facility. The cost of transporting this water, whether through the development of a water distribution system or by truck, is often greater than the cost of treatment or disposal. To address this economic issue, BC Technologies (BCT), in collaboration with Oak Ridge National Laboratory (ORNL) and International Petroleum Environmental Consortium (IPEC), proposed developing a mechanical unit that could be used to treat CBM produced water by forming gas hydrates at the wellhead. This process involves creating a gas hydrate, washing it and then disassociating hydrate into water and gas molecules. The application of this technology results in three process streams: purified water, brine, and gas. The purified water can be discharged or reused for a variety of beneficial purposes and the smaller brine can be disposed of using conventional strategies. The overall objectives of this research are to develop a new treatment method for produced water where it could be purified directly at the wellhead, to determine the effectiveness of hydrate formation for the treatment of produced water with proof of concept laboratory experiments, to design a prototype-scale injector and test it in the laboratory under realistic wellhead conditions, and to demonstrate the technology under field conditions. By treating the water on-site, producers could substantially reduce their surface handling costs and economically remove impurities to a quality that would support beneficial use. Batch bench-scale experiments of the hydrate formation process and research conducted at ORNL confirmed the feasibility of the process. However, researchers at BCT were unable to develop equipment suitable for continuous operation and demonstration of the process in the field was not attempted. The significant achievements of the research area: Bench-scale batch results using carbon dioxide indicate >40% of the feed water to the hydrate formation reactor was converted to hydrate in a single pass; The batch results also indicate >23% of the feed water to the hydrate formation reactor (>50% of the hydrate formed) was converted to purified water of a quality suitable for discharge; Continuous discharge and collection of hydrates was achieved at atmospheric pressure. Continuous hydrate formation and collection at atmospheric conditions was the most significant achievement and preliminary economics indicate that if the unit could be made operable, it is potentially economic. However, the inability to continuously separate the hydrate melt fraction left the concept not ready for field demonstration and the project was terminated after Phase Two research.

BC Technologies

2009-12-30T23:59:59.000Z

237

Direct production of hydrogen and aromatics from methane or natural gas: Review of recent U.S. patents  

DOE Green Energy (OSTI)

Since the year 2000, the United States Patent and Trademark Office (USPTO) has granted a dozen patents for inventions related to methane dehydroaromatization processes. One of them was granted to UOP LLC (Des Plaines). It relates to a catalyst composition and preparation method. Two patents were granted to Conoco Phillips Company (Houston, TX). One was aimed at securing a process and operating conditions for methane aromatization. The other was aimed at securing a process that may be integrated with separation of wellhead fluids and blending of the aromatics produced from the gas with the crude. Nine patents were granted to ExxonMobil Chemical Patents Inc. (Houston, TX). Most of these were aimed at securing a dehydroaromatization process where methane-containing feedstock moves counter currently to a particulate catalyst. The coked catalyst is heated or regenerated either in the reactor, by cyclic operation, or in annex equipment, and returned to the reactor. The reactor effluent stream may be separated in its main components and used or recycled as needed. A brief summary of those inventions is presented in this review.

Lucia M. Petkovic; Daniel M. Ginosar

2012-03-01T23:59:59.000Z

238

Catalytic partial oxidation of methane to synthesis gas over Ni-based catalysts. 2: Transient, FTIR, and XRD measurements  

SciTech Connect

Ni/La{sub 2}O{sub 3} and Ni/Al{sub 2}O{sub 3} catalysts were studied under conditions of partial oxidation of methane to synthesis gas. Temperature-programmed oxidation and hydrogenation experiments have shown that carbon accumulation over Ni/La{sub 2}O{sub 3} during CPO remains essentially constant after 2 h time on-stream, while over Ni/Al{sub 2}O{sub 3} it increases during the initial several hours. FTIR spectroscopy of surface species formed over the Ni/La{sub 2}O{sub 3} catalyst under reaction conditions indicates that the carbonate species formed over the support do not decompose under He and O{sub 2} treatment at 600 C. XRD spectra obtained following high ({approximately}90%) or low (<10%) methane conversions show that Ni, La{sub 2}O{sub 3}, La{sub 2}O{sub 2}CO{sub 3}, NiO, and Ni{sub 3}C phases are present in the case of high methane and complete oxygen conversions, while nickel oxide, nickel carbide and, to a small extent, La{sub 2}O{sub 2}CO{sub 3} phases are present in the case of low CH{sub 4} and incomplete oxygen conversions.

Tsipouriari, V.A.; Verykios, X.E. [Univ. of Patras (Greece). Dept. of Chemical Engineering

1998-10-01T23:59:59.000Z

239

Modelling of environmental impacts of solid waste landfilling within the life-cycle analysis program EASEWASTE  

Science Conference Proceedings (OSTI)

A new computer-based life-cycle assessment model (EASEWASTE) has been developed to evaluate resource and environmental consequences of solid waste management systems. This paper describes the landfilling sub-model used in the life-cycle assessment program EASEWASTE, and examines some of the implications of this sub-model. All quantities and concentrations of leachate and landfill gas can be modified by the user in order to bring them in agreement with the actual landfill that is assessed by the model. All emissions, except the generation of landfill gas, are process specific. The landfill gas generation is calculated on the basis of organic matter in the landfilled waste. A landfill assessment example is provided. For this example, the normalised environmental effects of landfill gas on global warming and photochemical smog are much greater than the environmental effects for landfill leachate or for landfill construction. A sensitivity analysis for this example indicates that the overall environmental impact is sensitive to the gas collection efficiency and the use of the gas, but not to the amount of leachate generated, or the amount of soil or liner material used in construction. The landfill model can be used for evaluating different technologies with different liners, gas and leachate collection efficiencies, and to compare the environmental consequences of landfilling with alternative waste treatment options such as incineration or anaerobic digestion.

Kirkeby, Janus T.; Birgisdottir, Harpa [Environment and Resources, Technical University of Denmark, DTU, Building 113, DK-2800 Kgs. Lyngby (Denmark); Bhander, Gurbakash Singh; Hauschild, Michael [Department of Manufacturing Engineering and Management, Technical University of Denmark, Building 424, DK-2800 Lyngby (Denmark); Christensen, Thomas H. [Environment and Resources, Technical University of Denmark, DTU, Building 113, DK-2800 Kgs. Lyngby (Denmark)], E-mail: thc@er.dtu.dk

2007-07-01T23:59:59.000Z

240

Methane Emissions - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Carbon Dioxide Equivalent; Estimated 2003 ... for about 8.7 percent of total U.S. greenhouse gas emissions when weighted by methane’s global warming potential factor.

Note: This page contains sample records for the topic "landfill gas methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Estimation of mass transport parameters of gases for quantifying CH{sub 4} oxidation in landfill soil covers  

SciTech Connect

Methane (CH{sub 4}), which is one of the most abundant anthropogenic greenhouse gases, is produced from landfills. CH{sub 4} is biologically oxidized to carbon dioxide, which has a lower global warming potential than methane, when it passes through a cover soil. In order to quantify the amount of CH{sub 4} oxidized in a landfill cover soil, a soil column test, a diffusion cell test, and a mathematical model analysis were carried out. In the column test, maximum oxidation rates of CH{sub 4} (V{sub max}) showed higher values in the upper part of the column than those in the lower part caused by the penetration of O{sub 2} from the top. The organic matter content in the upper area was also higher due to the active microbial growth. The dispersion analysis results for O{sub 2} and CH{sub 4} in the column are counter-intuitive. As the upward flow rate of the landfill gas increased, the dispersion coefficient of CH{sub 4} slightly increased, possibly due to the effect of mechanical dispersion. On the other hand, as the upward flow rate of the landfill gas increased, the dispersion coefficient of O{sub 2} decreased. It is possible that the diffusion of gases in porous media is influenced by the counter-directional flow rate. Further analysis of other gases in the column, N{sub 2} and CO{sub 2}, may be required to support this hypothesis, but in this paper we propose the possibility that the simulations using the diffusion coefficient of O{sub 2} under the natural condition may overestimate the penetration of O{sub 2} into the soil cover layer and consequently overestimate the oxidation of CH{sub 4}.

Im, J.; Moon, S.; Nam, K.; Kim, Y.-J. [Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, Seoul (Korea, Republic of); Kim, J.Y. [Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, Seoul (Korea, Republic of)], E-mail: jaeykim@snu.ac.kr

2009-02-15T23:59:59.000Z

242

NETL: Methane Hydrates - Methane Hydrate Library  

NLE Websites -- All DOE Office Websites (Extended Search)

Ridge region Ongoing areas of study in the Hydrate Ridge region Map showing where gas hydrates occur off the Cascadia Margin Locations of methane hydrate off the Cascadia Margin...

243

Landfill Disamenities And Better Utilization of Waste Resources Presented to the Wisconsin Governor's Task Force on Waste Materials Recovery  

E-Print Network (OSTI)

emissions. I recently saw an exhibit of a landfill gas carbon adsorber designed to remove siloxanes and air toxics from landfill gas prior to engine burning, to reduce wear on the engine. They later stripped this is a common practice. Most landfill gas energy combustion systems are uncontrolled. In 1998, a New York State

Columbia University

244

Sources of methane in China: A program to estimate emissions from rice paddy fields, bio-gas pits, and urban areas: Annual progress report  

DOE Green Energy (OSTI)

We are measuring methane from rice paddy fields and bio-gas pits. The project has produced new results that we are using to sharply focus the present study. We measured ambient concentrations at Minqin, Beijing, and Chendu. We obtained flux measurements from bio-gas pits, and flux measurements from rice paddy fields. Minqin is a background site with no large local sources of methane such as rice fields or urban areas. It serves as control for the experiment. Beijing is representative of a large industrialized Chinese city not affected by rice agriculture but heavily dependent on burning coal for cooking and heating. Chendu is in the heart of the rice producing areas of China where rice paddies cover millions of acres and methane from bio-gas pits is an important source of energy. Further progress was impeded by a lack of a formal agreement between the US and PRC, which was not signed until August 1987. 9 figs.

Rasmussen, R.A.; Khalil, M.A.K.

1987-11-30T23:59:59.000Z

245

Who Owns Renewable Energy Certificates? An Exploration of Policy Options and Practice  

E-Print Network (OSTI)

Minnesota Methane owns a landfill gas facility located infor example, that wind or landfill gas energy was conveyed,

Holt, Edward A.; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

246

2008 Solar Technologies Market Report  

E-Print Network (OSTI)

DSIRE 2010a). Biomass Landfill Gas Hydro- power Otherloop biomass such as landfill gas and livestock methane;

Price, S.

2010-01-01T23:59:59.000Z

247

EFFECTS OF TEMPERATURE AND GAS MIXING ON FORMATION PRESSURE, CO2 SEQUESTRATION AND METHANE PRODUCTION IN  

E-Print Network (OSTI)

(CO2) injected into subsurface coalbeds replaces adsorbed methane (CH4) on coal surfaces, allowing and levels of CO2 adsorption on coal surfaces, and swelling/shrinkage of coal due to adsorption of CO2 injection. (3) CO2 is more than twice as adsorbing on coal as CH4, and remains tightly bound to coal

248

TRENDS: ANNUAL ESTIMATES OF GLOBAL ANTHROPOGENIC METHANE EMISSIONS...  

NLE Websites -- All DOE Office Websites (Extended Search)

Flaring and Venting of Natural Gas Oil and Gas Supply Systems, Excluding Flaring Coal Mining Biomass Burning Livestock Farming Rice Farming and Related Activities Landfills...

249

Methane to methanol conversion  

DOE Green Energy (OSTI)

The purpose of this project is to develop a novel process by which natural gas or methane from coal gasification products can be converted to a transportable liquid fuel. It is proposed that methanol can be produced by the direct, partial oxidation of methane utilizing air or oxygen. It is anticipated that, compared to present technologies, the new process might offer significant economic advantages with respect to capital investment and methane feedstock purity requirements. Results to date are discussed. 6 refs.

Finch, F.T.; Danen, W.C.; Lyman, J.L.; Oldenborg, R.C.; Rofer, C.K.; Ferris, M.J.

1990-01-01T23:59:59.000Z

250

Where can I find shale gas and coal bed methane production and ...  

U.S. Energy Information Administration (EIA)

Where is the boundary for state and federal offshore oil and gas production? Which states consume and produce the most natural gas?

251

Methane Main  

NLE Websites -- All DOE Office Websites (Extended Search)

the the Methane Hydrate Advisory Committee on Methane Hydrate Issues and Opportunities Including Assessment of Uncertainty of the Impact of Methane Hydrate on Global Climate Change December 2002 Report of the Methane Hydrate Advisory Committee on Methane Hydrate Issues and Opportunities Including Assessment of Uncertainty of the Impact of Methane Hydrate on Global Climate Change December 2002 i CONTENTS What is Methane Hydrate? ............................................................................................. 1 Why Methane Hydrate Matters for the United States? ..................................................... 4 Resource Potential of Methane Hydrate .......................................................................... 5 Implications of Methane Hydrate on Safety and Seafloor Stability

252

Aerobic landfill bioreactor  

DOE Patents (OSTI)

The present invention includes a system of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

Hudgins, Mark P (Aiken, SC); Bessette, Bernard J (Aiken, SC); March, John C (Winterville, GA); McComb, Scott T. (Andersonville, SC)

2002-01-01T23:59:59.000Z

253

Aerobic landfill bioreactor  

DOE Patents (OSTI)

The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

Hudgins, Mark P (Aiken, SC); Bessette, Bernard J (Aiken, SC); March, John (Winterville, GA); McComb, Scott T. (Andersonville, SC)

2000-01-01T23:59:59.000Z

254

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

as described by Dillon, et al. (1998). Failure would be accompanied by the release of methane gas, but a portion of the methane is likely to be oxidized unless the gas release is...

255

QUEST FOR NEW MATERIALS FOR METHANE STORAGE ...  

Science Conference Proceedings (OSTI)

Quest for New Materials for Methane Storage: Gas Adsorption and Neutron Diffraction Measurements. Yang Peng, 1,2 Vaiva ...

256

The basics of coalbed methane  

Science Conference Proceedings (OSTI)

The report is an overview of coalbed methane (CBM), also known as coal seam gas. It provides an overview of what coalbed methane is and the current status of global coalbed methane exploration and production. Topics covered in the report include: An analysis of the natural gas industry, including current and future production, consumption, and reserves; A detailed description of coalbed methane, its characteristics, and future potential; An analysis of the key business factors that are driving the increased interest in coalbed methane; An analysis of the barriers that are hindering the development of coalbed methane; An overview of the technologies used for coalbed methane production and water treatment; and Profiles of key coalbed methane producing countries. 25 figs., 5 tabs., 1 app.

NONE

2006-12-15T23:59:59.000Z

257

The presence of natural gas-primarily methane-in the shale layers...  

NLE Websites -- All DOE Office Websites (Extended Search)

was pumped in 1947 on a gas well operated by Pan American Petroleum Corporation in Grant County, Kansas. 2003 to 2004 - Gas production from the Barnett Shale play overtakes the...

258

Methane Credit | Open Energy Information  

Open Energy Info (EERE)

Methane Credit Methane Credit Jump to: navigation, search Name Methane Credit Place Charlotte, North Carolina Zip 28273 Product Specialises in utilising methane produced on municipal landfill sites. Coordinates 35.2225°, -80.837539° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.2225,"lon":-80.837539,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

259

Why not methane--5. Delivering methane  

SciTech Connect

A discussion showed that the methane delivery system in the U.S. consists of 350,000 mi of underground high-pressure pipelines, 650,000 mi of distribution mains and connections to 45 million energy users. This delivery system now carries much less natural gas than it could carry because of the regulation-caused shortages of recent years. The delivery system is also connected to an efficient storage system of exhausted underground gas wells into which methane from any source (e.g., gasification of coal or vegetation) could be pumped and then recovered as needed. This storage system could be readily expanded and could thus be used for strategic storage of methane. Enough methane could be stored to replace foreign oil if the foreign supply should be interrupted; and methane can be quickly delivered nation-wide, whereas strategic oil storage requires unusual and expensive provisions for delivery. Natural gas usage could be increased by 20Vertical Bar3< in two years and would reduce payments for imported oil by about $10 billion. Doubling the amount of methane used in the U.S. would eliminate the need for foreign oil entirely.

Luntey, E.

1979-01-01T23:59:59.000Z

260

Why sequence functional metagenomics of methane and nitrogen...  

NLE Websites -- All DOE Office Websites (Extended Search)

functional metagenomics of methane and nitrogen cycles in freshwater lakes? Methane is a more potent greenhouse gas than carbon dioxide, but it is also a potential source of...

Note: This page contains sample records for the topic "landfill gas methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

NETL: News Release - DOE-Sponsored Process Enhances Use of Landfill...  

NLE Websites -- All DOE Office Websites (Extended Search)

December 11, 2001 DOE-Sponsored Process Enhances Use of Landfill Gas, Improves Air Quality Energy Secretary Abraham Commends Small Business for Innovative Concept Being Showcased...

262

NETL: Methane Hydrates - DOE/NETL Projects - Estimate Gas-Hydrate...  

NLE Websites -- All DOE Office Websites (Extended Search)

to overcome compression and friction at grain contacts, a fracture will form. In a multiphase environment, due to surface tension effects, the gas pressure will not...

263

Conversion of forest residues to a methane-rich gas. Detailed economic feasibility study  

DOE Green Energy (OSTI)

An economic evaluation of the application of the multi-solid fluid reactor design to wood gasification was completed. The processing options examined include plant capacity, production of a high-Btu (1006 Btu/SCF HHV) gas versus an intermediate-Btu gas (379 Btu/SCF HHV), and operating pressure. 9 figs., 29 tabs.

Not Available

1986-03-01T23:59:59.000Z

264

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

on the behavior of gas hydrates in their natural environment under either production (methane gas extraction) or climate change scenarios. This research is closely linked with...

265

Water-Gas Shift and CO Methanation Reactions over Ni-CeO2(111) Catalysts  

Science Conference Proceedings (OSTI)

X-ray and ultraviolet photoelectron spectroscopies were used to study the interaction of Ni atoms with CeO2(111) surfaces. Upon adsorption on CeO2(111) at 300 K, nickel remains in a metallic state. Heating to elevated temperatures (500 800 K) leads to partial reduction of the ceria substrate with the formation of Ni2? species that exists as NiO and/or Ce1-xNixO2-y. Interactions of nickel with the oxide substrate significantly reduce the density of occupied Ni 3d states near the Fermi level. The results of core-level photoemission and near-edge X-ray absorption fine structure point to weakly bound CO species on CeO2(111) which are clearly distinguishable from the formation of chemisorbed carbonates. In the presence of Ni, a stronger interaction is observed with chemisorption of CO on the admetal. When the Ni is in contact with Ce?3 cations, CO dissociates on the surface at 300 K forming NiCx compounds that may be involved in the formation of CH4 at higher temperatures. At medium and large Ni coverages ([0.3 ML), the Ni/CeO2(111) surfaces are able to catalyze the production of methane from CO and H2, with an activity slightly higher than that of Ni(100) or Ni(111). On the other hand, at small coverages of Ni (\\0.3 ML), the Ni/CeO2(111) surfaces exhibit a very low activity for CO methanation but are very good catalysts for the water gas shift reaction.

Senanayake, Sanjaya D [ORNL; Evans, Jaime [Universidad Central de Venezuela; Agnoli, Stefano [Brookhaven National Laboratory (BNL); Barrio, Laura [Brookhaven National Laboratory (BNL); Chen, Tsung-Liang [ORNL; Hrbek, Jan [Brookhaven National Laboratory (BNL); Radriguez, Jose [Brookhaven National Laboratory (BNL)

2011-01-01T23:59:59.000Z

266

Methane/nitrogen separation process  

DOE Patents (OSTI)

A membrane separation process for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. We have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen.

Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Menlo Park, CA); Pinnau, Ingo (Palo Alto, CA); Segelke, Scott (Mountain View, CA)

1997-01-01T23:59:59.000Z

267

Methane/nitrogen separation process  

DOE Patents (OSTI)

A membrane separation process is described for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. The authors have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen. 11 figs.

Baker, R.W.; Lokhandwala, K.A.; Pinnau, I.; Segelke, S.

1997-09-23T23:59:59.000Z

268

Catalytic partial oxidation of methane to synthesis gas over Ni-based catalysts. 1: Catalyst performance characteristics  

SciTech Connect

The catalytic partial oxidation of methane to synthesis gas was studied over various Ni-based catalysts. It was found that, in contrast to conventional Ni catalysts which show continuous deactivation with time on stream, the Ni/La{sub 2}O{sub 3} catalyst exhibits good activity and excellent stability, using the stoichiometric ratio of CH{sub 4}/O{sub 2} (=2). Kinetic results indicate that the reaction over the Ni/La{sub 2}O{sub 3} catalyst follows mainly the sequence of total oxidation to CO{sub 2} and H{sub 2}O, followed by reforming reactions to synthesis gas, while CO formation via the direct route is observed at very low oxygen partial pressures. Chemisorption and FTIR studies show that the enhanced stability of the Ni/La{sub 2}O{sub 3} catalyst is related to decoration of the Ni crystallites with lanthanum species, primarily oxycarbonates, which favor removal of excess carbon deposition and impart the catalyst its stability characteristics.

Tsipouriari, V.A.; Zhang, Z.; Verykios, X.E. [Univ. of Patras (Greece). Dept. of Chemical Engineering

1998-10-01T23:59:59.000Z

269

Performance evaluation of an anaerobic/aerobic landfill-based digester using yard waste for energy and compost production  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer Biochemical methane potential decreased by 83% during the two-stage operation. Black-Right-Pointing-Pointer Net energy produced was 84.3 MWh or 46 kWh per million metric tons (Mg). Black-Right-Pointing-Pointer The average removal efficiency of volatile organic compounds (VOCs) was 96-99%. Black-Right-Pointing-Pointer The average removal efficiency of non-methane organic compounds (NMOCs) was 68-99%. Black-Right-Pointing-Pointer The two-stage batch digester proved to be simple to operate and cost-effective. - Abstract: The objective of this study was to evaluate a new alternative for yard waste management by constructing, operating and monitoring a landfill-based two-stage batch digester (anaerobic/aerobic) with the recovery of energy and compost. The system was initially operated under anaerobic conditions for 366 days, after which the yard waste was aerated for an additional 191 days. Off gas generated from the aerobic stage was treated by biofilters. Net energy recovery was 84.3 MWh, or 46 kWh per million metric tons of wet waste (as received), and the biochemical methane potential of the treated waste decreased by 83% during the two-stage operation. The average removal efficiencies of volatile organic compounds and non-methane organic compounds in the biofilters were 96-99% and 68-99%, respectively.

Yazdani, Ramin, E-mail: ryazdani@sbcglobal.net [Yolo County Planning and Public Works Department, Division of Integrated Waste Management, Woodland, CA 95776 (United States); Civil and Environmental Engineering, University of California, One Shields Avenue, Ghausi Hall, Davis, CA 95616 (United States); Barlaz, Morton A., E-mail: barlaz@eos.ncsu.edu [Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Augenstein, Don, E-mail: iemdon@aol.com [Institute for Environmental Management, Inc., Palo Alto, CA 94306 (United States); Kayhanian, Masoud, E-mail: mdkayhanian@ucdavis.edu [Civil and Environmental Engineering, University of California, One Shields Avenue, Ghausi Hall, Davis, CA 95616 (United States); Tchobanoglous, George, E-mail: gtchobanoglous@ucdavis.edu [Civil and Environmental Engineering, University of California, One Shields Avenue, Ghausi Hall, Davis, CA 95616 (United States)

2012-05-15T23:59:59.000Z

270

DC-Pulsed Plasma for Dry Reforming of Methane to Synthesis Gas  

Science Conference Proceedings (OSTI)

utilization of biogas and natural gas with a high concentration of CO2, (3) this reaction possesses a theoretical H2/CO ratio of 1, which is suitable for further ...

271

A conduit dilation model of methane venting from lake sediments  

E-Print Network (OSTI)

Methane is a potent greenhouse gas, but its effects on Earth's climate remain poorly constrained, in part due to uncertainties in global methane fluxes to the atmosphere. An important source of atmospheric methane is the ...

Ruppel, Carolyn

272

High-pressure/high-temperature gas-solubility study in hydrogen-phenanthrene and methane-phenanthrene systems using static and chromatographic techniques  

SciTech Connect

The design and discovery of sources for alternative energy such as coal liquefaction has become of major importance over the past two decades. One of the major problems in such design in the lack of available data, particularly, for gas solubility in polycyclic aromatics at high temperature and pressure. Static and gas-liquid partition chromatographic methods were used for the study of hydrogen-phenanthrene and methane-phenanthrene systems. The static data for these two binaries were taken along 398.2, 423.2, 448.2, and 473.2 K isotherms up to 25.23 MPa. Gas-liquid partition chromatography was used to study the infinite dilution behavior of methane, ethane, propane, n-butane, and carbon dioxide in the hydrogen-phenanthrene system as well as hydrogen, ethane, n-butane, and carbon dioxide in the methane-phenanthrene binary. The principle objective was to examine the role of the elution gas. Temperatures were along the same isotherms as the static data and up to 20.77 MPa. With the exception of carbon dioxide, Henry's constants were calculated for all systems. Expressions for the heat of solution as a function of pressure were derived for both binary and chromatographic data. Estimates of delta H/sub i/sup sol/ at high pressure were presented.

Malone, P.V.

1987-01-01T23:59:59.000Z

273

Ocean County Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

County Landfill Biomass Facility County Landfill Biomass Facility Jump to: navigation, search Name Ocean County Landfill Biomass Facility Facility Ocean County Landfill Sector Biomass Facility Type Landfill Gas Location Ocean County, New Jersey Coordinates 39.9652553°, -74.3118212° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.9652553,"lon":-74.3118212,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

274

Cuyahoga Regional Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Landfill Biomass Facility Landfill Biomass Facility Jump to: navigation, search Name Cuyahoga Regional Landfill Biomass Facility Facility Cuyahoga Regional Landfill Sector Biomass Facility Type Landfill Gas Location Cuyahoga County, Ohio Coordinates 41.7048247°, -81.7787021° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7048247,"lon":-81.7787021,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

275

Miramar Landfill Metro Biosolids Center Biomass Facility | Open Energy  

Open Energy Info (EERE)

Miramar Landfill Metro Biosolids Center Biomass Facility Miramar Landfill Metro Biosolids Center Biomass Facility Jump to: navigation, search Name Miramar Landfill Metro Biosolids Center Biomass Facility Facility Miramar Landfill Metro Biosolids Center Sector Biomass Facility Type Landfill Gas Location San Diego County, California Coordinates 33.0933809°, -116.6081653° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.0933809,"lon":-116.6081653,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

276

Mid Valley Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Landfill Biomass Facility Landfill Biomass Facility Jump to: navigation, search Name Mid Valley Landfill Biomass Facility Facility Mid Valley Landfill Sector Biomass Facility Type Landfill Gas Location San Bernardino County, California Coordinates 34.9592083°, -116.419389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9592083,"lon":-116.419389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

277

Blackburn Landfill Co-Generation Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Blackburn Landfill Co-Generation Biomass Facility Blackburn Landfill Co-Generation Biomass Facility Jump to: navigation, search Name Blackburn Landfill Co-Generation Biomass Facility Facility Blackburn Landfill Co-Generation Sector Biomass Facility Type Landfill Gas Location Catawba County, North Carolina Coordinates 35.6840748°, -81.2518833° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.6840748,"lon":-81.2518833,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

278

I 95 Landfill Phase II Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Landfill Phase II Biomass Facility Landfill Phase II Biomass Facility Jump to: navigation, search Name I 95 Landfill Phase II Biomass Facility Facility I 95 Landfill Phase II Sector Biomass Facility Type Landfill Gas Location Fairfax County, Virginia Coordinates 38.9085472°, -77.2405153° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.9085472,"lon":-77.2405153,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

279

Prima Desheha Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Prima Desheha Landfill Biomass Facility Prima Desheha Landfill Biomass Facility Jump to: navigation, search Name Prima Desheha Landfill Biomass Facility Facility Prima Desheha Landfill Sector Biomass Facility Type Landfill Gas Location Orange County, California Coordinates 33.7174708°, -117.8311428° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.7174708,"lon":-117.8311428,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

280

Four Hills Nashua Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Four Hills Nashua Landfill Biomass Facility Four Hills Nashua Landfill Biomass Facility Jump to: navigation, search Name Four Hills Nashua Landfill Biomass Facility Facility Four Hills Nashua Landfill Sector Biomass Facility Type Landfill Gas Location Hillsborough County, New Hampshire Coordinates 42.8334794°, -71.6673352° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.8334794,"lon":-71.6673352,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "landfill gas methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Pearl Hollow Landfil Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Pearl Hollow Landfil Biomass Facility Pearl Hollow Landfil Biomass Facility Jump to: navigation, search Name Pearl Hollow Landfil Biomass Facility Facility Pearl Hollow Landfil Sector Biomass Facility Type Landfill Gas Location Hardin County, Kentucky Coordinates 37.6565708°, -86.0121573° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.6565708,"lon":-86.0121573,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

282

Methane emissions from natural wetlands  

SciTech Connect

Analyses of air trapped in polar ice cores in conjunction with recent atmospheric measurements, indicate that the atmospheric methane concentration increased by about 250% during the past two or three hundred years (Rasmussen and Khalil, 1984). Because methane is a potent ``greenhouse`` gas, the increasing concentrations are expected to contribute to global warning (Dickinson and Cicerone, 1986). The timing of the methane increase suggests that it is related to the rapid growth of the human population and associated industrialization and agricultural development. The specific causes of the atmospheric methane concentration increase are not well known, but may relate to either increases in methane sources, decreases in the strengths of the sinks, or both.

Meyer, J.L. [Georgia Univ., Athens, GA (United States); Burke, R.A. Jr. [Environmental Protection Agency, Athens, GA (United States). Environmental Research Lab.

1993-09-01T23:59:59.000Z

283

NETL: Methane Hydrates - DOE/NETL Projects - Mapping Permafrost and Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Mapping Permafrost and Gas Hydrate using Marine Controlled Source Electromagnetic Methods (CSEM) Last Reviewed 12/18/2013 Mapping Permafrost and Gas Hydrate using Marine Controlled Source Electromagnetic Methods (CSEM) Last Reviewed 12/18/2013 DE-FE0010144 Goal The objective of this project is to develop and test a towed electromagnetic source and receiver system suitable for deployment from small coastal vessels to map near-surface electrical structure in shallow water. The system will be used to collect permafrost data in the shallow water of the U.S. Beaufort Inner Shelf at locations coincident with seismic lines collected by the U.S. Geological Survey (USGS). The electromagnetic data will be used to identify the geometry, extent, and physical properties of permafrost and any associated gas hydrate in order to provide a baseline for future studies of the effects of any climate-driven dissociation of

284

OpenEI - Landfill Gas  

Open Energy Info (EERE)

(2003 - 2009) http:en.openei.orgdatasetsnode92

The UK Department of Energy and Climate Change (DECC) publishes annual renewable energy generation and capacity by region...

285

NETL: News Release - Methane Hydrate Production Technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

of CO2 molecules for methane molecules in the solid-water hydrate lattice, the release of methane gas, and the permanent storage of CO2 in the formation. This field experiment will...

286

New Methane Hydrate Research: Investing in Our Energy Future | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Methane Hydrate Research: Investing in Our Energy Future Methane Hydrate Research: Investing in Our Energy Future New Methane Hydrate Research: Investing in Our Energy Future August 31, 2012 - 1:37pm Addthis Methane hydrates are 3D ice-lattice structures with natural gas locked inside. If methane hydrate is either warmed or depressurized, it will release the trapped natural gas. Methane hydrates are 3D ice-lattice structures with natural gas locked inside. If methane hydrate is either warmed or depressurized, it will release the trapped natural gas. Jenny Hakun What Are Methane Hydrates? Methane hydrates are 3D ice-lattice structures with natural gas locked inside. The substance looks remarkably like white ice, but it does not behave like ice. If methane hydrate is either warmed or depressurized, it will release the trapped natural gas.

287

Conversion of forest residues to a methane-rich gas: Interim Report  

DOE Green Energy (OSTI)

A process is being developed that produces a fuel gas with a heating value of 500 Btu/SCF from diverse forms of biomass, including shredded bark, wood chips, and sawdust. The system uses a high throughput, non-oxygen gasifier that employs sand circulation to supply process heat. Results obtained with a 10-inch I.D. gasifier are presented and compared with those in a 6-inch I.D. reactor. Feed rates up to 12 tons/day (dry) have been achieved corresponding to a specific wood throughput of 2000 lbs/ft/sup 2/-hr. Gas compositions in the two reactors are in excellent agreement and performance in the larger reactor, as measured by carbon conversion, is significantly improved. Cost projections comparing this process with direct combustion are presented that indicate gasification technology should have very significant cost advantages for both generation of plant steam and cogeneration of electricity. 5 refs., 14 figs., 5 tabs.

Feldmann, H.G.; Paisley, M.A.; Appelbaum, H.R.

1986-03-01T23:59:59.000Z

288

Conversion of forest residues to a methane-rich gas. Phase completion report  

DOE Green Energy (OSTI)

This report describes the progress made to investigate the use of various catalysts and methods of incorporation for the gasification of forest residue materials. Catalyst effectiveness was determined by measuring the gasification rate directly in a differential reactor that utilized approximately one gram samples and by gasifying approximately 10 to 20 gram samples in a batch-solids fluid bed (BSFB) to determine the effect of catalysts on product gas composition. 2 refs., 24 figs., 12 tabs.

Not Available

1986-03-01T23:59:59.000Z

289

Electrochemical methane sensor  

DOE Patents (OSTI)

A method and instrument including an electrochemical cell for the detection and measurement of methane in a gas by the oxidation of methane electrochemically at a working electrode in a nonaqueous electrolyte at a voltage about 1.4 volts vs R.H.E. (the reversible hydrogen electrode potential in the same electrolyte), and the measurement of the electrical signal resulting from the electrochemical oxidation.

Zaromb, S.; Otagawa, T.; Stetter, J.R.

1984-08-27T23:59:59.000Z

290

Methane Hydrates R&D Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane Hydrates R&D Program Methane Hydrates R&D Program Gas hydrates are a naturally-occurring combination of methane gas and water that form under specific conditions of low temperature and high pressure. Once thought to be rare in nature, gas hydrates are now known to occur in great abundance in association with arctic permafrost and in the shallow sediments of the deep-water continental shelves. The most recent estimates of gas hydrate abundance suggest that they contain

291

EOS7C Version 1.0: TOUGH2 Module for Carbon Dioxide or Nitrogen in Natural Gas (Methane) Reservoirs  

E-Print Network (OSTI)

as cushion gas for natural gas storage, Energy&Fuels ,2 as a cushion gas for natural gas storage can be found inin natural gas reservoirs and gas storage reservoirs (

Oldenburg, Curtis M.; Moridis, George J.; Spycher, Nicholas; Pruess, Karsten

2004-01-01T23:59:59.000Z

292

EOS7C Version 1.0: TOUGH2 Module for Carbon Dioxide or Nitrogen in Natural Gas (Methane) Reservoirs  

E-Print Network (OSTI)

as cushion gas for natural gas storage, Energy&Fuels ,2 as a cushion gas for natural gas storage can be found in

Oldenburg, Curtis M.; Moridis, George J.; Spycher, Nicholas; Pruess, Karsten

2004-01-01T23:59:59.000Z

293

Natural gas cleanup: Evaluation of a molecular sieve carbon as a pressure swing adsorbent for the separation of methane/nitrogen mixtures  

SciTech Connect

This report describes the results of a preliminary evaluation to determine the technical feasibility of using a molecular sieve carbon manufactured by the Takeda Chemical Company of Japan in a pressure owing adsorption cycle for upgrading natural gas (methane) contaminated with nitrogen. Adsorption tests were conducted using this adsorbent in two, four, and five-step adsorption cycles. Separation performance was evaluated in terms of product purity, product recovery, and sorbent productivity for all tests. The tests were conducted in a small, single-column adsorption apparatus that held 120 grams of the adsorbent. Test variables included adsorption pressure, pressurization rate, purge rate and volume, feed rate, and flow direction in the steps from which the product was collected. Sorbent regeneration was accomplished by purging the column with the feed gas mixture for all but one test series where a pure methane purge was used. The ratio between the volumes of the pressurization gas and the purge gas streams was found to be an important factor in determining separation performance. Flow rates in the various cycle steps had no significant effect. Countercurrent flow in the blow-down and purge steps improved separation performance. Separation performance appears to improve with increasing adsorption pressure, but because there are a number of interrelated variables that are also effected by pressure, further testing will be needed to verify this. The work demonstrates that a molecular sieve carbon can be used to separate a mixture of methane and nitrogen when used in a pressure swing cycle with regeneration by purge. Further work is needed to increase product purity and product recovery.

Grimes, R.W.

1994-06-01T23:59:59.000Z

294

Design and economics of a lignite-to-SNG (substitute natural gas) facility using Lurgi gasifiers with in-line conversion of by-product liquids to methane. Topical report (Final), December 1985-November 1986  

SciTech Connect

A first-pass conceptual design and screening cost estimate was prepared for a hypothetical plant to convert lignite to methane using Lurgi dry-bottom gasifiers and employing a black box reactor to convert by-product liquids in the gas phase to methane. Results were compared to those from conventional and modified Lurgi-plant designs. The in-line conversion plant can potentially reduce the cost of gas from a Lurgi plant by about 20%. Due to reduced capital investment, over $200 million could be invested in the reactor before the cost of gas from the in-line conversion plant is as high as that of a Lurgi plant.

Smelser, S.C.

1986-11-01T23:59:59.000Z

295

Methane Emissions from Rice Fields - Final Report  

SciTech Connect

Methane (Ch4) is a greenhouse gas regarded second only to carbon dioxide in its ability to cause global warming. Methane is important because of its relatively fast increase, and also because it is, per molecule, some 60 times more effective than carbon dioxide in causing global warming. The largest present anthropogenic sources of methane are rice fields, cattle and biomass burning.

Khalil, M. Aslam; Rasmussen,Reinhold A.

2002-12-03T23:59:59.000Z

296

Biogeochemistry of Microbial Coal-Bed Methane  

E-Print Network (OSTI)

Biogeochemistry of Microbial Coal-Bed Methane Dariusz Strapo´c,1, Maria Mastalerz,2 Katherine, biodegradation Abstract Microbial methane accumulations have been discovered in multiple coal- bearing basins low-maturity coals with predominantly microbial methane gas or uplifted coals containing older

Macalady, Jenn

297

NETL: Methane Hydrates - DOE/NETL Projects - Controls On Methane...  

NLE Websites -- All DOE Office Websites (Extended Search)

On Methane Expulsion During Melting Of Natural Gas Hydrate Systems Last Reviewed 6242013 DE-FE0010406 Goal The project goal is to predict, given characteristic climate-induced...

298

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

of gas hydrates. The effort aims to quantify the mechanical characteristics of methane hydrate and hydrate cemented sediments for use in models of the dynamic behavior of...

299

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

during NGHP Expedition 01 Background Gas hydrate distribution in sediments depends on methane supply, which in turn depends on fluid flow. When drilling data are available to...

300

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane Hydrate Research - Geoscience Evaluations and Field Studies Last Reviewed 3182013 Project Goals The primary goals of the DOENETL Natural Gas Hydrate Field Studies...

Note: This page contains sample records for the topic "landfill gas methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Determine the potential impacts of gas hydrate instability in terms of the release of methane into seafloor sediments, the ocean and the atmosphere. Performers University of...

302

IpNose: Electronic nose for remote bad odour monitoring system in landfill sites Alex Perera*  

E-Print Network (OSTI)

IpNose: Electronic nose for remote bad odour monitoring system in landfill sites Alex Perera to classify and quantify different gas/odours. Here we suggest the integration of a small form factor computer of bad odours in landfill sites. Preliminary approach to this application using commercial sensors

Gutierrez-Osuna, Ricardo

303

Challenges, uncertainties and issues facing gas production from gas hydrate deposits  

E-Print Network (OSTI)

compressibility for coal-bed methane (CBM) reservoirs (Bumband gas, tar sands, coal bed methane etc. can proceed whengas, shale gas, or coal bed methane gas to compete in the

Moridis, G.J.

2011-01-01T23:59:59.000Z

304

Gas production from hydrate-bearing sediments.  

E-Print Network (OSTI)

??Gas hydrates are crystalline compounds made of gas and water molecules. Methane hydrates are found in marine sediments and permafrost regions; extensive amounts of methane… (more)

Jang, Jaewon

2011-01-01T23:59:59.000Z

305

A finite element simulation of biological conversion processes in landfills  

Science Conference Proceedings (OSTI)

Landfills are the most common way of waste disposal worldwide. Biological processes convert the organic material into an environmentally harmful landfill gas, which has an impact on the greenhouse effect. After the depositing of waste has been stopped, current conversion processes continue and emissions last for several decades and even up to 100 years and longer. A good prediction of these processes is of high importance for landfill operators as well as for authorities, but suitable models for a realistic description of landfill processes are rather poor. In order to take the strong coupled conversion processes into account, a constitutive three-dimensional model based on the multiphase Theory of Porous Media (TPM) has been developed at the University of Duisburg-Essen. The theoretical formulations are implemented in the finite element code FEAP. With the presented calculation concept we are able to simulate the coupled processes that occur in an actual landfill. The model's theoretical background and the results of the simulations as well as the meantime successfully performed simulation of a real landfill body will be shown in the following.

Robeck, M., E-mail: markus.robeck@uni-due.de [Department of Water and Waste Management, Building Sciences, University of Duisburg-Essen, Universitaetsstrasse 15, 45141 Essen (Germany); Ricken, T. [Institute of Mechanics/Computational Mechanics, Building Sciences, University of Duisburg-Essen, Universitaetsstrasse 15, 45141 Essen (Germany); Widmann, R. [Department of Water and Waste Management, Building Sciences, University of Duisburg-Essen, Universitaetsstrasse 15, 45141 Essen (Germany)

2011-04-15T23:59:59.000Z

306

Methane Hydrate Research and Modeling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research and Modeling Clean Coal Carbon Capture and Storage Oil & Gas Methane Hydrate LNG Offshore Drilling Enhanced Oil Recovery Shale Gas Research is focused on understanding...

307

Process for separating nitrogen from methane using microchannel process technology  

DOE Patents (OSTI)

The disclosed invention relates to a process for separating methane or nitrogen from a fluid mixture comprising methane and nitrogen, the process comprising: (A) flowing the fluid mixture into a microchannel separator, the microchannel separator comprising a plurality of process microchannels containing a sorption medium, the fluid mixture being maintained in the microchannel separator until at least part of the methane or nitrogen is sorbed by the sorption medium, and removing non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing the methane or nitrogen from the sorption medium and removing the desorbed methane or nitrogen from the microchannel separator. The process is suitable for upgrading methane from coal mines, landfills, and other sub-quality sources.

Tonkovich, Anna Lee (Marysville, OH); Qiu, Dongming (Dublin, OH); Dritz, Terence Andrew (Worthington, OH); Neagle, Paul (Westerville, OH); Litt, Robert Dwayne (Westerville, OH); Arora, Ravi (Dublin, OH); Lamont, Michael Jay (Hilliard, OH); Pagnotto, Kristina M. (Cincinnati, OH)

2007-07-31T23:59:59.000Z

308

Unconventional gas outlook: resources, economics, and technologies  

Science Conference Proceedings (OSTI)

The report explains the current and potential of the unconventional gas market including country profiles, major project case studies, and new technology research. It identifies the major players in the market and reports their current and forecasted projects, as well as current volume and anticipated output for specific projects. Contents are: Overview of unconventional gas; Global natural gas market; Drivers of unconventional gas sources; Forecast; Types of unconventional gas; Major producing regions Overall market trends; Production technology research; Economics of unconventional gas production; Barriers and challenges; Key regions: Australia, Canada, China, Russia, Ukraine, United Kingdom, United States; Major Projects; Industry Initiatives; Major players. Uneconomic or marginally economic resources such as tight (low permeability) sandstones, shale gas, and coalbed methane are considered unconventional. However, due to continued research and favorable gas prices, many previously uneconomic or marginally economic gas resources are now economically viable, and may not be considered unconventional by some companies. Unconventional gas resources are geologically distinct in that conventional gas resources are buoyancy-driven deposits, occurring as discrete accumulations in structural or stratigraphic traps, whereas unconventional gas resources are generally not buoyancy-driven deposits. The unconventional natural gas category (CAM, gas shales, tight sands, and landfill) is expected to continue at double-digit growth levels in the near term. Until 2008, demand for unconventional natural gas is likely to increase at an AAR corresponding to 10.7% from 2003, aided by prioritized research and development efforts. 1 app.

Drazga, B. (ed.)

2006-08-15T23:59:59.000Z

309

Why Sequence a Methane-Oxidizing Archaean?  

NLE Websites -- All DOE Office Websites (Extended Search)

a Methane-Oxidizing Archaeon? a Methane-Oxidizing Archaeon? Methane is a potent greenhouse gas whose atmospheric concentration has increased significantly because of anthropogenic activities and fluctuated naturally over glacial and interglacial cycles. While the importance of methane in Earth's climate dynamics has been well established, the global processes regulating its oceanic cycling remain poorly understood. Although there are high rates of methane production in many marine sedimentary environments (including a number that have been targeted as petroleum reserves), net methane sources from the ocean to the atmosphere appear to be small. This is due in large part to a biogeochemical process known as the anaerobic oxidation of methane (AOM). Microbially mediated AOM reduces methane flux from ocean to atmosphere, stimulates subsurface microbial

310

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessing the Efficacy of the Aerobic Methanotropic Biofilter in Methane Hydrate Environments Last Reviewed 1/8/2013 Assessing the Efficacy of the Aerobic Methanotropic Biofilter in Methane Hydrate Environments Last Reviewed 1/8/2013 DE-NT0005667 Goal The goal of this project is to assess the efficacy of aerobic methanotrophy in preventing the escape of methane from marine, hydrate-bearing reservoirs to the atmosphere and ultimately to better define the role of aerobic methanotrophy in the global carbon cycle. Graph overlayed on photo - Methane seeps with the resulting methane plume Methane seeps with the resulting methane plume, Geophysical Research Letters, November 2007 Performers University of California – Santa Barbara, Santa Barbara (UCSB), CA 93106 Background The global methane reservoir in the form of gas hydrate is estimated at 500–10,000 Gt (KVENVOLDEN, 1995; MILKOV, 2004). This pool of carbon

311

Effect of bubble size and density on methane conversion to hydrate  

SciTech Connect

Research is underway at NETL to understand the physical properties of methane hydrates. One area of investigation is the storage of methane as methane hydrates. An economical and efficient means of storing methane in hydrates opens many commercial opportunities such as transport of stranded gas, off-peak storage of line gas, etc.We have observed during our investigations that the ability to convert methane to methane hydrate is enhanced by foaming of the methane–water solution using a surfactant. The density of the foam, along with the bubble size, is important in the conversion of methane to methane hydrate.

Leske, J.; Taylor, C.E.; Ladner, E.P.

2007-03-01T23:59:59.000Z

312

Methane Hydrates and Climate Change | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydrates and Climate Change Hydrates and Climate Change Methane Hydrates and Climate Change Methane hydrates store huge volumes of methane formed by the bacterial decay of organic matter or leaked from underlying oil and natural gas deposits. The active formation of methane hydrates in the shallow crust prevents methane, a greenhouse gas, from entering the atmosphere. On the other hand, warming of arctic sediments or ocean waters has the potential to cause methane hydrate to dissociate, releasing methane into the deepwater sediments, the ocean or atmosphere. DOE is conducting research to understand the mechanisms and volumes involved in these little-studied processes. DOE environmental and climate change research projects related to Arctic methane hydrate deposits include: Characterization of Methane Degradation and Methane-Degrading

313

Real-Time Raman Gas Composition Sensor.pdf  

NLE Websites -- All DOE Office Websites (Extended Search)

MotivationChallenges Industries that utilize natural gas, gasifier syngas, biogas, landfill gas, or any type of fuel gas can benefit from knowing the composition of...

314

METHOD FOR PRODUCING ISOTOPIC METHANES AND PARTIALLY HALOGENATED DERIVATIVES THEROF  

DOE Patents (OSTI)

A method is given for producing isotopic methanes and/ or partially halogenated derivatives. Lithium hydride, deuteride, or tritide is reacted with a halogenated methane or with a halogenated methane in combination with free halogen. The process is conveniently carried out by passing a halogenated methane preferably at low pressures or in an admixture with an inert gas through a fixed bed of finely divided lithium hydride heated initially to temperatures of 100 to 200 deg C depending upon the halogenated methane used.

Frazer, J.W.

1959-08-18T23:59:59.000Z

315

A MOLECULAR SIMULATION STUDY OF ADSORPTION OF NITROGEN AND METHANE IN TITANIUM SILICATE (ETS-4)  

E-Print Network (OSTI)

, those obtained from nitrogen injection through enhanced gas recovery2 or from landfill gases3. Even when the nitrogen content in natural gas or landfill gases is consid- erably lower than the CO2 content viable when natural gas prices are high enough4. Therefore, understanding the fundamentals of nitrogen

Lisal, Martin

316

GTZ-Greenhouse Gas Calculator for Waste Management | Open Energy  

Open Energy Info (EERE)

GTZ-Greenhouse Gas Calculator for Waste Management GTZ-Greenhouse Gas Calculator for Waste Management Jump to: navigation, search Tool Summary Name: GTZ-Greenhouse Gas Calculator for Waste Management Agency/Company /Organization: GTZ Sector: Energy Website: www.gtz.de/en/themen/umwelt-infrastruktur/abfall/30026.htm References: GHG Calculator for Waste Management[1] Waste Management - GTZ Website[2] Logo: GTZ-Greenhouse Gas Calculator for Waste Management The necessity to reduce greenhouse gases and thus mitigate climate change is accepted worldwide. Especially in low- and middle-income countries, waste management causes a great part of the national greenhouse gas production, because landfills produce methane which has a particularly strong effect on climate change. Therefore, it is essential to minimize

317

Monitoring the Fixed FGD Sludge Landfill--Conesville, Ohio  

Science Conference Proceedings (OSTI)

Three years of extensive monitoring of the first full-scale application of the fixed flue gas desulfurization sludge process proved it technically sound. This new disposal method offers utilities leachate control in a landfill that allows diverse use of disposal sites in the future.

1984-10-01T23:59:59.000Z

318

NETL: Methane Hydrates - Hydrate Newsletter  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane Hydrate R&D Program Newsletter Methane Hydrate R&D Program Newsletter An image of a hydrate burning overlayed with the Newsletter Title: Fire in the Ice The methane hydrate newsletter, Fire in the Ice, is a bi-annual publication highlighting the latest developments in international gas hydrates R&D. Fire in the Ice promotes the exchange of information amoung those involved in gas hydrates research and development, and also recognizes the efforts of a hydrate researcher in each issue. The newsletter now reaches nearly 1300 scientists and other interested individuals in sixteen countries. To subscribe electronically to Fire in the Ice please send an email to karl.lang@contr.netl.doe.gov Please click on the links below to access issues of "Fire in the Ice". More on Methane Hydrates

319

Settlement Prediction, Gas Modeling and Slope Stability Analysis  

E-Print Network (OSTI)

Settlement Prediction, Gas Modeling and Slope Stability Analysis in Coll CardĂşs Landfill Li Yu using mechanical models Simulation of gas generation, transport and extraction in MSW landfill 1 models Simulation of gas generation, transport and extraction in MSW landfill 1) Analytical solution

Politècnica de Catalunya, Universitat

320

Landfill Cover Revegetation at the Rocky Flats Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Landfill Cover Revegetation at the Rocky Flats Environmental Technology Site Landfill Cover Revegetation at the Rocky Flats Environmental Technology Site Landfill Cover...

Note: This page contains sample records for the topic "landfill gas methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

HMDC Kingsland Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

HMDC Kingsland Landfill Biomass Facility Jump to: navigation, search Name HMDC Kingsland Landfill Biomass Facility Facility HMDC Kingsland Landfill Sector Biomass Facility Type...

322

ASSESSMENT OF HOUSEHOLD CARBON FOOTPRINT REDUCTION POTENTIALS  

E-Print Network (OSTI)

e.g. , reductions in landfill gas flaring),  or changes to landfills is +/?30%, the range for methane emissions from  natural gas 

Masanet, Eric

2010-01-01T23:59:59.000Z

323

CFD Modeling of Methane Production from Hydrate-Bearing Reservoir  

Science Conference Proceedings (OSTI)

Methane hydrate is being examined as a next-generation energy resource to replace oil and natural gas. The U.S. Geological Survey estimates that methane hydrate may contain more organic carbon the the world's coal, oil, and natural gas combined. To assist in developing this unfamiliar resource, the National Energy Technology Laboratory has undertaken intensive research in understanding the fate of methane hydrate in geological reservoirs. This presentation reports preliminary computational fluid dynamics predictions of methane production from a subsurface reservoir.

Gamwo, I.K.; Myshakin, E.M.; Warzinski, R.P.

2007-04-01T23:59:59.000Z

324

Risk assessment of landfill disposal sites - State of the art  

SciTech Connect

A risk assessment process can assist in drawing a cost-effective compromise between economic and environmental costs, thereby assuring that the philosophy of 'sustainable development' is adhered to. Nowadays risk analysis is in wide use to effectively manage environmental issues. Risk assessment is also applied to other subjects including health and safety, food, finance, ecology and epidemiology. The literature review of environmental risk assessments in general and risk assessment approaches particularly regarding landfill disposal sites undertaken by the authors, reveals that an integrated risk assessment methodology for landfill gas, leachate or degraded waste does not exist. A range of knowledge gaps is discovered in the literature reviewed to date. From the perspective of landfill leachate, this paper identifies the extent to which various risk analysis aspects are absent in the existing approaches.

Butt, Talib E. [Sustainability Centre in Glasgow (SCG), George Moore Building, 70 Cowcaddens Road, Glasgow Caledonian University, Glasgow G4 0BA, Scotland (United Kingdom)], E-mail: t_e_butt@hotmail.com; Lockley, Elaine [Be Environmental Ltd. Suite 213, Lomeshaye Business Village, Turner Road, Nelson, Lancashire, BB9 7DR, England (United Kingdom); Oduyemi, Kehinde O.K. [Built and Natural Environment, Baxter Building, University of Abertay Dundee, Bell Street, Dundee DD1 1HG, Scotland (United Kingdom)], E-mail: k.oduyemi@abertay.ac.uk

2008-07-01T23:59:59.000Z

325

Methane Hydrate Production Feasibility | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Production Feasibility Production Feasibility Methane Hydrate Production Feasibility The red curves are temperature profiles for various water depths; the blue line shows methane hydrate stability relative to temperature and pressure. The area enclosed by the two curves represents the area of methane hydrate stability. The red curves are temperature profiles for various water depths; the blue line shows methane hydrate stability relative to temperature and pressure. The area enclosed by the two curves represents the area of methane hydrate stability. Methane, the predominant component of natural gas, forms hydrate in the presence of water, low temperatures and high pressures. Alternatively, when the temperature is increased or the pressure decreased so that hydrates are outside their stability field, they dissociate into methane and water.

326

Estimation of landfill emission lifespan using process oriented modeling  

SciTech Connect

Depending on the particular pollutants emitted, landfills may require service activities lasting from hundreds to thousands of years. Flexible tools allowing long-term predictions of emissions are of key importance to determine the nature and expected duration of maintenance and post-closure activities. A highly capable option represents predictions based on models and verified by experiments that are fast, flexible and allow for the comparison of various possible operation scenarios in order to find the most appropriate one. The intention of the presented work was to develop a experimentally verified multi-dimensional predictive model capable of quantifying and estimating processes taking place in landfill sites where coupled process description allows precise time and space resolution. This constitutive 2-dimensional model is based on the macromechanical theory of porous media (TPM) for a saturated thermo-elastic porous body. The model was used to simulate simultaneously occurring processes: organic phase transition, gas emissions, heat transport, and settlement behavior on a long time scale for municipal solid waste deposited in a landfill. The relationships between the properties (composition, pore structure) of a landfill and the conversion and multi-phase transport phenomena inside it were experimentally determined. In this paper, we present both the theoretical background of the model and the results of the simulations at one single point as well as in a vertical landfill cross section.

Ustohalova, Veronika [Institute of Waste Management, University of Duisburg-Essen, Universitaetsstrasse 15, 45141 Essen (Germany)]. E-mail: veronika.ustohalova@uni-essen.de; Ricken, Tim [Institute of Mechanics, University of Duisburg-Essen, Universitaetsstrasse 15, 45141 Essen (Germany); Widmann, Renatus [Institute of Waste Management, University of Duisburg-Essen, Universitaetsstrasse 15, 45141 Essen (Germany)

2006-07-01T23:59:59.000Z

327

I 95 Municipal Landfill Phase I Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Municipal Landfill Phase I Biomass Facility Municipal Landfill Phase I Biomass Facility Jump to: navigation, search Name I 95 Municipal Landfill Phase I Biomass Facility Facility I 95 Municipal Landfill Phase I Sector Biomass Facility Type Landfill Gas Location Fairfax County, Virginia Coordinates 38.9085472°, -77.2405153° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.9085472,"lon":-77.2405153,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

328

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Characterization and Decomposition Kinetic Studies of Methane Hydrate in Host Sediments under Subsurface Mimic Conditions Last Reviewed 02/17/2010 Characterization and Decomposition Kinetic Studies of Methane Hydrate in Host Sediments under Subsurface Mimic Conditions Last Reviewed 02/17/2010 EST-380-NEDA Goal The purpose of this study is to establish sediment lithology and quantification of methane in hydrates hosted in fine-grained sediments from the Gulf of Mexico (GoM), a marine site of methane hydrate occurrence. The results will help establish a correlation between laboratory data and hydrate accumulation field data on dispersed hydrates in the natural environment. Performer Brookhaven National Laboratory (BNL), Upton, New York 11973 Background Gas hydrates are located in permafrost and marine environments and show potential as a vast methane source worldwide. However, methane is about 17 times more potent a greenhouse gas than CO2 and the inherent instability of

329

Solution to the Ukrainian Gas Crises and Achievement of Energy Efficiency of Ukraine through the Development of Coalbed Methane.  

E-Print Network (OSTI)

??Historically, Ukraine has been a net energy importer, needing oil and natural gas for the effective functioning of its industries and satisfaction of domestic needs.… (more)

Denisenko, Valeriya

2010-01-01T23:59:59.000Z

330

Selective leak-detector for natural gas  

SciTech Connect

An improved detector for combustible gases and which is able to discriminate between natural gas (methane and ethane) and other sources of methane (e.g. swamp gas, petrochemical and automotive) or other combustible gases by measuring the characteristic methane/ethane ratio of natural gas, based on infrared absorption of methane and ethane, in combination with another non-specific combustible gas detector.

Bonne, U.

1985-03-26T23:59:59.000Z

331

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Scale Study of Hydrate Formation in Sediments from Methane Gas Grain Scale Study of Hydrate Formation in Sediments from Methane Gas: Role of Capillarity Authors: Javad Behseresht,...

332

Analytical risk-based model of gaseous and liquid-phase radon transport in landfills with radium sources  

Science Conference Proceedings (OSTI)

An analytical model of gaseous and liquid-phase radon transport through soils is derived for environmental modeling of landfills containing uranium mill tailings or Ra-226 sources. Processes include radon diffusion in both the gas and liquid phases, ... Keywords: Landfill, Multiphase, Performance assessment, Probabilistic modeling, Radium, Radon, Transport

Clifford K. Ho

2008-09-01T23:59:59.000Z

333

Quantifying sources of methane using light alkanes in the Los Angeles basin, California  

E-Print Network (OSTI)

operations in Chino, and from the two largest landfills in the L.A. basin, and show these sources distribution systems and/or geologic seeps, as well as landfills and dairies. The local oil and gas industry are accurately represented in the California Air Resources Board greenhouse gas inventory for CH4. We then use

Cohen, Ronald C.

334

2005 Inventory of Greenhouse Gas Emissions Ascribable to the University of Washington  

E-Print Network (OSTI)

2005 Inventory of Greenhouse Gas Emissions Ascribable to the University of Washington October 2007 ............................................................................................6 Operational Boundaries.......................................................................................................................21 Montlake Landfill

Kaminsky, Werner

335

Coal Bed Methane Primer  

SciTech Connect

During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of stakeholders to present a consistent and complete synopsis of the key issues involved with CBM. In light of the numerous CBM NEPA documents under development this Primer could be used to support various public scoping meetings and required public hearings throughout the Western States in the coming years.

Dan Arthur; Bruce Langhus; Jon Seekins

2005-05-25T23:59:59.000Z

336

Capture and Use of Coal Mine Ventilation-Air Methane  

NLE Websites -- All DOE Office Websites (Extended Search)

Capture and use of Coal Mine Capture and use of Coal Mine Ventilation - air Methane Background Methane emissions from coal mines represent about 10 percent of the U.S. anthropogenic methane released to the atmosphere. Methane-the second most important non-water greenhouse gas-is 21 times as powerful as carbon dioxide (CO 2 ) in its global warming potential. Ventilation-air methane (VAM)-the exhaust air from underground coal mines-is the largest source of coal mine methane, accounting for about half of the methane emitted from coal mines in the United States. Unfortunately, because of the low methane concentration (0.3-1.5 percent) in ventilation air, its beneficial use is difficult. However, oxidizing the methane to CO 2 and water reduces its global warming potential by 87 percent. A thermal

337

GRI methane chemistry program review meeting  

SciTech Connect

Methane is an important greenhouse gas which affects the atmosphere directly by the absorption and re-emission of infrared radiation as well as indirectly, through chemical interactions. Emissions of several important greenhouse gases (GHGS) including methane are increasing, mainly due to human activity. Higher concentrations of these gases in the atmosphere are projected to cause a decrease in the amount of infrared radiation escaping to space, and a subsequent warming of global climate. It is therefore vital to understand not only the causes of increased production of methane and other GHGS, but the effect of higher GHG concentrations on climate, and the possibilities for reductions of these emissions. In GRI-UIUC methane project, the role of methane in climate change and greenhouse gas abatement strategies is being studied using several distinct approaches. First, a detailed treatment of the mechanisms controlling each important methane source and sink, and hence the atmospheric concentration of methane, is being developed for use with the UIUC Integrated Science Assessment Model. The focus of this study is to resolve the factors which determine methane emissions and removal, including human population, land use, energy demand, global temperature, and regional concentrations of the hydroxyl radical, carbon monoxide, nitrous oxides, non-methane hydrocarbons, water vapor, tropospheric and stratospheric ozone.

Dignon, J.; Grant, K.; Grossman, A.; Wuebles, D.; Brasseur, G.; Madronich, S.; Huang, T.; Chang, J.; Lott, B.

1997-02-01T23:59:59.000Z

338

Coalbed Methane Resources in the Powder River Basin: Lithologic...  

Open Energy Info (EERE)

in Wyoming and North Dakota. Specifically, the analysis looked at: total gas desorbed, coal quality, and high-pressure methane adsorption isotherm data from 963 cored coal samples...

339

Department of Energy Advance Methane Hydrates Science and Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advance Methane Hydrates Science and Technology Projects Dollars awarded will go to research the advance understanding of the nature and occurrence of Deepwater and Arctic gas...

340

EA-1157: Methyl Chloride via Oxyhydrochlorination of Methane...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1157: Methyl Chloride via Oxyhydrochlorination of Methane: A Building Black for Chemicals and Fuels from Natural Gas, Carrollton, Kentucky EA-1157: Methyl Chloride via...

Note: This page contains sample records for the topic "landfill gas methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Resource Recovery of Coal Bed Methane Formation Water.  

E-Print Network (OSTI)

??During the excavation of natural gas, petroleum hydrocarbon-polluted brine water, termed production water, is drawn from the coal bed methane formations (CBMF) along with the… (more)

Bishop, Catherine Elizabeth

2006-01-01T23:59:59.000Z

342

NETL: Methane Hydrates - DOE/NETL Projects - Borehole Tool for...  

NLE Websites -- All DOE Office Websites (Extended Search)

liquid and gas permeabilities and their variation with saturation define flow rates; and heat capacity and conduction limit dissociation. The study of methane hydrate-bearing...

343

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

area, known as Mississippi Canyon lease block 118, is well-known for the occurrence of methane hydrate and is the location of the University of Mississippis gas hydrate...

344

Methane Hydrates - Mt. Elbert Well Log Data  

NLE Websites -- All DOE Office Websites (Extended Search)

more. Project background information - Alaska North Slope Gas Hydrate Reservoir Characterization - DE-FC26-01NT41332 More information on the National Methane Hydrates R&D Program...

345

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Production of Methane Hydrate Last Reviewed 5152012 DE-FC26-06NT42960 Goal The goal of this project is to improve the understanding of regional and local differences in gas...

346

Arctic Methane, Hydrates, and Global Climate  

NLE Websites -- All DOE Office Websites (Extended Search)

Arctic Methane, Hydrates, and Global Climate Arctic Methane, Hydrates, and Global Climate Speaker(s): Matthew T. Reagan Date: March 17, 2010 - 12:00pm Location: 90-3122 Paleooceanographic evidence has been used to postulate that methane may have had a significant role in regulating past climate. However, the behavior of contemporary permafrost deposits and oceanic methane hydrate deposits subjected to rapid temperature changes, like those now occurring in the arctic and those predicted under future climate change scenarios, has only recently been investigated. A recent expedition to the west coast of Spitsbergen discovered substantial methane gas plumes exiting the seafloor at depths that correspond to the upper limit of the receding gas hydrate stability zone. It has been suggested that these plumes may be the

347

Hydraulic fracturing and wellbore completion of coalbed methane wells in the Powder River Basin, Wyoming: Implications for water and gas production  

SciTech Connect

Excessive water production (more than 7000 bbl/month per well) from many coalbed methane (CBM) wells in the Powder River Basin of Wyoming is also associated with significant delays in the time it takes for gas production to begin. Analysis of about 550 water-enhancement activities carried out during well completion demonstrates that such activities result in hydraulic fracturing of the coal. Water-enhancement activities, consists of pumping 60 bbl of water/min into the coal seam during approximately 15 min. This is done to clean the well-bore and to enhance CBM production. Hydraulic fracturing is of concern because vertical hydraulic fracture growth could extend into adjacent formations and potentially result in excess CBM water production and inefficient depressurization of coals. Analysis of the pressure-time records of the water-enhancement tests enabled us to determine the magnitude of the least principal stress (S{sub 3}) in the coal seams of 372 wells. These data reveal that because S{sub 3} switches between the minimum horizontal stress and the overburden at different locations, both vertical and horizontal hydraulic fracture growth is inferred to occur in the basin, depending on the exact location and coal layer. Relatively low water production is observed for wells with inferred horizontal fractures, whereas all of the wells associated with excessive water production are characterized by inferred vertical hydraulic fractures. The reason wells with exceptionally high water production show delays in gas production appears to be inefficient depressurization of the coal caused by water production from the formations outside the coal. To minimize CBM water production, we recommend that in areas of known vertical fracture propagation, the injection rate during the water-enhancement tests should be reduced to prevent the propagation of induced fractures into adjacent water-bearing formations.

Colmenares, L.B.; Zoback, M.D. [Stanford University, Stanford, CA (United States). Dept. of Geophysics

2007-01-15T23:59:59.000Z

348

Comparison of slope stability in two Brazilian municipal landfills  

SciTech Connect

The implementation of landfill gas to energy (LFGTE) projects has greatly assisted in reducing the greenhouse gases and air pollutants, leading to an improved local air quality and reduced health risks. The majority of cities in developing countries still dispose of their municipal waste in uncontrolled 'open dumps.' Municipal solid waste landfill construction practices and operating procedures in these countries pose a challenge to implementation of LFGTE projects because of concern about damage to the gas collection infrastructure (horizontal headers and vertical wells) caused by minor, relatively shallow slumps and slides within the waste mass. While major slope failures can and have occurred, such failures in most cases have been shown to involve contributory factors or triggers such as high pore pressures, weak foundation soil or failure along weak geosynthetic interfaces. Many researchers who have studied waste mechanics propose that the shear strength of municipal waste is sufficient such that major deep-seated catastrophic failures under most circumstances require such contributory factors. Obviously, evaluation of such potential major failures requires expert analysis by geotechnical specialists with detailed site-specific information regarding foundation soils, interface shearing resistances and pore pressures both within the waste and in clayey barrier layers or foundation soils. The objective of this paper is to evaluate the potential use of very simple stability analyses which can be used to study the potential for slumps and slides within the waste mass and which may represent a significant constraint on construction and development of the landfill, on reclamation and closure and on the feasibility of a LFGTE project. The stability analyses rely on site-specific but simple estimates of the unit weight of waste and the pore pressure conditions and use 'generic' published shear strength envelopes for municipal waste. Application of the slope stability analysis method is presented in a case study of two Brazilian landfill sites; the Cruz das Almas Landfill in Maceio and the Muribeca Landfill in Recife. The Muribeca site has never recorded a slope failure and is much larger and better-maintained when compared to the Maceio site at which numerous minor slumps and slides have been observed. Conventional limit-equilibrium analysis was used to calculate factors of safety for stability of the landfill side slopes. Results indicate that the Muribeca site is more stable with computed factors of safety values in the range 1.6-2.4 compared with computed values ranging from 0.9 to 1.4 for the Maceio site at which slope failures have been known to occur. The results suggest that this approach may be useful as a screening-level tool when considering the feasibility of implementing LFGTE projects.

Gharabaghi, B. [School of Engineering, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada)], E-mail: bgharaba@uoguelph.ca; Singh, M.K. [Department of Civil and Geological Engineering, University of Saskatchewan, Saskatoon, S7N 5A9 (Canada); Inkratas, C. [School of Engineering, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada)], E-mail: cinkrata@uoguelph.ca; Fleming, I.R. [Department of Civil and Geological Engineering, University of Saskatchewan, Saskatoon, S7N 5A9 (Canada)], E-mail: ian.fleming@usask.ca; McBean, E. [School of Engineering, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada)], E-mail: emcbean@uoguelph.ca

2008-07-01T23:59:59.000Z

349

Methane (CH4)  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane (CH4) Gateway Pages to Methane Data Modern Records of Atmospheric Methane (CH4) and a 2000-year Ice-core Record from Law Dome, Antarctica 800,000-year Ice-Core Records of...

350

Economic aspects of the rehabilitation of the Hiriya landfill  

SciTech Connect

The Hiriya landfill, Israel's largest, operated from 1952 to 1998. The landfill, located in the heart of the Dan Region, developed over the years into a major landscape nuisance and environmental hazard. In 1998, the Israeli government decided to close the landfill, and in 2001 rehabilitation activities began at the site, including site investigations, engineering and scientific evaluations, and end-use planning. The purpose of the present research is to perform a cost-benefit analysis of engineering and architectural-landscape rehabilitation projects considered for the site. An engineering rehabilitation project is required for the reduction of environmental impacts such as greenhouse gas emissions, slope instability and leachate formation. An architectural-landscape rehabilitation project would consider improvements to the site to make it suitable for future end uses such as a public park. The findings reveal that reclamation is worthwhile only in the case of architectural-landscape rehabilitation of the landfill, converting it into a public park. Engineering rehabilitation alone was found to be unjustified, but is essential to enable the development of a public park.

Ayalon, O. [Department of Natural Resources and Environmental Management and NRERC, Haifa University, 32000 Haifa (Israel)]. E-mail: agofira@tx.technion.ac.il; Becker, N. [Department of Natural Resources and Environmental Management and NRERC, Haifa University, 32000 Haifa (Israel); Department of Economics and Management, Tel Hai College and NRERC, University of Haifa, Haifa (Israel); Shani, E. [Dan Region Association of Towns, Sanitation and Waste Disposal (Israel)

2006-07-01T23:59:59.000Z

351

Diffusive Accumulation of Methane Bubbles in Seabed  

E-Print Network (OSTI)

We consider seabed bearing methane bubbles. In the absence of fractures the bubbles are immovably trapped in a porous matrix by surface tension forces; therefore the dominant mechanism of transfer of gas mass becomes the diffusion of gas molecules through the liquid. The adequate description of this process requires accounting "other-than-normal" (non-Fickian) diffusion effects, thermodiffusion and gravity action. We evaluate the diffusive flux of aqueous methane and predict the possibility of existence of bubble mass accumulation zones (which can appear independently from the presence/absence of hydrate stability zone) and effect of non-Fickian drift on the capacity of shallow and deep methane-hydrate deposits.

Goldobin, D S; Levesley, J; Lovell, M A; Rochelle, C A; Jackson, P; Haywood, A; Hunter, S; Rees, J

2010-01-01T23:59:59.000Z

352

Carbon Dioxide as Cushion Gas for Natural Gas Storage  

Carbon dioxide injection during carbon sequestration with enhanced gas recovery can be carried out to produce the methane while

353

Study of the VOC emissions from a municipal solid waste storage pilot-scale cell: Comparison with biogases from municipal waste landfill site  

Science Conference Proceedings (OSTI)

Highlights: > Follow-up of the emission of VOCs in a municipal waste pilot-scale cell during the acidogenesis and acetogenesis phases. > Study from the very start of waste storage leading to a better understanding of the decomposition/degradation of waste. > Comparison of the results obtained on the pilot-scale cell with those from 3 biogases coming from the same landfill site. > A methodology of characterization for the progression of the stabilization/maturation of waste is finally proposed. - Abstract: The emission of volatile organic compounds (VOCs) from municipal solid waste stored in a pilot-scale cell containing 6.4 tonnes of waste (storage facility which is left open during the first period (40 days) and then closed with recirculation of leachates during a second period (100 days)) was followed by dynamic sampling on activated carbon and analysed by GC-MS after solvent extraction. This was done in order to know the VOC emissions before the installation of a methanogenesis process for the entire waste mass. The results, expressed in reference to toluene, were exploited during the whole study on all the analyzable VOCs: alcohols, ketones and esters, alkanes, benzenic and cyclic compounds, chlorinated compounds, terpene, and organic sulphides. The results of this study on the pilot-scale cell are then compared with those concerning three biogases from a municipal waste landfill: biogas (1) coming from waste cells being filled or recently closed, biogas (2) from all the waste storage cells on site, and biogas (3) which is a residual gas from old storage cells without aspiration of the gas. The analysis of the results obtained revealed: (i) a high emission of VOCs, principally alcohols, ketones and esters during the acidogenesis; (ii) a decrease in the alkane content and an increase in the terpene content were observed in the VOCs emitted during the production of methane; (iii) the production of heavier alkanes and an increase in the average number of carbon atoms per molecule of alkane with the progression of the stabilisation/maturation process were also observed. Previous studies have concentrated almost on the analysis of biogases from landfills. Our research aimed at gaining a more complete understanding of the decomposition/degradation of municipal solid waste by measuring the VOCs emitted from the very start of the landfill process i.e. during the acidogenesis and acetogenesis phases.

Chiriac, R., E-mail: rodica.chiriac@univ-lyon1.fr [Universite de Lyon, Universite Lyon 1, CNRS, UMR 5615, Laboratoire des Multimateriaux et Interfaces, 43 boulevard du 11 Novembre 1918, F-69622 Villeurbanne (France); De Araujos Morais, J. [Universite Federal de Paraiba, Campus I Departamento de Engenharia Civil e Ambiental, Joao Pessoa, Paraiba (Brazil); Carre, J. [Universite de Lyon, Universite Lyon 1, CNRS, UMR 5256, Institut de Recherche sur la Catalyse et l'Environnement, 43 boulevard du 11 Novembre 1918, F-69622 Villeurbanne (France); Bayard, R. [Universite de Lyon, INSA de Lyon, Laboratoire de Genie Civil et d'Ingenierie environnementale (LGCIE), F-69622 Villeurbanne (France); Chovelon, J.M. [Universite de Lyon, Universite Lyon 1, CNRS, UMR 5256, Institut de Recherche sur la Catalyse et l'Environnement, 43 boulevard du 11 Novembre 1918, F-69622 Villeurbanne (France); Gourdon, R. [Universite de Lyon, INSA de Lyon, Laboratoire de Genie Civil et d'Ingenierie environnementale (LGCIE), F-69622 Villeurbanne (France)

2011-11-15T23:59:59.000Z

354

Semi-annual report for the unconventional gas recovery program, period ending March 31, 1980  

SciTech Connect

Four subprograms are reported on: methane recovery from coalbeds, Eastern gas shales, Western gas sands, and methane from geopressured aquifers. (DLC)

Manilla, R.D.

1980-06-01T23:59:59.000Z

355

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Collection and Microbiological Analysis of Gas Hydrate Cores Collection and Microbiological Analysis of Gas Hydrate Cores FWP-4340-60 and FWP-42C1-01 Goal Determine the presence and activity of methanogens in methane hydrate-bearing sediments. Background The project was set up to determine a fundamental modeling parameter - the amount of methane generated in deep sediments by methanogenic microorganisms. This would allow methane distribution models of gas hydrate reservoirs to accurately reflect an unknown volume and the distribution of biogenic methane within in a reservoir. The personnel at INEL have experience in similar biologic research and are considered to be experts by their global peers. Performer Idaho National Engineering and Environmental Laboratory (INEEL) - sample collection and analysis Location

356

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network (OSTI)

of NOx and 30 kW of electrical power. Less than 5.0 ppm ofresource for producing electrical power. For developmentheating is supplied by electrical power during startup and

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

357

Landfill Gas to Energy for Federal Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

micro- turbines, and other technologies can use LFG to produce electricity; and most boilers can be reconfigured to burn LFG to produce hot water or steam. LFG usually consists...

358

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network (OSTI)

and valves, an air-to-air (ATA) heat exchanger, a liquid-to-air (LTA) heat exchanger, an ICTC manifold and heatis designed with two heat exchanger systems to accommodate

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

359

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network (OSTI)

chemical- kinetic model of propane HCCI combustion,” SAEof a four-cylinder 1.9 l propane- fueled homogeneous chargethe fuel line can use propane from a tank and NG from the

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

360

Large-eddy Simulation of the Nighttime Stable Atmospheric Boundary Layer  

E-Print Network (OSTI)

time of emitted gases from the landfill to the measurementgas profiles, and gas travel times from the landfill to theterm methane gas emission over a landfill. A brief summary

Zhou, Bowen

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "landfill gas methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

EA-1707: Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste Landfill, Hanford Site, Richland, Washington  

Energy.gov (U.S. Department of Energy (DOE))

This EA evaluates the potential environmental impacts of closing the Nonradioactive Dangerous Waste Landfill and the Solid Waste Landfill. The Washington State Department of Ecology is a cooperating agency in preparing this EA.

362

NIST: Methane Symmetry Operations  

Science Conference Proceedings (OSTI)

*. Bookmark and Share. Version History Methane Symmetry Operations. JT Hougen Optical Technology Division Gloria Wiersma ...

2010-10-05T23:59:59.000Z

363

MethaneHydrateRD_FC.indd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

gas is an important energy gas is an important energy resource for the United States, providing nearly one-quarter of total energy use. The Department of Energy's Office of Fossil Energy (FE) has played a major role in developing technologies to help tap new, unconventional sources of natural gas. FOSSIL ENERGY RESEARCH BENEFITS Methane Hydrate R&D "The (DOE) Program has supported and managed a high-quality research portf olio that has enabled signifi cant progress toward the (DOE) Program's long-term goals." The Nati onal Academies 2010 One of these is methane hydrate - molecules of natural gas trapped in ice crystals. Containing vast amounts of natural gas, methane hydrate occurs in a variety of forms in sediments within and below thick permafrost in Arctic regions, and in the

364

Health assessment for 19th Avenue Landfill National Priorities List (NPL) Site, Phoenix, Maricopa County, Arizona, Region 9. CERCLIS No. AZD980496780. Preliminary report  

Science Conference Proceedings (OSTI)

The 19th Avenue Landfill is an National Priorities List site located in Maricopa County, Phoenix, Arizona. The site was operated as a sanitary landfill between 1957 and 1979. Most of the waste disposed of at the landfill was from municipal sources; however, old gasoline storage tanks, radioactive waste, hospital waste, industrial waste, and old transformers were also landfilled. The site is considered to be of potential public health concern because of the risk to human health caused by the possibility of exposure to hazardous substances via ingestion, dermal contact, or inhalation of contaminants in subsurface soil and refuse, soil-gas, and air.

Not Available

1989-04-10T23:59:59.000Z

365

Energy Department Expands Research into Methane Hydrates, a Vast...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to safely and sustainably unlock the natural gas held within." Methane hydrates are ice-like structures with natural gas locked inside, which can be found both onshore and...

366

Analysis on Coalbed Methane Development Mode and Utilization Technology in China  

Science Conference Proceedings (OSTI)

Coal bed methane (CBM), as a new energy, has become an important supplement to natural gas in China. Development and utilization of CBM can also reduce greenhouse gas emissions and protect of ecological environment. Very different forms of the Chinese ... Keywords: coalbed methane, virtual reservoir, low concentration CBM, ventilation air methane, energy-saving and emission reduction

Yuandong Qiao; Daping Xia; Hongyu Guo

2010-10-01T23:59:59.000Z

367

Induction of enhanced methane oxidation in compost: Temperature and moisture response  

Science Conference Proceedings (OSTI)

Landfilling is one of the most common ways of municipal solid waste disposal. Degradation of organic waste produces CH{sub 4} and other landfill gases that significantly contribute to global warming. However, before entering the atmosphere, part of the produced CH{sub 4} can be oxidised while passing through the landfill cover. In the present study, the oxidation rate of CH{sub 4} was studied with various types of compost as possible landfill cover. The influence of incubation time, moisture content and temperature on the CH{sub 4} oxidation capacity of different types of compost was examined. It was observed that the influence of moisture content and temperature on methane oxidation is time-dependent. Maximum oxidation rates were observed at moisture contents ranging from 45% to 110% (dry weight basis), while the optimum temperature ranged from 15 to 30 deg. C.

Mor, Suman [Centre for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016 (India) and Department of Applied Analytical and Physical Chemistry, Ghent University, Coupure Links 653, B-9000 Ghent (Belgium)]. E-mail: sumanmor@yahoo.com; Visscher, Alex de [Department of Applied Analytical and Physical Chemistry, Ghent University, Coupure Links 653, B-9000 Ghent (Belgium); Ravindra, Khaiwal [Micro and Trace Analysis Centre, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp (Belgium); Dahiya, R.P. [Centre for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016 (India); Chandra, A. [Centre for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016 (India); Cleemput, Oswald van [Department of Applied Analytical and Physical Chemistry, Ghent University, Coupure Links 653, B-9000 Ghent (Belgium)

2006-07-01T23:59:59.000Z

368

Municipal Solid WasteMunicipal Solid Waste Landfills In CitiesLandfills In Cities  

E-Print Network (OSTI)

trench c) Liner Deployment d) Seaming Double Hot wedge Fillet Extrusion Seam properties ­ ASTM D6392 e-wise construction of landfill #12;Daily cell, cover, lift & phase of a landfill #12;Operational Points Provisions (contd) Check for compatibilities of different wastes. Divide landfill into cells. Non

Columbia University

369

Real-Time Fuel Gas Composition Sensor  

gas, coalbed methane, and biogas. The problem, though, is that the composition of the gas from these reserves varies widely. Unconventional gas often contains

370

Mixed Waste Landfill Integrated Demonstration; Technology summary  

SciTech Connect

The mission of the Mixed Waste Landfill Integrated Demonstration (MWLID) is to demonstrate, in contaminated sites, new technologies for clean-up of chemical and mixed waste landfills that are representative of many sites throughout the DOE Complex and the nation. When implemented, these new technologies promise to characterize and remediate the contaminated landfill sites across the country that resulted from past waste disposal practices. Characterization and remediation technologies are aimed at making clean-up less expensive, safer, and more effective than current techniques. This will be done by emphasizing in-situ technologies. Most important, MWLID`s success will be shared with other Federal, state, and local governments, and private companies that face the important task of waste site remediation. MWLID will demonstrate technologies at two existing landfills. Sandia National Laboratories` Chemical Waste Landfill received hazardous (chemical) waste from the Laboratory from 1962 to 1985, and the Mixed-Waste Landfill received hazardous and radioactive wastes (mixed wastes) over a twenty-nine year period (1959-1988) from various Sandia nuclear research programs. Both landfills are now closed. Originally, however, the sites were selected because of Albuquerque`s and climate and the thick layer of alluvial deposits that overlay groundwater approximately 480 feet below the landfills. This thick layer of ``dry`` soils, gravel, and clays promised to be a natural barrier between the landfills and groundwater.

NONE

1994-02-01T23:59:59.000Z

371

Hawaii - State Energy Profile Analysis - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Hawaii produces no natural gas and has no proven ... solar thermal and photovoltaic (PV); geothermal; biogas including landfill methane; biomass ...

372

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

with the bulk water phase, anticipating preferential growth of methane hydrate there. Gas invasion of sediments is one mechanism by which methane hydrates are believed to form....

373

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

and quantification of the methane hydrate resource potential associated with the Barrow Gas Field Characterization and quantification of the methane hydrate resource potential...

374

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

II: Subsurface sequestration of methane-derived carbon in gas-hydrate-bearing marine sediments HyFlux - Part II: Subsurface sequestration of methane-derived carbon in...

375

Fuel Effects on a Low-Swirl Injector for Lean Premixed Gas Turbines  

E-Print Network (OSTI)

equivalent to those from landfill gas to liquified petroleumlandfill and biomass fuels, H 2 -enriched CH 4 to simulate refinery gas

Littlejohn, David

2008-01-01T23:59:59.000Z

376

Appendix B Landfill Inspection Forms and Survey Data  

Office of Legacy Management (LM)

Appendix B Landfill Inspection Forms and Survey Data This page intentionally left blank This page intentionally left blank Original Landfill January 2011 Monthly Inspection -...

377

Briefing: DOE EM ITR Landfill Assessment Project Lessons Learned...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ITR Landfill Assessment Project Lessons Learned Briefing: DOE EM ITR Landfill Assessment Project Lessons Learned By: Craig H. Benson, PhD, PE Where: EM SSAB Teleconference: 1...

378

DOE EM Landfill Workshop and Path Forward - July 2009  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Teleconference: 2. DOE EM Landfill Workshop & Path Forward Office of Groundwater and Soil Remediation US Department of Energy July 2009 Slides prepared by CRESP DOE EM Landfill...

379

Briefing: DOE EM Landfill Workshop & Path Forward | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Landfill Workshop & Path Forward Briefing: DOE EM Landfill Workshop & Path Forward By: Office of Groundwater and Soil Remediation Where: SSAB Teleconference 2 Subject: DOE EM...

380

Gas Production From a Cold, Stratigraphically Bounded Hydrate Deposit at the Mount Elbert Site, North Slope, Alaska  

E-Print Network (OSTI)

Mallik 2002 Gas Hydrate Production Research Well Program,Of Methane Hydrate Production Methods To Reservoirs WithNumerical Studies of Gas Production From Methane Hydrates,

Moridis, G.J.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "landfill gas methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Discovery of New Materials to Capture Methane | U.S. DOE Office...  

Office of Science (SC) Website

produce high-purity methane from natural gas systems and separate methane from coal mine ventilation systems. Print Text Size: A A A Subscribe FeedbackShare Page Click to...

382

Remote sensor improves methane leakage surveys  

SciTech Connect

The remote sensing methane detector (RSMD) described in this paper is the result of a twelve year cooperative research program sponsored by the Columbia Gas System Service Corp., Environmental Research and Technology, Inc. and the Gas Research Institute. It is a hand-held, rechargeable battery-powered sensor that operates eight hours on one charge with a sensitivity very specific to methane. It can be scanned along the right of way to detect any methane in its path, up to at least 50 feet away. The RSMD is methane specific in that it only sense methane with minor sensitivity to ethane. This makes it particularly useful in industrial areas where present instruments are confused by solvents. It cannot be poisoned by silicones or leaded gasoline, since it is an optical system. When a cloud of methane has been detected by the RSMD, a sample cell attachment can be used to determine methane concentration in parts per million. A low power microcomputer is used in the RSMD to control its operation.

Eberle, A.C.; Kebabian, P.L.; Kruse, J.R.

1984-12-01T23:59:59.000Z

383

Knowledge based ranking algorithm for comparative assessment of post-closure care needs of closed landfills  

Science Conference Proceedings (OSTI)

Post-closure care (PCC) activities at landfills include cap maintenance; water quality monitoring; maintenance and monitoring of the gas collection/control system, leachate collection system, groundwater monitoring wells, and surface water management system; and general site maintenance. The objective of this study was to develop an integrated data and knowledge based decision making tool for preliminary estimation of PCC needs at closed landfills. To develop the decision making tool, 11 categories of parameters were identified as critical areas which could affect future PCC needs. Each category was further analyzed by detailed questions which could be answered with limited data and knowledge about the site, its history, location, and site specific characteristics. Depending on the existing knowledge base, a score was assigned to each question (on a scale 1-10, as 1 being the best and 10 being the worst). Each category was also assigned a weight based on its relative importance on the site conditions and PCC needs. The overall landfill score was obtained from the total weighted sum attained. Based on the overall score, landfill conditions could be categorized as critical, acceptable, or good. Critical condition indicates that the landfill may be a threat to the human health and the environment and necessary steps should be taken. Acceptable condition indicates that the landfill is currently stable and the monitoring should be continued. Good condition indicates that the landfill is stable and the monitoring activities can be reduced in the future. The knowledge base algorithm was applied to two case study landfills for preliminary assessment of PCC performance.

Sizirici, Banu, E-mail: bsy3@case.edu [Case Western Reserve University, Civil Engineering Department, 2104 Adelbert Road, Bingham Bld. Room: 216, Cleveland, OH 44106 (United States); Tansel, Berrin; Kumar, Vivek [Florida International University, Civil and Environmental Engineering Department, Miami, FL (United States)

2011-06-15T23:59:59.000Z

384

The environmental comparison of landfilling vs. incineration of MSW accounting for waste diversion  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Residential waste diversion initiatives are more successful with organic waste. Black-Right-Pointing-Pointer Using a incineration to manage part of the waste is better environmentally. Black-Right-Pointing-Pointer Incineration leads to more power plant emission offsets. Black-Right-Pointing-Pointer Landfilling all of the waste would be preferred financially. - Abstract: This study evaluates the environmental performance and discounted costs of the incineration and landfilling of municipal solid waste that is ready for the final disposal while accounting for existing waste diversion initiatives, using the life cycle assessment (LCA) methodology. Parameters such as changing waste generation quantities, diversion rates and waste composition were also considered. Two scenarios were assessed in this study on how to treat the waste that remains after diversion. The first scenario is the status quo, where the entire residual waste was landfilled whereas in the second scenario approximately 50% of the residual waste was incinerated while the remainder is landfilled. Electricity was produced in each scenario. Data from the City of Toronto was used to undertake this study. Results showed that the waste diversion initiatives were more effective in reducing the organic portion of the waste, in turn, reducing the net electricity production of the landfill while increasing the net electricity production of the incinerator. Therefore, the scenario that incorporated incineration performed better environmentally and contributed overall to a significant reduction in greenhouse gas emissions because of the displacement of power plant emissions; however, at a noticeably higher cost. Although landfilling proves to be the better financial option, it is for the shorter term. The landfill option would require the need of a replacement landfill much sooner. The financial and environmental effects of this expenditure have yet to be considered.

Assamoi, Bernadette [Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5 (Canada); Lawryshyn, Yuri, E-mail: yuri.lawryshyn@utoronto.ca [Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5 (Canada)

2012-05-15T23:59:59.000Z

385

Shale Gas and the Outlook for U.S. Natural Gas Markets and ...  

U.S. Energy Information Administration (EIA)

Shale Gas and the Outlook for U.S. Natural Gas Markets and Global Gas Resources ... Associated with oil Coalbed methane Net imports Non-associated ...

386

Displacement of Different Gases on the Mechanism of Methane and its Experimental Research  

Science Conference Proceedings (OSTI)

The paper is research how to improve the exploitation of coal bed methane rate, we discussed the flooding in the coal bed methane gas, CO2 gas with N2 gas and the effect of displacement, respectively, and summed up: With the injection of different gases ... Keywords: CBM, N2 and CO2 gas, Flow characteristics, Mechanism

E. Dong; Long Guan

2012-05-01T23:59:59.000Z

387

The Effects of Dissolved Methane upon Liquid Argon Scintillation Light  

E-Print Network (OSTI)

In this paper we report on measurements of the effects of dissolved methane upon argon scintillation light. We monitor the light yield from an alpha source held 20 cm from a cryogenic photomultiplier tube (PMT) assembly as methane is injected into a high-purity liquid argon volume. We observe significant suppression of the scintillation light yield by dissolved methane at the 10 part per billion (ppb) level. By examining the late scintillation light time constant, we determine that this loss is caused by an absorption process and also see some evidence of methane-induced scintillation quenching at higher concentrations (50-100 ppb). Using a second PMT assembly we look for visible re-emission features from the dissolved methane which have been reported in gas-phase argon methane mixtures, and we find no evidence of visible re-emission from liquid-phase argon methane mixtures at concentrations between 10 ppb and 0.1%.

B. J. P. Jones; T. Alexander; H. O. Back; G. Collin; J. M. Conrad; A. Greene; T. Katori; S. Pordes; M. Toups

2013-08-16T23:59:59.000Z

388

International Cooperation in Methane Hydrates | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil & Gas » Methane Hydrate » Oil & Gas » Methane Hydrate » International Cooperation in Methane Hydrates International Cooperation in Methane Hydrates In 1982 the multi-national Deep Sea Drilling Program (DSDP) recovered the first subsea substantial methane hydrate deposits, which spurred methane hydrate research in the US and other countries. The successor programs, the Ocean Drilling Program (ODP) and the Integrated Ocean Drilling Program (IODP) sampled hydrate deposits off Oregon (ODP 204, 2002) and in the Cascadia Margin off Vancouver Island, Canada (ODP 146, 1992 and IODP 311, 2005). In the Atlantic Ocean off the US, ODP Leg 146 sampled hydrate deposits on the Blake Ridge and Carolina Rise in 1995. International cooperation helps scientists in the US and other countries

389

R e s u m e 1 o f 1 8 PATRICK S. SULLIVAN, REA, CPP  

E-Print Network (OSTI)

of Rules and Regulations Committee of Landfill Gas (LFG) Division Landfill Gas Technical Advisory Group in the area of environmental engineering, specializing in air quality, landfill gas (LFG), and landfill; CalRecycle Technical Advisory Group, AB 32 Landfill Methane Rule, CARB Air and Waste Management

390

Delivery and Storage of Natural Gas - Energy Explained, Your Guide ...  

U.S. Energy Information Administration (EIA)

Landfill Gas and Biogas; Biomass & the Environment See also: Biofuels. Biofuels: Ethanol & Biodiesel. Ethanol; Use of Ethanol; Ethanol & the Environment; Biodiesel;

391

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Hydrate Production Trial Using CO2 / CH4 Exchange Completed Gas Hydrate Production Trial Using CO2 / CH4 Exchange Completed DE-NT0006553 Goal The goal of this project is to define, plan, conduct and evaluate the results of a field trial of a methane hydrate production methodology whereby carbon dioxide (CO2) molecules are exchanged in situ for methane (CH4) molecules within a hydrate structure, releasing the methane for production. The objective is to evaluate the viability of this hydrate production technique and to understand the implications of the process at a field scale. image showing Conceptual rendering of proposed CO2 - CH4 exchange methodology for the production of natural gas from hydrates Conceptual rendering of proposed CO2 - CH4 exchange methodology for the

392

NETL: Methane Hydrates - Methane Hydrate Reference Shelf  

NLE Websites -- All DOE Office Websites (Extended Search)

Reference Shelf Reference Shelf The Methane Hydrate Reference Shelf was created to provide a repository for information collected from projects funded as part of the National Methane Hydrate R&D Program. As output from the projects is received, it will be reviewed and then placed onto the reference shelf to be available to other methane hydrate researchers. Projects: DOE/NETL Projects : These pages contain detailed information on methane hydrate projects funded through the National Energy Technology Laboratory. Publications: Newsletter | Bibliography | Software | Reports | Program Publications | Photo Gallery Newsletter: Fire in the Ice: A publication highlighting the National Methane Hydrate R&D Program Bibliography: "Project Reports Bibliography"[PDF]: The bibliography lists publications resulting from DOE/NETL-sponsored

393

Industrial Solid Waste Landfill Facilities (Ohio) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Solid Waste Landfill Facilities (Ohio) Industrial Solid Waste Landfill Facilities (Ohio) Industrial Solid Waste Landfill Facilities (Ohio) < Back Eligibility Agricultural Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Utility Program Info State Ohio Program Type Environmental Regulations Provider Ohio Environmental Protection Agency This chapter of the law establishes that the Ohio Environmental Protection Agency provides rules and guidelines for landfills, including those that treat waste to generate electricity. The law provides information for permitting, installing, maintaining, monitoring, and closing landfills. There are no special provisions or exemptions for landfills used to generate electricity. However, the law does apply to landfills that do

394

Challenges, uncertainties and issues facing gas production from gas hydrate deposits  

E-Print Network (OSTI)

gas such as tight gas, shale gas, or coal bed methane gas tolocation. Development of shale oil and gas, tar sands, coalGas hydrates will undoubtedly also be present in shales,

Moridis, G.J.

2011-01-01T23:59:59.000Z

395

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

- Methane Hydrate Research - Geoscience Evaluations and Field Studies Last Reviewed 3/18/2013 - Methane Hydrate Research - Geoscience Evaluations and Field Studies Last Reviewed 3/18/2013 Project Goals The primary goals of the DOE/NETL Natural Gas Hydrate Field Studies (NGHFS) project are: Conduct field-based studies that advance the ability to predict, detect, characterize, and understand distribution of and controls on natural gas hydrate occurrences. Analyze geologic, geochemical, and microbiologic data for indications of past and current changes to the stability of natural gas hydrate in marine settings. Develop links between the U.S. Gas Hydrate Program and international R&D efforts through direct participation in international field programs and workshops. Evaluate the potential role natural gas hydrates may play in the global carbon cycle through analysis of modern and paleo-natural gas

396

Methane cracking over a bituminous coal char  

Science Conference Proceedings (OSTI)

Methane cracking over a bed of Chinese bituminous coal char was studied using a fixed-bed reactor at atmospheric pressure and temperatures between 1073 and 1223 K. Methane conversion over the fresh char increased with increasing temperature to 90% at 1223 K. Hydrogen was the only gas-phase product that was detected during the experimentation. The char was shown to exert a significant catalytic effect on methane cracking by comparing results from experiments with the raw char and demineralised char as well as from blank experiments using quartz. It was further shown that the ash was not the source of the catalytic effect of the char. However, both methane conversion and hydrogen yield decreased with increasing reaction time, irrespective of other experimental conditions, indicating that the char rapidly became deactivated following the exposure to methane. It was speculated that the deposition of carbon from methane cracking was responsible for this deactivation, which is supported by scanning electron microscopy (SEM) image analysis. It was demonstrated that the catalytic activity of the deactivated char can be partially recovered by burning off the carbon deposits with an oxidizing gas mixture containing 0.46% oxygen. 10 refs., 11 figs., 1 tab.

Zhi-qiang Sun; Jin-hu Wu; Mohammad Haghighi; John Bromly; Esther Ng; Hui Ling Wee; Yang Wang; Dong-ke Zhang [Chinese Academy of Sciences, Taiyuan (China). Institute of Coal Chemistry

2007-06-15T23:59:59.000Z

397

EA-1157: Methyl Chloride via Oxyhydrochlorination of Methane: A Building  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

57: Methyl Chloride via Oxyhydrochlorination of Methane: A 57: Methyl Chloride via Oxyhydrochlorination of Methane: A Building Black for Chemicals and Fuels from Natural Gas, Carrollton, Kentucky EA-1157: Methyl Chloride via Oxyhydrochlorination of Methane: A Building Black for Chemicals and Fuels from Natural Gas, Carrollton, Kentucky SUMMARY This EA evaluates the environmental impacts for the proposal to advance Oxyhydrochlorination technology to an integrated engineering-scale process. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD September 27, 1996 EA-1157: Finding of No Significant Impact Methyl Chloride via Oxyhydrochlorination of Methane: A Building Black for Chemicals and Fuels from Natural Gas September 27, 1996 EA-1157: Final Environmental Assessment Methyl Chloride via Oxyhydrochlorination of Methane: A Building Black for

398

Methane Hydrate Production Technologies to be Tested on Alaska's North  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Methane Hydrate Production Technologies to be Tested on Alaska's Methane Hydrate Production Technologies to be Tested on Alaska's North Slope Methane Hydrate Production Technologies to be Tested on Alaska's North Slope October 24, 2011 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy, the Japan Oil, Gas and Metals National Corporation, and ConocoPhillips will work together to test innovative technologies for producing methane gas from hydrate deposits on the Alaska North Slope. The collaborative testing will take place under the auspices of a Statement of Intent for Cooperation in Methane Hydrates signed in 2008 and extended in 2011 by DOE and Japan's Ministry of Economy, Trade, and Industry. The production tests are the next step in both U.S. and Japanese national efforts to evaluate the response of gas hydrate reservoirs to alternative

399

Public health assessment for Seattle Municipal Landfill/Kent Highlands, Kent, King County, Washington, Region 10. Cerclis No. WAD980639462. Final report  

SciTech Connect

The Seattle Municipal Landfill, better known as the Kent Highlands Landfill, is located in the City of Kent, approximately 14 miles south of the City of Seattle, Washington, at 23076 Military Road South. Surface water settling ponds, a leachate collection system, and gas collection system have been constructed. Only one completed pathway exists, which is the use of Midway Creek by recreationists. However, worst case scenarios were evaluated and there did not appear to be a human health threat. Two potential pathways were analyzed, for landfill gas and ground water. Again the worst case scenarios did not reveal any imminent human health threat.

1994-11-23T23:59:59.000Z

400

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory Studies in Support of Characterization of Recoverable Resources from Methane Hydrate Deposits Last Reviewed 5/10/2012 Laboratory Studies in Support of Characterization of Recoverable Resources from Methane Hydrate Deposits Last Reviewed 5/10/2012 ESD05-048 Goal The project is bringing new laboratory measurements and evaluation techniques to bear on the difficult problems of characterization and gas recovery from methane hydrate deposits. Performer Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Background LBNL is performing laboratory tests to provide data to support the characterization and development of methane hydrate deposits. Major areas of research underway include hydrologic measurements, combined geomechanical/geophysical measurements, and synthetic hydrate formation studies. Hydrologic Measurements Relatively little research has been done to experimentally determine

Note: This page contains sample records for the topic "landfill gas methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Seismic-Scale Rock Physics of Methane Hydrate Seismic-Scale Rock Physics of Methane Hydrate DE-FC26-05NT42663 Goal The goal of this project was to establish rock physics models for use in generating synthetic seismic signatures of methane hydrate reservoirs. Ultimately, the intent was to improve seismic detection and quantification of offshore and onshore methane hydrate accumulations. Performer Stanford University, Stanford, CA 94305 Background Gas hydrate reservoir characterization is, in principle, no different from traditional hydrocarbon reservoir characterization. The seismic response of the subsurface is determined by the spatial distribution of the elastic properties (properties of the subsurface that deform as seismic waves pass through it) and attenuation. By mapping changes in the elastic properties, scientists can identify geologic features, including hydrocarbon reservoirs.

402

Detection and Production of Methane Hydrate  

NLE Websites -- All DOE Office Websites (Extended Search)

July-September 2007 July-September 2007 Detection and Production of Methane Hydrate Submitted by: Rice University University of Houston George J. Hirasaki Department of Chemical and Biomolecular Engineering Rice University - MS 362 6100 Main St. Houston, TX 77251-1892 Phone: 713-348-5416; FAX: 713-348-5478; Email: gjh@rice.edu Prepared for: United States Department of Energy National Energy Technology Laboratory December, 2007 Office of Fossil Energy Table of Contents DOE Methane Hydrate Program Peer Review.................................................. 3 Task 5: Carbon Inputs and Outputs to Gas Hydrate Systems ........................... 3 Task 6: Numerical Models for Quantification of Hydrate and Free Gas Accumulations....................................................................................................

403

Method for removal of methane from coalbeds  

DOE Patents (OSTI)

A method for removing methane gas from underground coalbeds prior to mining the coal which comprises drilling at least one borehole from the surface into the coalbed. The borehole is started at a slant rather than directly vertically, and as it descends, a gradual curve is followed until a horizontal position is reached where the desired portion of the coalbed is intersected. Approaching the coalbed in this manner and fracturing the coalbed in the major natural fraction direction cause release of large amounts of the trapped methane gas.

Pasini, III, Joseph (Morgantown, WV); Overbey, Jr., William K. (Morgantown, WV)

1976-01-01T23:59:59.000Z

404

Barometric pumping of burial trench soil gases into the atmosphere at the 740-G Sanitary Landfill  

SciTech Connect

In 1991, a soil gas survey was performed at the Savannah River Site Sanitary Landfill as part of the characterization efforts required under the integrated Resource Conservation and Recovery Act (RCRA) Facility Investigation and Comprehensive Environmental Resource Conservation and Recovery Act (CERCLA) Remedial Investigation (RFI/RI) program. This report details the findings of this survey, which identified several areas of the landfill that were releasing volatile organic compounds to the atmosphere at levels exceeding regulatory standards. Knowledge of the rates of VOC outgassing is necessary to protect site workers, provide input into the human health and environmental risk assessment documents and provide input into the remedial design scenario.

Wyatt, D.E.; Pirkle, R.J.; Masdea, D.J.

1992-12-01T23:59:59.000Z

405

The Numerical Simulation of Conventional Ground Coalbed Methane Development  

Science Conference Proceedings (OSTI)

The migration, accumulation, and production of coalbed methane (CBM) are absolutely different from the conventional natural gas. The mechanism of the migration and production of CBM are researched and the geological model of CBM reservoir simulation ... Keywords: coalbed methane, numerical simulation, desportion-diffusion, two phase flow, fully implicit finite difference

Lin Xiaoying; Liu Guowei; Su Xianbo

2009-07-01T23:59:59.000Z

406

Methane level rise blamed in greenhouse effect  

SciTech Connect

As scientists continue to probe effects of global warming trends and the greenhouse effect, increasing attention is being placed on the impact of methane. Last year, scientists at the University of California in Irvine found there were almost 1.7 parts per million of methane in the troposphere- 11% higher that a decade ago and climbing at 1% annually. European scientists came up with similar analyses, and the belief is that methane is currently 2.4 times higher than it has ever been in the last 160,000 years. The big challenge now is to identify the sources of the methane. About 15 to 20% can be traced to oil and gas wells, coal mining and other tapping of the gas trapped in the planet's crust. Other sources are bacteria working in tropical rain forests, burned-off clearings, etc. Cattle figure high on the list of methane generators. When domesticated herds of sheep, goats, pigs, etc. are figured, the total rises to 73 million metric tons per year- a 435% increase since 1890. Rice paddies are also rated a major source of methane. It's estimated that 115 million metric tons rise from rice paddies a year, as much as is coming from natural swamps and wetlands. When scientists added up all the published estimates of methane production, the total ranged from 400 million to 640 million metric tons a year. Estimates of how much methane the atmosphere can handle are similarly uncertain, ranging from 300 million to 650 million metric tons a year.

1989-01-01T23:59:59.000Z

407

Dairy methane generator. Final report  

Science Conference Proceedings (OSTI)

Details of the work completed under this contract are presented. During the winter of 1979-80 three students enrolled, in the Mechanical Design Engineering Technology program at the Pennsylvania State University's Capitol Campus (Middletown, PA), undertook a feasibility study for the utilization of the manure generated by the dairy cows located on Mr. Thomas B. Williams farm for the generation and use of methane gas. The results of their effort was the design of an Anaerobic Digester/Electric Generation System. This preliminary designed system was later changed and improved by another group of P.S.U. MDET students in the spring of 1980. The final design included working drawings and an economic analysis of the estimated investment necessary to complete the Methane Generator/Electric Power Generation System.

Williams, T.B.

1981-09-30T23:59:59.000Z

408

Waste management health risk assessment: A case study of a solid waste landfill in South Italy  

Science Conference Proceedings (OSTI)

An integrated risk assessment study has been performed in an area within 5 km from a landfill that accepts non hazardous waste. The risk assessment was based on measured emissions and maximum chronic population exposure, for both children and adults, to contaminated air, some foods and soil. The toxic effects assessed were limited to the main known carcinogenic compounds emitted from landfills coming both from landfill gas torch combustion (e.g., dioxins, furans and polycyclic aromatic hydrocarbons, PAHs) and from diffusive emissions (vinyl chloride monomer, VCM). Risk assessment has been performed both for carcinogenic and non-carcinogenic effects. Results indicate that cancer and non-cancer effects risk (hazard index, HI) are largely below the values accepted from the main international agencies (e.g., WHO, US EPA) and national legislation ( and ).

Davoli, E., E-mail: enrico.davoli@marionegri.i [Istituto di Ricerche Farmacologiche 'Mario Negri', Environmental Health Sciences Department, Via Giuseppe La Masa 19, 20156 Milano (Italy); Fattore, E.; Paiano, V.; Colombo, A.; Palmiotto, M. [Istituto di Ricerche Farmacologiche 'Mario Negri', Environmental Health Sciences Department, Via Giuseppe La Masa 19, 20156 Milano (Italy); Rossi, A.N.; Il Grande, M. [Progress S.r.l., Via Nicola A. Porpora 147, 20131 Milano (Italy); Fanelli, R. [Istituto di Ricerche Farmacologiche 'Mario Negri', Environmental Health Sciences Department, Via Giuseppe La Masa 19, 20156 Milano (Italy)

2010-08-15T23:59:59.000Z

409

Extracting value from coal mine methane  

Science Conference Proceedings (OSTI)

Emerging US policy to regulate greenhouse gas (GHG) emissions through a cap-and-trade program presents mine managers with a new opportunity to explore and develop methane utilization or abatement projects that generate value from the anodization of carbon offset credits. In addition, the rising focus on US energy security and domestic energy supply is promoting mine managers and engineers to give further consideration to the importance of their methane gas by-products. The market through which coal mine methane offset projects can be developed and carbon offset credits monetized is quickly maturing. While many methane utilization projects have previously been uneconomical, the carbon offset credit market provides a new set of financing tools for mine engineers to capitalize these projects today. Currently , there are two certification programs that have approved project protocols for CMM projects. The Voluntary Carbon Standard (VCS) offers a methodology approved under the Clean Development Mechanism, the international compliance based offset market under the Kyoto Protocol. The VCS protocol is applicable to projects that combust ventilation air methane (VAM) and methane extracted from pre-and post-mine drainage systems. The Chicago Climate Exchange (CCX), which operates a voluntary yet binding cap-and-trade market, also has an approved protocol for CMM projects. CCX's protocol can be applied to projects combusting VAM, and methane extracted from pre-and-post-mine drainage systems, as well as abandoned mines. The article describes two case studies - Developing a gob gas utilization project financed by carbon offset credits and First VAM oxidation system to be commissioned at an operating mine in the US. 1 tab., 4 photos.

Liebert, B. [Verdao Group (United States)

2009-06-15T23:59:59.000Z

410

UPGRADING METHANE USING ULTRA-FAST THERMAL SWING ADSORPTION  

SciTech Connect

The purpose of this project is to design and demonstrate an approach to upgrade low-BTU methane streams from coal mines to pipeline-quality natural gas. The objective of Phase I of the project was to assess the feasibility of upgrading low-Btu methane streams using ultra-fast thermal swing adsorption (TSA) using Velocys' modular microchannel process technology. The project is on schedule and under budget. For Task 1.1, the open literature, patent information, and vendor contacts were surveyed to identify adsorbent candidates for experimental validation and subsequent demonstration in an MPT-based ultra-fast TSA separation for methane upgrading. The leading candidates for preferential adsorption of methane over nitrogen are highly microporous carbons. A Molecular Gate{trademark} zeolite from Engelhard Corporation has emerged as a candidate. For Task 1.2, experimental evaluation of adsorbents was initiated, and data were collected on carbon (MGN-101) from PICA, Inc. This carbon demonstrated a preferential capacity for methane over nitrogen, as well as a reasonable thermal swing differential capacity for a 90% methane and 10% nitrogen mixture. A similar methane swing capacity at 2 psig was measured. The mixture composition is relevant because gob gas contains nearly 85% methane and must be purified to 97% methane for pipeline quality.

Anna Lee Tonkovich

2004-01-01T23:59:59.000Z

411

Microchannel steam-methane reforming under constant and variable surface temperature distributions.  

E-Print Network (OSTI)

??Steam-methane reforming is a well understood industrial process used for generating hydrogen and synthesis gas. The reaction is generally carried out with residence times on… (more)

[No author

2010-01-01T23:59:59.000Z

412

U.S. and Japan Complete Successful Field Trial of Methane Hydrate Production Technologies  

Energy.gov (U.S. Department of Energy (DOE))

Methane Hydrates May Exceed the Energy Content of All Other Fossil Fuels Combined; Could Ensure Decades of Affordable Natural Gas and Cut America’s Foreign Oil Dependence

413

NETL: Methane Hydrates - DOE/NETL Projects - A New Approach to...  

NLE Websites -- All DOE Office Websites (Extended Search)

of gas hydrate in over 1700 industry wells, this research will directly identify methane hydrate resources, and may identify new potentially commercial hydrate-bearing sand...

414

NETL: Methane Hydrates - Methane Hydrate Reference Shelf  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrates Primer provides background and general information about the history of hydrate R&D, the science of methane hydrates, their occurrences, and R&D related issues. Photo...

415

Oil & Gas Research | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Capture and Storage Oil & Gas Methane Hydrate LNG Offshore Drilling Enhanced Oil Recovery Shale Gas Section 999 Report to Congress DOE issues the 2013 annual plan for the...

416

MTBE Prices Responded to Natural Gas Prices  

U.S. Energy Information Administration (EIA)

On top of the usual factors impacting gasoline prices, natural gas has had some influence recently. ... Both methane and butane come from natural gas streams.

417

Greenhouse gas emissions in biogas production systems  

E-Print Network (OSTI)

Augustin J et al. Automated gas chromatographic system forof the atmospheric trace gases methane, carbon dioxide, andfuel consumption and of greenhouse gas (GHG) emissions from

Dittert, Klaus; Senbayram, Mehmet; Wienforth, Babette; Kage, Henning; Muehling, Karl H

2009-01-01T23:59:59.000Z

418

Real-Time Fuel Gas Composition Sensor  

reserves- shale gas, coalbed methane, and biogas. The problem, though, is that the composition of the gas from these reserves varies widely.

419

NETL: News Release - Energy Department Advances Research on Methane...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Methane Hydrate opens new window "The Energy Department's long term investments in shale gas research during the 70s and 80s helped pave the way for today's boom in domestic...

420

NETL: Methane Hydrates - DOE/NETL Projects - NT42496  

NLE Websites -- All DOE Office Websites (Extended Search)

Studies of Natural Gas Hydrates to Support the DOE Efforts to Evaluate and Understand Methane Hydrates Last Reviewed 05162011 DE-AI26-05NT42496 Goal The United States Geological...

Note: This page contains sample records for the topic "landfill gas methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

DOE Announces $2 Million Funding for Methane Hydrates Projects | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Announces $2 Million Funding for Methane Hydrates Projects DOE Announces $2 Million Funding for Methane Hydrates Projects DOE Announces $2 Million Funding for Methane Hydrates Projects November 7, 2005 - 12:43pm Addthis Seeks to Unlock World's Biggest Potential Source of "Ice That Burns" WASHINGTON, DC - The Department of Energy (DOE) today announced a total of $2 million in funding to five research projects that will assess the energy potential, safety, and environmental aspects of methane hydrate exploration and development. Termed the "ice that burns," methane hydrates are crystalline solids that release a flammable gas when melted. They are considered the Earth's biggest potential source of hydrocarbon energy and could be a key element in meeting natural gas demand in the United States,

422

Polybrominated diphenyl ethers (PBDEs) in leachates from selected landfill sites in South Africa  

Science Conference Proceedings (OSTI)

The last few decades have seen dramatic growth in the scale of production and the use of polybrominated diphenyl ethers (PBDEs) as flame retardants. Consequently, PBDEs such as BDE -28, -47, -66, -71, -75, -77, -85, -99, -100, -119, -138, -153, -154, and -183 have been detected in various environmental matrices. Generally, in South Africa, once the products containing these chemicals have outlived their usefulness, they are discarded into landfill sites. Consequently, the levels of PBDEs in leachates from landfill sites may give an indication of the general exposure and use of these compounds. The present study was aimed at determining the occurrence and concentrations of most common PBDEs in leachates from selected landfill sites. The extraction capacities of the solvents were also tested. Spiked landfill leachate samples were used for the recovery tests. Separation and determination of the PBDE congeners were carried out with a gas chromatograph equipped with Ni{sup 63} electron capture detector. The mean percentage recoveries ranged from 63% to 108% (n = 3) for landfill leachate samples with petroleum ether giving the highest percentage extraction. The mean concentrations of PBDEs obtained ranged from ND to 2670 pg l{sup -1}, ND to 6638 pg l{sup -1}, ND to 7230 pg l{sup -1}, 41 to 4009 pg l{sup -1}, 90 to 9793 pg l{sup -1} for the Garankuwa, Hatherly, Kwaggarsrand, Soshanguve and Temba landfill sites, respectively. Also BDE -28, -47, -71 and BDE-77 were detected in the leachate samples from all the landfill sites; and all the congeners were detected in two of the oldest landfill sites. The peak concentrations were recorded for BDE-47 at three sites and BDE-71 and BDE-75 at two sites. The highest concentration, 9793 {+-} 1.5 pg l{sup -1}, was obtained for the Temba landfill site with the highest BOD value. This may suggest some influence of organics on the level of PBDEs. Considering the leaching characteristics of brominated flame retardants, there is a high possibility that with time these compounds may infiltrate into the groundwater around the sites since most of the sites are not adequately lined.

Odusanya, David O. [Department of Environmental, Water and Earth Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, 175 Nelson Mandela Drive, Arcadia, Pretoria 0001 (South Africa); Okonkwo, Jonathan O. [Department of Environmental, Water and Earth Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, 175 Nelson Mandela Drive, Arcadia, Pretoria 0001 (South Africa)], E-mail: OkonkwoOJ@tut.ac.za; Botha, Ben [Department of Environmental, Water and Earth Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, 175 Nelson Mandela Drive, Arcadia, Pretoria 0001 (South Africa)

2009-01-15T23:59:59.000Z

423

Photovoltaics on Landfills in Puerto Rico  

Science Conference Proceedings (OSTI)

The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Commonwealth of Puerto Rico for a feasibility study of m0treAlables on several brownfield sites. The EPA defines a brownfield as 'a property, the expansion, redevelopment, or reuse of which may be complicated by the presence or potential presence of a hazardous substance, pollutant, or contaminant.' All of the brownfields in this study are landfill sites. Citizens of Puerto Rico, city planners, and site managers are interested in redevelopment uses for landfills in Puerto Rico, which are particularly well suited for solar photovoltaic (PV) installation. The purpose of this report is to assess the landfills with the highest potential for possible solar PV installation and estimate cost, performance, and site impacts of three different PV options: crystalline silicon (fixed-tilt), crystalline silicon (single-axis tracking), and thin film (fixed-tilt). Each option represents a standalone system that can be sized to use an entire available site area. In addition, the report outlines financing options that could assist in the implementation of a system. The feasibility of PV systems installed on landfills is highly impacted by the available area for an array, solar resource, operating status, landfill cap status, distance to transmission lines, and distance to major roads. All of the landfills in Puerto Rico were screened according to these criteria in order to determine the sites with the greatest potential. Eight landfills were chosen for site visits based on the screening criteria and location. Because of time constraints and the fact that Puerto Rico is a relatively large island, the eight landfills for this visit were all located in the eastern half of the island. The findings from this report can be applied to landfills in the western half of the island. The economics of a potential PV system on landfills in Puerto Rico depend greatly on the cost of electricity. Currently, PREPA has an average electric rate of $0.119/kWh. Based on past electric rate increases in Puerto Rico and other islands in the Caribbean, this rate could increase to $0.15/kWh or higher in a relatively short amount of time. In the coming years, increasing electrical rates and increased necessity for clean power will continue to improve the feasibility of implementing solar PV systems at these sites.

Salasovich, J.; Mosey, G.

2011-01-01T23:59:59.000Z

424

Feasibility analysis of ternary feed mixtures of methane with oxygen, steam, and carbon dioxide for the production of methanol synthesis gas  

SciTech Connect

The feasibility of ternary feed mixtures of CH{sub 4} with O{sub 2}, H{sub 2}O, and CO{sub 2} is analyzed in relation to the production of methanol syngas. Stoichiometric constraints are formulated in terms of three parameters characterizing the steam, partial oxidation, and carbon dioxide reforming reactions of methane. The equilibrium analysis is conducted using the methanol balance ratio {mu} and methane slip fraction {chi} as explicit design parameters. General results are derived for the feasibility of each ternary feed combination as a function of pressure and temperature in the range 1 < {mu} < 3 under carbon-free conditions. Numerical calculations indicate that CH{sub 4}/O{sub 2}/CO{sub 2} feeds can be used in single-stage adiabatic reformers at low values of {mu}, but the produced syngas requires further treatment. Reforming based on CH{sub 4}/O{sub 2}/H{sub 2}O feeds is endothermic at {mu} {ge} 2 under typical reaction conditions, thus requiring the application of a two-stage process involving primary and secondary reformers. Utilization of CH{sub 4}/O{sub 2}/H{sub 2}O feeds in single-stage adiabatic reactors is feasible for {mu} = 1.7--1.9, yielding syngas which can be upgraded by partial CO{sub 2} removal. The endothermic CH{sub 4}/CO{sub 2}/H{sub 2}O feed combination is always feasible for 1 < {mu} < 3.

Tjatjopoulos, G.J. [Chemical Process Engineering Research Inst., Thessaloniki (Greece). Foundation for Research and Technology; Vasalos, I.A. [Aristotle Univ. of Thessaloniki (Greece). Chemical Engineering Dept.

1998-04-01T23:59:59.000Z

425

Coalbed Methane Production  

Gasoline and Diesel Fuel Update (EIA)

Methane Production (Billion Cubic Feet) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2006 2007 2008 2009...

426

Trends Online Methane Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Emissions Introduction Annual Estimates of Global Anthropogenic Methane Emissions: 1860-1994 - D.I. Stern and R.K. Kaufmann Contents-Trends | CDIAC Home 102001...

427

Generating power with drained coal mine methane  

SciTech Connect

The article describes the three technologies most commonly used for generating electricity from coal mine methane: internal combustion engines, gas turbines, and microturbines. The most critical characteristics and features of these technologies, such as efficiency, output and size are highlighted. 5 refs.

NONE

2005-09-01T23:59:59.000Z

428

NETL: Methane Hydrates - DOE/NETL Projects - Controls On Methane Expulsion  

NLE Websites -- All DOE Office Websites (Extended Search)

Controls On Methane Expulsion During Melting Of Natural Gas Hydrate Systems Last Reviewed 12/24/2013 Controls On Methane Expulsion During Melting Of Natural Gas Hydrate Systems Last Reviewed 12/24/2013 DE-FE0010406 Goal The project goal is to predict, given characteristic climate-induced temperature change, the conditions under which gas will be expelled from existing accumulations of gas hydrate into the shallow ocean or directly to the atmosphere. When those conditions are met, the fraction of the gas accumulation that escapes and the rate of escape shall be quantified. The predictions shall be applicable in Arctic regions and in gas hydrate systems at the updip limit of the stability zone on continental margins. The behavior shall be explored in response to both longer term changes in sea level (e.g., twenty-thousand years) and shorter term due to atmospheric

429

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Detection and Production of Methane Hydrate Last Reviewed 5/15/2012 Detection and Production of Methane Hydrate Last Reviewed 5/15/2012 DE-FC26-06NT42960 Goal The goal of this project is to improve the understanding of regional and local differences in gas hydrate systems from three perspectives: as an energy resource, as a geohazard, and as a long-term influence on global climate. Performers Rice University, Houston, TX University of Texas, Austin, TX Oklahoma State University, Stillwater, OK Background Heterogeneity in the distribution of gas hydrate accumulations impacts all aspects of research into gas hydrate natural systems. The challenge is to delineate, understand, and appreciate these differences at the regional and local scales, where differences in in situ concentrations are relevant to the importance of gas hydrate as a resource, a geohazard, and a factor in

430

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Phase 1 - Characterization and Qualification of the Methane Hydrate Resource Potential Associated with the Barrow Gas Fields Phase 1 - Characterization and Qualification of the Methane Hydrate Resource Potential Associated with the Barrow Gas Fields DE-FC26-06NT42962 Goal The goal of this project is to characterize and quantify the postulated gas hydrate resource associated with the Barrow Gas Fields – three producing fields located in a permafrost region near Barrow, the North Slope's biggest population center and economic hub. Map of the North Slope Borough showing the location of its eight major communities, including Barrow, the site of this research project. Map of the North Slope Borough showing the location of its eight major communities, including Barrow, the site of this research project. Performers North Slope Borough, Barrow, Alaska (North Slope Borough) 99723

431

Methane Hydrate Advisory Committee Charter | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Charter Methane Hydrate Advisory Committee Charter Methane Hydrate Advisory Committee Charter Methane Hydrate Advisory Committee Charter...

432

NIST: Methane Symmetry Operations - Introduction  

Science Conference Proceedings (OSTI)

Methane Symmetry Operations. ... At least three T d symmetry classification systems are widely used at present in the methane literature [5-13]. ...

433

Enhanced carbon monoxide utilization in methanation process  

DOE Green Energy (OSTI)

Carbon monoxide - containing gas streams are passed over a catalyst to deposit a surface layer of active surface carbon thereon essentially without the formation of inactive coke. The active carbon is subsequently reacted with steam or hydrogen to form methane. Surprisingly, hydrogen and water vapor present in the feed gas do not adversely affect CO utilization significantly, and such hydrogen actually results in a significant in