Powered by Deep Web Technologies
Note: This page contains sample records for the topic "landfill gas methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Methane Gas Utilization Project from Landfill at Ellery (NY)  

SciTech Connect (OSTI)

Landfill Gas to Electric Energy Generation and Transmission at Chautauqua County Landfill, Town of Ellery, New York. The goal of this project was to create a practical method with which the energy, of the landfill gas produced by the decomposing waste at the Chautauqua County Landfill, could be utilized. This goal was accomplished with the construction of a landfill gas to electric energy plant (originally 6.4MW and now 9.6MW) and the construction of an inter-connection power-line, from the power-plant to the nearest (5.5 miles) power-grid point.

Pantelis K. Panteli

2012-01-10T23:59:59.000Z

2

Global methane emissions from landfills: New methodology and annual estimates 19801996  

E-Print Network [OSTI]

Change: Instruments and techniques; KEYWORDS: landfill, landfill gas, methane emissions, methanotrophy

3

Development of correction factors for landfill gas emission model suiting Indian condition to predict methane emission from landfills  

Science Journals Connector (OSTI)

Abstract Methane emission from landfill gas emission (LandGEM) model was validated through the results of laboratory scale biochemical methane potential assay. Results showed that LandGEM model over estimates methane (CH4) emissions; and the true CH4 potential of waste depends on the level of segregation. Based on these findings, correction factors were developed to estimate CH4 emission using LandGEM model especially where the level of segregation is negligible or does not exist. The correction factors obtained from the study were 0.94, 0.13 and 0.74 for food waste, mixed un-segregated municipal solid waste (MSW) and vegetable wastes, respectively.

Avick Sil; Sunil Kumar; Jonathan W.C. Wong

2014-01-01T23:59:59.000Z

4

LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL  

SciTech Connect (OSTI)

''Conventional'' waste landfills emit methane, a potent greenhouse gas, in quantities such that landfill methane is a major factor in global climate change. Controlled landfilling is a novel approach to manage landfills for rapid completion of total gas generation, maximizing gas capture and minimizing emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated and brought to much earlier completion by improving conditions for biological processes (principally moisture levels) in the landfill. Gas recovery efficiency approaches 100% through use of surface membrane cover over porous gas recovery layers operated at slight vacuum. A field demonstration project's results at the Yolo County Central Landfill near Davis, California are, to date, highly encouraging. Two major controlled landfilling benefits would be the reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role in reduction of US greenhouse gas emissions.

Don Augenstein

1999-01-11T23:59:59.000Z

5

Renewable Energy 32 (2007) 12431257 Methane generation in landfills  

E-Print Network [OSTI]

. Some of the modern regulated landfills attempt to capture and utilize landfill biogas, a renewable collecting landfill biogas worldwide. The landfills that capture biogas in the US collect about 2.6 million. All rights reserved. Keywords: Landfill gas; Renewable energy; Municipal solid waste; Biogas; Methane

Columbia University

6

Passive landfill gas emission – Influence of atmospheric pressure and implications for the operation of methane-oxidising biofilters  

Science Journals Connector (OSTI)

A passively vented landfill site in Northern Germany was monitored for gas emission dynamics through high resolution measurements of landfill gas pressure, flow rate and composition as well as atmospheric pressure and temperature. Landfill gas emission could be directly related to atmospheric pressure changes on all scales as induced by the autooscillation of air, diurnal variations and the passage of pressure highs and lows. Gas flux reversed every 20 h on average, with 50% of emission phases lasting only 10 h or less. During gas emission phases, methane loads fed to a connected methane oxidising biofiltration unit varied between near zero and 247 g CH4 h?1 m?3 filter material. Emission dynamics not only influenced the amount of methane fed to the biofilter but also the establishment of gas composition profiles within the biofilter, thus being of high relevance for biofilter operation. The duration of the gas emission phase emerged as most significant variable for the distribution of landfill gas components within the biofilter.

Julia Gebert; Alexander Groengroeft

2006-01-01T23:59:59.000Z

7

Occupational Safety at Landfill Sites - Hazards and Pollution Due to Landfill Gas  

Science Journals Connector (OSTI)

Landfill gas is formed on a large scale ... of methane gas which escapes every year from landfill sites in the Federal Republic of Germany ... about 2.5 million standard cubic metres. Landfill gas (LFG) with its ...

Volkmar Wilhelm

1993-01-01T23:59:59.000Z

8

Landfill Gas Formation, Recovery and Emission in The Netherlands  

Science Journals Connector (OSTI)

Landfills are one of the main sources of methane in The Netherlands. Methane emissions from landfills are estimated to be about 180–580 ... at a total of 760–1730 ktonnes. Landfill gas recovery and utilization is...

Hans Oonk

1994-01-01T23:59:59.000Z

9

7.4 Landfill Methane Utilization  

Broader source: Energy.gov [DOE]

A chapter on Landfill Methane Utilization from the Clean Energy Strategies for Local Governments publication.

10

Enhancing landfill gas recovery  

Science Journals Connector (OSTI)

The landfilling of municipal solid waste (MSW) may cause potential environmental impacts like global warming (GW), soil contaminations, and groundwater pollution. The degradation of MSW in anaerobic circumstances generates methane emissions, and can hence contribute the GW. As the GW is nowadays considered as one of the most serious environmental threats, the mitigation of methane emissions should obviously be aimed at on every landfill site where methane generation occurs. In this study, the treatment and utilization options for the generated LFG at case landfills which are located next to each other are examined. The yearly GHG emission balances are estimated for three different gas management scenarios. The first scenario is the combined heat and power (CHP) production with a gas engine. The second scenario is the combination of heat generation for the asphalt production process in the summer and district heat production by a water boiler in the winter. The third scenario is the LFG upgrading to biomethane. The estimation results illustrate that the LFG collection efficiency affects strongly on the magnitudes of GHG emissions. According to the results, the CHP production gives the highest GHG emission savings and is hence recommended as a gas utilization option for case landfills. Furthermore, aspects related to the case landfills' extraction are discussed.

Antti Niskanen; Hanna Värri; Jouni Havukainen; Ville Uusitalo; Mika Horttanainen

2013-01-01T23:59:59.000Z

11

Landfill Methane Project Development Handbook | Open Energy Information  

Open Energy Info (EERE)

Landfill Methane Project Development Handbook Landfill Methane Project Development Handbook Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Landfill Methane Project Development Handbook Agency/Company /Organization: United States Environmental Protection Agency Sector: Climate, Energy Focus Area: Biomass, - Landfill Gas Phase: Determine Baseline, Evaluate Options, Get Feedback Resource Type: Guide/manual User Interface: Website Website: www.epa.gov/lmop/publications-tools/handbook.html Cost: Free References: Project Development Handbook[1] The handbook describes the process of implementing a waste-to-energy landfill gas project. Overview "Approximately 250 million tons of solid waste was generated in the United States in 2008 with 54 percent deposited in municipal solid waste (MSW)

12

Hollow fiber membrane process for the pretreatment of methane hydrate from landfill gas  

Science Journals Connector (OSTI)

Abstract Landfill gas is major source of green house effect because it is mainly composed of CH4 and CO2. Especially, the separation of CH4 from landfill gas was studied actively due to its high heating value which can be used for energy resource. In this study, polymeric hollow fiber membrane was produced by dry–wet phase inversion method to separate CH4 from the landfill gas. The morphology of the membranes was examined by scanning electron microscopy (SEM) to understand and correlate the morphology with the performance of the membrane. Firstly, single gas permeation and mixed gas separation were performed in lab-scale. After then, a pilot scale membrane process was designed using a simulation program. The manufactured process settled in Gyeong-ju landfill site and operated at various conditions. As a result, CH4 was concentrated to 88 vol.% and also CO2 removal efficiency increases up to 86.7%.

KeeHong Kim; WonKil Choi; HangDae Jo; JongHak Kim; Hyung Keun Lee

2014-01-01T23:59:59.000Z

13

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network [OSTI]

Natural Gas Nitric Oxide/Nitrogen Dioxide Neal Road LandfillThe methane, nitrogen and carbon dioxide concentrations ofmethane, 30% nitrogen and 30% carbon dioxide. The recorded

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

14

Technical Note Methane gas migration through geomembranes  

E-Print Network [OSTI]

and Fick's law. This chart can be used by landfill designers to evaluate the methane gas transmission rate for a selected geomembrane type and thickness and expected methane gas pressure in the landfill. KEYWORDS landfill usually consists, from bottom to top, of: graded landfill surface; a gas-venting layer; a low

15

Landfill Gas Sequestration in Kansas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Road Road P.O. Box 880 Morgantown, WV 26505-0880 304-285-4132 Heino.beckert@netl.doe.gov David newell Principal Investigator Kansas Geological Survey 1930 Constant Avenue Lawrence, KS 66045 785-864-2183 dnewall@kgs.uk.edu LandfiLL Gas sequestration in Kansas Background Municipal solid waste landfills are the largest source of anthropogenic methane emissions in the United States, accounting for about 34 percent of these emissions in 2004. Most methane (CH 4 ) generated in landfills and open dumps by anaerobic decomposition of the organic material in solid-waste-disposal landfills is either vented to the atmosphere or converted to carbon dioxide (CO 2 ) by flaring. The gas consists of about 50 percent methane (CH 4 ), the primary component of natural gas, about 50 percent carbon dioxide (CO

16

Landfill gas recovery  

Science Journals Connector (OSTI)

Landfill gas recovery ... However, by referring to landfills as dumps, the article creates a misimpression. ... The answers revolve around the relative emissions from composting facilities and landfills and the degree to which either finished compost or landfill gas is used beneficially. ...

Morton A. Barlaz

2009-04-29T23:59:59.000Z

17

Landfill Gas Resources and Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Landfill Gas Resources and Technologies Landfill Gas Resources and Technologies Landfill Gas Resources and Technologies October 7, 2013 - 9:27am Addthis Photo of a bulldozer on top of a large trash mound in a landfill with a cloudy sky in the backdrop. Methane and other gases produced from landfill decomposition can be leveraged for energy. This page provides a brief overview of landfill gas energy resources and technologies supplemented by specific information to apply landfill gas energy within the Federal sector. Overview Landfill gases are a viable energy resource created during waste decomposition. Landfills are present in most communities. These resources can be tapped to generate heat and electricity. As organic waste decomposes, bio-gas is produced made up of roughly half methane, half carbon dioxide, and small amounts of non-methane organic

18

Landfill Methane Oxidation Across Climate Types in the U.S.  

Science Journals Connector (OSTI)

Methane oxidation in landfill covers was determined by stable isotope analyses over 37 seasonal sampling events at 20 landfills with intermediate covers over four years. Values were calculated two ways: by assuming no isotopic fractionation during gas ...

Jeffrey Chanton; Tarek Abichou; Claire Langford; Gary Hater; Roger Green; Doug Goldsmith; Nathan Swan

2010-12-06T23:59:59.000Z

19

Passive drainage and biofiltration of landfill gas: behaviour and performance in a temperate climate.  

E-Print Network [OSTI]

??Microbial oxidation of methane has attracted interest as an alternative process for treating landfill gas emissions. Approaches have included enhanced landfill cover layers and biocovers,… (more)

Dever, Stuart Anthony

2009-01-01T23:59:59.000Z

20

Removal of Hydrogen Sulfide from Landfill Gas Using a Solar Regenerable Adsorbent.  

E-Print Network [OSTI]

??Landfill gas is a complex mix of gases, containing methane, carbon dioxide, nitrogen and hydrogen sulfide, created by the action of microorganisms within the landfill.… (more)

Kalapala, Sreevani

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "landfill gas methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Landfill gas emission prediction using Voronoi diagrams and importance sampling  

Science Journals Connector (OSTI)

Municipal solid waste (MSW) landfills are among the nation's largest emitters of methane, a key greenhouse gas, and there is considerable interest in quantifying the surficial methane emissions from landfills. There are limitations in obtaining accurate ... Keywords: Air dispersion modeling, Delaunay tessellation, Kriging, Least squares, MSW landfill, Voronoi diagram

K. R. Mackie; C. D. Cooper

2009-10-01T23:59:59.000Z

22

Landfill Gas Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of landfill gas energy resources and technologies supplemented by specific information to apply landfill gas energy within the Federal sector.

23

Landfill Gas | Open Energy Information  

Open Energy Info (EERE)

Landfill Gas Incentives Retrieved from "http:en.openei.orgwindex.php?titleLandfillGas&oldid267173" Category: Articles with outstanding TODO tasks...

24

Estimation of Landfill Gas Generation Rate and Gas Permeability Field of Refuse Using Inverse Modeling  

Science Journals Connector (OSTI)

Landfill methane must be captured to reduce emissions of greenhouse gases; moreover it can be used as an alternative energy source. However, despite the widespread use of landfill gas (LFG) collection systems for...

Yoojin Jung; Paul Imhoff; Stefan Finsterle

2011-10-01T23:59:59.000Z

25

Bioenergy recovery from landfill gas: A case study in China  

Science Journals Connector (OSTI)

Landfill gas (LFG) utilization which means a synergy...3/h and the methane concentration was above 90%. The process and optimization of the pilot-scale test were also reported in the paper. The product gas was of...

Wei Wang; Yuxiang Luo; Zhou Deng

2009-03-01T23:59:59.000Z

26

Soil gas investigations at the Sanitary Landfill  

SciTech Connect (OSTI)

A soil gas survey was performed at the 740-G Sanitary Landfill of Savannah River Plant during December, 1990. The survey monitored the presence and distribution of the C{sub 1}C{sub 4} hydrocarbons; the C{sub 5}-C{sub 10} normal paraffins; the aromatic hydrocarbons, BTXE; selected chlorinated hydrocarbons; and mercury. Significant levels of several of these contaminants were found associated with the burial site. In the northern area of the Landfill, methane concentrations ranged up to 63% of the soil gas and were consistently high on the western side of the access road. To the east of the access road in the northern and southern area high concentrations of methane were encountered but were not consistently high. Methane, the species found in highest concentration in the landfill, was generated in the landfill as the result of biological oxidation of cellulose and other organics to carbon dioxide followed by reduction of the carbon dioxide to methane. Distributions of other species are the result of burials in the landfill of solvents or other materials.

Wyatt, D.E.; Pirkle, R.J.; Masdea, D.J.

1992-07-01T23:59:59.000Z

27

Soil gas investigations at the Sanitary Landfill  

SciTech Connect (OSTI)

A soil gas survey was performed at the 740-G Sanitary Landfill of Savannah River Plant during December, 1990. The survey monitored the presence and distribution of the C[sub 1]C[sub 4] hydrocarbons; the C[sub 5]-C[sub 10] normal paraffins; the aromatic hydrocarbons, BTXE; selected chlorinated hydrocarbons; and mercury. Significant levels of several of these contaminants were found associated with the burial site. In the northern area of the Landfill, methane concentrations ranged up to 63% of the soil gas and were consistently high on the western side of the access road. To the east of the access road in the northern and southern area high concentrations of methane were encountered but were not consistently high. Methane, the species found in highest concentration in the landfill, was generated in the landfill as the result of biological oxidation of cellulose and other organics to carbon dioxide followed by reduction of the carbon dioxide to methane. Distributions of other species are the result of burials in the landfill of solvents or other materials.

Wyatt, D.E.; Pirkle, R.J.; Masdea, D.J.

1992-07-01T23:59:59.000Z

28

Is converting landfill gas to energy the best option?  

Science Journals Connector (OSTI)

Is converting landfill gas to energy the best option? ... But when it comes to new discards, critics say that the hype over landfill-gas-to-energy(LFGTE) projects may have perverse outcomes, such as discouraging the diversion of organic waste from landfills and actually increasing the amount of methane being released. ... In the notice, EDF suggests that EPA tighten current controls, which require the capture and flaring of landfill gas at sites with more than 2.5 million metric tons of waste, by bringing regulation to smaller landfills and defining LFGTE projects as the best demonstrated technology (BDT). ...

Janet Pelley

2008-12-10T23:59:59.000Z

29

Anaerobic Methane Oxidation in a Landfill-Leachate Plume  

E-Print Network [OSTI]

Anaerobic Methane Oxidation in a Landfill-Leachate Plume E T H A N L . G R O S S M A N , * , L U I Landfill, OK, provides an excellent natural laboratory for the study of anaerobicprocessesimpactinglandfill enrichment indicated that 80-90% of the original landfill methane was oxidized over the 210-m transect. First

Grossman, Ethan L.

30

Feasibility study: utilization of landfill gas for a vehicle fuel system, Rossman's landfill, Clackamas County, Oregon  

SciTech Connect (OSTI)

In 1978, a landfill operator in Oregon became interested in the technical and economic feasibility of recovering the methane generated in the landfill for the refueling of vehicles. DOE awarded a grant for a site-specific feasibility study of this concept. This study investigated the expected methane yield and the development of a conceptual gas-gathering system; gas processing, compressing, and storage systems; and methane-fueled vehicle systems. Cost estimates were made for each area of study. The results of the study are presented. Reasoning that gasoline prices will continue to rise and that approximately 18,000 vehicles in the US have been converted to operate on methane, a project is proposed to use this landfill as a demonstration site to produce and process methane and to fuel a fleet (50 to 400) vehicles with the gas produced in order to obtain performance and economic data on the systems used from gas collection through vehicle operation. (LCL)

None

1981-01-01T23:59:59.000Z

31

LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL  

SciTech Connect (OSTI)

The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional landfills. This is the highest methane recovery rate per unit waste, and thus progress toward stabilization, documented anywhere for such a large waste mass. This high recovery rate is attributed to moisture, and elevated temperature attained inexpensively during startup. Economic analyses performed under Phase I of this NETL contract indicate ''greenhouse cost effectiveness'' to be excellent. Other benefits include substantial waste volume loss (over 30%) which translates to extended landfill life. Other environmental benefits include rapidly improved quality and stabilization (lowered pollutant levels) in liquid leachate which drains from the waste.

Don Augenstein

2001-02-01T23:59:59.000Z

32

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network [OSTI]

USA ICEF2006-1578 LANDFILL GAS FUELED HCCI DEMONSTRATIONengine that runs on landfill gas. The project team led bynatural gas and simulated landfill gas as a fuel source.

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

33

Characteristics of vegetation and its relationship with landfill gas in closed landfill  

Science Journals Connector (OSTI)

An investigation was carried out to elucidate landfill gas (LFG) and the vegetation characteristics in closed landfill. The results indicate that the stabilization process of the landfill is an important factor influencing the components of landfill gases. The coverage, height and species of vegetation increase with the closed time of landfill. Fourteen species were observed in the investigated cells, dominated by Phragmites australis, an invasive perennial plant. The concentrations of methane and carbon dioxide from vegetated cover soil were lower than those from non-vegetated cover soil.

Chai Xiaoli; Zhao Xin; Lou Ziyang; Takayuki Shimaoka; Hirofumi Nakayama; Cao Xianyan; Zhao Youcai

2011-01-01T23:59:59.000Z

34

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network [OSTI]

USA ICEF2006-1578 LANDFILL GAS FUELED HCCI DEMONSTRATIONengine that runs on landfill gas. The project team led bygas and simulated landfill gas as a fuel source. This

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

35

Modeling the final phase of landfill gas generation from long-term observations  

Science Journals Connector (OSTI)

For waste management, methane emissions from landfills and their effect on climate change are of serious concern. Current models for biogas generation that focus on the economic use of the landfill gas are usuall...

Johannes Tintner; Manfred Kühleitner; Erwin Binner; Norbert Brunner…

2012-06-01T23:59:59.000Z

36

Fluxes of methane between landfills and the atmosphere: Natural and engineered controls  

SciTech Connect (OSTI)

Field measurement of landfill methane emissions indicates natural variability spanning more than 2 seven orders of magnitude, from approximately 0.0004 to more than 4000 g m{sub -2} day{sup -1}. This wide range reflects net emissions resulting from production (methanogenesis), consumption (methanotrophic oxidation), and gaseous transport processes. The determination of an {open_quotes}average{close_quotes} emission rate for a given field site requires sampling designs and statistical techniques which consider spatial and temporal variability. Moreover, particularly at sites with pumped gas recovery systems, it is possible for methanotrophic microorganisms in aerated cover soils to oxidize all of the methane from landfill sources below and, additionally, to oxidize methane diffusing into cover soils from atmospheric sources above. In such cases, a reversed soil gas concentration gradient is observed in shallow cover soils, indicating bidirectional diffusional transport to the depth of optimum methane oxidation. Rates of landfill methane oxidation from field and laboratory incubation studies range up to 166 g m{sup -2} day{sup -1} among the highest for any natural setting, providing an effective natural control on net emissions. Estimates of worldwide landfill methane emissions to the atmosphere have ranged from 9 to 70 Tg yr{sup -1}, differing mainly in assumed methane yields from estimated quantities of landfilled refuse. At highly controlled landfill sites in developed countries, landfill methane is often collected via vertical wells or horizontal collectors. Recovery of landfill methane through engineered systems can provide both environmental and energy benefits by mitigating subsurface migration, reducing surface emissions, and providing an alternative energy resource for industrial boiler use, on-site electrical generation, or upgrading to a substitute natural gas.

Bogner, J. [Argonne National Lab., IL (United States); Meadows, M. [ETSU, Harwell, Oxfordshire (United Kingdom); Czepiel, P. [Harvard Univ., Cambridge, MA (United States)

1997-08-01T23:59:59.000Z

37

Powering Microturbines With Landfill Gas, October 2002 | Department...  

Broader source: Energy.gov (indexed) [DOE]

7.4 Landfill Methane Utilization CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants CHP and Bioenergy for Landfills and Wastewater Treatment Plants:...

38

Landfill Gas Generation and Transport In Bioreactor Landfill  

Science Journals Connector (OSTI)

The activation gas and water flow each other in Bioreactor Landfill. Based on the porous media seepage and ... of water and waste components decomposition for describing landfill gas flow have been developed, and...

Qi-Lin Feng; Lei Liu; Qiang Xue; Ying Zhao

2010-01-01T23:59:59.000Z

39

Methane Production Quantification and Energy Estimation for Bangalore Municipal Solid Waste  

Science Journals Connector (OSTI)

Landfills are considered as cornerstone of solid waste management. Landfill gas (LFG) and leachate are principal outputs ... from landfills. Methane, occupying significant volume of landfill gas, has considerable...

A. Kumar; R. Dand; P. Lakshmikanthan…

2014-01-01T23:59:59.000Z

40

Monitoring of Gin Drinkers' Bay landfill, Hong Kong: I. Landfill gas on top of the landfill  

Science Journals Connector (OSTI)

The present study centered on the composition of landfill gas and its effects on soil and ... at the Gin Drinkers' Bay (GDB) landfill in Hong Kong This first part of ... the study was a whole-year monitoring of landfill

M. H. Wong; C. T. Yu

Note: This page contains sample records for the topic "landfill gas methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

R&D Research/Demonstration Greenhouse Using Methane Gas from a Landfill for Co-Generation  

Science Journals Connector (OSTI)

A research/demonstration greenhouse for the production of greenhouse tomatoes using the single truss tomato production ... from landfills or other sources for heating and lighting to maximize crop production whil...

William J. Roberts

1997-01-01T23:59:59.000Z

42

LATERAL LANDFILL GAS MIGRATION: CHARACTERIZATION AND  

E-Print Network [OSTI]

LATERAL LANDFILL GAS MIGRATION: CHARACTERIZATION AND PRELIMINARY MODELING RESULTS O.BOUR*, E,UniversitéLaval, Sainte-Foy, Canada SUMMARY: Lateral landfill gas migration occurs in the surroundings of a MSW landfill complementary physical measures were used to build a conceptual model of lateral landfill gas migration

Boyer, Edmond

43

US EPA Landfill Methane Outreach Program | Open Energy Information  

Open Energy Info (EERE)

Landfill Methane Outreach Program Landfill Methane Outreach Program Jump to: navigation, search Name US EPA Landfill Methane Outreach Program Agency/Company /Organization United States Environmental Protection Agency Sector Energy, Land Focus Area Biomass Topics Policies/deployment programs, Resource assessment, Background analysis Resource Type Software/modeling tools, Workshop Website http://www.epa.gov/lmop/intern Country China, Ecuador, Mexico, Philippines, Thailand, Ukraine, Belize, Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua, Panama Eastern Asia, South America, Central America, South-Eastern Asia, South-Eastern Asia, Eastern Europe, Central America, Central America, Central America, Central America, Central America, Central America, Central America References LMOP[1]

44

Landfill gas with hydrogen addition – A fuel for SI engines  

Science Journals Connector (OSTI)

The recent quest to replace fossil fuels with renewable and sustainable energy sources has increased interest on utilization of landfill and bio gases. It is further augmented due to environment concerns and global warming caused by burning of conventional fossil fuels, energy security concerns and high cost of crude oil, and renewable nature of these gases. The main portion of landfill gas or biogas is comprised of methane and carbon dioxide with some other gases in small proportions. Methane if released directly to the atmosphere causes about 21 times global warming effects than carbon dioxide. Thus landfill gas is generally flared, where the energy recovery is not in place in practice. Using landfill gas to generate energy not only encourages more efficient collection reducing emissions into the atmosphere but also generates revenues for operators and local governments. However, use of landfill gases for energy production is not always perceived as an attractive option because of some disadvantages. Thus it becomes necessary to address these disadvantages involved by studying landfill gases in a technological perspective and motivate utilization of landfill gas for future energy needs. This paper discussed landfill gas as a fuel for a spark ignition engine to produce power in an effective way. It has been shown that though the performance and combustion characteristics of the landfill gas fueled engine deteriorated in comparison with methane operation, increasing compression ratio and advancing spark timing improved the performance of the landfill gas operation in par with methane operation. The effects due to composition changes in the landfill gas were found more pronounced at lean and rich mixture operation than at stoichiometry. In addition, the effects of additions of hydrogen up to 30% in the landfill gas were studied. Addition of even small quantities of hydrogen such as 3–5% delivered better performance improvement particularly at the lean and rich limit operations and extended the operational limits. Additions of hydrogen also improved the combustion characteristics and reduced cyclic variations of landfill gas operations especially at the lean and rich mixtures.

S.O. Bade Shrestha; G. Narayanan

2008-01-01T23:59:59.000Z

45

RCWMD Badlands Landfill Gas Project Biomass Facility | Open Energy...  

Open Energy Info (EERE)

RCWMD Badlands Landfill Gas Project Biomass Facility Jump to: navigation, search Name RCWMD Badlands Landfill Gas Project Biomass Facility Facility RCWMD Badlands Landfill Gas...

46

Penrose Landfill Gas Conversion LLC | Open Energy Information  

Open Energy Info (EERE)

Penrose Landfill Gas Conversion LLC Place: Los Angeles, California Product: Owner of landfill gas plant. References: Penrose Landfill Gas Conversion LLC1 This article is a stub....

47

Winnebago County Landfill Gas Biomass Facility | Open Energy...  

Open Energy Info (EERE)

Winnebago County Landfill Gas Biomass Facility Facility Winnebago County Landfill Gas Sector Biomass Facility Type Landfill Gas Location Winnebago County, Wisconsin Coordinates...

48

Reducing Open Cell Landfill Methane Emissions with a Bioactive Alternative Daily  

SciTech Connect (OSTI)

Methane and carbon dioxide are formed in landfills as wastes degrade. Molecule-for-molecule, methane is about 20 times more potent than carbon dioxide at trapping heat in the earth's atmosphere, and thus, it is the methane emissions from landfills that are scrutinized. For example, if emissions composed of 60% methane and 40% carbon dioxide were changed to a mix that was 40% methane and 60% carbon dioxide, a 30% reduction in the landfill's global warming potential would result. A 10% methane, 90% carbon dioxide ratio will result in a 75% reduction in global warming potential compared to the baseline. Gas collection from a closed landfill can reduce emissions, and it is sometimes combined with a biocover, an engineered system where methane oxidizing bacteria living in a medium such as compost, convert landfill methane to carbon dioxide and water. Although methane oxidizing bacteria merely convert one greenhouse gas (methane) to another (carbon dioxide), this conversion can offer significant reductions in the overall greenhouse gas contribution, or global warming potential, associated with the landfill. What has not been addressed to date is the fact that methane can also escape from a landfill when the active cell is being filled with waste. Federal regulations require that newly deposited solid waste to be covered daily with a 6 in layer of soil or an alternative daily cover (ADC), such as a canvas tarp. The aim of this study was to assess the feasibility of immobilizing methane oxidizing bacteria into a tarp-like matrix that could be used for alternative daily cover at open landfill cells to prevent methane emissions. A unique method of isolating methanotrophs from landfill cover soil was used to create a liquid culture of mixed methanotrophs. A variety of prospective immobilization techniques were used to affix the bacteria in a tarp-like matrix. Both gel encapsulation of methanotrophs and gels with liquid cores containing methanotrophs were readily made but prone to rapid desiccation. Bacterial adsorption onto foam padding, natural sponge, and geotextile was successful. The most important factor for success appeared to be water holding capacity. Prototype biotarps made with geotextiles plus adsorbed methane oxidizing bacteria were tested for their responses to temperature, intermittent starvation, and washing (to simulate rainfall). The prototypes were mesophilic, and methane oxidation activity remained strong after one cycle of starvation but then declined with repeated cycles. Many of the cells detached with vigorous washing, but at least 30% appeared resistant to sloughing. While laboratory landfill simulations showed that four-layer composite biotarps made with two different types of geotextile could remove up to 50% of influent methane introduced at a flux rate of 22 g m{sup -2} d{sup -1}, field experiments did not yield high activity levels. Tests revealed that there were high hour-to-hour flux variations in the field, which, together with frequent rainfall events, confounded the field testing. Overall, the findings suggest that a methanotroph embedded biotarp appears to be a feasible strategy to mitigate methane emission from landfill cells, although the performance of field-tested biotarps was not robust here. Tarps will likely be best suited for spring and summer use, although the methane oxidizer population may be able to shift and adapt to lower temperatures. The starvation cycling of the tarp may require the capacity for intermittent reinoculation of the cells, although it is also possible that a subpopulation will adapt to the cycling and become dominant. Rainfall is not expected to be a major factor, because a baseline biofilm will be present to repopulate the tarp. If strong performance can be achieved and documented, the biotarp concept could be extended to include interception of other compounds beyond methane, such as volatile aromatic hydrocarbons and chlorinated solvents.

Helene Hilger; James Oliver; Jean Bogner; David Jones

2009-03-31T23:59:59.000Z

49

Landfill Gas | OpenEI  

Open Energy Info (EERE)

Landfill Gas Landfill Gas Dataset Summary Description The UK Department of Energy and Climate Change (DECC) publishes annual renewable energy generation and capacity by region (9 regions in England, plus Wales, Scotland and Northern Ireland). Data available 2003 to 2009. Data is included in the DECC Energy Trends: September 2010 Report (available: http://www.decc.gov.uk/assets/decc/Statistics/publications/trends/558-tr...) Source UK Department of Energy and Climate Change (DECC) Date Released September 30th, 2010 (4 years ago) Date Updated Unknown Keywords Energy Generation Hydro Landfill Gas Other Biofuels Renewable Energy Consumption Sewage Gas wind Data application/zip icon 2 Excel files, 1 for generation, 1 for capacity (zip, 24.9 KiB) Quality Metrics Level of Review Peer Reviewed

50

Meteorological parameters as an important factor on the energy recovery of landfill gas in landfills  

Science Journals Connector (OSTI)

The effect of meteorological factors on the composition and the energy recovery of the landfill gas (LFG) were evaluated in this study. Landfill gas data consisting of methane carbon dioxide and oxygen content as well as LFG temperature were collected from April 2009 to March 2010 along with meteorological data. The data set were first used to visualize the similarity by using self-organizing maps and to calculate correlation factors. Then the data was used with ANN to further analyze the impacts of meteorological factors. In both analysis it is seen that the most important meteorological parameter effective on LFG energy content is soil temperatures. Furthermore ANN was found to be successful in explaining variations of methane content and temperature of LFG with correlation coefficients of 0.706 and 0.984 respectively. ANN was proved itself to be a useful tool for estimating energy recovery of the landfill gas.

?brahim Uyanik; Bestamin Özkaya; Selami Demir; Mehmet Çakmakci

2012-01-01T23:59:59.000Z

51

Landfill-Gas-to-Energy Projects:? Analysis of Net Private and Social Benefits  

Science Journals Connector (OSTI)

Under these standards, large landfills (that is, those with the potential to emit more than 50 Mg/year of nonmethane volatile organic compounds) have to collect and combust the landfill gas. ... Since the 1996 enact ment of the New Source Performance Standard and Emission Guidelines for Municipal Solid Waste Landfills, the Landfill Methane Outreach Program has become a tool to help landfills meet the new regulations. ... The costs of a collection system depend on different site factors, such as landfill depth, number of wells required, etc. Table 1 provides average collection system costs for landfills of three different sizes. ...

Paulina Jaramillo; H. Scott Matthews

2005-08-27T23:59:59.000Z

52

Passive drainage and biofiltration of landfill gas: Results of Australian field trial  

Science Journals Connector (OSTI)

A field scale trial was undertaken at a landfill site in Sydney, Australia (2004–2008), to investigate passive drainage and biofiltration of landfill gas as a means of managing landfill gas emissions from low to moderate gas generation landfill sites. The objective of the trial was to evaluate the effectiveness of a passive landfill gas drainage and biofiltration system at treating landfill gas under field conditions, and to identify and evaluate the factors that affect the behaviour and performance of the system. The trial results showed that passively aerated biofilters operating in a temperate climate can effectively oxidise methane in landfill gas, and demonstrated that maximum methane oxidation efficiencies greater than 90% and average oxidation efficiencies greater than 50% were achieved over the 4 years of operation. The trial results also showed that landfill gas loading was the primary factor that determined the behaviour and performance of the passively aerated biofilters. The landfill gas loading rate was found to control the diffusion of atmospheric oxygen into the biofilter media, limiting the microbial methane oxidation process. The temperature and moisture conditions within the biofilter were found to be affected by local climatic conditions and were also found to affect the behaviour and performance of the biofilter, but to a lesser degree than the landfill gas loading.

Stuart A. Dever; Gareth E. Swarbrick; Richard M. Stuetz

2011-01-01T23:59:59.000Z

53

The landfill gas activity of the IEA bioenergy agreement  

Science Journals Connector (OSTI)

Landfill gas (LFG) is a renewable source of useful energy. Its world wide annual energy potential is in the range of a few hundred TWh. Today it is only marginally exploited. LFG is also an important contributor to the atmospheres CH4-content, it can be estimated to contribute about 25% of the methane coming from anthropogenic sources. In comparison to many other sources of methane emissions such as peat bogs, rice paddies, termites and sheep, landfills can be considered to be point sources, i.e. they are stationary and of limited extension. For this reason landfill gas (LFG) utilisation is one of the most cost effective ways to combat the greenhouse effect. The aim of the IEA activity on LFG is to promote information exchange and co-operation between national programmes in order to promote the proliferation of landfill gas utilisation. During the period 1992–1994 the LFG activity has had six participating countries: Canada, Denmark, Norway, The Netherlands, Sweden, UK and USA. In the past three-year period, the activity has been mainly directed towards establishing networks and obtaining an over-view of data related to LFG in the member countries. Numerous contacts have been established and perhaps of most importance for the future of the activity are the links towards organisations involved in the development of landfill technology, such as ISWA and SWANA. The gathering and evaluation of data within the LFG area from the member countries has resulted in a number of documents that are to be published within the near future. These documents cover information on LFG utilisation, landfill research, landfill gas potentials, landfill emission assessment and also non-technical barriers to LFG utilisation.

A Lagerkvist

1995-01-01T23:59:59.000Z

54

Lessons from Loscoe: the uncontrolled migration of landfill gas  

Science Journals Connector (OSTI)

...the uncontrolled migration of landfill gas G. M. Williams 1 N. Aitkenhead...Environment, 1989. The Control of Landfill Gas. HMSO, London. Doelle, H...1988. Trace constituents in landfill gas. Gas Research Institute. Frost...

G. M. Williams; N. Aitkenhead

55

Influence assessment of landfill gas pumping  

Science Journals Connector (OSTI)

Changes in CH4 gas concentrations arising in a landfill as a consequence of a number of gas extraction pumping rates, are characterized. The field-monitored results indicate a fairly free flow of gas through the ...

Edward A. McBean; Anthony J. Crutcher; Frank A. Rovers

1984-04-01T23:59:59.000Z

56

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network [OSTI]

Journal of Engineering for Gas Turbines and Power, 121:569-operations with natural gas: Fuel composition implications,”USA ICEF2006-1578 LANDFILL GAS FUELED HCCI DEMONSTRATION

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

57

Federal Energy Management Program: Landfill Gas Resources and Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Landfill Gas Landfill Gas Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Landfill Gas Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Landfill Gas Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Landfill Gas Resources and Technologies on Google Bookmark Federal Energy Management Program: Landfill Gas Resources and Technologies on Delicious Rank Federal Energy Management Program: Landfill Gas Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Landfill Gas Resources and Technologies on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies

58

Community Renewable Energy Success Stories: Landfill Gas-to-Energy...  

Broader source: Energy.gov (indexed) [DOE]

Stories: Landfill Gas-to-Energy Projects Webinar (text version) Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects Webinar (text version) Below is the text...

59

Micrometeorological Measurements of Methane and Carbon Dioxide Fluxes at a Municipal Landfill  

Science Journals Connector (OSTI)

Micrometeorological Measurements of Methane and Carbon Dioxide Fluxes at a Municipal Landfill ... Of the global anthropogenic CH4 emissions, more than 10% originates from landfills (1). ... Landfills are the largest source of anthropogenic CH4 emissions to the atm. in the US; however, few measurements of whole landfill CH4 emissions have been reported. ...

Annalea Lohila; Tuomas Laurila; Juha-Pekka Tuovinen; Mika Aurela; Juha Hatakka; Tea Thum; Mari Pihlatie; Janne Rinne; Timo Vesala

2007-03-15T23:59:59.000Z

60

Sardinia 2007, Eleventh International Waste Management and Landfill Symposium Potential for Reducing Global Methane Emissions  

E-Print Network [OSTI]

Sardinia 2007, Eleventh International Waste Management and Landfill Symposium 1 Potential for Reducing Global Methane Emissions From Landfills, 2000-2030 E. MATTHEWS1 , N. J. THEMELIS2 1 NASA Goddard ~1200 Tg/yr (1 Tg = 1012 g), >70% of which is landfilled. Landfilling of waste contributes ~30-35 Tg

Columbia University

Note: This page contains sample records for the topic "landfill gas methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Development of Biochar-Amended Landfill Cover for Landfill Gas Mitigation.  

E-Print Network [OSTI]

??Development of Biochar-Amended Landfill Cover for Landfill Gas Mitigation Poupak Yaghoubi Department of Civil Engineering University of Illinois at Chicago Chicago, Illinois (2011) Dissertation Chairperson:… (more)

Yaghoubi, Poupak

2012-01-01T23:59:59.000Z

62

Methane production during the anaerobic decomposition of composted and raw organic refuse in simulated landfill cells  

E-Print Network [OSTI]

production from landfills if organic waste is composted prior to. The quantities and rates of methane production were measured from simulated landfill cells containing composted and raw simulated refuse. The refuse was composted in an open pile...

West, Margrit Evelyn

1995-01-01T23:59:59.000Z

63

Forecast and Control Methods of Landfill Emission Gas to Atmosphere  

Science Journals Connector (OSTI)

The main component of landfill gas is CH4, its release is a potential hazard to the environment. To understand the gas law and landfill gas production are the prerequisite for effective control of landfill gas. This paper selects three kinds of typical ... Keywords: Landfill gas, German model, IPCC model, Marticorena dynamic model

Wang Qi; Yang Meihua; Wang Jie

2011-02-01T23:59:59.000Z

64

Landfill Gas Resources and Technologies | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Using methane in these applications helps keep it out of the atmosphere, reducing air pollution. Federal Application Before conducting an assessment or deploying landfill...

65

Tapping Landfill Gas to Provide Significant Energy Savings and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Two Large Landfill Projects BroadRock Renewables, LLC built two high efficiency electricity generating facilities that utilize landfill gas in California and Rhode Island. The...

66

Landfill Gas: From Rubbish to Resource  

Science Journals Connector (OSTI)

The prospects of using landfill gas (LFG) as a high-grade fuel...Kyoto Protocols, and energy prices, are discussed. Adsorption cycles suggested in the late 1980s by Sircar and co-workers for treating LFG are revi...

Kent S. Knaebel; Herbert E. Reinhold

2003-03-01T23:59:59.000Z

67

Scaling methane oxidation: From laboratory incubation experiments to landfill cover field conditions  

SciTech Connect (OSTI)

Evaluating field-scale methane oxidation in landfill cover soils using numerical models is gaining interest in the solid waste industry as research has made it clear that methane oxidation in the field is a complex function of climatic conditions, soil type, cover design, and incoming flux of landfill gas from the waste mass. Numerical models can account for these parameters as they change with time and space under field conditions. In this study, we developed temperature, and water content correction factors for methane oxidation parameters. We also introduced a possible correction to account for the different soil structure under field conditions. These parameters were defined in laboratory incubation experiments performed on homogenized soil specimens and were used to predict the actual methane oxidation rates to be expected under field conditions. Water content and temperature corrections factors were obtained for the methane oxidation rate parameter to be used when modeling methane oxidation in the field. To predict in situ measured rates of methane with the model it was necessary to set the half saturation constant of methane and oxygen, K{sub m}, to 5%, approximately five times larger than laboratory measured values. We hypothesize that this discrepancy reflects differences in soil structure between homogenized soil conditions in the lab and actual aggregated soil structure in the field. When all of these correction factors were re-introduced into the oxidation module of our model, it was able to reproduce surface emissions (as measured by static flux chambers) and percent oxidation (as measured by stable isotope techniques) within the range measured in the field.

Abichou, Tarek, E-mail: abichou@eng.fsu.edu [Florida State University, Tallahassee, FL 32311 (United States); Mahieu, Koenraad; Chanton, Jeff [Florida State University, Tallahassee, FL 32311 (United States); Romdhane, Mehrez; Mansouri, Imane [Unite de Recherche M.A.C.S., Ecole Nationale d'Ingenieurs de Gabes, Route de Medenine, 6029 Gabes (Tunisia)

2011-05-15T23:59:59.000Z

68

Capturing, Purifying, and Liquefying Landfill Gas for Transportation Fuel  

E-Print Network [OSTI]

Capturing, Purifying, and Liquefying Landfill Gas for Transportation Fuel TRANSPORTATION ENERGY alternative fuel, and purified landfill gas could provide a renewable domestic source of it. Landfills from landfills and use it in natural gas applications such as fueling motor vehicles. Project

69

Integrated Combined Heat and Power/Advanced Reciprocating Internal Combustion Engine System for Landfill Gas to Power Applications  

Broader source: Energy.gov [DOE]

Landfill gas (LFG), composed largely of methane and carbon dioxide, is used in over 450 operational projects in 43 states. These projects convert a large source of greenhouse gases into a fuel that...

70

Characterization of Landfill Gas Composition at the Fresh Kills Municipal Solid-Waste Landfill  

Science Journals Connector (OSTI)

Characterization of Landfill Gas Composition at the Fresh Kills Municipal Solid-Waste Landfill ... The most common disposal method in the United States for municipal solid waste (MSW) is burial in landfills. ... Under the New Source Performance Standards and Emission Guidelines for MSW landfills, MSW operators are required to determine the nonmethane organic gas generation rate of their landfill through modeling and/or measurements. ...

Bart Eklund; Eric P. Anderson; Barry L. Walker; Don B. Burrows

1998-06-18T23:59:59.000Z

71

Livingston Parish Landfill Methane Recovery Project (Feasibility Study)  

SciTech Connect (OSTI)

The Woodside Landfill is owned by Livingston Parish, Louisiana and is operated under contract by Waste Management of Louisiana LLC. This public owner/private operator partnership is commonplace in the solid waste industry today. The landfill has been in operation since approximately 1988 and has a permitted capacity of approximately 41 million cubic yards. Based on an assumed in-place waste density of 0.94 ton per cubic yard, the landfill could have an expected design capacity of 39.3 million tons. The landfill does have an active landfill gas collection and control system (LFGCCS) in place because it meets the minimum thresholds for the New Source Performance Standards (NSPS). The initial LFGCS was installed prior to 2006 and subsequent phases were installed in 2007 and 2010. The Parish received a grant from the United States Department of Energy in 2009 to evaluate the potential for landfill gas recovery and utilization at the Woodside Landfill. This includes a technical and economic feasibility study of a project to install a landfill gas to energy (LFGTE) plant and to compare alternative technologies. The LFGTE plant can take the form of on-site electrical generation, a direct use/medium Btu option, or a high-Btu upgrade technology. The technical evaluation in Section 2 of this report concludes that landfill gas from the Woodside landfill is suitable for recovery and utilization. The financial evaluations in sections 3, 4, and 5 of this report provide financial estimates of the returns for various utilization technologies. The report concludes that the most economically viable project is the Electricity Generation option, subject to the Parish’s ability and willingness to allocate adequate cash for initial capital and/or to obtain debt financing. However, even this option does not present a solid return: by our estimates, there is a 19 year simple payback on the electricity generation option. All of the energy recovery options discussed in this report economically stressed. The primary reason for this is the recent fundamental shift in the US energy landscape. Abundant supplies of natural gas have put downward pressure on any project that displaces natural gas or natural gas substitutes. Moreover, this shift appears long-term as domestic supplies for natural gas may have been increased for several hundred years. While electricity prices are less affected by natural gas prices than other thermal projects, they are still significantly affected since much of the power in the Entergy cost structure is driven by natural gas-fired generation. Consequently, rates reimbursed by the power company based on their avoided cost structure also face downward pressure over the near and intermediate term. In addition, there has been decreasing emphasis on environmental concerns regarding the production of thermal energy, and as a result both the voluntary and mandatory markets that drive green attribute prices have softened significantly over the past couple of years. Please note that energy markets are constantly changing due to fundamental supply and demand forces, as well as from external forces such as regulations and environmental concerns. At any point in the future, the outlook for energy prices may change and could deem either the electricity generation or pipeline injection project more feasible. This report is intended to serve as the primary background document for subsequent decisions made at Parish staff and governing board levels.

White, Steven

2012-11-15T23:59:59.000Z

72

Using landfill gas for energy: Projects that pay  

SciTech Connect (OSTI)

Pending Environmental Protection Agency regulations will require 500 to 700 landfills to control gas emissions resulting from decomposing garbage. Conversion of landfill gas to energy not only meets regulations, but also creates energy and revenue for local governments.

NONE

1995-02-01T23:59:59.000Z

73

Modeling and simulation of landfill gas production from pretreated MSW landfill simulator  

Science Journals Connector (OSTI)

The cumulative landfill gas (LFG) production and its rate ... simulated for pretreated municipal solid waste (MSW) landfill using four models namely first order exponential ... . Considering the behavior of the p...

Rasool Bux Mahar; Abdul Razaque Sahito…

2014-04-01T23:59:59.000Z

74

DETERMINATION OF GUIDANCE VALUES FOR CLOSED LANDFILL GAS EMISSIONS  

E-Print Network [OSTI]

DETERMINATION OF GUIDANCE VALUES FOR CLOSED LANDFILL GAS EMISSIONS O. BOUR*, S. BERGER**, C Gambetta, 74 000 Annecy SUMMARY: In order to promote active landfill gas collection and treatment or natural attenuation, it is necessary to identify trigger values concerning landfill gas emissions

Boyer, Edmond

75

landfill  

Science Journals Connector (OSTI)

landfill, landfill(ed) site, refuse dump, garbage dump ... depository, trash disposal site (US); sanitary landfill [Landfills may often release a toxic soup of...] ? Abfalldeponie f [Zur Endlagerung ...

2014-08-01T23:59:59.000Z

76

Methane Gas Conversion Property Tax Exemption | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Methane Gas Conversion Property Tax Exemption Methane Gas Conversion Property Tax Exemption Methane Gas Conversion Property Tax Exemption < Back Eligibility Agricultural Commercial Industrial Residential Savings Category Bioenergy Program Info Start Date 01/01/2008 (retroactive) State Iowa Program Type Property Tax Incentive Rebate Amount 100% exemption for 10 years Provider Iowa Economic Development Authority '''''Note: This exemption is only available to facilities operated in connection or conjunction with a publicly-owned sanitary landfill. The exemption was available to other entities only for systems placed in service by December 31, 2012. Systems in place before this date are eligible to receive the property tax exemption for 10 years.''''' Under Iowa's methane gas conversion property tax exemption, real and

77

Tracer method to measure landfill gas emissions from leachate collection systems  

Science Journals Connector (OSTI)

This paper describes a method developed for quantification of gas emissions from the leachate collection system at landfills and present emission data measured at two Danish landfills with no landfill gas collection systems in place: Fakse landfill and AV Miljø. Landfill top covers are often designed to prevent infiltration of water and thus are made from low permeable materials. At such sites a large part of the gas will often emit through other pathways such as the leachate collection system. These point releases of gaseous constituents from these locations cannot be measured using traditional flux chambers, which are often used to measure gas emissions from landfills. Comparing tracer measurements of methane (CH4) emissions from leachate systems at Fakse landfill and AV Miljø to measurements of total CH4 emissions, it was found that approximately 47% (351 kg CH4 d?1) and 27% (211 kg CH4 d?1), respectively, of the CH4 emitting from the sites occurred from the leachate collection systems. Emission rates observed from individual leachate collection wells at the two landfills ranged from 0.1 to 76 kg CH4 d?1. A strong influence on emission rates caused by rise and fall in atmospheric pressure was observed when continuously measuring emission from a leachate well over a week. Emission of CH4 was one to two orders of magnitude higher during periods of decreasing pressure compared to periods of increasing pressure.

Anders M. Fredenslund; Charlotte Scheutz; Peter Kjeldsen

2010-01-01T23:59:59.000Z

78

Franklin County Sanitary Landfill - Landfill Gas (LFG) to Liquefied Natural Gas (LNG) - Project  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

FRANKLIN COUNTY SANITARY FRANKLIN COUNTY SANITARY LANDFILL - LANDFILL GAS (LFG) TO LIQUEFIED NATURAL GAS (LNG) - PROJECT January/February 2005 Prepared for: National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 Table of Contents Page BACKGROUND AND INTRODUCTION .......................................................................................1 SUMMARY OF EFFORT PERFORMED ......................................................................................2 Task 2B.1 - Literature Search and Contacts Made...................................................................2 Task 2B.2 - LFG Resource/Resource Collection System - Project Phase One.......................3 Conclusion.................................................................................................................................5

79

Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Renewable Natural Gas Renewable Natural Gas From Landfill Powers Refuse Vehicles to someone by E-mail Share Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Facebook Tweet about Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Twitter Bookmark Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Google Bookmark Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Delicious Rank Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Digg Find More places to share Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on AddThis.com... April 13, 2013

80

EIA - Greenhouse Gas Emissions - Methane Emissions  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

credit for renewable energy, including waste-to-energy and landfill gas combustion. Wastewater treatment, including both domestic wastewater (about two-thirds) and industrial...

Note: This page contains sample records for the topic "landfill gas methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Landfill Gas Conversion to LNG and LCO{sub 2}. Phase II Final Report for January 25, 1999 - April 30, 2000  

SciTech Connect (OSTI)

This report summarizes work on the development of a process to produce LNG (liquefied methane) for heavy vehicle use from landfill gas (LFG) using Acrion's CO{sub 2} wash process for contaminant removal and CO{sub 2} recovery.

Brown, W. R.; Cook, W. J.; Siwajek, L. A.

2000-10-20T23:59:59.000Z

82

E-Print Network 3.0 - annual landfill gas Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

gas emissions and potential aqueous... Transfer Stations (MTS); Life Cycle Assessment (LCA); Landfill Gas (LFG): Geographic Wormation Systems (GIS... . Landfills generate gas...

83

Slippage solution of gas pressure distribution in process of landfill gas seepage  

Science Journals Connector (OSTI)

A mathematical model of landfill gas migration was established under presumption of the ... a large impact on gas pressure distribution. Landfill gas pressure and pressure gradient considering slippage effect...

Qiang Xue; Xia-ting Feng; Bing Liang

2005-12-01T23:59:59.000Z

84

Migration of landfill gas and its control by grouting—a case history  

Science Journals Connector (OSTI)

...research-article Article Migration of landfill gas and its control by grouting-a...London. Parker, A. 1981. Landfill gas problems-case histories. Proceedings of Landfill Gas Symposium, UK AERE Harwell. Rees...

J. G. Raybould; D. J. Anderson

85

Analysis of Changes in Landfill Gas Output and the Economic Potential for Development of a Landfill Gas Control Prototype.  

E-Print Network [OSTI]

??The relationship between changes in local atmospheric conditions and the performance of the landfill gas collection system installed at the Rockingham County (NC) municipal solid… (more)

Harrill, David Justin

2014-01-01T23:59:59.000Z

86

Capture and Utilisation of Landfill Gas  

E-Print Network [OSTI]

about 955 landfills that recovered biogas. The largest number of such landfills were in the USA landfills in Denmark that in total captured 5,800Nm3 of biogas per hour, equivalent to 276.4MW of contained #12;Biomass US DATA ON GENERATION OF BIOGAS AT LANDFILLS Eileen Berenyi, a Research Associate of EEC

Columbia University

87

Emission assessment at the Burj Hammoud inactive municipal landfill: Viability of landfill gas recovery under the clean development mechanism  

Science Journals Connector (OSTI)

This paper examines landfill gas (LFG) emissions at a large inactive waste disposal site to evaluate the viability of investment in LFG recovery through the clean development mechanism (CDM) initiative. For this purpose, field measurements of LFG emissions were conducted and the data were processed by geospatial interpolation to estimate an equivalent site emission rate which was used to calibrate and apply two LFG prediction models to forecast LFG emissions at the site. The mean CH4 flux values calculated through tessellation, inverse distance weighing and kriging were 0.188 ± 0.014, 0.224 ± 0.012 and 0.237 ± 0.008 l CH4/m2 hr, respectively, compared to an arithmetic mean of 0.24 l/m2 hr. The flux values are within the reported range for closed landfills (0.06–0.89 l/m2 hr), and lower than the reported range for active landfills (0.42–2.46 l/m2 hr). Simulation results matched field measurements for low methane generation potential (L0) values in the range of 19.8–102.6 m3/ton of waste. LFG generation dropped rapidly to half its peak level only 4 yrs after landfill closure limiting the sustainability of LFG recovery systems in similar contexts and raising into doubt promoted CDM initiatives for similar waste.

Mutasem El-Fadel; Layale Abi-Esber; Samer Salhab

2012-01-01T23:59:59.000Z

88

Lopez Landfill Gas Utilization Project Biomass Facility | Open Energy  

Open Energy Info (EERE)

Lopez Landfill Gas Utilization Project Biomass Facility Lopez Landfill Gas Utilization Project Biomass Facility Jump to: navigation, search Name Lopez Landfill Gas Utilization Project Biomass Facility Facility Lopez Landfill Gas Utilization Project Sector Biomass Facility Type Landfill Gas Location Los Angeles County, California Coordinates 34.3871821°, -118.1122679° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.3871821,"lon":-118.1122679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

89

UNFCCC-Consolidated baseline and monitoring methodology for landfill gas  

Open Energy Info (EERE)

UNFCCC-Consolidated baseline and monitoring methodology for landfill gas UNFCCC-Consolidated baseline and monitoring methodology for landfill gas project activities Jump to: navigation, search Tool Summary LAUNCH TOOL Name: UNFCCC-Consolidated baseline and monitoring methodology for landfill gas project activities Agency/Company /Organization: United Nations Framework Convention on Climate Change (UNFCCC) Sector: Climate, Energy Focus Area: Renewable Energy, Non-renewable Energy, - Landfill Gas Topics: Baseline projection, GHG inventory Resource Type: Guide/manual Website: cdm.unfccc.int/public_inputs/meth/acm0001/index.html Cost: Free Language: English References: UNFCCC-Consolidated baseline and monitoring methodology for landfill gas project activities[1] This article is a stub. You can help OpenEI by expanding it. References

90

Balefill Landfill Gas Utilization Proj Biomass Facility | Open Energy  

Open Energy Info (EERE)

Balefill Landfill Gas Utilization Proj Biomass Facility Balefill Landfill Gas Utilization Proj Biomass Facility Jump to: navigation, search Name Balefill Landfill Gas Utilization Proj Biomass Facility Facility Balefill Landfill Gas Utilization Proj Sector Biomass Facility Type Landfill Gas Location Bergen County, New Jersey Coordinates 40.9262762°, -74.07701° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.9262762,"lon":-74.07701,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

91

Olinda Landfill Gas Recovery Plant Biomass Facility | Open Energy  

Open Energy Info (EERE)

Olinda Landfill Gas Recovery Plant Biomass Facility Olinda Landfill Gas Recovery Plant Biomass Facility Jump to: navigation, search Name Olinda Landfill Gas Recovery Plant Biomass Facility Facility Olinda Landfill Gas Recovery Plant Sector Biomass Facility Type Landfill Gas Location Orange County, California Coordinates 33.7174708°, -117.8311428° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.7174708,"lon":-117.8311428,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

92

Spadra Landfill Gas to Energy Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Spadra Landfill Gas to Energy Biomass Facility Spadra Landfill Gas to Energy Biomass Facility Jump to: navigation, search Name Spadra Landfill Gas to Energy Biomass Facility Facility Spadra Landfill Gas to Energy Sector Biomass Facility Type Landfill Gas Location Los Angeles County, California Coordinates 34.3871821°, -118.1122679° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.3871821,"lon":-118.1122679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

93

Hartford Landfill Gas Utilization Proj Biomass Facility | Open Energy  

Open Energy Info (EERE)

Hartford Landfill Gas Utilization Proj Biomass Facility Hartford Landfill Gas Utilization Proj Biomass Facility Jump to: navigation, search Name Hartford Landfill Gas Utilization Proj Biomass Facility Facility Hartford Landfill Gas Utilization Proj Sector Biomass Facility Type Landfill Gas Location Hartford County, Connecticut Coordinates 41.7924343°, -72.8042797° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7924343,"lon":-72.8042797,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

94

Woodland Landfill Gas Recovery Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Landfill Gas Recovery Biomass Facility Landfill Gas Recovery Biomass Facility Jump to: navigation, search Name Woodland Landfill Gas Recovery Biomass Facility Facility Woodland Landfill Gas Recovery Sector Biomass Facility Type Landfill Gas Location Kane County, Illinois Coordinates 41.987884°, -88.4016041° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.987884,"lon":-88.4016041,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

95

Recovery Act: Brea California Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas  

SciTech Connect (OSTI)

The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Olinda Landfill near Brea, California. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting Project reflected a cost effective balance of the following specific sub-objectives: • Meeting the environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas • Utilizing proven and reliable technology and equipment • Maximizing electrical efficiency • Maximizing electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Olinda Landfill • Maximizing equipment uptime • Minimizing water consumption • Minimizing post-combustion emissions • The Project produced and will produce a myriad of beneficial impacts. o The Project created 360 FTE construction and manufacturing jobs and 15 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. o By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). o The Project will annually produce 280,320 MWh’s of clean energy o By destroying the methane in the landfill gas, the Project will generate CO2 equivalent reductions of 164,938 tons annually. The completed facility produces 27.4 MWnet and operates 24 hours a day, seven days a week.

Galowitz, Stephen

2012-12-31T23:59:59.000Z

96

The influence of air inflow on CH4 composition ratio in landfill gas  

Science Journals Connector (OSTI)

When landfill gas is collected, air inflow into the landfill...4 productivity. The decline of CH4 content in landfill gas (LFG) negatively affects energy projects. We...2 was an effective indicator of air inflow ...

Seung-Kyu Chun

2014-02-01T23:59:59.000Z

97

The Emissions of Major Aromatic Voc as Landfill Gas from Urban Landfill Sites in Korea  

Science Journals Connector (OSTI)

In this study, concentrations of major aromatic VOCs were determined from landfill gas (LFG) at a total of five...?1 (WJ in wintertime). The LFG flux values of aromatic VOC, when compared to the contribution of n...

Ki-Hyun Kim; Sung Ok Baek; Ye-Jin Choi…

2006-07-01T23:59:59.000Z

98

Landfill gas upgrading with pilot-scale water scrubber: Performance assessment with absorption water recycling  

Science Journals Connector (OSTI)

A pilot-scale counter current absorption process for upgrading municipal solid waste (MSW) landfill gas to produce vehicle fuel was studied using absorption, desorption and drying units and water as an absorbent. Continuous water recycling was used without adding new water to the system. The process parameters were defined by a previous study made with this pilot system. The effect of pressure (20–25 bar), temperature (10–25 °C) and water flow speed (5.5–11 l/min) on the upgrading performance, trace compounds (siloxanes, halogenated compounds) and water quality were investigated. Raw landfill gas flow was kept constant at 7.41 Nm3/h. Methane (CH4) and carbon dioxide (CO2) contents in the product gas were 86–90% and 4.5–8.0% with all studied pressures and temperatures. The remaining fraction in product gas was nitrogen (N2) (from 1% to 7%). Organic silicon compounds (siloxanes) were reduced by 16.6% and halogenated compounds similarly by 90.1% by water absorption. From studied process parameters, only water flow speed affected the removal of siloxanes and halogen compounds. The absorbent water pH was between 4.4–4.9, sulphide concentration between 0.1–1.0 mg/l and carbonate concentration between 500–1000 mg/l. The product gas drying system reduced the siloxane concentration by 99.1% and halogenated compounds by 99.9% compared to the raw landfill gas. In conclusion, the pilot-scale gas upgrading process studied appears to be able to produce gas with high energy content (approx 86–90% methane) using a closed water circulation system. When using a standard gas drying system, all trace compounds can be removed by over 99% compared to raw landfill gas.

J. Läntelä; S. Rasi; J. Lehtinen; J. Rintala

2012-01-01T23:59:59.000Z

99

Emission assessment at the Burj Hammoud inactive municipal landfill: Viability of landfill gas recovery under the clean development mechanism  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer LFG emissions are measured at an abandoned landfill with highly organic waste. Black-Right-Pointing-Pointer Mean headspace and vent emissions are 0.240 and 0.074 l CH{sub 4}/m{sup 2} hr, respectively. Black-Right-Pointing-Pointer At sites with high food waste content, LFG generation drops rapidly after site closure. Black-Right-Pointing-Pointer The viability of LFG recovery for CDMs in developing countries is doubtful. - Abstract: This paper examines landfill gas (LFG) emissions at a large inactive waste disposal site to evaluate the viability of investment in LFG recovery through the clean development mechanism (CDM) initiative. For this purpose, field measurements of LFG emissions were conducted and the data were processed by geospatial interpolation to estimate an equivalent site emission rate which was used to calibrate and apply two LFG prediction models to forecast LFG emissions at the site. The mean CH{sub 4} flux values calculated through tessellation, inverse distance weighing and kriging were 0.188 {+-} 0.014, 0.224 {+-} 0.012 and 0.237 {+-} 0.008 l CH{sub 4}/m{sup 2} hr, respectively, compared to an arithmetic mean of 0.24 l/m{sup 2} hr. The flux values are within the reported range for closed landfills (0.06-0.89 l/m{sup 2} hr), and lower than the reported range for active landfills (0.42-2.46 l/m{sup 2} hr). Simulation results matched field measurements for low methane generation potential (L{sub 0}) values in the range of 19.8-102.6 m{sup 3}/ton of waste. LFG generation dropped rapidly to half its peak level only 4 yrs after landfill closure limiting the sustainability of LFG recovery systems in similar contexts and raising into doubt promoted CDM initiatives for similar waste.

El-Fadel, Mutasem, E-mail: mfadel@aub.edu.lb [Department of Civil and Environmental Engineering, American University of Beirut (Lebanon); Abi-Esber, Layale; Salhab, Samer [Department of Civil and Environmental Engineering, American University of Beirut (Lebanon)

2012-11-15T23:59:59.000Z

100

LANDFILL-GAS-TO-ENERGY PROJECTS: AN ANALYSIS OF NET PRIVATE AND SOCIAL BENEFITS  

E-Print Network [OSTI]

Materials Table A1: Model Results for West Lake Landfill WEST LAKE IC Engine Gas Turbine Steam Turbine Landfill WEST COUNTY IC Engine Gas Turbine Steam Turbine Average Landfill Gas Generation (mmcf/yr) 1,075 1,735 $1,250 Table A3: Model Results for Modern Landfill MODERN IC Engine Gas Turbine Steam Turbine Average

Jaramillo, Paulina

Note: This page contains sample records for the topic "landfill gas methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Effects of landfill gas on subtropical woody plants  

Science Journals Connector (OSTI)

An account is given of the influence of landfill gas on tree growth in the field at...Acacia confusa, Albizzia lebbek, Aporusa chinensis, Bombax malabaricum, Castanopsis fissa, Liquidambar formosana, Litsea gluti...

G. Y. S. Chan; M. H. Wong; B. A. Whitton

102

July 17, 2012, Webinar: Landfill Gas-to-Energy Projects  

Office of Energy Efficiency and Renewable Energy (EERE)

This webinar, held July 17, 2012, provided information on the challenges and benefits of developing successful community landfill gas-to-energy projects in Will County, Illinois, and Escambia...

103

A 25 kWe low concentration methane catalytic combustion gas turbine prototype unit  

Science Journals Connector (OSTI)

Abstract Low concentration methane, emitted from various industries e.g. coal mines and landfills into atmosphere, is not only an important greenhouse gas, but also a wasted energy resource if not utilized. In the past decade, we have been developing a novel VAMCAT (ventilation air methane catalytic combustion gas turbine) technology. This turbine technology can be used to mitigate methane emissions for greenhouse gas reduction, and also to utilize the low concentration methane as an energy source. This paper presents our latest research results on the development and demonstration of a 25 kWe lean burn catalytic combustion gas turbine prototype unit. Recent experimental results show that the unit can be operated with 0.8 vol% of methane in air, producing about 19–21 kWe of electricity output.

Shi Su; Xinxiang Yu

2014-01-01T23:59:59.000Z

104

Numerical Simulation of the Radius of Influence for Landfill Gas Wells  

Science Journals Connector (OSTI)

...of the Radius of Influence for Landfill Gas Wells Harold Vigneault a * * Corresponding...used to quantify the efficiency of landfill gas recovery wells for unlined landfills...Results will help with the design of landfill gas recovery systems. In North America...

Harold Vigneault; René Lefebvre; Miroslav Nastev

105

NETL: Methane Hydrates - Global Assessment of Methane Gas Hydrates  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Global Assessment of Methane Gas Hydrates Last Reviewed 12/18/2013 Global Assessment of Methane Gas Hydrates Last Reviewed 12/18/2013 DE-FE0003060 Goal The goal of this project is to develop a global assessment of methane gas hydrates that will facilitate informed decision-making regarding the potential development of gas hydrate resources between the scientific community and other stakeholders/decision makers. The Assessment will provide science-based information on the role of gas hydrates in natural climate change and the carbon cycle, their sensitivity to climate change, and the potential environmental and socio-economic impacts of hydrate production. Performers Stiftelsen GRID-Arendal, Arendal, Norway Funding Institutions United Nations Environment Programme (UNEP) Statoil Schlumberger United States Department of Energy (USDOE)

106

Evaluating fugacity models for trace components in landfill gas  

Science Journals Connector (OSTI)

A fugacity approach was evaluated to reconcile loadings of vinyl chloride (chloroethene), benzene, 1,3-butadiene and trichloroethylene in waste with concentrations observed in landfill gas monitoring studies. An evaluative environment derived from fictitious but realistic properties such as volume, composition, and temperature, constructed with data from the Brogborough landfill (UK) test cells was used to test a fugacity approach to generating the source term for use in landfill gas risk assessment models (e.g. GasSim). SOILVE, a dynamic Level II model adapted here for landfills, showed greatest utility for benzene and 1,3-butadiene, modelled under anaerobic conditions over a 10 year simulation. Modelled concentrations of these components (95?300 ?g m?3; 43 ?g m?3) fell within measured ranges observed in gas from landfills (24?300–180?000 ?g m?3; 20–70 ?g m?3). This study highlights the need (i) for representative and time-referenced biotransformation data; (ii) to evaluate the partitioning characteristics of organic matter within waste systems and (iii) for a better understanding of the role that gas extraction rate (flux) plays in producing trace component concentrations in landfill gas.

Sophie Shafi; Andrew Sweetman; Rupert L. Hough; Richard Smith; Alan Rosevear; Simon J.T. Pollard

2006-01-01T23:59:59.000Z

107

Diversity and activity of methanotrophs in landfill cover soils with and without landfill gas recovery systems  

Science Journals Connector (OSTI)

Abstract Aerobic CH4 oxidation plays an important role in mitigating CH4 release from landfills to the atmosphere. Therefore, in this study, oxidation activity and community of methanotrophs were investigated in a subtropical landfill. Among the three sites investigated, the highest CH4 concentration was detected in the landfill cover soil of the site (A) without a landfill gas (LFG) recovery system, although the refuse in the site had been deposited for a longer time (?14–15 years) compared to the other two sites (?6–11 years) where a LFG recovery system was applied. In April and September, the higher CH4 flux was detected in site A with 72.4 and 51.7 g m?2 d?1, respectively, compared to the other sites. The abundance of methanotrophs assessed by quantification of pmoA varied with location and season. A linear relationship was observed between the abundance of methanotrophs and CH4 concentrations in the landfill cover soils (R = 0.827, P < 0.001). The key factors influencing the methanotrophic diversity in the landfill cover soils were pH, the water content and the CH4 concentration in the soil, of which pH was the most important factor. Type I methanotrophs, including Methylococcus, Methylosarcina, Methylomicrobium and Methylobacter, and type II methanotrophs (Methylocystis) were all detected in the landfill cover soils, with Methylocystis and Methylosarcina being the dominant genera. Methylocystis was abundant in the slightly acidic landfill cover soil, especially in September, and represented more than 89% of the total terminal-restriction fragment abundance. These findings indicated that the LFG recovery system, as well as physical and chemical parameters, affected the diversity and activity of methanotrophs in landfill cover soils.

Yao Su; Xuan Zhang; Fang-Fang Xia; Qi-Qi Zhang; Jiao-Yan Kong; Jing Wang; Ruo He

2014-01-01T23:59:59.000Z

108

Other States Natural Gas Coalbed Methane, Reserves Based Production...  

Gasoline and Diesel Fuel Update (EIA)

Other States Natural Gas Coalbed Methane, Reserves Based Production (Billion Cubic Feet) Other States Natural Gas Coalbed Methane, Reserves Based Production (Billion Cubic Feet)...

109

Unconventional gas resources. [Eastern Gas Shales, Western Gas Sands, Coalbed Methane, Methane from Geopressured Systems  

SciTech Connect (OSTI)

This document describes the program goals, research activities, and the role of the Federal Government in a strategic plan to reduce the uncertainties surrounding the reserve potential of the unconventional gas resources, namely, the Eastern Gas Shales, the Western Gas Sands, Coalbed Methane, and methane from Geopressured Aquifers. The intent is to provide a concise overview of the program and to identify the technical activities that must be completed in the successful achievement of the objectives.

Komar, C.A. (ed.)

1980-01-01T23:59:59.000Z

110

Anaerobic Methane Oxidation in a Landfill-Leachate Plume  

E-Print Network [OSTI]

wells ranging in depth from 1.3 to 11 m that were oriented parallel to the flow path. The center of the leachate plume was characterized by (1) high alkalinity and elevated concentrations of total dissolved organic carbon, reduced iron, and methane...

Grossman, E. L.; Cifuentes, L. A.; Cozzarelli, I. M.

2002-01-01T23:59:59.000Z

111

Toxic oxide deposits from the combustion of landfill gas and biogas  

Science Journals Connector (OSTI)

Oxide deposits found in combustion systems of landfill gas fired power stations contain relatively high concentrations ... They are selectively transported as part of the landfill gas into the gas-burning devices...

Dietmar Glindemann; Peter Morgenstern…

1996-06-01T23:59:59.000Z

112

Removal and determination of trimethylsilanol from the landfill gas  

Science Journals Connector (OSTI)

The removal and determination of trimethylsilanol (TMSOH) in landfill gas has been studied before and after the special E3000-ITC System. The system works according to principle of temperature swing. The performance of TMSOH and humidity removal was 20% and more than 90%, respectively. The six of active carbons and impinger method were tested on the full-scale landfill in Poland for TMSOH and siloxanes determination. The extraction method and absorption in acetone were used. The concentration of TMSOH and siloxanes were found in range from 23.6 to 29.2 mg/m3 and from 18.0 to 38.9 mg/m3, respectively. The content of TMSOH in biogas originating from landfill was 41% out of all siloxanes. Moreover, the used system is alternative to other existing technique of landfill gas purification.

Grzegorz Piechota; Manfred Hagmann; Roman Buczkowski

2012-01-01T23:59:59.000Z

113

An Empirical Analysis of Gas Well Design and Pumping Tests for Retrofitting Landfill Gas Collection.  

E-Print Network [OSTI]

??Retrofitting a landfill with a gas collection system is an expensive and time consuming endeavor. Such an undertaking usually consists of longer-term extraction testing programs… (more)

Stevens, Derek

2013-01-01T23:59:59.000Z

114

Pilot scale evaluation of the BABIU process – Upgrading of landfill gas or biogas with the use of MSWI bottom ash  

Science Journals Connector (OSTI)

Abstract Biogas or landfill gas can be converted to a high-grade gas rich in methane with the use of municipal solid waste incineration bottom ash as a reactant for fixation of CO2 and H2S. In order to verify results previously obtained at a laboratory scale with 65–90 kg of bottom ash (BA), several test runs were performed at a pilot scale, using 500–1000 kg of bottom ash and up to 9.2 N m3/h real landfill gas from a landfill in the Tuscany region (Italy). The input flow rate was altered. The best process performance was observed at a input flow rate of 3.7 N m3/(h tBA). At this flow rate, the removal efficiencies for H2S were approximately 99.5–99%.

P. Mostbauer; L. Lombardi; T. Olivieri; S. Lenz

2014-01-01T23:59:59.000Z

115

Albany Landfill Gas Utilization Project Biomass Facility | Open Energy  

Open Energy Info (EERE)

Utilization Project Biomass Facility Utilization Project Biomass Facility Jump to: navigation, search Name Albany Landfill Gas Utilization Project Biomass Facility Facility Albany Landfill Gas Utilization Project Sector Biomass Facility Type Landfill Gas Location Albany County, New York Coordinates 42.5756797°, -73.9359821° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.5756797,"lon":-73.9359821,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

116

Processes for Methane Production from Gas Hydrates  

Science Journals Connector (OSTI)

The main cost here is only that of the pipeline used to transport the gas to the production platform. For subsea systems that do not ... group of wells. Transporting methane from the production site to the shore ...

2010-01-01T23:59:59.000Z

117

List of Landfill Gas Incentives | Open Energy Information  

Open Energy Info (EERE)

Incentives Incentives Jump to: navigation, search The following contains the list of 377 Landfill Gas Incentives. CSV (rows 1 - 377) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat Solar Water Heat Wind energy Yes Advanced Energy Fund (Ohio) Public Benefits Fund Ohio Commercial Industrial Institutional Residential Utility Biomass CHP/Cogeneration Fuel Cells Fuel Cells using Renewable Fuels Geothermal Electric

118

Electric power generation using a phosphoric acid cell on a municipal solid waste landfill gas stream. Technology verification report, November 1997--July 1998  

SciTech Connect (OSTI)

The report gives results of tests to verify the performance of a landfill gas pretreatment unit (GPU) and a phosphoric acid fuel cell system. The complete system removes contaminants from landfill gas and produces electricity for on-site use or connection to an electric grid. Performance data were collected at two sites determined to be representative of the U.S. landfill market. The Penrose facility, in Los Angeles, CA, was the first test site. The landfill gas at this site represented waste gas recovery from four nearby landfills, consisting primarily of industrial waste material. It produced approximately 3000 scf of gas/minute, and had a higher heating value of 446 Btu/scf at about 44% methane concentration. The second test site, in Groton, CT, was a relatively small landfill, but with greater heat content gas (methane levels were about 57% and the average heating value was 585 Btu/scf). The verification test addressed contaminant removal efficiency, flare destruction efficiency, and the operational capability of the cleanup system, and the power production capability of the fuel cell system.

Masemore, S.; Piccot, S.

1998-08-01T23:59:59.000Z

119

Development of gas production type curves for coalbed methane reservoirs.  

E-Print Network [OSTI]

??Coalbed methane is an unconventional gas resource that consists on methane production from the coal seams. The unique coal characteristic results in a dual-porosity system.… (more)

Garcia Arenas, Anangela.

2004-01-01T23:59:59.000Z

120

Landfill Gas Cleanup for Carbonate Fuel Cell Power Generation: Final Report  

SciTech Connect (OSTI)

Landfill gas represents a significant fuel resource both in the United States and worldwide. The emissions of landfill gas from existing landfills has become an environmental liability contributing to global warming and causing odor problems. Landfill gas has been used to fuel reciprocating engines and gas turbines, and may also be used to fuel carbonate fuel cells. Carbonate fuel cells have high conversion efficiencies and use the carbon dioxide present in landfill gas as an oxidant. There are, however, a number of trace contaminants in landfill gas that contain chlorine and sulfur which are deleterious to fuel cell operation. Long-term economical operation of fuel cells fueled with landfill gas will, therefore, require cleanup of the gas to remove these contaminants. The overall objective of the work reported here was to evaluate the extent to which conventional contaminant removal processes could be combined.

Steinfeld, G.; Sanderson, R.

1998-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "landfill gas methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Landfill  

Science Journals Connector (OSTI)

Landfill, also known as a dump (US) or a tip (UK), is a site for the disposal of waste materials by burial and is the oldest form of waste treatment . Historically, landfills have been one of the most common...

2008-01-01T23:59:59.000Z

122

Upgrading of Landfill Gas by Membranes — Experiences with Operating a Pilot Plant  

Science Journals Connector (OSTI)

In the last years the interest in using landfill gas as an energy source has risen ... has been constructed on the premises of a landfill dump in Neuss. In a two-stage-process, landfill gas is upgraded in order t...

R. Rautenbach; K. Welsch

1990-01-01T23:59:59.000Z

123

Electron Transport in Methane Gas  

Science Journals Connector (OSTI)

We propose a kinetic theory for electron-drift-velocity maxima in polyatomic gases. The case of methane is considered in detail, and good agreement with experiment is obtained with use of model cross sections. The Boltzmann equation is solved directly by applying an iterative numerical technique, which converges well when inelastic scattering effects are important.

Peter Kleban and H. Ted Davis

1977-08-22T23:59:59.000Z

124

Quantification of multiple methane emission sources at landfills using a double tracer technique  

SciTech Connect (OSTI)

Research highlights: > Precise and reliable measurements of emissions from landfills are needed. > A tracer technique involving simultaneous release of two tracers was proven successful. > Measurements to be performed at times with low changing trends in barometric pressure. - Abstract: A double tracer technique was used successfully to quantify whole-site methane (CH{sub 4}) emissions from Fakse Landfill. Emissions from different sections of the landfill were quantified by using two different tracers. A scaled-down version of the tracer technique measuring close-by to localized sources having limited areal extent was also used to quantify emissions from on-site sources at the landfill facility, including a composting area and a sewage sludge storage pit. Three field campaigns were performed. At all three field campaigns an overall leak search showed that the CH{sub 4} emissions from the old landfill section were localized to the leachate collection wells and slope areas. The average CH{sub 4} emissions from the old landfill section were quantified to be 32.6 {+-} 7.4 kg CH{sub 4} h{sup -1}, whereas the source at the new section was quantified to be 10.3 {+-} 5.3 kg CH{sub 4} h{sup -1}. The CH{sub 4} emission from the compost area was 0.5 {+-} 0.25 kg CH{sub 4} h{sup -1}, whereas the carbon dioxide (CO{sub 2}) and nitrous oxide (N{sub 2}O) flux was quantified to be in the order of 332 {+-} 166 kg CO{sub 2} h{sup -1} and 0.06 {+-} 0.03 kg N{sub 2}O h{sup -1}, respectively. The sludge pit located west of the compost material was quantified to have an emission of 2.4 {+-} 0.63 kg h{sup -1} CH{sub 4}, and 0.03 {+-} 0.01 kg h{sup -1} N{sub 2}O.

Scheutz, C., E-mail: chs@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, Miljovej, Building 113, 2800 Kongens Lyngby (Denmark); Samuelsson, J., E-mail: jerker.samuelsson@fluxsense.se [Chalmers University of Technology/FluxSense AB, SE-412 96 Goeteborg (Sweden); Fredenslund, A.M., E-mail: amf@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, Miljovej, Building 113, 2800 Kongens Lyngby (Denmark); Kjeldsen, P., E-mail: pk@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, Miljovej, Building 113, 2800 Kongens Lyngby (Denmark)

2011-05-15T23:59:59.000Z

125

Landfill  

Science Journals Connector (OSTI)

The solid wastes and refuse disposed of by burial in pits constructed for the purpose, natural depressions, or abandoned quarries or other artificial excavations. Localities used in this way are called landfill s...

2008-01-01T23:59:59.000Z

126

Natural Gas Infrastructure R&D and Methane Emissions Mitigation...  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop November 12, 2014 11:00AM EST to...

127

Impact of using high-density polyethylene geomembrane layer as landfill intermediate cover on landfill gas extraction  

Science Journals Connector (OSTI)

Clay is widely used as a traditional cover material for landfills. As clay becomes increasingly costly and scarce, and it also reduces the storage capacity of landfills, alternative materials with low hydraulic conductivity are employed. In developing countries such as China, landfill gas (LFG) is usually extracted for utilization during filling stage, therefore, the intermediate covering system is an important part in a landfill. In this study, a field test of LFG extraction was implemented under the condition of using high-density polyethylene (HDPE) geomembrane layer as the only intermediate cover on the landfill. Results showed that after welding the HDPE geomembranes together to form a whole airtight layer upon a larger area of landfill, the gas flow in the general pipe increased 25% comparing with the design that the HDPE geomembranes were not welded together, which means that the gas extraction ability improved. However as the heat isolation capacity of the HDPE geomembrane layer is low, the gas generation ability of a shallow landfill is likely to be weakened in cold weather. Although using HDPE geomembrane layer as intermediate cover is acceptable in practice, the management and maintenance of it needs to be investigated in order to guarantee its effective operation for a long term.

Zezhi Chen; Huijuan Gong; Mengqun Zhang; Weili Wu; Yu Liu; Jin Feng

2011-01-01T23:59:59.000Z

128

Emerging technologies for the management and utilization of landfill gas. Final report, August 1994-August 1997  

SciTech Connect (OSTI)

The report gives information on emerging technologies that are considered to be commercially available (Tier 1), currently undergoing research and development (Tier 2), or considered as potentially applicable (Tier 3), for the management of landfill gas (LFG) emissions or for the utilization of methane (CH4) and carbon dioxide (CO2) from LFG. The emerging technologies that are considered to be Tier 1 are: (1) phosphoric acid fuel cells, (2) processes for converting CH4 from LFG to compressed LFG for vehicle fuel or other fuel uses, and (3) use of LFG as a fuel source for leachate evaporation systems. The Tier 2 technologies covered in the report are: (1) operation of landfills as anaerobic bioreactors, (2) operation of landfills are aerobic bioreactors, (3) production of ethanol from LFG, (4) production of commercial CO2 from LFG, and (5) use of LFG to provide fuel for heat and CO2 enhancement in greenhouses. Tier 3 technologies, considered as potentially applicable for LFG. include Stirling and Organic Rankine Cycle engines.

Roe, S.; Reisman, J.; Strait, R.; Doorn, M.

1998-02-01T23:59:59.000Z

129

Measurements of Methane Emissions at Natural Gas Production Sites  

E-Print Network [OSTI]

Measurements of Methane Emissions at Natural Gas Production Sites in the United States #12;Why = 21 #12;Need for Study · Estimates of methane emissions from natural gas production , from academic in assumptions in estimating emissions · Measured data for some sources of methane emissions during natural gas

Lightsey, Glenn

130

Numerical Early Warning Model Research of Landfill Gas Permeation and Diffusion Considering Flow-Temperature Coupling  

Science Journals Connector (OSTI)

Based on seepage mechanics in porous medium gas and heat transfer theory, numerical early warning model is established, which is on quantitative description of migration and release of landfill gas and penetration and diffusion of energy, and dynamic ... Keywords: component, landfill gas, flow-temperature coupling, gas pressure and temperature distribution, numerical early warning model

Xue Qiang; Feng Xia-ting; Ma Shi-jin; Zhou Xiao-jun

2009-10-01T23:59:59.000Z

131

Unusual calcite stromatolites and pisoids from a landfill leachate collection system  

Science Journals Connector (OSTI)

...with leachate. The remaining void space is filled with landfill gas, which is composed mainly of methane and carbon dioxide...with leachate. The remaining void space is filled with landfill gas, which is composed mainly of methane and carbon dioxide...

132

Effect of Hydrogen Sulfide in Landfill Gas on Anode Poisoning of Solid Oxide Fuel Cells.  

E-Print Network [OSTI]

??The world is facing an energy crisis and there is an immediate need to find a sustainable source of energy. Landfill gas has the potential… (more)

Khan, Feroze

2012-01-01T23:59:59.000Z

133

Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects Webinar (text version)  

Office of Energy Efficiency and Renewable Energy (EERE)

Below is the text version of the Webinar titled "Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects," originally presented on July 17, 2012.

134

INTEGRATED CRYOGENIC SYSTEM FOR CO 2 SEPARATION AND LNG PRODUCTION FROM LANDFILL GAS  

Science Journals Connector (OSTI)

An integrated cryogenic system to separate carbon dioxide ( CO 2 ) and produce LNG from landfill gas is investigated and designed. The main objective of this design is to eliminate the requirement of a standard CO 2 removal process in the liquefaction system such distillation or (temperature or pressure) swing adsorption and to directly separate carbon dioxide as frost at the liquefying channel of methane. Two identical sets of heat exchangers are installed in parallel and switched alternatively with a time period so that one is in separation?liquefaction mode while the other is in CO 2 clean?up mode. A thermal regeneration scheme is presented for the purpose of saving energy and avoiding the stoppage of LNG production followed by the flow switching. The switching period is determined from results of a combined heat and mass transfer analysis on the CO 2 freeze?out process.

H. M. Chang; M. J. Chung; S. B. Park

2010-01-01T23:59:59.000Z

135

Methane and the greenhouse-gas footprint of natural gas from shale formations  

Science Journals Connector (OSTI)

We evaluate the greenhouse gas footprint of natural gas obtained by high-volume hydraulic fracturing from shale formations, focusing on methane emissions. Natural gas is composed largely of methane, and 3 ... to ...

Robert W. Howarth; Renee Santoro; Anthony Ingraffea

2011-06-01T23:59:59.000Z

136

Application of landfill gas as a liquefied natural gas fuel for refuse trucks in Texas  

E-Print Network [OSTI]

truck operations. The purpose of this thesis is to develop a methodology that can be used to evaluate the use of LFG generated at landfills as a Liquefied Natural Gas (LNG) fuel source for refuse trucks in Texas. The methodology simulates the gas...

Gokhale, Bhushan

2007-04-25T23:59:59.000Z

137

Vapor phase transport at a hillside landfill  

Science Journals Connector (OSTI)

...ambient density gradients. Post-landfill gas input reverses the direction of...landfill may explain observations of landfill gas found at depth. Post-landfill...of gas generation. Transport of landfill gas is shown to be dominated by diffusion...

P. H. Stauffer; N. D. Rosenberg

138

The modelling of biochemical-thermal coupling effect on gas generation and transport in MSW landfill  

Science Journals Connector (OSTI)

The landfill gas generation was investigated based on the theories of the thermodynamics, microbial dynamics and chemical dynamics. The coupling model was developed for describing the gas transport and heat release. And the relationship between the gas generation rate and the temperature was proposed. The parameters in the gas generation model were obtained by bioreactor test in order to evaluate the volume of gas production of the Erfeishan landfill in China. The simulation results shown that the operating life of the landfill will be overestimated if the model does not consider the thermal effect during degradation of the solid substrate.

Liu Lei; Liang Bing; Xue Qiang; Zhao Ying; Yang Chun

2011-01-01T23:59:59.000Z

139

Landfill gas cleanup for carbonate fuel cell power generation. Final report  

SciTech Connect (OSTI)

Landfill gas represents a significant fuel resource both in the US and worldwide. The emissions of landfill gas from existing landfills has become an environmental liability contributing to global warming and causing odor problems. Landfill gas has been used to fuel reciprocating engines and gas turbines, and may also be used to fuel carbonate fuel cells. Carbonate fuel cells have high conversion efficiencies and use the carbon dioxide present in landfill gas as an oxidant. There are, however, a number of trace contaminants in landfill gas that contain chlorine and sulfur which are deleterious to fuel cell operation. Long-term economical operation of fuel cells fueled with landfill gas will, therefore, require cleanup of the gas to remove these contaminants. The overall objective of the work reported here was to evaluate the extent to which conventional contaminant removal processes could be combined to economically reduce contaminant levels to the specifications for carbonate fuel cells. A pilot plant cleaned approximately 970,000 scf of gas over 1,000 hours of operation. The testing showed that the process could achieve the following polished gas concentrations: less than 80 ppbv hydrogen sulfide; less than 1 ppmv (the detection limit) organic sulfur; less than 300 ppbv hydrogen chloride; less than 20--80 ppbv of any individual chlorinated hydrocarbon; and 1.5 ppm sulfur dioxide.

Steinfield, G.; Sanderson, R.

1998-02-01T23:59:59.000Z

140

Phase equilibrium conditions for simulated landfill gas hydrate formation in aqueous solutions of tetrabutylammonium nitrate  

Science Journals Connector (OSTI)

Abstract Hydrate phase equilibrium conditions for the simulated landfill gas (LFG) of methane and carbon dioxide (50 mol% methane, 50 mol% carbon dioxide) were investigated with the pressure range of (1.90 to 13.83) MPa and temperature range of (280.0 to 288.3) K at (0.050, 0.170, 0.340, and 0.394) mass fraction (w) of tetrabutylammonium nitrate (TBANO3). The phase boundary between liquid–vapor–hydrate (L–V–H) phases and liquid–vapor (L–V) phases was determined by employing an isochoric pressure-search method. The phase equilibrium data measured showed that TBANO3 appeared a remarkable promotion effect at w TBANO 3  = 0.394, corresponding to TBANO3 · 26H2O, but inhibition effect at w TBANO 3  = (0.050, or 0.170) on the semiclathrate hydrate formation. In addition, the application of TBANO3 at 0.340 mass fraction, corresponding to TBANO3 · 32H2O, displayed promotion effect at lower pressures (below 6.38 MPa) and inhibition effect at higher pressures (above 6.38 MPa).

Ling-Li Shi; De-Qing Liang; Dong-Liang Li

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "landfill gas methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Study on optimization model of energy collection efficiency and its power generation benefit evaluation of landfill gas  

Science Journals Connector (OSTI)

An optimization model for joint biogas energy collection efficiency that targets the prediction model for landfill gas output dynamics and the optimization model for gas well output has been established. The model was used to comprehensively analyze and evaluate the collection efficiency of a landfill gas well together with the long-term monitoring the gas output of the gas well within Chenjiachong Landfill. The collection efficiency increased by more than 50% than the original collection of landfill biogas and the power generation efficiency increased more than two times after the reservoir area of the landfill was optimized and regulated.

Xue Qiang

2013-01-01T23:59:59.000Z

142

July 17, 2012, Webinar: Landfill Gas-to-Energy Projects | Department of  

Broader source: Energy.gov (indexed) [DOE]

July 17, 2012, Webinar: Landfill Gas-to-Energy Projects July 17, 2012, Webinar: Landfill Gas-to-Energy Projects July 17, 2012, Webinar: Landfill Gas-to-Energy Projects This webinar, held July 17, 2012, provided information on the challenges and benefits of developing successful community landfill gas-to-energy projects in Will County, Illinois, and Escambia County, Florida. Download the presentations below, watch the webinar (WMV 112 MB) or view the text version. Find more CommRE webinars. Prairie View RDF Gas to Energy Facility: A Public/Private Partnership Will County partnered with Waste Management, using a portion of the county's DOE Energy Efficiency and Conservation Block Grant (EECBG) funding, to develop the Prairie View Recycling and Disposal Facility. A gas purchase agreement was executed in 2010 and the facility became operational

143

Methanation  

Science Journals Connector (OSTI)

Methanation describes the heterogeneous, gas-catalytic or biological synthesis of CH4 from H2 and CO/CO2...or in case of the biological path, alternatively from other carbon sources. It is the second substantial,...

Markus Lehner; Robert Tichler…

2014-01-01T23:59:59.000Z

144

Development of gas production type curves for horizontal wells in coalbed methane reservoirs.  

E-Print Network [OSTI]

??Coalbed methane is an unconventional gas resource that consists of methane production from coal seams .The unique difference between CBM and conventional gas reservoirs is… (more)

Nfonsam, Allen Ekahnzok.

2006-01-01T23:59:59.000Z

145

Effects of a temporary HDPE cover on landfill gas emissions: Multiyear evaluation with the static chamber approach at an Italian landfill  

Science Journals Connector (OSTI)

According to the European Landfill Directive 1999/31/EC and the related Italian Legislation (“D. Lgs. No. 36/2003”), monitoring and control procedures of landfill gas emissions, migration and external dispersions are clearly requested. These procedures could be particularly interesting in the operational circumstance of implementing a temporary cover, as for instance permitted by the Italian legislation over worked-out landfill sections, awaiting the evaluation of expected waste settlements. A possible quantitative approach for field measurement and consequential evaluation of landfill CO2, CH4 emission rates in pairs consists of the static, non-stationary accumulation chamber technique. At the Italian level, a significant and recent situation of periodical landfill gas emission monitoring is represented by the sanitary landfill for non-hazardous waste of the “Fano” town district, where monitoring campaigns with the static chamber have been annually conducted during the last 5 years (2005–2009). For the entire multiyear monitoring period, the resulting CO2, CH4 emission rates varied on the whole up to about 13,100 g CO2 m?2 d?1 and 3800 g CH4 m?2 d?1, respectively. The elaboration of these landfill gas emission data collected at the “Fano” case-study site during the monitoring campaigns, presented and discussed in the paper, gives rise to a certain scientific evidence of the possible negative effects derivable from the implementation of a temporary HDPE cover over a worked-out landfill section, notably: the lateral migration and concentration of landfill gas emissions through adjacent, active landfill sections when hydraulically connected; and consequently, the increase of landfill gas flux velocities throughout the reduced overall soil cover surface, giving rise to a flowing through of CH4 emissions without a significant oxidation. Thus, these circumstances are expected to cause a certain increase of the overall GHG emissions from the given landfill site.

Bruno Capaccioni; Cristina Caramiello; Fabio Tatàno; Alessandro Viscione

2011-01-01T23:59:59.000Z

146

Tapping Landfill Gas to Provide Significant Energy Savings and...  

Broader source: Energy.gov (indexed) [DOE]

- Case Study, 2013 BroadRock Renewables LLC, in collaboration with DCO Energy, operates combined cycle electric generating plants at the Central Landfill in Johnston, Rhode...

147

Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects  

Broader source: Energy.gov (indexed) [DOE]

Community Renewable Energy Success Stories: Landfill Gas-to-Energy Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects Webinar (text version) Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects Webinar (text version) Below is the text version of the Webinar titled "Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects," originally presented on July 17, 2012. Recorded Voice: The broadcast is now starting. All attendees are in listen-only mode. Sarah Busche: Hello, everyone. Good afternoon and welcome to today's webinar. This is sponsored by the U.S. Department of Energy. My name is Sarah Busche, and I'm here with Devin Egan, and we're broadcasting live from the National Renewable Energy Laboratory in Golden, Colorado. We're going to give folks

148

Modified landfill gas generation rate model of first-order kinetics and two-stage reaction  

Science Journals Connector (OSTI)

This investigation was carried out to establish a new domestic landfill gas (LFG) generation rate model that takes...L 0), the reaction rate constant in the first stage (K 1), and ...

Jiajun Chen; Hao Wang…

2009-09-01T23:59:59.000Z

149

Renewable LNG: Update on the World's Largest Landfill Gas to LNG Plant  

Broader source: Energy.gov [DOE]

Success story about LNG from landfill gas. Presented by Mike McGowan, Linde NA, Inc., at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado.

150

Synthesis Gas Production from Partial Oxidation of Methane with Air in AC Electric Gas Discharge  

E-Print Network [OSTI]

Synthesis Gas Production from Partial Oxidation of Methane with Air in AC Electric Gas Discharge K 73019 Received October 11, 2002 In this study, synthesis gas production in an AC electric gas discharge of methane and air mixtures at room temperature and ambient pressure was investigated. The objective

Mallinson, Richard

151

Quantitative gas-chromatographische Simultanbestimmung von Wasserstoff, Methan, Äthan und Äthylen  

Science Journals Connector (OSTI)

Die quantitative gas-chromatographische Bestimmung von Wasserstoff, Methan, Äthan und Äthylen führt bei Verwendung einer...

H. W. Dürbeck

152

Int. J. Environment and Pollution, V0/. IS, No.4, 2001 Economic evaluation of a landfill system with gas  

E-Print Network [OSTI]

Int. J. Environment and Pollution, V0/. IS, No.4, 2001 Economic evaluation of a landfill system. Landfill technology, as it is the most widely employed and is regarded as the most suitable and simple and externalities are examined. A cost-benefit analysis of a landfill system with gas recovery (LFSGR) has been

Columbia University

153

A Multimedia Study of Hazardous Waste Landfill Gas Migration  

Science Journals Connector (OSTI)

Hazardous waste landfills pose uniquely challenging environmental problems which arise as a result of the chemical complexity of waste sites, their involvement of many environmental media, and their very size ...

Robert D. Stephens; Nancy B. Ball; Danny M. Mar

1986-01-01T23:59:59.000Z

154

DOE/EA-1624: Environmental Assessment for Auburn Landfill Gas Electric Generators and Anaerobic Digester Energy Facilities (December 2008)  

Broader source: Energy.gov (indexed) [DOE]

Auburn Landfill Gas Electric Generators and Auburn Landfill Gas Electric Generators and Anaerobic Digester Energy Facilities Auburn, New York Final Environmental Assessment DOE/EA-1624 Prepared for: U.S. Department of Energy National Energy Technology Laboratory January 2009 INTENTIONALLY LEFT BLANK AUBURN LANDFILL GAS ELECTRIC GENERATORS AND ANAEROBIC DIGESTER ELECTRIC FACILITIES FINAL EA DOE/EA-1624 i Table of Contents 1.0 INTRODUCTION .......................................................................................................................................... 1 1.1 BACKGROUND............................................................................................................................................... 2 1.2 PURPOSE AND NEED ...................................................................................................................................... 4

155

NETL: Methane Hydrates - Barrow Gas Fields - North Slope Borough, Alaska  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Phase 2- Drilling and Production Testing the Methane Hydrate Resource Potential associated with the Barrow Gas Fields Last Reviewed 04/06/2010 Phase 2- Drilling and Production Testing the Methane Hydrate Resource Potential associated with the Barrow Gas Fields Last Reviewed 04/06/2010 DE-FC26-06NT42962 Goal The goal of this project is to evaluate, design, drill, log, core and production test methane hydrate resources in the Barrow Gas Fields near Barrow, Alaska to determine its impact on future free gas production and its viability as an energy source. Photo of Barrow welcome sign Performers North Slope Borough, Barrow, Alaska 99723 Petrotechnical Resources Alaska (PRA), Fairbanks, AK 99775 University of Alaska Fairbanks, Fairbanks, AK 99775 Background Phase 1 of the Barrow Gas Fields Hydrate Study provided very strong evidence for the existence of hydrates updip of the East Barrow and Walakpa Gas Fields. Full-field history matched reservoir modeling supported the

156

Dewatering of coalbed methane wells with hydraulic gas pump  

SciTech Connect (OSTI)

The coalbed methane industry has become an important source of natural gas production. Proper dewatering of coalbed methane (CBM) wells is the key to efficient gas production from these reservoirs. This paper presents the Hydraulic Gas Pump as a new alternative dewatering system for CBM wells. The Hydraulic Gas Pump (HGP) concept offers several operational advantages for CBM wells. Gas interference does not affect its operation. It resists solids damage by eliminating the lift mechanism and reducing the number of moving parts. The HGP has a flexible production rate and is suitable for all production phases of CBM wells. It can also be designed as a wireline retrievable system. We conclude that the Hydraulic Gas Pump is a suitable dewatering system for coalbed methane wells.

Amani, M.; Juvkam-Wold, H.C. [Texas A& M Univ., College Station, TX (United States)

1995-12-31T23:59:59.000Z

157

Landfill gas cleanup for carbonate fuel cell power generation. Final report  

SciTech Connect (OSTI)

To utilize landfill gas for power generation using carbonate fuel cells, the LFG must be cleaned up to remove sulfur and chlorine compounds. This not only benefits the operation of the fuel cell, but also benefits the environment by preventing the emission of these contaminants to the atmosphere. Commercial technologies for gas processing are generally economical in relatively large sizes (3 MMSCFD or larger), and may not achieve the low levels of contaminants required. To address the issue of LFG clean-up for fuel cell application, a process was developed utilizing commercially available technology. A pilot-scale test facility utilizing this process was built at a landfill site in Anoka, Minnesota using the EPRI fuel cell test facility used for coal gas testing. The pilot plant was tested for 1000 hours, processing 970,000 SCF (27,500 Nm{sup 3}) of landfill gas. Testing indicated that the process could achieve the following concentrations of contaminants in the clean gas: Less than 80 ppbv hydrogen sulfide; less than 1 ppm (the detection limit) organic sulfur; less than 300 ppbv hydrogen chloride; less than 20--80 ppbv if any individual chlorinated hydrocarbon; and 1.5 ppm (average) Sulfur Dioxide. The paper describes the LFG composition for bulk and trace compounds; evaluation of various methods to clean landfill gas; design of a LFG cleanup system; field test of pilot-scale gas cleanup process; fuel cell testing on simulated landfill gas; single cell testing on landfill gas contaminants and post test analysis; and design and economic analyses of a full scale gas cleanup system.

Steinfeld, G.; Sanderson, R.

1998-02-01T23:59:59.000Z

158

Commodity chemicals from natural gas by methane chlorination  

SciTech Connect (OSTI)

Ethylene and vinyl chloride monomer (VCM) can be produced from natural gas through methane chlorination by reacting methane and chlorine at 900/sup 0/C or higher. Experimental results indicate total ethylene equivalent yield from methane of 45%(wt) and marginal process economics. Fundamental kinetic modeling predicts improved C/sub 2/ yields of up to 70%(wt) at optimum reaction conditions. This optimum condition established the basis for the process design study to evaluate the potential for producing ethylene and VCM from natural gas. HCl by-product is recycled for economic viability. Using the Kel-Chlor process for recycling HCl, the proposed plant produces 27,200 TPA of C/sub 2/H/sub 4/ and 383,800 TPA of VCM. The Midwest is an ethylene consumption area requiring imports of ethylene derivatives from other regions. A methane chlorination plant located on a Midwestern natural gas pipeline network has a good commercial potential.

Che, S.C.; Minet, R.G.; Giacobbe, F.; Mullick, S.L.

1987-01-01T23:59:59.000Z

159

Simulation of Landfill Gas Performance in a Spark Ignited Engine.  

E-Print Network [OSTI]

?? Computer simulations were performed using KIVA-4 code to determine performance of a spark ignited engine fueled by methane diluted with carbon dioxide to approximate… (more)

Swain, Daniel P.

2010-01-01T23:59:59.000Z

160

Delivery and viability of landfill gas CDM projects in Africa—A South African experience  

Science Journals Connector (OSTI)

The eThekwini Municipality (Durban, South Africa) landfill gas Clean Development Mechanism (CDM) project was the first to be registered and verified in Africa. The idea for the project was developed in 2002, yet it was not until the end of 2006 that the smaller Component One (1 MW) was registered, while the larger Component Two (9 MW) followed only in March 2009. Valuable lessons were learnt from Component One, and these were applied to Component Two. The paper describes the Durban CDM process, the lessons learnt, and assesses the viability of landfill gas to electricity CDM projects in Africa. It concludes that small to medium sized landfill gas to electricity CDM projects are not viable in Africa unless there is a renewable energy feed-in-tariff, or unless the gas is simply flared rather than being utilised for power generation.

R. Couth; C. Trois; J. Parkin; L.J. Strachan; A. Gilder; M. Wright

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "landfill gas methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Carbon dioxide removal and capture for landfill gas up-grading  

Science Journals Connector (OSTI)

Within the frame of an EC financially supported project - LIFE05 ENV/IT/000874 GHERL (Greenhouse Effect Reduction from Landfill)–a pilot plant was set up in order to demonstrate the feasibility of applying chemical absorption to remove carbon dioxide from landfill gas. After proper upgrading - basically removal of carbon dioxide, hydrogen sulphide, ammonia and other trace gas compound–the gas might be fed into the distribution grid for natural gas or used as vehicle fuel, replacing a fossil fuel thus saving natural resources and carbon dioxide emissions. Several experiences in Europe have been carried out concerning the landfill gas - and biogas from anaerobic digestion - quality up-grading through CO2 removal, but in all of them carbon dioxide was vented to the atmosphere after separation, without any direct benefit in terms of greenhouse gases reduction. With respect to those previous experiences, in this work the attention was focused on CO2 removal from landfill gas with an effective capture process, capable of removing carbon dioxide from atmosphere, through a globally carbon negative process. In particular, processes capable of producing final solid products were investigated, with the aim of obtaining as output solid compounds which can be either used in the chemical industry or disposed off. The adopted absorption process is based on using aqueous solutions of potassium hydroxide, with the final aim of producing potassium carbonate. Potassium carbonate is a product which has several applications in the chemical industry if obtained with adequate quality. It can be sold as a pulverised solid, or in aqueous solution. Several tests were carried out at the pilot plant, which was located at a landfill site, in order to feed it with a fraction of the on-site collected landfill gas. The results of the experimental campaign are reported, explained and commented in the paper. Also a discussion on economic issues is presented.

Lidia Lombardia; Andrea Corti; Ennio Carnevale; Renato Baciocchi; Daniela Zingaretti

2011-01-01T23:59:59.000Z

162

Suitability of Tedlar® gas sampling bags for siloxane quantification in landfill gas  

Science Journals Connector (OSTI)

Landfill or digester gas can contain man-made volatile methylsiloxanes (VMS), usually in the range of a few milligrams per normal cubic metre (Nm3). Until now, no standard method for siloxane quantification exists and there is controversy with respect to which sampling procedure is most suitable. This paper presents an analytical and a sampling procedure for the quantification of common VMS in biogas via GC–MS and polyvinyl fluoride (Tedlar®) bags. Two commercially available Tedlar bag models are studied. One is equipped with a polypropylene valve with integrated septum, the other with a dual port fitting made from stainless steel. Siloxane recovery in landfill gas samples is investigated as a function of storage time, temperature, surface-to-volume ratio and background gas. Recovery was found to depend on the type of fitting employed. The siloxanes sampled in the bag with the polypropylene valve show high and stable recovery, even after more than 30 days. Sufficiently low detection limits below 10 ?g Nm?3 and good reproducibility can be achieved. The method is therefore well applicable to biogas, greatly facilitating sampling in comparison with other common techniques involving siloxane enrichment using sorption media.

M. Ajhar; B. Wens; K.H. Stollenwerk; G. Spalding; S. Yüce; T. Melin

2010-01-01T23:59:59.000Z

163

Ni catalysts derived from Mg–Al layered double hydroxides for hydrogen production from landfill gas conversion  

Science Journals Connector (OSTI)

A layered double hydroxide (LDH) precursor with a hydrotalcite-like structure containing Ni/Mg/Al cations was prepared. A series of Ni catalysts containing mixed-oxides and spinel phases were then obtained through thermal treatment of the LDH precursor. X-ray diffraction (XRD), transmission electron microscopy (TEM), and temperature-programmed reduction (TPR) revealed that the LDH derived Ni catalysts have well-dispersed nickel phases upon reduction. The thermal treatment temperatures have noticeable effects on the specific surface area, pore volume, phase transformation, particle size, and reducibility of the catalysts. Thermal treatment temperatures up to 700 °C promote the generation of mesopores which facilitate an increase in specific area and pore volume. Beyond 700 °C sintering occurs, mesopores collapse, and specific area and pore volume decrease. High thermal treatment temperatures favor the phase transformation to spinel solid solutions and the particle size growth. Metal-support interaction is enhanced but reducibility is hindered due to the formation of spinel solid solution phases. The LDH derived Ni catalysts were tested for landfill gas conversion at 750 °C and have shown excellent activity and stability in terms of methane conversion. At gas hourly space velocity (GHSV) of 240,000 h?1 and pressure of 1 atm, 81% methane conversion was achieved during a 48 h test period without apparent catalyst deactivation.

Qingsong Wang; Wei Ren; Xueliang Yuan; Ruimin Mu; Zhanlong Song; Xiaolin Wang

2012-01-01T23:59:59.000Z

164

Des Plaines Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Des Plaines Landfill Biomass Facility Jump to: navigation, search Name Des Plaines Landfill Biomass Facility Facility Des Plaines Landfill Sector Biomass Facility Type Landfill Gas...

165

Lessons from Loscoe: the uncontrolled migration of landfill gas  

Science Journals Connector (OSTI)

...was considered of fundamental importance in determining...making the situation safe, even though in...with coal mining operations. In 1983 smells...central heating boiler had been ignited...different landfill operation and completion scenarios...how to improve the operation and engineering...

G. M. Williams; N. Aitkenhead

166

Effects of Landfill Gas on Growth and Nitrogen Fixation of Two Leguminous Trees (Acacia Confusa, Leucaena Leucocephala)  

Science Journals Connector (OSTI)

A study was made on the effects of landfill gas on ARA (acetylene reducing activity) of ... The effects of the three main components of landfill gas, O2, CO2 and CH4, were first measured separately over a 1-hr pe...

Y. S. G. Chan; M. H. Wong; B. A. Whitton

1998-10-01T23:59:59.000Z

167

Performance of an Internal Combustion Engine Operating on Landfill Gas and the Effect of Syngas Addition  

Science Journals Connector (OSTI)

Performance of an Internal Combustion Engine Operating on Landfill Gas and the Effect of Syngas Addition ... The performance of a four-stroke Honda GC160E spark ignition (SI) internal combustion (IC) engine operating on landfill gas (LFG) was investigated, as well as the impact of H2 and CO (syngas) addition on emissions and engine efficiency. ... In addition, variation across both the syngas content (up to 15%) and the ratio of H2 to CO in the syngas (H2/CO = 0.5, 1, and 2) were tested. ...

McKenzie P. Kohn; Jechan Lee; Matthew L. Basinger; Marco J. Castaldi

2011-02-07T23:59:59.000Z

168

Tapping Landfill Gas to Provide Significant Energy Savings and Greenhouse Gas Reductions- Case Study, 2013  

Broader source: Energy.gov [DOE]

Case study overviewing two large landfill projects in California and Rhode Island funded by the Recovery Act

169

Property:Building/SPPurchasedEngyNrmlYrMwhYrDigesterLandfillGas | Open  

Open Energy Info (EERE)

SPPurchasedEngyNrmlYrMwhYrDigesterLandfillGas SPPurchasedEngyNrmlYrMwhYrDigesterLandfillGas Jump to: navigation, search This is a property of type String. Digester / landfill gas Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrDigesterLandfillGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 +

170

Property:Building/SPPurchasedEngyPerAreaKwhM2DigesterLandfillGas | Open  

Open Energy Info (EERE)

DigesterLandfillGas DigesterLandfillGas Jump to: navigation, search This is a property of type String. Digester / landfill gas Pages using the property "Building/SPPurchasedEngyPerAreaKwhM2DigesterLandfillGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 +

171

Property:Building/SPPurchasedEngyForPeriodMwhYrDigesterLandfillGas | Open  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrDigesterLandfillGas SPPurchasedEngyForPeriodMwhYrDigesterLandfillGas Jump to: navigation, search This is a property of type String. Digester / landfill gas Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrDigesterLandfillGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 +

172

IEA-Renewable Energy Technologies, Bioenergy Agreement Task 37: Energy from Biogas and Landfill Gas  

E-Print Network [OSTI]

EFP-06 IEA- Renewable Energy Technologies, Bioenergy Agreement Task 37: Energy from Biogas-Bioenergy, Task 37- Energy from Biogas and Landfill Gas", via samarbejde, informationsudveksling, fælles analyser. biogas fra anaerob udrådning (AD) som en integreret gylle og affalds behandlings teknologi. Arbejdet

173

NETL: Oil & Natural Gas Technologies Reference Shelf - Coalbed Methane  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coalbed Methane Production and Reclamation Field Tour Coalbed Methane Production and Reclamation Field Tour Coalbed Methane Production and Reclamation Field Tour Author: John Wheaton, Montana Tech of the University of Montana, Butte, MT. Venue: The tour will be conducted starting in Gillette, WY, and extend along the northern Powder River Basin, on June 3, 2007, under the auspices of the American Society for Mining and Reclamation (http://ces.ca.uky.edu/asmr/ [external site]). Abstract: This field tour will emphasize successful reclamation in an alternative type of coal industry in the Powder River Basin: coalbed methane. The tour will leave Gillette, WY, at 7:30 a.m., Sunday, June 3, 2007, and travel to Sheridan, WY, and back, touring coalbed methane production areas. Stops will include active drilling and producing areas to learn about the footprint and approach to development of coalbed methane. Reclamation includes drilling pads and linear trenching for water and gas pipelines. Produced-water management is a major expense and concern. Among the water management options we plan to see are stock-watering facilities, infiltration ponds, irrigation sites, and water treatment facilities. A landowner will join us and be able to answer questions from the ranching perspective for part of the tour. Lunches are included in the price of the tour.

174

Illinois Turning Landfill Trash into Future Cash | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Turning Landfill Trash into Future Cash Turning Landfill Trash into Future Cash Illinois Turning Landfill Trash into Future Cash September 28, 2010 - 5:35pm Addthis Illinois Turning Landfill Trash into Future Cash Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs Will County, Illinois officials yesterday formally broke ground on a new $7 million project (that includes $1 million of Energy Efficiency Conservation Block Grant funds) to turn methane gas from the Prairie View Landfill into electricity in a partnership with Waste Management. Will County will receive revenue from the sale of the gas created from decomposing garbage which will be harnessed and converted to generate 4.8 megawatts of green electrical power and used to power up to 8,000 homes. The future revenue generated from the sale of the gas and the sale of the

175

Catalytically upgraded landfill gas as a cost-effective alternative for fuel cells  

Science Journals Connector (OSTI)

The potential use of landfill gas as feeding fuel for the so-called molten carbonate fuel cells (MCFC) imposes the need for new upgrading technologies in order to meet the much tougher feed gas specifications of this type of fuel cells in comparison to gas engines. Nevertheless, MCFC has slightly lower purity demands than low temperature fuel cells. This paper outlines the idea of a new catalytic purification process for landfill gas conditioning, which may be supposed to be more competitive than state-of-the-art technologies and summarises some lab-scale results. This catalytic process transforms harmful landfill gas minor compounds into products that can be easily removed from the gas stream by a subsequent adsorption step. The optimal process temperature was found to be in the range 250–400 °C. After a catalyst screening, two materials were identified, which have the ability to remove all harmful minor compounds from landfill gas. The first material was a commercial alumina that showed a high activity towards the removal of organic silicon compounds. The alumina protects both a subsequent catalyst for the removal of other organic minor compounds and the fuel cell. Due to gradual deactivation caused by silica deposition, the activated alumina needs to be periodically replaced. The second material was a commercial V2O5/TiO2-based catalyst that exhibited a high activity for the total oxidation of a broad spectrum of other harmful organic minor compounds into a simpler compound class “acid gases (HCl, HF and SO2)”, which can be easily removed by absorption with, e.g. alkalised alumina. The encouraging results obtained allow the scale-up of this LFG conditioning process to test it under real LFG conditions.

W. Urban; H. Lohmann; J.I. Salazar Gómez

2009-01-01T23:59:59.000Z

176

The Microbial Community of Landfill Soils and the Influence of Landfill Gas on Soil Recovery and Revegetation  

Science Journals Connector (OSTI)

An extensive database for soil microbiological and physicochemical conditions has been established from samples taken from restored landfill sites in South East England. The sites...

Sharon D. Wigfull; Paul Birch

1990-01-01T23:59:59.000Z

177

Sources of biogenic methane to form marine gas hydrates: In situ production or upward migration?  

SciTech Connect (OSTI)

Potential sources of biogenic methane in the Carolina Continental Rise -- Blake Ridge sediments have been examined. Two models were used to estimate the potential for biogenic methane production: (1) construction of sedimentary organic carbon budgets, and (2) depth extrapolation of modern microbial production rates. While closed-system estimates predict some gas hydrate formation, it is unlikely that >3% of the sediment volume could be filled by hydrate from methane produced in situ. Formation of greater amounts requires migration of methane from the underlying continental rise sediment prism. Methane may be recycled from below the base of the gas hydrate stability zone by gas hydrate decomposition, upward migration of the methane gas, and recrystallization of gas hydrate within the overlying stability zone. Methane bubbles may also form in the sediment column below the depth of gas hydrate stability because the methane saturation concentration of the pore fluids decreases with increasing depth. Upward migration of methane bubbles from these deeper sediments can add methane to the hydrate stability zone. From these models it appears that recycling and upward migration of methane is essential in forming significant gas hydrate concentrations. In addition, the depth distribution profiles of methane hydrate will differ if the majority of the methane has migrated upward rather than having been produced in situ.

Paull, C.K.; Ussler, W. III; Borowski, W.S.

1993-09-01T23:59:59.000Z

178

Reduction of titania by methane-hydrogen-argon gas mixture  

SciTech Connect (OSTI)

Reduction of titania using methane-containing gas was investigated in a laboratory fixed-bed reactor in the temperature range 1,373 to 1,773 K. The reduction production product is titanium oxycarbide, which is a solid solution of TiC and TiO. At 1,373 K, the formation rate of TiC is very slow. The rate and extent of reaction increase with increasing temperature to 1,723 K. A further increase in temperature to 1,773 K does not affect the reaction rate and extent. An increase in methane concentration to 8 vol pct favors the reduction process. A further increase in methane concentration above 8 vol pct causes excessive carbon deposition, which has a negative effect on the reaction rate. Hydrogen partial pressure should be maintained above 35 vol pct to depress the cracking of methane. Addition of water vapor to the reducing gas strongly retards the reduction reaction, even at low concentrations of 1 to 2 vol pct. Carbon monoxide also depresses the reduction process, but its effect is significant only at higher concentrations, above 10 vol pct.

Zhang, G.; Ostrovski, O.

2000-02-01T23:59:59.000Z

179

Instrumentation for the Measurement of Landfill Gas Emissions  

Science Journals Connector (OSTI)

Where problems of gas emission are suspected, the reliable detection and measurement of the gas is essential if solutions to the problem are to be designed, constructed and monitored for their effectiveness. T...

D. Crowhurst

1988-01-01T23:59:59.000Z

180

Mechanics of biocell landfill settlements.  

E-Print Network [OSTI]

??Prediction of landfill gas generation and settlements are of concerns in design and maintenance of biocell landfills. Accurate settlement prediction is essential for design of… (more)

Hettiarachchi, Chamil Hiroshan

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "landfill gas methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

The reduction of greenhouse gas emissions using various thermal systems in a landfill site  

Science Journals Connector (OSTI)

In this paper, the Greenhouse Gas (GHG) emissions from an uncontrolled landfill site filled with Municipal Solid Waste (MSW) are compared with those from controlled sites in which collected Landfill Gases (LFG) are utilised by various technologies. These technologies include flaring, conventional electricity generation technologies such as Internal Combustion Engine (ICE) and Gas Turbine (GT) and an emerging technology, Solid Oxide Fuel Cell (SOFC). The results show that SOFC is the best option for reducing the GHG emissions among the studied technologies. In the case when SOFC is used, GHG emissions from the controlled site are reduced by 63% compared to the uncontrolled site. This case has a specific lifetime GHG emission of 2.38 tonnes CO2 .eq/MWh when only electricity is produced and 1.12 tonnes CO2.eq/MWh for a cogeneration application.

C. Ozgur Colpan; Ibrahim Dincer; Feridun Hamdullahpur

2009-01-01T23:59:59.000Z

182

Global atmospheric methane: budget, changes and dangers  

Science Journals Connector (OSTI)

...contribute emissions to an air...larger. Reducing emissions from many...emissions related to economic...climate|greenhouse gas mitigation...Prospects for reducing emissions Methane is...reductions in greenhouse warming...agriculture, energy sectors...oil and gas) and landfills...

2011-01-01T23:59:59.000Z

183

NETL: Methane Hydrates - DOE/NETL Projects - Advanced Gas Hydrate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Comparative Assessment of Advanced Gas Hydrate Production Methods Last Reviewed 09/23/2009 Comparative Assessment of Advanced Gas Hydrate Production Methods Last Reviewed 09/23/2009 DE-FC26-06NT42666 Goal The goal of this project is to compare and contrast, through numerical simulation, conventional and innovative approaches for producing methane from gas hydrate-bearing geologic reservoirs. Numerical simulation is being used to assess the production of natural gas hydrates from geologic deposits using three production technologies: 1) depressurization, 2) direct CO2 exchange, and 3) dissociation-reformation CO2 exchange. Performers Battelle Pacific Northwest Division, Richland, Washington 99352 Background There are relatively few published studies of commercial production methods for gas hydrates, and all of these studies have examined essentially

184

Optimal(Estimation(of(North(American(Methane( Emissions(using(GOSAT(data:(  

E-Print Network [OSTI]

Optimal(Estimation(of(North(American(Methane( Emissions(using(GOSAT(data:( A&Sciences&Division,&Lawrence&Berkeley&National&Laboratory,&Berkeley,&CA,&USA.! *aturner@fas.harvard.edu& Harvard(University( #12;Prior Methane Emissions from EDGARv4.2/Kaplan Major/Gas Waste Coal 0 5 10 15 20 Wetlands Livestock Oil/Gas Landfills Coal North America Global #12;Satellites

Jacob, Daniel J.

185

Municipal solid waste degradation and landfill gas resources characteristics in self-recirculating sequencing batch bioreactor landfill  

Science Journals Connector (OSTI)

Based on the degradation characteristics of municipal solid waste (MSW) in China, the traditional anaerobic sequencing batch bioreactor landfill (ASBRL) was optimized, and an improved anaerobic sequencing batch b...

Xiao-zhi Zhou ???; Shu-xun Sang ???; Li-wen Cao ???

2012-12-01T23:59:59.000Z

186

Catalyst for the methanation of carbon monoxide in sour gas  

DOE Patents [OSTI]

The invention involves the synergistic effect of the specific catalytic constituents on a specific series of carriers for the methanation of carbon monoxide in the presence of sulfur at relatively high temperatures and at low steam to gas ratios in the range of 0.2:1 or less. This effect was obtained with catalysts comprising the mixed sulfides and oxides of nickel and chromium supported on carriers comprising magnesium aluminate and magnesium silicate. Conversion of carbon monoxide to methane was in the range of from 40 to 80%. Tests of this combination of metal oxides and sulfides on other carriers and tests of other metal oxides and sulfides on the same carrier produced a much lower level of conversion.

Kustes, William A. (Louisville, KY); Hausberger, Arthur L. (Louisville, KY)

1985-01-01T23:59:59.000Z

187

High temperature gas cooled reactor steam-methane reformer design  

SciTech Connect (OSTI)

The concept of the long distance transportation of process heat energy from a High Temperature Gas Cooled Reactor (HTGR) heat source, based on the steam-methane reforming reaction, is being evaluated by the Department of Energy as an energy source/application for use early in the 21st century. This paper summaries the design of a helium heated steam reformer utilized in conjunction with an intermediate loop, 850/degree/C reactor outlet temperature, HTGR process heat plant concept. This paper also discusses various design considerations leading to the mechanical design features, the thermochemical performance, the materials selection and the structural design analysis. 12 refs.

Impellezzeri, J.R.; Drendel, D.B.; Odegaard, T.K.

1981-01-01T23:59:59.000Z

188

Adsorption characteristics of siloxanes in landfill gas by the adsorption equilibrium test  

SciTech Connect (OSTI)

Highlights: • Equilibrium test was attempted to evaluate adsorption characteristics of siloxane. • L2 had higher removal efficiency in carbon compared to noncarbon adsorbents. • Total adsorption capacity of siloxane was 300 mg/g by coal activated carbon. • Adsorption characteristics rely on size of siloxane molecule and adsorbent pore. • Conversion of siloxane was caused by adsorption of noncarbon adsorbents. - Abstract: Due to the increase in energy cost by constantly high oil prices and the obligation to reduce greenhouse effect gases, landfill gas is frequently used as an alternative energy source for producing heat and electricity. Most of landfill gas utility facilities, however, are experiencing problems controlling siloxanes from landfill gas as their catalytic oxidizers are becoming fouled by silicon dioxide dust. To evaluate adsorption characteristics of siloxanes, an adsorption equilibrium test was conducted and parameters in the Freundlich and Langmuir isotherms were analyzed. Coconut activated carbon (CA1), coal activated carbon (CA2), impregnated activated carbon (CA3), silicagel (NCA1), and activated alumina (NCA2) were used for the adsorption of the mixed siloxane which contained hexamethyldisiloxane (L2), octamethylcyclotetrasiloxane (D4), and decamethylcyclopentasiloxane (D5). L2 had higher removal efficiency in noncarbon adsorbents compared to carbon adsorbents. The application of Langmuir and Freundlich adsorption isotherm demonstrated that coconut based CA1 and CA3 provided higher adsorption capacity on L2. And CA2 and NCA1 provided higher adsorption capacity on D4 and D5. Based on the experimental results, L2, D4, and D5 were converted by adsorption and desorption in noncarbon adsorbents. Adsorption affinity of siloxane is considered to be affect by the pore size distribution of the adsorbents and by the molecular size of each siloxane.

Nam, Sangchul; Namkoong, Wan [Department of Environmental Engineering, Konkuk University, Hwayang-Dong, Gwangjin-Gu, Seoul 143-701 (Korea, Republic of); Kang, Jeong-Hee; Park, Jin-Kyu [Department of Environmental Engineering, Anyang University, Anyang 5-Dong, Manan-Gu, Anyang-Si, Gyeonggi-Do 430-714 (Korea, Republic of); Lee, Namhoon, E-mail: nhlee@anyang.ac.kr [Department of Environmental Engineering, Anyang University, Anyang 5-Dong, Manan-Gu, Anyang-Si, Gyeonggi-Do 430-714 (Korea, Republic of)

2013-10-15T23:59:59.000Z

189

Renewable LNG: Update on the World's Largest Landfill Gas to LNG Plant  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LNG LNG Update on the world's largest landfill gas to LNG plant Mike McGowan Head of Government Affairs Linde NA, Inc. June 12, 2012 $18.3 billion global sales A leading gases and engineering company Linde North America Profile $2.3 billion in gases sales revenue in North America in 2011 5,000 employees throughout the U.S., Canada and the Caribbean Supplier of compressed and cryogenic gases and technology Atmospheric gases - oxygen, nitrogen, argon Helium LNG and LPG Hydrogen Rare gases Plant engineering and supply LNG Petrochemicals Natural gas processing Atmospheric gases 3 Linde's alternative fuels portfolio Green hydrogen production - Magog, Quebec Renewable liquefied natural gas production - Altamont, CA Biogas fueling, LNG import terminal - Sweden

190

domestic refuse landfill  

Science Journals Connector (OSTI)

domestic refuse landfill, domestic waste landfill, house waste landfill, house refuse landfill ? Hausmüllaufschüttung f

2014-08-01T23:59:59.000Z

191

Influence of Landfill Gas on the Microdistribution of Grass Establishment Through Natural Colonization  

Science Journals Connector (OSTI)

Many revegetated landfills have poor cover including bare areas where plants do not grow. This study, on the Bisasar Road Landfill site in South Africa, assessed grass species preferences to microhabitat condi...

Douglas H. Trotter; John A. Cooke

2005-03-01T23:59:59.000Z

192

Marine gas hydrates in thin sand layers that soak up microbial methane  

Science Journals Connector (OSTI)

At Site U1325 (IODP Exp. 311, Cascadia margin), gas hydrates occupy 20–60% of pore space in thin sand layers (hydrate. This is a common occurrence in gas hydrate-bearing marine sequences, and it has been related to the inhibition of hydrate formation in the small pores of fine-grained sediments. This paper applies a mass balance model to gas hydrate formation in a stack of alternating fine- and coarse-grained sediment layers. The only source of methane considered is in situ microbial conversion of a small amount of organic carbon (gas hydrates in the fine-grained layers. Methane generated in these layers is transported by diffusion into the coarse-grained layers where it forms concentrated gas hydrate deposits. The vertical distribution and amount of gas hydrate observed at Site U1325 can be explained by in situ microbial methane generation, and a deep methane source is not necessary.

Alberto Malinverno

2010-01-01T23:59:59.000Z

193

LANDFILL GAS CONVERSION TO LNG AND LCO{sub 2}. PHASE 1, FINAL REPORT FOR THE PERIOD MARCH 1998-FEBRUARY 1999  

SciTech Connect (OSTI)

Process designs and economics were developed to produce LNG and liquid carbon dioxide (CO{sub 2}) from landfill gas (LFG) using the Acrion CO{sub 2} wash process. The patented Acrion CO{sub 2} wash process uses liquid CO{sub 2} to absorb contaminants from the LFG. The process steps are compression, drying, CO{sub 2} wash contaminant removal and CO{sub 2} recovery, residual CO{sub 2} removal and methane liquefaction. Three flowsheets were developed using different residual CO{sub 2} removal schemes. These included physical solvent absorption (methanol), membranes and molecular sieves. The capital and operating costs of the flowsheets were very similar. The LNG production cost was around ten cents per gallon. In parallel with process flowsheet development, the business aspects of an eventual commercial project have been explored. The process was found to have significant potential commercial application. The business plan effort investigated the economics of LNG transportation, fueling, vehicle conversion, and markets. The commercial value of liquid CO{sub 2} was also investigated. This Phase 1 work, March 1998 through February 1999, was funded under Brookhaven National laboratory contract 725089 under the research program entitled ``Liquefied Natural Gas as a Heavy Vehicle Fuel.'' The Phase 2 effort will develop flowsheets for the following: (1) CO{sub 2} and pipeline gas production, with the pipeline methane being liquefied at a peak shaving site, (2) sewage digester gas as an alternate feedstock to LFG and (3) the use of mixed refrigerants for process cooling. Phase 2 will also study the modification of Acrion's process demonstration unit for the production of LNG and a market site for LNG production.

COOK,W.J.; NEYMAN,M.; SIWAJEK,L.A.; BROWN,W.R.; VAN HAUWAERT,P.M.; CURREN,E.D.

1998-02-25T23:59:59.000Z

194

Landfill gas cleanup for carbonate fuel cell power generation. CRADA final report  

SciTech Connect (OSTI)

The overall objective of the work reported here was to evaluate the extent to which conventional contaminant removal processes could be combined to economically reduce contaminant levels to the specifications for carbonate fuel cells. The technical effort was conducted by EPRI, consultant David Thimsen, Kaltec of Minnesota, Energy Research Corporation (ERC) and Interpoll Laboratories. The Electric Power Research Institute (EPRI) made available two test skids originally used to test an ERC 30 kW carbonate fuel cell at the Destec Coal Gasification Plan in Plaquemine, LA. EPRI`s carbonate fuel cell pilot plant was installed at the Anoka County Regional Landfill in Ramsey, Minnesota. Additional gas cleaning equipment was installed to evaluate a potentially inexpensive, multi-stage gas cleaning process to remove sulfur and chlorine in the gas to levels acceptable for long-term, economical carbonate fuel cell operation. The pilot plant cleaned approximately 970,000 scf (27,500 Nm{sup 3}) of gas over 1,000 hours of operation. The testing showed that the process could achieve the following polished gas concentrations. Less than 80 ppbv hydrogen sulfide; less than 1 ppmv (the detection limit) organic sulfur; less than 300 ppbv hydrogen chloride; less than 20--80 ppbv of any individual chlorined hydrocarbon; and 1.5 ppm sulfur dioxide. These were the detection limits of the analytical procedures employed. It is probable that the actual concentrations are below these analytical limits.

Steinfeld, G.; Sanderson, R.

1998-02-01T23:59:59.000Z

195

(sanitary) landfill  

Science Journals Connector (OSTI)

(sanitary) landfill, landfill(ed) site, refuse dump, garbage dump...Landfills may often release a toxic soup of...] ? Abfalldeponie f [Zur Endlagerung von Abfallstoffen oder von Industrieprodukten al...

2014-08-01T23:59:59.000Z

196

Calcite precipitation in landfills: an essential product of waste stabilization  

Science Journals Connector (OSTI)

...and carbon dioxide observed for landfill gas do not reflect the amount of bicarbonate...reactions within the waste) and landfill gas. Both of these are potentially...Brief summaries of leachate and landfill gas compositions and their evolution...

D. A. C. Manning

197

Chlorofluorocarbons as tracers of landfill leachate in surface and groundwater  

Science Journals Connector (OSTI)

...considerably lower concentrations in landfill gas. CFCs and CCl4 in leachate may...all groundwater, leachate and landfill gas samples were taken on 6 April 2004...at the central site facility. Landfill gas was sampled by attaching a thick...

A. E. Foley; T. C. Atkinson; Y. Zhao

198

Experimental Research on Low-Temperature Methane Steam Reforming Technology in a Chemically Recuperated Gas Turbine  

Science Journals Connector (OSTI)

Under the operating parameters of a chemically recuperated gas turbine (CRGT), the low-temperature methane steam reforming test bench is designed and built; systematic experimental studies about fuel steam reforming are conducted. Four different reforming ...

Qian Liu; Hongtao Zheng

2014-09-24T23:59:59.000Z

199

Quantum-cascade laser photoacoustic detection of methane emitted from natural gas powered engines  

Science Journals Connector (OSTI)

In this work we present a laser photoacoustic arrangement for the detection of the important greenhouse gas methane. A quantum-cascade laser and a differential photoacoustic cell were ... tested in the detection ...

M. V. Rocha; M. S. Sthel; M. G. Silva; L. B. Paiva; F. W. Pinheiro…

2012-03-01T23:59:59.000Z

200

Methane adsorption comparison of different thermal maturity kerogens in shale gas system  

Science Journals Connector (OSTI)

To determine the effect of thermal maturity on the methane sorption in shale gas system, two different thermal maturity kerogens of type II isolated from Barnett shale of Fort Worth Basin were used to...

Haiyan Hu

2014-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "landfill gas methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

NETL: Methane Hydrates - DOE/NETL Projects - Natural Gas Hydrates in  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The National Methane Hydrates R&D Program The National Methane Hydrates R&D Program DOE/NETL Methane Hydrate Projects Natural Gas Hydrates in Permafrost and Marine Settings: Resources, Properties, and Environmental Issues Last Reviewed 12/30/2013 DE-FE0002911 Goal The objective of this DOE-USGS Interagency Agreement is to provide world-class expertise and research in support of the goals of the 2005 Energy Act for National Methane Hydrates R&D, the DOE-led U.S. interagency roadmap for gas hydrates research, and elements of the USGS mission related to energy resources, global climate, and geohazards. This project extends USGS support to the DOE Methane Hydrate R&D Program previously conducted under DE-AI26-05NT42496. Performer U.S. Geological Survey at Woods Hole, MA, Denver, CO, and Menlo Park, CA

202

Contribution of oceanic gas hydrate dissociation to the formation of Arctic Ocean methane plumes  

SciTech Connect (OSTI)

Vast quantities of methane are trapped in oceanic hydrate deposits, and there is concern that a rise in the ocean temperature will induce dissociation of these hydrate accumulations, potentially releasing large amounts of carbon into the atmosphere. Because methane is a powerful greenhouse gas, such a release could have dramatic climatic consequences. The recent discovery of active methane gas venting along the landward limit of the gas hydrate stability zone (GHSZ) on the shallow continental slope (150 m - 400 m) west of Svalbard suggests that this process may already have begun, but the source of the methane has not yet been determined. This study performs 2-D simulations of hydrate dissociation in conditions representative of the Arctic Ocean margin to assess whether such hydrates could contribute to the observed gas release. The results show that shallow, low-saturation hydrate deposits, if subjected to recently observed or future predicted temperature changes at the seafloor, can release quantities of methane at the magnitudes similar to what has been observed, and that the releases will be localized near the landward limit of the GHSZ. Both gradual and rapid warming is simulated, along with a parametric sensitivity analysis, and localized gas release is observed for most of the cases. These results resemble the recently published observations and strongly suggest that hydrate dissociation and methane release as a result of climate change may be a real phenomenon, that it could occur on decadal timescales, and that it already may be occurring.

Reagan, M.; Moridis, G.; Elliott, S.; Maltrud, M.

2011-06-01T23:59:59.000Z

203

Consumption of Methane and CO2 by Methanotrophic Microbial Mats from Gas Seeps of the Anoxic Black Sea  

Science Journals Connector (OSTI)

...Consumption of Methane and CO2 by Methanotrophic Microbial Mats from Gas Seeps of the Anoxic...Black Sea has numerous gas seeps, which are...patterns of CH4 and CO2 assimilation in relation...Consumption of methane and CO2 by methanotrophic microbial mats from gas seeps of the anoxic...

Tina Treude; Victoria Orphan; Katrin Knittel; Armin Gieseke; Christopher H. House; Antje Boetius

2007-02-02T23:59:59.000Z

204

Department of Earth Sciences www.rhul.ac.uk/earthsciences Page 1 of 2 Fugitive Methane Emissions in the UK and their Impacts on the Urban  

E-Print Network [OSTI]

Department of Earth Sciences www.rhul.ac.uk/earthsciences Page 1 of 2 Fugitive Methane Emissions James France, Prof Euan Nisbet Project Description: Methane is the second most important greenhouse gas amounts from vehicles, with emissions from landfills, ruminants and in some areas, coal mines

Sheldon, Nathan D.

205

Airborne observations of methane emissions from rice cultivation in the Sacramento Valley of California  

E-Print Network [OSTI]

, the California Air Resources Board (CARB) greenhouse gas inventory emission rate of 2.7 Ã? 1010 g CH4/yr is not accounted for in the CARB inventory. Citation: Peischl, J., et al. (2012), Airborne observations of methane California, which include livestock, landfills, wastewater treatment, oil and gas drilling and distribution

Cohen, Ronald C.

206

Methane-to-Methanol Conversion by Gas-Phase Transition Metal Oxide Cations: Experiment and Theory  

E-Print Network [OSTI]

Methane-to-Methanol Conversion by Gas-Phase Transition Metal Oxide Cations: Experiment and Theory Ricardo B. Metz Department of Chemistry, University of Massachusetts, Amherst, MA 01003 USA Abstract Gas such as methanol has attracted great experimental and theoretical interest due to its importance as an industrial

Metz, Ricardo B.

207

Estimation of methane flux offshore SW Taiwan and the influence of tectonics on gas hydrate accumulation  

E-Print Network [OSTI]

Estimation of methane flux offshore SW Taiwan and the influence of tectonics on gas hydrate simulating reflectors (BSRs) imply the potential existence of gas hydrates offshore southwestern Taiwan that the fluxes are very high in offshore southwestern Taiwan. The depths of the SMI are different at sites GH6

Lin, Andrew Tien-Shun

208

Gas-lift technology applied to dewatering of coalbed methane wells in the black warrior basin  

SciTech Connect (OSTI)

Coalbed methane (CBM) wells are usually dewatered with sucker rod or progressive cavity pumps to reduce wellbore water levels, although not without problems. This paper describes high-volume artificial-lift technology that incorporates specifically designed gas-lift methods to dewater Black Warrior CBM wells. Gas lift provides improved well maintenance and production optimization by the use of conventional wireline service methods.

Johnson, K.J.; Coats, A. (Otis Engineering Corp., Dallas, TX (United States)); Marinello, S.A. (Colorado School of Mines, Golden, CO (United States))

1992-11-01T23:59:59.000Z

209

slag landfill  

Science Journals Connector (OSTI)

slag landfill [Context: the impacts of Cu 2+ emissions from the slag landfill to the groundwater were assessed to be...] ? Schlackendeponie f ...

2014-08-01T23:59:59.000Z

210

Modeling of Oceanic Gas Hydrate Instability and Methane Release in Response to Climate Change  

SciTech Connect (OSTI)

Paleooceanographic evidence has been used to postulate that methane from oceanic hydrates may have had a significant role in regulating global climate, implicating global oceanic deposits of methane gas hydrate as the main culprit in instances of rapid climate change that have occurred in the past. However, the behavior of contemporary oceanic methane hydrate deposits subjected to rapid temperature changes, like those predicted under future climate change scenarios, is poorly understood. To determine the fate of the carbon stored in these hydrates, we performed simulations of oceanic gas hydrate accumulations subjected to temperature changes at the seafloor and assessed the potential for methane release into the ocean. Our modeling analysis considered the properties of benthic sediments, the saturation and distribution of the hydrates, the ocean depth, the initial seafloor temperature, and for the first time, estimated the effect of benthic biogeochemical activity. The results show that shallow deposits--such as those found in arctic regions or in the Gulf of Mexico--can undergo rapid dissociation and produce significant methane fluxes of 2 to 13 mol/yr/m{sup 2} over a period of decades, and release up to 1,100 mol of methane per m{sup 2} of seafloor in a century. These fluxes may exceed the ability of the seafloor environment (via anaerobic oxidation of methane) to consume the released methane or sequester the carbon. These results will provide a source term to regional or global climate models in order to assess the coupling of gas hydrate deposits to changes in the global climate.

Reagan, Matthew; Reagan, Matthew T.; Moridis, George J.

2008-04-15T23:59:59.000Z

211

Using Carbon Dioxide to Enhance Recovery of Methane from Gas Hydrate Reservoirs: Final Summary Report  

SciTech Connect (OSTI)

Carbon dioxide sequestration coupled with hydrocarbon resource recovery is often economically attractive. Use of CO2 for enhanced recovery of oil, conventional natural gas, and coal-bed methane are in various stages of common practice. In this report, we discuss a new technique utilizing CO2 for enhanced recovery of an unconventional but potentially very important source of natural gas, gas hydrate. We have focused our attention on the Alaska North Slope where approximately 640 Tcf of natural gas reserves in the form of gas hydrate have been identified. Alaska is also unique in that potential future CO2 sources are nearby, and petroleum infrastructure exists or is being planned that could bring the produced gas to market or for use locally. The EGHR (Enhanced Gas Hydrate Recovery) concept takes advantage of the physical and thermodynamic properties of mixtures in the H2O-CO2 system combined with controlled multiphase flow, heat, and mass transport processes in hydrate-bearing porous media. A chemical-free method is used to deliver a LCO2-Lw microemulsion into the gas hydrate bearing porous medium. The microemulsion is injected at a temperature higher than the stability point of methane hydrate, which upon contacting the methane hydrate decomposes its crystalline lattice and releases the enclathrated gas. Small scale column experiments show injection of the emulsion into a CH4 hydrate rich sand results in the release of CH4 gas and the formation of CO2 hydrate

McGrail, B. Peter; Schaef, Herbert T.; White, Mark D.; Zhu, Tao; Kulkarni, Abhijeet S.; Hunter, Robert B.; Patil, Shirish L.; Owen, Antionette T.; Martin, P F.

2007-09-01T23:59:59.000Z

212

Engineering Methane is a major component of shale gas. Recent  

E-Print Network [OSTI]

-added chemicals, (ii) efficient electricity generation through fuel cells, and (iii) methane storage for vehicles), and electrochemical oxidation of CH4 in the solid oxide fuel cell (SOFC). In situ IR studies revealed that adsorbed-based catalysts involved decomposition of CH4 to surface carbon/coke and adsorbed hydrogen, followed

213

Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas  

Science Journals Connector (OSTI)

Vertically aligned carbon nanotube (CNT) layers were synthesized on Fe-coated low-cost alumina substrates using radio-frequency plasma enhanced chemical vapour deposition (RF-PECVD) technology. A miniaturized CNT-based gas sensor array was developed for monitoring landfill gas (LFG) at a temperature of 150??C. The sensor array was composed of 4 sensing elements with unmodified CNT, and CNT loaded with 5?nm nominally thick sputtered nanoclusters of platinum (Pt), ruthenium (Ru) and silver (Ag). Chemical analysis of multicomponent gas mixtures constituted of CO2, CH4, H2, NH3, CO and NO2 has been performed by the array sensor responses and pattern recognition based on principal component analysis (PCA). The PCA results demonstrate that the metal-decorated and vertically aligned CNT sensor array is able to discriminate the NO2 presence in the multicomponent mixture LFG. The NO2 gas detection in the mixture LFG was proved to be very sensitive, e.g.: the CNT:Ru sensor shows a relative change in the resistance of 1.50% and 0.55% for NO2 concentrations of 3.3?ppm and 330?ppb dispersed in the LFG, respectively, with a wide NO2 gas concentration range measured from 0.33 to 3.3?ppm, at the sensor temperature of 150??C. The morphology and structure of the CNT networks have been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. A forest-like nanostructure of vertically aligned CNT bundles in the multi-walled form appeared with a height of about 10 ?m and a single-tube diameter varying in the range of 5?35?nm. The intensity ratio of the Raman spectroscopy D-peak and G-peak indicates the presence of disorder and defects in the CNT networks. The size of the metal (Pt, Ru, Ag) nanoclusters decorating the CNT top surface varies in the range of 5?50?nm. Functional characterization based on electrical charge transfer sensing mechanisms in the metal-modified CNT-chemoresistor array demonstrates high sensitivity by providing minimal sub-ppm level detection, e.g., download up to 100?ppb NO2, at the sensor temperature of 150??C. The gas sensitivity of the CNT sensor array depends on operating temperature, showing a lower optimal temperature of maximum sensitivity for the metal-decorated CNT sensors compared to unmodified CNT sensors. Results indicate that the recovery mechanisms in the CNT chemiresistors can be altered by a rapid heating pulse from room temperature to about 110??C. A comparison of the NO2 gas sensitivity for the chemiresistors based on disorderly networked CNTs and vertically aligned CNTs is also reported. Cross-sensitivity towards relative humidity of the CNT sensors array is investigated. Finally, the sensing properties of the metal-decorated and vertically aligned CNT sensor arrays are promising to monitor gas events in the LFG for practical applications with low power consumption and moderate sensor temperature.

M Penza; R Rossi; M Alvisi; E Serra

2010-01-01T23:59:59.000Z

214

Functionally gradient material for membrane reactors to convert methane gas into value-added products  

DOE Patents [OSTI]

A functionally gradient material for a membrane reactor for converting methane gas into value-added-products includes an outer tube of perovskite, which contacts air; an inner tube which contacts methane gas, of zirconium oxide, and a bonding layer between the perovskite and zirconium oxide layers. The bonding layer has one or more layers of a mixture of perovskite and zirconium oxide, with the layers transitioning from an excess of perovskite to an excess of zirconium oxide. The transition layers match thermal expansion coefficients and other physical properties between the two different materials. 7 figs.

Balachandran, U.; Dusek, J.T.; Kleefisch, M.S.; Kobylinski, T.P.

1996-11-12T23:59:59.000Z

215

Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop  

Broader source: Energy.gov [DOE]

The Advanced Manufacturing Office (AMO) at the U.S. Department of Energy (DOE)’s Office of Energy Efficiency and Renewable Energy and the Office of Fossil Energy (FE) hosted a workshop, November 12-13, 2014, in Coraopolis, Pennsylvania, as a follow-up to the President’s Climate Action Plan and the DOE meeting series on reducing methane emissions from natural gas pipeline systems. The workshop is part of the larger Administration Strategy to Reduce Methane Emissions associated with natural gas transmission and distribution infrastructure.

216

Functionally gradient material for membrane reactors to convert methane gas into value-added products  

DOE Patents [OSTI]

A functionally gradient material for a membrane reactor for converting methane gas into value-added-products includes an outer tube of perovskite, which contacts air; an inner tube which contacts methane gas, of zirconium oxide, and a bonding layer between the perovskite and zirconium oxide layers. The bonding layer has one or more layers of a mixture of perovskite and zirconium oxide, with the layers transitioning from an excess of perovskite to an excess of zirconium oxide. The transition layers match thermal expansion coefficients and other physical properties between the two different materials.

Balachandran, Uthamalingam (Hinsdale, IL); Dusek, Joseph T. (Lombard, IL); Kleefisch, Mark S. (Napersville, IL); Kobylinski, Thadeus P. (Lisle, IL)

1996-01-01T23:59:59.000Z

217

Evaluation of landfill gas production and emissions in a MSW large-scale Experimental Cell in Brazil  

Science Journals Connector (OSTI)

Landfill gas (LFG) emissions from municipal solid waste (MSW) landfills are an important environmental concern in Brazil due to the existence of several uncontrolled disposal sites. A program of laboratory and field tests was conducted to investigate gas generation in and emission from an Experimental Cell with a 36,659-ton capacity in Recife/PE – Brazil. This investigation involved waste characterisation, gas production and emission monitoring, and geotechnical and biological evaluations and was performed using three types of final cover layers. The results obtained in this study showed that waste decomposes 4–5 times faster in a tropical wet climate than predicted by traditional first-order models using default parameters. This fact must be included when considering the techniques and economics of projects developed in tropical climate countries. The design of the final cover layer and its geotechnical and biological behaviour proved to have an important role in minimising gas emissions to the atmosphere. Capillary and methanotrophic final cover layers presented lower CH4 flux rates than the conventional layer.

Felipe Jucá Maciel; José Fernando Thomé Jucá

2011-01-01T23:59:59.000Z

218

Greater focus needed on methane leakage from natural gas infrastructure  

Science Journals Connector (OSTI)

...benefits of natural gas fuel-technology pathways. Significant progress appears possible given...leakage in the natural gas system (EPA reports a range of-19% to...factor for stationary gas turbines of 110 lbMMBtu [AP-42...

Ramón A. Alvarez; Stephen W. Pacala; James J. Winebrake; William L. Chameides; Steven P. Hamburg

2012-01-01T23:59:59.000Z

219

Natural Gas Infrastructure R&D and Methane Emissions Mitigation...  

Energy Savers [EERE]

November 12-13, 2014 DOE's Natural Gas Modernization Initiative Christopher Freitas, Program Manager, Natural Gas Midstream Infrastructure R&D, Office of Oil and Natural Gas, U.S....

220

A Path to Reduce Methane Emissions from Gas Systems | Department...  

Broader source: Energy.gov (indexed) [DOE]

Ernest Moniz Secretary of Energy The United States is now the world's largest producer of natural gas. This natural gas revolution is driving economic growth across the country,...

Note: This page contains sample records for the topic "landfill gas methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Demonstration projects for coalbed methane and Devonian shale gas: Final report. [None  

SciTech Connect (OSTI)

In 1979, the US Department of Energy provided the American Public Gas Association (APGA) with a grant to demonstrate the feasibility of bringing unconventional gas such as methane produced from coalbeds or Devonian Shale directly into publicly owned utility system distribution lines. In conjunction with this grant, a seven-year program was initiated where a total of sixteen wells were drilled for the purpose of providing this untapped resource to communities who distribute natural gas. While coalbed degasification ahead of coal mining was already a reality in several parts of the country, the APGA demonstration program was aimed at actual consumer use of the gas. Emphasis was therefore placed on degasification of coals with high methane gas content and on utilization of conventional oil field techniques. 13 figs.

Verrips, A.M.; Gustavson, J.B.

1987-04-01T23:59:59.000Z

222

Analysis and Methane Gas Separations Studies for City of Marsing, Idaho An Idaho National Laboratory Technical Assistance Program Study  

SciTech Connect (OSTI)

Introduction and Background Large amounts of methane in well water is a wide spread problem in North America. Methane gas from decaying biomass and oil and gas deposits escape into water wells typically through cracks or faults in otherwise non-porous rock strata producing saturated water systems. This methane saturated water can pose several problems in the delivery of drinking water. The problems range from pumps vapor locking (cavitating), to pump houses exploding. The City of Marsing requested Idaho National Laboratory (INL) to assist with some water analyses as well as to provide some engineering approaches to methane capture through the INL Technical Assistance Program (TAP). There are several engineering approaches to the removal of methane and natural gas from water sources that include gas stripping followed by compression and/or dehydration; membrane gas separators coupled with dehydration processes, membrane water contactors with dehydration processes.

Christopher Orme

2012-08-01T23:59:59.000Z

223

Well-to-Wheels analysis of landfill gas-based pathways and their addition to the GREET model.  

SciTech Connect (OSTI)

Today, approximately 300 million standard cubic ft/day (mmscfd) of natural gas and 1600 MW of electricity are produced from the decomposition of organic waste at 519 U.S. landfills (EPA 2010a). Since landfill gas (LFG) is a renewable resource, this energy is considered renewable. When used as a vehicle fuel, compressed natural gas (CNG) produced from LFG consumes up to 185,000 Btu of fossil fuel and generates from 1.5 to 18.4 kg of carbon dioxide-equivalent (CO{sub 2}e) emissions per million Btu of fuel on a 'well-to-wheel' (WTW) basis. This compares with approximately 1.1 million Btu and 78.2 kg of CO{sub 2}e per million Btu for CNG from fossil natural gas and 1.2 million Btu and 97.5 kg of CO{sub 2}e per million Btu for petroleum gasoline. Because of the additional energy required for liquefaction, LFG-based liquefied natural gas (LNG) requires more fossil fuel (222,000-227,000 Btu/million Btu WTW) and generates more GHG emissions (approximately 22 kg CO{sub 2}e /MM Btu WTW) if grid electricity is used for the liquefaction process. However, if some of the LFG is used to generate electricity for gas cleanup and liquefaction (or compression, in the case of CNG), vehicle fuel produced from LFG can have no fossil fuel input and only minimal GHG emissions (1.5-7.7 kg CO{sub 2}e /MM Btu) on a WTW basis. Thus, LFG-based natural gas can be one of the lowest GHG-emitting fuels for light- or heavy-duty vehicles. This report discusses the size and scope of biomethane resources from landfills and the pathways by which those resources can be turned into and utilized as vehicle fuel. It includes characterizations of the LFG stream and the processes used to convert low-Btu LFG into high-Btu renewable natural gas (RNG); documents the conversion efficiencies and losses of those processes, the choice of processes modeled in GREET, and other assumptions used to construct GREET pathways; and presents GREET results by pathway stage. GREET estimates of well-to-pump (WTP), pump-to-wheel (PTW), and WTW energy, fossil fuel, and GHG emissions for each LFG-based pathway are then summarized and compared with similar estimates for fossil natural gas and petroleum pathways.

Mintz, M.; Han, J.; Wang, M.; Saricks, C.; Energy Systems

2010-06-30T23:59:59.000Z

224

Byxbee Park Sanitary Landfill Biomass Facility | Open Energy...  

Open Energy Info (EERE)

Facility Facility Byxbee Park Sanitary Landfill Sector Biomass Facility Type Landfill Gas Location Santa Clara County, California Coordinates 37.2938907, -121.7195459...

225

AIRBORNE, OPTICAL REMOTE SENSNG OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION  

SciTech Connect (OSTI)

Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. The scope of the work involved designing and developing an airborne, optical remote sensor capable of sensing methane and, if possible, ethane for the detection of natural gas pipeline leaks. Flight testing using a custom dual wavelength, high power fiber amplifier was initiated in February 2005. Ophir successfully demonstrated the airborne system, showing that it was capable of discerning small amounts of methane from a simulated pipeline leak. Leak rates as low as 150 standard cubic feet per hour (scf/h) were detected by the airborne sensor.

Jerry Myers

2005-04-15T23:59:59.000Z

226

Catalytic Reduction of Nitrogen Oxides by Methane over Pd(110) S. M. Vesecky, J. Paul, and D. W. Goodman*  

E-Print Network [OSTI]

emissions.1 The subfield of environ- mental catalysis concerned with air quality control involves and stationary sources2 There are many stationary sources of environmental gas phase pollutants. Methane is perhaps the largest pollutant by volume, emitted from sources such as livestock, gas wells, and landfills

Goodman, Wayne

227

GAS METHANE HYDRATES-RESEARCH STATUS, ANNOTATED BIBLIOGRAPHY, AND ENERGY IMPLICATIONS  

SciTech Connect (OSTI)

The objective of this task as originally conceived was to compile an assessment of methane hydrate deposits in Alaska from available sources and to make a very preliminary evaluation of the technical and economic feasibility of producing methane from these deposits for remote power generation. Gas hydrates have recently become a target of increased scientific investigation both from the standpoint of their resource potential to the natural gas and oil industries and of their positive and negative implications for the global environment After we performed an extensive literature review and consulted with representatives of the U.S. Geological Survey (USGS), Canadian Geological Survey, and several oil companies, it became evident that, at the current stage of gas hydrate research, the available information on methane hydrates in Alaska does not provide sufficient grounds for reaching conclusions concerning their use for energy production. Hence, the original goals of this task could not be met, and the focus was changed to the compilation and review of published documents to serve as a baseline for possible future research at the Energy & Environmental Research Center (EERC). An extensive annotated bibliography of gas hydrate publications has been completed. The EERC will reassess its future research opportunities on methane hydrates to determine where significant initial contributions could be made within the scope of limited available resources.

James Sorensen; Jaroslav Solc; Bethany Bolles

2000-07-01T23:59:59.000Z

228

Methane Power Inc | Open Energy Information  

Open Energy Info (EERE)

Methane Power Inc Methane Power Inc Jump to: navigation, search Logo: Methane Power Inc. Name Methane Power Inc. Address 121 Edinburgh South Drive Place Cary, NC Zip 27511 Sector Renewable Energy Product Methane Power is a renewable energy project developer that focuses on landfill gas-to-energy projects. Currently, they are a supplier of landfill gas generated energy to Duke Energy in North Carolina. Phone number 919-297-7206 Website http://www.methanepower.net Coordinates 35.7395875°, -78.8029226° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.7395875,"lon":-78.8029226,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

229

Geology, reservoir engineering and methane hydrate potential of the Walakpa Gas Field, North Slope, Alaska  

SciTech Connect (OSTI)

The Walakpa Gas Field, located near the city of Barrow on Alaska's North Slope, has been proven to be methane-bearing at depths of 2000--2550 feet below sea level. The producing formation is a laterally continuous, south-dipping, Lower Cretaceous shelf sandstone. The updip extent of the reservoir has not been determined by drilling, but probably extends to at least 1900 feet below sea level. Reservoir temperatures in the updip portion of the reservoir may be low enough to allow the presence of in situ methane hydrates. Reservoir net pay however, decreases to the north. Depths to the base of permafrost in the area average 940 feet. Drilling techniques and production configuration in the Walakpa field were designed to minimize formation damage to the reservoir sandstone and to eliminate methane hydrates formed during production. Drilling development of the Walakpa field was a sequential updip and lateral stepout from a previously drilled, structurally lower confirmation well. Reservoir temperature, pressure, and gas chemistry data from the development wells confirm that they have been drilled in the free-methane portion of the reservoir. Future studies in the Walakpa field are planned to determine whether or not a component of the methane production is due to the dissociation of updip in situ hydrates.

Glenn, R.K.; Allen, W.W.

1992-12-01T23:59:59.000Z

230

Sulfur resistance of Group VIII transition metal promoted nickel catalysts for synthesis gas methanation  

E-Print Network [OSTI]

SULFUR RESISTANCE OF GROUP VIII TRANSITION METAL PROMOTED NICKEL CATALYSTS FOR SYNTHESIS GAS METHANATION A Thesis by KELLEE HALL HAMLIN Submitted to the Graduate College of Texas AgrM University in partial fulfillment of the requirement...: Aydin Akger n (Chairman of Co 'ttee) Ahme M. Gadalla (Member) Michael . Rosynek (Member) aries D. Holland . ( ead of Department) May 1986 ABSTRACT Sulfur Resistance of Group VIII Transition Metal Promoted Nickel Catalysts For Synthesis Gas...

Hamlin, Kellee Hall

2012-06-07T23:59:59.000Z

231

A Low Carbon Development Guide for Local Government Actions in China  

E-Print Network [OSTI]

commercial); percentage of landfill gas (methane) that islevel. ? Percentage of landfill gas (methane) that iscarbon emissions: landfill gas capture. Landfill gas is

Zheng, Nina

2012-01-01T23:59:59.000Z

232

Greater focus needed on methane leakage from natural gas infrastructure  

Science Journals Connector (OSTI)

...Fort Worth Natural Gas Air Quality Study...Fort Worth Natural Gas Air Quality Study...of SO2 from coal-fired power plants in the United...the U.S. natural gas industry. Chemosphere...SNG for Electricity Generation. Environ Sci Technol...

Ramón A. Alvarez; Stephen W. Pacala; James J. Winebrake; William L. Chameides; Steven P. Hamburg

2012-01-01T23:59:59.000Z

233

UNDERSTANDING METHANE EMISSIONS SOURCES AND VIABLE MITIGATION MEASURES IN THE NATURAL GAS TRANSMISSION SYSTEMS: RUSSIAN AND U.S. EXPERIENCE  

SciTech Connect (OSTI)

This article will compare the natural gas transmission systems in the U.S. and Russia and review experience with methane mitigation technologies in the two countries. Russia and the United States (U.S.) are the world's largest consumers and producers of natural gas, and consequently, have some of the largest natural gas infrastructure. This paper compares the natural gas transmission systems in Russia and the U.S., their methane emissions and experiences in implementing methane mitigation technologies. Given the scale of the two systems, many international oil and natural gas companies have expressed interest in better understanding the methane emission volumes and trends as well as the methane mitigation options. This paper compares the two transmission systems and documents experiences in Russia and the U.S. in implementing technologies and programs for methane mitigation. The systems are inherently different. For instance, while the U.S. natural gas transmission system is represented by many companies, which operate pipelines with various characteristics, in Russia predominately one company, Gazprom, operates the gas transmission system. However, companies in both countries found that reducing methane emissions can be feasible and profitable. Examples of technologies in use include replacing wet seals with dry seals, implementing Directed Inspection and Maintenance (DI&M) programs, performing pipeline pump-down, applying composite wrap for non-leaking pipeline defects and installing low-bleed pneumatics. The research methodology for this paper involved a review of information on methane emissions trends and mitigation measures, analytical and statistical data collection; accumulation and analysis of operational data on compressor seals and other emission sources; and analysis of technologies used in both countries to mitigate methane emissions in the transmission sector. Operators of natural gas transmission systems have many options to reduce natural gas losses. Depending on the value of gas, simple, low-cost measures, such as adjusting leaking equipment components, or larger-scale measures, such as installing dry seals on compressors, can be applied.

Ishkov, A.; Akopova, Gretta; Evans, Meredydd; Yulkin, Grigory; Roshchanka, Volha; Waltzer, Suzie; Romanov, K.; Picard, David; Stepanenko, O.; Neretin, D.

2011-10-01T23:59:59.000Z

234

Das Methan  

Science Journals Connector (OSTI)

Bei Einwirkung von Salzsäure auf Aluminiumkarbid entwickelt sich ein farbloses Gas, welches, angezündet, mit schwach leuchtender Flamme brennt: Es ist Methan.

A. Lipp

1928-01-01T23:59:59.000Z

235

Natural Gas Infrastructure R&D and Methane Emissions Mitigation...  

Energy Savers [EERE]

and transportation efficiency. Due to economic efficiency Interstate Natural Gas Pipelines typically do not operate at their optimum design condition. So, most...

236

NETL: Methane Hydrates - DOE/NETL Projects - Natural Gas Hydrates in  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Natural Gas Hydrates in Permafrost and Marine Settings: Resources, Properties, and Environmental Issues Last Reviewed 12/30/2013 Natural Gas Hydrates in Permafrost and Marine Settings: Resources, Properties, and Environmental Issues Last Reviewed 12/30/2013 DE-FE0002911 Goal The objective of this DOE-USGS Interagency Agreement is to provide world-class expertise and research in support of the goals of the 2005 Energy Act for National Methane Hydrates R&D, the DOE-led U.S. interagency roadmap for gas hydrates research, and elements of the USGS mission related to energy resources, global climate, and geohazards. This project extends USGS support to the DOE Methane Hydrate R&D Program previously conducted under DE-AI26-05NT42496. Performer U.S. Geological Survey at Woods Hole, MA, Denver, CO, and Menlo Park, CA Background The USGS Interagency Agreement (IA) involves laboratory research and

237

New Natural Gas Storage and Transportation Capabilities Utilizing Rapid Methane Hydrate Formation Techniques  

SciTech Connect (OSTI)

Natural gas (methane as the major component) is a vital fossil fuel for the United States and around the world. One of the problems with some of this natural gas is that it is in remote areas where there is little or no local use for the gas. Nearly 50 percent worldwide natural gas reserves of ~6,254.4 trillion ft3 (tcf) is considered as stranded gas, with 36 percent or ~86 tcf of the U.S natural gas reserves totaling ~239 tcf, as stranded gas [1] [2]. The worldwide total does not include the new estimates by U.S. Geological Survey of 1,669 tcf of natural gas north of the Arctic Circle, [3] and the U.S. ~200,000 tcf of natural gas or methane hydrates, most of which are stranded gas reserves. Domestically and globally there is a need for newer and more economic storage, transportation and processing capabilities to deliver the natural gas to markets. In order to bring this resource to market, one of several expensive methods must be used: 1. Construction and operation of a natural gas pipeline 2. Construction of a storage and compression facility to compress the natural gas (CNG) at 3,000 to 3,600 psi, increasing its energy density to a point where it is more economical to ship, or 3. Construction of a cryogenic liquefaction facility to produce LNG, (requiring cryogenic temperatures at <-161 °C) and construction of a cryogenic receiving port. Each of these options for the transport requires large capital investment along with elaborate safety systems. The Department of Energy's Office of Research and Development Laboratories at the National Energy Technology Laboratory (NETL) is investigating new and novel approaches for rapid and continuous formation and production of synthetic NGHs. These synthetic hydrates can store up to 164 times their volume in gas while being maintained at 1 atmosphere and between -10 to -20°C for several weeks. Owing to these properties, new process for the economic storage and transportation of these synthetic hydrates could be envisioned for stranded gas reserves. The recent experiments and their results from the testing within NETL's 15-Liter Hydrate Cell Facility exhibit promising results. Introduction of water at the desired temperature and pressure through an NETL designed nozzle into a temperature controlled methane environment within the 15-Liter Hydrate Cell allowed for instantaneous formation of methane hydrates. The instantaneous and continuous hydrate formation process was repeated over several days while varying the flow rate of water, its' temperature, and the overall temperature of the methane environment. These results clearly indicated that hydrates formed immediately after the methane and water left the nozzle at temperatures above the freezing point of water throughout the range of operating conditions. [1] Oil and Gas Journal Vol. 160.48, Dec 22, 2008. [2] http://www.eia.doe.gov/oiaf/servicerpt/natgas/chapter3.html and http://www.eia.doe.gov/oiaf/servicerpt/natgas/pdf/tbl7.pdf [3] U.S. Geological Survey, “Circum-Arctic Resource Appraisal: Estimates of Undiscovered Oil and Gas North of the Arctic Circle,” May 2008.

Brown, T.D.; Taylor, C.E.; Bernardo, M.

2010-01-01T23:59:59.000Z

238

E-Print Network 3.0 - annual international landfill Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

-end of lifetime average collection efficiencies for international greenhouse gas (GHG) inventories for landfills... t h e U . S i THE IMPORTANCE OF LANDFILL GAS CAPTURE AND...

239

A renewable energy plan for the Oak Grove Sanitary Landfill In Winder, Georgia.  

E-Print Network [OSTI]

??Oak Grove Sanitary Landfill in Winder, Georgia is already refining its landfill gas (LFG) and sending it through the natural gas pipeline. This is more… (more)

Hambrick, Tracy L.

2011-01-01T23:59:59.000Z

240

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

role of hydrogen in landfill gas utilization. Sacramento,landfills (yielding “landfill gas”) and livestock-manure-Diverted Methane in landfill gas Methane in biogas from

Farrell, Alexander E.; Sperling, Dan

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "landfill gas methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

role of hydrogen in landfill gas utilization. Sacramento,landfills (yielding “landfill gas”) and livestock-manure-Diverted Methane in landfill gas Methane in biogas from

2007-01-01T23:59:59.000Z

242

Modelling the hypothetical methane-leakage in a shale-gas project and the impact on groundwater quality  

Science Journals Connector (OSTI)

The hypothetical leakage of methane gas caused by fracking a 1,000-m deep Cretaceous claystone ... In summary, the geological risks of a fracking operation are minor. The technical risks are ... when rising metha...

Michael O. Schwartz

2014-10-01T23:59:59.000Z

243

Consumption of Methane and CO2 by Methanotrophic Microbial Mats from Gas Seeps of the Anoxic Black Sea  

Science Journals Connector (OSTI)

June 1, 2007 ERRATUM ERRATUM Consumption of Methane and CO2 by Methanotrophic Microbial Mats from Gas Seeps of the Anoxic Black Sea Tina Treude Victoria Orphan Katrin Knittel Armin Gieseke Christopher H. House Antje Boetius Max...

Tina Treude; Victoria Orphan; Katrin Knittel; Armin Gieseke; Christopher H. House; Antje Boetius

2007-06-01T23:59:59.000Z

244

NETL: Methane Hydrates - 2012 Ignik Sikumi gas hydrate field trial  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2012 Ignik Sikumi gas hydrate field trial 2012 Ignik Sikumi gas hydrate field trial Photo of the Ignik Drilling Pad Download 2011/2012 Field Test Data Ignik Sikumi #1 "Fire in the Ice" Video Project Background Participants Ignik Sikumi Well Review CO2-Ch4 Exchange Overview August 2, 2013 - Project operations are complete. Read the Final Project Technical Report [PDF-44.1MB] February 19, 2013 - Data from the 2011/2012 field test is now available! Click here to access data. Status Report - May 7, 2012 Final abandonment of Ignik Sikumi #1 wellsite has been completed. Tubing, casing-tubing annulus, and flatpack were filled with cement per the abandonment procedure approved by the Alaska Oil and Gas Conservation Commission. To minimize effects on the landscape and leave as little trace of the operations as possible, a small area around the wellhead was

245

NETL: Methane Hydrates - Gas Hydrate Research in Deep Sea Sediments - New  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrate Research in Deep Sea Sediments - Chatham Rise, New Zealand Task Last Reviewed 12/30/2013 Hydrate Research in Deep Sea Sediments - Chatham Rise, New Zealand Task Last Reviewed 12/30/2013 DE-AI26-06NT42878 Goal The goal of the Interagency Agreement between the National Energy Technology Laboratory and the Naval Research Laboratory is to conduct research to enhance understanding of the extent and dynamics of gas hydrate deposits and their relation to areas of focused fluid flux at and beneath the seafloor. Performer Marine Biogeochemistry Section, Naval Research Laboratory, Washington, DC 20375 Background Methane is a potent greenhouse gas necessitating a better understanding of the mechanisms controlling its contribution to the atmospheric carbon cycle. Active methane fluxes (from deep sediment hydrates and seeps) contribute to shallow sediment biogeochemical carbon cycles, which in turn

246

X-ray CT Observations of Methane Hydrate Distribution Changes over Time in a Natural Sediment Core from the BPX-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well  

E-Print Network [OSTI]

Gas hydrate formation in a variable volume bed of silica sandamount of sand, gas, and water. Although methane hydrate has

Kneafsey, T.J.

2012-01-01T23:59:59.000Z

247

Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Landfills Convert Landfills Convert Biogas Into Renewable Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Google Bookmark Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Delicious Rank Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Digg Find More places to share Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on AddThis.com... May 25, 2013 Landfills Convert Biogas Into Renewable Natural Gas

248

Greater focus needed on methane leakage from natural gas infrastructure  

Science Journals Connector (OSTI)

...Protection Agency’s Clean Air Markets Web page (http...gas vehicles from gasoline or diesel vehicles...for the comparison of CNG and diesel for heavy-duty...Emissions for Heavy-Duty CNG and Diesel Fuel Cycles. As summarized...

Ramón A. Alvarez; Stephen W. Pacala; James J. Winebrake; William L. Chameides; Steven P. Hamburg

2012-01-01T23:59:59.000Z

249

DOE Launches Natural Gas Infrastructure R&D Program Enhancing Pipeline and Distribution System Operational Efficiency, Reducing Methane Emissions  

Broader source: Energy.gov [DOE]

Following the White House and the Department of Energy Capstone Methane Stakeholder Roundtable on July 29th, DOE announced a series of actions, partnerships, and stakeholder commitments to help modernize the nation’s natural gas transmission and distribution systems and reduce methane emissions. Through common-sense standards, smart investments, and innovative research, DOE seeks to advance the state of the art in natural gas system performance. DOE’s effort is part of the larger Administration’s Climate Action Plan Interagency Strategy to Reduce Methane Emissions.

250

X-ray CT Observations of Methane Hydrate Distribution Changes over Time in a Natural Sediment Core from the BPX-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well  

E-Print Network [OSTI]

stability zone, hydrate will first form at the methane-water interface, either as a film on a methane gas bubble

Kneafsey, T.J.

2012-01-01T23:59:59.000Z

251

(sanitary) landfill reclamation  

Science Journals Connector (OSTI)

(sanitary) landfill reclamation, reclamation of (sanitary) landfills [For industrial and commercial development] ? Deponielandgewinnung f, Kippenlandgewinnung

2014-08-01T23:59:59.000Z

252

Process for producing methane from gas streams containing carbon monoxide and hydrogen  

DOE Patents [OSTI]

Carbon monoxide-containing gas streams are passed over a catalyst capable of catalyzing the disproportionation of carbon monoxide so as to deposit a surface layer of active surface carbon on the catalyst essentially without formation of inactive coke thereon. The surface layer is contacted with steam and is thus converted to methane and CO.sub.2, from which a relatively pure methane product may be obtained. While carbon monoxide-containing gas streams having hydrogen or water present therein can be used only the carbon monoxide available after reaction with said hydrogen or water is decomposed to form said active surface carbon. Although hydrogen or water will be converted, partially or completely, to methane that can be utilized in a combustion zone to generate heat for steam production or other energy recovery purposes, said hydrogen is selectively removed from a CO--H.sub.2 -containing feed stream by partial oxidation thereof prior to disproportionation of the CO content of said stream.

Frost, Albert C. (Congers, NY)

1980-01-01T23:59:59.000Z

253

ISSUE PAPER METHANE AVOIDANCE FROM  

E-Print Network [OSTI]

.........................................................................................1 1.2. GHG Emissions from Organic Waste...........................................................................................................39 6.2. Standard Methods for Quantifying Methane from Organic Waste in Landfills...40 6.3. GHG.2. Compost GHG Potential

Brown, Sally

254

High Temperature Gas-Cooled Reactor Program. Modular HTGR systems design and cost summary. [Methane reforming; steam cycle-cogeneration  

SciTech Connect (OSTI)

This report provides a summary description of the preconceptual design and energy product costs of the modular High Temperature Gas-Cooled Reactor (HTGR). The reactor system was studied for two applications: (1) reforming of methane to produce synthesis gas and (2) steam cycle/cogeneration to produce process steam and electricity.

Not Available

1983-09-01T23:59:59.000Z

255

NETL: Methane Hydrates - DOE/NETL Projects - Estimate Gas-Hydrate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrical Resistivity Investigation of Gas Hydrate Distribution in Mississippi Canyon Block 118, Gulf of Mexico Last Reviewed 6/14/2013 Electrical Resistivity Investigation of Gas Hydrate Distribution in Mississippi Canyon Block 118, Gulf of Mexico Last Reviewed 6/14/2013 DE-FC26-06NT42959 Goal The goal of this project is to evaluate the direct-current electrical resistivity (DCR) method for remotely detecting and characterizing the concentration of gas hydrates in the deep marine environment. This will be accomplished by adapting existing DCR instrumentation for use on the sea floor in the deep marine environment and testing the new instrumentation at Mississippi Canyon Block 118. Performer Baylor University, Waco, TX 76798 Collaborators Advanced Geosciences Inc., Austin, TX 78726 Specialty Devices Inc., Wylie, TX 75098 Background Marine occurrences of methane hydrates are known to form in two distinct

256

High-temperature gas-cooled-reactor steam-methane reformer design  

SciTech Connect (OSTI)

The concept of the long distance transportation of process heat energy from a High Temperature Gas Cooled Reactor (HTGR) heat source, based on the steam reforming reaction, is currently being evaluated as an energy source/application for use early in the 21st century. The steam-methane reforming reaction is an endothermic reaction at temperatures approximately 700/sup 0/C and higher, which produces hydrogen, carbon monoxide and carbon dioxide. The heat of the reaction products can then be released, after being pumped to industrial site users, in a methanation process producing superheated steam and methane which is then returned to the reactor plant site. In this application the steam reforming reaction temperatures are produced by the heat energy from the core of the HTGR through forced convection of the primary or secondary helium circuit to the catalytic chemical reactor (steam reformer). This paper summarizes the design of a helium heated steam reformer utilized in conjunction with a 1170 MW(t) intermediate loop, 850/sup 0/C reactor outlet temperature, HTGR process heat plant concept. This paper also discusses various design considerations leading to the mechanical design features, the thermochemical performance, materials selection and the structural design analysis.

Impellezzeri, J.R.; Drendel, D.B.; Odegaard, T.K.

1981-01-20T23:59:59.000Z

257

Metro Methane Recovery Facility Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Methane Recovery Facility Biomass Facility Methane Recovery Facility Biomass Facility Jump to: navigation, search Name Metro Methane Recovery Facility Biomass Facility Facility Metro Methane Recovery Facility Sector Biomass Facility Type Landfill Gas Location Polk County, Iowa Coordinates 41.6278423°, -93.5003454° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6278423,"lon":-93.5003454,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

258

COMBUSTIVE APPROACH FOR MEASURING TOTAL VOLATILE PHOSPHORUS CONTENT IN LANDFILL GAS  

Science Journals Connector (OSTI)

A technique was developed to measure the total gaseous phosphorus content in biogas. The amount of air needed for a neutral to oxidising flame was mixed with the biogas. The gas mixture was burnt in a closed quar...

JORIS ROELS; FRANK VANHAECKE; WILLY VERSTRAETE

2005-02-01T23:59:59.000Z

259

Landfill Bioreactors  

Science Journals Connector (OSTI)

Modern waste disposal has evolved from open dumping to the current practice of sanitary landfilling. Although this approach has proved to be a good alternative for preventing a variety of negative human healt...

Dr. J. Patrick A. Hettiaratchi PhD; PEng

2012-01-01T23:59:59.000Z

260

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network [OSTI]

of Baltimore by using landfill gas (methane) to co-generateIt involves using landfill gas (methane) currently being

Neelis, Maarten

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "landfill gas methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

(sanitary) landfill operator  

Science Journals Connector (OSTI)

(sanitary) landfill operator, Müllkippenbetreiber m, Mülldeponiebetreiber, Kippenbetreiber, Deponiebetreiber

2014-08-01T23:59:59.000Z

262

Coalbed Methane | Department of Energy  

Energy Savers [EERE]

Coalbed Methane Coalbed Methane Coalbed methane is natural gas found in coal deposits. It was once considered a nuisance and mine safety hazard, but today has become a valuable...

263

Adsorption of methane and carbon dioxide on gas shale and pure mineral samples  

Science Journals Connector (OSTI)

Abstract We have measured methane and carbon dioxide adsorption isotherms at 40 °C on gas shale samples from the Barnett, Eagle Ford, Marcellus and Montney reservoirs. Carbon dioxide isotherms were included to assess its potential for preferential adsorption, with implications for its use as a fracturing fluid and/or storage in depleted shale reservoirs. To better understand how the individual mineral constituents that comprise shales contribute to adsorption, measurements were made on samples of pure carbon, illite and kaolinite as well. We were able to successfully fit all adsorption data for both gases in accordance with a Langmuir isotherm model. Our results show carbon dioxide to have approximately 2–3 times the adsorptive capacity of methane in both the pure mineral constituents and actual shale samples. In addition to obvious microstructural and compositional differences between real rocks and pure minerals, we hypothesize that water adsorption plays an important role in regulating surface area availability for other molecules to adsorb. The resultant volumetric swelling strain was also measured as a function of pressure/adsorption. We observe both clay and pure carbon to swell an amount that is approximately linearly proportional to the amount of adsorption.

Robert Heller; Mark Zoback

2014-01-01T23:59:59.000Z

264

Intelligent Bioreactor Management Information System (IBM-IS) for Mitigation of Greenhouse Gas Emissions  

SciTech Connect (OSTI)

Methane is an important contributor to global warming with a total climate forcing estimated to be close to 20% that of carbon dioxide (CO2) over the past two decades. The largest anthropogenic source of methane in the US is 'conventional' landfills, which account for over 30% of anthropogenic emissions. While controlling greenhouse gas emissions must necessarily focus on large CO2 sources, attention to reducing CH4 emissions from landfills can result in significant reductions in greenhouse gas emissions at low cost. For example, the use of 'controlled' or bioreactor landfilling has been estimated to reduce annual US greenhouse emissions by about 15-30 million tons of CO2 carbon (equivalent) at costs between $3-13/ton carbon. In this project we developed or advanced new management approaches, landfill designs, and landfill operating procedures for bioreactor landfills. These advances are needed to address lingering concerns about bioreactor landfills (e.g., efficient collection of increased CH4 generation) in the waste management industry, concerns that hamper bioreactor implementation and the consequent reductions in CH4 emissions. Collectively, the advances described in this report should result in better control of bioreactor landfills and reductions in CH4 emissions. Several advances are important components of an Intelligent Bioreactor Management Information System (IBM-IS).

Paul Imhoff; Ramin Yazdani; Don Augenstein; Harold Bentley; Pei Chiu

2010-04-30T23:59:59.000Z

265

Geology, reservoir engineering and methane hydrate potential of the Walakpa Gas Field, North Slope, Alaska. Final report  

SciTech Connect (OSTI)

The Walakpa Gas Field, located near the city of Barrow on Alaska`s North Slope, has been proven to be methane-bearing at depths of 2000--2550 feet below sea level. The producing formation is a laterally continuous, south-dipping, Lower Cretaceous shelf sandstone. The updip extent of the reservoir has not been determined by drilling, but probably extends to at least 1900 feet below sea level. Reservoir temperatures in the updip portion of the reservoir may be low enough to allow the presence of in situ methane hydrates. Reservoir net pay however, decreases to the north. Depths to the base of permafrost in the area average 940 feet. Drilling techniques and production configuration in the Walakpa field were designed to minimize formation damage to the reservoir sandstone and to eliminate methane hydrates formed during production. Drilling development of the Walakpa field was a sequential updip and lateral stepout from a previously drilled, structurally lower confirmation well. Reservoir temperature, pressure, and gas chemistry data from the development wells confirm that they have been drilled in the free-methane portion of the reservoir. Future studies in the Walakpa field are planned to determine whether or not a component of the methane production is due to the dissociation of updip in situ hydrates.

Glenn, R.K.; Allen, W.W.

1992-12-01T23:59:59.000Z

266

Questions and Answers - In the chemical equation for methane gas why is  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

carbon found in all organicand inorganic matter? carbon found in all organic<br>and inorganic matter? Previous Question (Is carbon found in all organic and inorganic matter?) Questions and Answers Main Index Next Question (How do you separate tungsten from its ore?) How do you separatetungsten from its ore? In the chemical equation CH4 for methane gas why is there more hydrogen than carbon? This is a very good question, and the answer is at the heart of modern atomic physics. The nucleus is at the center of the atom, like the sun is at the center of the solar system. Electrons move around in orbits around the nucleus, like the planets around the sun. But there is an important difference: electrons can only have very special energies, which correspond to specific orbits. The orbits in the atoms are called shells, and each shell can only hold so

267

Abatement of Air Pollution: Greenhouse Gas Emissions Offset Projects (Connecticut)  

Broader source: Energy.gov [DOE]

Projects that either capture and destroy landfill methane, avoid sulfur hexafluoride emissions, sequester carbon through afforestation, provide end-use energy efficiency, or avoid methane emissions...

268

A Guidebook for Low-Carbon Development at the Local Level  

E-Print Network [OSTI]

level. Percentage of landfill gas (methane) that is capturedenergy and reducing carbon emissions: landfill gas capture.Landfill gas is primarily methane; thus it can be captured

Zhou, Nan

2012-01-01T23:59:59.000Z

269

Methane Hydrate and Free Gas on the Blake Ridge from Vertical Seismic Profiling  

Science Journals Connector (OSTI)

...expression: The phase boundary between methane hydrate and methane plus...and methane hydrate, CH4-5.75H20...a structure I hydrate construct-ed...documented anomalous behavior in the formation...325 Fig. 1. Phase diagram for the...

W. Steven Holbrook; Hartley Hoskins; Warren T. Wood; Ralph A. Stephen; Daniel Lizarralde

1996-09-27T23:59:59.000Z

270

A dynamic prediction model for gas–water effective permeability based on coalbed methane production data  

Science Journals Connector (OSTI)

Abstract An understanding of the relative permeability of gas and water in coal reservoirs is vital for coalbed methane (CBM) development. In this work, a prediction model for gas–water effective permeability is established to describe the permeability variation within coal reservoirs during production. The effective stress and matrix shrinkage effects are taken into account by introducing the Palmer and Mansoori (PM) absolute permeability model. The endpoint relative permeability is calibrated through experimentation instead of through the conventional Corey relative permeability model, which is traditionally employed for the simulation of petroleum reservoirs. In this framework, the absolute permeability model and the relative permeability model are comprehensively coupled under the same reservoir pressure and water saturation conditions through the material balance equation. Using the Qinshui Basin as an example, the differences between the actual curve that is measured with the steady-state method and the simulation curve are compared. The model indicates that the effective permeability is expressed as a function of reservoir pressure and that the curve shape is controlled by the production data. The results illustrate that the PM–Corey dynamic prediction model can accurately reflect the positive and negative effects of coal reservoirs. In particular, the model predicts the matrix shrinkage effect, which is important because it can improve the effective permeability of gas production and render the process more economically feasible.

H. Xu; D.Z. Tang; S.H. Tang; J.L. Zhao; Y.J. Meng; S. Tao

2014-01-01T23:59:59.000Z

271

Sorption-Enhanced Synthetic Natural Gas (SNG) Production from Syngas: A Novel Process Combining CO Methanation, Water-Gas Shift, and CO2 Capture  

SciTech Connect (OSTI)

Synthetic natural gas (SNG) production from syngas is under investigation again due to the desire for less dependency from imports and the opportunity for increasing coal utilization and reducing green house gas emission. CO methanation is highly exothermic and substantial heat is liberated which can lead to process thermal imbalance and deactivation of the catalyst. As a result, conversion per pass is limited and substantial syngas recycle is employed in conventional processes. Furthermore, the conversion of syngas to SNG is typically performed at moderate temperatures (275 to 325°C) to ensure high CH4 yields since this reaction is thermodynamically limited. In this study, the effectiveness of a novel integrated process for the SNG production from syngas at high temperature (i.e. 600?C) was investigated. This integrated process consists of combining a CO methanation nickel-based catalyst with a high temperature CO2 capture sorbent in a single reactor. Integration with CO2 separation eliminates the reverse-water-gas shift and the requirement for a separate water-gas shift (WGS) unit. Easing of thermodynamic constraint offers the opportunity of enhancing yield to CH4 at higher operating temperature (500-700ºC) which also favors methanation kinetics and improves the overall process efficiency due to exploitation of reaction heat at higher temperatures. Furthermore, simultaneous CO2 capture eliminates green house gas emission. In this work, sorption-enhanced CO methanation was demonstrated using a mixture of a 68% CaO/32% MgAl2O4 sorbent and a CO methanation catalyst (Ni/Al2O3, Ni/MgAl2O4, or Ni/SiC) utilizing a syngas ratio (H2/CO) of 1, gas-hour-space velocity (GHSV) of 22 000 hr-1, pressure of 1 bar and a temperature of 600oC. These conditions resulted in ~90% yield to methane, which was maintained until the sorbent became saturated with CO2. By contrast, without the use of sorbent, equilibrium yield to methane is only 22%. Cyclic stability of the methanation catalyst and durability of the sorbent were also studied in the multiple carbonation-decarbonation cycle studies proving the potential of this integrated process in a practical application.

Lebarbier, Vanessa MC; Dagle, Robert A.; Kovarik, Libor; Albrecht, Karl O.; Li, Xiaohong S.; Li, Liyu; Taylor, Charles E.; Bao, Xinhe; Wang, Yong

2014-01-01T23:59:59.000Z

272

Evaluation of air injection and extraction tests in a landfill site in Korea: implications for landfill management  

Science Journals Connector (OSTI)

Air extraction and injection were evaluated for extracting hazardous landfill gas and enhancing degradation of organic materials in a landfill in Korea. From the pilot and full ... pressure radius of influence wa...

J. Lee; C. Lee; K. Lee

2002-11-01T23:59:59.000Z

273

Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model  

E-Print Network [OSTI]

decision support tool for landfill gas-to energy projects,”industrial emissions e. Landfills f. Solid waste treatmentreductions Forests, dairy, landfills 75% overall savings HFC

Greenblatt, Jeffery B.

2014-01-01T23:59:59.000Z

274

Ground Gas Handbook  

Science Journals Connector (OSTI)

...pathways of least resistance to gas transport, and applications are discussed, such as migrating landfill gas emissions, also from leaking landfill gas collection systems, as well as natural gas and oil-field gas leakage from abandoned production...

Allen W Hatheway

275

U.S. Natural Gas System Methane Emissions: State of Knowledge from LCAs, Inventories, and Atmospheric Measurements (Presentation)  

SciTech Connect (OSTI)

Natural gas (NG) is a potential "bridge fuel" during transition to a decarbonized energy system: It emits less carbon dioxide during combustion than other fossil fuels and can be used in many industries. However, because of the high global warming potential of methane (CH4, the major component of NG), climate benefits from NG use depend on system leakage rates. Some recent estimates of leakage have challenged the benefits of switching from coal to NG, a large near-term greenhouse gas (GHG) reduction opportunity. During this presentation, Garvin will review evidence from multiple perspectives - life cycle assessments (LCAs), inventories and measurements - about NG leakage in the US. Particular attention will be paid to a recent article in Science magazine which reviewed over 20 years of published measurements to better understand what we know about total methane emissions and those from the oil and gas sectors. Scientific and policy implications of the state of knowledge will be discussed.

Heath, G.

2014-04-01T23:59:59.000Z

276

Evidence for large methane releases to the atmosphere from deep-sea gas-hydrate dissociation during the last glacial episode  

Science Journals Connector (OSTI)

...inductively coupled plasma optical emission...waters induced by the thermal dissociation of gas...large increases in atmospheric concentration...episode. | Past atmospheric methane-concentration...Research Support, Non-U.S. Gov't...2006036403 Past atmospheric methane-concentration...

Thibault de Garidel-Thoron; Luc Beaufort; Franck Bassinot; Pierre Henry

2004-01-01T23:59:59.000Z

277

Investigation of Gas-Phase Reactions and Ignition Delay Occurring at Conditions Typical for Partial Oxidation of Methane to Synthesis Gas  

Science Journals Connector (OSTI)

Investigation of Gas-Phase Reactions and Ignition Delay Occurring at Conditions Typical for Partial Oxidation of Methane to Synthesis Gas ... A detailed kinetic model based on a free-radical mechanism has been developed, which allows the adequate calculation of the feed conversions and product selectivities. ... The production of synthesis gas from natural gas by partial oxidation has been extensively investigated as an alternative for the steam-reforming process since it results directly in a H2/CO ratio of 2:1 which is required for methanol and Fischer?Tropsch synthesis. ...

R. J. Berger; G. B. Marin

1999-06-15T23:59:59.000Z

278

CeO2 Promoted Ni/Al2O3 Catalyst in Combined Steam and Carbon Dioxide Reforming of Methane for Gas to Liquid (GTL) Process  

Science Journals Connector (OSTI)

The effect of ceria promotion over Ni/Al2O3...catalysts on the catalytic activity and coke formation was investigated in combined steam and carbon dioxide reforming of methane (CSCRM) to produce synthesis gas (H2

Kee Young Koo; Hyun-Seog Roh; Un Ho Jung; Wang Lai Yoon

2009-06-01T23:59:59.000Z

279

The world's largest landfill  

Science Journals Connector (OSTI)

The world's largest landfill ... GeoChip-Based Analysis of Microbial Functional Gene Diversity in a Landfill Leachate-Contaminated Aquifer ... GeoChip-Based Analysis of Microbial Functional Gene Diversity in a Landfill Leachate-Contaminated Aquifer ...

Joseph M. Suflita; Charles P. Gerba; Robert K. Ham; Anna C. Palmisano; William L. Rathje; Joseph A. Robinson

1992-08-01T23:59:59.000Z

280

Subsurface definition of the Allegheny Group coalbed methane prospect interval in Southwestern Pennsylvania and new gas content results  

SciTech Connect (OSTI)

A preliminary reconnaissance of coalbed methane gas content data from exploratory coal cores and pre-existing data implies that the greater the depth and rank, the greater the total and cumulative gas content. The coal seams studied, ranging in age from the Pennsylvanian-Permian Dunkard Group to the Middle Pennsylvanian Allegheny Group, are from the Main Bituminous Field and two of the anthracite fields. Consequently, the Pennsylvania Geological Survey and the West Virginia Geological and Economic Survey conducted a mapping investigation to evaluate the regional geology of the coal-bearing intervals and its influence on coalbed methane potential. Phase I of this study involved the entire Pennsylvanian coal-bearing interval; Phase II focused on a stratigraphic delineation and evaluation of Allegheny coalbeds and associated sandstones. A variety of cross sections and isopach maps show several prospective coalbeds and facies relationships with channel-fill sandstones. This suggests that some of these sandstones may be traps for coalbed methane. Often overlooked in reservoir characterization is the quality of a coal seam. Coal rank, grade, and type influence the reserves and production of coalbed methane; the higher the rank, the greater adsorptive capacity of the coal. The integration of coal quality with other critical tools of exploration may increase the success rate of finding {open_quotes}sweet spots.{close_quotes} Additional Pennsylvania Geological Survey drilling occurred in Beaver, Lawrence, Somerset, and Washington counties. Gas contents were graphically displayed against depth, thickness, and time for a variety of samples from 21 coal seams; average gas composition and Btu values were determined for selected samples.

Markowski, A.K. [Pennsylvania Dept. of Conservation and Natural Resources-Bureau of Topographic and Geologic Survey, Harrisburg, PA (United States)

1996-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "landfill gas methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Methane-steam reforming  

SciTech Connect (OSTI)

A discussion covers steam reforming developments to the 1950's; the kinetics of methane-steam reforming, of the water-gas shift during methane-steam reforming, and of the carbon formation during methane-steam reforming, as approached by Akers and Camp.

Van Hook, J.P.

1980-01-01T23:59:59.000Z

282

Tool to predict the production performance of vertical wells in a coalbed methane reservoir.  

E-Print Network [OSTI]

??Coalbed Methane (CBM) is an unconventional gas resource that consists of methane production from coal seams. Coalbed Methane gas production is controlled be interactions of… (more)

Enoh, Michael E.

2007-01-01T23:59:59.000Z

283

Landfill CH sub 4 : Rates, fates, and role in global carbon cycle  

SciTech Connect (OSTI)

Published estimates for worldwide landfill methane emissions range from 9 to 70 Tg yr{sup {minus}1}. Field and laboratory studies suggest that maximum methane yields from lanfilled refuse are about 0.06 to 0.09 m{sup 3} (dry Kg){sup {minus}1} refuse, depending on moisture content and other variables, such as organic loading, buffering capacity, and nutrients in landfill microevnironments. Methane yields may vary by more than an order of magnitude within a given site. Fates for landfill methane include (1) direct or delayed emission to the atmosphere through landfill cover materials or surface soils; (2) oxidation by methanotrophs in cover soils, with resulting emission of carbon dioxide; or (3) recovery of methane followed by combustion to produce carbon dioxide. The percent methane assigned to each pathway will vary among field sites and, for individual sites, through time. Nevertheless, a general framework for a landfill methane balance can be developed by consideration of landfill age, engineering and management practices, cover soil characteristics, and water balance. Direct measurements of landfill methane emissions are sparse, with rates between 10{sup {minus}6} and 10{sup {minus}8} g cm{sup {minus}2} s{sup {minus}1}; very high rates of 400 kg m{sup {minus}2} yr{sup {minus}1} have been measured at a semiarid unvegetated site. The proportion of landfill carbon that is ultimately converted to methane and carbon dioxide is problematical; the literature suggests that, at best, 25% to 40% of refuse carbon can be converted to biogas carbon. Cellulose contributes the major portion of the methane potential. Routine excavation of nondecomposed cellulosic materials after one or two decades of landfill burial suggests that uniformly high conversion rates are rarely attained at field sites.

Bogner, J.; Spokas, K.

1991-01-01T23:59:59.000Z

284

Landfill CH{sub 4}: Rates, fates, and role in global carbon cycle  

SciTech Connect (OSTI)

Published estimates for worldwide landfill methane emissions range from 9 to 70 Tg yr{sup {minus}1}. Field and laboratory studies suggest that maximum methane yields from lanfilled refuse are about 0.06 to 0.09 m{sup 3} (dry Kg){sup {minus}1} refuse, depending on moisture content and other variables, such as organic loading, buffering capacity, and nutrients in landfill microevnironments. Methane yields may vary by more than an order of magnitude within a given site. Fates for landfill methane include (1) direct or delayed emission to the atmosphere through landfill cover materials or surface soils; (2) oxidation by methanotrophs in cover soils, with resulting emission of carbon dioxide; or (3) recovery of methane followed by combustion to produce carbon dioxide. The percent methane assigned to each pathway will vary among field sites and, for individual sites, through time. Nevertheless, a general framework for a landfill methane balance can be developed by consideration of landfill age, engineering and management practices, cover soil characteristics, and water balance. Direct measurements of landfill methane emissions are sparse, with rates between 10{sup {minus}6} and 10{sup {minus}8} g cm{sup {minus}2} s{sup {minus}1}; very high rates of 400 kg m{sup {minus}2} yr{sup {minus}1} have been measured at a semiarid unvegetated site. The proportion of landfill carbon that is ultimately converted to methane and carbon dioxide is problematical; the literature suggests that, at best, 25% to 40% of refuse carbon can be converted to biogas carbon. Cellulose contributes the major portion of the methane potential. Routine excavation of nondecomposed cellulosic materials after one or two decades of landfill burial suggests that uniformly high conversion rates are rarely attained at field sites.

Bogner, J.; Spokas, K.

1991-12-31T23:59:59.000Z

285

Commercialization of waste gob gas and methane produced in conjunction with coal mining operations. Final report, August 1992--December 1993  

SciTech Connect (OSTI)

The primary objectives of the project were to identify and evaluate existing processes for (1) using gas as a feedstock for production of marketable, value-added commodities, and (2) enriching contaminated gas to pipeline quality. The following gas conversion technologies were evaluated: (1) transformation to liquid fuels, (2) manufacture of methanol, (3) synthesis of mixed alcohols, and (4) conversion to ammonia and urea. All of these involved synthesis gas production prior to conversion to the desired end products. Most of the conversion technologies evaluated were found to be mature processes operating at a large scale. A drawback in all of the processes was the need to have a relatively pure feedstock, thereby requiring gas clean-up prior to conversion. Despite this requirement, the conversion technologies were preliminarily found to be marginally economic. However, the prohibitively high investment for a combined gas clean-up/conversion facility required that REI refocus the project to investigation of gas enrichment alternatives. Enrichment of a gas stream with only one contaminant is a relatively straightforward process (depending on the contaminant) using available technology. However, gob gas has a unique nature, being typically composed of from constituents. These components are: methane, nitrogen, oxygen, carbon dioxide and water vapor. Each of the four contaminants may be separated from the methane using existing technologies that have varying degrees of complexity and compatibility. However, the operating and cost effectiveness of the combined system is dependent on careful integration of the clean-up processes. REI is pursuing Phase 2 of this project for demonstration of a waste gas enrichment facility using the approach described above. This is expected to result in the validation of the commercial and technical viability of the facility, and the refinement of design parameters.

Not Available

1993-12-01T23:59:59.000Z

286

Bioreactor Landfill Research and Demonstration Project Northern Oaks Landfill, Harrison, MI  

SciTech Connect (OSTI)

A bioreactor landfill cell with 1.2-acre footprint was constructed, filled, operated, and monitored at Northern Oaks Recycling and Disposal Facility (NORDF) at Harrison, MI. With a filled volume of 74,239 cubic yards, the cell contained approximately 35,317 tons of municipal solid waste (MSW) and 20,777 tons of cover soil. It was laid on the slope of an existing cell but separated by a geosynthetic membrane liner. After the cell reached a design height of 60 feet, it was covered with a geosynthetic membrane cap. A three-dimensional monitoring system to collect data at 48 different locations was designed and installed during the construction phase of the bioreactor cell. Each location had a cluster of monitoring devices consisting of a probe to monitor moisture and temperature, a leachate collection basin, and a gas sampling port. An increase in moisture content of the MSW in the bioreactor cell was achieved by pumping leachate collected on-site from various other cells, as well as recirculation of leachate from the bioreactor landfill cell itself. Three types of leachate injection systems were evaluated in this bioreactor cell for their efficacy to distribute pumped leachate uniformly: a leachate injection pipe buried in a 6-ft wide horizontal stone mound, a 15-ft wide geocomposite drainage layer, and a 60-ft wide geocomposite drainage layer. All leachate injection systems were installed on top of the compacted waste surface. The distribution of water and resulting MSW moisture content throughout the bioreactor cell was found to be similar for the three designs. Water coming into and leaving the cell (leachate pumped in, precipitation, snow, evaporation, and collected leachate) was monitored in order to carry out a water balance. Using a leachate injection rate of 26 – 30 gal/yard3, the average moisture content increased from 25% to 35% (wet based) over the period of this study. One of the key aspects of this bioreactor landfill study was to evaluate bioreactor start up and performance in locations with colder climate. For lifts filled during the summer months, methane generation started within three months after completion of the lift. For lifts filled in winter months, very little methane production occurred even eight months after filling. The temperature data indicated that subzero or slightly above zero (oC) temperatures persisted for unusually long periods (more than six months) in the lifts filled during winter months. This was likely due to the high thermal insulation capability of the MSW and the low level of biological activity during start up. This observation indicates that bioreactor landfills located in cold climate and filled during winter months may require mechanisms to increase temperature and initiate biodegradation. Thus, besides moisture, temperature may be the next important factor controlling the biological decomposition in anaerobic bioreactor landfills. Spatial and temporal characterization of leachate samples indicated the presence of low levels of commonly used volatile organic compounds (including acetone, methyl ethyl ketone, methyl isobutyl ketone, and toluene) and metals (including arsenic, chromium, and zinc). Changes and leachate and gaseous sample characteristics correlated with enhanced biological activity and increase in temperature. Continued monitoring of this bioreactor landfill cell is expected to yield critical data needed for start up, design, and operation of this emerging process.

Zhao, Xiando; Voice, Thomas; and Hashsham, Syed A.

2006-08-29T23:59:59.000Z

287

UNFCCC-Consolidated baseline and monitoring methodology for landfill...  

Open Energy Info (EERE)

TOOL Name: UNFCCC-Consolidated baseline and monitoring methodology for landfill gas project activities AgencyCompany Organization: United Nations Framework Convention on...

288

Methane Hydrate | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Methane Hydrate Methane Hydrate Methane Hydrate Types of Methane Hydrate Deposits Types of Methane Hydrate Deposits Methane hydrate is a cage-like lattice of ice inside of which are trapped molecules of methane, the chief constituent of natural gas. If methane hydrate is either warmed or depressurized, it will revert back to water and natural gas. When brought to the earth's surface, one cubic meter of gas hydrate releases 164 cubic meters of natural gas. Hydrate deposits may be several hundred meters thick and generally occur in two types of settings: under Arctic permafrost, and beneath the ocean floor. Methane that forms hydrate can be both biogenic, created by biological activity in sediments, and thermogenic, created by geological processes deeper within the earth.

289

Colton Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Colton Landfill Biomass Facility Colton Landfill Biomass Facility Jump to: navigation, search Name Colton Landfill Biomass Facility Facility Colton Landfill Sector Biomass Facility Type Landfill Gas Location San Bernardino County, California Coordinates 34.9592083°, -116.419389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9592083,"lon":-116.419389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

290

Girvin Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Girvin Landfill Biomass Facility Girvin Landfill Biomass Facility Jump to: navigation, search Name Girvin Landfill Biomass Facility Facility Girvin Landfill Sector Biomass Facility Type Landfill Gas Location Duval County, Florida Coordinates 30.3500511°, -81.6035062° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.3500511,"lon":-81.6035062,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

291

Acme Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Landfill Biomass Facility Landfill Biomass Facility Jump to: navigation, search Name Acme Landfill Biomass Facility Facility Acme Landfill Sector Biomass Facility Type Landfill Gas Location Contra Costa County, California Coordinates 37.8534093°, -121.9017954° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.8534093,"lon":-121.9017954,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

292

BKK Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

BKK Landfill Biomass Facility BKK Landfill Biomass Facility Jump to: navigation, search Name BKK Landfill Biomass Facility Facility BKK Landfill Sector Biomass Facility Type Landfill Gas Location Los Angeles County, California Coordinates 34.3871821°, -118.1122679° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.3871821,"lon":-118.1122679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

293

Dane County Landfill | Open Energy Information  

Open Energy Info (EERE)

Dane County Landfill Dane County Landfill Jump to: navigation, search Name Dane County Landfill Facility Dane County Landfill #2 Rodefeld Sector Biomass Facility Type Landfill Gas Location Dane County, Wisconsin Coordinates 43.0186073°, -89.5497632° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0186073,"lon":-89.5497632,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

294

Westchester Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Landfill Biomass Facility Landfill Biomass Facility Jump to: navigation, search Name Westchester Landfill Biomass Facility Facility Westchester Landfill Sector Biomass Facility Type Landfill Gas Location Cook County, Illinois Coordinates 41.7376587°, -87.697554° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7376587,"lon":-87.697554,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

295

Kiefer Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Kiefer Landfill Biomass Facility Kiefer Landfill Biomass Facility Jump to: navigation, search Name Kiefer Landfill Biomass Facility Facility Kiefer Landfill Sector Biomass Facility Type Landfill Gas Location Sacramento County, California Coordinates 38.47467°, -121.3541631° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.47467,"lon":-121.3541631,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

296

Milliken Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Milliken Landfill Biomass Facility Milliken Landfill Biomass Facility Jump to: navigation, search Name Milliken Landfill Biomass Facility Facility Milliken Landfill Sector Biomass Facility Type Landfill Gas Location San Bernardino County, California Coordinates 34.9592083°, -116.419389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9592083,"lon":-116.419389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

297

Urban RAM: Assessing the Energy Impact of Having People in Cities  

E-Print Network [OSTI]

Commission (CEC). 2002. Landfill Gas-to-Energy Potential inOn the emissions side only, landfill methane emissions areratio and proportion of landfill methane that is captured.

Fridley, David

2014-01-01T23:59:59.000Z

298

An alternative methodology for the analysis of electrical resistivity data from a soil gas study  

Science Journals Connector (OSTI)

......causes a problem, especially in landfill gas models. The uncertainties originate...the gas in the soil pores. In landfill gas models, several authors (e...Lamborn J. , 2007. Developing a landfill gas model, inTenth International Waste......

Sara Johansson; Håkan Rosqvist; Mats Svensson; Torleif Dahlin; Virginie Leroux

2011-08-01T23:59:59.000Z

299

Volumetric strain associated with methane desorption and its impact on coalbed gas production from deep coal seams  

SciTech Connect (OSTI)

For deep coal seams, significant reservoir pressure drawdown is required to promote gas desorption because of the Langmuir-type isotherm that typifies coals. Hence, a large permeability decline may occur because of pressure drawdown and the resulting increase in effective stress, depending on coal properties and the stress field during production. However, the permeability decline can potentially be offset by the permeability enhancement caused by the matrix shrinkage associated with methane desorption. The predictability of varying permeability is critical for coalbed gas exploration and production-well management. We have investigated quantitatively the effects of reservoir pressure and sorption-induced volumetric strain on coal-seam permeability with constraints from the adsorption isotherm and associated volumetric strain measured on a Cretaceous Mesaverde Group coal (Piceance basin) and derived a stress-dependent permeability model. Our results suggest that the favorable coal properties that can result in less permeability reduction during earlier production and an earlier strong permeability rebound (increase in permeability caused by coal shrinkage) with methane desorption include (1) large bulk or Young's modulus; (2) large adsorption or Langmuir volume; (3) high Langmuir pressure; (4) high initial permeability and dense cleat spacing; and (5) low initial reservoir pressure and high in-situ gas content. Permeability variation with gas production is further dependent on the orientation of the coal seam, the reservoir stress field, and the cleat structure. Well completion with injection of N2 and displacement of CH{sub 4} only results in short-term enhancement of permeability and does not promote the overall gas production for the coal studied.

Cui, X.J.; Bustin, R.M. [University of British Columbia, Vancouver, BC (Canada). Dept. of Earth & Ocean Science

2005-09-01T23:59:59.000Z

300

Carbonates and oxalates in sediments and landfill: monitors of death and decay in natural and artificial systems  

Science Journals Connector (OSTI)

...intermediate stage in the production of landfill gas and as a sink for ammonia as ammonium...waste are monitored by analysis of landfill gas and leachate. Gas compositional...years. Fig. 3. Evolution in landfill gas composition with time, showing...

DAVID A. C. MANNING

Note: This page contains sample records for the topic "landfill gas methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

EOS7C Version 1.0: TOUGH2 Module for Carbon Dioxide or Nitrogen inNatural Gas (Methane) Reservoirs  

SciTech Connect (OSTI)

EOS7C is a TOUGH2 module for multicomponent gas mixtures in the systems methane carbon dioxide (CH4-CO2) or methane-nitrogen (CH4-N2) with or without an aqueous phase and H2O vapor. EOS7C uses a cubic equation of state and an accurate solubility formulation along with a multiphase Darcy s Law to model flow and transport of gas and aqueous phase mixtures over a wide range of pressures and temperatures appropriate to subsurface geologic carbon sequestration sites and natural gas reservoirs. EOS7C models supercritical CO2 and subcritical CO2 as a non-condensible gas, hence EOS7C does not model the transition to liquid or solid CO2 conditions. The components modeled in EOS7C are water, brine, non-condensible gas, gas tracer, methane, and optional heat. The non-condensible gas (NCG) can be selected by the user to be CO2 or N2. The real gas properties module has options for Peng-Robinson, Redlich-Kwong, or Soave-Redlich-Kwong equations of state to calculate gas mixture density, enthalpy departure, and viscosity. Partitioning of the NCG and CH4 between the aqueous and gas phases is calculated using a very accurate chemical equilibrium approach. Transport of the gaseous and dissolved components is by advection and Fickian molecular diffusion. We present instructions for use and example problems to demonstrate the accuracy and practical application of EOS7C.

Oldenburg, Curtis M.; Moridis,George J.; Spycher, Nicholas; Pruess, Karsten

2004-06-29T23:59:59.000Z

302

Impact of Siloxane Impurities on the Performance of an Engine Operating on Renewable Natural Gas  

Science Journals Connector (OSTI)

Impact of Siloxane Impurities on the Performance of an Engine Operating on Renewable Natural Gas ... Biogas from sludge biodegradation in wastewater treatment plants (WWTP) and landfill gas (LFG) generated from the decomposition of solid waste in landfills are both promising renewable fuels, as they contain a large fraction of methane, 40–70% by volume, the rest being CO2, together with smaller amounts of other gases like O2, N2, and Ar. ... In these studies two Honda EU2000i gasoline electric generators were utilized. ...

Nitin Nair; Xianwei Zhang; Jorge Gutierrez; Jack Chen; Fokion Egolfopoulos; Theodore Tsotsis

2012-11-13T23:59:59.000Z

303

Landfill Leachate Control  

Science Journals Connector (OSTI)

Leachate refers to the liquid, contaminated water, that results from the interaction between any water in a landfill, e.g., as the result of rainwater infiltration, and the waste emplaced in the landfill. Lea...

Dr. Haluk Akgün; Jaak J. K. Daemen

2012-01-01T23:59:59.000Z

304

7.4 Landfill Methane Utilization  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Supply 8.0 Transportation Technologies and Programs 9.0 Urban Planning and Design 7.1 Green Power Procurement 7.2 On-Site Renewable Energy Generation 7.3 Combined Heat and...

305

A dynamic prediction model for gas-water effective permeability in unsaturated coalbed methane reservoirs based on production data  

Science Journals Connector (OSTI)

Abstract Effective permeability of gas and water in coalbed methane (CBM) reservoirs is vital during CBM development. However, few studies have investigated it for unsaturated CBM reservoirs rather than saturated CBM reservoirs. In this work, the dynamic prediction model (PM-Corey model) for average gas-water effective permeability in two-phase flow in saturated CBM reservoirs was improved to describe unsaturated CBM reservoirs. In the improved effective permeability model, Palmer et al. absolute permeability model segmented based on critical desorption pressure and Chen et al. relative permeability model segmented based on critical water saturation were introduced and coupled comprehensively under conditions with the identical reservoir pressures and the identical water saturations through production data and the material balance equations (MBEs) in unsaturated CBM reservoirs. Taking the Hancheng CBM field as an example, the differences between the saturated and unsaturated effective permeability curves were compared. The results illustrate that the new dynamic prediction model could characterize not only the stage of two-phase flow but also the stage of single-phase water drainage. Also, the new model can accurately reflect the comprehensive effects of the positive and negative effects (the matrix shrinking effect and the effective stress effect) and the gas Klinkenberg effect of coal reservoirs, especially for the matrix shrinkage effect and the gas Klinkenberg effect, which can improve the effective permeability of gas production and render the process more economically. The new improved model is more realistic and practical than previous models.

Junlong Zhao; Dazhen Tang; Hao Xu; Yanjun Meng; Yumin Lv; Shu Tao

2014-01-01T23:59:59.000Z

306

Development of water production type curves for horizontal wells in coalbed methane reservoirs.  

E-Print Network [OSTI]

??Coalbed methane is an unconventional gas resource that consists of methane production from the coal seams. The key parameters for the evaluation of coalbed methane… (more)

Burka Narayana, Praveen Kumar.

2007-01-01T23:59:59.000Z

307

Catalytic aspects of high-temperature methanation of synthesis gas from coal or steam reforming of natural gas  

SciTech Connect (OSTI)

Pilot and catalyst tests showed that the Haldor Topsoe A/S MCR-2X catalyst allows methanation from 250/sup 0/ to well above 700/sup 0/C. Catalyst regeneration by oxidation and reduction after 4700 hr of operation restored > 50% of the original activity. The Topsoe recycle methanation process would give an over-all conversion of 95% in three adiabatic reactors, according to a comparison with results to be expected from the use of a steam reforming catalyst. The Topsoe catalyst maintained a high total surface area and mechanical strength during sintering at 400/sup 0/-800/sup 0/C for 140-170 hr in a comparison with nickel/..cap alpha..-alumina and nickel/ceramic catalyst. Prevention of carbon formation was also demonstrated in the pilot test. In general, it appeared that the use of a nickel catalyst for methanation is limited to a minimum operating temperature because of the risk of nickel carbonyl formation and catalyst deactivation and to a maximum-operating temperature because of sintering, and in some cases, carbon formation.

Pedersen, K.; Skov, A.; Rostrup-Nielsen, J.R.

1980-01-01T23:59:59.000Z

308

Who Owns Renewable Energy Certificates? An Exploration of Policy Options and Practice  

E-Print Network [OSTI]

Minnesota Methane owns a landfill gas facility located infor example, that wind or landfill gas energy was conveyed,

Holt, Edward A.; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

309

2008 Solar Technologies Market Report  

E-Print Network [OSTI]

DSIRE 2010a). Biomass Landfill Gas Hydro- power Otherloop biomass such as landfill gas and livestock methane;

Price, S.

2010-01-01T23:59:59.000Z

310

Methane Main  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the the Methane Hydrate Advisory Committee on Methane Hydrate Issues and Opportunities Including Assessment of Uncertainty of the Impact of Methane Hydrate on Global Climate Change December 2002 Report of the Methane Hydrate Advisory Committee on Methane Hydrate Issues and Opportunities Including Assessment of Uncertainty of the Impact of Methane Hydrate on Global Climate Change December 2002 i CONTENTS What is Methane Hydrate? ............................................................................................. 1 Why Methane Hydrate Matters for the United States? ..................................................... 4 Resource Potential of Methane Hydrate .......................................................................... 5 Implications of Methane Hydrate on Safety and Seafloor Stability

311

Venting and leaking of methane from shale gas development: response to Cathles et al.  

Science Journals Connector (OSTI)

In April 2011, we published the first comprehensive analysis of greenhouse gas (GHG) emissions from shale gas obtained by hydraulic fracturing, with a focus...2012...). Here, we respond to those criticisms. We st...

Robert W. Howarth; Renee Santoro; Anthony Ingraffea

2012-07-01T23:59:59.000Z

312

The basics of coalbed methane  

SciTech Connect (OSTI)

The report is an overview of coalbed methane (CBM), also known as coal seam gas. It provides an overview of what coalbed methane is and the current status of global coalbed methane exploration and production. Topics covered in the report include: An analysis of the natural gas industry, including current and future production, consumption, and reserves; A detailed description of coalbed methane, its characteristics, and future potential; An analysis of the key business factors that are driving the increased interest in coalbed methane; An analysis of the barriers that are hindering the development of coalbed methane; An overview of the technologies used for coalbed methane production and water treatment; and Profiles of key coalbed methane producing countries. 25 figs., 5 tabs., 1 app.

NONE

2006-12-15T23:59:59.000Z

313

Syngas methanation for substitute natural gas over Ni–Mg/Al2O3 catalyst in fixed and fluidized bed reactors  

Science Journals Connector (OSTI)

Abstract A comparative study was conducted for laboratory syngas methanation over a self-made Ni–Mg/Al2O3 catalyst to demonstrate the technical advantages of fluidized bed over fixed bed reactor. At different reaction temperatures, gas velocities and pressures, the CO conversion and selectivity to CH4 in fluidized bed were shown to be higher than in fixed bed, and much closer to the thermodynamic equilibriums. The spent catalysts from fluidized bed methanation had distinctively low and easy-oxidizing deposited carbon in comparison with that from fixed bed. The results were attributed to the bigger effective catalytic surface, better heat and mass transfer in fluidized bed reactor.

Jiao Liu; Wenlong Shen; Dianmiao Cui; Jian Yu; Fabing Su; Guangwen Xu

2013-01-01T23:59:59.000Z

314

Landfill site selection and landfill liner design for Ankara, Turkey  

Science Journals Connector (OSTI)

Considering the high population growth rate of Ankara, it is inevitable that landfill(s) will be required in the area ... scope of this study is to select alternative landfill sites for Ankara based on the growin...

Gözde P?nar Yal; Haluk Akgün

2013-11-01T23:59:59.000Z

315

Study of Lean Premixed Methane Combustion with CO2 Dilution under Gas Turbine Conditions  

Science Journals Connector (OSTI)

In gas turbines, high air dilution is used in order to keep the turbine inlet temperature (TIT)(7) below the metallurgical temperature limit of the first turbine stages. ... It was shown that CO2 dilution could be an efficient method for increasing CO2 concentration in exhaust gas, thus making its capture easier. ... Efforts were focused on the impacts on cycle efficiency, combustion, gas turbine components, and cost. ...

Stéphanie de Persis; Gilles Cabot; Laure Pillier; Iskender Gökalp; Abdelakrim Mourad Boukhalfa

2012-12-29T23:59:59.000Z

316

The presence of natural gas-primarily methane-in the shale layers...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

rigorous reservoir characterization, horizontal drilling, and lower cost approaches to hydraulic fracturing to make the Barnett Shale economic. 2005 to 2010 - Gas production...

317

Prediction of coalbed methane reservoir performance with type curves.  

E-Print Network [OSTI]

??Coalbed methane is an unconventional gas resource that consists of methane production from the coal seams. CBM reservoirs are dual-porosity systems that are characterized by… (more)

Bhavsar, Amol Bhaskar.

2005-01-01T23:59:59.000Z

318

The Optimization of Well Spacing in a Coalbed Methane Reservoir.  

E-Print Network [OSTI]

??Numerical reservoir simulation has been used to describe mechanism of methane gas desorption process, diffusion process, and fluid flow in a coalbed methane reservoir. The… (more)

Sinurat, Pahala Dominicus

2012-01-01T23:59:59.000Z

319

Landfill Bioreactor Financial Analysis—Monterey Peninsula Landfill, Marina, California  

Science Journals Connector (OSTI)

The Monterey Peninsula Landfill, owned and operated by the Monterey Regional ... that is permitted under the State of California landfill regulations. In order to evaluate the potential...

S. Purdy; R. Shedden

2009-01-01T23:59:59.000Z

320

Methane Credit | Open Energy Information  

Open Energy Info (EERE)

Methane Credit Methane Credit Jump to: navigation, search Name Methane Credit Place Charlotte, North Carolina Zip 28273 Product Specialises in utilising methane produced on municipal landfill sites. Coordinates 35.2225°, -80.837539° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.2225,"lon":-80.837539,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "landfill gas methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Conversion of forest residues to a methane-rich gas. Detailed economic feasibility study  

SciTech Connect (OSTI)

An economic evaluation of the application of the multi-solid fluid reactor design to wood gasification was completed. The processing options examined include plant capacity, production of a high-Btu (1006 Btu/SCF HHV) gas versus an intermediate-Btu gas (379 Btu/SCF HHV), and operating pressure. 9 figs., 29 tabs.

Not Available

1986-03-01T23:59:59.000Z

322

Measurements of methane emissions at natural gas production sites in the United States  

Science Journals Connector (OSTI)

...to a lower pressure destination...atmospheric pressure tank, rather...This lower pressure end point allows more gas to flow...such as a combustor. The nine unloading...population of high emitting wells...America’s Natural Gas Alliance...

David T. Allen; Vincent M. Torres; James Thomas; David W. Sullivan; Matthew Harrison; Al Hendler; Scott C. Herndon; Charles E. Kolb; Matthew P. Fraser; A. Daniel Hill; Brian K. Lamb; Jennifer Miskimins; Robert F. Sawyer; John H. Seinfeld

2013-01-01T23:59:59.000Z

323

University of Washington Montlake Landfill Oversight Committee  

E-Print Network [OSTI]

University of Washington Montlake Landfill Oversight Committee Montlake Landfill Project Guide Department with the review and approval of the Montlake Landfill Oversight Committee. #12;Montlake Landfill ...................................................................................................................................3 Figure 1 ­ Approximate Boundaries of the Montlake Landfill

Wilcock, William

324

Aerobic landfill bioreactor  

DOE Patents [OSTI]

The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

Hudgins, Mark P (Aiken, SC); Bessette, Bernard J (Aiken, SC); March, John (Winterville, GA); McComb, Scott T. (Andersonville, SC)

2000-01-01T23:59:59.000Z

325

Aerobic landfill bioreactor  

DOE Patents [OSTI]

The present invention includes a system of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

Hudgins, Mark P (Aiken, SC); Bessette, Bernard J (Aiken, SC); March, John C (Winterville, GA); McComb, Scott T. (Andersonville, SC)

2002-01-01T23:59:59.000Z

326

Methane/nitrogen separation process  

DOE Patents [OSTI]

A membrane separation process is described for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. The authors have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen. 11 figs.

Baker, R.W.; Lokhandwala, K.A.; Pinnau, I.; Segelke, S.

1997-09-23T23:59:59.000Z

327

Methane/nitrogen separation process  

DOE Patents [OSTI]

A membrane separation process for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. We have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen.

Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Menlo Park, CA); Pinnau, Ingo (Palo Alto, CA); Segelke, Scott (Mountain View, CA)

1997-01-01T23:59:59.000Z

328

Leachate Free Hazardous Waste Landfill  

Science Journals Connector (OSTI)

Experiences of the past few decades have shown that controlling leachate cannot be done by sealing only the landfill bed, but rather by sealing landfill top cover.

Dipl.Ing. Karl Rohrhofer; Dr.Techn. Fariar Kohzad

1990-01-01T23:59:59.000Z

329

Coalbed Methane Production Analysis and Filter Simulation for Quantifying Gas Drainage from Coal Seams  

Science Journals Connector (OSTI)

Gas and water production rate analysis of CBM wells help determining dynamic reservoir properties of ... for estimating GIP and its change between particular production periods. Moreover, geostatistics can be use...

C. Özgen Karacan; Ricardo A. Olea

2014-01-01T23:59:59.000Z

330

High-pressure/high-temperature gas-solubility study in hydrogen-phenanthrene and methane-phenanthrene systems using static and chromatographic techniques  

SciTech Connect (OSTI)

The design and discovery of sources for alternative energy such as coal liquefaction has become of major importance over the past two decades. One of the major problems in such design in the lack of available data, particularly, for gas solubility in polycyclic aromatics at high temperature and pressure. Static and gas-liquid partition chromatographic methods were used for the study of hydrogen-phenanthrene and methane-phenanthrene systems. The static data for these two binaries were taken along 398.2, 423.2, 448.2, and 473.2 K isotherms up to 25.23 MPa. Gas-liquid partition chromatography was used to study the infinite dilution behavior of methane, ethane, propane, n-butane, and carbon dioxide in the hydrogen-phenanthrene system as well as hydrogen, ethane, n-butane, and carbon dioxide in the methane-phenanthrene binary. The principle objective was to examine the role of the elution gas. Temperatures were along the same isotherms as the static data and up to 20.77 MPa. With the exception of carbon dioxide, Henry's constants were calculated for all systems. Expressions for the heat of solution as a function of pressure were derived for both binary and chromatographic data. Estimates of delta H/sub i/sup sol/ at high pressure were presented.

Malone, P.V.

1987-01-01T23:59:59.000Z

331

TEMPORAL VARIATION OF LFG EMISSION FROM DIFFERENT TYPES OF  

E-Print Network [OSTI]

). This reduction of the landfill gas (LFG) emissions requires the ability to measure low methane emissions methane emissions were observed only near the landfill gas

Paris-Sud XI, Université de

332

Method of coalbed methane production  

SciTech Connect (OSTI)

This patent describes a method for producing coalbed methane from a coal seam containing coalbed methane and penetrated by at least one injection well and at least one producing well. It comprises: injecting an inert gas through the injection well and into the coal seam. The inert gas being a gas that does not react with the coal under conditions of use and that does not significantly adsorb to the coal; and producing a gas from the production well which consists essentially of the inert gas, coalbed methane, or mixtures thereof.

Puri, R.; Stein, M.H.

1989-11-28T23:59:59.000Z

333

NETL: Methane Hydrates - DOE/NETL Projects - Mapping Permafrost and Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mapping Permafrost and Gas Hydrate using Marine Controlled Source Electromagnetic Methods (CSEM) Last Reviewed 12/18/2013 Mapping Permafrost and Gas Hydrate using Marine Controlled Source Electromagnetic Methods (CSEM) Last Reviewed 12/18/2013 DE-FE0010144 Goal The objective of this project is to develop and test a towed electromagnetic source and receiver system suitable for deployment from small coastal vessels to map near-surface electrical structure in shallow water. The system will be used to collect permafrost data in the shallow water of the U.S. Beaufort Inner Shelf at locations coincident with seismic lines collected by the U.S. Geological Survey (USGS). The electromagnetic data will be used to identify the geometry, extent, and physical properties of permafrost and any associated gas hydrate in order to provide a baseline for future studies of the effects of any climate-driven dissociation of

334

Russian Policy on Methane Emissions in the Oil and Gas Sector: A Case Study in Opportunities and Challenges in Reducing Short-Lived Forcers  

SciTech Connect (OSTI)

This paper uses Russian policy in the oil and gas sector as a case study in assessing options and challenges for scaling-up emission reductions. We examine the challenges to achieving large-scale emission reductions, successes that companies have achieved to date, how Russia has sought to influence methane emissions through its environmental fine system, and options for helping companies achieve large-scale emission reductions in the future through simpler and clearer incentives.

Evans, Meredydd; Roshchanka, Volha

2014-08-04T23:59:59.000Z

335

E-Print Network 3.0 - assessing landfill performance Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and WTE waste management options... Transfer Stations (MTS); Life Cycle Assessment (LCA); Landfill Gas (LFG): Geographic Wormation Systems (GIS... . Care has been taken to...

336

E-Print Network 3.0 - areas treating landfill Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conference COMPARISON OF AIR EMISSIONS FROM WASTE MANAGEMENT FACILITIES Summary: .K. dioxins emissions have been reported in the fugitive gas emissions from landfills as well as...

337

Sorption model of trichloroethylene (TCE) and benezene in municipal landfill materials.  

E-Print Network [OSTI]

??This research is intended to establish a mathematical model describing the mass transfer of trace gas in landfill. Experimental data used for calibration were reported… (more)

Chuang, Yuh-Lin

2012-01-01T23:59:59.000Z

338

New Methane Hydrate Research: Investing in Our Energy Future | Department  

Broader source: Energy.gov (indexed) [DOE]

Methane Hydrate Research: Investing in Our Energy Future Methane Hydrate Research: Investing in Our Energy Future New Methane Hydrate Research: Investing in Our Energy Future August 31, 2012 - 1:37pm Addthis Methane hydrates are 3D ice-lattice structures with natural gas locked inside. If methane hydrate is either warmed or depressurized, it will release the trapped natural gas. Methane hydrates are 3D ice-lattice structures with natural gas locked inside. If methane hydrate is either warmed or depressurized, it will release the trapped natural gas. Jenny Hakun What Are Methane Hydrates? Methane hydrates are 3D ice-lattice structures with natural gas locked inside. The substance looks remarkably like white ice, but it does not behave like ice. If methane hydrate is either warmed or depressurized, it will release the trapped natural gas.

339

Microbial degradation of sedimentary organic matter associated with shale gas and coalbed methane in eastern Illinois Basin (Indiana), USA  

Science Journals Connector (OSTI)

Molecular biodegradation indices for extracts from five Pennsylvanian coals and six New Albany Shale (Devonian – Mississippian) samples from the eastern part of the Illinois Basin help constrain relationships between the degradation of biomarkers and the generation of coalbed methane and shale gas. Investigation of these gas source rocks of varying thermal maturity from different depths facilitates evaluation of the association of microbial degradation with biogenic gas formation distinct from thermogenic processes. Extensive biodegradation of both aliphatic and aromatic hydrocarbons is observed in the coal extracts, whereas in shale extracts only short-chain (C15–C19) n-alkanes from the shallowest depth appear to be microbially altered with minimal evidence for losses of acyclic isoprenoid alkanes and aromatic hydrocarbons. By contrast, biodegradation of aromatic hydrocarbons, specifically alkylated naphthalenes and phenanthrenes, occurs in coal extracts in concert with losses of n-alkanes attributable to microbial activity. Thus, the progress of hydrocarbon biodegradation in coals differs from the sequence recognized in petroleum where the effects of microbial alteration of aromatic constituents only appear after extensive losses of aliphatic compounds. The extent of hydrocarbon biodegradation in these coals also decreases with depth, as recorded by the ?(nC25–nC30) index (i.e. abundance relative to 17?(H), 21?(H)-hopane) among the aliphatic constituents and several aromatic compounds (methyl-, dimethyl-, and trimethylnaphthalenes, phenanthrene, and trimethyl- and tetramethylphananthrenes). However, the depth variations in the distributions of aliphatic and aromatic hydrocarbons in the shale extracts primarily reflect the effects of thermal maturity rather than biodegradation. Overall, variations in the extent and patterns of biomarker biodegradation among coals and shales likely reflect their distinct microbial consortia that can be attributed to differences in (i) surviving microorganisms and inoculations from meteoric water, (ii) the characteristics of the sedimentary organic matter, especially the preponderance of aromatic constituents in coals, and (iii) the accessibility to that substrate through pores and cleats. These results help constrain the processes involved in biodegradation and controls on its extent, which, in turn, assist in recognizing sites favorable for methanogenesis and improved estimates of biogenic gas resources in the Illinois Basin.

Ling Gao; Simon C. Brassell; Maria Mastalerz; Arndt Schimmelmann

2013-01-01T23:59:59.000Z

340

Electrochemical methane sensor  

DOE Patents [OSTI]

A method and instrument including an electrochemical cell for the detection and measurement of methane in a gas by the oxidation of methane electrochemically at a working electrode in a nonaqueous electrolyte at a voltage about 1.4 volts vs R.H.E. (the reversible hydrogen electrode potential in the same electrolyte), and the measurement of the electrical signal resulting from the electrochemical oxidation.

Zaromb, S.; Otagawa, T.; Stetter, J.R.

1984-08-27T23:59:59.000Z

Note: This page contains sample records for the topic "landfill gas methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Methane Hydrates R&D Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Methane Hydrates R&D Program Methane Hydrates R&D Program Gas hydrates are a naturally-occurring combination of methane gas and water that form under specific conditions of low temperature and high pressure. Once thought to be rare in nature, gas hydrates are now known to occur in great abundance in association with arctic permafrost and in the shallow sediments of the deep-water continental shelves. The most recent estimates of gas hydrate abundance suggest that they contain

342

I 95 Landfill Phase II Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Landfill Phase II Biomass Facility Landfill Phase II Biomass Facility Jump to: navigation, search Name I 95 Landfill Phase II Biomass Facility Facility I 95 Landfill Phase II Sector Biomass Facility Type Landfill Gas Location Fairfax County, Virginia Coordinates 38.9085472°, -77.2405153° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.9085472,"lon":-77.2405153,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

343

Prima Desheha Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Prima Desheha Landfill Biomass Facility Prima Desheha Landfill Biomass Facility Jump to: navigation, search Name Prima Desheha Landfill Biomass Facility Facility Prima Desheha Landfill Sector Biomass Facility Type Landfill Gas Location Orange County, California Coordinates 33.7174708°, -117.8311428° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.7174708,"lon":-117.8311428,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

344

Four Hills Nashua Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Four Hills Nashua Landfill Biomass Facility Four Hills Nashua Landfill Biomass Facility Jump to: navigation, search Name Four Hills Nashua Landfill Biomass Facility Facility Four Hills Nashua Landfill Sector Biomass Facility Type Landfill Gas Location Hillsborough County, New Hampshire Coordinates 42.8334794°, -71.6673352° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.8334794,"lon":-71.6673352,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

345

Ocean County Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

County Landfill Biomass Facility County Landfill Biomass Facility Jump to: navigation, search Name Ocean County Landfill Biomass Facility Facility Ocean County Landfill Sector Biomass Facility Type Landfill Gas Location Ocean County, New Jersey Coordinates 39.9652553°, -74.3118212° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.9652553,"lon":-74.3118212,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

346

Cuyahoga Regional Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Landfill Biomass Facility Landfill Biomass Facility Jump to: navigation, search Name Cuyahoga Regional Landfill Biomass Facility Facility Cuyahoga Regional Landfill Sector Biomass Facility Type Landfill Gas Location Cuyahoga County, Ohio Coordinates 41.7048247°, -81.7787021° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7048247,"lon":-81.7787021,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

347

Miramar Landfill Metro Biosolids Center Biomass Facility | Open Energy  

Open Energy Info (EERE)

Miramar Landfill Metro Biosolids Center Biomass Facility Miramar Landfill Metro Biosolids Center Biomass Facility Jump to: navigation, search Name Miramar Landfill Metro Biosolids Center Biomass Facility Facility Miramar Landfill Metro Biosolids Center Sector Biomass Facility Type Landfill Gas Location San Diego County, California Coordinates 33.0933809°, -116.6081653° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.0933809,"lon":-116.6081653,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

348

Mid Valley Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Landfill Biomass Facility Landfill Biomass Facility Jump to: navigation, search Name Mid Valley Landfill Biomass Facility Facility Mid Valley Landfill Sector Biomass Facility Type Landfill Gas Location San Bernardino County, California Coordinates 34.9592083°, -116.419389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9592083,"lon":-116.419389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

349

Blackburn Landfill Co-Generation Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Blackburn Landfill Co-Generation Biomass Facility Blackburn Landfill Co-Generation Biomass Facility Jump to: navigation, search Name Blackburn Landfill Co-Generation Biomass Facility Facility Blackburn Landfill Co-Generation Sector Biomass Facility Type Landfill Gas Location Catawba County, North Carolina Coordinates 35.6840748°, -81.2518833° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.6840748,"lon":-81.2518833,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

350

Pearl Hollow Landfil Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Pearl Hollow Landfil Biomass Facility Pearl Hollow Landfil Biomass Facility Jump to: navigation, search Name Pearl Hollow Landfil Biomass Facility Facility Pearl Hollow Landfil Sector Biomass Facility Type Landfill Gas Location Hardin County, Kentucky Coordinates 37.6565708°, -86.0121573° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.6565708,"lon":-86.0121573,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

351

Constraints on Asian and European sources of methane from CH4 -C2H6-CO correlations in Asian outflow  

E-Print Network [OSTI]

of emissions from coal mining and landfills. 2 #12;1. Introduction Atmospheric methane (CH4) is an importantConstraints on Asian and European sources of methane from CH4 - C2H6-CO correlations in Asian and European methane sources Submitted to J. Geophys. Res.: 22 December 2003 Revised: 9 April 2004 1 #12

Jacob, Daniel J.

352

Natural gas cleanup: Evaluation of a molecular sieve carbon as a pressure swing adsorbent for the separation of methane/nitrogen mixtures  

SciTech Connect (OSTI)

This report describes the results of a preliminary evaluation to determine the technical feasibility of using a molecular sieve carbon manufactured by the Takeda Chemical Company of Japan in a pressure owing adsorption cycle for upgrading natural gas (methane) contaminated with nitrogen. Adsorption tests were conducted using this adsorbent in two, four, and five-step adsorption cycles. Separation performance was evaluated in terms of product purity, product recovery, and sorbent productivity for all tests. The tests were conducted in a small, single-column adsorption apparatus that held 120 grams of the adsorbent. Test variables included adsorption pressure, pressurization rate, purge rate and volume, feed rate, and flow direction in the steps from which the product was collected. Sorbent regeneration was accomplished by purging the column with the feed gas mixture for all but one test series where a pure methane purge was used. The ratio between the volumes of the pressurization gas and the purge gas streams was found to be an important factor in determining separation performance. Flow rates in the various cycle steps had no significant effect. Countercurrent flow in the blow-down and purge steps improved separation performance. Separation performance appears to improve with increasing adsorption pressure, but because there are a number of interrelated variables that are also effected by pressure, further testing will be needed to verify this. The work demonstrates that a molecular sieve carbon can be used to separate a mixture of methane and nitrogen when used in a pressure swing cycle with regeneration by purge. Further work is needed to increase product purity and product recovery.

Grimes, R.W.

1994-06-01T23:59:59.000Z

353

Transforming trash: reuse as a waste management and climate change mitigation strategy  

E-Print Network [OSTI]

from a National Landfill Greenhouse Gas Inventory Model. ”Methane generation in landfills. ” Renewable Energy 32:50 3.2.1. Landfill

Vergara, Sintana Eugenia

2011-01-01T23:59:59.000Z

354

5341 sanitary landfill [n] (1)  

Science Journals Connector (OSTI)

envir....(Process of controlled dumping [US]/tipping [UK] of industrial or domestic waste material on a landfill site by dumping/tipping in layers, each... sanitary landfill [US] 2 ...

2010-01-01T23:59:59.000Z

355

Hydrogeological challenges in a low-carbon economy  

Science Journals Connector (OSTI)

...which hydrogeology has a key role. Landfill gas The production of methane within...1993), it was realized that landfill gas has significant potential as an...corresponds closely to that for landfill gas: it is far better to combust methane...

Paul L. Younger

356

Emission of methane from plants  

Science Journals Connector (OSTI)

...basis for the efforts to ameliorate fluxes of this potent greenhouse gas, which may contribute significantly to global warming...was emitting significant quantities of methane under ambient lighting in laboratory-controlled conditions. We also examined other...

2009-01-01T23:59:59.000Z

357

Applied reaction dynamics: Efficient synthesis gas production via single collision partial oxidation of methane to CO on Rh,,111...  

E-Print Network [OSTI]

of the incident beam's translational energy, and approaches unity for energies greater than 1.3 eV. Comparison for methanol synthesis. One method is the direct partial oxidation of methane, CH4 + 1/2 O2 CO + 2H2. 1 This process has been extensively studied using high surface area supported Rh catalysts in flow reactors

Sibener, Steven

358

Rapid Analysis of Dissolved Methane, Ethylene, Acetylene and Ethane using Partition Coefficients and Headspace-Gas Chromatography  

Science Journals Connector (OSTI)

......stations due to over pressurization of storage tanks (8). Monitoring dissolved C1-C2...municipal wastewater outflow, or petroleum storage facility. The 250 mL sampling vials were...determination of methane dissolved in seawater. Anal.Chem.62: 24082412 (1990......

Jasmine S. Lomond; Anthony Z. Tong

2011-07-01T23:59:59.000Z

359

Production of methane gas from organic fraction municipal solid waste (OFMSW) via anaerobic process: application methodology for the Malaysian condition  

Science Journals Connector (OSTI)

Solid waste management in Malaysia is confronted with many problems, including low collection coverage, irregular collection services, inadequate equipment used for waste collection, crude open dumping and burning without air and water pollution control systems, inadequate legal provisions and resource constraints. These problems have various effects on the development of the solid waste management system in Malaysia. Anaerobic digestion has been suggested as an alternative method for removing high concentrations of organic waste. In this study, two types of anaerobic digesters which are Simulated Landfill Bioreactor (SLBR) and Anaerobic Solid-Liquid (ASL) reactor were proposed. The reactors were operated at a temperature 60°C, analysed for biogas production and volatile fatty acid.

Irnis Azura Zakarya; Ismail Abustan; Norli Ismail; Mohd Suffian Yusoff

2013-01-01T23:59:59.000Z

360

E-Print Network 3.0 - atmospheric methane consumption Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oxidation of Methane with Air in AC Electric Gas Discharge Summary: , and specific energy consumption. Methane and oxygen conversions increased with input power but...

Note: This page contains sample records for the topic "landfill gas methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Presentations from the March 27th - 28th Methane Hydrates Advisory...  

Broader source: Energy.gov (indexed) [DOE]

the March 27th - 28th Methane Hydrates Advisory Committee Meeting Presentations from the March 27th - 28th Methane Hydrates Advisory Committee Meeting International Gas Hydrate...

362

Hydrologic evaluation of landfill performance (HELP) modeling in bioreactor landfill design and permitting  

Science Journals Connector (OSTI)

The practice of operating municipal solid waste landfills as bioreactor landfills has become more common over the past ... balance and flow is more critical in such landfills than in dry landfills, researchers ha...

Qiyong Xu; Hwidong Kim; Pradeep Jain…

2012-03-01T23:59:59.000Z

363

Why Sequence a Methane-Oxidizing Archaean?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a Methane-Oxidizing Archaeon? a Methane-Oxidizing Archaeon? Methane is a potent greenhouse gas whose atmospheric concentration has increased significantly because of anthropogenic activities and fluctuated naturally over glacial and interglacial cycles. While the importance of methane in Earth's climate dynamics has been well established, the global processes regulating its oceanic cycling remain poorly understood. Although there are high rates of methane production in many marine sedimentary environments (including a number that have been targeted as petroleum reserves), net methane sources from the ocean to the atmosphere appear to be small. This is due in large part to a biogeochemical process known as the anaerobic oxidation of methane (AOM). Microbially mediated AOM reduces methane flux from ocean to atmosphere, stimulates subsurface microbial

364

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Assessing the Efficacy of the Aerobic Methanotropic Biofilter in Methane Hydrate Environments Last Reviewed 1/8/2013 Assessing the Efficacy of the Aerobic Methanotropic Biofilter in Methane Hydrate Environments Last Reviewed 1/8/2013 DE-NT0005667 Goal The goal of this project is to assess the efficacy of aerobic methanotrophy in preventing the escape of methane from marine, hydrate-bearing reservoirs to the atmosphere and ultimately to better define the role of aerobic methanotrophy in the global carbon cycle. Graph overlayed on photo - Methane seeps with the resulting methane plume Methane seeps with the resulting methane plume, Geophysical Research Letters, November 2007 Performers University of California – Santa Barbara, Santa Barbara (UCSB), CA 93106 Background The global methane reservoir in the form of gas hydrate is estimated at 500–10,000 Gt (KVENVOLDEN, 1995; MILKOV, 2004). This pool of carbon

365

Process for separating nitrogen from methane using microchannel process technology  

DOE Patents [OSTI]

The disclosed invention relates to a process for separating methane or nitrogen from a fluid mixture comprising methane and nitrogen, the process comprising: (A) flowing the fluid mixture into a microchannel separator, the microchannel separator comprising a plurality of process microchannels containing a sorption medium, the fluid mixture being maintained in the microchannel separator until at least part of the methane or nitrogen is sorbed by the sorption medium, and removing non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing the methane or nitrogen from the sorption medium and removing the desorbed methane or nitrogen from the microchannel separator. The process is suitable for upgrading methane from coal mines, landfills, and other sub-quality sources.

Tonkovich, Anna Lee (Marysville, OH); Qiu, Dongming (Dublin, OH); Dritz, Terence Andrew (Worthington, OH); Neagle, Paul (Westerville, OH); Litt, Robert Dwayne (Westerville, OH); Arora, Ravi (Dublin, OH); Lamont, Michael Jay (Hilliard, OH); Pagnotto, Kristina M. (Cincinnati, OH)

2007-07-31T23:59:59.000Z

366

Methane Hydrates and Climate Change | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hydrates and Climate Change Hydrates and Climate Change Methane Hydrates and Climate Change Methane hydrates store huge volumes of methane formed by the bacterial decay of organic matter or leaked from underlying oil and natural gas deposits. The active formation of methane hydrates in the shallow crust prevents methane, a greenhouse gas, from entering the atmosphere. On the other hand, warming of arctic sediments or ocean waters has the potential to cause methane hydrate to dissociate, releasing methane into the deepwater sediments, the ocean or atmosphere. DOE is conducting research to understand the mechanisms and volumes involved in these little-studied processes. DOE environmental and climate change research projects related to Arctic methane hydrate deposits include: Characterization of Methane Degradation and Methane-Degrading

367

Update on Hilo Landfill Leachate TUpdate on Hilo Landfill Leachate TUpdate on Hilo Landfill Leachate TUpdate on Hilo Landfill Leachate TUpdate on Hilo Landfill Leachate Treatment Studyreatment Studyreatment Studyreatment Studyreatment Study continued on p  

E-Print Network [OSTI]

Update on Hilo Landfill Leachate TUpdate on Hilo Landfill Leachate TUpdate on Hilo Landfill Leachate TUpdate on Hilo Landfill Leachate TUpdate on Hilo Landfill Leachate Treatment Studyreatment, the County of Hawaii is considering an expansion of the South Hilo Sanitary Landfill (SHSL

368

GEOSYNTHETIC REINFORCEMENT IN LANDFILL DESIGN: US PERSPECTIVES  

E-Print Network [OSTI]

GEOSYNTHETIC REINFORCEMENT IN LANDFILL DESIGN: US PERSPECTIVES Jorge G. Zornberg1 , M. ASCE Abstract: Geosynthetic reinforcement in landfill applications in the US has involved conventional reinforced soil structures and veneer stabilization with reinforcements placed along the landfill slope

Zornberg, Jorge G.

369

NETL: Methane Hydrates - Hydrate Newsletter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Methane Hydrate R&D Program Newsletter Methane Hydrate R&D Program Newsletter An image of a hydrate burning overlayed with the Newsletter Title: Fire in the Ice The methane hydrate newsletter, Fire in the Ice, is a bi-annual publication highlighting the latest developments in international gas hydrates R&D. Fire in the Ice promotes the exchange of information amoung those involved in gas hydrates research and development, and also recognizes the efforts of a hydrate researcher in each issue. The newsletter now reaches nearly 1300 scientists and other interested individuals in sixteen countries. To subscribe electronically to Fire in the Ice please send an email to karl.lang@contr.netl.doe.gov Please click on the links below to access issues of "Fire in the Ice". More on Methane Hydrates

370

Chapter 8 - Methane Hydrates  

Science Journals Connector (OSTI)

Gas hydrate is a solid, naturally occurring substance consisting predominantly of methane gas and water. Recent scientific drilling programs in Japan, Canada, the United States, Korea and India have demonstrated that gas hydrate occurs broadly and in a variety of forms in shallow sediments of the outer continental shelves and in Arctic regions. Field, laboratory and numerical modelling studies conducted to date indicate that gas can be extracted from gas hydrates with existing production technologies, particularly for those deposits in which the gas hydrate exists as pore-filling grains at high saturation in sand-rich reservoirs. A series of regional resource assessments indicate that substantial volumes of gas hydrate likely exist in sand-rich deposits. Recent field programs in Japan, Canada and in the United States have demonstrated the technical viability of methane extraction from gas-hydrate-bearing sand reservoirs and have investigated a range of potential production scenarios. At present, basic reservoir depressurisation shows the greatest promise and can be conducted using primarily standard industry equipment and procedures. Depressurisation is expected to be the foundation of future production systems; additional processes, such as thermal stimulation, mechanical stimulation and chemical injection, will likely also be integrated as dictated by local geological and other conditions. An innovative carbon dioxide and methane swapping technology is also being studied as a method to produce gas from select gas hydrate deposits. In addition, substantial additional volumes of gas hydrate have been found in dense arrays of grain-displacing veins and nodules in fine-grained, clay-dominated sediments; however, to date, no field tests, and very limited numerical modelling, have been conducted with regard to the production potential of such accumulations. Work remains to further refine: (1) the marine resource volumes within potential accumulations that can be produced through exploratory drilling programs; (2) the tools for gas hydrate detection and characterisation from remote sensing data; (3) the details of gas hydrate reservoir production behaviour through additional, well-monitored and longer duration field tests and (4) the understanding of the potential environmental impacts of gas hydrate resource development. The results of future production tests, in the context of varying market and energy supply conditions around the globe, will be the key to determine the ultimate timing and scale of the commercial production of natural gas from gas hydrates.

Ray Boswell; Koji Yamamoto; Sung-Rock Lee; Timothy Collett; Pushpendra Kumar; Scott Dallimore

2014-01-01T23:59:59.000Z

371

GTZ-Greenhouse Gas Calculator for Waste Management | Open Energy  

Open Energy Info (EERE)

GTZ-Greenhouse Gas Calculator for Waste Management GTZ-Greenhouse Gas Calculator for Waste Management Jump to: navigation, search Tool Summary Name: GTZ-Greenhouse Gas Calculator for Waste Management Agency/Company /Organization: GTZ Sector: Energy Website: www.gtz.de/en/themen/umwelt-infrastruktur/abfall/30026.htm References: GHG Calculator for Waste Management[1] Waste Management - GTZ Website[2] Logo: GTZ-Greenhouse Gas Calculator for Waste Management The necessity to reduce greenhouse gases and thus mitigate climate change is accepted worldwide. Especially in low- and middle-income countries, waste management causes a great part of the national greenhouse gas production, because landfills produce methane which has a particularly strong effect on climate change. Therefore, it is essential to minimize

372

Displacing Natural Gas Consumption and Lowering Emissions  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

fuels and thereby reduce their natural gas consumption. Opportunity gas fuels include biogas from animal and agri- cultural wastes, wastewater plants, and landfills, as well as...

373

Lifecycle impacts of natural gas to hydrogen pathways on urban air quality  

E-Print Network [OSTI]

examined use steam methane reforming (SMR) of natural gas topathways, based on steam methane reforming (SMR) of natural

Wang, Guihua; Ogden, Joan M; Nicholas, Michael A

2007-01-01T23:59:59.000Z

374

Global atmospheric methane: budget, changes and dangers  

Science Journals Connector (OSTI)

...In particular, wider use of heating and air-conditioning in rapidly...sectors (underground coal mines, oil and gas) and landfills by capturing...to reduce emissions from the oil and gas industry come from upgrading...the late-2009 US wellhead price of US$3 per 1000ft3), cost...

2011-01-01T23:59:59.000Z

375

Methane Hydrate Production Feasibility | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Production Feasibility Production Feasibility Methane Hydrate Production Feasibility The red curves are temperature profiles for various water depths; the blue line shows methane hydrate stability relative to temperature and pressure. The area enclosed by the two curves represents the area of methane hydrate stability. The red curves are temperature profiles for various water depths; the blue line shows methane hydrate stability relative to temperature and pressure. The area enclosed by the two curves represents the area of methane hydrate stability. Methane, the predominant component of natural gas, forms hydrate in the presence of water, low temperatures and high pressures. Alternatively, when the temperature is increased or the pressure decreased so that hydrates are outside their stability field, they dissociate into methane and water.

376

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Characterization and Decomposition Kinetic Studies of Methane Hydrate in Host Sediments under Subsurface Mimic Conditions Last Reviewed 02/17/2010 Characterization and Decomposition Kinetic Studies of Methane Hydrate in Host Sediments under Subsurface Mimic Conditions Last Reviewed 02/17/2010 EST-380-NEDA Goal The purpose of this study is to establish sediment lithology and quantification of methane in hydrates hosted in fine-grained sediments from the Gulf of Mexico (GoM), a marine site of methane hydrate occurrence. The results will help establish a correlation between laboratory data and hydrate accumulation field data on dispersed hydrates in the natural environment. Performer Brookhaven National Laboratory (BNL), Upton, New York 11973 Background Gas hydrates are located in permafrost and marine environments and show potential as a vast methane source worldwide. However, methane is about 17 times more potent a greenhouse gas than CO2 and the inherent instability of

377

Methane-steam reforming  

SciTech Connect (OSTI)

The literature relating to the kinetics of methane-steam reforming involving integral and differential reactor data, porous nickel catalysts and nickel foil, and data over large ranges of temperature (500 to 1700/sup 0/F), pressure (0.01 to 50 atm), and intrinsic catalyst activities (200,000-fold) was reviewed. A simple reversible first-order kinetic expression for the steam-methane reaction appears to be applicable throughout the operable region of steam-to-carbon ratios. Internal pore diffusion limitation on the conversion rate, due to catalyst size and/or intrinsic catalyst activity and total operating pressure was underlined. S-shaped Arrhenium plots (changing activation energy) are obtained when steam reforming is conducted over a temperature range sufficient to produce intrinsic kinetics (low temperature, inactive catalyst, or small catalyst size), pore diffusional limitations, and reaction on the outside surface. Homogeneous gas-phase kinetics appear to contribute only at relatively high temperature (1400/sup 0/F). In steam reforming, the water-gas shift reaction departs from its equilibrium position, especially at low methane conversion level. A general correlation of approach to water-gas shift equilibration as a function of conversion level only was indicated. (DP) 18 figures, 6 tables.

Van Hook, J.P.

1980-01-01T23:59:59.000Z

378

IMPACT ASSESSMENT OF THE OLD QUESNEL LANDFILL  

E-Print Network [OSTI]

#12;IMPACT ASSESSMENT OF THE OLD QUESNEL LANDFILL FINAL REPORT DOE FRAP 1995-05 Prepared for List of Figures Site Location/Legal Boundary Old Quesnel Landfill .....................................2 Schematic of Source Pathway Receptor Model at Old Quesnel Landfill .......4 Landfill Extent

379

An impact analysis of landfill for waste disposal on climate change: Case study of ‘Sudokwon Landfill Site 2nd Landfill’ in Korea  

Science Journals Connector (OSTI)

The impact of waste landfill on climate change was analyzed by comparing...4 emission from landfill with the potential energy conversion. For this...4 were used against Sudokwon Landfill Site 2nd Landfill, which ...

Seung Kyu Chun; Young Shin Bae

2012-11-01T23:59:59.000Z

380

Strategies for Local Low-Carbon Development  

E-Print Network [OSTI]

index.htm U.S. EPA. 2012c. “Landfill Gas Energy: A Guide to55 Policy 4.3 Landfill MethaneRecycling & Composting Landfill Methane Recovery Policy 4.1

Zhou, Nan

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "landfill gas methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Microsoft Word - Final TTR Landfill Extension EA--December 2006...  

National Nuclear Security Administration (NNSA)

continue until the landfill is closed. Once the landfill reaches capacity, sources of air pollution associated with the landfill would no longer be present. Waste transport...

382

Landfill Cover Revegetation at the Rocky Flats Environmental...  

Energy Savers [EERE]

Landfill Cover Revegetation at the Rocky Flats Environmental Technology Site Landfill Cover Revegetation at the Rocky Flats Environmental Technology Site Landfill Cover...

383

HMDC Kingsland Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

HMDC Kingsland Landfill Biomass Facility Jump to: navigation, search Name HMDC Kingsland Landfill Biomass Facility Facility HMDC Kingsland Landfill Sector Biomass Facility Type...

384

Risk assessment of gaseous emissions from municipal solid waste landfill: case study Rafah landfill, Palestine  

Science Journals Connector (OSTI)

This article describes the risk assessment of gaseous emissions from the municipal solid waste at Rafah landfill, Palestine. In this study, Gas-Sim model was used to quantify the gaseous emissions from the landfill and the Land-Gem model was used to verify the results. Risk assessment of both carcinogens and non-carcinogens were performed. Two scenarios were conducted namely with plant uptake and without plant uptake. The scenario with plant uptake revealed that the risk to residents is acceptable for non-carcinogens (risk value 0.45 > 1.0), while the risk to residents is not acceptable for carcinogens (risk value 2.69 × 10?6 risk to residents is acceptable for non-carcinogens (risk value 0.42 > 1.0), while the risk to residents is acceptable for carcinogens (risk value 2.855 × 10?7 > 10?6).

Ahmad A. Foul; Mazen Abualtayef; Basel Qrenawi

2014-01-01T23:59:59.000Z

385

Preliminary relative permeability estimates of methane hydrate-bearing sand  

E-Print Network [OSTI]

sand, the gas permeability of the sand with hydrate, and thefor gas and water through methane hydrate-bearing sand. X-hydrate dissociation and making a single-phase (gas or water) permeability measurement of the sand

Seol, Yongkoo; Kneafsey, Timothy J.; Tomutsa, Liviu; Moridis, George J.

2006-01-01T23:59:59.000Z

386

Risk assessment of landfill disposal sites - State of the art  

SciTech Connect (OSTI)

A risk assessment process can assist in drawing a cost-effective compromise between economic and environmental costs, thereby assuring that the philosophy of 'sustainable development' is adhered to. Nowadays risk analysis is in wide use to effectively manage environmental issues. Risk assessment is also applied to other subjects including health and safety, food, finance, ecology and epidemiology. The literature review of environmental risk assessments in general and risk assessment approaches particularly regarding landfill disposal sites undertaken by the authors, reveals that an integrated risk assessment methodology for landfill gas, leachate or degraded waste does not exist. A range of knowledge gaps is discovered in the literature reviewed to date. From the perspective of landfill leachate, this paper identifies the extent to which various risk analysis aspects are absent in the existing approaches.

Butt, Talib E. [Sustainability Centre in Glasgow (SCG), George Moore Building, 70 Cowcaddens Road, Glasgow Caledonian University, Glasgow G4 0BA, Scotland (United Kingdom)], E-mail: t_e_butt@hotmail.com; Lockley, Elaine [Be Environmental Ltd. Suite 213, Lomeshaye Business Village, Turner Road, Nelson, Lancashire, BB9 7DR, England (United Kingdom); Oduyemi, Kehinde O.K. [Built and Natural Environment, Baxter Building, University of Abertay Dundee, Bell Street, Dundee DD1 1HG, Scotland (United Kingdom)], E-mail: k.oduyemi@abertay.ac.uk

2008-07-01T23:59:59.000Z

387

Planetary and Space Science 54 (2006) 11771187 Titan's methane cycle  

E-Print Network [OSTI]

Abstract Methane is key to sustaining Titan's thick nitrogen atmosphere. However, methane is destroyed and the pressure induced opacity in the infrared, particularly by CH4­N2 and H2­N2 collisions in the troposphere), whose reaction with carbon grains or carbon dioxide in the crustal pores produces methane gas

Atreya, Sushil

388

I 95 Municipal Landfill Phase I Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Municipal Landfill Phase I Biomass Facility Municipal Landfill Phase I Biomass Facility Jump to: navigation, search Name I 95 Municipal Landfill Phase I Biomass Facility Facility I 95 Municipal Landfill Phase I Sector Biomass Facility Type Landfill Gas Location Fairfax County, Virginia Coordinates 38.9085472°, -77.2405153° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.9085472,"lon":-77.2405153,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

389

Environmental Impacts of Landfill Bioreactorcells in Comparison to Former Landfill Techniques  

Science Journals Connector (OSTI)

Former and present landfill techniques at the Filbornaplant in Helsingborg, South ... the waste residue. The results showthat optimised landfill bioreactor-cells have a higherturn-over rate...

Michael Binder; Torleif Bramryd

2001-07-01T23:59:59.000Z

390

Coal Bed Methane Primer  

SciTech Connect (OSTI)

During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of stakeholders to present a consistent and complete synopsis of the key issues involved with CBM. In light of the numerous CBM NEPA documents under development this Primer could be used to support various public scoping meetings and required public hearings throughout the Western States in the coming years.

Dan Arthur; Bruce Langhus; Jon Seekins

2005-05-25T23:59:59.000Z

391

Capture and Use of Coal Mine Ventilation-Air Methane  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Capture and use of Coal Mine Capture and use of Coal Mine Ventilation - air Methane Background Methane emissions from coal mines represent about 10 percent of the U.S. anthropogenic methane released to the atmosphere. Methane-the second most important non-water greenhouse gas-is 21 times as powerful as carbon dioxide (CO 2 ) in its global warming potential. Ventilation-air methane (VAM)-the exhaust air from underground coal mines-is the largest source of coal mine methane, accounting for about half of the methane emitted from coal mines in the United States. Unfortunately, because of the low methane concentration (0.3-1.5 percent) in ventilation air, its beneficial use is difficult. However, oxidizing the methane to CO 2 and water reduces its global warming potential by 87 percent. A thermal

392

Rapid Methane Oxidation in a Landfill Cover Soil  

Science Journals Connector (OSTI)

...fluor (1) as 14CO2 after combustion; radiocarbon recovery...core was assayed by dry combustion of freeze-dried, homogenized...Label recovered by dry combustion represents 14CH4 assimilated into microbial biomass and inorganic matter...

S. C. Whalen; W. S. Reeburgh; K. A. Sandbeck

1990-11-01T23:59:59.000Z

393

Rapid Analysis of Dissolved Methane, Ethylene, Acetylene and Ethane using Partition Coefficients and Headspace-Gas Chromatography  

Science Journals Connector (OSTI)

......technique, water samples are...high-purity inert gas, such as helium or nitrogen. The analytes...chromatographic gases including...purity air, nitrogen, and hydrogen...Deionized water was supplied...coefficient The solubility of gases in water changes with......

Jasmine S. Lomond; Anthony Z. Tong

2011-07-01T23:59:59.000Z

394

nat_gas_current_proj | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Natural Gas Resources Natural Gas Resources Enhanced Oil Recovery Deepwater Tech Methane Hydrate Natural Gas Resources Shale Gas | Environmental | Other Natural Gas Related...

395

Recirculation of municipal landfill leachate  

E-Print Network [OSTI]

RECIRCULATION OF MUNICIPAL LANDFILL LEACHATE A Thesis by BRIAN JUDE PINKO4ISKI Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1987 Major Subject...: Civil Engineering RECIRCULATION OF MUNICIPAL LANDFILL LEACHATE A Thesis by BRIAN JUDE PINKOWSKI Approved as to style and content by: Charles P. Giammona (Chair of Committee) Roy . Harm, (Member) Kirk W. Brown (Member) Donald A. Maxwel...

Pinkowski, Brian Jude

2012-06-07T23:59:59.000Z

396

Warum Methan in der Atmosphäre ansteigt — Die Rolle von Archaebakterien  

Science Journals Connector (OSTI)

Methan ist ein brennbares Gas, das nach seiner Herkunft auch als Erdgas, Grubengas oder Sumpfgas bezeichnet wird. Es ist der einfachste Kohlenwasserstoff. Seine Summenformel ist CH4.

Rudolf K. Thauer

1992-01-01T23:59:59.000Z

397

Source of methane and methods to control its formation in single chamber microbial electrolysis cells  

E-Print Network [OSTI]

Exoelectrogenic a b s t r a c t Methane production occurs during hydrogen gas generation in microbial electrolysis consumption of hydrogen gas in the headspace (applied voltage of 0.7 V) with methane production. High applied, there was a greater production of methane than hydrogen gas due to low current densities and long cycle times

398

A highly active and stable Co4N/?-Al2O3 catalyst for CO and CO2 methanation to produce synthetic natural gas (SNG)  

Science Journals Connector (OSTI)

Abstract Co4N/?-Al2O3 and Co/?-Al2O3 catalysts with different metal loadings were prepared by NH3 and H2-temperature programmed reaction method for the co-methanation of carbon oxides (CO and CO2). The catalysts were characterized by N2 adsorption–desorption, XRD, XPS, TEM-SAED, H2, CO, and CO2-TPD techniques. Results showed that the Co4N catalysts had higher activity than Co metal-supported catalysts due to their enhanced adsorption capacity, uniform metal dispersion, and superior metal-support interaction. Among the catalysts studied, 20Co4N/?-Al2O3 catalyst with 20 wt% metal loading showed the best performance. This catalyst achieved higher activity for CH4 formation between 200 and 300 °C and maintained high product selectivity (?98%). A 250 h stability test for 20Co4N/?-Al2O3 was also conducted at 350 °C and increased gas hourly space velocity (GHSV; 10,000 h?1). The spent catalyst was further characterized using XRD, TEM, and TGA analysis. Results revealed that the catalyst was highly resistant to metal sintering and carbon deposition, whereas high CO and CO2 conversion and CH4 selectivity were maintained even at a higher GHSV.

Rauf Razzaq; Chunshan Li; Muhammad Usman; Kenzi Suzuki; Suojiang Zhang

2015-01-01T23:59:59.000Z

399

Alternative Fuels Data Center: DeKalb County Turns Trash to Gas  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

reductions Related Links Natural Gas Fuel Basics Natural Gas Vehicles Natural Gas Vehicle Emissions Landfills Convert Biogas into RNG (video) DeKalb County Clean Cities Georgia...

400

Methane Hydrates R&D Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

abundance suggest that they contain perhaps more organic carbon that all the world's oil, gas, and coal combined. The primary mission of the Methane Hydrates R&D Program is to...

Note: This page contains sample records for the topic "landfill gas methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Hydraulic fracturing and wellbore completion of coalbed methane wells in the Powder River Basin, Wyoming: Implications for water and gas production  

SciTech Connect (OSTI)

Excessive water production (more than 7000 bbl/month per well) from many coalbed methane (CBM) wells in the Powder River Basin of Wyoming is also associated with significant delays in the time it takes for gas production to begin. Analysis of about 550 water-enhancement activities carried out during well completion demonstrates that such activities result in hydraulic fracturing of the coal. Water-enhancement activities, consists of pumping 60 bbl of water/min into the coal seam during approximately 15 min. This is done to clean the well-bore and to enhance CBM production. Hydraulic fracturing is of concern because vertical hydraulic fracture growth could extend into adjacent formations and potentially result in excess CBM water production and inefficient depressurization of coals. Analysis of the pressure-time records of the water-enhancement tests enabled us to determine the magnitude of the least principal stress (S{sub 3}) in the coal seams of 372 wells. These data reveal that because S{sub 3} switches between the minimum horizontal stress and the overburden at different locations, both vertical and horizontal hydraulic fracture growth is inferred to occur in the basin, depending on the exact location and coal layer. Relatively low water production is observed for wells with inferred horizontal fractures, whereas all of the wells associated with excessive water production are characterized by inferred vertical hydraulic fractures. The reason wells with exceptionally high water production show delays in gas production appears to be inefficient depressurization of the coal caused by water production from the formations outside the coal. To minimize CBM water production, we recommend that in areas of known vertical fracture propagation, the injection rate during the water-enhancement tests should be reduced to prevent the propagation of induced fractures into adjacent water-bearing formations.

Colmenares, L.B.; Zoback, M.D. [Stanford University, Stanford, CA (United States). Dept. of Geophysics

2007-01-15T23:59:59.000Z

402

Arctic Methane, Hydrates, and Global Climate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Arctic Methane, Hydrates, and Global Climate Arctic Methane, Hydrates, and Global Climate Speaker(s): Matthew T. Reagan Date: March 17, 2010 - 12:00pm Location: 90-3122 Paleooceanographic evidence has been used to postulate that methane may have had a significant role in regulating past climate. However, the behavior of contemporary permafrost deposits and oceanic methane hydrate deposits subjected to rapid temperature changes, like those now occurring in the arctic and those predicted under future climate change scenarios, has only recently been investigated. A recent expedition to the west coast of Spitsbergen discovered substantial methane gas plumes exiting the seafloor at depths that correspond to the upper limit of the receding gas hydrate stability zone. It has been suggested that these plumes may be the

403

Environmental factors influencing methanogenesis from refuse in landfill samples  

Science Journals Connector (OSTI)

Environmental factors influencing methanogenesis from refuse in landfill samples ... Biodegradability of Municipal Solid Waste Components in Laboratory-Scale Landfills ...

K. Rao Gurijala; Joseph M. Suflita

1993-06-01T23:59:59.000Z

404

Financing a Green Urban Economy: The Potential of the Clean Development Mechanism (CDM)  

Science Journals Connector (OSTI)

Landfill sites are a primary source of methane, which has a high global warming potential. Landfill gas can be captured by installing gas collection pipes and tube wells. Capturing landfill gas avoids emissions o...

Maike Sippel; Axel Michaelowa

2013-01-01T23:59:59.000Z

405

Diffusive Accumulation of Methane Bubbles in Seabed  

E-Print Network [OSTI]

We consider seabed bearing methane bubbles. In the absence of fractures the bubbles are immovably trapped in a porous matrix by surface tension forces; therefore the dominant mechanism of transfer of gas mass becomes the diffusion of gas molecules through the liquid. The adequate description of this process requires accounting "other-than-normal" (non-Fickian) diffusion effects, thermodiffusion and gravity action. We evaluate the diffusive flux of aqueous methane and predict the possibility of existence of bubble mass accumulation zones (which can appear independently from the presence/absence of hydrate stability zone) and effect of non-Fickian drift on the capacity of shallow and deep methane-hydrate deposits.

Goldobin, D S; Levesley, J; Lovell, M A; Rochelle, C A; Jackson, P; Haywood, A; Hunter, S; Rees, J

2010-01-01T23:59:59.000Z

406

An assessment of remediation measures and effects on groundwater quality at the Oneida County Sanitary Landfill  

SciTech Connect (OSTI)

The Oneida County Sanitary Landfill has operated from 1979 to the present. The four existing landfill cells were constructed based on standards that existed at their time of development from 1979 to 1995. The landfill was initially permitted as a natural attenuation landfill with a silt soil base liner and top cover. Groundwater sampling at the site showed that many constituents exceeded Wisconsin Administrative Code Chapter NR 140 (NR 140) standards throughout the 1980s. Measures that were implemented to remediate landfill impacts on groundwater quality included installation of a leachate/gas extraction system in 1990 and construction of a composite final cover over completed cells in 1994. In 1994, an Environmental Contamination Assessment (ECA) was conducted in accordance with NR 140 to evaluate landfill performance, groundwater quality trends, and future monitoring/remediation measures. Since implementation of the gas/leachate extraction system, there has been a reduction in detected volatile organic compounds in leachate, gas, gas condensate, and groundwater quality samples. Continued monitoring is necessary to evaluate remediation measures.

McGuire, P.; Otterson, S. [Rust Environment & Infrastructure, Sheboygan, WI (United States); Welhouse, G. [Environmental Compliance Consultants, Oshkosh, WI (United States)] [and others

1995-12-31T23:59:59.000Z

407

Chapter 18 - Worldwide Coal Mine Methane and Coalbed Methane Activities  

Science Journals Connector (OSTI)

Abstract The chapter provides an overview of coal bed methane production in all countries (except USA; covered in Chapter 17) around the world where there is a viable coal deposit. Coal deposits are shown in a map and coal bed methane reserves are estimated. All countries can follow the lead provided by USA in CBM production where 10% of total gas consumption (2 TCF/year) comes from coal seams. Exploitation of thick and deep coal seams using the latest technology can create a vast source of domestic energy for many countries around the world.

Charlee Boger; James S. Marshall; Raymond C. Pilcher

2014-01-01T23:59:59.000Z

408

ARM - Methane Background Information  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

our atmosphere's methane levels have more than doubled in the last 200 years. These methane levels contribute to the greenhouse effect, which contributes to overall climate change....

409

Municipal Solid WasteMunicipal Solid Waste Landfills In CitiesLandfills In Cities  

E-Print Network [OSTI]

Municipal Solid WasteMunicipal Solid Waste Landfills In CitiesLandfills In Cities ArunArun PurandarePurandare Eco Designs India Pvt. Ltd.Eco Designs India Pvt. Ltd. #12;What is a Landfill? A sanitary landfill refers to an engineered facility for the disposal of MSW designed and operated

Columbia University

410

Municipal Solid Waste Landfills The following Oklahoma landfills currently accept dead livestock. As each facility has different guidelines and  

E-Print Network [OSTI]

Municipal Solid Waste Landfills The following Oklahoma landfills currently accept dead livestock Adair Cherokee Nation Landfill 918-696-5342 Canadian OEMA Landfill 405-262-0161 Call ahead Carter Southern Okla. Regional Disposal Landfill 580-226-1276 Comanche City of Lawton Landfill 580

Balasundaram, Balabhaskar "Baski"

411

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collection and Microbiological Analysis of Gas Hydrate Cores Collection and Microbiological Analysis of Gas Hydrate Cores FWP-4340-60 and FWP-42C1-01 Goal Determine the presence and activity of methanogens in methane hydrate-bearing sediments. Background The project was set up to determine a fundamental modeling parameter - the amount of methane generated in deep sediments by methanogenic microorganisms. This would allow methane distribution models of gas hydrate reservoirs to accurately reflect an unknown volume and the distribution of biogenic methane within in a reservoir. The personnel at INEL have experience in similar biologic research and are considered to be experts by their global peers. Performer Idaho National Engineering and Environmental Laboratory (INEEL) - sample collection and analysis Location

412

T2LBM Version 1.0: Landfill bioreactor model for TOUGH2  

E-Print Network [OSTI]

7 2. LANDFILL BIODEGRADATIONof methanogenic activities in a landfill bioreactor treatingmethane production from landfill bioreactor, J. Env. Eng. ,

Oldenburg, Curtis M.

2001-01-01T23:59:59.000Z

413

Cleanup Agreed on for Niagara Landfill  

Science Journals Connector (OSTI)

Cleanup Agreed on for Niagara Landfill ... The U.S., New York state, and Occidental Chemical finally have reached agreement on how to clean up toxic liquid wastes at the Hyde Park landfill in Niagara, N.Y. ... The cleanup program is a multifaceted scheme designed to remove and destroy the most concentrated of the hazardous liquids buried in the landfill. ...

LOIS EMBER

1985-12-16T23:59:59.000Z

414

New instruments for measuring landfill gases  

Science Journals Connector (OSTI)

New instruments for measuring landfill gases ... The legislation mandates that landfill operators monitor more than 1200 active sites for specific pollution products. ... According to Varian, the instrumentation systems can be adapted easily to meet landfill testing requirements that might be enacted in states other than California. ...

RUDY BAUM

1988-02-01T23:59:59.000Z

415

Nitrous Oxide Emissions from a Municipal Landfill  

Science Journals Connector (OSTI)

Nitrous Oxide Emissions from a Municipal Landfill ... Due to the small area of landfills as compared to other land-use classes, the total N2O emissions from landfills are estimated to be of minor importance for the total emissions from Finland. ...

Janne Rinne; Mari Pihlatie; Annalea Lohila; Tea Thum; Mika Aurela; Juha-Pekka Tuovinen; Tuomas Laurila; Timo Vesala

2005-09-21T23:59:59.000Z

416

Storms, polar deposits and the methane cycle in Titan's atmosphere  

Science Journals Connector (OSTI)

...2004GL021415 . Lorenz, R.D , 2006The sand seas on Titan: Cassini RADAR...Stevenson1985Thermodynamics of clathrate hydrate at low and high pressures with...constituent, methane, exists as a gas, liquid and solid, and cycles...constituent, methane, exists as a gas, liquid and solid, and cycles...

2009-01-01T23:59:59.000Z

417

MethaneHydrateRD_FC.indd  

Broader source: Energy.gov (indexed) [DOE]

gas is an important energy gas is an important energy resource for the United States, providing nearly one-quarter of total energy use. The Department of Energy's Office of Fossil Energy (FE) has played a major role in developing technologies to help tap new, unconventional sources of natural gas. FOSSIL ENERGY RESEARCH BENEFITS Methane Hydrate R&D "The (DOE) Program has supported and managed a high-quality research portf olio that has enabled signifi cant progress toward the (DOE) Program's long-term goals." The Nati onal Academies 2010 One of these is methane hydrate - molecules of natural gas trapped in ice crystals. Containing vast amounts of natural gas, methane hydrate occurs in a variety of forms in sediments within and below thick permafrost in Arctic regions, and in the

418

Performance evaluation of synthetically lined landfills  

SciTech Connect (OSTI)

Landfill design and performance standards for new facilities frequently require the use of geomembrane composite and double liners. Performance data from synthetically lined landfill sites have not been widely available. This report presents data obtained by monitoring three recently constructed synthetically lined landfill sites. Quantities of leachate removed by the primary and secondary collection systems from these landfills were tabulated. The data show that properly designed and constructed synthetic landfill liners provide effective containment of leachate. The environmental protection provided by synthetic liners is equivalent or superior to that of typical clay-lined facilities.

Maule, J. [Champion International Corp., Norway, MI (United States); Lowe, R.K. [STS Consultants Ltd., Green Bay, WI (United States); McCulloch, J.L. [Cross Pointe Paper Co., Park Falls, WI (United States)

1993-12-01T23:59:59.000Z

419

Short Mountain Landfill gas recovery project  

SciTech Connect (OSTI)

The Bonneville Power Administration (BPA), a Federal power marketing agency, has statutory responsibilities to supply electrical power to its utility, industrial, and other customers in the Pacific Northwest. BPA's latest load/resource balance forecast, projects the capability of existing resources to satisfy projected Federal system loads. The forecast indicates a potential resource deficit. The underlying need for action is to satisfy BPA customers' demand for electrical power.

Not Available

1992-05-01T23:59:59.000Z

420

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network [OSTI]

Coupled to an induction generator, this HCCI genset allowspowered by the induction generator acting as a motor. OnceGenerator Size Weight Specification 6 (In-line) 6.6 L 21 Quart Air-Liquid (DEAC) 1.5 ATM 1800 RPM 35 kW Induction

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "landfill gas methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network [OSTI]

chemical- kinetic model of propane HCCI combustion,” SAEof a four-cylinder 1.9 l propane- fueled homogeneous chargethe fuel line can use propane from a tank and NG from the

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

422

Thermally Coupled Catalytic Reactor for Steam Reforming of Methane and Liquid Hydrocarbons: Experiment and Mathematical Modeling  

Science Journals Connector (OSTI)

An energy-efficient catalytic reactor for producing synthesis gas from methane and liquid hydrocarbons is proposed that is ... on the coupling of an endothermic reaction (steam reforming of methane, hexane, or is...

V. A. Kirillov; N. A. Kuzin; A. V. Kulikov…

2003-05-01T23:59:59.000Z

423

He–Ne and cw CO2 laser long-path systems for gas detection  

Science Journals Connector (OSTI)

This paper describes the design and testing of a laboratory prototype dual He–Ne laser system for the detection of methane leaks from underground pipelines and solid-waste landfill...

Grant, William B

1986-01-01T23:59:59.000Z

424

Hydroelectric Reservoirs -the Carbon Dioxide and Methane  

E-Print Network [OSTI]

Hydroelectric Reservoirs - the Carbon Dioxide and Methane Emissions of a "Carbon Free" Energy an overview on the greenhouse gas production of hydroelectric reservoirs. The goals are to point out the main how big the greenhouse gas emissions from hydroelectric reservoirs are compared to thermo-power plants

Fischlin, Andreas

425

Landfill reduction experience in The Netherlands  

Science Journals Connector (OSTI)

Abstract Modern waste legislation aims at resource efficiency and landfill reduction. This paper analyses more than 20 years of landfill reduction in the Netherlands. The combination of landfill regulations, landfill tax and landfill bans resulted in the desired landfill reduction, but also had negative effects. A fierce competition developed over the remaining waste to be landfilled. In 2013 the Dutch landfill industry generated €40 million of annual revenue, had €58 million annual costs and therefore incurred an annual loss of €18 million. It is not an attractive option to prematurely end business. There is a risk that Dutch landfill operators will not be able to fulfil the financial obligations for closure and aftercare. Contrary to the polluter pays principle the burden may end up with society. EU regulations prohibiting export of waste for disposal are in place. Strong differentials in landfill tax rate between nations have nevertheless resulted in transboundary shipment of waste and in non-compliance with the self-sufficiency and proximity principles. During the transformation from a disposal society to a recycling society, it is important to carefully plan required capacity and to guide the reorganisation of the landfill sector. At some point, it is no longer profitable to provide landfill services. It may be necessary for public organisations or the state to take responsibility for the continued operation of a ‘safety net’ in waste management. Regulations have created a financial incentive to pass on the burden of monitoring and controlling the impact of waste to future generations. To prevent this, it is necessary to revise regulations on aftercare and create incentives to actively stabilise landfills.

Heijo Scharff

2014-01-01T23:59:59.000Z

426

Separation of CO2 from CH4 Using Mixed-Ligand Metal-Organic Youn-Sang Bae,  

E-Print Network [OSTI]

and landfill gas, where methane is the major component. The presence of CO2 reduces the energy content

427

X-ray CT Observations of Methane Hydrate Distribution Changes over Time in a Natural Sediment Core from the BPX-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well  

SciTech Connect (OSTI)

When maintained under hydrate-stable conditions, methane hydrate in laboratory samples is often considered a stable and immobile solid material. Currently, there do not appear to be any studies in which the long-term redistribution of hydrates in sediments has been investigated in the laboratory. These observations are important because if the location of hydrate in a sample were to change over time (e.g. by dissociating at one location and reforming at another), the properties of the sample that depend on hydrate saturation and pore space occupancy would also change. Observations of hydrate redistribution under stable conditions are also important in understanding natural hydrate deposits, as these may also change over time. The processes by which solid hydrate can move include dissociation, hydrate-former and water migration in the gas and liquid phases, and hydrate formation. Chemical potential gradients induced by temperature, pressure, and pore water or host sediment chemistry can drive these processes. A series of tests were performed on a formerly natural methane-hydrate-bearing core sample from the BPX-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well, in order to observe hydrate formation and morphology within this natural sediment, and changes over time using X-ray computed tomography (CT). Long-term observations (over several weeks) of methane hydrate in natural sediments were made to investigate spatial changes in hydrate saturation in the core. During the test sequence, mild buffered thermal and pressure oscillations occurred within the sample in response to laboratory temperature changes. These oscillations were small in magnitude, and conditions were maintained well within the hydrate stability zone.

Kneafsey, T.J.; Rees, E.V.L.

2010-03-01T23:59:59.000Z

428

New data on gas-phase radical reactions in the steam reforming of methane in the presence of catalysts: I. Nickel catalysts  

Science Journals Connector (OSTI)

Methane pyrolysis and steam reforming were studied over a series of nickel...2O3, Ni/MgO, and Ni/LiAlO2) under the same conditions (650-750°C, PCH4...= 0.001-0.03 MPa). Unlike heterogeneous reaction of pyrolysis,...

I. I. Bobrova; V. V. Chesnokov; N. N. Bobrov; V. I. Zaikovskii…

429

EA-1707: Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste Landfill, Hanford Site, Richland, Washington  

Broader source: Energy.gov [DOE]

This EA evaluates the potential environmental impacts of closing the Nonradioactive Dangerous Waste Landfill and the Solid Waste Landfill. The Washington State Department of Ecology is a cooperating agency in preparing this EA.

430

Indicating landfill stabilization state by using leachate property from Laogang Refuse Landfill  

Science Journals Connector (OSTI)

Variation and evolution process of leachate can be applied as a reference for landfill stabilization phase. In this work, leachates ... with different ages were collected from Laogang Refuse Landfill, and charact...

Ziyang Lou; Xiaoli Chai; Youcai Zhao…

2014-06-01T23:59:59.000Z

431

International Cooperation in Methane Hydrates | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Oil & Gas » Methane Hydrate » Oil & Gas » Methane Hydrate » International Cooperation in Methane Hydrates International Cooperation in Methane Hydrates In 1982 the multi-national Deep Sea Drilling Program (DSDP) recovered the first subsea substantial methane hydrate deposits, which spurred methane hydrate research in the US and other countries. The successor programs, the Ocean Drilling Program (ODP) and the Integrated Ocean Drilling Program (IODP) sampled hydrate deposits off Oregon (ODP 204, 2002) and in the Cascadia Margin off Vancouver Island, Canada (ODP 146, 1992 and IODP 311, 2005). In the Atlantic Ocean off the US, ODP Leg 146 sampled hydrate deposits on the Blake Ridge and Carolina Rise in 1995. International cooperation helps scientists in the US and other countries

432

Chapter 14 - Coal bed methane  

Science Journals Connector (OSTI)

Publisher Summary Methane adsorbed to the surface of coal is a very old issue with some new commercial ramifications. This explosive gas has made underground coal mines dangerous both from the risk of explosion and the possibility of an oxygen-poor atmosphere that wouldn't support life. The miner's main concern with coal bed methane (CBM) has been how to get rid of it. Techniques to deal with CBM in mines have ranged from the classic canary in a cage to detect an oxygen-poor atmosphere to huge ventilation fans to force the replacement of a methane-rich environment with outside air, to drilling CBM wells in front of the coal face to try to degas the coal prior to exposing the mine to the CBM. All these techniques have met with some amount of success. None of the techniques to prevent CBM from fouling the air in an underground mine has been totally successful. With the CBM's unique method of gas storage, the preponderance of the gas is available only to very low coalface pressures. The coalface pressure is set by a combination of flowing wellhead pressure and the hydrostatic head exerted by standing liquid within the well bore. Effective compression strategies can lower the wellhead pressure to very low values. Effective deliquification techniques can reduce or remove the backpressure caused by accumulated liquid. CBM's economic impact is briefly explained in this chapter.

James F. Lea; Henry V. Nickens; Mike R. Wells

2008-01-01T23:59:59.000Z

433

Electrochemical treatment of landfill leachate  

Science Journals Connector (OSTI)

Electrochemical methods can offer an elegant contribution towards environmental control as electrons provide a means of removing pollutants by redox reactions. In the process of electrochemical oxidation the main aim has been to convert oxidisable species into carbon dioxide. Leachate originating in landfills is complex wastewater that could exert high environmental impact. This study aims to treat the landfill leachate in order to meet the inland disposal standards. The removal of pollutants was studied with different anode materials in electrochemical process. The treatment of leachate by electrochemical oxidation was carried out in a batch electrolytic parallel plate reactor. The electrochemical process was carried out separately with stainless steel as cathode and anode materials aluminium and titanium/platinum electrodes. The effects of the operating factors such as current density, reaction time, chloride ion concentration, additional electrolyte such as sulphuric acid that influence the removal of pollutant from leachate electrochemically were studied.

C. Ramprasad; A. Navaneetha Gopalakrishnan

2012-01-01T23:59:59.000Z

434

Long-term behavior of municipal solid waste landfills  

Science Journals Connector (OSTI)

A method is presented to predict the long-term behavior of element concentrations (non-metals and metals) in the leachate of a municipal solid waste (MSW) landfill. It is based on water flux and concentration measurements in leachates over one year, analysis of drilled cores from MSW landfills and leaching experiments with these samples. A mathematical model is developed to predict the further evolution of annual flux-weighted mean element concentrations in leachates after the “intensive reactor phase”, i.e. after the gas production has dropped to a very low level. The results show that the organic components are the most important substances to control until the leachate is compatible with the environment. This state of low emissions, the so-called “final storage quality”, will take many centuries to be achieved in a moderate climate.

H. Belevi; P. Baccini

1989-01-01T23:59:59.000Z

435

Gravity data as a tool for landfill study  

Science Journals Connector (OSTI)

This paper shows the potential of gravity data to map a buried landfill bottom topography. To this end, a ... gravity inversion method is presented for estimating the landfill’s bottom depths at discrete points a...

João B. C. Silva; Wlamir A. Teixeira; Valéria C. F. Barbosa

2009-04-01T23:59:59.000Z

436

Acute and Genetic Toxicity of Municipal Landfill Leachate  

E-Print Network [OSTI]

Municipal solid waste (MSW) landfills have been found to contain many of the same hazardous constituents as found in hazardous waste landfills. Because of the large number of MSW landfills, these sites pose a serious environmental threat...

Brown, K.W.; Schrab, G.E.; Donnelly, K.C.

437

Challenges, uncertainties and issues facing gas production from gas hydrate deposits  

E-Print Network [OSTI]

gas such as tight gas, shale gas, or coal bed methane gas tolocation. Development of shale oil and gas, tar sands, coalGas hydrates will undoubtedly also be present in shales,

Moridis, G.J.

2011-01-01T23:59:59.000Z

438

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gas Hydrate Production Trial Using CO2 / CH4 Exchange Completed Gas Hydrate Production Trial Using CO2 / CH4 Exchange Completed DE-NT0006553 Goal The goal of this project is to define, plan, conduct and evaluate the results of a field trial of a methane hydrate production methodology whereby carbon dioxide (CO2) molecules are exchanged in situ for methane (CH4) molecules within a hydrate structure, releasing the methane for production. The objective is to evaluate the viability of this hydrate production technique and to understand the implications of the process at a field scale. image showing Conceptual rendering of proposed CO2 - CH4 exchange methodology for the production of natural gas from hydrates Conceptual rendering of proposed CO2 - CH4 exchange methodology for the

439

Hydrogeological studies on the mechanical behavior of landfill gases and leachate of the Nanjido Landfill in Seoul, Korea  

Science Journals Connector (OSTI)

?The Nanjido Landfill is the largest uncontrolled landfill in Korea and it causes various kinds of environmental problems. Landfill gases and leachate are recognized as the most serious environmental problems ass...

K. K. Lee; Y. Y. Kim; H. W. Chang; S. Y. Chung

1997-06-01T23:59:59.000Z

440

NETL: Methane Hydrates - Methane Hydrate Reference Shelf  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reference Shelf Reference Shelf The Methane Hydrate Reference Shelf was created to provide a repository for information collected from projects funded as part of the National Methane Hydrate R&D Program. As output from the projects is received, it will be reviewed and then placed onto the reference shelf to be available to other methane hydrate researchers. Projects: DOE/NETL Projects : These pages contain detailed information on methane hydrate projects funded through the National Energy Technology Laboratory. Publications: Newsletter | Bibliography | Software | Reports | Program Publications | Photo Gallery Newsletter: Fire in the Ice: A publication highlighting the National Methane Hydrate R&D Program Bibliography: "Project Reports Bibliography"[PDF]: The bibliography lists publications resulting from DOE/NETL-sponsored

Note: This page contains sample records for the topic "landfill gas methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

- Methane Hydrate Research - Geoscience Evaluations and Field Studies Last Reviewed 3/18/2013 - Methane Hydrate Research - Geoscience Evaluations and Field Studies Last Reviewed 3/18/2013 Project Goals The primary goals of the DOE/NETL Natural Gas Hydrate Field Studies (NGHFS) project are: Conduct field-based studies that advance the ability to predict, detect, characterize, and understand distribution of and controls on natural gas hydrate occurrences. Analyze geologic, geochemical, and microbiologic data for indications of past and current changes to the stability of natural gas hydrate in marine settings. Develop links between the U.S. Gas Hydrate Program and international R&D efforts through direct participation in international field programs and workshops. Evaluate the potential role natural gas hydrates may play in the global carbon cycle through analysis of modern and paleo-natural gas

442

DOE - Office of Legacy Management -- West Lake Landfill - MO...  

Office of Legacy Management (LM)

Lake Landfill - MO 05 FUSRAP Considered Sites Site: West Lake Landfill (MO.05) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition:...

443

Monitoring the Performance of an Alternative Landfill Cover at...  

Office of Environmental Management (EM)

Monitoring the Performance of an Alternative Landfill Cover at the Monticello, Utah, Uranium Mill Tailings Disposal Site Monitoring the Performance of an Alternative Landfill Cover...

444

CHP and Bioenergy Systems for Landfills and Wastewater Treatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems for Landfills and Wastewater Treatment Plants CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants There are important issues to consider when selecting...

445

CHP and Bioenergy for Landfills and Wastewater Treatment Plants...  

Broader source: Energy.gov (indexed) [DOE]

for Landfills and Wastewater Treatment Plants: Market Opportunities CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities This document explores...

446

Models for Hydrologic Design of Evapotranspiration Landfill Covers  

Science Journals Connector (OSTI)

Models for Hydrologic Design of Evapotranspiration Landfill Covers ... The focus of the HELP model is on the man-made features of landfills. ...

Victor L. Hauser; Dianna M. Gimon; James V. Bonta; Terry A. Howell; Robert W. Malone; Jimmy R. Williams

2005-08-05T23:59:59.000Z

447

Briefing: DOE EM Landfill Workshop & Path Forward | Department...  

Broader source: Energy.gov (indexed) [DOE]

Landfill Workshop & Path Forward Briefing: DOE EM Landfill Workshop & Path Forward By: Office of Groundwater and Soil Remediation Where: SSAB Teleconference 2 Subject: DOE EM...

448

Briefing: Summary and Recommendations of EM Landfill Workshop...  

Office of Environmental Management (EM)

Briefing: Summary and Recommendations of EM Landfill Workshop Briefing: Summary and Recommendations of EM Landfill Workshop The briefing is an independent technical review report...

449

DOE - Office of Legacy Management -- Woburn Landfill - MA 07  

Office of Legacy Management (LM)

Woburn Landfill - MA 07 FUSRAP Considered Sites Site: Woburn Landfill (MA.07) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name:...

450

Leaching of cadmium from pigmented plastics in a landfill site  

Science Journals Connector (OSTI)

Leaching of cadmium from pigmented plastics in a landfill site ... Plastics ending up in soil or landfill environment will eventually be degraded. ...

David C. Wilson; Peter J. Young; Brinley C. Hudson; Grant. Baldwin

1982-09-01T23:59:59.000Z

451

Methane Hydrate Production Technologies to be Tested on Alaska's North  

Broader source: Energy.gov (indexed) [DOE]

Methane Hydrate Production Technologies to be Tested on Alaska's Methane Hydrate Production Technologies to be Tested on Alaska's North Slope Methane Hydrate Production Technologies to be Tested on Alaska's North Slope October 24, 2011 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy, the Japan Oil, Gas and Metals National Corporation, and ConocoPhillips will work together to test innovative technologies for producing methane gas from hydrate deposits on the Alaska North Slope. The collaborative testing will take place under the auspices of a Statement of Intent for Cooperation in Methane Hydrates signed in 2008 and extended in 2011 by DOE and Japan's Ministry of Economy, Trade, and Industry. The production tests are the next step in both U.S. and Japanese national efforts to evaluate the response of gas hydrate reservoirs to alternative

452

EA-1157: Methyl Chloride via Oxyhydrochlorination of Methane: A Building  

Broader source: Energy.gov (indexed) [DOE]

57: Methyl Chloride via Oxyhydrochlorination of Methane: A 57: Methyl Chloride via Oxyhydrochlorination of Methane: A Building Black for Chemicals and Fuels from Natural Gas, Carrollton, Kentucky EA-1157: Methyl Chloride via Oxyhydrochlorination of Methane: A Building Black for Chemicals and Fuels from Natural Gas, Carrollton, Kentucky SUMMARY This EA evaluates the environmental impacts for the proposal to advance Oxyhydrochlorination technology to an integrated engineering-scale process. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD September 27, 1996 EA-1157: Finding of No Significant Impact Methyl Chloride via Oxyhydrochlorination of Methane: A Building Black for Chemicals and Fuels from Natural Gas September 27, 1996 EA-1157: Final Environmental Assessment Methyl Chloride via Oxyhydrochlorination of Methane: A Building Black for

453

Data Summary of Municipal Solid Waste Management Alternatives. Volume VIII: Appendix F - Landfills  

SciTech Connect (OSTI)

While the preceding appendices have focused on the thermochemical approaches to managing municipal solid waste (MSW), this appendix and those that follow on composting and anaerobic digestion address more of the bioconversion process technologies. Landfilling is the historical baseline MSW management option central to every community's solid waste management plan. It generally encompasses shredfills, balefills, landfill gas recovery, and landfill mining. While landfilling is virtually universal in use, it continues to undergo intense scrutiny by the public and regulators alike. Most recently, the US Environmental Protection Agency (EPA) issued its final rule on criteria for designing, operating, monitoring, and closing municipal solid waste landfills. While the Federal government has established nationwide standards and will assist the States in planning and developing their own practices, the States and local governments will carry out the actual planning and direct implementation. The States will also be authorized to devise programs to deal with their specific conditions and needs. While the main body of this appendix and corresponding research was originally prepared in July of 1991, references to the new RCRA Subtitle D, Part 258 EPA regulations have been included in this resubmission (908). By virtue of timing, this appendix is, necessarily, a transition'' document, combining basic landfill design and operation information as well as reference to new regulatory requirements. Given the speed with which landfill practices are and will be changing, the reader is encouraged to refer to Part 258 for additional details. As States set additional requirements and schedules and owners and operators of MSW landfills seek to comply, additional guidance and technical information, including case studies, will likely become available in the literature.

None

1992-10-01T23:59:59.000Z

454

Data summary of municipal solid waste management alternatives. Volume 8, Appendix F, Landfills  

SciTech Connect (OSTI)

While the preceding appendices have focused on the thermochemical approaches to managing municipal solid waste (MSW), this appendix and those that follow on composting and anaerobic digestion address more of the bioconversion process technologies. Landfilling is the historical baseline MSW management option central to every community`s solid waste management plan. It generally encompasses shredfills, balefills, landfill gas recovery, and landfill mining. While landfilling is virtually universal in use, it continues to undergo intense scrutiny by the public and regulators alike. Most recently, the US Environmental Protection Agency (EPA) issued its final rule on criteria for designing, operating, monitoring, and closing municipal solid waste landfills. While the Federal government has established nationwide standards and will assist the States in planning and developing their own practices, the States and local governments will carry out the actual planning and direct implementation. The States will also be authorized to devise programs to deal with their specific conditions and needs. While the main body of this appendix and corresponding research was originally prepared in July of 1991, references to the new RCRA Subtitle D, Part 258 EPA regulations have been included in this resubmission (908). By virtue of timing, this appendix is, necessarily, a ``transition`` document, combining basic landfill design and operation information as well as reference to new regulatory requirements. Given the speed with which landfill practices are and will be changing, the reader is encouraged to refer to Part 258 for additional details. As States set additional requirements and schedules and owners and operators of MSW landfills seek to comply, additional guidance and technical information, including case studies, will likely become available in the literature.

none,

1992-10-01T23:59:59.000Z

455

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laboratory Studies in Support of Characterization of Recoverable Resources from Methane Hydrate Deposits Last Reviewed 5/10/2012 Laboratory Studies in Support of Characterization of Recoverable Resources from Methane Hydrate Deposits Last Reviewed 5/10/2012 ESD05-048 Goal The project is bringing new laboratory measurements and evaluation techniques to bear on the difficult problems of characterization and gas recovery from methane hydrate deposits. Performer Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Background LBNL is performing laboratory tests to provide data to support the characterization and development of methane hydrate deposits. Major areas of research underway include hydrologic measurements, combined geomechanical/geophysical measurements, and synthetic hydrate formation studies. Hydrologic Measurements Relatively little research has been done to experimentally determine

456

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Seismic-Scale Rock Physics of Methane Hydrate Seismic-Scale Rock Physics of Methane Hydrate DE-FC26-05NT42663 Goal The goal of this project was to establish rock physics models for use in generating synthetic seismic signatures of methane hydrate reservoirs. Ultimately, the intent was to improve seismic detection and quantification of offshore and onshore methane hydrate accumulations. Performer Stanford University, Stanford, CA 94305 Background Gas hydrate reservoir characterization is, in principle, no different from traditional hydrocarbon reservoir characterization. The seismic response of the subsurface is determined by the spatial distribution of the elastic properties (properties of the subsurface that deform as seismic waves pass through it) and attenuation. By mapping changes in the elastic properties, scientists can identify geologic features, including hydrocarbon reservoirs.

457

Detection and Production of Methane Hydrate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

July-September 2007 July-September 2007 Detection and Production of Methane Hydrate Submitted by: Rice University University of Houston George J. Hirasaki Department of Chemical and Biomolecular Engineering Rice University - MS 362 6100 Main St. Houston, TX 77251-1892 Phone: 713-348-5416; FAX: 713-348-5478; Email: gjh@rice.edu Prepared for: United States Department of Energy National Energy Technology Laboratory December, 2007 Office of Fossil Energy Table of Contents DOE Methane Hydrate Program Peer Review.................................................. 3 Task 5: Carbon Inputs and Outputs to Gas Hydrate Systems ........................... 3 Task 6: Numerical Models for Quantification of Hydrate and Free Gas Accumulations....................................................................................................

458

Development of a Series of National Coalbed Methane Databases  

E-Print Network [OSTI]

Development of a Series of National Coalbed Methane Databases Mohaghegh, S. D., Nunsavathu, U Growing Interest in Coalbed Methane ­ Elevated natural gas prices ­ Demand for clean energy sources DatabaseDatabase One Location Reservoir & Sorption Collection ­ 126 Coalbed Areas ­ 34 Parameters Ordered

Mohaghegh, Shahab

459

Rapid communication Mapping urban pipeline leaks: Methane leaks across Boston  

E-Print Network [OSTI]

Rapid communication Mapping urban pipeline leaks: Methane leaks across Boston Nathan G. Phillips a of methane (CH4) in the United States. To assess pipeline emissions across a major city, we mapped CH4 leaks signatures w20& lighter (m ¼ �57.8&, �1.6& s.e., n ¼ 8). Repairing leaky natural gas distribution systems

Jackson, Robert B.

460

Macroscopic Biofilms in Fracture-Dominated Sediment That Anaerobically Oxidize Methane  

Science Journals Connector (OSTI)

...resistivity values caused by high gas hydrate saturation in the fractures (41...fractures partially filled with gas hydrate and feeding methane upwards toward...collected as a part of the National Gas Hydrate Program cruise 01 (NGHP01) in...

B. R. Briggs; J. W. Pohlman; M. Torres; M. Riedel; E. L. Brodie; F. S. Colwell

2011-08-05T23:59:59.000Z

Note: This page contains sample records for the topic "landfill gas methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

State bans dumping of chemicals in landfill  

Science Journals Connector (OSTI)

State bans dumping of chemicals in landfill ... California governor Edmund G. Brown Jr. has begun a program aimed at eliminating most hazardous-waste chemicals from landfills in that state—a goal that will be difficult and costly to achieve. ...

1981-10-26T23:59:59.000Z

462

WATER QUALITY CHANGES AS A RESULT OF COALBED METHANE DEVELOPMENT IN A ROCKY MOUNTAIN WATERSHED1  

E-Print Network [OSTI]

WATER QUALITY CHANGES AS A RESULT OF COALBED METHANE DEVELOPMENT IN A ROCKY MOUNTAIN WATERSHED1 Xixi Wang, Assefa M. Melesse, Michael E. McClain, and Wanhong Yang2 ABSTRACT: Coalbed methane (CBM the Powder River. (KEY TERMS: coalbed methane, produced water; Montana; natural gas; pattern analysis

McClain, Michael

463

Sorption-Enhanced Synthetic Natural Gas (SNG) Production from...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sorption-Enhanced Synthetic Natural Gas (SNG) Production from Syngas: A Novel Process Combining CO Methanation, Water-Gas Shift, Sorption-Enhanced Synthetic Natural Gas (SNG)...

464

The dependence of the methylation of mercury on the landfill stabilization process and implications for the landfill management  

Science Journals Connector (OSTI)

Abstract Mercury species and other chemical characteristics of the leachate from anaerobic and semi-aerobic landfills were analyzed to investigate the factors that control mercury methylation during the landfill stabilization process. At the early landfill stage, the total mercury (THg) and the monomethyl mercury (MMHg) released rapidly and significantly, the \\{THg\\} concentration of the semi-aerobic landfill leachate was obviously higher than that of the anaerobic landfill leachate, while compared with the semi-aerobic landfill, the \\{MMHg\\} concentration in the anaerobic landfill was higher. As the landfill time increased, both of \\{THg\\} and \\{MMHg\\} concentration decreased quickly, the \\{THg\\} concentration in the anaerobic landfill was much higher than that in semi-aerobic landfill, while the \\{MMHg\\} concentration in the anaerobic landfill was lower than that in the semi-aerobic landfill. Generally, the concentrations of dimethyl mercury (DMHg) in the anaerobic landfill leachate were slightly higher than in the semi-aerobic landfill leachate during the stabilization process. A significant positive correlation was found between the \\{DMHg\\} concentrations and the pH value in anaerobic landfill leachate, but this correlation was opposite in the semi-aerobic landfill. The oxidative–reductive potential (ORP) condition was found to be the controlling factor of the methylation process during the early stage. However, the chemical characteristics, especially the TOC concentration, appeared to be the dominant factor affecting the methylation process as the landfill time increased.

Xiaoli Chai; Yongxia Hao; Zhonggen Li; Wei Zhu; Wentao Zhao

2015-01-01T23:59:59.000Z

465

UPGRADING METHANE USING ULTRA-FAST THERMAL SWING ADSORPTION  

SciTech Connect (OSTI)

The purpose of this project is to design and demonstrate an approach to upgrade low-BTU methane streams from coal mines to pipeline-quality natural gas. The objective of Phase I of the project was to assess the feasibility of upgrading low-Btu methane streams using ultra-fast thermal swing adsorption (TSA) using Velocys' modular microchannel process technology. The project is on schedule and under budget. For Task 1.1, the open literature, patent information, and vendor contacts were surveyed to identify adsorbent candidates for experimental validation and subsequent demonstration in an MPT-based ultra-fast TSA separation for methane upgrading. The leading candidates for preferential adsorption of methane over nitrogen are highly microporous carbons. A Molecular Gate{trademark} zeolite from Engelhard Corporation has emerged as a candidate. For Task 1.2, experimental evaluation of adsorbents was initiated, and data were collected on carbon (MGN-101) from PICA, Inc. This carbon demonstrated a preferential capacity for methane over nitrogen, as well as a reasonable thermal swing differential capacity for a 90% methane and 10% nitrogen mixture. A similar methane swing capacity at 2 psig was measured. The mixture composition is relevant because gob gas contains nearly 85% methane and must be purified to 97% methane for pipeline quality.

Anna Lee Tonkovich

2004-01-01T23:59:59.000Z

466

Computational heterogeneous catalysis applied to steam methane reforming over nickel and nickel/silver catalysts .  

E-Print Network [OSTI]

??The steam methane reforming (SMR) reaction is the primary industrial means for producing hydrogen gas. As such, it is a critical support process for applications… (more)

Blaylock, Donnie Wayne

2011-01-01T23:59:59.000Z

467

Impact of relative permeability on type curves for coalbed methane reservoirs.  

E-Print Network [OSTI]

??Coalbed methane (CBM) is considered an unconventional gas resource produced from coal seams usually with low permeability at shallow depths. Analyzing the production performance in… (more)

Lakshminarayanan, Sunil.

2006-01-01T23:59:59.000Z

468

Evaluation of factors that influence microbial communities and methane production in coal microcosms.  

E-Print Network [OSTI]

??Vast reserves of coal represent a largely untapped resource that can be used to produce methane gas, a cleaner energy alternative compared to burning oil… (more)

Gallagher, Lisa K.

2014-01-01T23:59:59.000Z

469

U.S. and Japan Complete Successful Field Trial of Methane Hydrate Production Technologies  

Broader source: Energy.gov [DOE]

Methane Hydrates May Exceed the Energy Content of All Other Fossil Fuels Combined; Could Ensure Decades of Affordable Natural Gas and Cut America’s Foreign Oil Dependence

470

Greenhouse gas emissions in biogas production systems  

E-Print Network [OSTI]

Augustin J et al. Automated gas chromatographic system forof the atmospheric trace gases methane, carbon dioxide, andfuel consumption and of greenhouse gas (GHG) emissions from

Dittert, Klaus; Senbayram, Mehmet; Wienforth, Babette; Kage, Henning; Muehling, Karl H

2009-01-01T23:59:59.000Z

471

Landfill Instability and Its Implications Operation, Construction, and Design  

E-Print Network [OSTI]

Landfill Instability and Its Implications for Operation, Construction, and Design By: W. Douglas landfill waste slide, a 300,000 cubic yard landfill failure involving a geosynthetic clay liner, and a 100,000 cubic yard landfill failure involving leachate recirculation. Other failures of lesser magnitude also

472

Metal speciation in landfill leachates with a focus on the influence of organic matter  

E-Print Network [OSTI]

fractions of leachates, a cascade filtration protocol was applied directly in the field, under a nitrogen gas atmosphere to avoid metal oxidation. The results of analyses performed on the leachates suggest mobility and natural attenuation in a context of landfill risk assessment are discussed. hal-00605888

Paris-Sud XI, Université de

473

Coalbed methane produced water in China: status and environmental issues  

Science Journals Connector (OSTI)

As one of the unconventional natural gas family members, coalbed methane (CBM) receives great attention throughout the world. The major associated problem of CBM production is the management of produced water. In...

Yanjun Meng; Dazhen Tang; Hao Xu; Yong Li…

2014-06-01T23:59:59.000Z

474

Industrial Solid Waste Landfill Facilities (Ohio) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Industrial Solid Waste Landfill Facilities (Ohio) Industrial Solid Waste Landfill Facilities (Ohio) Industrial Solid Waste Landfill Facilities (Ohio) < Back Eligibility Agricultural Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Utility Program Info State Ohio Program Type Environmental Regulations Provider Ohio Environmental Protection Agency This chapter of the law establishes that the Ohio Environmental Protection Agency provides rules and guidelines for landfills, including those that treat waste to generate electricity. The law provides information for permitting, installing, maintaining, monitoring, and closing landfills. There are no special provisions or exemptions for landfills used to generate electricity. However, the law does apply to landfills that do

475

Methane Hydrate Field Program  

SciTech Connect (OSTI)

This final report document summarizes the activities undertaken and the output from three primary deliverables generated during this project. This fifteen month effort comprised numerous key steps including the creation of an international methane hydrate science team, determining and reporting the current state of marine methane hydrate research, convening an international workshop to collect the ideas needed to write a comprehensive Marine Methane Hydrate Field Research Plan and the development and publication of that plan. The following documents represent the primary deliverables of this project and are discussed in summary level detail in this final report. • Historical Methane Hydrate Project Review Report • Methane Hydrate Workshop Report • Topical Report: Marine Methane Hydrate Field Research Plan • Final Scientific/Technical Report

None

2013-12-31T23:59:59.000Z

476

Public health assessment for Seattle Municipal Landfill/Kent Highlands, Kent, King County, Washington, Region 10. Cerclis No. WAD980639462. Final report  

SciTech Connect (OSTI)

The Seattle Municipal Landfill, better known as the Kent Highlands Landfill, is located in the City of Kent, approximately 14 miles south of the City of Seattle, Washington, at 23076 Military Road South. Surface water settling ponds, a leachate collection system, and gas collection system have been constructed. Only one completed pathway exists, which is the use of Midway Creek by recreationists. However, worst case scenarios were evaluated and there did not appear to be a human health threat. Two potential pathways were analyzed, for landfill gas and ground water. Again the worst case scenarios did not reveal any imminent human health threat.

Not Available

1994-11-23T23:59:59.000Z

477

DOE Announces $2 Million Funding for Methane Hydrates Projects | Department  

Broader source: Energy.gov (indexed) [DOE]

DOE Announces $2 Million Funding for Methane Hydrates Projects DOE Announces $2 Million Funding for Methane Hydrates Projects DOE Announces $2 Million Funding for Methane Hydrates Projects November 7, 2005 - 12:43pm Addthis Seeks to Unlock World's Biggest Potential Source of "Ice That Burns" WASHINGTON, DC - The Department of Energy (DOE) today announced a total of $2 million in funding to five research projects that will assess the energy potential, safety, and environmental aspects of methane hydrate exploration and development. Termed the "ice that burns," methane hydrates are crystalline solids that release a flammable gas when melted. They are considered the Earth's biggest potential source of hydrocarbon energy and could be a key element in meeting natural gas demand in the United States,

478

Hydrogen production in Multi-Channel Membrane Reactor via Steam Methane Reforming and Methane Catalytic Combustion  

Science Journals Connector (OSTI)

Abstract A novel Multi-Channel Membrane Reactor (MCMR) was designed and built for the small-scale production of hydrogen via Steam Methane Reforming (SMR). The prototype alternates an SMR gas channel to produce hydrogen catalytically, with a Methane Catalytic Combustion (MCC) gas channel to provide the heat of reaction needed by the endothermic reforming. A palladium–silver membrane inside the reforming gas channel shifts the reaction equilibrium, allowing lower operating temperatures, and producing pure hydrogen in a single vessel. Using an innovative air-spray coating technique, channels were coated with Ru–MgO–La2O3/?-Al2O3 and Pd/?-Al2O3 catalyst particles for the SMR and MCC reactions, respectively. Results for the proof-of-concept MCMR showed that methane conversion in the reformer of 91% and a hydrogen purity in excess of 99.99% were possible with the reformer operating at 570 °C and 15 bar.

Alexandre Vigneault; John R. Grace

2014-01-01T23:59:59.000Z

479

Generating power with drained coal mine methane  

SciTech Connect (OSTI)

The article describes the three technologies most commonly used for generating electricity from coal mine methane: internal combustion engines, gas turbines, and microturbines. The most critical characteristics and features of these technologies, such as efficiency, output and size are highlighted. 5 refs.

NONE

2005-09-01T23:59:59.000Z

480

Coalbed Methane Production  

U.S. Energy Information Administration (EIA) Indexed Site

NA Not Available; W Withheld to avoid disclosure of individual company data. Notes: Coalbed Methane production data collected in conjunction with proved reserves data on Form...

Note: This page contains sample records for the topic "landfill gas methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

NETL: Methane Hydrates - DOE/NETL Projects - Controls On Methane Expulsion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Controls On Methane Expulsion During Melting Of Natural Gas Hydrate Systems Last Reviewed 12/24/2013 Controls On Methane Expulsion During Melting Of Natural Gas Hydrate Systems Last Reviewed 12/24/2013 DE-FE0010406 Goal The project goal is to predict, given characteristic climate-induced temperature change, the conditions under which gas will be expelled from existing accumulations of gas hydrate into the shallow ocean or directly to the atmosphere. When those conditions are met, the fraction of the gas accumulation that escapes and the rate of escape shall be quantified. The predictions shall be applicable in Arctic regions and in gas hydrate systems at the updip limit of the stability zone on continental margins. The behavior shall be explored in response to both longer term changes in sea level (e.g., twenty-thousand years) and shorter term due to atmospheric

482

Plasma catalytic reforming of methane  

Science Journals Connector (OSTI)

Thermal plasma technology can be efficiently used in the production of hydrogen and hydrogen-rich gases from methane and a variety of fuels. This article describes progress in plasma reforming experiments and calculations of high temperature conversion of methane using heterogeneous processes. The thermal plasma is a highly energetic state of matter that is characterized by extremely high temperatures (several thousand degrees Celsius), and a high degree of dissociation and a substantial degree of ionization. The high temperatures accelerate the reactions involved in the reforming process. Hydrogen-rich gas (40% H2, 17% CO2 and 33% N2, for partial oxidation/water shifting) can be efficiently made in compact plasma reformers. Experiments have been carried out in a small device (2–3 kW) and without the use of efficient heat regeneration. For partial oxidation/water shifting, it was determined that the specific energy consumption in the plasma reforming processes is 16 MJ/kg H2 with high conversion efficiencies. Larger plasmatrons, better reactor thermal insulation, efficient heat regeneration and improved plasma catalysis could also play a major role in specific energy consumption reduction and increasing the methane conversion. A system has been demonstrated for hydrogen production with low CO content (?1.5%) with power densities of ?30 kW (H2 HHV)/l of reactor, or ?10 m3/h H2 per liter of reactor. Power density should further increase with increased power and improved design.

L Bromberg; D.R Cohn; A Rabinovich; N Alexeev

1999-01-01T23:59:59.000Z

483

Reverse osmosis module successfully treats landfill leachate  

SciTech Connect (OSTI)

By law, modern landfills are to be constructed with double liners to prevent contaminants from leaching into surface and ground water. Despite this design feature, however, both hazardous and non-hazardous compounds do leach from the waste disposed in landfills. The resulting contaminated water, or leachate, must be collected and treated. Rochem Environmental, Inc. (Houston, Texas) has developed a new membrane process, known as the Disc Tube{trademark} system, to remove a variety of contaminants from landfill leachate. 1 ref., 1 fig., 2 tabs.

NONE

1995-03-01T23:59:59.000Z

484

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Detection and Production of Methane Hydrate Last Reviewed 5/15/2012 Detection and Production of Methane Hydrate Last Reviewed 5/15/2012 DE-FC26-06NT42960 Goal The goal of this project is to improve the understanding of regional and local differences in gas hydrate systems from three perspectives: as an energy resource, as a geohazard, and as a long-term influence on global climate. Performers Rice University, Houston, TX University of Texas, Austin, TX Oklahoma State University, Stillwater, OK Background Heterogeneity in the distribution of gas hydrate accumulations impacts all aspects of research into gas hydrate natural systems. The challenge is to delineate, understand, and appreciate these differences at the regional and local scales, where differences in in situ concentrations are relevant to the importance of gas hydrate as a resource, a geohazard, and a factor in

485

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Phase 1 - Characterization and Qualification of the Methane Hydrate Resource Potential Associated with the Barrow Gas Fields Phase 1 - Characterization and Qualification of the Methane Hydrate Resource Potential Associated with the Barrow Gas Fields DE-FC26-06NT42962 Goal The goal of this project is to characterize and quantify the postulated gas hydrate resource associated with the Barrow Gas Fields – three producing fields located in a permafrost region near Barrow, the North Slope's biggest population center and economic hub. Map of the North Slope Borough showing the location of its eight major communities, including Barrow, the site of this research project. Map of the North Slope Borough showing the location of its eight major communities, including Barrow, the site of this research project. Performers North Slope Borough, Barrow, Alaska (North Slope Borough) 99723

486

Enhanced carbon monoxide utilization in methanation process  

DOE Patents [OSTI]

Carbon monoxide - containing gas streams are passed over a catalyst to deposit a surface layer of active surface carbon thereon essentially without the formation of inactive coke. The active carbon is subsequently reacted with steam or hydrogen to form methane. Surprisingly, hydrogen and water vapor present in the feed gas do not adversely affect CO utilization significantly, and such hydrogen actually results in a significant increase in CO utilization.

Elek, Louis F. (Peekskill, NY); Frost, Albert C. (Congers, NY)

1984-01-01T23:59:59.000Z

487

Waste management health risk assessment: A case study of a solid waste landfill in South Italy  

SciTech Connect (OSTI)

An integrated risk assessment study has been performed in an area within 5 km from a landfill that accepts non hazardous waste. The risk assessment was based on measured emissions and maximum chronic population exposure, for both children and adults, to contaminated air, some foods and soil. The toxic effects assessed were limited to the main known carcinogenic compounds emitted from landfills coming both from landfill gas torch combustion (e.g., dioxins, furans and polycyclic aromatic hydrocarbons, PAHs) and from diffusive emissions (vinyl chloride monomer, VCM). Risk assessment has been performed both for carcinogenic and non-carcinogenic effects. Results indicate that cancer and non-cancer effects risk (hazard index, HI) are largely below the values accepted from the main international agencies (e.g., WHO, US EPA) and national legislation ( and ).

Davoli, E., E-mail: enrico.davoli@marionegri.i [Istituto di Ricerche Farmacologiche 'Mario Negri', Environmental Health Sciences Department, Via Giuseppe La Masa 19, 20156 Milano (Italy); Fattore, E.; Paiano, V.; Colombo, A.; Palmiotto, M. [Istituto di Ricerche Farmacologiche 'Mario Negri', Environmental Health Sciences Department, Via Giuseppe La Masa 19, 20156 Milano (Italy); Rossi, A.N.; Il Grande, M. [Progress S.r.l., Via Nicola A. Porpora 147, 20131 Milano (Italy); Fanelli, R. [Istituto di Ricerche Farmacologiche 'Mario Negri', Environmental Health Sciences Department, Via Giuseppe La Masa 19, 20156 Milano (Italy)

2010-08-15T23:59:59.000Z

488

Geohydrology and groundwater geochemistry at a sub-arctic landfill, Fairbanks, Alaska  

SciTech Connect (OSTI)

The Fairbanks-North Star Borough, Alaska, landfill is located on silt, sand, and gravel deposits of the Tanana River flood plain, about 3 miles south of the city of Fairbanks water supply wells. The landfill has been in operation for about 25 years in this sub-arctic region of discontinuous permafrost. The cold climate limits biological activity within the landfill with corresponding low gas and leachate production. Chloride concentrations, specific conductance, water temperature, and earth conductivity measurements indicate a small plume of leachate flowing to the northwest from the landfill. The leachate remains near the water table as it flows northwestward toward a drainage ditch. Results of computer modeling of this local hydrologic system indicate that some of the leachate may be discharging to the ditch. Chemical data show that higher-than-background concentrations of several ions are present in the plume. However, the concentrations appear to be reduced to background levels within a short distance along the path of groundwater flow from the landfill, and thus the leachate is not expected to affect the water supply wells. 11 refs., 21 figs., 2 tabs.

Downey, J.S.; Sinton, P.O.

1990-01-01T23:59:59.000Z

489

Landfill Leachate Treatment by Reverse Osmosis  

Science Journals Connector (OSTI)

Leachate from landfill sites represents a highly polluted waste water. It containes biodegradable compounds but also inorganic salts and trace recalcitrant pollutants. The reverse osmosis process with or without ...

B. Weber; F. Holz

1991-01-01T23:59:59.000Z

490

Landfill Closure and Reuse of Land  

Science Journals Connector (OSTI)

This section examines the sustainable reuse of existing landfill sites . Sustainability is examined in the context of the existing regulatory authority of the United States Environmental Protection Agency (US...

Dr. Joseph J. Lifrieri Ph.D; PE; CPG…

2012-01-01T23:59:59.000Z

491

Coalbed methane gains viability  

SciTech Connect (OSTI)

In recent government studies, the Department of Energy (DOE) states that coal bed