Powered by Deep Web Technologies
Note: This page contains sample records for the topic "landfill gas location" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Landfill Gas Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of landfill gas energy resources and technologies supplemented by specific information to apply landfill gas energy within the Federal sector.

2

Capturing, Purifying, and Liquefying Landfill Gas for Transportation Fuel  

E-Print Network [OSTI]

Capturing, Purifying, and Liquefying Landfill Gas for Transportation Fuel TRANSPORTATION ENERGY alternative fuel, and purified landfill gas could provide a renewable domestic source of it. Landfills of landfill gas purification and demonstrate liquefaction technology for the conversion of renewable

3

Tapping Landfill Gas to Provide Significant Energy Savings and...  

Broader source: Energy.gov (indexed) [DOE]

Tapping Landfill Gas to Provide Significant Energy Savings and Greenhouse Gas Reductions - Case Study, 2013 Tapping Landfill Gas to Provide Significant Energy Savings and...

4

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network [OSTI]

Natural Gas Nitric Oxide/Nitrogen Dioxide Neal Road LandfillThe methane, nitrogen and carbon dioxide concentrations ofmethane, 30% nitrogen and 30% carbon dioxide. The recorded

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

5

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network [OSTI]

Journal of Engineering for Gas Turbines and Power, 121:569-operations with natural gas: Fuel composition implications,”USA ICEF2006-1578 LANDFILL GAS FUELED HCCI DEMONSTRATION

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

6

Community Renewable Energy Success Stories: Landfill Gas-to-Energy...  

Broader source: Energy.gov (indexed) [DOE]

Stories: Landfill Gas-to-Energy Projects Webinar (text version) Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects Webinar (text version) Below is the text...

7

Using landfill gas for energy: Projects that pay  

SciTech Connect (OSTI)

Pending Environmental Protection Agency regulations will require 500 to 700 landfills to control gas emissions resulting from decomposing garbage. Conversion of landfill gas to energy not only meets regulations, but also creates energy and revenue for local governments.

NONE

1995-02-01T23:59:59.000Z

8

DETERMINATION OF GUIDANCE VALUES FOR CLOSED LANDFILL GAS EMISSIONS  

E-Print Network [OSTI]

DETERMINATION OF GUIDANCE VALUES FOR CLOSED LANDFILL GAS EMISSIONS O. BOUR*, S. BERGER**, C Gambetta, 74 000 Annecy SUMMARY: In order to promote active landfill gas collection and treatment or natural attenuation, it is necessary to identify trigger values concerning landfill gas emissions

Boyer, Edmond

9

Methane Gas Utilization Project from Landfill at Ellery (NY)  

SciTech Connect (OSTI)

Landfill Gas to Electric Energy Generation and Transmission at Chautauqua County Landfill, Town of Ellery, New York. The goal of this project was to create a practical method with which the energy, of the landfill gas produced by the decomposing waste at the Chautauqua County Landfill, could be utilized. This goal was accomplished with the construction of a landfill gas to electric energy plant (originally 6.4MW and now 9.6MW) and the construction of an inter-connection power-line, from the power-plant to the nearest (5.5 miles) power-grid point.

Pantelis K. Panteli

2012-01-10T23:59:59.000Z

10

Capture and Utilisation of Landfill Gas  

E-Print Network [OSTI]

about 955 landfills that recovered biogas. The largest number of such landfills were in the USA landfills in Denmark that in total captured 5,800Nm3 of biogas per hour, equivalent to 276.4MW of contained #12;Biomass US DATA ON GENERATION OF BIOGAS AT LANDFILLS Eileen Berenyi, a Research Associate of EEC

Columbia University

11

LANDFILL-GAS-TO-ENERGY PROJECTS: AN ANALYSIS OF NET PRIVATE AND SOCIAL BENEFITS  

E-Print Network [OSTI]

Materials Table A1: Model Results for West Lake Landfill WEST LAKE IC Engine Gas Turbine Steam Turbine Landfill WEST COUNTY IC Engine Gas Turbine Steam Turbine Average Landfill Gas Generation (mmcf/yr) 1,075 1,735 $1,250 Table A3: Model Results for Modern Landfill MODERN IC Engine Gas Turbine Steam Turbine Average

Jaramillo, Paulina

12

E-Print Network 3.0 - annual landfill gas Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

systems, and emissions from diesel equipment at the landfill. The MWC emissions... .K. dioxins emissions have been reported in the fugitive gas emissions from landfills as well as...

13

Renewable LNG: Update on the World's Largest Landfill Gas to...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

LNG from landfill gas. Presented by Mike McGowan, Linde NA, Inc., at the NRELDOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado....

14

July 17, 2012, Webinar: Landfill Gas-to-Energy Projects  

Office of Energy Efficiency and Renewable Energy (EERE)

This webinar, held July 17, 2012, provided information on the challenges and benefits of developing successful community landfill gas-to-energy projects in Will County, Illinois, and Escambia...

15

Feasibility study: utilization of landfill gas for a vehicle fuel system, Rossman's landfill, Clackamas County, Oregon  

SciTech Connect (OSTI)

In 1978, a landfill operator in Oregon became interested in the technical and economic feasibility of recovering the methane generated in the landfill for the refueling of vehicles. DOE awarded a grant for a site-specific feasibility study of this concept. This study investigated the expected methane yield and the development of a conceptual gas-gathering system; gas processing, compressing, and storage systems; and methane-fueled vehicle systems. Cost estimates were made for each area of study. The results of the study are presented. Reasoning that gasoline prices will continue to rise and that approximately 18,000 vehicles in the US have been converted to operate on methane, a project is proposed to use this landfill as a demonstration site to produce and process methane and to fuel a fleet (50 to 400) vehicles with the gas produced in order to obtain performance and economic data on the systems used from gas collection through vehicle operation. (LCL)

None

1981-01-01T23:59:59.000Z

16

Evaluation of three geophysical methods to locate undocumented landfills  

E-Print Network [OSTI]

Metal Object. The Arrows Are Vectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Figure 45: Magnetic Profile over Area Fill, Station 19, Brenham Landfill. 84 Figure 46: Magnetic Profile over Undisturbed Area, Station... and the road. Thus the northern portion of the entrance way loop especially on the western side was not landfilled. The pond on the north western boundary of the landfill in the well buffer zone was installed for fire control purposes. After the entrance...

Brand, Stephen Gardner

1991-01-01T23:59:59.000Z

17

Feasibility study for utilization of landfill gas at the Royalton Road Landfill, Broadview Heights, Ohio. Final report  

SciTech Connect (OSTI)

The technical viability of landfill gas recovery has been previously demonstrated at numerous sites. However, the economics of a full scale utilization system are dependent on proper market conditions, appropriate technologies, landfill gas quantity and quality, and public/purchaser acceptance. The specific objectives of this feasibility study were to determine: The available markets which might purchase landfill gas or landfill gas derived energy products; An extraction system concept design and to perform an on-site pumping test program; The landfill gas utilization technologies most appropriate for the site; Any adverse environmental, health, safety, or socioeconomic impacts associated with the various proposed technologies; The optimum project economics, based on markets and processes examined. Findings and recommendations were presented which review the feasibility of a landfill gas utilization facility on the Royalton Road Landfill. The three identified utilization alternatives are indeed technically feasible. However, current market considerations indicate that installation of a full scale system is not economically advisable at this time. This final report encompasses work performed by SCS Engineers from late 1980 to the present. Monitoring data from several extraction and monitoring wells is presented, including pumping rates and gas quality and quantity analysis. The Market Analysis Data Form, local climatological data, and barometric pressure data are included in the appendix section. 33 figures, 25 tables.

None

1983-09-01T23:59:59.000Z

18

LIQUID NATURAL GAS (LNG): AN ALTERNATIVE FUEL FROM LANDFILL GAS (LFG) AND WASTEWATER DIGESTER GAS  

SciTech Connect (OSTI)

This Research and Development Subcontract sought to find economic, technical and policy links between methane recovery at landfill and wastewater treatment sites in New York and Maryland, and ways to use that methane as an alternative fuel--compressed natural gas (CNG) or liquid natural gas (LNG) -- in centrally fueled Alternative Fueled Vehicles (AFVs).

VANDOR,D.

1999-03-01T23:59:59.000Z

19

Case Studies from the Climate Technology Partnership: Landfill Gas Projects in South Korea and Lessons Learned  

SciTech Connect (OSTI)

This paper examines landfill gas projects in South Korea. Two case studies provide concrete examples of lessons learned and offer practical guidance for future projects.

Larney, C.; Heil, M.; Ha, G. A.

2006-12-01T23:59:59.000Z

20

Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects Webinar (text version)  

Office of Energy Efficiency and Renewable Energy (EERE)

Below is the text version of the Webinar titled "Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects," originally presented on July 17, 2012.

Note: This page contains sample records for the topic "landfill gas location" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Landfill gas cleanup for carbonate fuel cell power generation. Final report  

SciTech Connect (OSTI)

Landfill gas represents a significant fuel resource both in the US and worldwide. The emissions of landfill gas from existing landfills has become an environmental liability contributing to global warming and causing odor problems. Landfill gas has been used to fuel reciprocating engines and gas turbines, and may also be used to fuel carbonate fuel cells. Carbonate fuel cells have high conversion efficiencies and use the carbon dioxide present in landfill gas as an oxidant. There are, however, a number of trace contaminants in landfill gas that contain chlorine and sulfur which are deleterious to fuel cell operation. Long-term economical operation of fuel cells fueled with landfill gas will, therefore, require cleanup of the gas to remove these contaminants. The overall objective of the work reported here was to evaluate the extent to which conventional contaminant removal processes could be combined to economically reduce contaminant levels to the specifications for carbonate fuel cells. A pilot plant cleaned approximately 970,000 scf of gas over 1,000 hours of operation. The testing showed that the process could achieve the following polished gas concentrations: less than 80 ppbv hydrogen sulfide; less than 1 ppmv (the detection limit) organic sulfur; less than 300 ppbv hydrogen chloride; less than 20--80 ppbv of any individual chlorinated hydrocarbon; and 1.5 ppm sulfur dioxide.

Steinfield, G.; Sanderson, R.

1998-02-01T23:59:59.000Z

22

Int. J. Environment and Pollution, V0/. IS, No.4, 2001 Economic evaluation of a landfill system with gas  

E-Print Network [OSTI]

Int. J. Environment and Pollution, V0/. IS, No.4, 2001 Economic evaluation of a landfill system be made as follows: Yedla, S. and Parikh, 1.K. (2001) 'Economic evaluation of a landfill system with gas.K. Parikh Economic evaluation of a landfill system with gas recovery 435 Tonnes per dayMillion tonnes per

Columbia University

23

Investigation of Integrated Subsurface Processing of Landfill Gas and Carbon Sequestration, Johnson County, Kansas  

SciTech Connect (OSTI)

The Johnson County Landfill in Shawnee, KS is operated by Deffenbaugh Industries and serves much of metropolitan Kansas City. Refuse, which is dumped in large plastic-underlined trash cells covering several acres, is covered over with shale shortly after burial. The landfill waste, once it fills the cell, is then drilled by Kansas City LFG, so that the gas generated by anaerobic decomposition of the refuse can be harvested. Production of raw landfill gas from the Johnson County landfill comes from 150 wells. Daily production is approximately 2.2 to 2.5 mmcf, of which approximately 50% is methane and 50% is carbon dioxide and NMVOCs (non-methane volatile organic compounds). Heating value is approximately 550 BTU/scf. A upgrading plant, utilizing an amine process, rejects the carbon dioxide and NMVOCs, and upgrades the gas to pipeline quality (i.e., nominally a heating value >950 BTU/scf). The gas is sold to a pipeline adjacent to the landfill. With coal-bearing strata underlying the landfill, and carbon dioxide a major effluent gas derived from the upgrading process, the Johnson County Landfill is potentially an ideal setting to study the feasibility of injecting the effluent gas in the coals for both enhanced coalbed methane recovery and carbon sequestration. To these ends, coals below the landfill were cored and then were analyzed for their thickness and sorbed gas content, which ranged up to 79 scf/ton. Assuming 1 1/2 square miles of land (960 acres) at the Johnson County Landfill can be utilized for coalbed and shale gas recovery, the total amount of in-place gas calculates to 946,200 mcf, or 946.2 mmcf, or 0.95 bcf (i.e., 985.6 mcf/acre X 960 acres). Assuming that carbon dioxide can be imbibed by the coals and shales on a 2:1 ratio compared to the gas that was originally present, then 1682 to 1720 days (4.6 to 4.7 years) of landfill carbon dioxide production can be sequestered by the coals and shales immediately under the landfill. Three coal--the Bevier, Fleming, and Mulberry coals--are the major coals of sufficient thickness (nominally >1-foot) that can imbibe carbon dioxide gas with an enhanced coalbed injection. Comparison of the adsorption gas content of coals to the gas desorbed from the coals shows that the degree of saturation decreases with depth for the coals.

K. David Newell; Timothy R. Carr

2007-03-31T23:59:59.000Z

24

Recovery Act: Brea California Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas  

SciTech Connect (OSTI)

The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Olinda Landfill near Brea, California. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting Project reflected a cost effective balance of the following specific sub-objectives: • Meeting the environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas • Utilizing proven and reliable technology and equipment • Maximizing electrical efficiency • Maximizing electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Olinda Landfill • Maximizing equipment uptime • Minimizing water consumption • Minimizing post-combustion emissions • The Project produced and will produce a myriad of beneficial impacts. o The Project created 360 FTE construction and manufacturing jobs and 15 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. o By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). o The Project will annually produce 280,320 MWh’s of clean energy o By destroying the methane in the landfill gas, the Project will generate CO2 equivalent reductions of 164,938 tons annually. The completed facility produces 27.4 MWnet and operates 24 hours a day, seven days a week.

Galowitz, Stephen

2012-12-31T23:59:59.000Z

25

Recovery Act: Johnston Rhode Island Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas  

SciTech Connect (OSTI)

The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Central Landfill in Johnston, Rhode Island. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting project reflected a cost effective balance of the following specific sub-objectives. 1) Meet environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas. 2) Utilize proven and reliable technology and equipment. 3) Maximize electrical efficiency. 4) Maximize electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Central Landfill. 5) Maximize equipment uptime. 6) Minimize water consumption. 7) Minimize post-combustion emissions. To achieve the Project Objective the project consisted of several components. 1) The landfill gas collection system was modified and upgraded. 2) A State-of-the Art gas clean up and compression facility was constructed. 3) A high pressure pipeline was constructed to convey cleaned landfill gas from the clean-up and compression facility to the power plant. 4) A combined cycle electric generating facility was constructed consisting of combustion turbine generator sets, heat recovery steam generators and a steam turbine. 5) The voltage of the electricity produced was increased at a newly constructed transformer/substation and the electricity was delivered to the local transmission system. The Project produced a myriad of beneficial impacts. 1) The Project created 453 FTE construction and manufacturing jobs and 25 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. 2) By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). 3) The Project will annually produce 365,292 MWh?s of clean energy. 4) By destroying the methane in the landfill gas, the Project will generate CO{sub 2} equivalent reductions of 164,938 tons annually. The completed facility produces 28.3 MWnet and operates 24 hours a day, seven days a week.

Galowitz, Stephen

2013-06-30T23:59:59.000Z

26

IEA-Renewable Energy Technologies, Bioenergy Agreement Task 37: Energy from Biogas and Landfill Gas  

E-Print Network [OSTI]

EFP-06 IEA- Renewable Energy Technologies, Bioenergy Agreement Task 37: Energy from Biogas-Bioenergy, Task 37- Energy from Biogas and Landfill Gas", via samarbejde, informationsudveksling, fælles analyser. biogas fra anaerob udrådning (AD) som en integreret gylle og affalds behandlings teknologi. Arbejdet

27

Greenhouse gas reduction by recovery and utilization of landfill methane and CO{sub 2} technical and market feasibility study, Boului Landfill, Bucharest, Romania. Final report, September 30, 1997--September 19, 1998  

SciTech Connect (OSTI)

The project is a landfill gas to energy project rated at about 4 megawatts (electric) at startup, increasing to 8 megawatts over time. The project site is Boului Landfill, near Bucharest, Romania. The project improves regional air quality, reduces emission of greenhouse gases, controls and utilizes landfill methane, and supplies electric power to the local grid. The technical and economic feasibility of pre-treating Boului landfill gas with Acrion`s new landfill gas cleanup technology prior to combustion for power production us attractive. Acrion`s gas treatment provides several benefits to the currently structured electric generation project: (1) increase energy density of landfill gas from about 500 Btu/ft{sup 3} to about 750 Btu/ft{sup 3}; (2) remove contaminants from landfill gas to prolong engine life and reduce maintenance;; (3) recover carbon dioxide from landfill gas for Romanian markets; and (4) reduce emission of greenhouse gases methane and carbon dioxide. Greenhouse gas emissions reduction attributable to successful implementation of the landfill gas to electric project, with commercial liquid CO{sub 2} recovery, is estimated to be 53 million metric tons of CO{sub 2} equivalent of its 15 year life.

Cook, W.J.; Brown, W.R.; Siwajek, L. [Acrion Technologies, Inc., Cleveland, OH (United States); Sanders, W.I. [Power Management Corp., Bellevue, WA (United States); Botgros, I. [Petrodesign, SA, Bucharest (Romania)

1998-09-01T23:59:59.000Z

28

Integrated Combined Heat and Power/Advanced Reciprocating Internal Combustion Engine System for Landfill Gas to Power Applications  

Broader source: Energy.gov [DOE]

Landfill gas (LFG), composed largely of methane and carbon dioxide, is used in over 450 operational projects in 43 states. These projects convert a large source of greenhouse gases into a fuel that...

29

Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils  

SciTech Connect (OSTI)

The overall objective of this project, 'Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils' was to develop effective, efficient, and economic methodologies by which microbial production of nitrous oxide can be minimized while also maximizing microbial consumption of methane in landfill cover soils. A combination of laboratory and field site experiments found that the addition of nitrogen and phenylacetylene stimulated in situ methane oxidation while minimizing nitrous oxide production. Molecular analyses also indicated that methane-oxidizing bacteria may play a significant role in not only removing methane, but in nitrous oxide production as well, although the contribution of ammonia-oxidizing archaea to nitrous oxide production can not be excluded at this time. Future efforts to control both methane and nitrous oxide emissions from landfills as well as from other environments (e.g., agricultural soils) should consider these issues. Finally, a methanotrophic biofiltration system was designed and modeled for the promotion of methanotrophic activity in local methane 'hotspots' such as landfills. Model results as well as economic analyses of these biofilters indicate that the use of methanotrophic biofilters for controlling methane emissions is technically feasible, and provided either the costs of biofilter construction and operation are reduced or the value of CO{sub 2} credits is increased, can also be economically attractive.

Jeremy Semrau; Sung-Woo Lee; Jeongdae Im; Sukhwan Yoon; Michael Barcelona

2010-09-30T23:59:59.000Z

30

Tapping Landfill Gas to Provide Significant Energy Savings and Greenhouse  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and1 SpecialMaximizingResidential Buildings »CoilGas Reductions

31

Emerging technologies for the management and utilization of landfill gas. Final report, August 1994-August 1997  

SciTech Connect (OSTI)

The report gives information on emerging technologies that are considered to be commercially available (Tier 1), currently undergoing research and development (Tier 2), or considered as potentially applicable (Tier 3), for the management of landfill gas (LFG) emissions or for the utilization of methane (CH4) and carbon dioxide (CO2) from LFG. The emerging technologies that are considered to be Tier 1 are: (1) phosphoric acid fuel cells, (2) processes for converting CH4 from LFG to compressed LFG for vehicle fuel or other fuel uses, and (3) use of LFG as a fuel source for leachate evaporation systems. The Tier 2 technologies covered in the report are: (1) operation of landfills as anaerobic bioreactors, (2) operation of landfills are aerobic bioreactors, (3) production of ethanol from LFG, (4) production of commercial CO2 from LFG, and (5) use of LFG to provide fuel for heat and CO2 enhancement in greenhouses. Tier 3 technologies, considered as potentially applicable for LFG. include Stirling and Organic Rankine Cycle engines.

Roe, S.; Reisman, J.; Strait, R.; Doorn, M.

1998-02-01T23:59:59.000Z

32

Adsorption characteristics of siloxanes in landfill gas by the adsorption equilibrium test  

SciTech Connect (OSTI)

Highlights: • Equilibrium test was attempted to evaluate adsorption characteristics of siloxane. • L2 had higher removal efficiency in carbon compared to noncarbon adsorbents. • Total adsorption capacity of siloxane was 300 mg/g by coal activated carbon. • Adsorption characteristics rely on size of siloxane molecule and adsorbent pore. • Conversion of siloxane was caused by adsorption of noncarbon adsorbents. - Abstract: Due to the increase in energy cost by constantly high oil prices and the obligation to reduce greenhouse effect gases, landfill gas is frequently used as an alternative energy source for producing heat and electricity. Most of landfill gas utility facilities, however, are experiencing problems controlling siloxanes from landfill gas as their catalytic oxidizers are becoming fouled by silicon dioxide dust. To evaluate adsorption characteristics of siloxanes, an adsorption equilibrium test was conducted and parameters in the Freundlich and Langmuir isotherms were analyzed. Coconut activated carbon (CA1), coal activated carbon (CA2), impregnated activated carbon (CA3), silicagel (NCA1), and activated alumina (NCA2) were used for the adsorption of the mixed siloxane which contained hexamethyldisiloxane (L2), octamethylcyclotetrasiloxane (D4), and decamethylcyclopentasiloxane (D5). L2 had higher removal efficiency in noncarbon adsorbents compared to carbon adsorbents. The application of Langmuir and Freundlich adsorption isotherm demonstrated that coconut based CA1 and CA3 provided higher adsorption capacity on L2. And CA2 and NCA1 provided higher adsorption capacity on D4 and D5. Based on the experimental results, L2, D4, and D5 were converted by adsorption and desorption in noncarbon adsorbents. Adsorption affinity of siloxane is considered to be affect by the pore size distribution of the adsorbents and by the molecular size of each siloxane.

Nam, Sangchul; Namkoong, Wan [Department of Environmental Engineering, Konkuk University, Hwayang-Dong, Gwangjin-Gu, Seoul 143-701 (Korea, Republic of); Kang, Jeong-Hee; Park, Jin-Kyu [Department of Environmental Engineering, Anyang University, Anyang 5-Dong, Manan-Gu, Anyang-Si, Gyeonggi-Do 430-714 (Korea, Republic of); Lee, Namhoon, E-mail: nhlee@anyang.ac.kr [Department of Environmental Engineering, Anyang University, Anyang 5-Dong, Manan-Gu, Anyang-Si, Gyeonggi-Do 430-714 (Korea, Republic of)

2013-10-15T23:59:59.000Z

33

Influence of Physical Parameters on Methane Oxidation in Landfill Cover Soils  

E-Print Network [OSTI]

.......................................................................... 5 1.4 Phases of Landfill Gas Production

Fischlin, Andreas

34

Landfill gas cleanup for carbonate fuel cell power generation. CRADA final report  

SciTech Connect (OSTI)

The overall objective of the work reported here was to evaluate the extent to which conventional contaminant removal processes could be combined to economically reduce contaminant levels to the specifications for carbonate fuel cells. The technical effort was conducted by EPRI, consultant David Thimsen, Kaltec of Minnesota, Energy Research Corporation (ERC) and Interpoll Laboratories. The Electric Power Research Institute (EPRI) made available two test skids originally used to test an ERC 30 kW carbonate fuel cell at the Destec Coal Gasification Plan in Plaquemine, LA. EPRI`s carbonate fuel cell pilot plant was installed at the Anoka County Regional Landfill in Ramsey, Minnesota. Additional gas cleaning equipment was installed to evaluate a potentially inexpensive, multi-stage gas cleaning process to remove sulfur and chlorine in the gas to levels acceptable for long-term, economical carbonate fuel cell operation. The pilot plant cleaned approximately 970,000 scf (27,500 Nm{sup 3}) of gas over 1,000 hours of operation. The testing showed that the process could achieve the following polished gas concentrations. Less than 80 ppbv hydrogen sulfide; less than 1 ppmv (the detection limit) organic sulfur; less than 300 ppbv hydrogen chloride; less than 20--80 ppbv of any individual chlorined hydrocarbon; and 1.5 ppm sulfur dioxide. These were the detection limits of the analytical procedures employed. It is probable that the actual concentrations are below these analytical limits.

Steinfeld, G.; Sanderson, R.

1998-02-01T23:59:59.000Z

35

Landfill Gas Conversion to LNG and LCO{sub 2}. Phase II Final Report for January 25, 1999 - April 30, 2000  

SciTech Connect (OSTI)

This report summarizes work on the development of a process to produce LNG (liquefied methane) for heavy vehicle use from landfill gas (LFG) using Acrion's CO{sub 2} wash process for contaminant removal and CO{sub 2} recovery.

Brown, W. R.; Cook, W. J.; Siwajek, L. A.

2000-10-20T23:59:59.000Z

36

Electric power generation using a phosphoric acid cell on a municipal solid waste landfill gas stream. Technology verification report, November 1997--July 1998  

SciTech Connect (OSTI)

The report gives results of tests to verify the performance of a landfill gas pretreatment unit (GPU) and a phosphoric acid fuel cell system. The complete system removes contaminants from landfill gas and produces electricity for on-site use or connection to an electric grid. Performance data were collected at two sites determined to be representative of the U.S. landfill market. The Penrose facility, in Los Angeles, CA, was the first test site. The landfill gas at this site represented waste gas recovery from four nearby landfills, consisting primarily of industrial waste material. It produced approximately 3000 scf of gas/minute, and had a higher heating value of 446 Btu/scf at about 44% methane concentration. The second test site, in Groton, CT, was a relatively small landfill, but with greater heat content gas (methane levels were about 57% and the average heating value was 585 Btu/scf). The verification test addressed contaminant removal efficiency, flare destruction efficiency, and the operational capability of the cleanup system, and the power production capability of the fuel cell system.

Masemore, S.; Piccot, S.

1998-08-01T23:59:59.000Z

37

Well-to-Wheels analysis of landfill gas-based pathways and their addition to the GREET model.  

SciTech Connect (OSTI)

Today, approximately 300 million standard cubic ft/day (mmscfd) of natural gas and 1600 MW of electricity are produced from the decomposition of organic waste at 519 U.S. landfills (EPA 2010a). Since landfill gas (LFG) is a renewable resource, this energy is considered renewable. When used as a vehicle fuel, compressed natural gas (CNG) produced from LFG consumes up to 185,000 Btu of fossil fuel and generates from 1.5 to 18.4 kg of carbon dioxide-equivalent (CO{sub 2}e) emissions per million Btu of fuel on a 'well-to-wheel' (WTW) basis. This compares with approximately 1.1 million Btu and 78.2 kg of CO{sub 2}e per million Btu for CNG from fossil natural gas and 1.2 million Btu and 97.5 kg of CO{sub 2}e per million Btu for petroleum gasoline. Because of the additional energy required for liquefaction, LFG-based liquefied natural gas (LNG) requires more fossil fuel (222,000-227,000 Btu/million Btu WTW) and generates more GHG emissions (approximately 22 kg CO{sub 2}e /MM Btu WTW) if grid electricity is used for the liquefaction process. However, if some of the LFG is used to generate electricity for gas cleanup and liquefaction (or compression, in the case of CNG), vehicle fuel produced from LFG can have no fossil fuel input and only minimal GHG emissions (1.5-7.7 kg CO{sub 2}e /MM Btu) on a WTW basis. Thus, LFG-based natural gas can be one of the lowest GHG-emitting fuels for light- or heavy-duty vehicles. This report discusses the size and scope of biomethane resources from landfills and the pathways by which those resources can be turned into and utilized as vehicle fuel. It includes characterizations of the LFG stream and the processes used to convert low-Btu LFG into high-Btu renewable natural gas (RNG); documents the conversion efficiencies and losses of those processes, the choice of processes modeled in GREET, and other assumptions used to construct GREET pathways; and presents GREET results by pathway stage. GREET estimates of well-to-pump (WTP), pump-to-wheel (PTW), and WTW energy, fossil fuel, and GHG emissions for each LFG-based pathway are then summarized and compared with similar estimates for fossil natural gas and petroleum pathways.

Mintz, M.; Han, J.; Wang, M.; Saricks, C.; Energy Systems

2010-06-30T23:59:59.000Z

38

Renewable Energy 32 (2007) 12431257 Methane generation in landfills  

E-Print Network [OSTI]

. Some of the modern regulated landfills attempt to capture and utilize landfill biogas, a renewable collecting landfill biogas worldwide. The landfills that capture biogas in the US collect about 2.6 million. All rights reserved. Keywords: Landfill gas; Renewable energy; Municipal solid waste; Biogas; Methane

Columbia University

39

Economic Feasibility of Converting Landfill Gas to Natural Gas for Use as a Transportation Fuel in Refuse Trucks  

E-Print Network [OSTI]

to global climate change, diesel-fueled refuse trucks are one of the most concentrated sources of health-threatening air pollution in most cities. The landfills that they ultimately place their waste in are the second largest source of human-related methane...

Sprague, Stephen M.

2011-02-22T23:59:59.000Z

40

Experimental and life cycle assessment analysis of gas emission from mechanically–biologically pretreated waste in a landfill with energy recovery  

SciTech Connect (OSTI)

Highlights: • Bio-methane landfill emissions from different period (0, 4, 8, 16 weeks) MTB waste have been evaluated. • Electrical energy recoverable from landfill gas ranges from 11 to about 90 kW h/tonne. • Correlation between oxygen uptake, energy recovery and anaerobic gas production shows R{sup 2} ranging from 0.78 to 0.98. • LCA demonstrate that global impact related to gaseous emissions achieve minimum for 4 week of MBT. - Abstract: The global gaseous emissions produced by landfilling the Mechanically Sorted Organic Fraction (MSOF) with different weeks of Mechanical Biological Treatment (MBT) was evaluated for an existing waste management system. One MBT facility and a landfill with internal combustion engines fuelled by the landfill gas for electrical energy production operate in the waste management system considered. An experimental apparatus was used to simulate 0, 4, 8 and 16 weeks of aerobic stabilization and the consequent biogas potential (Nl/kg) of a large sample of MSOF withdrawn from the full-scale MBT. Stabilization achieved by the waste was evaluated by dynamic oxygen uptake and fermentation tests. Good correlation coefficients (R{sup 2}), ranging from 0.7668 to 0.9772, were found between oxygen uptake, fermentation and anaerobic test values. On the basis of the results of several anaerobic tests, the methane production rate k (year{sup ?1}) was evaluated. k ranged from 0.436 to 0.308 year{sup ?1} and the bio-methane potential from 37 to 12 N m{sup 3}/tonne, respectively, for the MSOF with 0 and 16 weeks of treatment. Energy recovery from landfill gas ranged from about 11 to 90 kW h per tonne of disposed MSOF depending on the different scenario investigated. Life cycle analysis showed that the scenario with 0 weeks of pre-treatment has the highest weighted global impact even if opposite results were obtained with respect to the single impact criteria. MSOF pre-treatment periods longer than 4 weeks showed rather negligible variation in the global impact of system emissions.

Di Maria, Francesco, E-mail: francesco.dimaria@unipg.it; Sordi, Alessio; Micale, Caterina

2013-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "landfill gas location" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Influence of mechanical-biological waste pre-treatment methods on the gas formation in landfills  

SciTech Connect (OSTI)

In order to minimise emissions and environmental impacts, only pre-treated waste should be disposed of. For the last six years, a series of continuous experiments has been conducted at the Institute WAR, TU Darmstadt, in order to determine the emissions from pre-treated waste. Different kinds of pre-treated waste were incubated in several reactors and various data, including production and composition of the gas and the leachate, were collected. In this paper, the interim results of gas production and the gas composition from different types of waste after a running time of six years are presented and discussed.

Bockreis, A. [Technische Universitaet Darmstadt, Darmstadt University of Technology, Institute for Water Supply and Groundwater Protection, Wastewater Technology, Waste Management, Industrial Material Flows and Environmental Planning (Institute WAR), Chair of Waste Management and Waste Technology, Darmstadt (Germany)]. E-mail: a.bockreis@iwar.tu-darmstadt.de; Steinberg, I. [Technische Universitaet Darmstadt, Darmstadt University of Technology, Institute for Water Supply and Groundwater Protection, Wastewater Technology, Waste Management, Industrial Material Flows and Environmental Planning (Institute WAR), Chair of Waste Management and Waste Technology, Darmstadt (Germany)

2005-07-01T23:59:59.000Z

42

LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL  

SciTech Connect (OSTI)

''Conventional'' waste landfills emit methane, a potent greenhouse gas, in quantities such that landfill methane is a major factor in global climate change. Controlled landfilling is a novel approach to manage landfills for rapid completion of total gas generation, maximizing gas capture and minimizing emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated and brought to much earlier completion by improving conditions for biological processes (principally moisture levels) in the landfill. Gas recovery efficiency approaches 100% through use of surface membrane cover over porous gas recovery layers operated at slight vacuum. A field demonstration project's results at the Yolo County Central Landfill near Davis, California are, to date, highly encouraging. Two major controlled landfilling benefits would be the reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role in reduction of US greenhouse gas emissions.

Don Augenstein

1999-01-11T23:59:59.000Z

43

Property:Building/SPPurchasedEngyPerAreaKwhM2DigesterLandfillGas | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformationInyo County,Information SPPurchasedEngyNrmlYrMwhYrTownGas Jump to:Energy

44

UNFCCC-Consolidated baseline and monitoring methodology for landfill...  

Open Energy Info (EERE)

baseline and monitoring methodology for landfill gas project activities Jump to: navigation, search Tool Summary LAUNCH TOOL Name: UNFCCC-Consolidated baseline and monitoring...

45

ACOUSTIC DETECTING AND LOCATING GAS PIPE LINE INFRINGEMENT  

SciTech Connect (OSTI)

The power point presentation for the Natural Gas Technologies II Conference held on February 8-11, 2004 in Phoenix AZ, published the presentations made at the conference, therefore required all presenters to submit their presentation prior to November 2003. However in the remainder of year, significant new test data became available which were incorporated in the actual presentation made at the Natural Gas Technologies II Conference. The 6th progress report presents the updated actual slide show used during the paper presentation by Richard Guiler.

John L. LOTH; GARY J. MORRIS; GEORGE M. PALMER; RICHARD GUILER

2004-01-05T23:59:59.000Z

46

LANDFILL GAS CONVERSION TO LNG AND LCO{sub 2}. PHASE 1, FINAL REPORT FOR THE PERIOD MARCH 1998-FEBRUARY 1999  

SciTech Connect (OSTI)

Process designs and economics were developed to produce LNG and liquid carbon dioxide (CO{sub 2}) from landfill gas (LFG) using the Acrion CO{sub 2} wash process. The patented Acrion CO{sub 2} wash process uses liquid CO{sub 2} to absorb contaminants from the LFG. The process steps are compression, drying, CO{sub 2} wash contaminant removal and CO{sub 2} recovery, residual CO{sub 2} removal and methane liquefaction. Three flowsheets were developed using different residual CO{sub 2} removal schemes. These included physical solvent absorption (methanol), membranes and molecular sieves. The capital and operating costs of the flowsheets were very similar. The LNG production cost was around ten cents per gallon. In parallel with process flowsheet development, the business aspects of an eventual commercial project have been explored. The process was found to have significant potential commercial application. The business plan effort investigated the economics of LNG transportation, fueling, vehicle conversion, and markets. The commercial value of liquid CO{sub 2} was also investigated. This Phase 1 work, March 1998 through February 1999, was funded under Brookhaven National laboratory contract 725089 under the research program entitled ``Liquefied Natural Gas as a Heavy Vehicle Fuel.'' The Phase 2 effort will develop flowsheets for the following: (1) CO{sub 2} and pipeline gas production, with the pipeline methane being liquefied at a peak shaving site, (2) sewage digester gas as an alternate feedstock to LFG and (3) the use of mixed refrigerants for process cooling. Phase 2 will also study the modification of Acrion's process demonstration unit for the production of LNG and a market site for LNG production.

COOK,W.J.; NEYMAN,M.; SIWAJEK,L.A.; BROWN,W.R.; VAN HAUWAERT,P.M.; CURREN,E.D.

1998-02-25T23:59:59.000Z

47

Geohydrology and groundwater geochemistry at a sub-arctic landfill, Fairbanks, Alaska  

SciTech Connect (OSTI)

The Fairbanks-North Star Borough, Alaska, landfill is located on silt, sand, and gravel deposits of the Tanana River flood plain, about 3 miles south of the city of Fairbanks water supply wells. The landfill has been in operation for about 25 years in this sub-arctic region of discontinuous permafrost. The cold climate limits biological activity within the landfill with corresponding low gas and leachate production. Chloride concentrations, specific conductance, water temperature, and earth conductivity measurements indicate a small plume of leachate flowing to the northwest from the landfill. The leachate remains near the water table as it flows northwestward toward a drainage ditch. Results of computer modeling of this local hydrologic system indicate that some of the leachate may be discharging to the ditch. Chemical data show that higher-than-background concentrations of several ions are present in the plume. However, the concentrations appear to be reduced to background levels within a short distance along the path of groundwater flow from the landfill, and thus the leachate is not expected to affect the water supply wells. 11 refs., 21 figs., 2 tabs.

Downey, J.S.; Sinton, P.O.

1990-01-01T23:59:59.000Z

48

Landfill Disamenities And Better Utilization of Waste Resources Presented to the Wisconsin Governor's Task Force on Waste Materials Recovery  

E-Print Network [OSTI]

emissions. I recently saw an exhibit of a landfill gas carbon adsorber designed to remove siloxanes and air toxics from landfill gas prior to engine burning, to reduce wear on the engine. They later stripped this is a common practice. Most landfill gas energy combustion systems are uncontrolled. In 1998, a New York State

Columbia University

49

Bioreactor Landfill Research and Demonstration Project Northern Oaks Landfill, Harrison, MI  

SciTech Connect (OSTI)

A bioreactor landfill cell with 1.2-acre footprint was constructed, filled, operated, and monitored at Northern Oaks Recycling and Disposal Facility (NORDF) at Harrison, MI. With a filled volume of 74,239 cubic yards, the cell contained approximately 35,317 tons of municipal solid waste (MSW) and 20,777 tons of cover soil. It was laid on the slope of an existing cell but separated by a geosynthetic membrane liner. After the cell reached a design height of 60 feet, it was covered with a geosynthetic membrane cap. A three-dimensional monitoring system to collect data at 48 different locations was designed and installed during the construction phase of the bioreactor cell. Each location had a cluster of monitoring devices consisting of a probe to monitor moisture and temperature, a leachate collection basin, and a gas sampling port. An increase in moisture content of the MSW in the bioreactor cell was achieved by pumping leachate collected on-site from various other cells, as well as recirculation of leachate from the bioreactor landfill cell itself. Three types of leachate injection systems were evaluated in this bioreactor cell for their efficacy to distribute pumped leachate uniformly: a leachate injection pipe buried in a 6-ft wide horizontal stone mound, a 15-ft wide geocomposite drainage layer, and a 60-ft wide geocomposite drainage layer. All leachate injection systems were installed on top of the compacted waste surface. The distribution of water and resulting MSW moisture content throughout the bioreactor cell was found to be similar for the three designs. Water coming into and leaving the cell (leachate pumped in, precipitation, snow, evaporation, and collected leachate) was monitored in order to carry out a water balance. Using a leachate injection rate of 26 – 30 gal/yard3, the average moisture content increased from 25% to 35% (wet based) over the period of this study. One of the key aspects of this bioreactor landfill study was to evaluate bioreactor start up and performance in locations with colder climate. For lifts filled during the summer months, methane generation started within three months after completion of the lift. For lifts filled in winter months, very little methane production occurred even eight months after filling. The temperature data indicated that subzero or slightly above zero (oC) temperatures persisted for unusually long periods (more than six months) in the lifts filled during winter months. This was likely due to the high thermal insulation capability of the MSW and the low level of biological activity during start up. This observation indicates that bioreactor landfills located in cold climate and filled during winter months may require mechanisms to increase temperature and initiate biodegradation. Thus, besides moisture, temperature may be the next important factor controlling the biological decomposition in anaerobic bioreactor landfills. Spatial and temporal characterization of leachate samples indicated the presence of low levels of commonly used volatile organic compounds (including acetone, methyl ethyl ketone, methyl isobutyl ketone, and toluene) and metals (including arsenic, chromium, and zinc). Changes and leachate and gaseous sample characteristics correlated with enhanced biological activity and increase in temperature. Continued monitoring of this bioreactor landfill cell is expected to yield critical data needed for start up, design, and operation of this emerging process.

Zhao, Xiando; Voice, Thomas; and Hashsham, Syed A.

2006-08-29T23:59:59.000Z

50

Field performance of a geosynthetic clay liner landfill capping system under simulated waste subsidence  

SciTech Connect (OSTI)

A flexible landfill capping system consisting of a 3-D-geocore composite for gas vent, a Geosynthetic Clay Liner (GCL) for sealing and a 3-D-geocore composite for drainage of the vegetation soil was built on a test field at Michelshoehe landfill near Weimar, Germany. At four locations airbags were installed underneath the thin capping system to simulate subsidences. On top of three of these airbags overlaps of the GCL were positioned, for comparison there was no overlap at the fourth location. After hydratation of the GCL the airbags were de-aerated and subsidences occurred with app. 5 % tensile strain in the GCL. For three weeks the test field was intensively sprinkled in intervals. Then horizontal and vertical deformations were measured, but not displacements were registered in the overlaps. The evaluation of the GCL`s permeability showed no significant difference between the locations with and without overlaps.

Weiss, W. [Hochschule fur Architektur und Bauwesen (Germany); Siegmund, M. [Materialforschungs - und, Prufanstalt (Germany); Alexiew, D.

1995-10-01T23:59:59.000Z

51

Method and apparatus for recovering a gas from a gas hydrate located on the ocean floor  

DOE Patents [OSTI]

A method and apparatus for recovering a gas from a gas hydrate on the ocean floor includes a flexible cover, a plurality of steerable base members secured to the cover, and a steerable mining module. A suitable source for inflating the cover over the gas hydrate deposit is provided. The mining module, positioned on the gas hydrate deposit, is preferably connected to the cover by a control cable. A gas retrieval conduit or hose extends upwardly from the cover to be connected to a support ship on the ocean surface.

Wyatt, Douglas E. (Aiken, SC)

2001-01-01T23:59:59.000Z

52

Aerobic landfill bioreactor  

DOE Patents [OSTI]

The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

Hudgins, Mark P (Aiken, SC); Bessette, Bernard J (Aiken, SC); March, John (Winterville, GA); McComb, Scott T. (Andersonville, SC)

2000-01-01T23:59:59.000Z

53

Aerobic landfill bioreactor  

DOE Patents [OSTI]

The present invention includes a system of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

Hudgins, Mark P (Aiken, SC); Bessette, Bernard J (Aiken, SC); March, John C (Winterville, GA); McComb, Scott T. (Andersonville, SC)

2002-01-01T23:59:59.000Z

54

LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL  

SciTech Connect (OSTI)

Controlled landfilling is an approach to manage solid waste landfills, so as to rapidly complete methane generation, while maximizing gas capture and minimizing the usual emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated to more rapid and earlier completion to full potential by improving conditions (principally moisture, but also temperature) to optimize biological processes occurring within the landfill. Gas is contained through use of surface membrane cover. Gas is captured via porous layers, under the cover, operated at slight vacuum. A field demonstration project has been ongoing under NETL sponsorship for the past several years near Davis, CA. Results have been extremely encouraging. Two major benefits of the technology are reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times, more predictably, than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role both in reduction of US greenhouse gas emissions and in US renewable energy. The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional landfills. This is the highest methane recovery rate per unit waste, and thus progress toward stabilization, documented anywhere for such a large waste mass. This high recovery rate is attributed to moisture, and elevated temperature attained inexpensively during startup. Economic analyses performed under Phase I of this NETL contract indicate ''greenhouse cost effectiveness'' to be excellent. Other benefits include substantial waste volume loss (over 30%) which translates to extended landfill life. Other environmental benefits include rapidly improved quality and stabilization (lowered pollutant levels) in liquid leachate which drains from the waste.

Don Augenstein; Ramin Yazdani; Rick Moore; Michelle Byars; Jeff Kieffer; Professor Morton Barlaz; Rinav Mehta

2000-02-26T23:59:59.000Z

55

Photovoltaics on Landfills in Puerto Rico  

SciTech Connect (OSTI)

The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Commonwealth of Puerto Rico for a feasibility study of m0treAlables on several brownfield sites. The EPA defines a brownfield as 'a property, the expansion, redevelopment, or reuse of which may be complicated by the presence or potential presence of a hazardous substance, pollutant, or contaminant.' All of the brownfields in this study are landfill sites. Citizens of Puerto Rico, city planners, and site managers are interested in redevelopment uses for landfills in Puerto Rico, which are particularly well suited for solar photovoltaic (PV) installation. The purpose of this report is to assess the landfills with the highest potential for possible solar PV installation and estimate cost, performance, and site impacts of three different PV options: crystalline silicon (fixed-tilt), crystalline silicon (single-axis tracking), and thin film (fixed-tilt). Each option represents a standalone system that can be sized to use an entire available site area. In addition, the report outlines financing options that could assist in the implementation of a system. The feasibility of PV systems installed on landfills is highly impacted by the available area for an array, solar resource, operating status, landfill cap status, distance to transmission lines, and distance to major roads. All of the landfills in Puerto Rico were screened according to these criteria in order to determine the sites with the greatest potential. Eight landfills were chosen for site visits based on the screening criteria and location. Because of time constraints and the fact that Puerto Rico is a relatively large island, the eight landfills for this visit were all located in the eastern half of the island. The findings from this report can be applied to landfills in the western half of the island. The economics of a potential PV system on landfills in Puerto Rico depend greatly on the cost of electricity. Currently, PREPA has an average electric rate of $0.119/kWh. Based on past electric rate increases in Puerto Rico and other islands in the Caribbean, this rate could increase to $0.15/kWh or higher in a relatively short amount of time. In the coming years, increasing electrical rates and increased necessity for clean power will continue to improve the feasibility of implementing solar PV systems at these sites.

Salasovich, J.; Mosey, G.

2011-01-01T23:59:59.000Z

56

Geohydrology and ground-water geochemistry at a sub-Arctic Landfill, Fairbanks, Alaska. Water resources investigation  

SciTech Connect (OSTI)

The Fairbanks-North Star Borough landfill is located on silt, sand, and gravel deposits of the Tanana River flood plain, about 3 miles south of the city of Fairbanks water-supply wells. The landfill has been in operation for about 25 years in this sub-arctic region of discontinuous permafrost. The cold climate limits biological activity within the landfill with corresponding low gas and leachate production. Chloride concentrations, specific conductance, water temperatures, and earth conductivity measurements indicate a small plume of leachate flowing to the northwest from the landfill. The leachate remains near the water table as it flows northwestward toward a drainage ditch. Results of computer modeling of this local hydrologic system indicate that some of the leachate may be discharging to the ditch. Chemical data show that higher-than-background concentrations of several ions are present in the plume. However, the concentrations appear to be reduced to background levels within a short distance along the path of ground-water flow from the landfill, and thus the leachate is not expected to affect the water-supply wells.

Downey, J.S.; Sinton, P.O.

1990-01-01T23:59:59.000Z

57

E-Print Network 3.0 - areas treating landfill Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conference COMPARISON OF AIR EMISSIONS FROM WASTE MANAGEMENT FACILITIES Summary: .K. dioxins emissions have been reported in the fugitive gas emissions from landfills as well as...

58

Landfill Gas | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey, Washington:Lakeville, MN) Jump to:LamarJump to:Lanco

59

Landfill stabilization focus area: Technology summary  

SciTech Connect (OSTI)

Landfills within the DOE Complex as of 1990 are estimated to contain 3 million cubic meters of buried waste. The DOE facilities where the waste is predominantly located are at Hanford, the Savannah River Site (SRS), the Idaho National Engineering Laboratory (INEL), the Los Alamos National Laboratory (LANL), the Oak Ridge Reservation (ORR), the Nevada Test Site (NTS), and the Rocky Flats Plant (RFP). Landfills include buried waste, whether on pads or in trenches, sumps, ponds, pits, cribs, heaps and piles, auger holes, caissons, and sanitary landfills. Approximately half of all DOE buried waste was disposed of before 1970. Disposal regulations at that time permitted the commingling of various types of waste (i.e., transuranic, low-level radioactive, hazardous). As a result, much of the buried waste throughout the DOE Complex is presently believed to be contaminated with both hazardous and radioactive materials. DOE buried waste typically includes transuranic-contaminated radioactive waste (TRU), low-level radioactive waste (LLW), hazardous waste per 40 CFR 26 1, greater-than-class-C waste per CFR 61 55 (GTCC), mixed TRU waste, and mixed LLW. The mission of the Landfill Stabilization Focus Area is to develop, demonstrate, and deliver safer,more cost-effective and efficient technologies which satisfy DOE site needs for the remediation and management of landfills. The LSFA is structured into five technology areas to meet the landfill remediation and management needs across the DOE complex. These technology areas are: assessment, retrieval, treatment, containment, and stabilization. Technical tasks in each of these areas are reviewed.

NONE

1995-06-01T23:59:59.000Z

60

Sandia National Laboratories: co-locating natural gas and hydrogen stations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted for USMaterialsthe Goal ofco-locating natural gas and hydrogen

Note: This page contains sample records for the topic "landfill gas location" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Welcome FUPWG- Natural Gas Overview  

Broader source: Energy.gov [DOE]

Presentation—given at the Federal Utility Partnership Working Group (FUPWG) Fall 2008 meeting—provides an overview of natural gas, including emissions, compressed natural gas (CNG) vehicles, and landfill gas supplement for natural gas system.

62

Livingston Parish Landfill Methane Recovery Project (Feasibility Study)  

SciTech Connect (OSTI)

The Woodside Landfill is owned by Livingston Parish, Louisiana and is operated under contract by Waste Management of Louisiana LLC. This public owner/private operator partnership is commonplace in the solid waste industry today. The landfill has been in operation since approximately 1988 and has a permitted capacity of approximately 41 million cubic yards. Based on an assumed in-place waste density of 0.94 ton per cubic yard, the landfill could have an expected design capacity of 39.3 million tons. The landfill does have an active landfill gas collection and control system (LFGCCS) in place because it meets the minimum thresholds for the New Source Performance Standards (NSPS). The initial LFGCS was installed prior to 2006 and subsequent phases were installed in 2007 and 2010. The Parish received a grant from the United States Department of Energy in 2009 to evaluate the potential for landfill gas recovery and utilization at the Woodside Landfill. This includes a technical and economic feasibility study of a project to install a landfill gas to energy (LFGTE) plant and to compare alternative technologies. The LFGTE plant can take the form of on-site electrical generation, a direct use/medium Btu option, or a high-Btu upgrade technology. The technical evaluation in Section 2 of this report concludes that landfill gas from the Woodside landfill is suitable for recovery and utilization. The financial evaluations in sections 3, 4, and 5 of this report provide financial estimates of the returns for various utilization technologies. The report concludes that the most economically viable project is the Electricity Generation option, subject to the Parish’s ability and willingness to allocate adequate cash for initial capital and/or to obtain debt financing. However, even this option does not present a solid return: by our estimates, there is a 19 year simple payback on the electricity generation option. All of the energy recovery options discussed in this report economically stressed. The primary reason for this is the recent fundamental shift in the US energy landscape. Abundant supplies of natural gas have put downward pressure on any project that displaces natural gas or natural gas substitutes. Moreover, this shift appears long-term as domestic supplies for natural gas may have been increased for several hundred years. While electricity prices are less affected by natural gas prices than other thermal projects, they are still significantly affected since much of the power in the Entergy cost structure is driven by natural gas-fired generation. Consequently, rates reimbursed by the power company based on their avoided cost structure also face downward pressure over the near and intermediate term. In addition, there has been decreasing emphasis on environmental concerns regarding the production of thermal energy, and as a result both the voluntary and mandatory markets that drive green attribute prices have softened significantly over the past couple of years. Please note that energy markets are constantly changing due to fundamental supply and demand forces, as well as from external forces such as regulations and environmental concerns. At any point in the future, the outlook for energy prices may change and could deem either the electricity generation or pipeline injection project more feasible. This report is intended to serve as the primary background document for subsequent decisions made at Parish staff and governing board levels.

White, Steven

2012-11-15T23:59:59.000Z

63

Sanitary Landfill groundwater monitoring report. First quarter 1993  

SciTech Connect (OSTI)

This report contains analytical data for samples taken during first quarter 1993 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site. The data are submitted in reference to the Sanitary Landfill Operating Permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established by the US Environmental Protection Agency, the South Carolina final Primary Drinking Water Standards for lead or the SRS flagging criteria.

Not Available

1993-05-01T23:59:59.000Z

64

Sanitary Landfill groundwater monitoring report. Second quarter 1994  

SciTech Connect (OSTI)

This report contains analytical data for samples taken during second quarter 1994 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site (SRS). The data are submitted in reference to the Sanitary Landfill Operating Permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established by the US Environmental Protection Agency (Appendix A), the South Carolina final Primary Drinking Water Standard for lead (Appendix A), or the SRS flagging criteria (Appendix B).

Not Available

1994-08-01T23:59:59.000Z

65

Sanitary landfill groundwater monitoring report. Third quarter 1995  

SciTech Connect (OSTI)

This report contains analytical data for samples taken during third quarter 1995 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site (SRS). The data are submitted in reference to the Sanitary Landfill Operating Permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established by the U.S. Environmental Protection Agency, the South Carolina final Primary Drinking Water Standard for lead, or the SRS flagging criteria.

NONE

1995-11-01T23:59:59.000Z

66

Sanitary Landfill groundwater monitoring report. Third quarter 1993  

SciTech Connect (OSTI)

This report contains analytical data for samples taken during third quarter 1993 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site. The data are submitted in reference to the Sanitary Landfill Operating Permit. The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards or screening levels, established by the US Environmental Protection Agency, the South Carolina final Primary Drinking Water Standard for lead, or the SRS flagging criteria.

Not Available

1993-11-01T23:59:59.000Z

67

Sanitary landfill groundwater monitoring report (U): second quarter 1996  

SciTech Connect (OSTI)

This report contains analytical data for samples taken during second quarter 1996 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site (SRS). The data are submitted in reference to the Sanitary Landfill Operating Permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established by the U.S. Environmental Protection Agency (Appendix A), the South Carolina final Primary Drinking Water Standard for lead (Appendix A), or the SRS flagging criteria (Appendix B).

NONE

1996-08-01T23:59:59.000Z

68

Sanitary Landfill Groundwater Monitoring Report. Second Quarter 1995  

SciTech Connect (OSTI)

This report contains analytical data for samples taken during second quarter 1995 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site (SRS). The data are submitted in reference to the Sanitary landfill Operating Permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Water Standards (PDWS) or screening levels, established by the US Environmental Protection Agency (Appendix A), the South Carolina final Primary Drinking Water Standard for lead (Appendix A), or the SRS flagging criteria (Appendix B).

Chase, J.A.

1995-08-01T23:59:59.000Z

69

Sanitary Landfill groundwater monitoring report. Second quarter 1993  

SciTech Connect (OSTI)

This report contains analytical data for samples taken during second quarter 1993 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site. The data are submitted in reference to the Sanitary Landfill Operating Permit (DWP-087A). The report represents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established by the US Environmental Protection Agency the South Carolina final Primary Drinking Water Standards for lead or the SRS flagging criteria.

Not Available

1993-08-01T23:59:59.000Z

70

Sanitary landfill groundwater monitoring report, Third Quarter 1999  

SciTech Connect (OSTI)

This report contains analytical data for samples taken during Third Quarter 1999 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site. The data are submitted in reference to the Sanitary Landfill Operating Permit. The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards or screening levels, established by the U.S. Environmental Protection Agency, the South Carolina final Primary Drinking Water Standard for lead, or the SRS flagging criteria.

Chase, J.

1999-12-08T23:59:59.000Z

71

Sanitary Landfill groundwater monitoring report: Third quarter 1994  

SciTech Connect (OSTI)

This report contains analytical data for samples taken during third quarter 1994 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site (SRS). The data are submitted in reference to the Sanitary Landfill Operating Permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established the US Environmental Protection Agency, the South Carolina final PDWS for lead (Appendix A), or the SRS flagging criteria.

Not Available

1994-11-01T23:59:59.000Z

72

Sanitary Landfill Groundwater Monitoring Report, Second Quarter 1999  

SciTech Connect (OSTI)

This report contains analytical data for samples taken during Second Quarter 1999 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site. The data are submitted in reference to the Sanitary Landfill Operating Permit. The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards or screening levels, established by the US Environmental Protection Agency, the South Carolina final Primary Drinking Water Standard for lead, or the SRS flagging criteria.

Chase, J.

1999-07-29T23:59:59.000Z

73

Sanitary landfill groundwater monitoring report: Third quarter 1996  

SciTech Connect (OSTI)

This report contains analytical data for samples taken during third quarter 1996 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site (SRS). The data are submitted in reference to the Sanitary Landfill Operating Permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established by the US Environmental Protection Agency (Appendix A), the South Carolina final Primary Drinking Water Standard for lead (Appendix A), or the SRS flagging criteria (Appendix B).

NONE

1996-11-01T23:59:59.000Z

74

Risk assessment of landfill disposal sites - State of the art  

SciTech Connect (OSTI)

A risk assessment process can assist in drawing a cost-effective compromise between economic and environmental costs, thereby assuring that the philosophy of 'sustainable development' is adhered to. Nowadays risk analysis is in wide use to effectively manage environmental issues. Risk assessment is also applied to other subjects including health and safety, food, finance, ecology and epidemiology. The literature review of environmental risk assessments in general and risk assessment approaches particularly regarding landfill disposal sites undertaken by the authors, reveals that an integrated risk assessment methodology for landfill gas, leachate or degraded waste does not exist. A range of knowledge gaps is discovered in the literature reviewed to date. From the perspective of landfill leachate, this paper identifies the extent to which various risk analysis aspects are absent in the existing approaches.

Butt, Talib E. [Sustainability Centre in Glasgow (SCG), George Moore Building, 70 Cowcaddens Road, Glasgow Caledonian University, Glasgow G4 0BA, Scotland (United Kingdom)], E-mail: t_e_butt@hotmail.com; Lockley, Elaine [Be Environmental Ltd. Suite 213, Lomeshaye Business Village, Turner Road, Nelson, Lancashire, BB9 7DR, England (United Kingdom); Oduyemi, Kehinde O.K. [Built and Natural Environment, Baxter Building, University of Abertay Dundee, Bell Street, Dundee DD1 1HG, Scotland (United Kingdom)], E-mail: k.oduyemi@abertay.ac.uk

2008-07-01T23:59:59.000Z

75

LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL  

SciTech Connect (OSTI)

The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional landfills. This is the highest methane recovery rate per unit waste, and thus progress toward stabilization, documented anywhere for such a large waste mass. This high recovery rate is attributed to moisture, and elevated temperature attained inexpensively during startup. Economic analyses performed under Phase I of this NETL contract indicate ''greenhouse cost effectiveness'' to be excellent. Other benefits include substantial waste volume loss (over 30%) which translates to extended landfill life. Other environmental benefits include rapidly improved quality and stabilization (lowered pollutant levels) in liquid leachate which drains from the waste.

Don Augenstein

2001-02-01T23:59:59.000Z

76

Risk mitigation methodology for solid waste landfills. Doctoral thesis  

SciTech Connect (OSTI)

Several recent models have attempted to simulate or assess the probability and consequences of the leakage of aqueous contaminant leakage from solid waste landfills. These models incorporate common factors, including climatological and geological characteristics. Each model, however, employs a unique approach to the problem, assigns different relative weights to factors, and relies upon extrapolated small-scale experimental data and/or subjective judgment in predicting the full-scale landfill failure mechanisms leading to contaminant migration. As a result, no two models are likely to equally assess a given landfill, and no one model has been validated as a predictor of long-term performance. The United States Air Force maintains a database for characterization of potential hazardous waste sites. Records include more than 500 landfills, providing such information as waste, soil, aquifer, monitoring location data, and the results of sample testing. Through analysis of this information, nearly 300 landfills were assessed to have sufficiently, partially, or inadequately contained hazardous constituents of the wastes placed within them.

Nixon, W.B.

1995-05-01T23:59:59.000Z

77

Recirculation of municipal landfill leachate  

E-Print Network [OSTI]

RECIRCULATION OF MUNICIPAL LANDFILL LEACHATE A Thesis by BRIAN JUDE PINKO4ISKI Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1987 Major Subject...: Civil Engineering RECIRCULATION OF MUNICIPAL LANDFILL LEACHATE A Thesis by BRIAN JUDE PINKOWSKI Approved as to style and content by: Charles P. Giammona (Chair of Committee) Roy . Harm, (Member) Kirk W. Brown (Member) Donald A. Maxwel...

Pinkowski, Brian Jude

2012-06-07T23:59:59.000Z

78

Superfund Record of Decision (EPA Region 3): Moyer Landfill Site, Collegeville, Pennsylvania, September 1985. Final report  

SciTech Connect (OSTI)

The Moyer Landfill is an inactive privately owned landfill located in Lower Providence Township in Montgomery County, Pennsylvania. The site was operated as a municipal landfill from the 1940's until April 1981, during which time it received municipal refuse and sewage sludges. According to local Federal Bureau of Investigation (FBI) officials, the landfill accepted a variety of solid and liquid hazardous wastes, including polychlorinated biphenyls (PCBs), solvents, paints, low-level radioactive wastes, and incinerated materials in bulk form and/or containerized in drums. In 1972, when the Pennsylvania Dept. of Environmental Resources (PADER) rules and regulations became more restrictive, this landfill was cited, and finally in 1981, it was closed and brought into receivership of the U.S. District Court.

Not Available

1985-09-30T23:59:59.000Z

79

Superfund Record of Decision (EPA Region 5): Tri County/Elgin Landfill Site, Elgin, IL. (First remedial action), September 1992. Final report  

SciTech Connect (OSTI)

The 66-acre Tri County Landfill (TCL) site comprises two former landfills the Tri County Landfill and the Elgin Landfill, located near the junction of Kane, Cook and DuPage Counties, Illinois. The two disposal operations overlapped to the point where the two landfills were indistinguishable. Land use in the area is predominantly agricultural. The local residents and businesses use private wells as their drinking water supply. Prior to the 1940's, both landfills were used for gravel mining operations. From 1968 to 1976, the TCL received liquid and industrial waste. State and county inspection reports revealed that open dumping, area filling, and dumping into the abandonded gravel quarry had occurred at the site. In addition, confined dumping, inadequate daily cover, blowing litter, fires, lack of access restrictions, and leachate flows were typical problems reported. In 1981, the landfill was closed with a final cover.

Not Available

1992-09-30T23:59:59.000Z

80

Photovoltaic olar nergy Development on Landfills  

E-Print Network [OSTI]

Photovoltaic olar nergy Development on Landfills ENVIRONMENTAL AREA RESEARCH PIER Environmental of a selfballasting photovoltaic solar racking system will affect a closed landfills dirt cap. The effects experiment wherein single racks with photovoltaic modules will be placed on a landfill cap

Note: This page contains sample records for the topic "landfill gas location" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Ground-water monitoring compliance plan for the Hanford Site Solid Waste Landfill  

SciTech Connect (OSTI)

Washington state regulations required that solid waste landfill facilities have ground-water monitoring programs in place by May 27, 1987. This document describes the well locations, installation, characterization studies and sampling and analysis plan to be followed in implementing the ground-water monitoring program at the Hanford Site Solid Waste Landfill (SWL). It is based on Washington Administrative Code WAC 173-304-490. 11 refs., 19 figs., 4 tabs.

Fruland, R.M.

1986-10-01T23:59:59.000Z

82

Fluxes of methane between landfills and the atmosphere: Natural and engineered controls  

SciTech Connect (OSTI)

Field measurement of landfill methane emissions indicates natural variability spanning more than 2 seven orders of magnitude, from approximately 0.0004 to more than 4000 g m{sub -2} day{sup -1}. This wide range reflects net emissions resulting from production (methanogenesis), consumption (methanotrophic oxidation), and gaseous transport processes. The determination of an {open_quotes}average{close_quotes} emission rate for a given field site requires sampling designs and statistical techniques which consider spatial and temporal variability. Moreover, particularly at sites with pumped gas recovery systems, it is possible for methanotrophic microorganisms in aerated cover soils to oxidize all of the methane from landfill sources below and, additionally, to oxidize methane diffusing into cover soils from atmospheric sources above. In such cases, a reversed soil gas concentration gradient is observed in shallow cover soils, indicating bidirectional diffusional transport to the depth of optimum methane oxidation. Rates of landfill methane oxidation from field and laboratory incubation studies range up to 166 g m{sup -2} day{sup -1} among the highest for any natural setting, providing an effective natural control on net emissions. Estimates of worldwide landfill methane emissions to the atmosphere have ranged from 9 to 70 Tg yr{sup -1}, differing mainly in assumed methane yields from estimated quantities of landfilled refuse. At highly controlled landfill sites in developed countries, landfill methane is often collected via vertical wells or horizontal collectors. Recovery of landfill methane through engineered systems can provide both environmental and energy benefits by mitigating subsurface migration, reducing surface emissions, and providing an alternative energy resource for industrial boiler use, on-site electrical generation, or upgrading to a substitute natural gas.

Bogner, J. [Argonne National Lab., IL (United States); Meadows, M. [ETSU, Harwell, Oxfordshire (United Kingdom); Czepiel, P. [Harvard Univ., Cambridge, MA (United States)

1997-08-01T23:59:59.000Z

83

Estimating water content in an active landfill with the aid of GPR  

SciTech Connect (OSTI)

Highlights: • Limited information in the literature on the use of GPR to measure in situ water content in a landfill. • Developed GPR method allows measurement of in situ water content in a landfill. • Developed GPR method is appealing to waste management professionals operating landfills. - Abstract: Landfill gas (LFG) receives a great deal of attention due to both negative and positive environmental impacts, global warming and a green energy source, respectively. However, predicting the quantity of LFG generated at a given landfill, whether active or closed is difficult due to the heterogeneities present in waste, and the lack of accurate in situ waste parameters like water content. Accordingly, ground penetrating radar (GPR) was evaluated as a tool for estimating in situ water content. Due to the large degree of subsurface heterogeneity and the electrically conductive clay cap covering landfills, both of which affect the transmission of the electromagnetic pulses, there is much scepticism concerning the use of GPR to quantify in situ water content within a municipal landfill. Two landfills were studied. The first landfill was used to develop the measurement protocols, while the second landfill provided a means of confirming these protocols. GPR measurements were initially completed using the surface GPR approach, but the lack of success led to the use of borehole (BH) GPR. Both zero offset profiling (ZOP) and multiple offset gathers (MOG) modes were tried, with the results indicating that BH GPR using the ZOP mode is the most simple and efficient method to measure in situ water content. The best results were obtained at a separation distance of 2 m, where higher the water content, smaller the effective separation distance. However, an increase in water content did appear to increase the accuracy of the GPR measurements. For the effective separation distance of 2 m at both landfills, the difference between GPR and lab measured water contents were reasonable at 33.9% for the drier landfill and 18.1% for the wetter landfill. Infiltration experiments also showed the potential to measure small increases in water content.

Yochim, April, E-mail: ayochim@regionofwaterloo.ca [Region of Waterloo Waste Management Division, 925 Erb Street West, Waterloo, ON N2J 3Z4 (Canada); Zytner, Richard G., E-mail: rzytner@uoguelph.ca [School of Engineering, University of Guelph, Guelph, ON N1G 2W1 (Canada); McBean, Edward A., E-mail: emcbean@uoguelph.ca [School of Engineering, University of Guelph, Guelph, ON N1G 2W1 (Canada); Endres, Anthony L., E-mail: alendres@sciborg.uwaterloo.ca [Dept. of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON N2L 3G1 (Canada)

2013-10-15T23:59:59.000Z

84

Sanitary Landfill Groundwater Monitoring Report (Data Only) - First Quarter 1999  

SciTech Connect (OSTI)

This report contains analytical data for samples taken during First Quarter 1999 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site (SRS). This report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards or screening levels, established by the U.S. Environmental Proteciton Agency, the South Carolina final Primary Drinking Water Standard for lead, or the SRS flagging criteria.

Chase, J.

1999-05-26T23:59:59.000Z

85

Sanitary landfill groundwater monitoring report. First Quarter 1995  

SciTech Connect (OSTI)

This report contains analytical data for samples taken during first quarter 1994 from wells of the LFW series located at the Sanitary Landfill Operating permit (DWP-0874A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established by the US Environmental Protection Agency, the South Carolina final Primary Drinking Water Standard for lead, or the SRS flagging criteria.

NONE

1995-06-01T23:59:59.000Z

86

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network [OSTI]

and Girard, J. W. , 2001, “HCCI combustion: analysis andratio effect on methane HCCI combustion,” Journal ofEquivalence ratio-EGR control of HCCI engine operation and

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

87

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network [OSTI]

from combustion of fuel Power loss from evacuated exhaustturbo and ATA Engine power losses Power rejected by enginesteady state operation Power loss from escaping exhaust

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

88

LATERAL LANDFILL GAS MIGRATION: CHARACTERIZATION AND  

E-Print Network [OSTI]

, where waste was buried without building a compacted clay liner at the bottom of the cells. Exploitation of the site. After capping the old cells with a geosynthetic liner, areas of poor crop production (zone Zl and transversal section studied. The site was initially exploited for clay and later filled with domestic waste

Boyer, Edmond

89

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network [OSTI]

Fundamentals of the Internal Combustion engine,” Prenticemany aspects of internal combustion engine design. Involvedof ICEF2006 ASME Internal Combustion Engine Division 2006

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

90

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network [OSTI]

chemical- kinetic model of propane HCCI combustion,” SAEof a four-cylinder 1.9 l propane- fueled homogeneous chargethe fuel line can use propane from a tank and NG from the

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

91

EA-1707: Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste Landfill, Hanford Site, Richland, Washington  

Broader source: Energy.gov [DOE]

This EA evaluates the potential environmental impacts of closing the Nonradioactive Dangerous Waste Landfill and the Solid Waste Landfill. The Washington State Department of Ecology is a cooperating agency in preparing this EA.

92

Settlement Prediction, Gas Modeling and Slope Stability Analysis  

E-Print Network [OSTI]

Settlement Prediction, Gas Modeling and Slope Stability Analysis in Coll Cardús Landfill Li Yu UNIVERSIDAD POLITÉCNICA DE CATALUÑA April, 2007 GEOMODELS #12;Introduction to Coll Cardús landfill Prediction of settlement in Coll Cardús landfill 1) Settlement prediction by empirical method 2) Settlement prediction

Politècnica de Catalunya, Universitat

93

Structural and composition investigations at delayered locations of low k integrated circuit device by gas-assisted focused ion beam  

SciTech Connect (OSTI)

The authors report a new delayering technique – gas-assisted focused ion beam (FIB) method and its effects on the top layer materials of integrated circuit (IC) device. It demonstrates a highly efficient failure analysis with investigations on the precise location. After removing the dielectric layers under the bombardment of an ion beam, the chemical composition of the top layer was altered with the reduced oxygen content. Further energy-dispersive x-ray spectroscopy and Fourier transform infrared analysis revealed that the oxygen reduction lead to appreciable silicon suboxide formation. Our findings with structural and composition alteration of dielectric layer after FIB delayering open up a new insight avenue for the failure analysis in IC devices.

Wang, Dandan, E-mail: dandan.wang@globalfoundries.com; Kee Tan, Pik; Yamin Huang, Maggie; Lam, Jeffrey; Mai, Zhihong [Technology Development Department, GLOBALFOUNDRIES Singapore Pte. Ltd., 60 Woodlands Industrial Park D, Street 2, Singapore 738406 (Singapore)

2014-05-15T23:59:59.000Z

94

Industrial Solid Waste Landfill Facilities (Ohio)  

Broader source: Energy.gov [DOE]

This chapter of the law establishes that the Ohio Environmental Protection Agency provides rules and guidelines for landfills, including those that treat waste to generate electricity. The law...

95

CHP and Bioenergy Systems for Landfills and Wastewater Treatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems for Landfills and Wastewater Treatment Plants CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants There are important issues to consider when selecting...

96

CHP and Bioenergy for Landfills and Wastewater Treatment Plants...  

Broader source: Energy.gov (indexed) [DOE]

for Landfills and Wastewater Treatment Plants: Market Opportunities CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities This document explores...

97

The environmental comparison of landfilling vs. incineration of MSW accounting for waste diversion  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Residential waste diversion initiatives are more successful with organic waste. Black-Right-Pointing-Pointer Using a incineration to manage part of the waste is better environmentally. Black-Right-Pointing-Pointer Incineration leads to more power plant emission offsets. Black-Right-Pointing-Pointer Landfilling all of the waste would be preferred financially. - Abstract: This study evaluates the environmental performance and discounted costs of the incineration and landfilling of municipal solid waste that is ready for the final disposal while accounting for existing waste diversion initiatives, using the life cycle assessment (LCA) methodology. Parameters such as changing waste generation quantities, diversion rates and waste composition were also considered. Two scenarios were assessed in this study on how to treat the waste that remains after diversion. The first scenario is the status quo, where the entire residual waste was landfilled whereas in the second scenario approximately 50% of the residual waste was incinerated while the remainder is landfilled. Electricity was produced in each scenario. Data from the City of Toronto was used to undertake this study. Results showed that the waste diversion initiatives were more effective in reducing the organic portion of the waste, in turn, reducing the net electricity production of the landfill while increasing the net electricity production of the incinerator. Therefore, the scenario that incorporated incineration performed better environmentally and contributed overall to a significant reduction in greenhouse gas emissions because of the displacement of power plant emissions; however, at a noticeably higher cost. Although landfilling proves to be the better financial option, it is for the shorter term. The landfill option would require the need of a replacement landfill much sooner. The financial and environmental effects of this expenditure have yet to be considered.

Assamoi, Bernadette [Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5 (Canada); Lawryshyn, Yuri, E-mail: yuri.lawryshyn@utoronto.ca [Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5 (Canada)

2012-05-15T23:59:59.000Z

98

Sanitary landfill groundwater monitoring report: First quarter 1997  

SciTech Connect (OSTI)

This report contains analytical data for samples taken during first quarter 1997 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site (SRS). The data are submitted in reference to the Sanitary Landfill Operating permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final primary Drinking Water Standards (PDWS) or screening levels, established by the U.S. Environmental Protection Agency, the South Carolina final Primary Drinking Water Standard for lead, or the SRS flagging criteria. Wells LFW6R, LFW8R, LFW10A, LFW18, LFW21, and LFW23R were not sampled due to their proximity to the Sanitary Landfill Closure Cap activities. Wells LFW61D and LFW62D are Purge Water Containment Wells and contain mercury. These wells were not sampled since the purge water cannot be treated at the M-1 Air Stripper until the NPDES permit for the stripper is modified.

Chase, J.A.

1997-05-01T23:59:59.000Z

99

Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuels in ItsStationHydrogenNatural Gas Landfills

100

Municipal Solid Waste Landfills The following Oklahoma landfills currently accept dead livestock. As each facility has different guidelines and  

E-Print Network [OSTI]

Municipal Solid Waste Landfills The following Oklahoma landfills currently accept dead livestock-581-3468 Garfield City of Enid Landfill 580-249-4917 Garvin Foster Waste Disposal Landfill 405-238-2012 Jackson City-436-1403 Call ahead, may limit qty. Pottawatomie Absolute Waste Solutions 405-598-3893 Call ahead Seminole

Balasundaram, Balabhaskar "Baski"

Note: This page contains sample records for the topic "landfill gas location" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Locating a Recycling Center: The General Density Case Jannett Highfill  

E-Print Network [OSTI]

Locating a Recycling Center: The General Density Case Jannett Highfill Department of Economics) 677-3374. #12;2 Locating a Recycling Center: The General Density Case Abstract: The present paper considers a municipality that has a landfill (fixed in location) and plans to optimally locate a "recycling

Mou, Libin

102

Franklin County Sanitary Landfill - Landfill Gas (LFG) to Liquefied Natural Gas (LNG) - Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds" GiveFuture ofFRANKLIN COUNTY SANITARY

103

Waste management health risk assessment: A case study of a solid waste landfill in South Italy  

SciTech Connect (OSTI)

An integrated risk assessment study has been performed in an area within 5 km from a landfill that accepts non hazardous waste. The risk assessment was based on measured emissions and maximum chronic population exposure, for both children and adults, to contaminated air, some foods and soil. The toxic effects assessed were limited to the main known carcinogenic compounds emitted from landfills coming both from landfill gas torch combustion (e.g., dioxins, furans and polycyclic aromatic hydrocarbons, PAHs) and from diffusive emissions (vinyl chloride monomer, VCM). Risk assessment has been performed both for carcinogenic and non-carcinogenic effects. Results indicate that cancer and non-cancer effects risk (hazard index, HI) are largely below the values accepted from the main international agencies (e.g., WHO, US EPA) and national legislation ( and ).

Davoli, E., E-mail: enrico.davoli@marionegri.i [Istituto di Ricerche Farmacologiche 'Mario Negri', Environmental Health Sciences Department, Via Giuseppe La Masa 19, 20156 Milano (Italy); Fattore, E.; Paiano, V.; Colombo, A.; Palmiotto, M. [Istituto di Ricerche Farmacologiche 'Mario Negri', Environmental Health Sciences Department, Via Giuseppe La Masa 19, 20156 Milano (Italy); Rossi, A.N.; Il Grande, M. [Progress S.r.l., Via Nicola A. Porpora 147, 20131 Milano (Italy); Fanelli, R. [Istituto di Ricerche Farmacologiche 'Mario Negri', Environmental Health Sciences Department, Via Giuseppe La Masa 19, 20156 Milano (Italy)

2010-08-15T23:59:59.000Z

104

If current capacity were to be expanded so that all of the non-recycled municipal solid waste that is currently sent to U.S. landfills each year could instead be converted to energy, we could generate enough electricity  

E-Print Network [OSTI]

so that we could convert our non-recycled waste to alternative energy instead of landfilling it, we-recycled waste into energy instead of landfilling it, we could reduce greenhouse gas (GHG) emissions by nearly our roads. The Power of Waste GARBAGE ENERGY REDUCES 123M TONS CO2 = 23M LESS CARS PLASTICS 5.7B

105

Water and gas coning: two and three phase system correlations for the critical oil production rate and optimum location of the completion interval  

E-Print Network [OSTI]

of the perforations which optimizes the critical oil production rate (xopt). Correlation for Two Phase Problem For. the two phase problem, the dimensionless critical oil production rate is correlated as a funct. ion of the dimensionless effective drainage radius...WATER AND GAS COMING: TWO AND THREE PHASE SYSTEM CORRELATIONS FOR THE CRITICAL OIL PRODUCTION RATE AND OPTIMUM LOCATION OF THE COMPLETION INTERVAL A Thesis by FRANCISCO MANUEL GONZALEZ, JR. Submitted to the Graduate College of Texas A...

Gonzalez, Francisco Manuel

1987-01-01T23:59:59.000Z

106

Reducing Open Cell Landfill Methane Emissions with a Bioactive Alternative Daily  

SciTech Connect (OSTI)

Methane and carbon dioxide are formed in landfills as wastes degrade. Molecule-for-molecule, methane is about 20 times more potent than carbon dioxide at trapping heat in the earth's atmosphere, and thus, it is the methane emissions from landfills that are scrutinized. For example, if emissions composed of 60% methane and 40% carbon dioxide were changed to a mix that was 40% methane and 60% carbon dioxide, a 30% reduction in the landfill's global warming potential would result. A 10% methane, 90% carbon dioxide ratio will result in a 75% reduction in global warming potential compared to the baseline. Gas collection from a closed landfill can reduce emissions, and it is sometimes combined with a biocover, an engineered system where methane oxidizing bacteria living in a medium such as compost, convert landfill methane to carbon dioxide and water. Although methane oxidizing bacteria merely convert one greenhouse gas (methane) to another (carbon dioxide), this conversion can offer significant reductions in the overall greenhouse gas contribution, or global warming potential, associated with the landfill. What has not been addressed to date is the fact that methane can also escape from a landfill when the active cell is being filled with waste. Federal regulations require that newly deposited solid waste to be covered daily with a 6 in layer of soil or an alternative daily cover (ADC), such as a canvas tarp. The aim of this study was to assess the feasibility of immobilizing methane oxidizing bacteria into a tarp-like matrix that could be used for alternative daily cover at open landfill cells to prevent methane emissions. A unique method of isolating methanotrophs from landfill cover soil was used to create a liquid culture of mixed methanotrophs. A variety of prospective immobilization techniques were used to affix the bacteria in a tarp-like matrix. Both gel encapsulation of methanotrophs and gels with liquid cores containing methanotrophs were readily made but prone to rapid desiccation. Bacterial adsorption onto foam padding, natural sponge, and geotextile was successful. The most important factor for success appeared to be water holding capacity. Prototype biotarps made with geotextiles plus adsorbed methane oxidizing bacteria were tested for their responses to temperature, intermittent starvation, and washing (to simulate rainfall). The prototypes were mesophilic, and methane oxidation activity remained strong after one cycle of starvation but then declined with repeated cycles. Many of the cells detached with vigorous washing, but at least 30% appeared resistant to sloughing. While laboratory landfill simulations showed that four-layer composite biotarps made with two different types of geotextile could remove up to 50% of influent methane introduced at a flux rate of 22 g m{sup -2} d{sup -1}, field experiments did not yield high activity levels. Tests revealed that there were high hour-to-hour flux variations in the field, which, together with frequent rainfall events, confounded the field testing. Overall, the findings suggest that a methanotroph embedded biotarp appears to be a feasible strategy to mitigate methane emission from landfill cells, although the performance of field-tested biotarps was not robust here. Tarps will likely be best suited for spring and summer use, although the methane oxidizer population may be able to shift and adapt to lower temperatures. The starvation cycling of the tarp may require the capacity for intermittent reinoculation of the cells, although it is also possible that a subpopulation will adapt to the cycling and become dominant. Rainfall is not expected to be a major factor, because a baseline biofilm will be present to repopulate the tarp. If strong performance can be achieved and documented, the biotarp concept could be extended to include interception of other compounds beyond methane, such as volatile aromatic hydrocarbons and chlorinated solvents.

Helene Hilger; James Oliver; Jean Bogner; David Jones

2009-03-31T23:59:59.000Z

107

Wasting Time : a leisure infrastructure for mega-landfill  

E-Print Network [OSTI]

Landfills are consolidating into fewer, taller, and more massive singular objects in the exurban landscape.This thesis looks at one instance in Virginia, the first regional landfill in the state to accept trash from New ...

Nguyen, Elizabeth M. (Elizabeth Margaret)

2007-01-01T23:59:59.000Z

108

Landfill Instability and Its Implications Operation, Construction, and Design  

E-Print Network [OSTI]

landfill waste slide, a 300,000 cubic yard landfill failure involving a geosynthetic clay liner, and a 100 occurred involving liner systems during construction and waste containment closures. Recently an older

109

Full Scale Bioreactor Landfill for Carbon Sequestration and Greenhouse Emission Control  

SciTech Connect (OSTI)

The Yolo County Department of Planning and Public Works constructed a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective was to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entailed the construction of a 12-acre module that contained a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells were highly instrumented to monitor bioreactor performance. Liquid addition commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell and biofilter has been completed. The current project status and preliminary monitoring results are summarized in this report.

Ramin Yazdani; Jeff Kieffer; Kathy Sananikone; Don Augenstein

2005-03-30T23:59:59.000Z

110

FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL  

SciTech Connect (OSTI)

The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches while providing superior environmental protection. The overall objective is to manage landfill solid waste for rapid waste decomposition, maximum landfill gas generation and capture, and minimum long-term environmental consequences. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Construction is complete on the 3.5 acre anaerobic cell and liquid addition has commenced. Construction of the 2.5 acre aerobic cell is nearly complete with only the blower station and biofilter remaining. Waste placement and instrumentation installation is ongoing in the west-side 6-acre anaerobic cell. The current project status and preliminary monitoring results are summarized in this report.

Ramin Yazdani; Jeff Kieffer; Heather Akau

2002-04-01T23:59:59.000Z

111

FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL  

SciTech Connect (OSTI)

The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Construction is complete on the 3.5-acre anaerobic cell and liquid addition has commenced. Construction of the 2.5-acre aerobic cell is nearly complete with only the biofilter remaining and construction of the west-side 6-acre anaerobic cell is nearly complete with only the liquid addition system remaining. The current project status and preliminary monitoring results are summarized in this report.

Ramin Yazdani; Jeff Kieffer; Heather Akau

2003-05-01T23:59:59.000Z

112

FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL  

SciTech Connect (OSTI)

The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Construction is complete on the 3.5-acre anaerobic cell and liquid addition has commenced. Construction of the 2.5 acre aerobic cell is nearly complete with only the blower station and biofilter remaining. Waste placement and instrumentation installation is ongoing in the west-side 6-acre anaerobic cell. The current project status and preliminary monitoring results are summarized in this report.

Ramin Yazdani; Jeff Kieffer; Heather Akau

2002-08-01T23:59:59.000Z

113

FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL  

SciTech Connect (OSTI)

The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Liquid addition has commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell is nearly complete with only the biofilter remaining and is scheduled to be complete by the end of August 2003. The current project status and preliminary monitoring results are summarized in this report.

Ramin Yazdani; Jeff Kieffer; Heather Akau

2003-08-01T23:59:59.000Z

114

FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL  

SciTech Connect (OSTI)

The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Liquid addition has commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell and biofilter has been completed. The remaining task to be completed is to test the biofilter prior to operation, which is currently anticipated to begin in January 2004. The current project status and preliminary monitoring results are summarized in this report.

Ramin Yazdani; Jeff Kieffer; Heather Akau

2003-12-01T23:59:59.000Z

115

Soil Insulation For Barrier Layer Protection In Landfill Covers  

E-Print Network [OSTI]

Landfill covers are designed to isolate waste from the environment by incorporating low-permeability barrier layers. The barrier layer minimizes and controls gas escaping from the waste and the amount of infiltrating moisture available for leachate generation. Barrier layers are typically designed and constructed of a thick layer of compacted fine-grain native soil material or a manufactured geosynthetic clay liner. The barrier layer must be protected from frost damage. Freezing of a compacted soil layer has been shown to cause quick and irreversible degradation. Large increases in permeability have been demonstrated in compacted clay barriers subjected to a minimum number of freezing and thawing cycles. Design methods to protect the barrier layer from frost damage have not been addressed in the research literature. A design procedure is addressed in this paper that determines the thickness of soil required to protect a barrier layer. The procedure is based on sitespecific temperature ...

Gregory Smith Roy

116

Turning waste into energy beats landfilling  

E-Print Network [OSTI]

, not incineration. Miller and others also refer to incineration as a source of dioxins, and they're right. But let's put things in perspective. In Sweden, which has 30 incineration plants, the total amount of dioxins that the landfills throughout Ontario and Michigan release fewer dioxins than that, he needs to hire better advisers

Columbia University

117

Application of a NAPL partitioning interwell tracer test (PITT) to support DNAPL remediation at the Sandia National Laboratories/New Mexico chemical waste landfill  

SciTech Connect (OSTI)

Chlorinated solvents as dense non-aqueous phase liquid (DNAPL) are present at a large number of hazardous waste sites across the U.S. and world. DNAPL is difficult to detect in the subsurface, much less characterize to any degree of accuracy. Without proper site characterization, remedial decisions are often difficult to make and technically effective, cost-efficient remediations are even more difficult to obtain. A new non-aqueous phase liquid (NAPL) characterization technology that is superior to conventional technologies has been developed and applied at full-scale. This technology, referred to as the Partitioning Interwell Tracer Test (PITT), has been adopted from oil-field practices and tailored to environmental application in the vadose and saturated zones. A PITT has been applied for the first time at full-scale to characterize DNAPL in the vadose zone. The PITT was applied in December 1995 beneath two side-by-side organic disposal pits at Sandia National Laboratories/New Mexico (SNL/NM) RCRA Interim Status Chemical Waste Landfill (CWL), located in Albuquerque, New Mexico. DNAPL, consisting of a mixture of chlorinated solvents, aromatic hydrocarbons, and PCE oils, is known to exist in at least one of the two buried pits. The vadose zone PITT was conducted by injecting a slug of non-partitioning and NAPL-partitioning tracers into and through a zone of interest under a controlled forced gradient. The forced gradient was created by a balanced extraction of soil gas at a location 55 feet from the injector. The extracted gas stream was sampled over time to define tracer break-through curves. Soil gas sampling ports from multilevel monitoring installations were sampled to define break-through curves at specific locations and depths. Analytical instrumentation such as gas chromatographs and a photoacoustical analyzers operated autonomously, were used for tracer detection.

Studer, J.E. [INTERA Inc., Albuquerque, NM (United States); Mariner, P.; Jin, M. [INTERA Inc., Austin, TX (United States)] [and others

1996-05-01T23:59:59.000Z

118

Request for Qualifications for Sacramento Landfill  

Broader source: Energy.gov [DOE]

This Request for Qualifications (RFQ) solicits experienced companies to design, permit, finance, build, and operate a solar photovoltaic farm (SPV Farm) on the City of Sacramento’s 28th Street Landfill. Respondents to this RFQ must demonstrate experience and capacity to design, permit, finance, build, and operate a SPV Farm that generates electricity that can be sold for electrical use through a power-purchase agreement. Submittals must be prepared and delivered in accordance with the requirements set forth in this document.

119

Hydrogeological Environmental Assessment of Sanitary Landfill Project at Jammu City, India  

E-Print Network [OSTI]

of Sanitary Landfill Project at Jammu City, India Bharata proposed landfill facility for the city of Jammu in India.landfill projects have been conceived, designed, and completed in India.

Nagar, Bharat Bhushan; Mirza, Umar Karim

2002-01-01T23:59:59.000Z

120

DOE EM Landfill Workshop and Path Forward - July 2009  

Office of Environmental Management (EM)

SSAB Teleconference: 2. DOE EM Landfill Workshop & Path Forward Office of Groundwater and Soil Remediation US Department of Energy July 2009 Slides prepared by CRESP DOE EM...

Note: This page contains sample records for the topic "landfill gas location" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Title I conceptual design for Pit 6 landfill closure at Lawrence Livermore National Laboratory Site 300  

SciTech Connect (OSTI)

The objective of this design project is to evaluate and prepare design and construction documents for a closure cover cap for the Pit 6 Landfill located at Lawrence Livermore National Laboratory Site 300. This submittal constitutes the Title I Design (Conceptual Design) for the closure cover of the Pit 6 Landfill. A Title I Design is generally 30 percent of the design effort. Title H Design takes the design to 100 percent complete. Comments and edits to this Title I Design will be addressed in the Title II design submittal. Contents of this report are as follows: project background; design issues and engineering approach; design drawings; calculation packages; construction specifications outline; and construction quality assurance plan outline.

MacDonnell, B.A.; Obenauf, K.S. [Golder Associates, Inc., Alameda, CA (United States)

1996-08-01T23:59:59.000Z

122

E-Print Network 3.0 - ardeer landfill scotland Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

...28 Are there risks associated with landfilling of air pollution control residues... . 79% went to landfill sites, 21% to ash processors to make into...

123

E-Print Network 3.0 - ammonium-rich sanitary landfill Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Objective With engineered sanitary landfills... , biogas generation from garbage, pyrolysis and sanitary landfills. These methods include efforts... method in Indian cities....

124

Landfill Disposal of CCA-Treated Wood with Construction and  

E-Print Network [OSTI]

Landfill Disposal of CCA-Treated Wood with Construction and Demolition (C&D) Debris: Arsenic phased out of many residential uses in the United States, the disposal of CCA-treated wood remains. Catastrophic events have also led to the concentrated disposal of CCA-treated wood, often in unlined landfills

Florida, University of

125

"Maximum recycling of Material and Energy, Minimum of Landfilling"  

E-Print Network [OSTI]

in "Recycling". "Waste-to-Energy" is now defined as Recycling, when energy efficiency is > 0,65 Prevention Reuse Recycling and Waste-to Energy? #12;6 European Policies on Landfill Ban The EU Landfill Directive The amount Ban decided upon in 2000, in force in 2005. A very strong effect, with a strong increase of Waste-to-Energy

Columbia University

126

Aluminum Reactions and Problems in Municipal Solid Waste Landfills  

E-Print Network [OSTI]

Aluminum Reactions and Problems in Municipal Solid Waste Landfills G. Vincent Calder, Ph.D.1 ; and Timothy D. Stark, Ph.D., P.E., F.ASCE2 Abstract: Aluminum enters municipal solid waste MSW landfills from untreated raw curbside trash MSW , industrial waste, and aluminum production wastes variously called dross

127

Aluminum Waste Reaction Indicators in a Municipal Solid Waste Landfill  

E-Print Network [OSTI]

Aluminum Waste Reaction Indicators in a Municipal Solid Waste Landfill Timothy D. Stark, F.ASCE1 landfills may contain aluminum from residential and commercial solid waste, industrial waste, and aluminum pro- duction wastes. Some aluminum-bearing waste materials, particularly aluminum production wastes

128

LESSONS LEARNED FROM A LANDFILL SLOPE FAILURE INVOLVING  

E-Print Network [OSTI]

LESSONS LEARNED FROM A LANDFILL SLOPE FAILURE INVOLVING GEOSYTNTHETICS Virginia L. Wilson: Geosynthetics: Lessons Learned from Failures International Geosynthetics Society editors J.P. Giroud, K.L. Soderman and G.P. Raymond November 12, 1998 #12;LESSONS LEARNED FROM A LANDFILL SLOPE FAILURE INVOLVING

129

Planning document for the Advanced Landfill Cover Demonstration  

SciTech Connect (OSTI)

The Department of Energy and Department of Defense are faced with the closure of thousands of decommissioned radioactive, hazardous, and mixed waste landfills as a part of ongoing Environmental Restoration activities. Regulations on the closure of hazardous and radioactive waste landfills require the construction of a ``low-permeability`` cover over the unit to limit the migration of liquids into the underlying waste. These landfills must be maintained and monitored for 30 years to ensure that hazardous materials are not migrating from the landfill. This test plan is intended as an initial road map for planning, designing, constructing, evaluating, and documenting the Advanced Landfill Cover Demonstration (ALCD). It describes the goals/ objectives, scope, tasks, responsibilities, technical approach, and deliverables for the demonstration.

Hakonson, T.E. [Colorado State Univ., Fort Collins, CO (United States). Center for Ecological Risk Assessment & Management; Bostick, K.V. [Los Alamos National Lab., NM (United States). Environmental Science Group

1994-10-01T23:59:59.000Z

130

Construction Costs of Six Landfill Cover Designs  

SciTech Connect (OSTI)

A large-scale field demonstration comparing and contrasting final landfill cover designs has been constructed and is currently being monitored. Four alternative cover designs and two conventional designs (a RCRA Subtitle `D' Soil Cover and a RCRA Subtitle `C' Compacted Clay Cover) were constructed side-by-side for direct comparison. The demonstration is intended to evaluate the various cover designs based on their respective water balance performance, ease and reliability of construction, and cost. This paper provides an overview of the construction costs of each cover design.

Dwyer, S.F.

1998-12-23T23:59:59.000Z

131

Cost comparisons of alternative landfill final covers  

SciTech Connect (OSTI)

A large-scale field demonstration comparing and contrasting final landfill cover designs has been constructed and is currently being monitored. Four alternative cover designs and two conventional designs (a RCRA Subtitle ``D`` Soil Cover and a RCRA Subtitle ``C`` Compacted Clay Cover) were constructed of uniform size, side-by-side. The demonstration is intended to evaluate the various cover designs based on their respective water balance performance, ease and reliability of construction, and cost. This paper provides an overview of the construction costs of each cover design.

Dwyer, S.F.

1997-02-01T23:59:59.000Z

132

Construction quality assurance for Pit 6 landfill closure, Lawrence Livermore National Laboratory, Site 300  

SciTech Connect (OSTI)

Golder Construction Services, Inc. (GCS), under contract to the Regents of the University of California, Lawrence Livermore National Laboratory (LLNL), provided the construction quality assurance (CQA) observation and testing during the construction of the Site 300, Pit 6 landfill closure cover. The cap construction was performed as a CERCLA non-time-critical removal action from June 2 to August 29, 1997. the project site is located 18 miles east of Livermore on Tesla Road and approximately 10 miles southwest of Tracy on Corral Hollow Road in San Joaquin County, California. This report certifies that the LLNL, Site 300, Pit 6, Landfill Closure was constructed in accordance with the construction specifications and design drawings. This report documents construction activities and CQA monitoring and testing for construction of the Pit 6 Landfill Closure. Golder Associates, Inc. of Oakland, California was the design engineering firm responsible for preparation of the drawings and specifications. CQA services were provided by GCS, of Roseville, California, under supervision of a California registered civil Engineer.

NONE

1997-10-30T23:59:59.000Z

133

Industrial Waste Landfill IV upgrade package  

SciTech Connect (OSTI)

The Y-12 Plant, K-25 Site, and ORNL are managed by DOE`s Operating Contractor (OC), Martin Marietta Energy Systems, Inc. (Energy Systems) for DOE. Operation associated with the facilities by the Operating Contractor and subcontractors, DOE contractors and the DOE Federal Building result in the generation of industrial solid wastes as well as construction/demolition wastes. Due to the waste streams mentioned, the Y-12 Industrial Waste Landfill IV (IWLF-IV) was developed for the disposal of solid industrial waste in accordance to Rule 1200-1-7, Regulations Governing Solid Waste Processing and Disposal in Tennessee. This revised operating document is a part of a request for modification to the existing Y-12 IWLF-IV to comply with revised regulation (Rule Chapters 1200-1-7-.01 through 1200-1-7-.08) in order to provide future disposal space for the ORR, Subcontractors, and the DOE Federal Building. This revised operating manual also reflects approved modifications that have been made over the years since the original landfill permit approval. The drawings referred to in this manual are included in Drawings section of the package. IWLF-IV is a Tennessee Department of Environmental and Conservation/Division of Solid Waste Management (TDEC/DSWM) Class 11 disposal unit.

Not Available

1994-03-29T23:59:59.000Z

134

The Municipal Solid Waste Landfill as a Source of Montreal Protocol-restricted Halocarbons in the  

E-Print Network [OSTI]

The Municipal Solid Waste Landfill as a Source of Montreal Protocol-restricted Halocarbons of Geophysics #12;2 #12;The Municipal Solid Waste Landfill as a Source of Montreal Protocol municipal solid waste (MSW) landfills. With several hundred MSW landfills in both the US and UK, estimating

135

GHG emission factors developed for the collection, transport and landfilling of municipal waste in South African municipalities  

SciTech Connect (OSTI)

Highlights: ? An average GHG emission factor for the collection and transport of municipal solid waste in South Africa is calculated. ? A range of GHG emission factors for different types of landfills (including dumps) in South Africa are calculated. ? These factors are compared internationally and their implications for South Africa and developing countries are discussed . ? Areas for new research are highlighted. - Abstract: Greenhouse gas (GHG) emission factors are used with increased frequency for the accounting and reporting of GHG from waste management. However, these factors have been calculated for developed countries of the Northern Hemisphere and are lacking for developing countries. This paper shows how such factors have been developed for the collection, transport and landfilling of municipal waste in South Africa. As such it presents a model on how international results and methodology can be adapted and used to calculate country-specific GHG emission factors from waste. For the collection and transport of municipal waste in South Africa, the average diesel consumption is around 5 dm{sup 3} (litres) per tonne of wet waste and the associated GHG emissions are about 15 kg CO{sub 2} equivalents (CO{sub 2} e). Depending on the type of landfill, the GHG emissions from the landfilling of waste have been calculated to range from ?145 to 1016 kg CO{sub 2} e per tonne of wet waste, when taking into account carbon storage, and from 441 to 2532 kg CO{sub 2} e per tonne of wet waste, when carbon storage is left out. The highest emission factor per unit of wet waste is for landfill sites without landfill gas collection and these are the dominant waste disposal facilities in South Africa. However, cash strapped municipalities in Africa and the developing world will not be able to significantly upgrade these sites and reduce their GHG burdens if there is no equivalent replacement of the Clean Development Mechanism (CDM) resulting from the Kyoto agreement. Other low cost avenues need to be investigated to suit local conditions, in particular landfill covers which enhance methane oxidation.

Friedrich, Elena, E-mail: Friedriche@ukzn.ac.za [CRECHE Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Engineering, Civil Engineering Programme, University of KwaZulu-Natal, Howard College Campus, Durban (South Africa); Trois, Cristina [CRECHE Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Engineering, Civil Engineering Programme, University of KwaZulu-Natal, Howard College Campus, Durban (South Africa)

2013-04-15T23:59:59.000Z

136

Biomass gasification project gets funding to solve black liquor safety and landfill problems  

SciTech Connect (OSTI)

This paper reports on biomass gasifications. The main by-product in pulp making is black liquor from virgin fiber; the main by-product in paper recycling is fiber residue. Although the black liquor is recycled for chemical and energy recovery, safety problems plague the boilers currently used to do this. The fiber residue is usually transported to a landfill. The system being developed by MTCI will convert black liquor and fiber residue into a combustible gas, which can then be used for a wide variety of thermal or power generation applications.

Black, N.P.

1991-02-01T23:59:59.000Z

137

Olinda Landfill Gas Recovery Plant Biomass Facility | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty, Michigan: Energy ResourcesCoMaine: Energy Resources

138

Lopez Landfill Gas Utilization Project Biomass Facility | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(Monaster AndLittletown,Longwei Silicon Co Ltd JumpEnergy

139

List of Landfill Gas Incentives | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:KeystoneSolarList of Geothermal Incentives

140

Hartford Landfill Gas Utilization Proj Biomass Facility | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer County is8584°,HardyIowa Dunlap,Hart County is a

Note: This page contains sample records for the topic "landfill gas location" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Powering Microturbines With Landfill Gas, October 2002 | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment ofOil'sof Energy Jun Luof05/20/14WhatEnergy Powering

142

Landfill Gas Resources and Technologies | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIanJennifer SomersKnownLabor StandardsSite | Department

143

Albany Landfill Gas Utilization Project Biomass Facility | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergy InformationTuri BiomassWheelerLand andAlatna,Information

144

Balefill Landfill Gas Utilization Proj Biomass Facility | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT BiomassArnprior,Aurantia SACitasUSFWSBayInformation Balefill

145

Winnebago County Landfill Gas Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative JumpWilliamson County,Bay, OR) JumpPhotoSouthWing, NorthWinn,

146

Woodland Landfill Gas Recovery Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative JumpWilliamson County,Bay,°Trap,Woodhull, New York:WoodlandRecovery

147

Penrose Landfill Gas Conversion LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine: Energy Resources Jump to: navigation, search

148

UNFCCC-Consolidated baseline and monitoring methodology for landfill gas  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save Energy Now Jump to:Development Reports JumpUNF Energyof

149

ITP Industrial Distributed Energy: Powering Microturbines With Landfill Gas  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department ofIOWA1999) | Department2009 | Thehigh-tech

150

Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuelsPropane Tank Overfill Safety AdvisoryRefuse

151

RCWMD Badlands Landfill Gas Project Biomass Facility | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColoradosource History View New Pages Recent36 -Act

152

Spadra Landfill Gas to Energy Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd JumpGTZHolland, Illinois:5717551°Farms LtdLLC JumpSouthwoodSoyEnergySpadra

153

Cultural Resources Review for Closure of the nonradioactive Dangerous Waste Landfill and Solid Waste Landfill in the 600 Area, Hanford Site, Benton County, Washington, HCRC# 2010-600-018R  

SciTech Connect (OSTI)

The U.S. Department of Energy Richland Operations Office is proposing to close the Nonradioactive Dangerous Waste Landfill (NRDWL) and Solid Waste Landfill (SWL) located in the 600 Area of the Hanford Site. The closure of the NRDWL/SWL entails the construction of an evapotranspiration cover over the landfill. This cover would consist of a 3-foot (1-meter) engineered layer of fine-grained soil, modified with 15 percent by weight pea gravel to form an erosion-resistant topsoil that will sustain native vegetation. The area targeted for silt-loam borrow soil sits in Area C, located in the northern central portion of the Fitzner/Eberhardt Arid Lands Ecology (ALE) Reserve Unit. The pea gravel used for the mixture will be obtained from both off-site commercial sources and an active gravel pit (Pit #6) located just west of the 300 Area of the Hanford Site. Materials for the cover will be transported along Army Loop Road, which runs from Beloit Avenue (near the Rattlesnake Barricade) east-northeast to the NRDWL/SWL, ending at State Route 4. Upgrades to Army Loop Road are necessary to facilitate safe bidirectional hauling traffic. This report documents a cultural resources review of the proposed activity, conducted according to Section 106 of the National Historic Preservation Act of 1966.

Gutzeit, Jennifer L.; Kennedy, Ellen P.; Bjornstad, Bruce N.; Sackschewsky, Michael R.; Sharpe, James J.; DeMaris, Ranae; Venno, M.; Christensen, James R.

2011-02-02T23:59:59.000Z

154

Landfill mining: A critical review of two decades of research  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer We analyze two decades of landfill mining research regarding trends and topics. Black-Right-Pointing-Pointer So far landfill mining has mainly been used to solve waste management issues. Black-Right-Pointing-Pointer A new perspective on landfills as resource reservoirs is emerging. Black-Right-Pointing-Pointer The potential of resource extraction from landfills is significant. Black-Right-Pointing-Pointer We outline several key challenges for realization of resource extraction from landfills. - Abstract: Landfills have historically been seen as the ultimate solution for storing waste at minimum cost. It is now a well-known fact that such deposits have related implications such as long-term methane emissions, local pollution concerns, settling issues and limitations on urban development. Landfill mining has been suggested as a strategy to address such problems, and in principle means the excavation, processing, treatment and/or recycling of deposited materials. This study involves a literature review on landfill mining covering a meta-analysis of the main trends, objectives, topics and findings in 39 research papers published during the period 1988-2008. The results show that, so far, landfill mining has primarily been seen as a way to solve traditional management issues related to landfills such as lack of landfill space and local pollution concerns. Although most initiatives have involved some recovery of deposited resources, mainly cover soil and in some cases waste fuel, recycling efforts have often been largely secondary. Typically, simple soil excavation and screening equipment have therefore been applied, often demonstrating moderate performance in obtaining marketable recyclables. Several worldwide changes and recent research findings indicate the emergence of a new perspective on landfills as reservoirs for resource extraction. Although the potential of this approach appears significant, it is argued that facilitating implementation involves a number of research challenges in terms of technology innovation, clarifying the conditions for realization and developing standardized frameworks for evaluating economic and environmental performance from a systems perspective. In order to address these challenges, a combination of applied and theoretical research is required.

Krook, Joakim, E-mail: joakim.krook@liu.se [Department of Management and Engineering, Environmental Technology and Management, Linkoeping University, SE-581 83 Linkoeping (Sweden); Svensson, Niclas; Eklund, Mats [Department of Management and Engineering, Environmental Technology and Management, Linkoeping University, SE-581 83 Linkoeping (Sweden)

2012-03-15T23:59:59.000Z

155

Sandia National Laboratories: No More Green Waste in the Landfill  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

No More Green Waste in the Landfill June 09, 2011 Dump Truck Image On the heels of Sandia National Laboratories' successful food waste composting program, Pollution Prevention (P2)...

156

Modeling of leachate generation in municipal solid waste landfills  

E-Print Network [OSTI]

parameters specified by the user. Ultimately, this model will strive to replace the time the user requires to generate and fill a given landfill geometry with time spent running and evaluating trials to yield the best design....

Beck, James Bryan

2012-06-07T23:59:59.000Z

157

Installation of geosynthetic clay liners at California MSW landfills  

SciTech Connect (OSTI)

The California regulations for liner systems at municipal solid waste (MSW) landfills require that alternatives to the prescriptive federal Subtitle D liner system have a containment capability greater than that of the prescriptive system. Regulators may also require a demonstration that use of the prescriptive system is burdensome prior to approval of an alternative liner design. This paper presents seven case histories of the design and installation of geosynthetic clay liners (GCL) as an alternative to the low-permeability soil component of the prescriptive Subtitle D composite liner system at MSW landfills in California. These case histories cover GCLs from different manufacturers and landfill sites with a wide range of conditions including canyon landfills with slopes as steep as 1H:1V.

Snow, M.; Jesionek, K.S.; Dunn, R.J.; Kavazanjian, E. Jr.

1997-11-01T23:59:59.000Z

158

Brownfield landfill remediation under the Illinois EPA site remediation program  

SciTech Connect (OSTI)

Brownfield type landfill remediation was completed at the Ft. Sheridan Historic Landmark District, a former Army Base Realignment and Closure Facility, in conjunction with the future development of 551 historic and new homes at this site. The project was completed during 1998 under the Illinois Environmental Protection Agency (Illinois EPA) Site Remediation Program. This paper highlights the Illinois EPA's Site Remediation Program and the remediation of Landfills 3 and 4 at Fort Sheridan. The project involved removal of about 200,000 cubic yards of landfill waste, comprised of industrial and domestic refuse and demolition debris, and post-removal confirmation sampling of soils, sediment, surface water, and groundwater. The sample results were compared to the Illinois Risk-Based Cleanup levels for residential scenarios. The goal of the removal project was to obtain a No Further Remediation letter from the Illinois EPA to allow residential development of the landfill areas.

Beck, J.; Bruce, B.; Miller, J.; Wey, T.

1999-07-01T23:59:59.000Z

159

ADVANTAGES AND DISADVANTAGES TO OPERATING AN ON-SITE LABORATORY AT THE SANDIA NATIONAL LABORATORIES CHEMICAL WASTE LANDFILL  

SciTech Connect (OSTI)

During the excavation of the Sandia National Laboratories, New Mexico (SNL/NM) Chemical Waste Landfill (CWL), operations were realized by the presence of URS' (formerly known as United Research Services) On-site Mobile Laboratory (OSML) and the close proximity of the SNL/NM Environmental Restoration Chemical Laboratory (ERCL). The laboratory was located adjacent to the landfill in order to provide soil characterization, health and safety support, and waste management data. Although the cost of maintaining and operating an analytical laboratory can be higher than off-site analysis, there are many benefits to providing on site analytical services. This paper describes the synergies between the laboratory, as well as the advantages and disadvantages to having a laboratory on-site during the excavation of SNL/NM CWL.

Young, S.G.; Creech, M.N.

2003-02-27T23:59:59.000Z

160

E-Print Network 3.0 - air force landfill Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Driving Forces towards Materials... lack of Waste-to-Energy capacity. 12;9 Austria As Germany, but Ban in force already in 2002. Landfill... Landfill Ban in force already in...

Note: This page contains sample records for the topic "landfill gas location" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Acute and chronic toxicity of municipal landfill leachate as determined with bioassays and chemical analysis  

E-Print Network [OSTI]

municipal landfill leachates were determined to have mean estimated cumulative cancer risks on the same order of magnitude (10 4) as leachates from co-disposal and hazardous waste landfills. The use of a battery of acute and chronic toxicity bioassays..., chemical analysis, and an estimated cancer risk calculation resulted in data providing evidence that municipal solid waste landfill leachates are as acutely and chronically toxic as co-disposal and hazardous waste landfill leachates. ACKNOWLEDGEMENTS...

Schrab, Gregory Ernst

1990-01-01T23:59:59.000Z

162

11. GEOELECTRICAL CHARACTERIZATION OF COVERED LANDFILL SITES: A PROCESS-ORIENTED MODEL AND  

E-Print Network [OSTI]

in disused quarries or special purpose-built structures but not all past landfill operations were adequately

Meju, Max

163

Intelligent Bioreactor Management Information System (IBM-IS) for Mitigation of Greenhouse Gas Emissions  

SciTech Connect (OSTI)

Methane is an important contributor to global warming with a total climate forcing estimated to be close to 20% that of carbon dioxide (CO2) over the past two decades. The largest anthropogenic source of methane in the US is 'conventional' landfills, which account for over 30% of anthropogenic emissions. While controlling greenhouse gas emissions must necessarily focus on large CO2 sources, attention to reducing CH4 emissions from landfills can result in significant reductions in greenhouse gas emissions at low cost. For example, the use of 'controlled' or bioreactor landfilling has been estimated to reduce annual US greenhouse emissions by about 15-30 million tons of CO2 carbon (equivalent) at costs between $3-13/ton carbon. In this project we developed or advanced new management approaches, landfill designs, and landfill operating procedures for bioreactor landfills. These advances are needed to address lingering concerns about bioreactor landfills (e.g., efficient collection of increased CH4 generation) in the waste management industry, concerns that hamper bioreactor implementation and the consequent reductions in CH4 emissions. Collectively, the advances described in this report should result in better control of bioreactor landfills and reductions in CH4 emissions. Several advances are important components of an Intelligent Bioreactor Management Information System (IBM-IS).

Paul Imhoff; Ramin Yazdani; Don Augenstein; Harold Bentley; Pei Chiu

2010-04-30T23:59:59.000Z

164

Results of Hazardous and Mixed Waste Excavation from the Chemical Waste Landfill  

SciTech Connect (OSTI)

This paper describes the results of the excavation of a 1.9-acre hazardous and mixed waste landfill operated for 23 years at Sandia National Laboratories, Albuquerque, New Mexico. Excavation of the landfill was completed in 2 1/2 years without a single serious accident or injury. Approximately 50,000 cubic yards of soil contaminated with volatile and semi-volatile organics, metals, polychlorinated biphenyl compounds, and radioactive constituents was removed. In addition, over 400 cubic yards of buried debris was removed, including bulk debris, unknown chemicals, compressed gas cylinders, thermal and chemical batteries, explosive and ordnance debris, pyrophoric materials and biohazardous waste. Removal of these wastes included negotiation of multiple regulations and guidances encompassed in the Resource Conservation and Recovery Act (RCRA), the Toxic Substances Control Act (TSCA), and risk assessment methodology. RCRA concepts that were addressed include the area of contamination, permit modification, emergency treatment provision, and listed waste designation. These regulatory decisions enabled the project to overcome logistical and programmatic needs such as increased operational area, the ability to implement process improvements while maintaining a record of decisions and approvals.

Young, S. G.; Schofield, D. P.; Kwiecinski, D.; Edgmon, C. L.; Methvin, R.

2002-02-27T23:59:59.000Z

165

Sepiolite as an Alternative Liner Material in Municipal Solid Waste Landfills  

E-Print Network [OSTI]

Sepiolite as an Alternative Liner Material in Municipal Solid Waste Landfills Yucel Guney1 ; Savas in municipal solid waste landfills. However, natural clays may not always provide good contaminant sorption in solid waste landfills. DOI: 10.1061/ ASCE 1090-0241 2008 134:8 1166 CE Database subject headings

Aydilek, Ahmet

166

Mobile Alternative Fueling Station Locator  

SciTech Connect (OSTI)

The Department of Energy's Alternative Fueling Station Locator is available on-the-go via cell phones, BlackBerrys, or other personal handheld devices. The mobile locator allows users to find the five closest biodiesel, electricity, E85, hydrogen, natural gas, and propane fueling sites using Google technology.

Not Available

2009-04-01T23:59:59.000Z

167

Geosynthetics in Landfills Prepared by M. Bouazza and J. Zornberg  

E-Print Network [OSTI]

; · geosynthetic clay liners (GCLs), which are composite materials consisting of bentonite and geosynthetics and a #12;geomembrane/compacted clay liner composite as the secondary liner system. The leak detectionGeosynthetics in Landfills Prepared by M. Bouazza and J. Zornberg Geosynthetics are extensively

Zornberg, Jorge G.

168

Story Road Landfill Solar Site Evaluation: San Jose  

Broader source: Energy.gov [DOE]

This report describes the findings of a solar site evaluation conducted at the Story Road Landfill (Site) in the City of San Jose, California (City). This evaluation was conducted as part of a larger study to assess solar potential at multiple public facilities within the City.

169

Anaerobic Methane Oxidation in a Landfill-Leachate Plume  

E-Print Network [OSTI]

Anaerobic Methane Oxidation in a Landfill-Leachate Plume E T H A N L . G R O S S M A N , * , L U I, and methane, and (2) negligible oxygen, nitrate, and sulfate concentrations. Methane concentrations and stable carbon isotope (13C) values suggest anaerobic methane oxidation was occurring within the plume and at its

Grossman, Ethan L.

170

Acute and Genetic Toxicity of Municipal Landfill Leachate  

E-Print Network [OSTI]

to be representative of landfills of differing ages and types of wastes. Each sample was tested through three genetic toxicity bioassays (The Aspergillus diploid assay, the Bacillus DNA repair assay and the Salmonella/microsome assay) to measure the ability of each...

Brown, K.W.; Schrab, G.E.; Donnelly, K.C.

171

Biological Removal of Siloxanes from Landfill and Digester Gases  

E-Print Network [OSTI]

volatilize from waste at landfills and wastewater treatment plants (1). As a result, biogas produced, as well as an increase in maintenance costs (6, 7). The presence of VMSs in biogas is thus a challenge recommended by most equipment manufacturers for un- hindered use (6). Of all VMSs in biogas

172

Passive soil venting at the Chemical Waste Landfill Site at Sandia National Laboratories, Albuquerque, New Mexico  

SciTech Connect (OSTI)

Passive Soil Vapor Extraction was tested at the Chemical Waste Landfill (CWL) site at Sandia National Laboratories, New Mexico (SNLIW). Data collected included ambient pressures, differential pressures between soil gas and ambient air, gas flow rates into and out of the soil and concentrations of volatile organic compounds (VOCS) in vented soil gas. From the differential pressure and flow rate data, estimates of permeability were arrived at and compared with estimates from other studies. Flow, differential pressure, and ambient pressure data were collected for nearly 30 days. VOC data were collected for two six-hour periods during this time. Total VOC emissions were calculated and found to be under the limit set by the Resource Conservation and Recovery Act (RCRA). Although a complete process evaluation is not possible with the data gathered, some of the necessary information for designing a passive venting process was determined and the important parameters for designing the process were indicated. More study is required to evaluate long-term VOC removal using passive venting and to establish total remediation costs when passive venting is used as a polishing process following active soil vapor extraction.

Phelan, J.M.; Reavis, B.; Cheng, W.C.

1995-05-01T23:59:59.000Z

173

Mixed waste landfill annual groundwater monitoring report April 2005.  

SciTech Connect (OSTI)

Annual groundwater sampling was conducted at the Sandia National Laboratories' Mixed Waste Landfill (MWL) in April 2005. Seven monitoring wells were sampled using a Bennett{trademark} pump in accordance with the April 2005 Mini-Sampling and Analysis Plan for the MWL (SNL/NM 2005). The samples were analyzed off site at General Engineering Laboratories, Inc. for a broad suite of radiochemical and chemical parameters, and the results are presented in this report. Sample splits were also collected from several of the wells by the New Mexico Environment Department U.S. Department of Energy Oversight Bureau; however, the split sample results are not included in this report. The results of the April 2005 annual groundwater monitoring conducted at the MWL showed constituent concentrations within the historical ranges for the site and indicated no evidence of groundwater contamination from the landfill.

Lyon, Mark L.; Goering, Timothy James (GRAM, Inc., Albuquerque, NM)

2006-01-01T23:59:59.000Z

174

Emissions inventories for MSW landfills under Title V  

SciTech Connect (OSTI)

In the past, many states were either not concerned with, or unaware that, municipal solid waste landfills (MSWLFs) were potential sources of regulated air pollutants. This philosophy is rapidly changing, in part due to US EPA policy documents concerning (and defining) fugitive and non-fugitive emissions from MSWLFs, the attention given to the newly released New Source Performance Standards and a recent lawsuit that gained national notoriety involving landfill air emissions and air permitting applicability issues. Most states now recognize that MSWLFs are sources of regulated air pollutants and are subject to permitting requirements (and pollutant emission fees) as other industries; i.e., state-level minor- and major-source operating permit programs, and the 1990 Clean Air Act Amendments Title V Operating Permits Program (Title V).

Vogt, W.G. [SCS Engineers, Reston, VA (United States); Peyser, T.R. [SCS Engineers, Birmingham, AL (United States); Hamilton, S.M. [SCS Engineers, Tampa, FL (United States)

1996-05-01T23:59:59.000Z

175

Y-12 Industrial Landfill V. Permit application modifications  

SciTech Connect (OSTI)

This report contains the modifications in operations and design to meet the Tennessee Department of Environment and Conversation (TDEC) July 10, 1993, amendments to the regulations for Class 2 landfills. These modifications, though extensive in design and construction cost, are considered minor revisions and should not require a processing fee. Area 1 of ILF V, comprising approximately 20% of the ILF V footprint, was designed and submitted to TDEC prior to the implementation of current regulations. This initial area was constructed with a compacted clay liner and leachate collection system, and became operational in April 1994. The current regulations require landfills to have a composite liner with leachate collection system and closure cap. Modifications to upgrade Areas 2 and 3 of ILF V to meet the current TDEC requirements are included.

NONE

1995-09-01T23:59:59.000Z

176

Inferred performance of surface hydraulic barriers from landfill operational data  

SciTech Connect (OSTI)

There are few published data on the field performance of surface hydraulic barriers (SHBs) used in waste containment or remediation applications. In contrast, operational data for liner systems used beneath landfills are widely available. These data are frequently collected and reported as a facility permit condition. This paper uses leachate collection system (LCS) and leak detection system (LDS) liquid flow rate and chemical quality data collected from modem landfill double-liner systems to infer the likely hydraulic performance of SHBs. Operational data for over 200 waste management unit liner systems are currently being collected and evaluated by the authors as part of an ongoing research investigation for the United States Environmental Protection Agency (USEPA). The top liner of the double-liner system for the units is either a geomembrane (GMB) alone, geomembrane overlying a geosynthetic clay liner (GMB/GCL), or geomembrane overlying a compacted clay liner (GMB/CCL). In this paper, select data from the USEPA study are used to: (i) infer the likely efficiencies of SHBs incorporating GMBs and overlain by drainage layers; and (ii) evaluate the effectiveness of SHBs in reducing water infiltration into, and drainage from, the underlying waste (i.e., source control). SHB efficiencies are inferred from calculated landfill liner efficiencies and then used to estimate average water percolation rates through SHBs as a function of site average annual rainfall. The effectiveness of SHBs for source control is investigated by comparing LCS liquid flow rates for open and closed landfill cells. The LCS flow rates for closed cells are also compared to the estimated average water percolation rates through SHBs presented in the paper.

Gross, B.A. [GeoSyntec Consultants, Austin, TX (United States); Bonaparte, R.; Othman, M.A. [GeoSyntec Consultants, Atlanta, GA (United States)

1997-12-31T23:59:59.000Z

177

Ocean County Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company)ReferencesNuiqsut,Place,Oakmont,ObionAcres, New56°,Landfill

178

488-4D ASH LANDFILL CLOSURE CAP HELP MODELING  

SciTech Connect (OSTI)

At the request of Area Completion Projects (ACP) in support of the 488-4D Landfill closure, the Savannah River National Laboratory (SRNL) has performed Hydrologic Evaluation of Landfill Performance (HELP) modeling of the planned 488-4D Ash Landfill closure cap to ensure that the South Carolina Department of Health and Environmental Control (SCDHEC) limit of no more than 12 inches of head on top of the barrier layer (saturated hydraulic conductivity of no more than 1.0E-05 cm/s) in association with a 25-year, 24-hour storm event is not projected to be exceeded. Based upon Weber 1998 a 25-year, 24-hour storm event at the Savannah River Site (SRS) is 6.1 inches. The results of the HELP modeling indicate that the greatest peak daily head on top of the barrier layer (i.e. geosynthetic clay liner (GCL) or high density polyethylene (HDPE) geomembrane) for any of the runs made was 0.079 inches associated with a peak daily precipitation of 6.16 inches. This is well below the SCDHEC limit of 12 inches.

Phifer, M.

2014-11-17T23:59:59.000Z

179

E-Print Network 3.0 - assessing landfill performance Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

, either in designated monofills or co-disposal landfills, significant leaching of dioxins and furans Source: Columbia University - Waste-to-Energy Research and Technology...

180

E-Print Network 3.0 - annual international landfill Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

leachate are pollution of groundwater and surface waters. Landfill leachate contains pollutants that can Source: Barlaz, Morton A. - Department of Civil, Construction, and...

Note: This page contains sample records for the topic "landfill gas location" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

INDEPENDENT VERIFICATION SURVEY REPORT FOR THE OPERABLE UNIT-1 LANDFILL TRENCHES, MIAMISBURG CLOSURE PROJECT  

SciTech Connect (OSTI)

INDEPENDENT VERIFICATION SURVEY REPORT FOR THE OPERABLE UNIT-1 LANDFILL TRENCHES, MIAMISBURG CLOSURE PROJECT, MIAMISBURG, OHIO DCN: 0468-SR-02-0

W.C. Adams

2010-05-24T23:59:59.000Z

182

INDEPENDENT VERIFICATION SURVEY REPORT OPERABLE UNIT-1 LANDFILL TRENCHES, MIAMISBURG CLOSURE PROJECT  

SciTech Connect (OSTI)

INDEPENDENT VERIFICATION SURVEY REPORT FOR THE OPERABLE UNIT-1 LANDFILL TRENCHES, MIAMISBURG CLOSURE PROJECT, MIAMISBURG, OHIO DCN: 0468-SR-03-0

W.C. Adams

2010-07-21T23:59:59.000Z

183

Application of landfill gas as a liquefied natural gas fuel for refuse trucks in Texas  

E-Print Network [OSTI]

sludge, and non hazardous industrial waste (8,9). The solid waste materials are classified under Subtitle D of the Resource Conservation and Recovery Act (10). The next section describes different methods used for managing... REVIEW.......................................................................................4 Solid Waste Management.................................................................................4 LFG Cleaning Processes...

Gokhale, Bhushan

2007-04-25T23:59:59.000Z

184

Tapping Landfill Gas to Provide Significant Energy Savings and Greenhouse Gas Reductions  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from the GridwiseSiteDepartmentChallengeCompliance7/109THETTU U . . S S .Tapping

185

Field Performance of A Compacted Clay Landfill Final cover At A Humid Site  

SciTech Connect (OSTI)

A study was conducted in southern Georgia, USA to evaluate how the hydraulic properties of the compacted clay barrier layer in a landfill final cover changed over a 4-yr service life. The cover was part of a test section constructed in a large drainage lysimeter that allowed CE Database subject headings: landfill, hydrogeology, compacted soils, lysimeters, desiccation continuous monitoring of the water balance. Patterns in the drainage (i.e., flow from the bottom of the cover) record suggest that preferential flow paths developed in the clay barrier soon after construction, apparently in response to desiccation cracking. After four years, the clay barrier was excavated and examined for changes in soil structure and hydraulic conductivity. Tests were conducted in situ with a sealed double-ring infiltrometer and two-stage borehole permeameters and in the laboratory on hand-carved blocks taken during construction and after four years of service. The in situ and laboratory tests indicated that the hydraulic conductivity increased approximately three orders of magnitude (from ? 10-7 to ? 10-4 cm s-1) during the service life. A dye tracer test and soil structure analysis showed that extensive cracking and root development occurred throughout the entire depth of the barrier layer. Laboratory tests on undisturbed specimens of the clay barrier indicated that the hydraulic conductivity of damaged clay barriers can be under-estimated significantly if small specimens (e.g., tube samples) are used for hydraulic conductivity assessment. The findings also indicate that clay barriers must be protected from desiccation and root intrusion if they are expected to function as intended, even at sites in warm, humid locations.

Albright, William H.; Benson, Craig H.; Gee, Glendon W.; Abichou, Tarek; Mcdonald, Eric V.; Tyler, Scott W.; Rock, Steven

2006-11-01T23:59:59.000Z

186

U.S DEPARTlIIENT OF ENERGY EERE PROJECT MAN AGE M ENT CEN TER  

Broader source: Energy.gov (indexed) [DOE]

the Milam landfill Gas to Energy Plant II. The landfill already has a permitted gas-te-energy plant at the site. The facility will be located on the north side of the Milam...

187

CX-001879: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

WM Renewable Energy, LLC - Milam Landfill Gas to Energy Plant IICX(s) Applied: B5.1Date: 04/21/2010Location(s): Milam Landfill, IllinoisOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

188

Sardinia 2007, Eleventh International Waste Management and Landfill Symposium Potential for Reducing Global Methane Emissions  

E-Print Network [OSTI]

for Reducing Global Methane Emissions From Landfills, 2000-2030 E. MATTHEWS1 , N. J. THEMELIS2 1 NASA Goddard methane (CH4 )annually to the world's total CH4 emission of ~550 Tg/yr. Recycling and thermal treatment destined for landfills and to mitigating CH4 emission. Waste generation is estimated to more than double

Columbia University

189

SERVICE LIFE OF A LANDFILL LINER SYSTEM SUBJECTED TO ELEVATED TEMPERATURES  

E-Print Network [OSTI]

SERVICE LIFE OF A LANDFILL LINER SYSTEM SUBJECTED TO ELEVATED TEMPERATURES Timothy D. Stark, Ph and possible publication in the ASCE Journal of Hazardous, Toxic, and Radioactive Waste Management April 14-Engineered-Components-ServiceLife-Submission_2.pdf #12;2 SERVICE LIFE OF LANDFILL LINER SYSTEMS SUBJECTED TO ELEVATED1 TEMPERATURES2 Timothy D

190

State of the art design: A closure system for the largest hazardous waste landfill at the Savannah River Site  

SciTech Connect (OSTI)

This paper discusses the cover system proposed for a 55-acre, hazardous waste closure of the sanitary landfill at the Savannah River Site, near Aiken, South Carolina. The proposed cover system has been designed to accommodate a significant amount of post-closure settlement while maintaining a permeability of 1 {times} 10{sup {minus}7} cm/s or less throughout its 30-year, regulatory lifetime. A composite cover consisting of a geomembrane (GM) underlain by a geosynthetic clay liner (GCL) was selected because of its extremely low permeability, ability to elongate without tearing, and capacity to ``self-heal`` if punctured. These characteristics will enable the cover system to accommodate differential settlement without cracking or tearing, this providing long-term protection with minimal maintenance. Also, to improve the ability of the cover system to span voids that may develop in the underlying waste, a geogrid has been included in the foundation layer. A gas vent layer has been included to allow for the safe collection and venting of landfill gases.

Bartlett, S.F.; Serrato, M.G.; McMullin, S.R.

1992-12-31T23:59:59.000Z

191

State of the art design: A closure system for the largest hazardous waste landfill at the Savannah River Site  

SciTech Connect (OSTI)

This paper discusses the cover system proposed for a 55-acre, hazardous waste closure of the sanitary landfill at the Savannah River Site, near Aiken, South Carolina. The proposed cover system has been designed to accommodate a significant amount of post-closure settlement while maintaining a permeability of 1 [times] 10[sup [minus]7] cm/s or less throughout its 30-year, regulatory lifetime. A composite cover consisting of a geomembrane (GM) underlain by a geosynthetic clay liner (GCL) was selected because of its extremely low permeability, ability to elongate without tearing, and capacity to self-heal'' if punctured. These characteristics will enable the cover system to accommodate differential settlement without cracking or tearing, this providing long-term protection with minimal maintenance. Also, to improve the ability of the cover system to span voids that may develop in the underlying waste, a geogrid has been included in the foundation layer. A gas vent layer has been included to allow for the safe collection and venting of landfill gases.

Bartlett, S.F.; Serrato, M.G.; McMullin, S.R.

1992-01-01T23:59:59.000Z

192

Landfill Methane Project Development Handbook | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories on climateJuno Beach,October, 2012 - 08:20EmissionLandfill Methane

193

DOE - Office of Legacy Management -- West Lake Landfill - MO 05  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntown Site -Miami -New JerseyLake Landfill -

194

DOE - Office of Legacy Management -- Woburn Landfill - MA 07  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntown Site -Miami -NewPlant -Woburn Landfill -

195

Sandia National Laboratories: No More Green Waste in the Landfill  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-Salt StorageNo More Green Waste in the Landfill June 09,

196

Coal combustion waste management at landfills and surface impoundments 1994-2004.  

SciTech Connect (OSTI)

On May 22, 2000, as required by Congress in its 1980 Amendments to the Resource Conservation and Recovery Act (RCRA), the U.S. Environmental Protection Agency (EPA) issued a Regulatory Determination on Wastes from the Combustion of Fossil Fuels. On the basis of information contained in its 1999 Report to Congress: Wastes from the Combustion of Fossil Fuels, the EPA concluded that coal combustion wastes (CCWs), also known as coal combustion by-products (CCBs), did not warrant regulation under Subtitle C of RCRA, and it retained the existing hazardous waste exemption for these materials under RCRA Section 3001(b)(3)(C). However, the EPA also determined that national regulations under Subtitle D of RCRA were warranted for CCWs that are disposed of in landfills or surface impoundments. The EPA made this determination in part on the basis of its findings that 'present disposal practices are such that, in 1995, these wastes were being managed in 40 percent to 70 percent of landfills and surface impoundments without reasonable controls in place, particularly in the area of groundwater monitoring; and while there have been substantive improvements in state regulatory programs, we have also identified gaps in State oversight' (EPA 2000). The 1999 Report to Congress (RTC), however, may not have reflected the changes in CCW disposal practices that occurred since the cutoff date (1995) of its database and subsequent developments. The U.S. Department of Energy (DOE) and the EPA discussed this issue and decided to conduct a joint DOE/EPA study to collect new information on the recent CCW management practices by the power industry. It was agreed that such information would provide a perspective on the chronological adoption of control measures in CCW units based on State regulations. A team of experts from the EPA, industry, and DOE (with support from Argonne National Laboratory) was established to develop a mutually acceptable approach for collecting and analyzing data on CCW disposal practices and State regulatory requirements at landfills and surface impoundments that were permitted, built, or laterally expanded between January 1, 1994, and December 31, 2004. The scope of the study excluded waste units that manage CCWs in active or abandoned coal mines. The EPA identified the following three areas of interest: (1) Recent and current CCW industry surface disposal management practices, (2) State regulatory requirements for CCW management, and (3) Implementation of State requirements (i.e., the extent to which States grant or deny operator requests to waive or vary regulatory requirements and the rationales for doing so). DOE and the EPA obtained data on recent and current disposal practices from a questionnaire that the Utility Solid Waste Activities Group (USWAG) distributed to its members that own or operate coal-fired power plants. USWAG, formed in 1978, is responsible for addressing solid and hazardous waste issues on behalf of the utility industry. It is an informal consortium of approximately 80 utility operating companies, the Edison Electric Institute (EEI), the National Rural Electric Cooperative Association (NRECA), the American Public Power Association (APPA), and the American Gas Association (AGA). EEI is the principal national association of investor-owned electric power and light companies. NRECA is the national association of rural electric cooperatives. APPA is the national association of publicly owned electric utilities. AGA is the national association of natural gas utilities. Together, USWAG member companies and trade associations represent more than 85% of the total electric generating capacity of the United States and service more than 95% of the nation's consumers of electricity. To verify the survey findings, the EPA also asked State regulators from nine selected States that are leading consumers of coal for electricity generation for information on disposal units that may not have been covered in the USWAG survey. The selected States were Georgia, Illinois, Indiana, Michigan, Missouri, North Carolina, North Da

Elcock, D.; Ranek, N. L.; Environmental Science Division

2006-09-08T23:59:59.000Z

197

CX-009132: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Landfill Gas Utilization Plant CX(s) Applied: B5.21 Date: 08/02/2012 Location(s): New York Offices(s): Golden Field Office

198

Feasibility Study of Economics and Performance of Solar Photovoltaics at the Refuse Hideaway Landfill in Middleton, Wisconsin  

SciTech Connect (OSTI)

This report presents the results of an assessment of the technical and economic feasibility of deploying a photovoltaics (PV) system on a brownfield site at the Refuse Hideaway Landfill in Middleton, Wisconsin. The site currently has a PV system in place and was assessed for further PV installations. The cost, performance, and site impacts of different PV options were estimated. The economics of the potential systems were analyzed using an electric rate of $0.1333/kWh and incentives offered by the State of Wisconsin and by the serving utility, Madison Gas and Electric. According to the site production calculations, the most cost-effective system in terms of return on investment is the thin-film fixed-tilt technology. The report recommends financing options that could assist in the implementation of such a system.

Salasovich, J.; Mosey, G.

2011-08-01T23:59:59.000Z

199

Landfill CH sub 4 : Rates, fates, and role in global carbon cycle  

SciTech Connect (OSTI)

Published estimates for worldwide landfill methane emissions range from 9 to 70 Tg yr{sup {minus}1}. Field and laboratory studies suggest that maximum methane yields from lanfilled refuse are about 0.06 to 0.09 m{sup 3} (dry Kg){sup {minus}1} refuse, depending on moisture content and other variables, such as organic loading, buffering capacity, and nutrients in landfill microevnironments. Methane yields may vary by more than an order of magnitude within a given site. Fates for landfill methane include (1) direct or delayed emission to the atmosphere through landfill cover materials or surface soils; (2) oxidation by methanotrophs in cover soils, with resulting emission of carbon dioxide; or (3) recovery of methane followed by combustion to produce carbon dioxide. The percent methane assigned to each pathway will vary among field sites and, for individual sites, through time. Nevertheless, a general framework for a landfill methane balance can be developed by consideration of landfill age, engineering and management practices, cover soil characteristics, and water balance. Direct measurements of landfill methane emissions are sparse, with rates between 10{sup {minus}6} and 10{sup {minus}8} g cm{sup {minus}2} s{sup {minus}1}; very high rates of 400 kg m{sup {minus}2} yr{sup {minus}1} have been measured at a semiarid unvegetated site. The proportion of landfill carbon that is ultimately converted to methane and carbon dioxide is problematical; the literature suggests that, at best, 25% to 40% of refuse carbon can be converted to biogas carbon. Cellulose contributes the major portion of the methane potential. Routine excavation of nondecomposed cellulosic materials after one or two decades of landfill burial suggests that uniformly high conversion rates are rarely attained at field sites.

Bogner, J.; Spokas, K.

1991-01-01T23:59:59.000Z

200

Landfill CH{sub 4}: Rates, fates, and role in global carbon cycle  

SciTech Connect (OSTI)

Published estimates for worldwide landfill methane emissions range from 9 to 70 Tg yr{sup {minus}1}. Field and laboratory studies suggest that maximum methane yields from lanfilled refuse are about 0.06 to 0.09 m{sup 3} (dry Kg){sup {minus}1} refuse, depending on moisture content and other variables, such as organic loading, buffering capacity, and nutrients in landfill microevnironments. Methane yields may vary by more than an order of magnitude within a given site. Fates for landfill methane include (1) direct or delayed emission to the atmosphere through landfill cover materials or surface soils; (2) oxidation by methanotrophs in cover soils, with resulting emission of carbon dioxide; or (3) recovery of methane followed by combustion to produce carbon dioxide. The percent methane assigned to each pathway will vary among field sites and, for individual sites, through time. Nevertheless, a general framework for a landfill methane balance can be developed by consideration of landfill age, engineering and management practices, cover soil characteristics, and water balance. Direct measurements of landfill methane emissions are sparse, with rates between 10{sup {minus}6} and 10{sup {minus}8} g cm{sup {minus}2} s{sup {minus}1}; very high rates of 400 kg m{sup {minus}2} yr{sup {minus}1} have been measured at a semiarid unvegetated site. The proportion of landfill carbon that is ultimately converted to methane and carbon dioxide is problematical; the literature suggests that, at best, 25% to 40% of refuse carbon can be converted to biogas carbon. Cellulose contributes the major portion of the methane potential. Routine excavation of nondecomposed cellulosic materials after one or two decades of landfill burial suggests that uniformly high conversion rates are rarely attained at field sites.

Bogner, J.; Spokas, K.

1991-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "landfill gas location" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Construction and operation of an industrial solid waste landfill at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio  

SciTech Connect (OSTI)

The US Department of Energy (DOE), Office of Waste Management, proposes to construct and operate a solid waste landfill within the boundary of the Portsmouth Gaseous Diffusion Plant (PORTS), Piketon, Ohio. The purpose of the proposed action is to provide PORTS with additional landfill capacity for non-hazardous and asbestos wastes. The proposed action is needed to support continued operation of PORTS, which generates non-hazardous wastes on a daily basis and asbestos wastes intermittently. Three alternatives are evaluated in this environmental assessment (EA): the proposed action (construction and operation of the X-737 landfill), no-action, and offsite shipment of industrial solid wastes for disposal.

NONE

1995-10-01T23:59:59.000Z

202

Radiological survey of the Shpack Landfill, Norton, Massachusetts  

SciTech Connect (OSTI)

The results of a radiological survey of the Shpack Landfill, Norton, Massachusetts, are given in this report. The survey was conducted over approximately eight acres which had received radioactive wastes from 1946 to 1965. The survey included measurement of the following: external gamma radiation at the surface and at 1 m (3 ft) above the surface throughout the site; beta-gamma exposure rates at 1 cm (0.4 in.) from the surface throughout the site; concentrations of /sup 226/Ra, /sup 238/U, and /sup 235/U in surface and subsurface soil on the site; and concentrations of /sup 226/Ra, /sup 238/U, /sup 235/U, /sup 230/Th, and /sup 210/Pb in groundwater on the site and in surface water on and near the site. Results indicate that the radioactive contamination is confined to the site and to the swamp immediately adjacent to the site.

Cottrell, W.D.; Haywood, F.F.; Witt, D.A.; Myrick, T.E.; Goldsmith, W.A.; Shinpaugh, W.H.; Loy, E.T.

1981-12-01T23:59:59.000Z

203

MONITORING LANDFILL COVER BY ELECTRICAL RESISTIVITY1 TOMOGRAPHY ON AN EXPERIMENTAL SITE2  

E-Print Network [OSTI]

with geosynthetics44 (geomembranes or Geosynthetic Clay Liners), depending on the date of closure (Silvestre et45 al: landfill cover, gravelly clay material, heterogeneity, compaction, electrical30 resistivity, multivariate

Paris-Sud XI, Université de

204

Methane production during the anaerobic decomposition of composted and raw organic refuse in simulated landfill cells  

E-Print Network [OSTI]

Methane contributes 20% annually to increases in global warming, and is explosive at concentrations of 5-15% in air. Landfills contribute 15% to total methane emissions. This study was conducted to determine the potential decrease in methane...

West, Margrit Evelyn

1995-01-01T23:59:59.000Z

205

Natural Gas Transmission Pipeline Siting Act (Florida)  

Broader source: Energy.gov [DOE]

This Act establishes a centralized and coordinated permitting process for the location of natural gas transmission pipeline corridors and the construction and maintenance of natural gas...

206

Colorado CRS 29-20-108, Location, Construction, or Improvement...  

Open Energy Info (EERE)

Location, Construction, or Improvement of Major Electrical or Natural Gas Facilities Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document-...

207

Condensing Heating and Water Heating Equipment Workshop Location...  

Energy Savers [EERE]

Condensing Heating and Water Heating Equipment Workshop Location: Washington Gas Light Appliance Training Facility 6801 Industrial Road Springfield, VA Date: October 9, 2014 Time:...

208

Pricing landfill externalities: Emissions and disamenity costs in Cape Town, South Africa  

SciTech Connect (OSTI)

Highlights: > The paper estimates landfill externalities associated with emissions, disamenities and transport. > Transport externalities vary from 24.22 to 31.42 Rands per tonne. > Costs of emissions (estimated using benefits transfer) vary from 0.07 to 28.91 Rands per tonne. > Disamenities (estimated using hedonic pricing) vary from 0.00 to 57.46 Rands per tonne. > Overall, external costs for urban landfills exceed those of a regional landfill. - Abstract: The external (environmental and social) costs of landfilling (e.g. emissions to air, soil and water; and 'disamenities' such as odours and pests) are difficult to quantify in monetary terms, and are therefore not generally reflected in waste disposal charges or taken into account in decision making regarding waste management options. This results in a bias against alternatives such as recycling, which may be more expensive than landfilling from a purely financial perspective, but preferable from an environmental and social perspective. There is therefore a need to quantify external costs in monetary terms, so that different disposal options can be compared on the basis of their overall costs to society (financial plus external costs). This study attempts to estimate the external costs of landfilling in the City of Cape Town for different scenarios, using the benefits transfer method (for emissions) and the hedonic pricing method (for disamenities). Both methods (in particular the process of transferring and adjusting estimates from one study site to another) are described in detail, allowing the procedures to be replicated elsewhere. The results show that external costs are currently R111 (in South African Rands, or approximately US$16) per tonne of waste, although these could decline under a scenario in which energy is recovered, or in which the existing urban landfills are replaced with a new regional landfill.

Nahman, Anton, E-mail: anahman@csir.co.za [Environmental and Resource Economics Group, Natural Resources and the Environment, Council for Scientific and Industrial Research, P.O. Box 320, Stellenbosch 7599 (South Africa)

2011-09-15T23:59:59.000Z

209

Unconventional gas outlook: resources, economics, and technologies  

SciTech Connect (OSTI)

The report explains the current and potential of the unconventional gas market including country profiles, major project case studies, and new technology research. It identifies the major players in the market and reports their current and forecasted projects, as well as current volume and anticipated output for specific projects. Contents are: Overview of unconventional gas; Global natural gas market; Drivers of unconventional gas sources; Forecast; Types of unconventional gas; Major producing regions Overall market trends; Production technology research; Economics of unconventional gas production; Barriers and challenges; Key regions: Australia, Canada, China, Russia, Ukraine, United Kingdom, United States; Major Projects; Industry Initiatives; Major players. Uneconomic or marginally economic resources such as tight (low permeability) sandstones, shale gas, and coalbed methane are considered unconventional. However, due to continued research and favorable gas prices, many previously uneconomic or marginally economic gas resources are now economically viable, and may not be considered unconventional by some companies. Unconventional gas resources are geologically distinct in that conventional gas resources are buoyancy-driven deposits, occurring as discrete accumulations in structural or stratigraphic traps, whereas unconventional gas resources are generally not buoyancy-driven deposits. The unconventional natural gas category (CAM, gas shales, tight sands, and landfill) is expected to continue at double-digit growth levels in the near term. Until 2008, demand for unconventional natural gas is likely to increase at an AAR corresponding to 10.7% from 2003, aided by prioritized research and development efforts. 1 app.

Drazga, B. (ed.)

2006-08-15T23:59:59.000Z

210

Cost savings associated with landfilling wastes containing very low levels of uranium  

SciTech Connect (OSTI)

The Paducah Gaseous Diffusion Plant (PGDP) has operated captive landfills (both residential and construction/demolition debris) in accordance with the Commonwealth of Kentucky regulations since the early 1980s. Typical waste streams allowed in these landfills include nonhazardous industrial and municipal solid waste (such as paper, plastic, cardboard, cafeteria waste, clothing, wood, asbestos, fly ash, metals, and construction debris). In July 1992, the U.S. Environmental Protection Agency issued new requirements for the disposal of sanitary wastes in a {open_quotes}contained landfill.{close_quotes} These requirements were promulgated in the 401 Kentucky Administrative Record Chapters 47 and 48 that became effective 30 June 1995. The requirements for a new contained landfill include a synthetic liner made of high-density polyethylene in addition to the traditional 1-meter (3-foot) clay liner and a leachate collection system. A new landfill at Paducah would accept waste streams similar to those that have been accepted in the past. The permit for the previously existing landfills did not include radioactivity limits; instead, these levels were administratively controlled. Typically, if radioactivity was detected above background levels, the waste was classified as low-level waste (LLW), which would be sent off-site for disposal.

Boggs, C.J. [Argonne National Lab., Germantown, MD (United States); Shaddoan, W.T. [Lockheed Martin Energy Systems, Paducah, KY (United States)

1996-03-01T23:59:59.000Z

211

Feasibility Study of Economics and Performance of Solar Photovoltaics at Johnson County Landfill  

SciTech Connect (OSTI)

The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Johnson County Landfill in Shawnee, Kansas, for a feasibility study of renewable energy production. Citizens of Shawnee, city planners, and site managers are interested in redevelopment uses for landfills in Kansas that are particularly well suited for grid-tied solar photovoltaic (PV) installation. This report assesses the Johnson County Landfill for possible grid-tied PV installations and estimates the cost, performance, and site impacts of three different PV options: crystalline silicon (fixed tilt), crystalline silicon (single-axis tracking), and thin film (fixed tilt). Each option represents a standalone system that can be sized to use an entire available site area. In addition, the report outlines financing options that could assist in the implementation of a system. The feasibility of PV systems installed on landfills is highly impacted by the available area for an array, solar resource, operating status, landfill cap status, distance to transmission lines, and distance to major roads. The report findings are applicable to other landfills in the surrounding area.

Salasovich, J.; Mosey, G.

2012-01-01T23:59:59.000Z

212

Library Locations Locations other than Main Library  

E-Print Network [OSTI]

Library Locations Locations other than Main Library Example: Feminist Studies HQ1410 .U54 2009 University of California, Santa Barbara Library www.library.ucsb.edu Updated 3-2014 A - B.......................................6 Central M - N..................................................Arts Library (Music Building) P

213

STANDARD OPERATING PROCEDURE Location(s): ___________________________________________________  

E-Print Network [OSTI]

of as hazardous waste. 8. Decontamination: Specific instructions: For light contamination of small areas or items12.1 STANDARD OPERATING PROCEDURE for PHENOL Location(s): ___________________________________________________ Chemical(s): Phenol Specific Hazards: May be fatal if inhaled. Harmful if absorbed through skin. Harmful

Pawlowski, Wojtek

214

Article in Kathimerini, August 9, 2006: Dump fire produces toxic milk The levels of cancer-causing dioxin in milk and chicken produced by farms located near  

E-Print Network [OSTI]

-causing dioxin in milk and chicken produced by farms located near the Tagarades landfill in Thessaloniki exceeded produce would be affected by increased dioxin emissions. EKEFE scientists said that dioxin levels in samples of milk and poultry taken from local farms was up to 30 percent above permissible levels. Dioxin

Columbia University

215

CCA-Treated wood disposed in landfills and life-cycle trade-offs with waste-to-energy and MSW landfill disposal  

E-Print Network [OSTI]

CCA-Treated wood disposed in landfills and life-cycle trade-offs with waste-to-energy and MSW in waste-to-energy (WTE) facilities. In other countries, the predominant disposal option for wood, others have not, and the product continues to enter the waste stream from construction, demolition

Florida, University of

216

Field Performance of Three Compacted Clay Landfill Covers  

SciTech Connect (OSTI)

A study was conducted at sites in subtropical Georgia, seasonal and humid Iowa, and arid southeastern California to evaluate the field hydrology of compacted clay covers for final closure of landfills.Water balance of the covers was monitored with large (10 by 20 m), instrumented drainage lysimeters for 2 to 4 yr. Initial drainage at the Iowa and California sites was ,32 mm yr21 (i.e., unit gradient flow for a hydraulic conductivity of 1027 cm s21, the regulatory standard for the clay barriers in this study); initial drainage rate at the Georgia site was about 80 mm yr21. The drainage rate at all sites increased by factors ranging from 100 to 750 during the monitoring periods and in each case the drainage rate exceeded 32 mm yr21 by the end of the monitoring period. The drainage rates developed a rapid response to precipitation events, suggesting that increases in drainage rate were the result of preferential flow. Although no direct observations of preferential flow paths were made, field measurements of water content and temperature at all three sites suggested that desiccation or freeze–thaw cycling probably resulted in formation of preferential flow paths through the barrier layers. Data from all three sites showed the effectiveness of all three covers as hydraulic barriers diminished during the 2 to 4 yr monitoring period, which was short compared with the required design life (often 30 yr) of most waste containment facilities.

Albright, William H.; Benson, Craig H.; Gee, Glendon W.; Abichou, Tarek; Tyler, Scott W.; Rock, Steven

2006-11-01T23:59:59.000Z

217

Paper waste - Recycling, incineration or landfilling? A review of existing life cycle assessments  

SciTech Connect (OSTI)

A review of existing life cycle assessments (LCAs) on paper and cardboard waste has been undertaken. The objectives of the review were threefold. Firstly, to see whether a consistent message comes out of published LCA literature on optimum disposal or recycling solutions for this waste type. Such message has implications for current policy formulation on material recycling and disposal in the EU. Secondly, to identify key methodological issues of paper waste management LCAs, and enlighten the influence of such issues on the conclusions of the LCA studies. Thirdly, in light of the analysis made, to discuss whether it is at all valid to use the LCA methodology in its current development state to guide policy decisions on paper waste. A total of nine LCA studies containing altogether 73 scenarios were selected from a thorough, international literature search. The selected studies are LCAs including comparisons of different management options for waste paper. Despite claims of inconsistency, the LCAs reviewed illustrate the environmental benefits in recycling over incineration or landfill options, for paper and cardboard waste. This broad consensus was found despite differences in geographic location and definitions of the paper recycling/disposal systems studied. A systematic exploration of the LCA studies showed, however, important methodological pitfalls and sources of error, mainly concerning differences in the definition of the system boundaries. Fifteen key assumptions were identified that cover the three paper cycle system areas: raw materials and forestry, paper production, and disposal/recovery. It was found that the outcome of the individual LCA studies largely depended on the choices made in some of these assumptions, most specifically the ones concerning energy use and generation, and forestry.

Villanueva, A. [European Topic Centre on Resource and Waste Management, Hojbro Plads 4, DK-1200 Copenhagen K (Denmark)], E-mail: alejandro@villanueva.dk; Wenzel, H. [Department of Manufacturing Engineering and Management, Technical University of Denmark, Building 424, DK-2800 Kgs. Lyngby (Denmark)

2007-07-01T23:59:59.000Z

218

Environmental geophysics at Kings Creek Disposal Site and 30th Street Landfill, Aberdeen Proving Ground, Maryland  

SciTech Connect (OSTI)

Geophysical studies on the Bush River Peninsula in the Edgewood Area of Aberdeen Proving Ground, Maryland, delineate landfill areas and provide diagnostic signatures of the hydrogeologic framework and possible contaminant pathways. These studies indicate that, during the Pleistocene Epoch, alternating stands of high and low seal levels resulted in a complex pattern of shallow channel-fill deposits in the Kings Creek area. Ground-penetrating radar studies reveal a paleochannel greater than 50 ft deep, with a thalweg trending offshore in a southwest direction into Kings Creek. Onshore, the ground-penetrating radar data indicate a 35-ft-deep branch to the main channel, trending to the north-northwest directly beneath the 30th Street Landfill. Other branches are suspected to meet the offshore paleochannel in the wetlands south and east of the 30th Street Landfill. This paleochannel depositional system is environmentally significant because it may control the shallow groundwater flow regime beneath the site. Electromagnetic surveys have delineated the pre-fill lowland area currently occupied by the 30th Street Landfill. Magnetic and conductive anomalies outline surficial and buried debris throughout the study area. On the basis of geophysical data, large-scale dumping has not occurred north of the Kings Creek Disposal Site or east of the 30th Street Landfill.

Davies, B.E.; Miller, S.F.; McGinnis, L.D.; Daudt, C.R.; Thompson, M.D.; Stefanov, J.E.; Benson, M.A.; Padar, C.A.

1995-01-01T23:59:59.000Z

219

Natural gas leak mapper  

DOE Patents [OSTI]

A system is described that is suitable for use in determining the location of leaks of gases having a background concentration. The system is a point-wise backscatter absorption gas measurement system that measures absorption and distance to each point of an image. The absorption measurement provides an indication of the total amount of a gas of interest, and the distance provides an estimate of the background concentration of gas. The distance is measured from the time-of-flight of laser pulse that is generated along with the absorption measurement light. The measurements are formated into an image of the presence of gas in excess of the background. Alternatively, an image of the scene is superimosed on the image of the gas to aid in locating leaks. By further modeling excess gas as a plume having a known concentration profile, the present system provides an estimate of the maximum concentration of the gas of interest.

Reichardt, Thomas A. (Livermore, CA); Luong, Amy Khai (Dublin, CA); Kulp, Thomas J. (Livermore, CA); Devdas, Sanjay (Albany, CA)

2008-05-20T23:59:59.000Z

220

Gas Separations using Ceramic Membranes  

SciTech Connect (OSTI)

This project has been oriented toward the development of a commercially viable ceramic membrane for high temperature gas separations. A technically and commercially viable high temperature gas separation membrane and process has been developed under this project. The lab and field tests have demonstrated the operational stability, both performance and material, of the gas separation thin film, deposited upon the ceramic membrane developed. This performance reliability is built upon the ceramic membrane developed under this project as a substrate for elevated temperature operation. A comprehensive product development approach has been taken to produce an economically viable ceramic substrate, gas selective thin film and the module required to house the innovative membranes for the elevated temperature operation. Field tests have been performed to demonstrate the technical and commercial viability for (i) energy and water recovery from boiler flue gases, and (ii) hydrogen recovery from refinery waste streams using the membrane/module product developed under this project. Active commercializations effort teaming with key industrial OEMs and end users is currently underway for these applications. In addition, the gas separation membrane developed under this project has demonstrated its economical viability for the CO2 removal from subquality natural gas and landfill gas, although performance stability at the elevated temperature remains to be confirmed in the field.

Paul KT Liu

2005-01-13T23:59:59.000Z

Note: This page contains sample records for the topic "landfill gas location" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

TECHNICAL REPORTS The greenhouse gas (GHG) impact of composting a range  

E-Print Network [OSTI]

TECHNICAL REPORTS 1396 The greenhouse gas (GHG) impact of composting a range of potential by composting and GHG emissions during composting. The primary carbon credits associated with composting are through CH4 avoidance when feedstocks are composted instead of landfilled (municipal solid waste

Brown, Sally

222

Superfund explanation of significant difference for the record of decision (EPA Region 5): Tri-County Landfill/Waste Management Illinois, South Elgin, IL, April 23, 1998  

SciTech Connect (OSTI)

The Tri-County/Elgin Landfill Superfund Site (TCLF) encompasses both the Tri-County and Elgin Landfills. The purpose of this ESD is to explain why the design for the landfill cap component of the remedy differs from that set forth in the ROD (PB93-964133) and to address the cost differentials associated with the change.

NONE

1999-03-01T23:59:59.000Z

223

Feasibility Study of Solar Photovoltaics on Landfills in Puerto Rico (Second Study)  

SciTech Connect (OSTI)

This report presents the results of an assessment of the technical and economic feasibility of deploying a solar photovoltaics (PV) system on landfill sites in Puerto Rico. The purpose of this report is to assess the landfills with the highest potential for possible solar PV installation and estimate cost, performance, and site impacts of three different PV options: crystalline silicon (fixed tilt), crystalline silicon (single-axis tracking), and thin film (fixed tilt). The report outlines financing options that could assist in the implementation of a system. According to the site production calculations, the most cost-effective system in terms of return on investment is the thin-film fixed-tilt technology. The report recommends financing options that could assist in the implementation of such a system. The landfills and sites considered in this report were all determined feasible areas in which to implement solar PV systems.

Salasovich, J.; Mosey, G.

2011-08-01T23:59:59.000Z

224

COMBINED GEOPHYSICAL INVESTIGATION TECHNIQUES TO IDENTIFY BURIED WASTE IN AN UNCONTROLLED LANDFILL AT THE PADUCAH GASEOUS DIFFUSION PLANT, KENTUCKY  

SciTech Connect (OSTI)

The primary objective of the investigation was to confirm the presence and determine the location of a cache of 30 to 60 buried 55-gallon drums that were allegedly dumped along the course of the pre-existing, northsouth diversion ditch (NSDD) adjacent to permitted landfills at the Paducah Gaseous Diffusion Plant, Kentucky. The ditch had been rerouted and was being filled and re-graded at the time of the alleged dumping. Historic information and interviews with individuals associated with alleged dumping activities indicated that the drums were dumped prior to the addition of other fill materials. In addition, materials alleged to have been dumped in the ditch, such as buried roofing materials, roof flashing, metal pins, tar substances, fly ash, and concrete rubble complicated data interpretation. Some clean fill materials have been placed over the site and graded. This is an environment that is extremely complicated in terms of past waste dumping activities, construction practices and miscellaneous landfill operations. The combination of site knowledge gained from interviews and research of existing site maps, variable frequency EM data, classical total magnetic field data and optimized GPR lead to success where a simpler less focused approach by other investigators using EM-31 and EM-61 electromagnetic methods and unfocused ground penetrating radar (GPR)did not produce results and defined no real anomalies. A variable frequency electromagnetic conductivity unit was used to collect the EM data at 3,030 Hz, 5,070 Hz, 8,430 Hz, and 14,010 Hz. Both in-phase and quadrature components were recorded at each station point. These results provided depth estimates for targets and some information on the subsurface conditions. A standard magnetometer was used to conduct the magnetic survey that showed the locations and extent of buried metal, the approximate volume of ferrous metal present within a particular area, and allowed estimation of approximate target depths. The GPR survey used a 200 megahertz (MHz) antenna to provide the maximum depth penetration and subsurface detail yielding usable signals to a depth of about 6 to 10 feet in this environment and allowed discrimination of objects that were deeper, particularly useful in the southern area of the site where shallow depth metallic debris (primarily roof flashing) complicated interpretation of the EM and magnetic data. Several geophysical anomalies were defined on the contour plots that indicated the presence of buried metal. During the first phase of the project, nine anomalies or anomalous areas were detected. The sizes, shapes, and magnitudes of the anomalies varied considerably, but given the anticipated size of the primary target of the investigation, only the most prominent anomalies were considered as potential caches of 30 to 60 buried drums. After completion of a second phase investigation, only two of the anomalies were of sufficient magnitude, not identifiable with existing known metallic objects such as monitoring wells, and in positions that corresponded to the location of alleged dumping activities and were recommended for further, intrusive investigation. Other important findings, based on the variable frequency EM method and its combination with total field magnetic and GPR data, included the confirmation of the position of the old NSDD, the ability to differentiate between ferrous and non-ferrous anomalies, and the detection of what may be plumes emanating from the landfill cell.

Miller, Peter T.; Starmer, R. John

2003-02-27T23:59:59.000Z

225

An integrated analytical framework for quantifying the LCOE of waste-to-energy facilities for a range of greenhouse gas emissions policy and technical factors  

SciTech Connect (OSTI)

This study presents a novel integrated method for considering the economics of waste-to-energy (WTE) facilities with priced greenhouse gas (GHG) emissions based upon technical and economic characteristics of the WTE facility, MSW stream, landfill alternative, and GHG emissions policy. The study demonstrates use of the formulation for six different policy scenarios and explores sensitivity of the results to ranges of certain technical parameters as found in existing literature. The study shows that details of the GHG emissions regulations have large impact on the levelized cost of energy (LCOE) of WTE and that GHG regulations can either increase or decrease the LCOE of WTE depending on policy choices regarding biogenic fractions from combusted waste and emissions from landfills. Important policy considerations are the fraction of the carbon emissions that are priced (i.e. all emissions versus only non-biogenic emissions), whether emissions credits are allowed due to reducing fugitive landfill gas emissions, whether biogenic carbon sequestration in landfills is credited against landfill emissions, and the effectiveness of the landfill gas recovery system where waste would otherwise have been buried. The default landfill gas recovery system effectiveness assumed by much of the industry yields GHG offsets that are very close to the direct non-biogenic GHG emissions from a WTE facility, meaning that small changes in the recovery effectiveness cause relatively larger changes in the emissions factor of the WTE facility. Finally, the economics of WTE are dependent on the MSW stream composition, with paper and wood being advantageous, metal and glass being disadvantageous, and plastics, food, and yard waste being either advantageous or disadvantageous depending upon the avoided tipping fee and the GHG emissions price.

Townsend, Aaron K., E-mail: aarontownsend@utexas.edu [Department of Mechanical Engineering, University of Texas at Austin, 1 University Station C2200, Austin, TX 78712 (United States); Webber, Michael E. [Department of Mechanical Engineering, University of Texas at Austin, 1 University Station C2200, Austin, TX 78712 (United States)

2012-07-15T23:59:59.000Z

226

Public health assessment for Kentwood Landfill, Kentwood, Kent County, Michigan, Region 5. Cerclis No. MID000260281. Final report  

SciTech Connect (OSTI)

The Kentwood Landfill site encompasses approximately 72 acres and was operated as a licensed landfill prior to 1976. It accepted domestic and industrial waste including unidentified hazardous wastes from heavy manufacturing and refining. Shallow ground water and leachate from the landfill are contaminated with heavy metals and organic compounds. On numerous occasions, leachate has been observed seeping out of the landfill and entering Plaster Creek. While significant exposure does not appear to have occurred or to be presently occurring, the Kentwood Landfill poses a public health hazard because of possible future exposures to contaminants. Nearby residents' ground water supplies could become contaminated should the contaminant plume shift or new wells be drilled into the plume. A lesser hazard is that trespassers could come into direct contact with contaminated surface materials on the site.

Not Available

1994-01-18T23:59:59.000Z

227

Corrective Action Decision Document for Corrective Action Unit 5: Landfills, Nevada Test Site, Nevada: Revision No. 0 (with Record of Technical Change No. 1)  

SciTech Connect (OSTI)

This Corrective Action Decision Document identifies and rationalizes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's selection of a recommended corrective action alternative (CAA) appropriate to facilitate the closure of Corrective Action (CAU) 5: Landfills, Nevada Test Site (NTS), Nevada, under the Federal Facility Agreement and Consent Order. Located in Areas 5, 6, 12, 20, and 23 of the NTS, CAU 5 is comprised of eight corrective action sites (CASs). The corrective action investigation (CAI) of CAU 5 was conducted from October 7, 2002 through January 30, 2003, with geophysical surveys completed from March 6 through May 8, 2002, and topographic surveys conducted from March 11 through April 29, 2003. Contaminants of concern (COCs) were identified only at CAS 12-15-01. Those COCs included total petroleum hydrocarbons and volatile organic compounds. Based on the evaluation of analytical data from the CAI, review of future and current operations in Areas 5, 6, 12, 20, and 23 of the Nevada Test Site, and the detailed and comparative analysis of the potential CAAs, the following single alternative was developed for consideration. Close in Place with Administrative Controls is the recommended alternative for all of the CASs in CAU 5. This alternative was judged to meet all requirements for the technical components evaluated. Additionally, the alternative meets all applicable state and federal regulations for closure of the sites and will eliminate inadvertent intrusion into landfills at CAU 5.

U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

2003-10-24T23:59:59.000Z

228

Capping as an alternative for remediating radioactive and mixed waste landfills  

SciTech Connect (OSTI)

This report describes some of the regulatory and technical issues concerning the use of capping as a containment strategy for radioactive and hazardous waste. Capping alternatives for closure of landfills is not just an engineering problem, but rather involves complex physical, biological, and chemical processes requiring a multidisciplinary approach to develop designs that will work over the long haul and are cost-effective. Much of the information has been distilled from regulatory and guidance documents and a compilation of research activities on waste disposal, contaminant transport processes, and technology development for landfills that has been conducted over the last 21 years.

Hakonson, T.E. [Colorado State Univ., Fort Collins, CO (United States). Dept. of Fishery and Wildlife Biology

1994-03-01T23:59:59.000Z

229

Property:Building/SPPurchasedEngyForPeriodMwhYrDigesterLandfillGas | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformationInyo County, California |SPElectrtyUsePercRefrigeration Jump to: navigation,Energy

230

Property:Building/SPPurchasedEngyNrmlYrMwhYrDigesterLandfillGas | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformationInyo County, CaliforniaInformation SPPurchasedEngyForPeriodMwhYrWoodChips Jump

231

Renewable LNG: Update on the World's Largest Landfill Gas to LNG Plant |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartmentnews-flashes OfficeTexasEnergyFuelHydrogen:

232

Illinois Turning Landfill Trash into Future Cash | Department...  

Broader source: Energy.gov (indexed) [DOE]

to 8,000 homes. The future revenue generated from the sale of the gas and the sale of the electricity could reach 1 million annually. County Executive Larry Walsh praised this...

233

Reversible micromachining locator  

DOE Patents [OSTI]

This invention provides a device which includes a locator, a kinematic mount positioned on a conventional tooling machine, a part carrier disposed on the locator and a retainer ring. The locator has disposed therein a plurality of steel balls, placed in an equidistant position circumferentially around the locator. The kinematic mount includes a plurality of magnets which are in registry with the steel balls on the locator. In operation, a blank part to be machined is placed between a surface of a locator and the retainer ring (fitting within the part carrier). When the locator (with a blank part to be machined) is coupled to the kinematic mount, the part is thus exposed for the desired machining process. Because the locator is removably attachable to the kinematic mount, it can easily be removed from the mount, reversed, and reinserted onto the mount for additional machining. Further, the locator can likewise be removed from the mount and placed onto another tooling machine having a properly aligned kinematic mount. Because of the unique design and use of magnetic forces of the present invention, positioning errors of less than 0.25 micrometer for each machining process can be achieved. 7 figs.

Salzer, L.J.; Foreman, L.R.

1999-08-31T23:59:59.000Z

234

Reversible micromachining locator  

DOE Patents [OSTI]

This invention provides a device which includes a locator, a kinematic mount positioned on a conventional tooling machine, a part carrier disposed on the locator and a retainer ring. The locator has disposed therein a plurality of steel balls, placed in an equidistant position circumferentially around the locator. The kinematic mount includes a plurality of magnets which are in registry with the steel balls on the locator. In operation, a blank part to be machined is placed between a surface of a locator and the retainer ring (fitting within the part carrier). When the locator (with a blank part to be machined) is coupled to the kinematic mount, the part is thus exposed for the desired machining process. Because the locator is removably attachable to the kinematic mount, it can easily be removed from the mount, reversed, and reinserted onto the mount for additional machining. Further, the locator can likewise be removed from the mount and placed onto another tooling machine having a properly aligned kinematic mount. Because of the unique design and use of magnetic forces of the present invention, positioning errors of less than 0.25 micrometer for each machining process can be achieved.

Salzer, Leander J. (Los Alamos, NM); Foreman, Larry R. (Los Alamos, NM)

1999-01-01T23:59:59.000Z

235

Reversible micromachining locator  

DOE Patents [OSTI]

A locator with a part support is used to hold a part onto the kinematic mount of a tooling machine so that the part can be held in or replaced in exactly the same position relative to the cutting tool for machining different surfaces of the part or for performing different machining operations on the same or different surfaces of the part. The locator has disposed therein a plurality of steel balls placed at equidistant positions around the planar surface of the locator and the kinematic mount has a plurality of magnets which alternate with grooves which accommodate the portions of the steel balls projecting from the locator. The part support holds the part to be machined securely in place in the locator. The locator can be easily detached from the kinematic mount, turned over, and replaced onto the same kinematic mount or another kinematic mount on another tooling machine without removing the part to be machined from the locator so that there is no need to touch or reposition the part within the locator, thereby assuring exact replication of the position of the part in relation to the cutting tool on the tooling machine for each machining operation on the part.

Salzer, Leander J. (Los Almos, NM); Foreman, Larry R. (late of Los Alamos, NM)

2002-01-01T23:59:59.000Z

236

Sanitary Landfill Groundwater Monitoring Report - Fourth Quarter 1998 and 1998 Summary  

SciTech Connect (OSTI)

A maximum of fifty-three wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Water permit and as part of the SRS Groundwater Monitoring Program.

Chase, J.

1999-04-09T23:59:59.000Z

237

Landfills a thing of the past in Germany where advanced waste management By Evridiki Bersi -Kathimerini  

E-Print Network [OSTI]

Landfills a thing of the past in Germany where advanced waste management rules By Evridiki Bersi but that day has already come in Germany. On June 1, 2005, Germany imposed a ban on traditional garbage dumps, replacing them with one of the most advanced waste-management systems in the world. In the 1970s, Germany

Columbia University

238

REACTION AND COMBUSTION INDICATORS IN MSW LANDFILLS Jeffrey W. Martin1  

E-Print Network [OSTI]

, Ohio. ABSTRACT Municipal Solid Waste (MSW) landfills may contain aluminum from residential and commercial solid waste, industrial waste, and aluminum production wastes. Some aluminum-bearing waste municipal solid waste, industrial wastes, and aluminum production waste such as dross, salt cake, baghouse

239

Comparison of four composite landfill liner systems considering leakage rate and mass flux  

E-Print Network [OSTI]

systems, i.e., Subtitle D com- posite liner system, composite liner system with a geosynthetic clay liner (with a 61 cm (2 feet) or 91.5 cm (3 feet) thick compacted clay liner), were evaluated in termsComparison of four composite landfill liner systems considering leakage rate and mass flux T

240

Results of the radiological survey at the Town of Tonawanda Landfill, Tonawanda, New York (TNY001)  

SciTech Connect (OSTI)

At the request of the US Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted a radiological survey at the Town of Tonawanda Landfill, Tonawanda, New York. The survey was performed in September 1991. The purpose of the survey was to determine if radioactive materials from work performed under government contract at the Linde Air Products Division of Union Carbide Corporation, Tonawanda, New York, had been deposited in the landfill. The survey included a surface gamma scan and the collection of soil samples for radionuclide analyses. Results of the survey suggest that material originating at the Linde plant may have been deposited in the landfill. Soil samples S54 and B12 contained technologically enhanced levels of [sup 238]U not unlike the product formerly produced by the Linde plant. In contrast, samples B4A, B5A and B7B, containing elevated concentrations of [sup 226]Ra and [sup 230]Th with much lower concentrations of [sup 238]U, were similar to the residue or byproduct of the refinery operation conducted at the Linde plant. In 24 instances, soil samples from the Town of Tonawanda Landfill exceeded DOE guideline values for [sup 238]U, [sup 226]Ra, and/or [sup 230]Th in surface or subsurface soil. Nine of these samples contained radionuclide concentrations more than 30 times the guideline value.

Rodriguez, R.E.; Murray, M.E.; Uziel, M.S.

1992-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "landfill gas location" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Results of the radiological survey at the Town of Tonawanda Landfill, Tonawanda, New York (TNY001)  

SciTech Connect (OSTI)

At the request of the US Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted a radiological survey at the Town of Tonawanda Landfill, Tonawanda, New York. The survey was performed in September 1991. The purpose of the survey was to determine if radioactive materials from work performed under government contract at the Linde Air Products Division of Union Carbide Corporation, Tonawanda, New York, had been deposited in the landfill. The survey included a surface gamma scan and the collection of soil samples for radionuclide analyses. Results of the survey suggest that material originating at the Linde plant may have been deposited in the landfill. Soil samples S54 and B12 contained technologically enhanced levels of {sup 238}U not unlike the product formerly produced by the Linde plant. In contrast, samples B4A, B5A and B7B, containing elevated concentrations of {sup 226}Ra and {sup 230}Th with much lower concentrations of {sup 238}U, were similar to the residue or byproduct of the refinery operation conducted at the Linde plant. In 24 instances, soil samples from the Town of Tonawanda Landfill exceeded DOE guideline values for {sup 238}U, {sup 226}Ra, and/or {sup 230}Th in surface or subsurface soil. Nine of these samples contained radionuclide concentrations more than 30 times the guideline value.

Rodriguez, R.E.; Murray, M.E.; Uziel, M.S.

1992-10-01T23:59:59.000Z

242

WESTLAKE LANDFILL EPA Region 7 03/29/2012 City: Bridgeton  

E-Print Network [OSTI]

was quarried on the site. Beginning in 1962, portions of the property were used for landfilling of municipal solid waste and construction debris. Two areas became radiologically contaminated in 1973 when soils. An adjacent property has also been impacted by erosional migration of radiologically-contaminated material

243

Call for Nominations to the WTERT/SUR 2010 Awards -February 22, 2010  

E-Print Network [OSTI]

/other heating from WTE/EfW: Tons of MSW landfilled: Tons of MSW landfilled with Landfill Gas Recovery: MWh

Columbia University

244

Preliminary design of a landfill and revetment on Bikini Island, Republic of the Marshall Islands. Final report  

SciTech Connect (OSTI)

Topsoil on Bikini Island, located 2,500 miles southwest of Hawaii at 113 deg 35 min N, 165 deg 25 min E, was contaminated by radioactive fallout from nuclear weapons tests in the late 1940's and early 1950's. The uptake of this radioactive fallout, primarily cesium-137 in plants, has prevented resettlement of the island by the native population. One alternative solution proposed by the congressionally appointed Bikini Atoll Rehabilitation Committee involves removal of the contaminated topsoil and placement of the excavated material as a landfill on the 2,500-ft-wide reef flat adjacent to the eastern (windward) shore of the island. This paper explores that alternative by first developing an extremal wave climatology offshore of Bikini Island from 21 years (1959-1979) of typhoon data published by the Joint Typhoon Warning Center on Guam. Deepwater wave conditions just offshore of the reef are estimated and transformed to the point of breaking at the edge of the reef. Storm surge is estimated based on these same parameters. Wave setup on the reef flat is estimated based on the simulated breaking conditions. Given an estimate of the elevated water level across the reef caused by storm surge and wave setup, depth limitations and fractional decay are estimated to define wave conditions at the toe of the proposed revetment. A rubble-mound revetment design stable in these conditions, armored by coral limestone quarried from the reef flat, is then formulated and corresponding material quantities estimated.

Smith, O.P.; Chu, Y.H.

1987-02-01T23:59:59.000Z

245

Locating Heat Recovery Opportunities  

E-Print Network [OSTI]

Basic concepts of heat recovery are defined as they apply to the industrial community. Methods for locating, ranking, and developing heat recovery opportunities are presented and explained. The needs for useful heat 'sinks' are emphasized as equal...

Waterland, A. F.

1981-01-01T23:59:59.000Z

246

International land rig locator  

SciTech Connect (OSTI)

Mechanical specifications, ratings, locations, and status are listed for each of the 5,000 contract rotary drilling rigs operated by the more than 700 independent drilling contractors throughout the Free World.

Not Available

1984-03-01T23:59:59.000Z

247

International land rig locator  

SciTech Connect (OSTI)

Mechanical specifications, ratings, locations, and status are listed for each of the 5,000 contract rotary drilling rigs operated by more than 700 independent drilling contractors throughout the Free World.

Not Available

1983-09-01T23:59:59.000Z

248

Location linked information  

E-Print Network [OSTI]

This work builds an infrastructure called Location Linked Information that offers a means to associate digital information with public, physical places. This connection creates a hybrid virtual/physical space, called glean ...

Mankins, Matthew William David, 1975-

2003-01-01T23:59:59.000Z

249

a r r i o r BUILDING# NAME LOCATION BUILDING# NAME LOCATION OTHER BUILDINGS LOCATION SORORITIES LOCATION  

E-Print Network [OSTI]

Admissions Parking Palmer Lake B l a c k W a r r i o r R i v e r BUILDING# NAME LOCATION BUILDING# NAME LOCATION OTHER BUILDINGS LOCATION SORORITIES LOCATION 7046 70127012 1155 10331033 1150 1039 1038

Carver, Jeffrey C.

250

Effects of adding wash tower effluent to Ano Liossia landfill to enhance bioreaction c by Olympia Galenianou.  

E-Print Network [OSTI]

A theoretical study was performed on the effects of adding sulfate-rich wash tower effluent from the Athens hospital waste incinerator to the Ano Liossia landfill of Athens. The method of mass balance was used to examine ...

Galenianou, Olympia

2006-01-01T23:59:59.000Z

251

EA-0767: Construction and Experiment of an Industrial Solid Waste Landfill at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of a proposal to construct and operate a solid waste landfill within the boundary at the U.S. Department of Energy's Portsmouth Gaseous Diffusion plant...

252

Annual Performance Assessment and Composite Analysis Review for the ICDF Landfill FY 2008  

SciTech Connect (OSTI)

This report addresses low-level waste disposal operations at the Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility (ICDF) landfill from the start of operations in Fiscal Year 2003 through Fiscal Year 2008. The ICDF was authorized in the Operable Unit 3-13 Record of Decision for disposal of waste from the Idaho National Laboratory Site CERCLA environmental restoration activities. The ICDF has been operating since 2003 in compliance with the CERCLA requirements and the waste acceptance criteria developed in the CERCLA process. In developing the Operable Unit 3-13 Record of Decision, U.S. Department of Energy Order (DOE) 435.1, 'Radioactive Waste Management', was identified as a 'to be considered' requirement for the ICDF. The annual review requirement under DOE Order 435.1 was determined to be an administrative requirement and, therefore, annual reviews were not prepared on an annual basis. However, the landfill has been operating for 5 years and, since the waste forms and inventories disposed of have changed from what was originally envisioned for the ICDF landfill, the ICDF project team has decided that this annual review is necessary to document the changes and provide a basis for any updates in analyses that may be necessary to continue to meet the substantive requirements of DOE Order 435.1. For facilities regulated under DOE Order 435.1-1, U.S. DOE Manual 435.1-1, 'Radioactive Waste Management', IV.P.(4)(c) stipulates that annual summaries of low-level waste disposal operations shall be prepared with respect to the conclusions and recommendations of the performance assessment and composite analysis. Important factors considered in this review include facility operations, waste receipts, and results from monitoring and research and development programs. There have been no significant changes in operations at the landfill in respect to the disposal geometry, the verification of waste characteristics, and the tracking of inventories against total limits that would affect the results and conclusions of the performance assessment. Waste receipts to date and projected waste receipts through Fiscal Year 2012 are both greater than the inventory assessed in the performance assessment and composite analysis. The waste forms disposed of to the landfill are different from the waste form (compacted soil) assessed in the performance assessment. The leak detection system and groundwater monitoring results indicate the landfill has not leaked. The results of the performance assessment/composite analysis are valid (i.e., there is still a reasonable expectation of meeting performance objectives) but the new information indicates less conservatism in the results than previously believed.

Karen Koslow

2009-08-31T23:59:59.000Z

253

Liquefied Natural Gas for Trucks and Buses  

SciTech Connect (OSTI)

Liquefied natural gas (LNG) is being developed as a heavy vehicle fuel. The reason for developing LNG is to reduce our dependency on imported oil by eliminating technical and costs barriers associated with its usage. The U.S. Department of Energy (DOE) has a program, currently in its third year, to develop and advance cost-effective technologies for operating and refueling natural gas-fueled heavy vehicles (Class 7-8 trucks). The objectives of the DOE Natural Gas Vehicle Systems Program are to achieve market penetration by reducing vehicle conversion and fuel costs, to increase consumer acceptance by improving the reliability and efficiency, and to improve air quality by reducing tailpipe emissions. One way to reduce fuel costs is to develop new supplies of cheap natural gas. Significant progress is being made towards developing more energy-efficient, low-cost, small-scale natural gas liquefiers for exploiting alternative sources of natural gas such as from landfill and remote gas sites. In particular, the DOE program provides funds for research and development in the areas of; natural gas clean up, LNG production, advanced vehicle onboard storage tanks, improved fuel delivery systems and LNG market strategies. In general, the program seeks to integrate the individual components being developed into complete systems, and then demonstrate the technology to establish technical and economic feasibility. The paper also reviews the importance of cryogenics in designing LNG fuel delivery systems.

James Wegrzyn; Michael Gurevich

2000-06-19T23:59:59.000Z

254

Development of risk-assessment methodology for municipal-sludge landfilling. Final report  

SciTech Connect (OSTI)

This is one of a series of reports that present methodologies for assessing the potential risks to humans or other organisms from the disposal or reuse of municipal sludge. The sludge management practices addressed by this series include land application practices, distribution and marketing programs, landfilling, incineration and ocean disposal. These reports provide methods for evaluating potential health and environmental risks from toxic chemicals that may be present in sludge. The document addresses risks from chemicals associated with landfilling of municipal sludge. These proposed risk assessment procedures are designed as tools to assist in the development of regulations for sludge management practices. The criteria may address management practices (such as site design or process control specifications), limits on sludge disposal rates or limits on toxic chemical concentrations in the sludge.

Not Available

1989-08-01T23:59:59.000Z

255

Sanitary landfill groundwater monitoring report. Fourth quarter 1994 and 1994 summary  

SciTech Connect (OSTI)

Eighty-nine wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Waste Permit DWP-087A and as part of the SRS Groundwater Monitoring Program. Dichloromethane, a common laboratory contaminant, and trichloroethylene were the most widespread constituents exceeding standards during 1994. Benzene, chloroethene (vinyl chloride), 1,2-dichloroethane, 1,1-dichloroethylene, 1,2-dichloropropane, gross alpha, mercury, nonvolatile beta, tetrachloroethylene, and tritium also exceeded standards in one or more wells. The groundwater flow direction in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill was to the southeast (universal transverse Mercator coordinates). The flow rate in this unit was approximately 140 ft/year during first and fourth quarters 1994.

NONE

1995-02-01T23:59:59.000Z

256

Sanitary Landfill Groundwater Monitoring Report. Fourth Quarter 1997 and 1997 Summary  

SciTech Connect (OSTI)

A maximum of forty-eight wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Water Permit DWP-087A and as part of the SRS Groundwater Monitoring Program. Chloroethene (vinyl chloride) and trichloroethylene were the most widespread constituents exceeding standards during 1997. Lead (total recoverable), 1,4-dichlorobenzene, mercury, benzene, dichloromethane (methylene chloride), a common laboratory contaminant, tetrachloroethylene, 1,2-dichloroethane, gross alpha, tritium, and 1.2-dichloropropane also exceeded standards in one or more wells. The groundwater flow direction in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill was to the southeast (universal transverse Mercator coordinates). The flow rate in this unit was approximately 139 ft/year during first quarter 1997 and 132 ft/year during fourth quarter.

Chase, J. [Westinghouse Savannah River Company, AIKEN, SC (United States)

1998-02-01T23:59:59.000Z

257

Computer Lab Information Location  

E-Print Network [OSTI]

M340 Computer Lab Information · Location: The computer labs accessible to you are Weber 205 it is recommended that you save your files on a floppy when you are finished. · There is another directory, g:\\m340 to the saved files you have to add the directory to the Matlab path. To do this type addpath g:\\m340

Dangelmayr, Gerhard

258

Superfund record of decision (EPA Region 5): Southside Sanitary Landfill, Indianapolis, IN, September 28, 1995  

SciTech Connect (OSTI)

This decision document presents the selected remedial action for the Southside Sanitary Landfill (SSL) site, in Indianapolis, Indiana. The results of the Remedial Investigation showed the previous measures were adequate to protect human health and the environment and no unacceptable risk remains at the site. Therefore, the selected remedy for this site is a no further action. The operators of SSL have undertaken specific remedial measures in an attempt to decrease any threat of release of contaminants from the site.

NONE

1996-03-01T23:59:59.000Z

259

I 95 Municipal Landfill Phase I Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia: Energythe Second WorkshopLakeCorporation |Landfill

260

Sanitary Landfill Groundwater Monitoring Report - Third and Fourth Quarters 2000 and 2000 Summary  

SciTech Connect (OSTI)

A maximum of forty wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill Area at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Waste Permit DWP-087A and as part of the Sanitary Landfill Groundwater Quality Assessment Plan. Chloroethene (vinyl chloride) and trichloroethylene were the most widespread constituent exceeding the Final Primary Drinking Water Standards during the calendar year 2000. 1,4-Dichlorobenzene, benzene, dichloromethane (methylene chloride), gross alpha, lead (total recoverable) mercury (total recoverable), thallium (total recoverable), and tritium also exceeded standards in one or more wells. The groundwater flow direction in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill is to the southeast (universal transverse Mercator coordinates). The flow rate at this unit was approximately 122.64 ft/year during first quarter 2000 and 132.28 ft/year during fourth quarter 2000.

Chase, J.A.

2001-03-07T23:59:59.000Z

Note: This page contains sample records for the topic "landfill gas location" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Electric current locator  

DOE Patents [OSTI]

The disclosure herein provides an apparatus for location of a quantity of current vectors in an electrical device, where the current vector has a known direction and a known relative magnitude to an input current supplied to the electrical device. Mathematical constants used in Biot-Savart superposition equations are determined for the electrical device, the orientation of the apparatus, and relative magnitude of the current vector and the input current, and the apparatus utilizes magnetic field sensors oriented to a sensing plane to provide current vector location based on the solution of the Biot-Savart superposition equations. Description of required orientations between the apparatus and the electrical device are disclosed and various methods of determining the mathematical constants are presented.

King, Paul E. (Corvallis, OR); Woodside, Charles Rigel (Corvallis, OR)

2012-02-07T23:59:59.000Z

262

Mixed waste landfill cell construction at energy solutions LLC: a regulator's perspective  

SciTech Connect (OSTI)

A small percentage of the property that EnergySolutions' (formerly Envirocare) operates at Clive, Utah is permitted by the State of Utah as a treatment, storage and disposal facility for mixed waste. Mixed Waste is defined as a hazardous waste (Title 40 Code of Federal Regulations Part 261.3) that also has a radioactive component. Typically, the waste EnergySolutions receives at its mixed waste facility is contaminated with heavy metals and organic compounds while also contaminated with radioactivity. For EnergySolutions, the largest generator of mixed waste is the United States Department of Energy. However, EnergySolutions also accepts a wide variety of mixed waste from other generators. For many wastes, EnergySolutions goes through the process of characterization and acceptance (if appropriate) of the waste, treating the waste (if necessary), confirmation that the waste meets Land Disposal Restriction, and disposal of the waste in its mixed waste landfill cell (MWLC). EnergySolutions originally received its State-issued Part B (RCRA) permit in 1990. The Permit allows a mixed waste landfill cell footprint that covers roughly 10 hectares and includes 20 individual 'sumps'. EnergySolutions chose to build small segments of the landfill cell as waste receipts dictated. Nearly 16 years later, EnergySolutions has just completed its Phase V construction project. 18 of the 20 sumps in the original design have been constructed. The last two sumps are anticipated to be its Phase VI construction project. Further expansion of its mixed waste disposal landfill capacity beyond the current design would require a permit modification request and approval by the Executive Secretary of the Utah Solid and Hazardous Waste Control Board. Construction of the landfill cell is governed by the Construction Quality Assurance/Quality Control manual of its State-issued Permit. The construction of each sump is made up of (from the bottom up): a foundation; three feet of engineered clay; primary and secondary geo-synthetics (60 mil HDPE, geo-fabric and geo-textile); a two foot soil protective cover; tertiary geo-synthetics (80 mil HDPE, geo-fabric and geo-textile); and a final two foot soil protective cover. The Utah Department of Environmental Quality Division of Solid and Hazardous Waste (UDEQ/DSHW) oversees the construction process and reviews the documentation after the construction is complete. If all aspects of the construction process are met, the Executive Secretary of the Utah Solid and Hazardous Waste Control Board approves the landfill cell for disposal. It is the role of the regulator to ensure to the stakeholders that the landfill cell has been constructed in accordance with the State-issued permit and that the cell is protective of human health and the environment. A final determination may require conflict resolution between the agency and the facility. (authors)

Lukes, G.C.; Willoughby, O.H. [Utah Department of Environmental Quality, Div. of Solid and Hazardous Waste (United States)

2007-07-01T23:59:59.000Z

263

ARM - Instrument Location Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosionAnnouncements MediagovCampaignsListgovInstrumentsLocation Table

264

Best Practices for Siting Solar Photovoltaics on Municipal Solid Waste Landfills. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites  

SciTech Connect (OSTI)

The Environmental Protection Agency and the National Renewable Energy Laboratory developed this best practices document to address common technical challenges for siting solar photovoltaics (PV) on municipal solid waste (MSW) landfills. The purpose of this document is to promote the use of MSW landfills for solar energy systems. Closed landfills and portions of active landfills with closed cells represent thousands of acres of property that may be suitable for siting solar photovoltaics (PV). These closed landfills may be suitable for near-term construction, making these sites strong candidate to take advantage of the 30% Federal Business Energy Investment Tax Credit. It was prepared in response to the increasing interest in siting renewable energy on landfills from solar developers; landfill owners; and federal, state, and local governments. It contains examples of solar PV projects on landfills and technical considerations and best practices that were gathered from examining the implementation of several of these projects.

Kiatreungwattana, K.; Mosey, G.; Jones-Johnson, S.; Dufficy, C.; Bourg, J.; Conroy, A.; Keenan, M.; Michaud, W.; Brown, K.

2013-04-01T23:59:59.000Z

265

Mixed waste storage facility CDR review, Paducah Gaseous Diffusion Plant; Solid waste landfill CDR review, Paducah Gaseous Diffusion Plant  

SciTech Connect (OSTI)

This report consists of two papers reviewing the waste storage facility and the landfill projects proposed for the Paducah Gaseous Diffusion Plant complex. The first paper is a review of DOE`s conceptual design report for a mixed waste storage facility. This evaluation is to review the necessity of constructing a separate mixed waste storage facility. The structure is to be capable of receiving, weighing, sampling and the interim storage of wastes for a five year period beginning in 1996. The estimated cost is assessed at approximately $18 million. The review is to help comprehend and decide whether a new storage building is a feasible approach to the PGDP mixed waste storage problem or should some alternate approach be considered. The second paper reviews DOE`s conceptual design report for a solid waste landfill. This solid waste landfill evaluation is to compare costs and the necessity to provide a new landfill that would meet State of Kentucky regulations. The assessment considered funding for a ten year storage facility, but includes a review of other facility needs such as a radiation detection building, compactor/baler machinery, material handling equipment, along with other personnel and equipment storage buildings at a cost of approximately $4.1 million. The review is to help discern whether a landfill only or the addition of compaction equipment is prudent.

NONE

1998-08-01T23:59:59.000Z

266

Study of vinyl chloride formation at landfill sites in California. Final report, 16 July 1985-15 January 1987  

SciTech Connect (OSTI)

The purpose of this study was to determine if vinyl chloride (VC) detected in air above California landfills is produced in situ. Experiments were performed with N and S California landfill samples and anaerobic-digestor sewage sludge. Test materials were incubated with various chlorocarbons and with /sup 13/C-trichloroethylene (TCE) to confirm biological production of /sup 13/C-VC. These experiments confirmed the biological dechlorination of chloroethylenes as the most likely route for VC emission from landfills, rather than chemical or photochemical routes, or PVC degradation. Leaching from PVC could be a minor source of VC, though there was less than 0.1% (estimated) plastic in the landfill samples, containing at most 330 ppm of VC monomer. A landfill sample known to produce VC was used to start an anaerobic chemostat using methanol as sole carbon source. The enriched culture resulting was homogeneous, and when incubated with /sup 13/C-TCE, produced (13)C-VC, confirmed by GC/MS.

Molton, P.M.; Hallen, R.T.; Payne, J.W.

1987-01-01T23:59:59.000Z

267

Natural gas recovery, storage, and utilization SBIR program  

SciTech Connect (OSTI)

A Fossil Energy natural-gas topic has been a part of the DOE Small Business Innovation Research (SBIR) program since 1988. To date, 50 Phase SBIR natural-gas applications have been funded. Of these 50, 24 were successful in obtaining Phase II SBIR funding. The current Phase II natural-gas research projects awarded under the SBIR program and managed by METC are presented by award year. The presented information on these 2-year projects includes project title, awardee, and a project summary. The 1992 Phase II projects are: landfill gas recovery for vehicular natural gas and food grade carbon dioxide; brine disposal process for coalbed gas production; spontaneous natural as oxidative dimerization across mixed conducting ceramic membranes; low-cost offshore drilling system for natural gas hydrates; motorless directional drill for oil and gas wells; and development of a multiple fracture creation process for stimulation of horizontally drilled wells.The 1993 Phase II projects include: process for sweetening sour gas by direct thermolysis of hydrogen sulfide; remote leak survey capability for natural gas transport storage and distribution systems; reinterpretation of existing wellbore log data using neural-based patter recognition processes; and advanced liquid membrane system for natural gas purification.

Shoemaker, H.D.

1993-12-31T23:59:59.000Z

268

Natural gas hydrates - issues for gas production and geomechanical stability  

E-Print Network [OSTI]

occurring at the field. Further, the controlling parameters for hydrate dissociation in porous media are quantified and a sensitivity study is presented. Chapter VI presents the results of a simulation experiment done to evaluate the performance of a..., the location iv of perforations and the gas hydrate saturation to be important parameters for gas production at the Messoyakha. Second, I simulated the gas production using a hydraulic fracture in hydrate bearing sediments. The simulation results showed...

Grover, Tarun

2008-10-10T23:59:59.000Z

269

Liquid balance monitoring inside conventional, Retrofit, and bio-reactor landfill cells  

SciTech Connect (OSTI)

Highlights: • The Retrofit, Control, and As-Built cells received 48, 14, and 213 L Mg{sup ?1} (liters of liquids per metric ton of waste). • The leachate collection system yielded 60, 57 and 198 L Mg{sup ?1} from the Retrofit, Control, and As-Built cells. • The head on liner in all cells was below regulatory limits. • Measured moisture content of the waste samples was consistent with that calculated from accumulated liquid by balance. • The in-place saturated hydraulic conductivity of the MSW was calculated to be in the range of 10{sup ?8} to 10{sup ?7} m s{sup ?1}. - Abstract: The Outer Loop landfill bioreactor (OLLB) in Louisville, KY, USA has been the site of a study to evaluate long-term bioreactor performance at a full-scale operational landfill. Three types of landfill units were studied including a conventional landfill (Control cell), a new landfill area that had an air addition and recirculation piping network installed as waste was being placed (As-Built cell), and a conventional landfill that was modified to allow for liquids recirculation (Retrofit cell). During the monitoring period, the Retrofit, Control, and As-Built cells received 48, 14, and 213 L Mg{sup ?1} (liters of liquids per metric ton of waste), respectively. The leachate collection system yielded 60, 57 and 198 L Mg{sup ?1} from the Retrofit, Control, and As-Built cells, respectively. The head on liner in all cells was below regulatory limits. In the Control and As-Built cells, leachate head on liner decreased once waste placement stopped. The measured moisture content of the waste samples was consistent with that calculated from the estimate of accumulated liquid by the liquid balance. Additionally, measurements on excavated solid waste samples revealed large spatial variability in waste moisture content. The degree of saturation in the Control cells decreased from 85% to 75%. The degree of saturation increased from 82% to 83% due to liquids addition in the Retrofit cells and decreased back to 80% once liquid addition stopped. In the As-Built cells, the degree of saturation increased from 87% to 97% during filling activities and then started to decrease soon after filling activities stopped to reach 92% at the end of the monitoring period. The measured leachate generation rates were used to estimate an in-place saturated hydraulic conductivity of the MSW in the range of 10{sup ?8} to 10{sup ?7} m s{sup ?1} which is lower than previous reports. In the Control and Retrofit cells, the net loss in liquids, 43 and 12 L Mg{sup ?1}, respectively, was similar to the measured settlement of 15% and 5–8% strain, respectively (Abichou et al., 2013). The increase in net liquid volume in the As-Built cells indicates that the 37% (average) measured settlement strain in these cells cannot be due to consolidation as the waste mass did not lose any moisture but rather suggests that settlement was attributable to lubrication of waste particle contacts, softening of flexible porous materials, and additional biological degradation.

Abichou, Tarek, E-mail: abichou@eng.fsu.edu [Department of Civil and Environmental Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, FL 32311 (United States); Barlaz, Morton A. [Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Green, Roger; Hater, Gary [Waste Management Inc., Cincinnati, OH 45211 (United States)

2013-10-15T23:59:59.000Z

270

Interim site characterization report and ground-water monitoring program for the Hanford site solid waste landfill  

SciTech Connect (OSTI)

Federal and state regulations governing the operation of landfills require utilization of ground-water monitoring systems to determine whether or not landfill operations impact ground water at the point of compliance (ground water beneath the perimeter of the facility). A detection-level ground-water monitoring system was designed, installed, and initiated at the Hanford Site Solid Waste Landfill (SWL). Chlorinated hydrocarbons were detected at the beginning of the ground-water monitoring program and continue to be detected more than 1 year later. The most probable source of the chlorinated hydrocarbons is washwater discharged to the SWL between 1985 and 1987. This is an interim report and includes data from the characterization work that was performed during well installation in 1987, such as field observations, sediment studies, and geophysical logging results, and data from analyses of ground-water samples collected in 1987 and 1988, such as field parameter measurements and chemical analyses. 38 refs., 27 figs., 8 tabs.

Fruland, R.M.; Hagan, R.A.; Cline, C.S.; Bates, D.J.; Evans, J.C.; Aaberg, R.L.

1989-07-01T23:59:59.000Z

271

EXPEDITING THE PATH TO CLOSURE THE CHEMICAL WASTE LANDFILL, SANDIA NATIONAL LABORATORIES, NEW MEXICO  

SciTech Connect (OSTI)

The Chemical Waste Landfill (CWL) at Sandia National Laboratories, New Mexico (SNL/NM) is undergoing closure subject to the requirements of Subtitle C of RCRA. This paper identifies regulatory mechanisms that have and continue to expedite and simplify the closure of the CWL. These include (1) the Environmental Restoration (ER) Programmatic effort to achieve progress quickly with respect to the standard regulatory processes, which resulted in the performance of voluntary corrective measures at the CWL years in advance of the standard process schedule, (2) the management and disposal of CWL remediation wastes and materials according to the risks posed, and (3) the combination of multiple regulatory requirements into a single submittal.

Young, S.G.; Schofield, D.P.; Davis, M.J.; Methvin, R.; Mitchell, M.

2003-02-27T23:59:59.000Z

272

Assessment of an active dry barrier for a landfill cover system  

SciTech Connect (OSTI)

A dry barrier is a layer of geologic material that is dried by air flow. An active dry barrier system can be designed, installed, and operated as part of a landfill cover system. An active system uses blowers and fans to move air through a high-permeability layer within the cover system. Depending principally on the air-flow rate, it is possible for a dry barrier to remove enough water to substantially reduce the likelihood of water percolating through the cover system. If a material with a relatively great storage capacity, such as processed tuff, is used as the coarse layer, then the efficiency of the dry barrier will be increased.

Stormont, J.C. [Sandia National Labs., Albuquerque, NM (United States); Ankeny, M.D.; Burkhard, M.E.; Tansey, M.K.; Kelsey, J.A. [Stephens (Daniel B.) and Associates, Inc., Albuquerque, NM (United States)

1994-03-01T23:59:59.000Z

273

Large-Scale Field Study of Landfill Covers at Sandia National Laboratories  

SciTech Connect (OSTI)

A large-scale field demonstration comparing final landfill cover designs has been constructed and is currently being monitored at Sandia National Laboratories in Albuquerque, New Mexico. Two conventional designs (a RCRA Subtitle `D' Soil Cover and a RCRA Subtitle `C' Compacted Clay Cover) were constructed side-by-side with four alternative cover test plots designed for dry environments. The demonstration is intended to evaluate the various cover designs based on their respective water balance performance, ease and reliability of construction, and cost. This paper presents an overview of the ongoing demonstration.

Dwyer, S.F.

1998-09-01T23:59:59.000Z

274

Alternative Fuels Data Center: Natural Gas Fueling Station Locations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuels inGo Map_thumbnailMississippiFloristStation

275

Water-Gas Sampling At Fenton Hill HDR Geothermal Area (Janik...  

Open Energy Info (EERE)

Water-Gas Sampling At Fenton Hill HDR Geothermal Area (Janik & Goff, 2002) Exploration Activity Details Location Fenton Hill HDR Geothermal Area Exploration Technique Water-Gas...

276

Petrophysical rock classification in the Cotton Valley tight-gas sandstone reservoir with a clustering  

E-Print Network [OSTI]

Petrophysical rock classification in the Cotton Valley tight-gas sandstone reservoir classification method with field data acquired in the Cotton Valley tight-gas sandstone reservoir located

Torres-Verdín, Carlos

277

Gas sampling system for a mass spectrometer  

DOE Patents [OSTI]

The present invention relates generally to a gas sampling system, and specifically to a gas sampling system for transporting a hazardous process gas to a remotely located mass spectrometer. The gas sampling system includes a capillary tube having a predetermined capillary length and capillary diameter in communication with the supply of process gas and the mass spectrometer, a flexible tube surrounding and coaxial with the capillary tube intermediate the supply of process gas and the mass spectrometer, a heat transfer tube surrounding and coaxial with the capillary tube, and a heating device in communication the heat transfer tube for substantially preventing condensation of the process gas within the capillary tube.

2003-12-30T23:59:59.000Z

278

Sanitary landfill groundwater monitoring report. Fourth quarter 1996 and 1996 summary  

SciTech Connect (OSTI)

A maximum of eighty-nine wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Waste Permit DWP-087A and as part of the SRS Groundwater Monitoring Program. Dichloromethane, a common laboratory contaminant, and chloroethene (vinyl chloride) were the most widespread constituents exceeding standards during 1996. Benzene, trichloroethylene, 1,4-dichlorobenzene, 1,1-dichloroethylene, lead (total recoverable), gross alpha, mercury (total recoverable), tetrachloroethylene, fluoride, thallium, radium-226, radium-228, and tritium also exceeded standards in one or more wells. The groundwater flow direction in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill was to the southeast (universal transverse Mercator coordinates). The flow rate in this unit was approximately 141 ft/year during first quarter 1996 and 132 ft/year during fourth quarter 1996

NONE

1997-02-01T23:59:59.000Z

279

Determination of operating limits for radionuclides for a proposed landfill at Paducah Gaseous Diffusion Plant  

SciTech Connect (OSTI)

The operating limits for radionuclides in sanitary and industrial wastes were determined for a proposed landfill at the Paducah Gaseous Diffusion Plant (PGDP), Kentucky. These limits, which may be very small but nonzero, are not mandated by law or regulation but are needed for rational operation. The approach was based on analyses of the potential contamination of groundwater at the plant boundary and the potential exposure to radioactivity of an intruder at the landfill after closure. The groundwater analysis includes (1) a source model describing the disposal of waste and the release of radionuclides from waste to the groundwater, (2) site-specific groundwater flow and contaminant transport calculations, and (3) calculations of operating limits from the dose limit and conversion factors. The intruder analysis includes pathways through ingestion of contaminated vegetables and soil, external exposure to contaminated soil, and inhalation of suspended activity from contaminated soil particles. In both analyses, a limit on annual effective dose equivalent of 4 mrem (0.04 mSv) was adopted. The intended application of the results is to refine the radiological monitoring standards employed by the PGDP Health Physics personnel to determine what constitutes radioactive wastes, with concurrence of the Commonwealth of Kentucky.

Wang, J.C.; Lee, D.W.; Ketelle, R.H.; Lee, R.R.; Kocher, D.C.

1994-05-24T23:59:59.000Z

280

Operating limit study for the proposed solid waste landfill at Paducah Gaseous Diffusion Plant  

SciTech Connect (OSTI)

A proposed solid waste landfill at Paducah Gaseous Diffusion Plant (PGDP) would accept wastes generated during normal operations that are identified as non-radioactive. These wastes may include small amounts of radioactive material from incidental contamination during plant operations. A site-specific analysis of the new solid waste landfill is presented to determine a proposed operating limit that will allow for waste disposal operations to occur such that protection of public health and the environment from the presence of incidentally contaminated waste materials can be assured. Performance objectives for disposal were defined from existing regulatory guidance to establish reasonable dose limits for protection of public health and the environment. Waste concentration limits were determined consistent with these performance objectives for the protection of off-site individuals and inadvertent intruders who might be directly exposed to disposed wastes. Exposures of off-site individuals were estimated using a conservative, site-specific model of the groundwater transport of contamination from the wastes. Direct intrusion was analyzed using an agricultural homesteader scenario. The most limiting concentrations from direct intrusion or groundwater transport were used to establish the concentration limits for radionuclides likely to be present in PGDP wastes.

Lee, D.W.; Wang, J.C.; Kocher, D.C.

1995-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "landfill gas location" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Sanitary Landfill Groundwater Monitoring Report, Fourth Quarter 1999 and 1999 Summary  

SciTech Connect (OSTI)

A maximum of thirty eight-wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill Area at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Water Permit DWP-087A and as part of the SRS Groundwater Monitoring Program. Iron (Total Recoverable), Chloroethene (Vinyl Chloride) and 1,1-Dichloroethane were the most widespread constituents exceeding the Final Primary Drinking Water Standards during 1999. Trichloroethylene, 1,1-Dichloroethylene, 1,2-Dichloroethane, 1,4-Dichlorobenzene, Aluminum (Total Recoverable), Benzene, cis-1,2-Dichloroethylene, Dichlorodifluoromethane, Dichloromethane (Methylene Chloride), Gross Alpha, Mercury (Total Recoverable), Nonvolatile Beta, Tetrachloroethylene, Total Organic Halogens, Trichlorofluoromethane, Tritium also exceeded standards in one or more wells. The groundwater flow direction in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill is to the southeast (universal transverse Mercator coordinates). The flow rate in this unit was approximately 144.175 ft/year during first quarter 1999 and 145.27 ft/year during fourth quarter 1999.

Chase, J.

2000-03-13T23:59:59.000Z

282

Spring loaded locator pin assembly  

DOE Patents [OSTI]

This invention deals with spring loaded locator pins. Locator pins are sometimes referred to as captured pins. This is a mechanism which locks two items together with the pin that is spring loaded so that it drops into a locator hole on the work piece.

Groll, Todd A. (Idaho Falls, ID); White, James P. (Pocatelo, ID)

1998-01-01T23:59:59.000Z

283

Spring loaded locator pin assembly  

DOE Patents [OSTI]

This invention deals with spring loaded locator pins. Locator pins are sometimes referred to as captured pins. This is a mechanism which locks two items together with the pin that is spring loaded so that it drops into a locator hole on the work piece. 5 figs.

Groll, T.A.; White, J.P.

1998-03-03T23:59:59.000Z

284

Leachate treatment system using constructed wetlands, Town of Fenton sanitary landfill, Broome County, New York. Final report  

SciTech Connect (OSTI)

Municipal sanitary landfills generate leachate that New York State regulations require to be collected and treated to avoid contaminating surface water and groundwater. One option for treating leachate is to haul it to municipal wastewater treatment facility. This option may be expensive, may require excessive energy for transportation, and may require pretreatment to protect the receiving facility`s processes. An alternative is on-site treatment and discharge. Personnel from the Town of Fenton, New York; Hawk Engineering, P.C.; Cornell University; and Ithaca College designed, built, and operated a pilot constructed wetland for treating leachate at the Town of Fenton`s municipal landfill. The system, consisting of two overland flow beds and two subsurface flow beds has been effective for 18 months in reducing levels of ammonia (averaging 85% removal by volatilization and denitrification) and total iron (averaging 95% removal by precipitation and sedimentation), two key constituents of the Fenton landfill`s leachate. The system effects these reductions with zero chemical and energy inputs and minimal maintenance. A third key constituent of the leachate, manganese, apparently passes through the beds with minimal removal. Details and wetland considerations are described.

Not Available

1993-11-01T23:59:59.000Z

285

Integrating multi-criteria decision analysis for a GIS-based hazardous waste landfill sitting in Kurdistan Province, western Iran  

SciTech Connect (OSTI)

The evaluation of a hazardous waste disposal site is a complicated process because it requires data from diverse social and environmental fields. These data often involve processing of a significant amount of spatial information which can be used by GIS as an important tool for land use suitability analysis. This paper presents a multi-criteria decision analysis alongside with a geospatial analysis for the selection of hazardous waste landfill sites in Kurdistan Province, western Iran. The study employs a two-stage analysis to provide a spatial decision support system for hazardous waste management in a typically under developed region. The purpose of GIS was to perform an initial screening process to eliminate unsuitable land followed by utilization of a multi-criteria decision analysis (MCDA) to identify the most suitable sites using the information provided by the regional experts with reference to new chosen criteria. Using 21 exclusionary criteria, as input layers, masked maps were prepared. Creating various intermediate or analysis map layers a final overlay map was obtained representing areas for hazardous waste landfill sites. In order to evaluate different landfill sites produced by the overlaying a landfill suitability index system was developed representing cumulative effects of relative importance (weights) and suitability values of 14 non-exclusionary criteria including several criteria resulting from field observation. Using this suitability index 15 different sites were visited and based on the numerical evaluation provided by MCDA most suitable sites were determined.

Sharifi, Mozafar [Razi University Center for Environmental Studies, Faculty of Science, Baghabrisham 67149, Kermanshah (Iran, Islamic Republic of)], E-mail: sharifimozafar@gmail.com; Hadidi, Mosslem [Academic Center for Education, Culture and Research, Kermanshah (Iran, Islamic Republic of)], E-mail: hadidi_moslem@yahoo.com; Vessali, Elahe [Paradise Ave, Azad University, School of Agriculture, Shiraz (Iran, Islamic Republic of)], E-mail: elahe_vesali@yahoo.com; Mosstafakhani, Parasto [Razi University Centre for Environmental Studies, Faculty of Science, Baghabrisham 67149, Kermanshah (Iran, Islamic Republic of)], E-mail: mostafakhany2003@yahoo.com; Taheri, Kamal [Regional office of Water Resource Management, Zan Boulevard, Kermanshah (Iran, Islamic Republic of)], E-mail: taheri.kamal@gmail.com; Shahoie, Saber [Department of Soil Science, Faculty of Agriculture, Kurdistan University, University Boulevard, Sanandadj (Iran, Islamic Republic of)], E-mail: shahoei@yahoo.com; Khodamoradpour, Mehran [Regional office of Climatology, Sanandaj (Iran, Islamic Republic of)], E-mail: mehrankhodamorad@yahoo.com

2009-10-15T23:59:59.000Z

286

1st International Conference on Final Sinks, September 23-25, 2010 Vienna, Austria From Sanitary to Sustainable Landfilling  

E-Print Network [OSTI]

of VOCs in Biogas from Solid Waste Disposal Sites Torleif Bramryd (SE) Impact of Sustainable Landfilling: Results of Lysimeter Test Fields in Bavaria (Germany) 15:40 - 16:00 Coffee Break 16:00 - 17:40 Session G, Complexity and Biogas Risk Assessment Roland Weber (DE) Persistent

Szmolyan, Peter

287

CX-003891: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

South Carolina Landfill Gas Purification ProjectCX(s) Applied: A9, B5.1Date: 08/31/2010Location(s): South CarolinaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

288

CX-003867: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

City of Fulton - Landfill Gas GenerationCX(s) Applied: B5.1Date: 09/07/2010Location(s): Fulton, MissouriOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

289

CX-004373: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Caldwell County Landfill Gas ProjectCX(s) Applied: B5.1Date: 11/01/2010Location(s): Caldwell County, North CarolinaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

290

CX-003989: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Landfill Gas Utilization - Columbus CountyCX(s) Applied: B5.1Date: 09/22/2010Location(s): Columbus County, North CarolinaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

291

CX-002682: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Landfill Gas Utilization ProjectCX(s) Applied: B5.1Date: 06/08/2010Location(s): Madison County, New YorkOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

292

CX-001219: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Restoration of Landfill Gas Energy PlantCX(s) Applied: B1.15, B5.1Date: 03/23/2010Location(s): Brattleboro, VermontOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

293

CX-001241: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Wellford Landfill Methane and Greenhouse Gas to Energy ProjectCX(s) Applied: A9Date: 03/17/2010Location(s): Spartanburg County, South CarolinaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

294

Location and Geology Fig 1. The Macasty black shale  

E-Print Network [OSTI]

, Quebec, is organic-rich black shale and hosting oil and gas. It is equivalent to the Ithaca shaleLocation and Geology Fig 1. The Macasty black shale in the Anticosti Island in the Gulf of St. d13C for calcite disseminated in the black shale range from 2.6o to 2.8 / The values are lower

295

Sanitary Landfill groundwater monitoring report. Fourth quarterly report and summary 1993  

SciTech Connect (OSTI)

Fifty-seven wells of the LFW series monitor groundwater quality in Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Waste Permit DWP-087A and as part of the SRS Groundwater Monitoring Program. Dichloromethane a common laboratory contaminant, and trichloroethylene were the most widespread constituents exceeding standards during 1993. Benzene, chlorobenzene, chloroethene 1,2 dichloroethane, 1,1-dichloroethylene, 1,2-dichloropropane, gross alpha, lindane, mercury, tetrachloroethylene, and tritium also exceeded standards in one or more wells. No groundwater contaminants were observed in wells screened in the lower section of Steed Pond Aquifer.

Not Available

1994-02-01T23:59:59.000Z

296

Siting landfills and incinerators in areas of historic unpopularity: Surveying the views of the next generation  

SciTech Connect (OSTI)

Highlights: • Opinions and knowledge of young people in Italy about waste were studied. • Historic opposition to construction of waste facilities is difficult to overcome. • Awareness of waste management develops with knowledge of environmental issues. • Many stakeholders’ views are needed when siting a new waste management facility. • Respondents’ opinions were influenced by their level of environmental knowledge. - Abstract: The Campania Region in Southern Italy has suffered many problems with municipal solid waste management since the mid-1990s, leading to significant public disturbances and subsequent media coverage. This paper reports on the current views and knowledge of young people (university students) in this region about waste management operations and facilities, specifically the siting of landfills and incinerators. By means of a structured questionnaire, opinion and knowledge were systematically examined by degree type and course year. The study took place in 2011 at the University of Salerno campus. A sample of 900 students, comprising 100 students for each of the nine considered faculties, and 20 students for every academic course year, was randomly selected. Only about a quarter of respondents were not opposed to the siting of a landfill or an incinerator in their city. This clearly highlights that historic opposition to the construction of waste facilities is difficult to overcome and that distrust for previous poor management or indiscretions is long-lived and transcends generations. Students from technical faculties expressed the most reasonable opinion; opinion and knowledge were statistically related (Chi-square test, p < 0.05) to the attended faculty, and the knowledge grew linearly with progression through the university. This suggests that awareness of waste management practices develops with experience and understanding of environmental issues. There is general acceptance that many stakeholders – technicians, politicians and citizens – all have to be part of the decision process when siting a new waste management facility. The opinions of the young respondents were significantly influenced by their level of environmental knowledge.

De Feo, Giovanni, E-mail: g.defeo@unisa.it [Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (Italy); Williams, Ian D. [Waste Management Research Group, Faculty of Engineering and the Environment, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom)

2013-12-15T23:59:59.000Z

297

Natural gas pricing in the Northeastern U.S.  

E-Print Network [OSTI]

This paper examines natural gas pricing at five citygate locations in the northeastern United States using daily and weekly price series for the years 1994-97. In particular, the effects of the natural gas price at Henry ...

Gunnarshaug, Jasmin

1998-01-01T23:59:59.000Z

298

Integrated Combined Heat and Power/Advanced Reciprocating Internal Combustion Engine System for Landfill Gas to Power Applications  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIan Kalin About32C:\Documents andINTEGRATED

299

Dump fire leaves toxic air, sludge A fire which burned for four days at a landfill site in Thessaloniki, sending thick black  

E-Print Network [OSTI]

Dump fire leaves toxic air, sludge A fire which burned for four days at a landfill site to break. This led to sludge flowing into some nearby houses. Authorities are due to begin the cleanup

Columbia University

300

Surface Gas Sampling At Valles Caldera - Sulphur Springs Area...  

Open Energy Info (EERE)

Surface Gas Sampling At Valles Caldera - Sulphur Springs Area (Goff & Janik, 2002) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique...

Note: This page contains sample records for the topic "landfill gas location" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Sequential injection gas guns for accelerating projectiles  

DOE Patents [OSTI]

Gas guns and methods for accelerating projectiles through such gas guns are described. More particularly, gas guns having a first injection port located proximate a breech end of a barrel and a second injection port located longitudinally between the first injection port and a muzzle end of the barrel are described. Additionally, modular gas guns that include a plurality of modules are described, wherein each module may include a barrel segment having one or more longitudinally spaced injection ports. Also, methods of accelerating a projectile through a gas gun, such as injecting a first pressurized gas into a barrel through a first injection port to accelerate the projectile and propel the projectile down the barrel past a second injection port and injecting a second pressurized gas into the barrel through the second injection port after passage of the projectile and to further accelerate the projectile are described.

Lacy, Jeffrey M. (Idaho Falls, ID); Chu, Henry S. (Idaho Falls, ID); Novascone, Stephen R. (Idaho Falls, ID)

2011-11-15T23:59:59.000Z

302

Location-aware active signage  

E-Print Network [OSTI]

Three-dimensional route maps, which depict a path from one location to another, can be powerful tools for visualizing and communicating directions. This thesis presents a client-server architecture for generating and ...

Nichols, Patrick James, 1981-

2004-01-01T23:59:59.000Z

303

Cultural Resource Assessment of the Test Area North Demolition Landfill at the Idaho National Engineering and Environmental Laboratory  

SciTech Connect (OSTI)

The proposed new demolition landfill at Test Area North on the Idaho National Engineering and Environmental Laboratory (INEEL) will support ongoing demolition and decontamination within the facilities on the north end of the INEEL. In June of 2003, the INEEL Cultural Resource Management Office conducted archival searches, field surveys, and coordination with the Shoshone-Bannock Tribes to identify all cultural resources that might be adversely affected by the project and to provide recommendations to protect those listed or eligible for listing on the National Register of Historic Places. These investigations showed that landfill construction and operation would affect two significant cultural resources. This report outlines protective measures to ensure that these effects are not adverse.

Brenda R. Pace

2003-07-01T23:59:59.000Z

304

Health assessment for Shpack Landfill, Attleboro/North, Massachusetts, Region 1. CERCLIS No. MAD980503973. Preliminary report  

SciTech Connect (OSTI)

The Shpack Landfill site is on the National Priorities List (NPL). The landfill received both domestic and industrial waste, including inorganic and organic chemicals as well as radioactive waste. Ground water contains vinyl chloride, trichloroethylene, trans-1,2-dichloroethylene, tetrachloroethylene, chromium, barium, copper, nickel, manganese, arsenic, cadmium, lead, polychlorinated biphenyl-1260 (Aroclor-1260), radium-226, alpha particles and beta particles. Surface and subsurface soil samples contained radium-226, uranium-238, uranium-235, uranium-234, and visual evidence of metal plating waste sludges. The site is considered to be of potential health concern because of the risk to human health caused by the potential for exposure to hazardous substances via ingestion of contaminated soils at the site and future ingestion of contaminated domestic well water.

Not Available

1989-04-18T23:59:59.000Z

305

Closure Report (CR) for Corrective Action Unit (CAU) 41: Area 27 Landfills with Errata Sheet, Revision 0  

SciTech Connect (OSTI)

The closure report for CAU 41 is just a one page summary listing the coordinates of the landfill which were given at the time (1996) in Nevada State Plan Coordinates - North American Datum of 1983. The drawing of the use restricted site also listed the coordinates in Nevada State Plan Coordinates - North American Datum of 1983. In the ensuing years the reporting of coordinates has been standardized so that all coordinates are reported in the same manner, which is: NAD 27 UTM Zone 11 N, meters. This Errata Sheet updates the coordinate reporting to the currently accepted method and includes an aerial photo showing the landfill with the coordinates listed showing the use restricted area.

Navarro Nevada Environmental Services

2010-08-10T23:59:59.000Z

306

Reduction of COD in leachate from a hazardous waste landfill adjacent to a coke-making facility  

SciTech Connect (OSTI)

A hazardous waste landfill adjacent to a coke manufacturing facility was in operation between July 1990 and December 1991. A system was constructed to collect and treat the leachate from the landfill prior to discharge to the river. Occasionally, the discharge from the treatment facility exceeded the permit limitations for Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), and Total Organic Carbon (TOC). The objectives of this study were to determine treatment methods which would enable compliance with the applicable discharge limits; to establish the desired operating conditions of the process; and to investigate the effect of various parameters such as pH, catalyst dosage, and reaction time on the COD destruction efficiency. The characteristics of the landfill leachate in question were significantly variable in terms of chemical composition. A review of the influent quality data suggests that the COD concentration ranges between 80 and 390 mg/l. The oxidation processes using Fenton`s reagent or a combination of UV/hydrogen peroxide/catalyst are capable of reducing the COD concentration of the leachate below the discharge limitation of 35 mg/l. The estimated capital cost associated with the Fenton`s reagent process is approximately $525,000, and the annual operating and maintenance cost is $560,000. The estimated capital cost for the UV/hydrogen peroxide/catalyst treatment system is $565,000. The annual operating and maintenance cost of this process would be approximately $430,000.

Banerjee, K.; O`Toole, T.J. [Chester Environmental, Moon Township, PA (United States)

1995-12-01T23:59:59.000Z

307

Town of Hague landfill reclamation study: Research ways to increase waste heating value and reduce waste volume. Final report  

SciTech Connect (OSTI)

Monitored composing was studied as a method for reducing the quantity of waste requiring disposed from a landfill reclamation project. After each of two re-screening steps, composted {open_quotes}soil{close_quotes} from a single long windrow of varying depths and moisture content was subjected to analytical testing to determine its suitability to remain as backfill in a reclaimed landfill site. The remaining uncomposted waste was combusted at a waste-to-energy facility to determine if Btu values were improved. Results indicate that a full-scale composting operation could result in a net decrease of approximately 11 percent in disposal costs. The Btu value of the reclaimed waste was calculated to be 4,500 to 5,000 Btu/lb. The feasibility of composting reclaimed waste at other landfill reclamation projects will depend upon site-specific technical and economic factors, including size and nature of the organic fraction of the waste mass, local processing costs, and the cost of waste disposal alternatives.

Salerni, E. [SSB Environmental Inc., Albany, NY (United States)

1997-01-01T23:59:59.000Z

308

Imaging Hydraulic Fractures: Source Location Uncertainty Analysis At The UPRC Carthage Test Site  

E-Print Network [OSTI]

Hydraulic fracturing is a useful tool for enhancing gas and oil production. High-resolution seismic imaging of the fracture geometry and fracture growth process is the key in determining optimal spacing and location of ...

Li, Yingping

1996-01-01T23:59:59.000Z

309

Non-biodegradable landfill leachate treatment by combined process of agitation, coagulation, SBR and filtration  

SciTech Connect (OSTI)

Highlights: • A novel method of stripping (agitation) was investigated for NH{sub 3}-N removal. • PFS coagulation followed agitation process enhanced the leachate biodegradation. • Nitrification–denitrification achieved by changing operation process in SBR treatment. • A dual filter of carbon-sand is suitable as a polishing treatment of leachate. • Combined treatment success for the complete treatment of non-biodegradable leachate. - Abstract: This study describes the complete treatment of non-biodegradable landfill leachate by combined treatment processes. The processes consist of agitation as a novel stripping method used to overcome the ammonia toxicity regarding aerobic microorganisms. The NH{sub 3}-N removal ratio was 93.9% obtained at pH 11.5 and a gradient velocity (G) 150 s{sup ?1} within a five-hour agitation time. By poly ferric sulphate (PFS) coagulation followed the agitation process; chemical oxygen demand (COD) and biological oxygen demand (BOD{sub 5}) were removed at 70.6% and 49.4%, respectively at an optimum dose of 1200 mg L{sup ?1} at pH 5.0. The biodegradable ratio BOD{sub 5}/COD was improved from 0.18 to 0.31 during pretreatment step by agitation and PFS coagulation. Thereafter, the effluent was diluted with sewage at a different ratio before it was subjected to sequencing batch reactor (SBR) treatment. Up to 93.3% BOD{sub 5}, 95.5% COD and 98.1% NH{sub 3}-N removal were achieved by SBR operated under anoxic–aerobic–anoxic conditions. The filtration process was carried out using sand and carbon as a dual filter media as polishing process. The final effluent concentration of COD, BOD{sub 5}, suspended solid (SS), NH{sub 3}-N and total organic carbon (TOC) were 72.4 mg L{sup ?1}, 22.8 mg L{sup ?1}, 24.2 mg L{sup ?1}, 18.4 mg L{sup ?1} and 50.8 mg L{sup ?1} respectively, which met the discharge standard. The results indicated that a combined process of agitation-coagulation-SBR and filtration effectively eliminated pollutant loading from landfill leachate.

Abood, Alkhafaji R. [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); Thi Qar University, Nasiriyah (Iraq); Bao, Jianguo, E-mail: bjianguo888@126.com [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); Du, Jiangkun; Zheng, Dan; Luo, Ye [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China)

2014-02-15T23:59:59.000Z

310

Economics of natural gas upgrading  

SciTech Connect (OSTI)

Natural gas could be an important alternative energy source in meeting some of the market demand presently met by liquid products from crude oil. This study was initiated to analyze three energy markets to determine if greater use could be made of natural gas or natural gas derived products and if those products could be provided on an economically competitive basis. The three markets targeted for possible increases in gas use were motor fuels, power generation, and the chemical feedstocks market. The economics of processes to convert natural gas to transportation fuels, chemical products, and power were analyzed. The economic analysis was accomplished by drawing on a variety of detailed economic studies, updating them and bringing the results to a common basis. The processes analyzed included production of methanol, MTBE, higher alcohols, gasoline, CNG, and LNG for the transportation market. Production and use of methanol and ammonia in the chemical feedstock market and use of natural gas for power generation were also assessed. Use of both high and low quality gas as a process feed stream was evaluated. The analysis also explored the impact of various gas price growth rates and process facility locations, including remote gas areas. In assessing the transportation fuels market the analysis examined production and use of both conventional and new alternative motor fuels.

Hackworth, J.H.; Koch, R.W.

1995-07-01T23:59:59.000Z

311

Collection of liquid from below-ground location  

DOE Patents [OSTI]

A method of retrieving liquid from a below-ground collection area by permitting gravity flow of the liquid from the collection area to a first closed container; monitoring the level of the liquid in the closed container; and after the liquid reaches a given level in the first closed container, transferring the liquid to a second closed container disposed at a location above the first closed container, via a conduit, by introducing into the first closed container a gas which is substantially chemically inert with respect to the liquid, the gas being at a pressure sufficient to propel the liquid from the first closed container to the second closed container.

Phillips, Steven J. (Kennewick, WA); Alexander, Robert G. (Kennewick, WA)

1995-01-01T23:59:59.000Z

312

Synchronized sampling improves fault location  

SciTech Connect (OSTI)

Transmission line faults must be located accurately to allow maintenance crews to arrive at the scene and repair the faulted section as soon as possible. Rugged terrain and geographical layout cause some sections of power transmission lines to be difficult to reach. In the past, a variety of fault location algorithms were introduced as either an add-on feature in protective relays or stand-alone implementation in fault locators. In both cases, the measurements of current and voltages were taken at one terminal of a transmission line only. Under such conditions, it may become difficult to determine the fault location accurately, since data from other transmission line ends are required for more precise computations. In the absence of data from the other end, existing algorithms have accuracy problems under several circumstances, such as varying switching and loading conditions, fault infeed from the other end, and random value of fault resistance. Most of the one-end algorithms were based on estimation of voltage and current phasors. The need to estimate phasors introduces additional difficulty in high-speed tripping situations where the algorithms may not be fast enough in determining fault location accurately before the current signals disappear due to the relay operation and breaker opening. This article introduces a unique concept of high-speed fault location that can be implemented either as a simple add-on to the digital fault recorders (DFRs) or as a stand-alone new relaying function. This advanced concept is based on the use of voltage and current samples that are synchronously taken at both ends of a transmission line. This sampling technique can be made readily available in some new DFR designs incorporating receivers for accurate sampling clock synchronization using the satellite Global Positioning System (GPS).

Kezunovic, M. [Texas A and M Univ., College Station, TX (United States)] [Texas A and M Univ., College Station, TX (United States); Perunicic, B. [Lamar Univ., Beaumont, TX (United States)] [Lamar Univ., Beaumont, TX (United States)

1995-04-01T23:59:59.000Z

313

Conference Programme Session Location Speaker  

E-Print Network [OSTI]

Theatre Prof. James Scourse ­ Director of Climate Change Consortium for Wales 5.00-7.00pm Wine & Poster Psych Cafe 11.30-1.00pm Energy & Emissions Stanley Paris Lecture Theatre Mix of full and speed: Is there a role for shale gas in a sustainable energy transition? Aberdare Hall Representatives from within

Joshi, Manoj

314

Location logistics of industrial facilities  

E-Print Network [OSTI]

of company intent1ons is not made at the correct time and in the correct manner. 6. Recommend Best Areas for Further Invest1 ations. Once the on-site evaluations have been completed, the 11st of possibilities is reduced still further and only the best... location and site selection. This data was gathered through library research, atten- dance of various industr1al development conferences, sol1citation of mater1als from individuals currently involved with industrial facil1ties location, and various...

Hammack, William Eugene

1981-01-01T23:59:59.000Z

315

Strength and conformance testing of a GCL used in a solid waste landfill lining system  

SciTech Connect (OSTI)

This paper describes strength and conformance tests conducted on a Bentomat ST geosynthetic clay liner (GCL) used in a composite lining system for the Cells 4 and 5 expansion of the Anchorage Regional Landfill in Anchorage, Alaska. The Cells 4 and 5 lining system included use of an 80-mil, high-density polyethylene (HDPE) liner overlying a GCL on both the sideslopes and base of the cells. The use of this lining system in a Seismic Zone 4 area on relatively steep side slopes required careful evaluation of both internal shear strength of the GCL and interface friction between the GCL and textured HDPE. Laboratory tests were carried out to evaluate both peak and residual GCL internal strengths at normal loads up to 552 kiloPascals (80 pounds per square inch). Laboratory tests also were conducted to evaluate the interface strength between the GCL and Serrot box and point textured HDPE. Interface strengths between both woven and nonwoven sides of the GCL and the textured HDPE were evaluated. Considerations related to use of peak or residual strengths for various interim stability cases are described in this paper. Stability analyses using stress-dependent interface and internal strengths for the GCL are addressed. The quality assurance and conformance testing program adopted for the project on GCL is discussed also.

Merrill, K.S. [CH2M Hill, Anchorage, AK (United States); O`Brien, A.J. [CH2M Hill, Sacramento, CA (United States)

1997-11-01T23:59:59.000Z

316

EIA - Natural Gas Pipeline Network - Natural Gas Import/Export Locations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scattering characterizesAnalysis &Map Export Pipelines

317

EIA - Natural Gas Pipeline Network - Natural Gas Import/Export Locations  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs U.S. Department of EnergyD e s c

318

Boston, Massachusetts Location: Boston, MA  

E-Print Network [OSTI]

-recovery ventilation and water-source heat pumps Each unit has fresh air ducted independently. Each residence is warmed by a heat pump that taps the Trigen Energy Corporation steam lines that run underneath the street. #12;WallsBoston, Massachusetts #12;Location: Boston, MA Building type(s): Multi-unit residential, Retail 350

Prevedouros, Panos D.

319

Building Address Locations -Assumes entire  

E-Print Network [OSTI]

Building Address Locations - Assumes entire building unless noted Designation Submit through* 560, 4 BU Crosstown Center 801 Massachusetts Ave Floor 1, 2 BMC BCD Building 800 Harrison Avenue BCD BMC Biosquare III 670 Albany Floors 2, 3, 6, 7 BMC Biosquare III 670 Albany Floors 1, 4, 5, 8 BU Building

Guenther, Frank

320

Improved gas tagging and cover gas combination for nuclear reactor  

DOE Patents [OSTI]

The invention discloses the use of stable isotopes of neon and argon, sealed as tags in different cladding nuclear fuel elements to be used in a liquid metal fast breeder reactor. Cladding failure allows fission gases and these tag isotopes to escape and to combine with the cover gas. The isotopes are Ne/sup 20/, Ne/sup 21/ and Ne/sup 22/ and Ar/sup 36/, Ar/sup 38/ and Ar/sup 40/, and the cover gas is He. Serially connected cryogenically operated charcoal beds are used to clean the cover gas and to separate out the tags. The first or cover gas cleanup bed is held between 0 and -25/sup 0/C to remove the fission gases from the cover gas and tags, and the second or tag recovery system bed between -170 and -185/sup 0/C to isolate the tags from the cover gas. Spectrometric analysis is used to identify the specific tags that are recovered, and thus the specific leaking fuel element. By cataloging the fuel element tags to the location of the fuel elements in the reactor, the location of the leaking fuel element can then be determined.

Gross, K.C.; Laug, M.T.

1983-09-26T23:59:59.000Z

Note: This page contains sample records for the topic "landfill gas location" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Gas tagging and cover gas combination for nuclear reactor  

DOE Patents [OSTI]

The invention discloses the use of stable isotopes of neon and argon, that are grouped in preselected different ratios one to the other and are then sealed as tags in different cladded nuclear fuel elements to be used in a liquid metal fast breeder reactor. Failure of the cladding of any fuel element allows fission gases generated in the reaction and these tag isotopes to escape and to combine with the cover gas held in the reactor over the fuel elements. The isotopes specifically are Ne.sup.20, Ne.sup.21 and Ne.sup.22 of neon and Ar.sup.36, Ar.sup.38 and Ar.sup.40 of argon, and the cover gas is helium. Serially connected cryogenically operated charcoal beds are used to clean the cover gas and to separate out the tags. The first or cover gas cleanup bed is held between approximately 0.degree. and -25.degree. C. operable to remove the fission gases from the cover gas and tags and the second or tag recovery system bed is held between approximately -170.degree. and -185.degree. C. operable to isolate the tags from the cover gas. Spectrometric analysis further is used to identify the specific tags that are recovered, and thus the specific leaking fuel element. By cataloging the fuel element tags to the location of the fuel elements in the reactor, the location of the leaking fuel element can then be specifically determined.

Gross, Kenny C. (Lemont, IL); Laug, Matthew T. (Idaho Falls, ID)

1985-01-01T23:59:59.000Z

322

Integrated CHP/Advanced Reciprocating Internal Combustion Engine...  

Broader source: Energy.gov (indexed) [DOE]

With Landfill Gas, October 2002 CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants CHP and Bioenergy for Landfills and Wastewater Treatment Plants:...

323

DOE/BNL Liquid Natural Gas Heavy Vehicle Program  

SciTech Connect (OSTI)

As a means of lowering greenhouse gas emissions, increasing economic growth, and reducing the dependency on imported oil, the Department of Energy and Brookhaven National Laboratory (DOE/ BNL) is promoting the substitution of liquefied natural gas (LNG) in heavy-vehicles that are currently being fueled by diesel. Heavy vehicles are defined as Class 7 and 8 trucks (> 118,000 pounds GVVV), and transit buses that have a fuel usage greater than 10,000 gallons per year and driving range of more than 300 miles. The key in making LNG market-competitive with all types of diesel fuels is in improving energy efficiency and reducing costs of LNG technologies through systems integration. This paper integrates together the three LNG technologies of: (1) production from landfills and remote well sites; (2) cryogenic fuel delivery systems; and (3) state-of-the-art storage tank and refueling facilities, with market end-use strategies. The program's goal is to develop these technologies and strategies under a ''green'' and ''clean'' strategy. This ''green'' approach reduces the net contribution of global warming gases by reducing levels of methane and carbon dioxide released by heavy vehicles usage to below recoverable amounts of natural gas from landfills and other natural resources. Clean technology refers to efficient use of energy with low environmental emissions. The objective of the program is to promote fuel competition by having LNG priced between $0.40 - $0.50 per gallon with a combined production, fuel delivery and engine systems efficiency approaching 45%. This can make LNG a viable alternative to diesel.

James E. Wegrzyn; Wai-Lin Litzke; Michael Gurevich

1998-08-11T23:59:59.000Z

324

Canastota Renewable Energy Facility Project  

SciTech Connect (OSTI)

The project was implemented at the Madison County Landfill located in the Town of Lincoln, Madison County, New York. Madison County has owned and operated the solid waste and recycling facilities at the Buyea Road site since 1974. At the onset of the project, the County owned and operated facilities there to include three separate landfills, a residential solid waste disposal and recycled material drop-off facility, a recycling facility and associated administrative, support and environmental control facilities. This putrescible waste undergoes anaerobic decomposition within the waste mass and generates landfill gas, which is approximately 50% methane. In order to recover this gas, the landfill was equipped with gas collection systems on both the east and west sides of Buyea Road which bring the gas to a central point for destruction. In order to derive a beneficial use from the collected landfill gases, the County decided to issue a Request for Proposals (RFP) for the future use of the generated gas.

Blake, Jillian; Hunt, Allen

2013-12-13T23:59:59.000Z

325

The Excavation and Remediation of the Sandia National Laboratories Chemical Waste Landfill  

SciTech Connect (OSTI)

The Chemical Waste Landfill (CWL) at Sandia National Laboratories/New Mexico (SNL/NM) is a 1.9-acre disposal site that was used for the disposal of chemical wastes generated by many of SNL/NM research laboratories from 1962 until 1985. These laboratories were primarily involved in the design, research and development of non-nuclear components of nuclear weapons and the waste generated by these labs included small quantities of a wide assortment of chemical products. A Resource Conservation and Recovery Act (RCRA) Closure Plan for the Chemical Waste Landfill was approved by the New Mexico Environment Department (NMED) in 1992. Subsequent site characterization activities identified the presence of significant amounts of chromium in the soil as far as 80 feet below ground surface (fbgs) and the delineation of a solvent plume in the vadose zone that extends to groundwater approximately 500 fbgs. Trichloroethylene (TCE) was detected in some groundwater samples at concentrations slightly above the drinking water limit of 5 parts per billion. In 1997 an active vapor extraction system reduced the size of the TCE vapor plume and for the last six quarterly sampling events groundwater samples have not detected TCE above the drinking water standard. A source term removal, being conducted as a Voluntary Corrective Measure (VCM), began in September 1998 and is expected to take up to two years. Four distinct disposal areas were identified from historical data and the contents of disposal pits and trenches in these areas, in addition to much of the highly contaminated soil surrounding the disposal cells, are currently being excavated. Buried waste and debris are expected to extend to a depth of 12 to 15 fbgs. Excavation will focus on the removal of buried debris and contaminated soil in a sequential, area by area manner and will proceed to whatever depth is required in order to remove all pit contents. Up to 50,000 cubic yards of soil and debris will be removed and managed during the excavation of the CWL. As part of the excavation process, soil is being separated from the buried debris using a 2-inch mechanical screen. After separation from the soil, debris items are further-segregated by matrix into the following categories: wood, scrap metal, concrete/aggregates, resins, compatible debris, intact chemical containers, radioactive and mixed waste, and high hazard items. One of the greatest sources of hazards throughout the excavation process is the removal of numerous intact chemical containers with unknown contents. A large portion of the excavated soil is contaminated with metals and/or solvents, Polychlorinated biphenyls (PCBs) are also known to be present. Most of the contaminated soils being excavated will be taken to the nearby Corrective Action Management Unit (CAMU) for treatment and management while a majority of the containers will be taken to the Hazardous Waste Management Facility or the Radioactive and Mixed Waste Management Facility for proper treatment and/or disposal at permitted offsite facilities.

KWIECINSKI,DANIEL ALBERT; METHVIN,RHONDA KAY; SCHOFIELD,DONALD P.; YOUNG,SHARISSA G.

1999-11-23T23:59:59.000Z

326

Observation of CH4 and other Non-CO2 Green House Gas Emissions from California  

SciTech Connect (OSTI)

In 2006, California passed the landmark assembly bill AB-32 to reduce California's emissions of greenhouse gases (GHGs) that contribute to global climate change. AB-32 commits California to reduce total GHG emissions to 1990 levels by 2020, a reduction of 25 percent from current levels. To verify that GHG emission reductions are actually taking place, it will be necessary to measure emissions. We describe atmospheric inverse model estimates of GHG emissions obtained from the California Greenhouse Gas Emissions Measurement (CALGEM) project. In collaboration with NOAA, we are measuring the dominant long-lived GHGs at two tall-towers in central California. Here, we present estimates of CH{sub 4} emissions obtained by statistical comparison of measured and predicted atmospheric mixing ratios. The predicted mixing ratios are calculated using spatially resolved a priori CH{sub 4} emissions and surface footprints, that provide a proportional relationship between the surface emissions and the mixing ratio signal at tower locations. The footprints are computed using the Weather Research and Forecast (WRF) coupled to the Stochastic Time-Inverted Lagrangian Transport (STILT) model. Integral to the inverse estimates, we perform a quantitative analysis of errors in atmospheric transport and other factors to provide quantitative uncertainties in estimated emissions. Regressions of modeled and measured mixing ratios suggest that total CH{sub 4} emissions are within 25% of the inventory estimates. A Bayesian source sector analysis obtains posterior scaling factors for CH{sub 4} emissions, indicating that emissions from several of the sources (e.g., landfills, natural gas use, petroleum production, crops, and wetlands) are roughly consistent with inventory estimates, but livestock emissions are significantly higher than the inventory. A Bayesian 'region' analysis is used to identify spatial variations in CH{sub 4} emissions from 13 sub-regions within California. Although, only regions near the tower are significantly constrained by the tower measurements, CH{sub 4} emissions from the south Central Valley appear to be underestimated in a manner consistent with the under-prediction of livestock emissions. Finally, we describe a pseudo-experiment using predicted CH{sub 4} signals to explore the uncertainty reductions that might be obtained if additional measurements were made by a future network of tall-tower stations spread over California. These results show that it should be possible to provide high-accuracy estimates of surface CH{sub 4} emissions for multiple regions as a means to verify future emissions reductions.

Fischer, Marc L.; Zhao, Chuanfeng; Riley, William J.; Andrews, Arlyn C.

2009-01-09T23:59:59.000Z

327

Estimating Major and Minor Natural Fracture Patterns in Gas  

E-Print Network [OSTI]

Estimating Major and Minor Natural Fracture Patterns in Gas Shales Using Production Data Razi Identification of infill drilling locations has been challenging with mixed results in gas shales. Natural fractures are the main source of permeability in gas shales. Natural fracture patterns in shale has a random

Mohaghegh, Shahab

328

Cement Kiln Flue Gas Recovery Scrubber Project  

SciTech Connect (OSTI)

The Cement Kiln Flue Gas Recovery Scrubber Project was a technical success and demonstrated the following: CKD can be used successfully as the sole reagent for removing SO2 from cement kiln flue gas, with removal efficiencies of 90 percent or greater; Removal efficiencies for HCl and VOCs were approximately 98 percent and 70 percent, respectively; Particulate emissions were low, in the range of 0.005 to 0.007 grains/standard cubic foot; The treated CKD sorbent can be recycled to the kiln after its potassium content has been reduced in the scrubber, thereby avoiding the need for landfilling; The process can yield fertilizer-grade K2SO4, a saleable by-product; and Waste heat in the flue gas can provide the energy required for evaporation and crystallization in the by-product recovery operation. The demonstration program established the feasibility of using the Recovery Scrubber{trademark} for desulfurization of flue gas from cement kilns, with generally favorable economics, assuming tipping fees are available for disposal of ash from biomass combustion. The process appears to be suitable for commercial use on any type of cement kiln. EPA has ruled that CKD is a nonhazardous waste, provided the facility meets Performance Standards for the Management of CKD (U.S. Environmental Protection Agency 1999d). Therefore, regulatory drivers for the technology focus more on reduction of air pollutants and pollution prevention, rather than on treating CKD as a hazardous waste. Application of the Recovery Scrubbe{trademark} concept to other waste-disposal operations, where pollution and waste reductions are needed, appears promising.

National Energy Technology Laboratory

2001-11-30T23:59:59.000Z

329

Tomographic data developed using the ABEM RAMAC borehole radar system at the Mixed Waste Landfill Integrated Demonstration  

SciTech Connect (OSTI)

The ABEM RAMAC borehole radar system was run as part of the Mixed Waste Landfill Integrated Demonstration for Sandia National Laboratories at Kirtland AFB. Tomograms were created between three test boreholes-UCAP No. 1, UCAP No. 2, and UCAP No. 3. These tomograms clearly delineate areas of amplitude attenuation and residual time of arrival or slowness differences. Plots for slowness were made using both the maximum and minimum of the first arrival pulse. The data demonstrates that the ABEM RAMAC 60-MHz pulse sampling radar system can be used to collect usable data in a highly conductive environment.

MacLeod, G.A.; Barker, D.L.; Molnar, S. [Raytheon Services Nevada, Las Vegas, NV (United States)

1994-02-18T23:59:59.000Z

330

Site Location of Development Act (Maine)  

Broader source: Energy.gov [DOE]

The Site Location of Development Act regulates the locations chosen for state, municipal, quasi-municipal, educational, charitable, commercial and industrial developments with respect to the...

331

Persistent Uniform Resource Locators (PURLs) | Scientific and...  

Office of Scientific and Technical Information (OSTI)

Locators (PURLs) Print page Print page PURLs (Persistent Uniform Resource Locators) are Web addresses that act as permanent identifiers in the face of a dynamic and changing Web...

332

Energy Department Launches Alternative Fueling Station Locator...  

Broader source: Energy.gov (indexed) [DOE]

Launches Alternative Fueling Station Locator App Energy Department Launches Alternative Fueling Station Locator App November 7, 2013 - 11:16am Addthis As part of the Obama...

333

Dose Modeling Evaluations and Technical Support Document for the Authorized Limits Request for the C-746-U Landfill at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky  

SciTech Connect (OSTI)

This report contains the technical basis in support of the DOE?s derivation of Authorized Limits (ALs) for the DOE Paducah C-746-U Landfill. A complete description of the methodology, including an assessment of the input parameters, model inputs, and results is provided in this report. This report also provides initial recommendations on applying the derived soil guidelines. The ORISE-derived soil guidelines are specifically applicable to the Landfill at the end of its operational life. A suggested 'upper bound' multiple of the derived soil guidelines for individual shipments is provided.

Boerner, A. J. [IEAVP, ORISE, Oak Ridge, TN (United States); Maldonado, D. G. [IEAVP, ORISE, Oak Ridge, TN (United States; Hansen, Tom [Ameriphysics, LLC (United States)

2012-06-01T23:59:59.000Z

334

LOCATION: Johnson County Sheriff's Office  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs &JeffIntensitySurfaceLOCATION: Johnson County

335

Ombuds Office Location & Hours  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratorySpeeding access1 TechnicalOil inventories inOmbuds Office Location

336

In-situ studies on the performance of landfill caps (compacted soil liners, geomembranes, geosynthetic clay liners, capillary barriers)  

SciTech Connect (OSTI)

Since 1986 different types of landfill covers have been studied in-situ on the Georgswerder landfill in Hamburg, Germany. Water balance data are available for eight years. The performance of different carriers has been measured by collecting the leakage on areas ranging from 100 m{sup 2} to 500 m{sup 2}. Composite liners with geomembranes performed best, showing no leakage. An extended capillary barrier also performed well. The performance of compacted soil liners, however, decreased severely within five years due to desiccation, shrinkage and plant root penetration (liner leakage now ranging from 150 mm/a to 200 mm/a). About 50 % of the water that reaches the surface of the liner is leaking through it. The maximum leakage rates have increased from 2 x 10{sup -10} m{sup 3} m{sup -2} s{sup -1} to 4 x 10{sup -8} m{sup 3} m{sup -2} s{sup -1}. Two types of geosynthetic clay liners (GCL) have been tested for two years now with disappointing results. The GCL desiccated during the first dry summer of the study. High percolation rates through the GCL were measured during the following winter (45 mm resp. 63 mm in four months). Wetting of the GCL did not significantly reduce the percolation rates.

Melchior, S. [IGB - Ingenieurbuero fuer Grundbau, Hamburg (Germany)

1997-12-31T23:59:59.000Z

337

Final construction quality assurance report for the Y-12 Industrial Landfill V, Area 2, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

Lockheed Martin Energy Systems (LMES) has finished construction of Area 2 of the Y-12 Plant Industrial Landfill (ILF-V), classified as a Class 2 Landfill. This final Construction Quality Assurance (CQA) Report provides documentation that Area 2 was constructed in substantial compliance with the Tennessee Department of Environment and Conservation (TDEC) approved design, as indicated and specified in the permit drawings, approved changes, and specifications. This report applies specifically to the Area 2 excavation, compacted clay soil liner, geomembrane liner, granular leachate collection layer, protective soil cover, and the leachate collection system. An ``As-Built`` survey was performed and is included. The drawings provide horizontal and vertical information for Area 2, the anchor trench, the leachate collection pipe, the temporary access road, and cross-sections of Area 2. This report provides documentation of the following items: the excavation activities of Area 2; the maximum recompacted coefficient of hydraulic conductivity or permeability of the soil is less than 1 {times} 10{sup {minus}7} centimeters per second (cm/sec); the total thickness of the compacted clay soil liner equals a minimum of 2 feet; a 40 mil impermeable geomembrane (polypropylene) flexible membrane liner (FML) and 16 oz. geotextile fabric was placed in direct contact with the compacted clay soil liner; a 12 inch granular leachate collection layer was installed and covered with a 8 oz. geotextile separation fabric; the installation of the leachate collection piping; and the two foot protective clay soil cover.

Bessom, W.H. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States)

1996-11-01T23:59:59.000Z

338

Gas sensor  

DOE Patents [OSTI]

A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

2014-09-09T23:59:59.000Z

339

Transforming trash: reuse as a waste management and climate change mitigation strategy  

E-Print Network [OSTI]

then landfill gas combustion), and landfilling (Williamssteam turbine, natural gas combustion turbine, natural gascomes from natural gas combustion (Marnay et al. 2002,

Vergara, Sintana Eugenia

2011-01-01T23:59:59.000Z

340

NATURAL GAS MARKET ASSESSMENT  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION NATURAL GAS MARKET ASSESSMENT PRELIMINARY RESULTS In Support.................................................................................... 6 Chapter 2: Natural Gas Demand.................................................................................................. 10 Chapter 3: Natural Gas Supply

Note: This page contains sample records for the topic "landfill gas location" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Mitigating the effect of siloxanes on internal combustion engines using landfill gasses  

DOE Patents [OSTI]

A waste gas combustion method that includes providing a combustible fuel source, in which the combustible fuel source is composed of at least methane and siloxane gas. A sodium source or magnesium source is mixed with the combustible fuel source. Combustion of the siloxane gas of the combustible fuel source produces a silicon containing product. The sodium source or magnesium source reacts with the silicon containing product to provide a sodium containing glass or sodium containing silicate, or a magnesium containing silicate. By producing the sodium containing glass or sodium containing silicate, or the magnesium containing silicate, or magnesium source for precipitating particulate silica instead of hard coating, the method may reduce or eliminate the formation of silica deposits within the combustion chamber and the exhaust components of the internal combustion engine.

Besmann, Theodore M

2014-01-21T23:59:59.000Z

342

Stochastic Programming Approaches for the Placement of Gas Detectors in Process Facilities  

E-Print Network [OSTI]

of these detectors is required in order to have a well-functioning gas detection system. However, the uncertainty in leak locations, gas composition, process and weather conditions, and process geometries must all be considered when attempting to determine...

Legg, Sean W

2013-05-21T23:59:59.000Z

343

Land application uses for dry flue gas desulfurization by-products: Phase 3  

SciTech Connect (OSTI)

New flue gas desulfurization (FGD) scrubbing technologies create a dry, solid by-product material consisting of excess sorbent, reaction product that contains sulfate and sulfite, and coal fly ash. Generally, dry FGD by-products are treated as solid wastes and disposed in landfills. However, landfill sites are becoming scarce and tipping fees are constantly increasing. Provided the environmental impacts are socially and scientifically acceptable, beneficial uses via recycling can provide economic benefits to both the producer and the end user of the FGD. A study titled ''Land Application Uses for Dry Flue Gas Desulfurization By-Products'' was initiated in December, 1990 to develop and demonstrate large volume, beneficial uses of FGD by-products. Phase 1 and Phase 2 reports have been published by the Electric Power Research Institute (EPRI), Palo Alto, CA. Phase 3 objectives were to demonstrate, using field studies, the beneficial uses of FGD by-products (1) as an amendment material on agricultural lands and on abandoned surface coal mine land, (2) as an engineering material for soil stabilization and raid repair, and (3) to assess the environmental and economic impacts of such beneficial uses. Application of dry FGD by-product to three soils in place of agricultural limestone increased alfalfa (Medicago sativa L.) and corn (Zea may L.) yields. No detrimental effects on soil and plant quality were observed.

Dick, W.; Bigham, J.; Forster, R.; Hitzhusen, F.; Lal, R.; Stehouwer, R.; Traina, S.; Wolfe, W.; Haefner, R.; Rowe, G.

1999-01-31T23:59:59.000Z

344

Collection of liquid from below-ground location  

DOE Patents [OSTI]

A method is described for retrieving liquid from a below-ground collection area by permitting gravity flow of the liquid from the collection area to a first closed container; monitoring the level of the liquid in the closed container; and after the liquid reaches a given level in the first closed container, transferring the liquid to a second closed container disposed at a location above the first closed container, via a conduit, by introducing into the first closed container a gas which is substantially chemically inert with respect to the liquid, the gas being at a pressure sufficient to propel the liquid from the first closed container to the second closed container. 3 figs.

Phillips, S.J.; Alexander, R.G.

1995-05-30T23:59:59.000Z

345

Autothermal production of synthesis gas  

SciTech Connect (OSTI)

An autothermal reactor is described for the production of a synthesis gas in which both primary reforming and secondary reforming are achieved at a high level of efficiency. The method comprises a heat exchange chamber having a first portion and a second portion, a first inlet connected to the heat exchange chamber for the introduction of steam and feed gas to the heat exchange chamber, reaction tubes mounted within the first portion of the heat exchanger chamber at a location spaced longitudinally from the first inlet in communication with the first inlet and in non-concentric relationship therewith so as to provide a flow path for the steam and feed gas from the first inlet through the plurality of reaction tubes.

Lewis, J.L.

1987-05-19T23:59:59.000Z

346

Georgia Tech Dangerous Gas  

E-Print Network [OSTI]

1 Georgia Tech Dangerous Gas Safety Program March 2011 #12;Georgia Tech Dangerous Gas Safety.......................................................................................................... 5 6. DANGEROUS GAS USAGE REQUIREMENTS................................................. 7 6.1. RESTRICTED PURCHASE/ACQUISITION RULES: ................................................ 7 7. FLAMMABLE GAS

Sherrill, David

347

Automated Fault Location In Smart Distribution Systems  

E-Print Network [OSTI]

of utilizing a suitable fault location method. As distribution systems are gradually evolving into smart distribution systems, application of more accurate fault location methods based on gathered data from various Intelligent Electronic Devices (IEDs...

Lotfifard, Saeed

2012-10-19T23:59:59.000Z

348

Overburden effects on waste compaction and leachate generation in municipal landfills  

E-Print Network [OSTI]

, known as GasPro, which was developed by Stallard (1990) and an automatic gridding and filling scheme constructed by Beck (1994). Both the leachate production and the waste compaction portions of the model were found to be sensitive to the sequence...

Mehevec, Adam Wade

1994-01-01T23:59:59.000Z

349

Gas-cooled nuclear reactor  

DOE Patents [OSTI]

A gas-cooled nuclear reactor includes a central core located in the lower portion of a prestressed concrete reactor vessel. Primary coolant gas flows upward through the core and into four overlying heat-exchangers wherein stream is generated. During normal operation, the return flow of coolant is between the core and the vessel sidewall to a pair of motor-driven circulators located at about the bottom of the concrete pressure vessel. The circulators repressurize the gas coolant and return it back to the core through passageways in the underlying core structure. If during emergency conditions the primary circulators are no longer functioning, the decay heat is effectively removed from the core by means of natural convection circulation. The hot gas rising through the core exits the top of the shroud of the heat-exchangers and flows radially outward to the sidewall of the concrete pressure vessel. A metal liner covers the entire inside concrete surfaces of the concrete pressure vessel, and cooling tubes are welded to the exterior or concrete side of the metal liner. The gas coolant is in direct contact with the interior surface of the metal liner and transfers its heat through the metal liner to the liquid coolant flowing through the cooling tubes. The cooler gas is more dense and creates a downward convection flow in the region between the core and the sidewall until it reaches the bottom of the concrete pressure vessel when it flows radially inward and up into the core for another pass. Water is forced to flow through the cooling tubes to absorb heat from the core at a sufficient rate to remove enough of the decay heat created in the core to prevent overheating of the core or the vessel.

Peinado, Charles O. (La Jolla, CA); Koutz, Stanley L. (San Diego, CA)

1985-01-01T23:59:59.000Z

350

Methods for detecting and locating leaks in containment facilities using electrical potential data and electrical resistance tomographic imaging techniques  

DOE Patents [OSTI]

Methods are provided for detecting and locating leaks in liners used as barriers in the construction of landfills, surface impoundments, water reservoirs, tanks, and the like. Electrodes are placed in the ground around the periphery of the facility, in the leak detection zone located between two liners if present, and/or within the containment facility. Electrical resistivity data is collected using these electrodes. This data is used to map the electrical resistivity distribution beneath the containment liner between two liners in a double-lined facility. In an alternative embodiment, an electrode placed within the lined facility is driven to an electrical potential with respect to another electrode placed at a distance from the lined facility (mise-a-la-masse). Voltage differences are then measured between various combinations of additional electrodes placed in the soil on the periphery of the facility, the leak detection zone, or within the facility. A leak of liquid though the liner material will result in an electrical potential distribution that can be measured at the electrodes. The leak position is located by determining the coordinates of an electrical current source pole that best fits the measured potentials with the constraints of the known or assumed resistivity distribution. 6 figs.

Daily, W.D.; Laine, D.L.; Laine, E.F.

1997-08-26T23:59:59.000Z

351

Methods for detecting and locating leaks in containment facilities using electrical potential data and electrical resistance tomographic imaging techniques  

DOE Patents [OSTI]

Methods are provided for detecting and locating leaks in liners used as barriers in the construction of landfills, surface impoundments, water reservoirs, tanks, and the like. Electrodes are placed in the ground around the periphery of the facility, in the leak detection zone located between two liners if present, and/or within the containment facility. Electrical resistivity data is collected using these electrodes. This data is used to map the electrical resistivity distribution beneath the containment liner between two liners in a double-lined facility. In an alternative embodiment, an electrode placed within the lined facility is driven to an electrical potential with respect to another electrode placed at a distance from the lined facility (mise-a-la-masse). Voltage differences are then measured between various combinations of additional electrodes placed in the soil on the periphery of the facility, the leak detection zone, or within the facility. A leak of liquid though the liner material will result in an electrical potential distribution that can be measured at the electrodes. The leak position is located by determining the coordinates of an electrical current source pole that best fits the measured potentials with the constraints of the known or assumed resistivity distribution.

Daily, William D. (Livermore, CA); Laine, Daren L. (San Antonio, TX); Laine, Edwin F. (Alamo, CA)

1997-01-01T23:59:59.000Z

352

Methods for detecting and locating leaks in containment facilities using electrical potential data and electrical resistance tomographic imaging techniques  

DOE Patents [OSTI]

Methods are provided for detecting and locating leaks in liners used as barriers in the construction of landfills, surface impoundments, water reservoirs, tanks, and the like. Electrodes are placed in the ground around the periphery of the facility, in the leak detection zone located between two liners if present, and/or within the containment facility. Electrical resistivity data is collected using these electrodes. This data is used to map the electrical resistivity distribution beneath the containment liner or between two liners in a double-lined facility. In an alternative embodiment, an electrode placed within the lined facility is driven to an electrical potential with respect to another electrode placed at a distance from the lined facility (mise-a-la-masse). Voltage differences are then measured between various combinations of additional electrodes placed in the soil on the periphery of the facility, the leak detection zone, or within the facility. A leak of liquid through the liner material will result in an electrical potential distribution that can be measured at the electrodes. The leak position is located by determining the coordinates of an electrical current source pole that best fits the measured potentials with the constraints of the known or assumed resistivity distribution.

Daily, William D. (Livermore, CA); Laine, Daren L. (San Anotonio, TX); Laine, Edwin F. (Penn Valley, CA)

2001-01-01T23:59:59.000Z

353

Scaled Tests and Modeling of Effluent Stack Sampling Location Mixing  

SciTech Connect (OSTI)

The Pacific Northwest National Laboratory researchers used a computational fluid dynamics (CFD) computer code to evaluate the mixing at a sampling system location of a research and development facility. The facility requires continuous sampling for radioactive air emissions. Researchers sought to determine whether the location would meet the criteria for uniform air velocity and contaminant concentration as prescribed in the American National Standard Institute (ANSI) standard, Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stacks and Ducts of Nuclear Facilities. Standard ANSI/HPS N13.1-1999 requires that the sampling location be well-mixed and stipulates specific tests (e.g., velocity, gas, and aerosol uniformity and cyclonic flow angle) to verify the extent of mixing.. The exhaust system for the Radiochemical Processing Laboratory was modeled with a CFD code to better understand the flow and contaminant mixing and to predict mixing test results. The CFD results were compared to actual measurements made at a scale-model stack and to the limited data set for the full-scale facility stack. Results indicated that the CFD code provides reasonably conservative predictions for velocity, gas, and aerosol uniformity. Cyclonic flow predicted by the code is less than that measured by the required methods. In expanding from small to full scale, the CFD predictions for full-scale measurements show similar trends as in the scale model and no unusual effects. This work indicates that a CFD code can be a cost-effective aid in design or retrofit of a facility’s stack sampling location that will be required to meet Standard ANSI/HPS N13.1-1999.

Recknagle, Kurtis P.; Yokuda, Satoru T.; Ballinger, Marcel Y.; Barnett, J. M.

2009-02-01T23:59:59.000Z

354

Burbank Water and Power SBX1 2 Compliance Plan  

E-Print Network [OSTI]

impact hydroelectric generation, digester gas, municipal solid waste, landfill gas, ocean wave, ocean

355

University of Southern California Mork Family  

E-Print Network [OSTI]

State University Abstract: The Landfill Gas (LFG) collection systems are designed to collect methane gas

Southern California, University of

357

Analysis of the AirTouch automatic vehicle location system's ability to locate moving vehicles  

E-Print Network [OSTI]

Automatic vehicle location systems are becoming more prevalent in diverse transportation applications. Their ability to locate vehicles can assist in locating emergency and public transit vehicles for better real-time dispatching as well...

Henry, Tracy Lynn

1995-01-01T23:59:59.000Z

358

Gas turbine cooling system  

DOE Patents [OSTI]

A gas turbine engine (10) having a closed-loop cooling circuit (39) for transferring heat from the hot turbine section (16) to the compressed air (24) produced by the compressor section (12). The closed-loop cooling system (39) includes a heat exchanger (40) disposed in the flow path of the compressed air (24) between the outlet of the compressor section (12) and the inlet of the combustor (14). A cooling fluid (50) may be driven by a pump (52) located outside of the engine casing (53) or a pump (54) mounted on the rotor shaft (17). The cooling circuit (39) may include an orifice (60) for causing the cooling fluid (50) to change from a liquid state to a gaseous state, thereby increasing the heat transfer capacity of the cooling circuit (39).

Bancalari, Eduardo E. (Orlando, FL)

2001-01-01T23:59:59.000Z

359

Comparison of Candidate Sites for installation of Landfill facility at Ignalina NPP Site Using Fuzzy Logic Approach  

SciTech Connect (OSTI)

There is only one nuclear power plant in Lithuania - Ignalina NPP (Nuclear Power Plant). Two similar units with installed capacity of 1500 MW (each) were commissioned in 1983 and 1987 respectively. But the first Unit of Ignalina NPP was finally shutdown December 31, 2004, and second Unit is planned to be shutdown before 2010. Operational radioactive waste of different activities is generated at Ignalina NPP. After closure of INPP a waste from decommissioning should be managed also. According to Lithuanian regulatory requirements (1) the waste depending on the activity must be managed in different ways. In compliance with this Regulation very low-level radioactive waste (VLLW) could be disposed of in a Landfill facility. In such case very simple engineered barriers are required. A cap on the top of the repository is necessary from long-term safety point of view. Experience has shown that the effective and safe isolation of waste depends on the performance of the overall disposal system, which is formed by three major components: the site, the disposal facility and the waste form. The basic objective of the siting process is to select a suitable site for disposal and demonstrate that this site has characteristics which provide adequate isolation of radionuclides from the biosphere for desired periods of time. The methodology and results on evaluation and comparison of two candidate sites intended for construction of Landfill facility at Ignalina NPP site are presented in the paper. Criteria for comparison are based on the IAEA (International Atomic Energy Agency) recommendations (2). Modeling of the radionuclide releases has been performed using ISAM (Improving of Safety Assessment Methodologies for Near Surface Disposal facilities) methodology (3). For generalization of the information and elaboration of the recommendations Fuzzy Logic approach was used (4). (authors)

Poskas, P.; Kilda, R. [Lithuanian Energy Institute, Kaunas (Lithuania); Poskas, G. [Vytautas Magnus University, Kaunas (Lithuania)

2008-07-01T23:59:59.000Z

360

Idaho National Laboratory’s FY09 & FY10 Greenhouse Gas Report  

SciTech Connect (OSTI)

A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during fiscal year (FY) 2009 and 2010 by Idaho National Laboratory (INL), a Department of Energy (DOE)-sponsored entity, located in southeastern Idaho. In recent years, concern has grown about the environmental impact of GHGs. This, together with a desire to decrease harmful environmental impacts, would be enough to encourage the calculation of an inventory of the total GHGs generated at INL. Additionally, INL has a desire to see how its emissions compare with similar institutions, including other DOE national laboratories. Executive Order 13514 requires that federal agencies and institutions document reductions in GHG emissions. INL's GHG inventory was calculated according to methodologies identified in federal GHG guidance documents using operational control boundaries. It measures emissions generated in three scopes: (1) INL emissions produced directly by stationary or mobile combustion and by fugitive emissions, (2) the share of emissions generated by entities from which INL purchased electrical power, and (3) indirect or shared emissions generated by outsourced activities that benefit INL (occur outside INL's organizational boundaries, but are a consequence of INL's activities). This inventory found that INL generated 103,590 and 102,413 MT of CO2-equivalent emissions during FY09 and FY10, respectively. The following conclusions were made from looking at the results of the individual contributors to INL's FY09 and FY10 GHG inventories: (1) Electricity (including the associated transmission and distribution losses) is the largest contributor to INL's GHG inventory, with over 50% of the CO2e emissions; (2) Other sources with high emissions were stationary combustion (facility fuels), waste disposal (including fugitive emissions from the onsite landfill and contracted disposal), mobile combustion (fleet fuels), employee commuting, and business air travel; and (3) Sources with low emissions were wastewater treatment (onsite and contracted), fugitive emissions from refrigerants, and business ground travel (in personal and rental vehicles). This report details the methods behind quantifying INL's GHG inventory and discusses lessons learned on better practices by which information important to tracking GHGs can be tracked and recorded. It is important to note that because this report differentiates between those portions of INL that are managed and operated by the Battelle Energy Alliance (BEA) and those managed by other contractors, it includes only that large proportion of Laboratory activities overseen by BEA. It is assumed that other contractors will provide similar reporting for those activities they manage, where appropriate.

Jennifer D. Morton

2011-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "landfill gas location" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Gas Network Optimization by MINLP | Argonne Leadership Computing...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gas Network Optimization by MINLP Event Sponsor: Mathematics and Computing Science Seminar Start Date: Nov 17 2014 - 10:30am BuildingRoom: Building 240Room 1406-1407 Location:...

362

Fuel gas conditioning process  

DOE Patents [OSTI]

A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

Lokhandwala, Kaaeid A. (Union City, CA)

2000-01-01T23:59:59.000Z

363

Idaho National Laboratory’s Greenhouse Gas FY08 Baseline  

SciTech Connect (OSTI)

A greenhouse gas (GHG) inventory is a systematic attempt to account for the production and release of certain gasses generated by an institution from various emission sources. The gasses of interest are those which have become identified by climate science as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during fiscal year (FY) 2008 by Idaho National Laboratory (INL), a Department of Energy (DOE)-sponsored entity, located in southeastern Idaho. Concern about the environmental impact of GHGs has grown in recent years. This, together with a desire to decrease harmful environmental impacts, would be enough to encourage the calculation of a baseline estimate of total GHGs generated at INL. Additionally, INL has a desire to see how its emissions compare with similar institutions, including other DOE national laboratories. Executive Order 13514 requires that federal agencies and institutions document reductions in GHG emissions in the future, and such documentation will require knowledge of a baseline against which reductions can be measured. INL's FY08 GHG inventory was calculated according to methodologies identified in federal GHG guidance documents using operational control boundaries. It measures emissions generated in three Scopes: (1) INL emissions produced directly by stationary or mobile combustion and by fugitive emissions, (2) the share of emissions generated by entities from which INL purchased electrical power, and (3) indirect or shared emissions generated by outsourced activities that benefit INL (occur outside INL's organizational boundaries but are a consequence of INL's activities). This inventory found that INL generated a total of 113,049 MT of CO2-equivalent emissions during FY08. The following conclusions were made from looking at the results of the individual contributors to INL's baseline GHG inventory: (1) Electricity (including the associated transmission and distribution losses) is the largest contributor to INL's GHG inventory, with over 50% of the CO2e emissions; (2) Other sources with high emissions were stationary combustion (facility fuels), waste disposal (including fugitive emissions from the onsite landfill and contracted disposal), mobile combustion (fleet fuels), employee commuting, and business air travel; and (3) Sources with low emissions were wastewater treatment (onsite and contracted), fugitive emissions from refrigerants, and business ground travel (in personal and rental vehicles). This report details the methods behind quantifying INL's GHG inventory and discusses lessons learned on better practices by which information important to tracking GHGs can be tracked and recorded. It is important to note that because this report differentiates between those portions of INL that are managed and operated by the Battelle Energy Alliance (BEA) and those managed by other contractors, it includes only that large proportion of Laboratory activities overseen by BEA. It is assumed that other contractors will provide similar reporting for those activities they manage, where appropriate.

Jennifer D. Morton

2011-06-01T23:59:59.000Z

364

Gas flow means for improving efficiency of exhaust hoods  

DOE Patents [OSTI]

Apparatus is described for inhibiting the flow of contaminants in an exhaust enclosure toward an individual located adjacent an opening into the exhaust enclosure by providing a gas flow toward a source of contaminants from a position in front of an individual to urge said contaminants away from the individual toward a gas exit port. The apparatus comprises a gas manifold which may be worn by a person as a vest. The manifold has a series of gas outlets on a front face thereof facing away from the individual and toward the contaminants to thereby provide a flow of gas from the front of the individual toward the contaminants. 15 figures.

Gadgil, A.J.

1994-01-11T23:59:59.000Z

365

Methane Gas Conversion Property Tax Exemption  

Broader source: Energy.gov [DOE]

'''''Note: This exemption is only available to facilities operated in connection or conjunction with a publicly-owned sanitary landfill. The exemption was available to other entities only for...

366

Statewide Air Emissions Calculations from Wind and other Renewables, Summary Report  

E-Print Network [OSTI]

; ? Analysis of emissions reduction from wind farms; ? Updates on degradation analysis; ? Analysis of other renewables, including: PV, solar thermal, hydroelectric, geothermal and landfill gas; ? Review of electricity generation by renewable sources... were conducted on five specific categories which include solar photovoltaic, solar thermal, geothermal, hydroelectric, and Landfill Gas-Fired Power Plants. Many newly located renewable energy projects are assembled for inclusion in this report (Table...

Haberl, J.; Liu, Z.; Baltazar-Cervantes, J. C.; Gilman, D.; Culp, C.; Yazdani, B.; Claridge, D.; Mao, C.; Sun, Y.; Narayanaswamy, A.; Do, S.; Kim, K

367

Passamaquoddy Technology Recovery Scrubber{trademark} at the Dragon Products, Inc. Cement Plant located in Thomaston, Maine. 1990 Annual technical report  

SciTech Connect (OSTI)

The background and process of the Passamaquoddy Technology Recovery Scrubber{trademark} are described. The Scrubber was developed for Dragon Cement Plant in Thomaston, Maine and facilitates a number of process improvements. The exhaust gas is scrubbed of SO{sub 2} with better than 90% efficiency. The kiln dust is cleaned of alkalines and so can be returned to kiln feed instead of dumped to landfill. Potassium sulfate in commercial quantity and purity can be recovered. Distilled water is recovered which also has commercial potential. Thus, various benefits are accrued and no waste streams remain for disposal. The process is applicable to both wet and dry process cement kilns and appears to have potential in any industry which generates acidic gaseous exhausts and/or basic solid or liquid wastes.

Not Available

1990-12-31T23:59:59.000Z

368

Helicopter magnetic survey conducted to locate wells  

SciTech Connect (OSTI)

A helicopter magnetic survey was conducted in August 2007 over 15.6 sq mi at the Naval Petroleum Reserve No. 3’s (NPR-3) Teapot Dome Field near Casper, Wyoming. The survey’s purpose was to accurately locate wells drilled there during more than 90 years of continuous oilfield operation. The survey was conducted at low altitude and with closely spaced flight lines to improve the detection of wells with weak magnetic response and to increase the resolution of closely spaced wells. The survey was in preparation for a planned CO2 flood for EOR, which requires a complete well inventory with accurate locations for all existing wells. The magnetic survey was intended to locate wells missing from the well database and to provide accurate locations for all wells. The ability of the helicopter magnetic survey to accurately locate wells was accomplished by comparing airborne well picks with well locations from an intense ground search of a small test area.

Veloski, G.A.; Hammack, R.W.; Stamp, V. (Rocky Mountain Oilfield Testing Center); Hall, R. (Rocky Mountain Oilfield Testing Center); Colina, K. (Rocky Mountain Oilfield Testing Center)

2008-07-01T23:59:59.000Z

369

Community Detection from Location-Tagged Networks  

E-Print Network [OSTI]

Many real world systems or web services can be represented as a network such as social networks and transportation networks. In the past decade, many algorithms have been developed to detect the communities in a network using connections between nodes. However in many real world networks, the locations of nodes have great influence on the community structure. For example, in a social network, more connections are established between geographically proximate users. The impact of locations on community has not been fully investigated by the research literature. In this paper, we propose a community detection method which takes locations of nodes into consideration. The goal is to detect communities with both geographic proximity and network closeness. We analyze the distribution of the distances between connected and unconnected nodes to measure the influence of location on the network structure on two real location-tagged social networks. We propose a method to determine if a location-based community detection...

Liu, Zhi

2015-01-01T23:59:59.000Z

370

Pennsylvania's Natural Gas Future  

E-Print Network [OSTI]

1 Pennsylvania's Natural Gas Future Penn State Natural Gas Utilization Workshop Bradley Hall sales to commercial and industrial customers ­ Natural gas, power, oil · Power generation ­ FossilMMBtuEquivalent Wellhead Gas Price, $/MMBtu Monthly US Spot Oil Price, $/MMBtu* U.S. Crude Oil vs. Natural Gas Prices, 2005

Lee, Dongwon

371

Location theory and the location of industry along an interstate highway  

E-Print Network [OSTI]

to determine the significance of these locational factors among plants with different characteristics that have located in certain localities should provide pertinent information with both practical and theoretical implications. Since 1956, approximately 64... Summary of Plant Location Theory Cost Fac'tots . . . . . . . . . . . . . ~ The Importance of 'the Demand Factor Greenhut's General Theory of Plant Location and the Intangible Factor Location Factors as Revealed by Empirical Study Greenhut's Case...

Miller, James Patterson

1965-01-01T23:59:59.000Z

372

Regenerator Location Problem in Flexible Optical Networks  

E-Print Network [OSTI]

Nov 22, 2014 ... Abstract: In this study we introduce the regenerator location problem in flexible optical networks (RLP-FON). With a given traffic demand, ...

BARIS YILDIZ

2014-11-22T23:59:59.000Z

373

Method for nonlinear optimization for gas tagging and other systems  

DOE Patents [OSTI]

A method and system for providing nuclear fuel rods with a configuration of isotopic gas tags. The method includes selecting a true location of a first gas tag node, selecting initial locations for the remaining n-1 nodes using target gas tag compositions, generating a set of random gene pools with L nodes, applying a Hopfield network for computing on energy, or cost, for each of the L gene pools and using selected constraints to establish minimum energy states to identify optimal gas tag nodes with each energy compared to a convergence threshold and then upon identifying the gas tag node continuing this procedure until establishing the next gas tag node until all remaining n nodes have been established.

Chen, Ting (Chicago, IL); Gross, Kenny C. (Bolingbrook, IL); Wegerich, Stephan (Glendale Heights, IL)

1998-01-01T23:59:59.000Z

374

Method for nonlinear optimization for gas tagging and other systems  

DOE Patents [OSTI]

A method and system are disclosed for providing nuclear fuel rods with a configuration of isotopic gas tags. The method includes selecting a true location of a first gas tag node, selecting initial locations for the remaining n-1 nodes using target gas tag compositions, generating a set of random gene pools with L nodes, applying a Hopfield network for computing on energy, or cost, for each of the L gene pools and using selected constraints to establish minimum energy states to identify optimal gas tag nodes with each energy compared to a convergence threshold and then upon identifying the gas tag node continuing this procedure until establishing the next gas tag node until all remaining n nodes have been established. 6 figs.

Chen, T.; Gross, K.C.; Wegerich, S.

1998-01-06T23:59:59.000Z

375

Public health assessment for tri-county landfill waste management of Illinois, South Elgin, Kane County, Illinois, Region 5. Cerclis No. ILD048306183. Final report  

SciTech Connect (OSTI)

The Tri-County and Elgin Landfills pose a public health hazard because the concentrations of lead in downgradient private wells are high enough to be a long-term health concern. Completed exposure pathways include the exposure to contaminated water from on- and off-site private wells (inhalation, ingestion, dermal contact; past, present, future). Contaminants of concern in on-site groundwater include bis(2-chloroethyl)ether, vinyl chloride, antimony, arsenic, barium, cadmium, fluoride, lead, manganese, nickel, nitrate + nitrite, and thallium. Chemicals of concern in on-site surface soil and sediments include PCBs, arsenic, cadmium, and nickel. Contaminants of concern in on-site subsurface soil include PCBs, arsenic, cadmium, lead, and nickel. This public health assessment recommends health professionals education and community health education be conducted for the community impacted by the landfills.

NONE

1995-08-29T23:59:59.000Z

376

Abatement of Air Pollution: Greenhouse Gas Emissions Offset Projects...  

Broader source: Energy.gov (indexed) [DOE]

Projects that either capture and destroy landfill methane, avoid sulfur hexafluoride emissions, sequester carbon through afforestation, provide end-use energy efficiency, or avoid...

377

Wireless Critical Process Control in oil and gas refinery plants  

E-Print Network [OSTI]

Wireless Critical Process Control in oil and gas refinery plants Stefano Savazzi1, Sergio Guardiano control in in- dustrial plants and oil/gas refineries. In contrast to wireline communication, wireless of an oil refinery is illustrated in Fig. 1: typical locations of wireless devices used for re- mote control

Savazzi, Stefano

378

Mapping success in protecting forests For Costa Rica's parks and reserves, a threatened location is  

E-Print Network [OSTI]

Mapping success in protecting forests For Costa Rica's parks and reserves, a threatened location and forest reserves and refuges have long been the most common approach to forest conservation. Every year and Thomas, 2006). And with the recognition of the role of deforestation of greenhouse gas emissions, shifts

Pfaff, Alex

379

Energy Procedia 00 (2010) 000000 www.elsevier.com/locate/XXX  

E-Print Network [OSTI]

natural gas resource, and the nth-of-a-kind levelized cost of electricity from coal with CCS. We measureEnergy Procedia Energy Procedia 00 (2010) 000­000 www.elsevier.com/locate/XXX GHGT-10 Assessing Herzoga a M.I.T., Energy Initiative, E19-370L, 77 Massachusetts Avenue, Cambridge, MA. 02139 USA Mort

2010-01-01T23:59:59.000Z

380

Location of Leaks in Pressure Testable Direct Burial Steam Distribution Conduits  

E-Print Network [OSTI]

to determine where the breach occurred. The breach can be detected using sulfur hexafluoride (SF6) tracer gas injected into the conduit. After injection, maintenance personnel walk the path of the steam line with an SF6 detector that precisely locates the leak...

Sittel, M. G.; Messock, R. K.

Note: This page contains sample records for the topic "landfill gas location" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Chemical Engineering Science 59 (2004) 13091323 www.elsevier.com/locate/ces  

E-Print Network [OSTI]

Chemical Engineering Science 59 (2004) 1309­1323 www.elsevier.com/locate/ces Simultaneous of Chemical Engineering, The University of Texas at Austin, 1 University Station C0400, Austin, TX 78712, USA with chemical reaction. At the gas/liquid interface, chlorine oxidizes the elemental Hg to a more soluble form

Rochelle, Gary T.

382

Electrical swing adsorption gas storage and delivery system  

DOE Patents [OSTI]

Systems and methods for electrical swing natural gas adsorption are described. An apparatus includes a pressure vessel; an electrically conductive gas adsorptive material located within the pressure vessel; and an electric power supply electrically connected to said adsorptive material. The adsorptive material can be a carbon fiber composite molecular sieve (CFCMS). The systems and methods provide advantages in that both a high energy density and a high ratio of delivered to stored gas are provided. 5 figs.

Judkins, R.R.; Burchell, T.D.

1999-06-15T23:59:59.000Z

383

Electrical swing adsorption gas storage and delivery system  

DOE Patents [OSTI]

Systems and methods for electrical swing natural gas adsorption are described. An apparatus includes a pressure vessel; an electrically conductive gas adsorptive material located within the pressure vessel; and an electric power supply electrically connected to said adsorptive material. The adsorptive material can be a carbon fiber composite molecular sieve (CFCMS). The systems and methods provide advantages in that both a high energy density and a high ratio of delivered to stored gas are provided.

Judkins, Roddie R. (Knoxville, TN); Burchell, Timothy D. (Oak Ridge, TN)

1999-01-01T23:59:59.000Z

384

Alternative Fuels Data Center: Alternative Fueling Station Locator  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and above) Compressed Natural Gas Electric Ethanol (E85) Hydrogen Liquefied Natural Gas (LNG) Liquefied Petroleum Gas (Propane) more search options close More Search Options...

385

Gas Storage Act (Illinois)  

Broader source: Energy.gov [DOE]

Any corporation which is engaged in or desires to engage in, the distribution, transportation or storage of natural gas or manufactured gas, which gas, in whole or in part, is intended for ultimate...

386

Gas Utilities (New York)  

Broader source: Energy.gov [DOE]

This chapter regulates natural gas utilities in the State of New York, and describes standards and procedures for gas meters and accessories, gas quality, line and main extensions, transmission and...

387

Industrial Gas Turbines  

Broader source: Energy.gov [DOE]

A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature,...

388

Gas Utilities (Maine)  

Broader source: Energy.gov [DOE]

Rules regarding the production, sale, and transfer of manufactured gas will also apply to natural gas. This section regulates natural gas utilities that serve ten or more customers, more than one...

389

Locating and tracking assets using RFID  

E-Print Network [OSTI]

. In this research, we will focus on how to ?nd the location of an item by using RFID in real time indoors to track equipment. When an item needs to be located, the purpose of using RFID is to minimize the searching time, e?ort, and investment cost. Thus...

Kim, Gak Gyu

2009-05-15T23:59:59.000Z

390

RECYCLING PROGRAM TYPE LOCATION ALLOWED NOT ALLOWED  

E-Print Network [OSTI]

RECYCLING PROGRAM TYPE LOCATION ALLOWED NOT ALLOWED Batteries, toner, ink cartridges & cell phones and recycling is an important part of that effort. Below is a guide to on-campus recycling at RSMAS: Visit http://www.rsmas.miami.edu/msgso/ for map of recycling bin locations. NOTE: This is not an exhaustive list. If unauthorized items are found

Miami, University of

391

Location Privacy and the Personal Distributed Environment  

E-Print Network [OSTI]

Location Privacy and the Personal Distributed Environment Robert C Atkinson, Swee Keow Goo, James-- The Personal Distributed Environment is a new concept being developed within the Mobile VCE Core 3 research, wherever their location: ubiquitous access. Devices are co-ordinated by Device Management Entities (DMEs

Atkinson, Robert C

392

TEMPORAL VARIATION OF LFG EMISSION FROM DIFFERENT TYPES OF  

E-Print Network [OSTI]

). This reduction of the landfill gas (LFG) emissions requires the ability to measure low methane emissions methane emissions were observed only near the landfill gas

Paris-Sud XI, Université de

393

E-Print Network 3.0 - anvendte prognostiske og Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Technologies, Bioenergy Agreement Task 37: Energy from Biogas and Landfill Gas Summary: and Landfill Gas Teknologiomrde: Anvendt forskning og udvikling,...

394

Recovery Act State Memos Florida  

Office of Environmental Management (EM)

from digester gas produced at the plant. Landfill gas, which is produced from the Solid Waste Department's South Dade Landfill, will be collected and piped across a canal...

395

E-Print Network 3.0 - aktivitet kosttilskud og Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sciences 3 IEA-Renewable Energy Technologies, Bioenergy Agreement Task 37: Energy from Biogas and Landfill Gas Summary: and Landfill Gas Teknologiomrde: Anvendt forskning og...

396

Sustainable use of California biomass resources can help meet state and national bioenergy targets  

E-Print Network [OSTI]

waste in landfills, or biogas from municipal wastewaterheat for industrial uses. Biogas potential from landfills,Bio]gas-to-liquids (GTL) Gas Biogas Biomethane Compressed

Jenkins, Bryan M; Williams, Robert B; Gildart, Martha C; Kaffka, Stephen R.; Hartsough, Bruce; Dempster, Peter G

2009-01-01T23:59:59.000Z

397

Public Health Benefits of End-Use Electrical Energy Efficiency in California: An Exploratory Study  

E-Print Network [OSTI]

Phase Ii Landfill Gas Sonoma Internal Combustion EngineInternal Combustion Engine Sonoma Landfill Gas Sonoma a)which report internal combustion (IC) engines as technology

McKone, Thomas E.

2011-01-01T23:59:59.000Z

398

Gas Production Tax (Texas)  

Broader source: Energy.gov [DOE]

A tax of 7.5 percent of the market value of natural gas produced in the state of Texas is imposed on every producer of gas.

399

Natural gas dehydration apparatus  

DOE Patents [OSTI]

A process and corresponding apparatus for dehydrating gas, especially natural gas. The process includes an absorption step and a membrane pervaporation step to regenerate the liquid sorbent.

Wijmans, Johannes G; Ng, Alvin; Mairal, Anurag P

2006-11-07T23:59:59.000Z

400

Historical Natural Gas Annual  

U.S. Energy Information Administration (EIA) Indexed Site

8 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

Note: This page contains sample records for the topic "landfill gas location" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Historical Natural Gas Annual  

U.S. Energy Information Administration (EIA) Indexed Site

6 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

402

Historical Natural Gas Annual  

U.S. Energy Information Administration (EIA) Indexed Site

7 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

403

Coupled Environmental Processes and Long-term Performance of Landfill Covers in the northern Mojave Desert  

SciTech Connect (OSTI)

Evapotransiration (ET) covers have gained widespread acceptance as a closure feature for waste disposal sites, particularly in the arid and semi-arid regions of the southwestern U.S. But as landforms, ET covers are subject to change over time because of processes such as pedogenesis, hydrologic processes, vegetation establishment and change, and biological processes. To better understand the effects of coupled process changes to ET covers, a series of four primary analog sites in Yucca Flat on the Nevada Test Site, along with measurements and observations from other locations in the Mojave Desert, were selected to evaluate changes in ET covers over time. The analog sites, of varying ages, were selected to address changes in the early post-institutional control period, the 1,000-year compliance period for disposal of low-level and mixed low-level waste, and the 10,000-year compliance period for transuranic waste sites.

David Shafer; Michael Young; Stephen Zitzer; Eric McDonald; Todd Caldwell

2004-05-12T23:59:59.000Z

404

SFSU Building Coordinators List College or Administrative Unit Location(s)  

E-Print Network [OSTI]

SFSU Building Coordinators List College or Administrative Unit Location(s) Building Coordinator81193 cathym@sfsu.edu GYM 102B Student Services Building SSB Mirel Tikkanen x53566 mtikkane@sfsu.edu SSB

405

Method of locating underground mines fires  

DOE Patents [OSTI]

An improved method of locating an underground mine fire by comparing the pattern of measured combustion product arrival times at detector locations with a real time computer-generated array of simulated patterns. A number of electronic fire detection devices are linked thru telemetry to a control station on the surface. The mine's ventilation is modeled on a digital computer using network analysis software. The time reguired to locate a fire consists of the time required to model the mines' ventilation, generate the arrival time array, scan the array, and to match measured arrival time patterns to the simulated patterns.

Laage, Linneas (Eagam, MN); Pomroy, William (St. Paul, MN)

1992-01-01T23:59:59.000Z

406

Deployment of an alternative cover and final closure of the Mixed Waste Landfill, Sandia National Laboratories, Albuquerque, New Mexico.  

SciTech Connect (OSTI)

An alternative cover design consisting of a monolithic layer of native soil is proposed as the closure path for the Mixed Waste Landfill at Sandia National Laboratories, New Mexico. The proposed design would rely upon soil thickness and evapotranspiration to provide long-term performance and stability, and would be inexpensive to build and maintain. The proposed design is a 3-ft-thick, vegetated soil cover. The alternative cover meets the intent of RCRA Subtitle C regulations in that: (a) water migration through the cover is minimized; (b) maintenance is minimized by using a monolithic soil layer; (c) cover erosion is minimized by using erosion control measures; (d) subsidence is accommodated by using a ''soft'' design; and (e) the permeability of the cover is less than or equal to that of natural subsurface soil present. Performance of the proposed cover is integrated with natural site conditions, producing a ''system performance'' that will ensure that the cover is protective of human health and the environment. Natural site conditions that will produce a system performance include: (a) extremely low precipitation and high potential evapotranspiration; (b) negligible recharge to groundwater; (c) an extensive vadose zone; (d) groundwater approximately 500 ft below the surface; and (e) a versatile, native flora that will persist indefinitely as a climax ecological community with little or no maintenance.

Peace, Gerald (Jerry) L.; Goering, Timothy James (GRAM, Inc., Albuquerque, NM); McVey, Michael David (GRAM, Inc., Albuquerque, NM); Borns, David James

2003-06-01T23:59:59.000Z

407

Bayesian Networks and Geographical Information Systems for Environmental Risk Assessment for Oil and Gas Site Development  

E-Print Network [OSTI]

of Contents Output. .......................................... 25? Figure 15. U.S. Shale Gas Production in Some Major Shale Plays. ................................ 27? Figure 16. U.S. Shale Gas Plays and Location of Study Area... located in the north eastern region of Texas (see figure 15), including the Dallas-Fort Worth metropolitan area. Figure 14. U.S. Shale Gas Production in Some Major Shale Plays. (Source: Navigant Consulting Inc., 2008) 28...

Varela Gonzalez, Patricia Ysolda

2013-04-03T23:59:59.000Z

408

The Value of Flexibility in Robust Location-Transportation Problem  

E-Print Network [OSTI]

production and distribution of products can be delayed until actual orders are ... such as hub locations, supplier locations, air freight hub locations, railway station

2014-11-24T23:59:59.000Z

409

Planning and Installation Guide: North Carolina Compressed Natural Gas Fueling Stations  

E-Print Network [OSTI]

1 Planning and Installation Guide: North Carolina Compressed Natural Gas Fueling Stations Introduction Are you considering installing a compressed natural gas (CNG) fueling station for your fleet to provide your fleet with fuel. One resource for locating and identifying public compressed natural gas

410

SEISMIC ANISOTROPY IN TIGHT GAS SANDSTONES, RULISON FIELD, PICEANCE BASIN, COLORADO  

E-Print Network [OSTI]

a quarter of the proven natural gas reserves in the United States. Rulison Field, located in the PiceanceSEISMIC ANISOTROPY IN TIGHT GAS SANDSTONES, RULISON FIELD, PICEANCE BASIN, COLORADO by Gerardo J-based rock physics to estimate the seismic anisotropy of the tight gas reservoir at Rulison Field. Seismic

411

GAS INJECTION/WELL STIMULATION PROJECT  

SciTech Connect (OSTI)

Driver Production proposes to conduct a gas repressurization/well stimulation project on a six well, 80-acre portion of the Dutcher Sand of the East Edna Field, Okmulgee County, Oklahoma. The site has been location of previous successful flue gas injection demonstration but due to changing economic and sales conditions, finds new opportunities to use associated natural gas that is currently being vented to the atmosphere to repressurize the reservoir to produce additional oil. The established infrastructure and known geological conditions should allow quick startup and much lower operating costs than flue gas. Lessons learned from the previous project, the lessons learned form cyclical oil prices and from other operators in the area will be applied. Technology transfer of the lessons learned from both projects could be applied by other small independent operators.

John K. Godwin

2005-12-01T23:59:59.000Z

412

Compressed gas manifold  

DOE Patents [OSTI]

A compressed gas storage cell interconnecting manifold including a thermally activated pressure relief device, a manual safety shut-off valve, and a port for connecting the compressed gas storage cells to a motor vehicle power source and to a refueling adapter. The manifold is mechanically and pneumatically connected to a compressed gas storage cell by a bolt including a gas passage therein.

Hildebrand, Richard J. (Edgemere, MD); Wozniak, John J. (Columbia, MD)

2001-01-01T23:59:59.000Z

413

OIL & GAS INSTITUTE Introduction  

E-Print Network [OSTI]

OIL & GAS INSTITUTE CONTENTS Introduction Asset Integrity Underpinning Capabilities 2 4 4 6 8 9 10 COMPETITIVENESS UNIVERSITY of STRATHCLYDE OIL & GAS INSTITUTE OIL & GAS EXPERTISE AND PARTNERSHIPS #12;1 The launch of the Strathclyde Oil & Gas Institute represents an important step forward for the University

Mottram, Nigel

414

Noble gas magnetic resonator  

DOE Patents [OSTI]

Precise measurements of a precessional rate of noble gas in a magnetic field is obtained by constraining the time averaged direction of the spins of a stimulating alkali gas to lie in a plane transverse to the magnetic field. In this way, the magnetic field of the alkali gas does not provide a net contribution to the precessional rate of the noble gas.

Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert

2014-04-15T23:59:59.000Z

415

Transportation and Greenhouse Gas Mitigation  

E-Print Network [OSTI]

fuels (eg diesel, compressed natural gas). Electricity (infossil fuels, such as compressed natural gas and liquefied

Lutsey, Nicholas P.; Sperling, Dan

2008-01-01T23:59:59.000Z

416

Addressing endogeneity in residential location models  

E-Print Network [OSTI]

Some empirical residential location choice models have reported dwelling-unit price estimated parameters that are small, not statistically significant, or even positive. This would imply that households are non-sensitive ...

Guevara-Cue, Cristián Angelo

2005-01-01T23:59:59.000Z

417

Developing a theory of nightclub location choice  

E-Print Network [OSTI]

This work is an investigation of the factors that influence where nightclubs locate within a city. Nightclubs, like other social spaces, provide important social and economic benefits in the urban environment. As amenities, ...

Crim, Stephen J. (Stephen Johnson)

2008-01-01T23:59:59.000Z

418

THE PLANAR HUB LOCATION PROBLEM: A PROBABILISTIC ...  

E-Print Network [OSTI]

Nov 5, 2012 ... Aykin and Brown, [4]. ...... [8] J.F. Campbell, Integer programming formulations of discrete hub location problems, European J. of O.R.. 72(1994) ...

2012-11-21T23:59:59.000Z

419

Personal Digital Assistant PDA ----Location Based  

E-Print Network [OSTI]

, xur],[ ybl, yur ]) k k=100 K k k- AminAmin kLk k Amax TmaxTmax kAminLocation Anonymization ConstraintsAmax TmaxLocation Service Quality Constraints 3.3 3.3.1 id, loc, query id loc (x,y)query GPS / l- l- k- l- k l- l l- l- m-invariant 2 29 #12;[22] A B C D E F R1 R2 R3 6 Outlier 6

420

Natural gas monthly  

SciTech Connect (OSTI)

The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the Natural Gas Monthly features articles designed to assist readers in using and interpreting natural gas information.

NONE

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "landfill gas location" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

kjkj kjkjkjkj kj Path: T:\\Projects\\CEC\\TLPP_Maps\\Statewide PP\\ARCGIS\\State OpPP_A.mxdDate: 8/28/2012  

E-Print Network [OSTI]

!( OIL/GAS kj SOLAR ã WIND " BIOMASS # COAL $1 DIGESTER GAS ^_ GEOTHERMAL # HYDRO %, LANDFILL GAS Legend

422

Driver expectancy in locating automotive controls  

E-Print Network [OSTI]

of the dimmer switch 150 3 lb Effect of age on expected location of the dimmer switch 150 31c Effect of years of driving experience on expected location of the dimmer switch. 151 31d Effect of miles driven in the past year on expected location... IOO. C Sn. i 36. 2 8/. 5 80. 0 87. 5 A=/0. 0 ZD. D 50. 0 0. 0 /0 D 12 5 2D. O 30. 0 0. 0 80. 0 80. 0 62 IDD. O 100. 0 10[. 0 Bn. o o. o 7. 5 20. 0 40. 0 37'. 5 85. 0 23 3 17. 5 16. / 74. 2 42. 5 SZ. 5 Climate C ntrol 17. 2 43. 0 36...

Francis, Dawn Suzette

1990-01-01T23:59:59.000Z

423

Cost of Gas Adjustment for Gas Utilities (Maine)  

Broader source: Energy.gov [DOE]

This rule, applicable to gas utilities, establishes rules for calculation of gas cost adjustments, procedures to be followed in establishing gas cost adjustments and refunds, and describes reports...

424

Enhanced membrane gas separations  

SciTech Connect (OSTI)

An improved membrane gas separation process is described comprising: (a) passing a feed gas stream to the non-permeate side of a membrane system adapted for the passage of purge gas on the permeate side thereof, and for the passage of the feed gas stream in a counter current flow pattern relative to the flow of purge gas on the permeate side thereof, said membrane system being capable of selectively permeating a fast permeating component from said feed gas, at a feed gas pressure at or above atmospheric pressure; (b) passing purge gas to the permeate side of the membrane system in counter current flow to the flow of said feed gas stream in order to facilitate carrying away of said fast permeating component from the surface of the membrane and maintaining the driving force for removal of the fast permeating component through the membrane from the feed gas stream, said permeate side of the membrane being maintained at a subatmospheric pressure within the range of from about 0.1 to about 5 psia by vacuum pump means; (c) recovering a product gas stream from the non-permeate side of the membrane; and (d) discharging purge gas and the fast permeating component that has permeated the membrane from the permeate side of the membrane, whereby the vacuum conditions maintained on the permeate side of the membrane by said vacuum pump means enhance the efficiency of the gas separation operation, thereby reducing the overall energy requirements thereof.

Prasad, R.

1993-07-13T23:59:59.000Z

425

Leak locating microphone, method and system for locating fluid leaks in pipes  

DOE Patents [OSTI]

A leak detecting microphone inserted directly into fluid within a pipe includes a housing having a first end being inserted within the pipe and a second opposed end extending outside the pipe. A diaphragm is mounted within the first housing end and an acoustic transducer is coupled to the diaphragm for converting acoustical signals to electrical signals. A plurality of apertures are provided in the housing first end, the apertures located both above and below the diaphragm, whereby to equalize fluid pressure on either side of the diaphragm. A leak locating system and method are provided for locating fluid leaks within a pipe. A first microphone is installed within fluid in the pipe at a first selected location and sound is detected at the first location. A second microphone is installed within fluid in the pipe at a second selected location and sound is detected at the second location. A cross-correlation is identified between the detected sound at the first and second locations for identifying a leak location.

Kupperman, David S. (Oak Park, IL); Spevak, Lev (Highland Park, IL)

1994-01-01T23:59:59.000Z

426

Natural Gas & Local Governments  

E-Print Network [OSTI]

-trailers New business ventures Frac services Water hauling Brine water remediation Pipeline Group #12;2. Sublette County, Wyoming Largest gas-producing county in Wyoming (44% of states gas

Boyer, Elizabeth W.

427

Microminiature gas chromatograph  

DOE Patents [OSTI]

A microminiature gas chromatograph (.mu.GC) comprising a least one silicon wafer, a gas injector, a column, and a detector. The gas injector has a normally closed valve for introducing a mobile phase including a sample gas in a carrier gas. The valve is fully disposed in the silicon wafer(s). The column is a microcapillary in silicon crystal with a stationary phase and is mechanically connected to receive the mobile phase from the gas injector for the molecular separation of compounds in the sample gas. The detector is mechanically connected to the column for the analysis of the separated compounds of sample gas with electronic means, e.g., ion cell, field emitter and PIN diode.

Yu, Conrad M. (Antioch, CA)

1996-01-01T23:59:59.000Z

428

Microminiature gas chromatograph  

DOE Patents [OSTI]

A microminiature gas chromatograph ({mu}GC) comprising a least one silicon wafer, a gas injector, a column, and a detector. The gas injector has a normally closed valve for introducing a mobile phase including a sample gas in a carrier gas. The valve is fully disposed in the silicon wafer(s). The column is a microcapillary in silicon crystal with a stationary phase and is mechanically connected to receive the mobile phase from the gas injector for the molecular separation of compounds in the sample gas. The detector is mechanically connected to the column for the analysis of the separated compounds of sample gas with electronic means, e.g., ion cell, field emitter and PIN diode. 7 figs.

Yu, C.M.

1996-12-10T23:59:59.000Z

429

Recirculating rotary gas compressor  

DOE Patents [OSTI]

A positive displacement, recirculating Roots-type rotary gas compressor is described which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits which return compressed discharge gas to the compressor housing, where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor. 12 figs.

Weinbrecht, J.F.

1992-02-25T23:59:59.000Z

430

Recirculating rotary gas compressor  

DOE Patents [OSTI]

A positive displacement, recirculating Roots-type rotary gas compressor which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits (24 and 26) which return compressed discharge gas to the compressor housing (14), where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers (10 and 12) and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor.

Weinbrecht, John F. (601 Oakwood Loop, NE., Albuquerque, NM 87123)

1992-01-01T23:59:59.000Z

431

Oil and Gas Exploration  

E-Print Network [OSTI]

Metals Industrial Minerals Oil and Gas Geothermal Exploration Development Mining Processing Nevada, oil and gas, and geothermal activities and accomplishments in Nevada: production statistics, exploration and development including drilling for petroleum and geothermal resources, discoveries of ore

Tingley, Joseph V.

432

Gas and Oil (Maryland)  

Broader source: Energy.gov [DOE]

The Department of the Environment has the authority to enact regulations pertaining to oil and gas production, but it cannot prorate or limit the output of any gas or oil well. A permit from the...

433

Natural gas annual 1996  

SciTech Connect (OSTI)

This document provides information on the supply and disposition of natural gas to a wide audience. The 1996 data are presented in a sequence that follows natural gas from it`s production to it`s end use.

NONE

1997-09-01T23:59:59.000Z

434

Purchased Gas Adjustment Rules (Tennessee)  

Broader source: Energy.gov [DOE]

The Purchased Gas Adjustment Rules are implemented by the Tennessee Regulatory Authority (Authority). Purchased Gas Adjustment (PGA) Rules are intended to permit the company/LDC (local gas...

435

COMPUTATIONAL OPTIMIZATION OF GAS COMPRESSOR ...  

E-Print Network [OSTI]

Feb 26, 2015 ... When considering cost-optimal operation of gas transport net- works ..... The four most frequently used drive types are gas turbines, gas driven.

2015-02-26T23:59:59.000Z

436

Transportation Networks and Location A Geometric Approach  

E-Print Network [OSTI]

Transportation Networks and Location A Geometric Approach Belén Palop1,2 1Departamento de March 2009 Florida State University #12;Belén Palop, UVa, SUNY Outline Transportation Network Model;Transportation Network Model Belén Palop, UVa, SUNY Outline Transportation Network Model Network placement

Palop del Río, Belén

437

OPTIMAL LOCATION OF ISOLATION VALVES IN WATER  

E-Print Network [OSTI]

CHAPTER 7 OPTIMAL LOCATION OF ISOLATION VALVES IN WATER DISTRIBUTION SYSTEMS: A RELIABILITY systems to serve expanding population centers. Both the adaptation of existing technologies in water supply systems account for the largest cost item in future maintenance budgets. The aging

Mays, Larry W.

438

Recycling Bin Guide Locations and prices  

E-Print Network [OSTI]

Recycling Bin Guide Locations and prices Metal Bins Deskside Bins with Side Saddle Rubbermaid Bins.58 for auxiliaries. And Non-Public Areas Public Offices Non-Public Recyclables Recyclables RecyclablesTrash Trash Trash #12;New Recycling Bin Guidelines Frequently Asked Questions (as of December 2008) · Why

Kirschner, Denise

439

Exact Location : Date of Accident : AM PM  

E-Print Network [OSTI]

SSN Cell Phone Home Phone Work Phone Exact Location : Date of Accident : AM PM Date accident treatment provided? Yes No Where Was time lost from work? Yes No If yes, how long? Could this accident have the following information as soon as it relates to your work related accident/injury/illness within 72 hours

Swaddle, John

440

Gasbuggy, New Mexico, Natural Gas and Produced Water Sampling Results for 2012  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Office of Legacy Management conducted annual natural gas sampling for the Gasbuggy, New Mexico, Site on June 20 and 21, 2012. This long-term monitoring of natural gas includes samples of produced water from gas production wells that are located near the site. Water samples from gas production wells were analyzed for gamma-emitting radionuclides, gross alpha, gross beta, and tritium. Natural gas samples were analyzed for tritium and carbon-14. ALS Laboratory Group in Fort Collins, Colorado, analyzed water samples. Isotech Laboratories in Champaign, Illinois, analyzed natural gas samples.

None

2012-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "landfill gas location" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Residual gas analysis device  

DOE Patents [OSTI]

A system is provided for testing the hermeticity of a package, such as a microelectromechanical systems package containing a sealed gas volume, with a sampling device that has the capability to isolate the package and breach the gas seal connected to a pulse valve that can controllably transmit small volumes down to 2 nanoliters to a gas chamber for analysis using gas chromatography/mass spectroscopy diagnostics.

Thornberg, Steven M. (Peralta, NM)

2012-07-31T23:59:59.000Z

442

Natural gas annual 1994  

SciTech Connect (OSTI)

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1994 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1990 to 1994 for each Census Division and each State. Annual historical data are shown at the national level.

NONE

1995-11-17T23:59:59.000Z

443

Natural gas annual 1995  

SciTech Connect (OSTI)

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1995 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1991 to 1995 for each Census Division and each State. Annual historical data are shown at the national level.

NONE

1996-11-01T23:59:59.000Z

444

Gas Cylinders: Proper Management  

E-Print Network [OSTI]

Compressed Gas Cylinders: Proper Management And Use Published by the Office of Environment, Health;1 Introduction University of California, Berkeley (UC Berkeley) departments that use compressed gas cylinders (MSDS) and your department's Job Safety Analyses (JSAs). Talk to your gas supplier about hands

Boyer, Elizabeth W.

445

Gas Chromatography -Mass Spectrometry  

E-Print Network [OSTI]

GCMS - 1 Gas Chromatography - Mass Spectrometry GC-MS ANALYSIS OF ETHANOL AND BENZENE IN GASOLINE Last updated: June 17, 2014 #12;GCMS - 2 Gas Chromatography - Mass Spectrometry GC-MS ANALYSIS). The goal of this experiment is to separate the components in a sample of gasoline using Gas Chromatography

Nizkorodov, Sergey

446

Static gas expansion cooler  

DOE Patents [OSTI]

Disclosed is a cooler for television cameras and other temperature sensitive equipment. The cooler uses compressed gas ehich is accelerated to a high velocity by passing it through flow passageways having nozzle portions which expand the gas. This acceleration and expansion causes the gas to undergo a decrease in temperature thereby cooling the cooler body and adjacent temperature sensitive equipment.

Guzek, J.C.; Lujan, R.A.

1984-01-01T23:59:59.000Z

447

Valve for gas centrifuges  

DOE Patents [OSTI]

The invention is pneumatically operated valve assembly for simulatenously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two on the lines so closed. The value assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

Hahs, C.A.; Rurbage, C.H.

1982-03-17T23:59:59.000Z

448

Flue gas desulfurization method and apparatus  

DOE Patents [OSTI]

A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse. 5 figs.

Madden, D.A.; Farthing, G.A.

1998-09-29T23:59:59.000Z

449

Flue gas desulfurization method and apparatus  

DOE Patents [OSTI]

A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse. 5 figs.

Madden, D.A.; Farthing, G.A.

1998-08-18T23:59:59.000Z

450

Assessment of the 296-S-21 Stack Sampling Probe Location  

SciTech Connect (OSTI)

Tests were performed to assess the suitability of the location of the air sampling probe on the 296-S-21 stack according to the criteria of ANSI N13.1-1999, Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stacks and Ducts of Nuclear Facilities. Pacific Northwest National Laboratory conducted most tests on a 3.67:1 scale model of the stack. CH2MHill also performed some limited confirmatory tests on the actual stack. The tests assessed the capability of the air-monitoring probe to extract a sample representative of the effluent stream. The tests were conducted for the practical combinations of operating fans and addressed: (1) Angular Flow--The purpose is to determine whether the velocity vector is aligned with the sampling nozzle. The average yaw angle relative to the nozzle axis should not be more than 20. The measured values ranged from 5 to 11 degrees on the scale model and 10 to 12 degrees on the actual stack. (2) Uniform Air Velocity--The gas momentum across the stack cross section where the sample is extracted should be well mixed or uniform. The uniformity is expressed as the variability of the measurements about the mean, the coefficient of variance (COV). The lower the COV value, the more uniform the velocity. The acceptance criterion is that the COV of the air velocity must be ?20% across the center two-thirds of the area of the stack. At the location simulating the sampling probe, the measured values ranged form 4 to 11%, which are within the criterion. To confirm the validity of the scale model results, air velocity uniformity measurements were made both on the actual stack and on the scale model at the test ports 1.5 stack diameters upstream of the sampling probe. The results ranged from 6 to 8% COV on the actual stack and 10 to 13% COV on the scale model. The average difference for the eight runs was 4.8% COV, which is within the validation criterion. The fact that the scale model results were slightly higher than the actual stack suggests that the other test results on the scale model are conservative relative to the actual stack. (3) Uniform Concentration of Tracer Gases--A uniform contaminant concentration in the sampling plane enables the extraction of samples that represent the true concentration. This was first tested using a tracer gas to represent gaseous effluents. The fan is a good mixer, so injecting the tracer downstream of the fans provides worst-case results. The acceptance criteria are that (1) the COV of the measured tracer gas concentration is ?20% across the center two-thirds of the sampling plane and (2) at no point in the sampling plane does the concentration vary from the mean by >30%. The results on the scale model at the point simulating the sampling probe ranged from 0.3 to 6 %COV, and the maximum single point deviation from the mean was -10%. (4) Uniform Concentration of Tracer Particles--Uniformity in contaminant concentration at the sampling probe was further demonstrated using tracer particles large enough to exhibit inertial effects. Particles of 10-?m aerodynamic diameter were used. The acceptance criterion is that the COV of particle concentration is ?20% across the center two-thirds of the sampling plane. The scale model results ranged form 2 to 9%. Based on these tests, the location of the air sampling probe on the 296-S-21 stack meets the requirements of the ANSI/HPS N13.1-1999 standard.

Glissmeyer, John A.

2006-09-08T23:59:59.000Z

451

Condensing Heating and Water Heating Equipment Workshop Location: Washington Gas Light Appliance Training Facility  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Codestheatfor Optimized9 *ConcentratingCondensing

452

Location of Natural Gas Production Facilities in the Gulf of Mexico  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year in Review1,213 136,422Year Jan FebYear Jan

453

Flue gas desulfurization  

DOE Patents [OSTI]

A process and apparatus for removing sulfur oxide from combustion gas to form Na.sub.2 SO.sub.4 and for reducing the harmful effects of Na.sub.2 SO.sub.4 on auxiliary heat exchangers in which a sodium compound is injected into the hot combustion gas forming liquid Na.sub.2 SO.sub.4 in a gas-gas reaction and the resultant gas containing Na.sub.2 SO.sub.4 is cooled to below about 1150.degree. K. to form particles of Na.sub.2 SO.sub.4 prior to contact with at least one heat exchanger with the cooling being provided by the recycling of combustion gas from a cooled zone downstream from the introduction of the cooling gas.

Im, Kwan H. (Lisle, IL); Ahluwalia, Rajesh K. (Clarendon Hills, IL)

1985-01-01T23:59:59.000Z

454

VCSEL fault location apparatus and method  

DOE Patents [OSTI]

An apparatus for locating a fault within an optical fiber is disclosed. The apparatus, which can be formed as a part of a fiber-optic transmitter or as a stand-alone instrument, utilizes a vertical-cavity surface-emitting laser (VCSEL) to generate a test pulse of light which is coupled into an optical fiber under test. The VCSEL is subsequently reconfigured by changing a bias voltage thereto and is used as a resonant-cavity photodetector (RCPD) to detect a portion of the test light pulse which is reflected or scattered from any fault within the optical fiber. A time interval .DELTA.t between an instant in time when the test light pulse is generated and the time the reflected or scattered portion is detected can then be used to determine the location of the fault within the optical fiber.

Keeler, Gordon A. (Albuquerque, NM); Serkland, Darwin K. (Albuquerque, NM)

2007-05-15T23:59:59.000Z

455

Gas Hydrate Storage of Natural Gas  

SciTech Connect (OSTI)

Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5) rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a lower heat transfer rate in the internal heat exchanger than was designed. It is believed that the fins on the heat-exchanger tubes did not make proper contact with the tubes transporting the chilled glycol, and pairs of fins were too close for interior areas of fins to serve as hydrate collection sites. A correction of the fabrication fault in the heat exchanger fin attachments could be easily made to provide faster formation rates. The storage success with the POC process provides valuable information for making the process an economically viable process for safe, aboveground natural-gas storage.

Rudy Rogers; John Etheridge

2006-03-31T23:59:59.000Z

456

Commodity/Vendor Purchasing Matrix Vendor Location  

E-Print Network [OSTI]

Commodity/Vendor Purchasing Matrix Commodity Vendor N am e and A ddress Vendor N am e in eVA Vendor sheets of paper and bring to business office for payment. Vendor Purchasing Matrix 090413 Page 1 of 4 #12;Commodity Vendor N am e and A ddress Vendor N am e in eVA Vendor Location in eVA PO C ategory eVA PO needed

Swaddle, John

457

Production management techniques for water-drive gas reservoirs. Field No. 2, offshore gulf coast over-pressured, dry gas reservoirs. Topical report, July 1993  

SciTech Connect (OSTI)

An investigation of reservoir management strategies for optimization of ultimate hydrocarbon recovery and net present value from an overpressured, high yield gas condensate reservoir with water influx is reported. This field evaluation was based on a reservoir simulation. Volumetric and performance-derived original gas-in-place estimates did not agree: the performance-derived values were significantly lower than those predicted from volumetric analysis. Predicted field gas recovery was improved significantly by methods which accelerated gas withdrawals. Recovery was also influenced by well location. Accelerated withdrawals from wells near the aquifer tended to reduce sweep by cusping and coning water. This offset any benefits of increased gas rates.

Jones, R.E.; Jirik, L.A.; Hower, T.L.

1993-07-01T23:59:59.000Z

458

JACQ: "4316_c034" --2006/10/12 --12:18 --page 1 --#1 34Evapotranspirative  

E-Print Network [OSTI]

, and controlling landfill gas release. In addition, the cover should remain stable under static and seismic

Zornberg, Jorge G.

459

Manuscript prepared for Atmos. Chem. Phys. with version 3.0 of the LATEX class copernicus.cls.  

E-Print Network [OSTI]

landfill gas. Therefore, we would expect the estimates made using the waste statistics to be roughly

Meskhidze, Nicholas

460

Renewable Portfolio Standards in the United States - A Status Report with Data Through 2007  

E-Print Network [OSTI]

biodiesel; biomass; landfill gas; ethanol; non-fossil-fueled fuel cells; zero-emissions generation technology;

Wiser, Ryan

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "landfill gas location" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

A survey of state clean energy fund support for biomass  

E-Print Network [OSTI]

ocean thermal energy, wave or tidal energy, fuel cells, landfill gas, hydrogen production and hydrogen conversion

Fitzgerald, Garrett; Bolinger, Mark; Wiser, Ryan

2004-01-01T23:59:59.000Z

462

Fractal Location and Anomalous Diffusion Dynamics for Oil Wells from the KY Geological Survey  

E-Print Network [OSTI]

Utilizing data available from the Kentucky Geonet (KYGeonet.ky.gov) the fossil fuel mining locations created by the Kentucky Geological Survey geo-locating oil and gas wells are mapped using ESRI ArcGIS in Kentucky single plain 1602 ft projection. This data was then exported into a spreadsheet showing latitude and longitude for each point to be used for modeling at different scales to determine the fractal dimension of the set. Following the porosity and diffusivity studies of Tarafdar and Roy1 we extract fractal dimensions of the fossil fuel mining locations and search for evidence of scaling laws for the set of deposits. The Levy index is used to determine a match to a statistical mechanically motivated generalized probability function for the wells. This probability distribution corresponds to a solution of a dynamical anomalous diffusion equation of fractional order that describes the Levy paths which can be solved in the diffusion limit by the Fox H function ansatz.

Andrew, Keith; Andrew, Kevin A

2009-01-01T23:59:59.000Z

463

RESIDENTIAL LOCATION CHOICE AND TRAVEL BEHAVIOR: IMPLICATIONS FOR AIR QUALITY  

E-Print Network [OSTI]

RESIDENTIAL LOCATION CHOICE AND TRAVEL BEHAVIOR: IMPLICATIONS FOR AIR QUALITY UC Davis-Caltrans Air control measure. #12;RESIDENTIAL LOCATION CHOICE AND TRAVEL BEHAVIOR: IMPLICATIONS FOR AIR QUALITY.......................................................... 3 2.2 The Role of Residential Location Choice

Levinson, David M.

464

Carbon sequestration in natural gas reservoirs: Enhanced gas recovery and natural gas storage  

E-Print Network [OSTI]

gas reservoirs for carbon sequestration and enhanced gasproduction and carbon sequestration, Society of Petroleumfeasibiilty of carbon sequestration with enhanced gas

Oldenburg, Curtis M.

2003-01-01T23:59:59.000Z

465

Flue gas desulfurization  

DOE Patents [OSTI]

The invention involves a combustion process in which combustion gas containing sulfur oxide is directed past a series of heat exchangers to a stack and in which a sodium compound is added to the combustion gas in a temparature zone of above about 1400 K to form Na/sub 2/SO/sub 4/. Preferably, the temperature is above about 1800 K and the sodium compound is present as a vapor to provide a gas-gas reaction to form Na/sub 2/SO/sub 4/ as a liquid. Since liquid Na/sub 2/SO/sub 4/ may cause fouling of heat exchanger surfaces downstream from the combustion zone, the process advantageously includes the step of injecting a cooling gas downstream of the injection of the sodium compound yet upstream of one or more heat exchangers to cool the combustion gas to below about 1150 K and form solid Na/sub 2/SO/sub 4/. The cooling gas is preferably a portion of the combustion gas downstream which may be recycled for cooling. It is further advantageous to utilize an electrostatic precipitator downstream of the heat exchangers to recover the Na/sub 2/SO/sub 4/. It is also advantageous in the process to remove a portion of the combustion gas cleaned in the electrostatic precipitator and recycle that portion upstream to use as the cooling gas. 3 figures.

Im, K.H.; Ahluwalia, R.K.

1984-05-01T23:59:59.000Z

466

New model adds precision to gas-lift design  

SciTech Connect (OSTI)

Conoco Inc.'s new analytical technique for lift-gas allocation identifies, in one-pass, injection rates and the achievable mandrel location for injection. Current gas-lift allocation techniques do not determine production rates for discrete mandrel locations. Allocation rates for particular wells are made on the basis of a fixed differential pressure. When actual mandrel locations are superimposed on these solutions, gas often must be reallocated. The advantages of the new technique include: determining the transfer capability of the gas-lift valve in each mandrel; finding valve pressure drop as a function of injection gas rate; obtaining a more realistic response curve. Another potential benefit is that the response curve can be adjusted to reflect the water cut and/or multizone completion effects at different injection depths. Because the node is at the mandrel, the inflow performance relationship (IPR) at that depth can easily be adjusted to include such effects. The paper describes gas-lift applications; response curves; injection depth; field-wide curves; the mandrel curve; and valve design.

Kendrick, R.A. (Hampton Resources Inc., Houston, TX (United States)); Woodyard, A.H.; Hall, J.W. (Conoco Inc., Houston, TX (United States))

1993-05-03T23:59:59.000Z

467

PARSII - New Reports and Reports With New Reporting Folder Location...  

Energy Savers [EERE]

- New Reports and Reports With New Reporting Folder Location More Documents & Publications PARSII - New Reports and Reports With New Reporting Folder Location Slide 1 Slide 1...

468

CX-000694: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Pennsylvania - Economic Development Authority Sustainable Business Recovery: Expansion of Landfill Gas-to-Energy Facility (Southeastern Chester County Refuse Authority)CX(s) Applied: B1.15, B1.24, B1.31, B5.1Date: 12/30/2009Location(s): Chester County, PennsylvaniaOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

469

CX-001668: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

City of El Paso Landfill Gas Recovery Project American Recovery and Reinvestment Act (ARRA) - Energy Efficiency and Conservation Block Grant (EECBG)CX(s) Applied: B5.1Date: 04/09/2010Location(s): El Paso, TexasOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

470

CX-001896: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

State Energy Program (SEP) American Recovery and Reinvestment Act (ARRA) Renewable Energy Enterprise Zones (REEZ) Kootenai County Landfill Gas ProjectCX(s) Applied: B4.11, B5.1Date: 03/02/2010Location(s): Kootenai County,IdahoOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

471

CX-000971: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

City of Martinsville Landfill Gas to Electricity ProjectCX(s) Applied: B1.13, B1.15, B5.1Date: 02/19/2010Location(s): Martinsville, VirginiaOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

472

CX-000013: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

H.W. Hill/Roosevelt Landfill Gas Generation Expansion Project (#I0019 and #G0335)CX(s) Applied: B1.7, B4.6Date: 12/02/2009Location(s): Klickitat County, WashingtonOffice(s): Bonneville Power Administration

473

CX-004310: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Commercial Renewable Energy Systems - Watauga County Landfill Gas to EnergyCX(s) Applied: A9, B1.15, B5.1Date: 11/01/2010Location(s): Watauga County, North CarolinaOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

474

CX-001900: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

State Energy Program (SEP) American Recovery and Reinvestment Act (ARRA) Renewable Energy Enterprise Zone (REEZ) Milner Butte Landfill Gas ProjectCX(s) Applied: B5.1Date: 03/02/2010Location(s): Burley, IdahoOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

475

CX-004027: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

State Energy Program - Cedar Rapids Linn County Solid Waste Agency Landfill Gas Cogeneration ProjectCX(s) Applied: B5.1Date: 10/08/2010Location(s): Cedar Rapids, IowaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

476

CX-004245: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Clean Green Investment Initiatives market title - BMW Landfill Gas to HydrogenCX(s) Applied: B1.24, B5.1Date: 10/18/2010Location(s): Spartanburg, South CarolinaOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

477

Gas shielding apparatus  

DOE Patents [OSTI]

An apparatus for preventing oxidation by uniformly distributing inert shielding gas over the weld area of workpieces such as pipes being welded together. The apparatus comprises a chamber and a gas introduction element. The chamber has an annular top wall, an annular bottom wall, an inner side wall and an outer side wall connecting the top and bottom walls. One side wall is a screen and the other has a portion defining an orifice. The gas introduction element has a portion which encloses the orifice and can be one or more pipes. The gas introduction element is in fluid communication with the chamber and introduces inert shielding gas into the chamber. The inert gas leaves the chamber through the screen side wall and is dispersed evenly over the weld area.

Brandt, D.

1984-06-05T23:59:59.000Z

478

Location of laccase in ordered mesoporous materials  

SciTech Connect (OSTI)

The functionalization with amine groups was developed on the SBA-15, and its effect in the laccase immobilization was compared with that of a Periodic Mesoporous Aminosilica. A method to encapsulate the laccase in situ has now been developed. In this work, spherical aberration (C{sub s}) corrected scanning transmission electron microscopy combined with high angle annular dark field detector and electron energy loss spectroscopy were applied to identify the exact location of the enzyme in the matrix formed by the ordered mesoporous solids.

Mayoral, Álvaro [Laboratorio de Microscopias Avanzadas, Instituto de Nanociencia de Aragon, Universidad de Zaragoza, Edificio I - D, Mariano Esquillor, 50018 Zaragoza (Spain); Gascón, Victoria; Blanco, Rosa M.; Márquez-Álvarez, Carlos; Díaz, Isabel, E-mail: idiaz@icp.csic.es [Instituto de Catálisis y Petroleoquímica, CSIC, c/Marie Curie 2, 28049 Madrid (Spain)

2014-11-01T23:59:59.000Z

479

Property:UtilityLocation | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration JumpSanyalTempWellhead Jump to:TechnologyUtilityLocation Jump to:

480

Valve for gas centrifuges  

DOE Patents [OSTI]

The invention is a pneumatically operated valve assembly for simultaneously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two of the lines so closed. The valve assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

Hahs, Charles A. (Oak Ridge, TN); Burbage, Charles H. (Oak Ridge, TN)

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "landfill gas location" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Thermodynamics of Chaplygin gas  

E-Print Network [OSTI]

We clarify thermodynamics of the Chaplygin gas by introducing the integrability condition. All thermal quantities are derived as functions of either volume or temperature. Importantly, we find a new general equation of state, describing the Chaplygin gas completely. We confirm that the Chaplygin gas could show a unified picture of dark matter and energy which cools down through the universe expansion without any critical point (phase transition).

Yun Soo Myung

2011-05-11T23:59:59.000Z

482

aeo2010r.d111809a",2007,2008,2009,2010,2011,2012,2013,2014,2015...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

hydrothermal resources only (hot water and steam)." ," 3 Includes municipal waste, landfill gas, and municipal sewage sludge. Incremental growth is assumed" ,"to be for landfill...

483

An overview of the sustainability of solid waste management at military installations  

E-Print Network [OSTI]

gas collection for energy production. Some landfills areflared or used for energy production Page | 13 Landfills areand is not longer usable for energy production. Substantial

Borglin, S.

2010-01-01T23:59:59.000Z

484

Ammonia synthesis gas purification  

SciTech Connect (OSTI)

This patent describes the purification of a reformed gas mixture following water gas shift conversion to produce a purified ammonia synthesis gas stream. The improved processing sequence consisting essentially of: (A) Selectively catalytically oxidizing the residual carbon monoxide content of the gas mixture to carbon dioxide so as to reduce the carbon monoxide content of the gas mixture to less than about 20 ppm, the selective catalytic oxidation being carried out with an excess of air, with the excess oxygen being catalytically reacted with a small amount of hydrogen so that the residual oxygen level is reduced to less than about 3 ppm; (B) removing the bulk of the carbon dioxide content of the gas mixture by liquid absorption; (C) Removing residual amounts of carbon monoxide, carbon dioxide and water by selective adsorption on the fixed beds of a thermal swing adsorption system, a dry, purified ammonia ammonia synthesis gas stream containing less than a total of 10 ppm of carbon monoxide and carbon dioxide being recovered from the thermal swing adsorption system; (D) Passing the resulting dry, purified ammonia synthesis gas stream having a low content of methane to an ammonia production operation without intermediate passage of the ammonia synthesis gas stream to a methanation unit or to a cryogenic unit for removal of carbon monoxide and carbon dioxide therefrom; whereby the efficiency of the overall purification operation and the effective utilization of hydrogen are enhanced.

Fuderer, A.

1986-02-25T23:59:59.000Z

485

Liquefied Natural Gas (Iowa)  

Broader source: Energy.gov [DOE]

This document adopts the standards promulgated by the National Fire Protection Association as rules for the transportation, storage, handling, and use of liquefied natural gas. The NFPA standards...

486

Reversible Acid Gas Capture  

ScienceCinema (OSTI)

Pacific Northwest National Laboratory scientist David Heldebrant demonstrates how a new process called reversible acid gas capture works to pull carbon dioxide out of power plant emissions.

Dave Heldebrant

2012-12-31T23:59:59.000Z

487

Natural Gas Rules (Louisiana)  

Broader source: Energy.gov [DOE]

The Louisiana Department of Natural Resources administers the rules that govern natural gas exploration and extraction in the state. DNR works with the Louisiana Department of Environmental...

488

String Gas Baryogenesis  

E-Print Network [OSTI]

We describe a possible realization of the spontaneous baryogenesis mechanism in the context of extra-dimensional string cosmology and specifically in the string gas scenario.

G. L. Alberghi

2010-02-19T23:59:59.000Z

489

Polyport atmospheric gas sampler  

DOE Patents [OSTI]

An atmospheric gas sampler with a multi-port valve which allows for multi, sequential sampling of air through a plurality of gas sampling tubes mounted in corresponding gas inlet ports. The gas sampler comprises a flow-through housing which defines a sampling chamber and includes a gas outlet port to accommodate a flow of gases through the housing. An apertured sample support plate defining the inlet ports extends across and encloses the sampling chamber and supports gas sampling tubes which depend into the sampling chamber and are secured across each of the inlet ports of the sample support plate in a flow-through relation to the flow of gases through the housing during sampling operations. A normally closed stopper means mounted on the sample support plate and operatively associated with each of the inlet ports blocks the flow of gases through the respective gas sampling tubes. A camming mechanism mounted on the sample support plate is adapted to rotate under and selectively lift open the stopper spring to accommodate a predetermined flow of gas through the respective gas sampling tubes when air is drawn from the housing through the outlet port.

Guggenheim, S. Frederic (Teaneck, NJ)

1995-01-01T23:59:59.000Z

490

,"Colorado Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Prices",8,"Monthly","112014","1151989" ,"Release Date:","1302015"...

491

Oil and Gas (Indiana)  

Broader source: Energy.gov [DOE]

This division of the Indiana Department of Natural Resources provides information on the regulation of oil and gas exploration, wells and well spacings, drilling, plugging and abandonment, and...

492

Oil and Gas Outlook  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gas Outlook For Independent Petroleum Association of America November 13, 2014 | Palm Beach, FL By Adam Sieminski, Administrator U.S. Energy Information Administration Recent...

493

Natural gas annual 1997  

SciTech Connect (OSTI)

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1997 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1993 to 1997 for each Census Division and each State. Annual historical data are shown at the national level. 27 figs., 109 tabs.

NONE

1998-10-01T23:59:59.000Z

494

Gas venting system  

DOE Patents [OSTI]

A system to vent a moist gas stream is disclosed. The system includes an enclosure and an electrochemical cell disposed within the enclosure, the electrochemical cell productive of the moist gas stream. A first vent is in fluid communication with the electrochemical cell for venting the moist gas stream to an exterior of the enclosure, and a second vent is in fluid communication with an interior of the enclosure and in thermal communication with the first vent for discharging heated air to the exterior of the enclosure. At least a portion of the discharging heated air is for preventing freezing of the moist gas stream within the first vent.

Khan, Amjad; Dreier, Ken Wayne; Moulthrop, Lawrence Clinton; White, Erik James

2010-06-29T23:59:59.000Z

495

Development of a natural Gas Systems Analysis Model (GSAM)  

SciTech Connect (OSTI)

Recent dramatic changes in natural gas markets have significant implications for the scope and direction of DOE`s upstream as well as downstream natural gas R&D. Open access transportation changes the way gas is bought and sold. The end of the gas deliverability surplus requires increased reserve development above recent levels. Increased gas demand for power generation and other new uses changes the overall demand picture in terms of volumes, locations and seasonality. DOE`s Natural Gas Strategic Plan requires that its R&D activities be evaluated for their ability to provide adequate supplies of reasonably priced gas. Potential R&D projects are to be evaluated using a full fuel cycle, benefit-cost approach to estimate likely market impact as well as technical success. To assure R&D projects are evaluated on a comparable basis, METC has undertaken the development of a comprehensive natural gas technology evaluation framework. Existing energy systems models lack the level of detail required to estimate the impact of specific upstream natural gas technologies across the known range of geological settings and likely market conditions. Gas Systems Analysis Model (GSAM) research during FY 1993 developed and implemented this comprehensive, consistent natural gas system evaluation framework. Rather than a isolated research activity, however, GSAM represents the integration of many prior and ongoing natural gas research efforts. When complete, it will incorporate the most current resource base description, reservoir modeling, technology characterization and other geologic and engineering aspects developed through recent METC and industry gas R&D programs.

Godec, M.; Haas, M.; Pepper, W.; Rose, J.

1993-12-31T23:59:59.000Z

496

Underground gas storage in New York State: A historical perspective  

SciTech Connect (OSTI)

New York State has a long history of underground gas storage activity that began with conversion of the Zoar gas field into a storage reservoir in 1916, the first in the United States. By 1961 another fourteen storage fields were developed and seven more were added between 1970 and 1991. All twenty-two operating storage reservoirs of New York were converted from depleted gas fields and are of low-deliverability, base-load type. Nineteen of these are in sandstone reservoirs of the Lower Silurian Medina Group and the Lower Devonian Oriskany Formation and three in limestone reservoirs are located in the gas producing areas of southwestern New York and are linked to the maj