Sample records for land-based carbon projects

  1. Permanence Discounting for Land-Based Carbon Sequestration Man-Keun Kim

    E-Print Network [OSTI]

    McCarl, Bruce A.

    Permanence Discounting for Land-Based Carbon Sequestration By Man-Keun Kim Post Doctoral Fellow Discounting for Land-Based Carbon Sequestration 1. Introduction Land-based soil carbon sequestration has been explored the potential of land-based carbon sequestration strategies in the US such as afforestation

  2. Uncertainty Discounting for Land-Based Carbon Sequestration Man-Keun Kim

    E-Print Network [OSTI]

    McCarl, Bruce A.

    1 Uncertainty Discounting for Land-Based Carbon Sequestration By Man-Keun Kim Post Doctoral Fellow Discounting for Land-Based Carbon Sequestration Abstract The effect of various stochastic factors like weather% to 10% for the East Texas region. #12;3 Uncertainty Discounting for Land-Based Carbon Sequestration 1

  3. Manual for Social Impact Assessment of Land-Based Carbon Projects | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowellis a town in CarrollManteca,Change | Open EnergyEnergy

  4. Carbon Code Requirements for voluntary carbon sequestration projects

    E-Print Network [OSTI]

    Woodland Carbon Code Requirements for voluntary carbon sequestration projects ® Version 1.2 July trademark 10 3. Carbon sequestration 11 3.1 Units of carbon calculation 11 3.2 Carbon baseline 11 3.3 Carbon leakage 12 3.4 Project carbon sequestration 12 3.5 Net carbon sequestration 13 4. Environmental quality 14

  5. Project Profile: Direct Supercritical Carbon Dioxide Receiver...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carbon Dioxide Receiver Development Project Profile: Direct Supercritical Carbon Dioxide Receiver Development National Renewable Energy Laboratory logo The National...

  6. World's Largest Post-Combustion Carbon Capture Project Begins...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    World's Largest Post-Combustion Carbon Capture Project Begins Construction World's Largest Post-Combustion Carbon Capture Project Begins Construction July 15, 2014 - 9:55am Addthis...

  7. Carbon Disclosure Project Webinar: Climate Change: A Challenge...

    Energy Savers [EERE]

    Carbon Disclosure Project Webinar: Climate Change: A Challenge for Bond Analysts Carbon Disclosure Project Webinar: Climate Change: A Challenge for Bond Analysts April 8, 2015...

  8. Geologic Carbon Storage Archived Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky Learning FunNeuTel2011 Venezia, Italia ResultsGeography ofCarbon

  9. EA-1616: National Carbon Research Center Project at Southern...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    616: National Carbon Research Center Project at Southern Company Services' Power Systems Development Facility near Wilsonville, Alabama EA-1616: National Carbon Research Center...

  10. Forestry-based Carbon Sequestration Projects in Africa: Potential...

    Open Energy Info (EERE)

    Forestry-based Carbon Sequestration Projects in Africa: Potential benefits and challenges Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Forestry-based Carbon...

  11. Shallow Carbon Sequestration Demonstration Project

    SciTech Connect (OSTI)

    Pendergrass, Gary; Fraley, David; Alter, William; Bodenhamer, Steven

    2013-09-30T23:59:59.000Z

    The potential for carbon sequestration at relatively shallow depths was investigated at four power plant sites in Missouri. Exploratory boreholes were cored through the Davis Shale confining layer into the St. Francois aquifer (Lamotte Sandstone and Bonneterre Formation). Precambrian basement contact ranged from 654.4 meters at the John Twitty Energy Center in Southwest Missouri to over 1100 meters near the Sioux Power Plant in St. Charles County. Investigations at the John Twitty Energy Center included 3D seismic reflection surveys, downhole geophysical logging and pressure testing, and laboratory analysis of rock core and water samples. Plans to perform injectivity tests at the John Twitty Energy Center, using food grade CO{sub 2}, had to be abandoned when the isolated aquifer was found to have very low dissolved solids content. Investigations at the Sioux Plant and Thomas Hill Energy Center in Randolph County found suitably saline conditions in the St. Francois. A fourth borehole in Platte County was discontinued before reaching the aquifer. Laboratory analyses of rock core and water samples indicate that the St. Charles and Randolph County sites could have storage potentials worthy of further study. The report suggests additional Missouri areas for further investigation as well.

  12. SkyMine Carbon Mineralization Pilot Project

    SciTech Connect (OSTI)

    Christenson, Norm; Walters, Jerel

    2014-12-31T23:59:59.000Z

    This Topical Report addresses accomplishments achieved during Phase 2b of the SkyMine® Carbon Mineralization Pilot Project. The primary objectives of this project are to design, construct, and operate a system to capture CO2 from a slipstream of flue gas from a commercial coal-fired cement kiln, convert that CO2 to products having commercial value (i.e., beneficial use), show the economic viability of the CO2 capture and conversion process, and thereby advance the technology to the point of readiness for commercial scale demonstration and deployment. The overall process is carbon negative, resulting in mineralization of CO2 that would otherwise be released into the atmosphere. The project will also substantiate market opportunities for the technology by sales of chemicals into existing markets, and identify opportunities to improve technology performance and reduce costs at the commercial scale. The project is being conducted in two phases. The primary objectives of Phase 1 were to evaluate proven SkyMine® process chemistry for commercial pilot-scale operation and complete the preliminary design for the pilot plant to be built and operated in Phase 2, complete a NEPA evaluation, and develop a comprehensive carbon life cycle analysis. The objective of Phase 2b was to build the pilot plant to be operated and tested in Phase 2c.

  13. Assessment Of Carbon Leakage In Multiple Carbon-Sink Projects: A Case Study In Jambi Province, Indonesia

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    LBNL-61463 Assessment Of Carbon LeakageIn Multiple Carbon-Sink Projects: A Case Study In Jambithrough implementation of carbon sink projects can increase

  14. SkyMine Carbon Mineralization Pilot Project

    SciTech Connect (OSTI)

    Joe Jones; Clive Barton; Mark Clayton; Al Yablonsky; David Legere

    2010-09-30T23:59:59.000Z

    This Topical Report addresses accomplishments achieved during Phase 1 of the SkyMine{reg_sign} Carbon Mineralization Pilot Project. The primary objectives of this project are to design, construct, and operate a system to capture CO{sub 2} from a slipstream of flue gas from a commercial coal-fired cement kiln, convert that CO{sub 2} to products having commercial value (i.e., beneficial use), show the economic viability of the CO{sub 2} capture and conversion process, and thereby advance the technology to a point of readiness for commercial scale demonstration and proliferation. The project will also substantiate market opportunities for the technology by sales of chemicals into existing markets, and identify opportunities to improve technology performance and reduce costs at commercial scale. The primary objectives of Phase 1 of the project were to elaborate proven SkyMine{reg_sign} process chemistry to commercial pilot-scale operation and complete the preliminary design ('Reference Plant Design') for the pilot plant to be built and operated in Phase 2. Additionally, during Phase 1, information necessary to inform a DOE determination regarding NEPA requirements for the project was developed, and a comprehensive carbon lifecycle analysis was completed. These items were included in the formal application for funding under Phase 2. All Phase 1 objectives were successfully met on schedule and within budget.

  15. The consequences of failure should be considered in siting geologic carbon sequestration projects

    E-Print Network [OSTI]

    Price, P.N.

    2009-01-01T23:59:59.000Z

    2007. Geologic Carbon Sequestration Strategies forfor carbon capture and sequestration. Environmental Sciencein Siting Geologic Carbon Sequestration Projects Phillip N.

  16. Lake Charles Carbon Capture and Sequestration Project U. S. Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lake Charles Carbon Capture and Sequestration Project U. S. Department of Energy National Energy Technology Laboratory March 2014 1 INTRODUCTION The United States (U.S.) Department...

  17. PROJECT GOALS This project involved the development of the first Carbon

    E-Print Network [OSTI]

    emissions, which will in turn allow prioritisation of actions to reduce the ANU carbon footprint. TYPEPROJECT GOALS This project involved the development of the first Carbon Emissions Inventory report and master Excel spreadsheet Figure 1: ANU Carbon Emission by Category (t CO2e) DESCRIPTION

  18. Blue carbon storage potential of marine carbonate deposits Project reference IAP/13/50. Please quote this reference when applying.

    E-Print Network [OSTI]

    Guo, Zaoyang

    IAPETUS Blue carbon storage potential of marine carbonate deposits Project reference IAP/13 Henrik Stahl, Scottish Association for Marine Science Key Words 1. Blue carbon 2. Carbonate 3. Coralline is referred to as `blue carbon' to differentiate it from terrestrial carbon stores. Known blue carbon sinks

  19. Ownership of Carbon Dioxide Captured by Clean Coal Project (Texas)

    Broader source: Energy.gov [DOE]

    This legislation stipulates that the Railroad Commission of Texas automatically acquires the title to any carbon dioxide captured by a clean coal project in the state. The Bureau of Economic...

  20. SWAMP Project Trip report Quantification of Carbon Stocks and Emissions

    E-Print Network [OSTI]

    Tullos, Desiree

    1 SWAMP Project Trip report Quantification of Carbon Stocks and Emissions from the Mangrove Forests University Corvallis, Oregon, USA. #12;2 1. Introduction Funding for this project came from a grant, Washington DC. This intensive study is part of the Sustainable Wetlands Adaptation and Mitigation Program

  1. Project Profile: Carbon Dioxide Shuttling Thermochemical Storage...

    Office of Environmental Management (EM)

    energy generation by driving the cost towards 0.06kWh through the use of thermochemical energy storage (TCES). The project uses inexpensive, safe, and non-corrosive...

  2. Capture of Carbon Dioxide Archived Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation Sites Proposed Route BTRICGEGR-N-Capture of Carbon Dioxide Archived

  3. ARM - Field Campaign - ARM LBNL Carbon Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,JuneMayIII ARMgovCampaignsARM LBNL Carbon

  4. Assessment Of Carbon Leakage In Multiple Carbon-Sink Projects: ACase Study In Jambi Province, Indonesia

    SciTech Connect (OSTI)

    Boer, Rizaldi; Wasrin, Upik R.; Hendri, Perdinan; Dasanto,Bambang D.; Makundi, Willy; Hero, Julius; Ridwan, M.; Masripatin, Nur

    2007-06-01T23:59:59.000Z

    Rehabilitation of degraded forest land throughimplementation of carbon sink projects can increase terrestrial carbonstock. However, carbon emissions outside the project boundary, which iscommonly referred to as leakage, may reduce or negate the sequestrationbenefits. This study assessed leakage from carbon sink projects thatcould potentially be implemented in the study area comprised of elevensub-districts in the Batanghari District, Jambi Province, Sumatra,Indonesia. The study estimates the probability of a given land use/coverbeing converted into other uses/cover, by applying a logit model. Thepredictor variables were: proximity to the center of the land use area,distance to transportation channel (road or river), area of agriculturalland, unemployment (number of job seekers), job opportunities, populationdensity and income. Leakage was estimated by analyzing with and withoutcarbon sink projects scenarios. Most of the predictors were estimated asbeing significant in their contribution to land use cover change. Theresults of the analysis show that leakage in the study area can be largeenough to more than offset the project's carbon sequestration benefitsduring the period 2002-2012. However, leakage results are very sensitiveto changes of carbon density of the land uses in the study area. Byreducing C-density of lowland and hill forest by about 10 percent for thebaseline scenario, the leakage becomes positive. Further data collectionand refinement is therefore required. Nevertheless, this study hasdemonstrated that regional analysis is a useful approach to assessleakage.

  5. Biorefinery and Carbon Cycling Research Project

    SciTech Connect (OSTI)

    Das, K. C., Adams; Thomas, T; Eiteman, Mark A; Kastner, James R; Mani, Sudhagar; Adolphson, Ryan

    2012-06-08T23:59:59.000Z

    In this project we focused on several aspects of technology development that advances the formation of an integrated biorefinery. These focus areas include: [ 1] pretreatment of biomass to enhance quality of products from thermochemical conversion; [2] characterization of and development of coproduct uses; [3] advancement in fermentation of lignocellulosics and particularly C5 and C6 sugars simultaneously, and [ 4] development of algal biomass as a potential substrate for the biorefinery. These advancements are intended to provide a diverse set of product choices within the biorefinery, thus improving the cost effectiveness of the system. Technical effectiveness was demonstrated in the thermochemical product quality in the form of lower tar production, simultaneous of use of multiple sugars in fermentation, use ofbiochar in environmental (ammonia adsorption) and agricultural applications, and production of algal biomass in wastewaters. Economic feasibility of algal biomass production systems seems attractive, relative to the other options. However, further optimization in all paths, and testing/demonstration at larger scales are required to fully understand the economic viabilities. The coproducts provide a clear picture that multiple streams of value can be generated within an integrated biorefinery, and these include fuels and products.

  6. Mountaineer Commerical Scale Carbon Capture and Storage (CCS) Project

    SciTech Connect (OSTI)

    Deanna Gilliland; Matthew Usher

    2011-12-31T23:59:59.000Z

    The Final Technical documents all work performed during the award period on the Mountaineer Commercial Scale Carbon Capture & Storage project. This report presents the findings and conclusions produced as a consequence of this work. As identified in the Cooperative Agreement DE-FE0002673, AEP's objective of the Mountaineer Commercial Scale Carbon Capture and Storage (MT CCS II) project is to design, build and operate a commercial scale carbon capture and storage (CCS) system capable of treating a nominal 235 MWe slip stream of flue gas from the outlet duct of the Flue Gas Desulfurization (FGD) system at AEP's Mountaineer Power Plant (Mountaineer Plant), a 1300 MWe coal-fired generating station in New Haven, WV. The CCS system is designed to capture 90% of the CO{sub 2} from the incoming flue gas using the Alstom Chilled Ammonia Process (CAP) and compress, transport, inject and store 1.5 million tonnes per year of the captured CO{sub 2} in deep saline reservoirs. Specific Project Objectives include: (1) Achieve a minimum of 90% carbon capture efficiency during steady-state operations; (2) Demonstrate progress toward capture and storage at less than a 35% increase in cost of electricity (COE); (3) Store CO{sub 2} at a rate of 1.5 million tonnes per year in deep saline reservoirs; and (4) Demonstrate commercial technology readiness of the integrated CO{sub 2} capture and storage system.

  7. Special Issue On Estimation Of Baselines And Leakage In Carbon Mitigation Forestry Projects

    E-Print Network [OSTI]

    Sathaye, Jayant A.; Andrasko, Kenneth

    2008-01-01T23:59:59.000Z

    In Carbon Mitigation Forestry Projects Jayant A. Sathaye*,climate change. Interest in forestry mitigation activitiesled to the inclusion of forestry practices at the project

  8. Author's personal copy Risks to forest carbon offset projects in a changing climate

    E-Print Network [OSTI]

    Jackson, Robert B.

    Author's personal copy Review Risks to forest carbon offset projects in a changing climate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2212 4.2. Management techniques to maximize carbon storage 1 December 2008 Received in revised form 9 March 2009 Accepted 10 March 2009 Keywords: Carbon

  9. EA-1898: Southwest Regional Partnership on Carbon Sequestration Phase III Gordon Creek Project near Price, Utah in Carbon County

    Broader source: Energy.gov [DOE]

    This EA will evaluate the environmental impacts of a proposal for Phase III field deployment to demonstrate commercial-scale carbon storage technologies.This Phase III large-scale carbon dioxide injection project will combine science and engineering from many disciplines to successfully sequester and monitor carbon storage. [NOTE: This EA has been cancelled].

  10. PROJECT GOALS To establish a Carbon Offset Fund that will strategically

    E-Print Network [OSTI]

    PROJECT GOALS To establish a Carbon Offset Fund that will strategically invest in projects options, developments in the National Greenhouse and Energy Reporting System, National Carbon Off-Set emissions through the Carbon Off-Set Fund. This is an opportunity for Australia's national university to set

  11. PUBLISHED ONLINE: XX MONTH XXXX | DOI: 10.1038/NCLIMATE1951 Global soil carbon projections are improved by

    E-Print Network [OSTI]

    German, Donovan P.

    Society relies on Earth system models (ESMs) to project future climate and carbon cycle feedbacks. However

  12. PUBLISHED ONLINE: 28 JULY 2013 | DOI: 10.1038/NCLIMATE1951 Global soil carbon projections are improved by

    E-Print Network [OSTI]

    Saleska, Scott

    Society relies on Earth system models (ESMs) to project future climate and carbon (C) cycle feedbacks

  13. DOE Publishes Best Practices Manual for Public Outreach and Education for Carbon Storage Projects

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Regional Carbon Sequestration Partnerships program has released a new manual to recommend best practices for public outreach and education for carbon dioxide storage projects.

  14. United States- Land Based and Offshore Annual Average Wind Speed at 100 Meters

    Broader source: Energy.gov [DOE]

    Full-size, high resolution version of the 100-meter land-based and offshore wind speed resource map.

  15. Carbon Capture and Storage FutureGen 2.0 Project Moves Forward...

    Broader source: Energy.gov (indexed) [DOE]

    Capture and Storage FutureGen 2.0 Project Moves Forward Into Second Phase Carbon Capture and Storage FutureGen 2.0 Project Moves Forward Into Second Phase February 4, 2013 - 7:25pm...

  16. Carbon Stocks and Projections on Public Forestlands in the United States, 19522040

    E-Print Network [OSTI]

    ARTICLES Carbon Stocks and Projections on Public Forestlands in the United States, 1952­2040 JAMES are publicly owned; they represent a substantial area of potential carbon sequestration in US for- ests inventoried than privately owned forests. Thus, less information is avail- able about their role as carbon

  17. Carbon Mitigation The goal of this project is to identify and develop standards and

    E-Print Network [OSTI]

    Magee, Joseph W.

    viable carbon capture and sequestration (CCS) technologies depend upon the added cost of generatingCarbon Mitigation CERAMICS The goal of this project is to identify and develop standards and measurement methods currently needed by the energy industry to enable the development of cost efficient carbon

  18. Validation and Comparison of Carbon Sequestration Project Cost Models with Project Cost Data Obtained from the Southwest Partnership

    SciTech Connect (OSTI)

    Robert Lee; Reid Grigg; Brian McPherson

    2011-04-15T23:59:59.000Z

    Obtaining formal quotes and engineering conceptual designs for carbon dioxide (CO{sub 2}) sequestration sites and facilities is costly and time-consuming. Frequently, when looking at potential locations, managers, engineers and scientists are confronted with multiple options, but do not have the expertise or the information required to quickly obtain a general estimate of what the costs will be without employing an engineering firm. Several models for carbon compression, transport and/or injection have been published that are designed to aid in determining the cost of sequestration projects. A number of these models are used in this study, including models by J. Ogden, MIT's Carbon Capture and Sequestration Technologies Program Model, the Environmental Protection Agency and others. This report uses the information and data available from several projects either completed, in progress, or conceptualized by the Southwest Regional Carbon Sequestration Partnership on Carbon Sequestration (SWP) to determine the best approach to estimate a project's cost. The data presented highlights calculated versus actual costs. This data is compared to the results obtained by applying several models for each of the individual projects with actual cost. It also offers methods to systematically apply the models to future projects of a similar scale. Last, the cost risks associated with a project of this scope are discussed, along with ways that have been and could be used to mitigate these risks.

  19. Project of Rotating Carbon High-Power Neutron Target. Research of Graphite Properties for Production of High Intensity Neutron Source

    E-Print Network [OSTI]

    Gubin, K V; Bak, P A; Kot, N K; Logatchev, P V

    2001-01-01T23:59:59.000Z

    Project of Rotating Carbon High-Power Neutron Target. Research of Graphite Properties for Production of High Intensity Neutron Source

  20. Management of water extracted from carbon sequestration projects

    SciTech Connect (OSTI)

    Harto, C. B.; Veil, J. A. (Environmental Science Division)

    2011-03-11T23:59:59.000Z

    Throughout the past decade, frequent discussions and debates have centered on the geological sequestration of carbon dioxide (CO{sub 2}). For sequestration to have a reasonably positive impact on atmospheric carbon levels, the anticipated volume of CO{sub 2} that would need to be injected is very large (many millions of tons per year). Many stakeholders have expressed concern about elevated formation pressure following the extended injection of CO{sub 2}. The injected CO{sub 2} plume could potentially extend for many kilometers from the injection well. If not properly managed and monitored, the increased formation pressure could stimulate new fractures or enlarge existing natural cracks or faults, so the CO{sub 2} or the brine pushed ahead of the plume could migrate vertically. One possible tool for management of formation pressure would be to extract water already residing in the formation where CO{sub 2} is being stored. The concept is that by removing water from the receiving formations (referred to as 'extracted water' to distinguish it from 'oil and gas produced water'), the pressure gradients caused by injection could be reduced, and additional pore space could be freed up to sequester CO{sub 2}. Such water extraction would occur away from the CO{sub 2} plume to avoid extracting a portion of the sequestered CO{sub 2} along with the formation water. While water extraction would not be a mandatory component of large-scale carbon storage programs, it could provide many benefits, such as reduction of pressure, increased space for CO{sub 2} storage, and potentially, 'plume steering.' Argonne National Laboratory is developing information for the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) to evaluate management of extracted water. If water is extracted from geological formations designated to receive injected CO{sub 2} for sequestration, the project operator will need to identify methods for managing very large volumes of water most of which will contain large quantities of salt and other dissolved minerals. Produced water from oil and gas production also typically contains large quantities of dissolved solids. Therefore, many of the same practices that are established and used for managing produced water also may be applicable for extracted water. This report describes the probable composition of the extracted water that is removed from the formations, options for managing the extracted water, the pros and cons of those options, and some opportunities for beneficial use of the water. Following the introductory material in Chapter 1, the report is divided into chapters covering the following topics: (Chapter 2) examines the formations that are likely candidates for CO{sub 2} sequestration and provides a general evaluation of the geochemical characteristics of the formations; (Chapter 3) makes some preliminary estimates of the volume of water that could be extracted; (Chapter 4) provides a qualitative review of many potential technologies and practices for managing extracted water and for each technology or management practice, pros and cons are provided; (Chapter 5) explores the potential costs of water management; and (Chapter 6) presents the conclusions.

  1. EIS-0464: Lake Charles Carbon Capture and Storage (CCS) Project...

    Broader source: Energy.gov (indexed) [DOE]

    for an award of financial assistance through a competitive process under the Industrial Carbon Capture and Sequestration Program. Public Comment Opportunities None available at...

  2. DOE Seeks Proposals to Increase Investment in Industrial Carbon Capture and Sequestration Projects

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy has issued a Funding Opportunity Announcement soliciting projects to capture and sequester carbon dioxide from industrial sources and to put CO2 to beneficial use.

  3. Implementation of Carbon Reduction in Capital Projects Introduction

    E-Print Network [OSTI]

    Chittka, Lars

    means capping its total greenhouse gas emissions at 16,000 t/CO2 p.a. (see the College Carbon Management deliver a carbon emission p.a. reduction of at least 50% at design stage (with the aim of achieving operational reductions of at least 40%). This reduction should be below that of the average emission

  4. Synthesis of energy technology medium-term projections Alternative fuels for transport and low carbon electricity

    E-Print Network [OSTI]

    carbon electricity generation: A technical note Robert Gross Ausilio Bauen ICEPT October 2005 #12;Alternative fuels for transport and electricity generation: A technical note on costs and cost projections ................................................................................................................. 3 Current and projected medium-term costs of electricity generating technologies....... 4 Biofuels

  5. Mountaineer Commercial Scale Carbon Capture and Storage Project Topical Report: Preliminary Public Design Report

    SciTech Connect (OSTI)

    Guy Cerimele

    2011-09-30T23:59:59.000Z

    This Preliminary Public Design Report consolidates for public use nonproprietary design information on the Mountaineer Commercial Scale Carbon Capture & Storage project. The report is based on the preliminary design information developed during the Phase I - Project Definition Phase, spanning the time period of February 1, 2010 through September 30, 2011. The report includes descriptions and/or discussions for: (1) DOE's Clean Coal Power Initiative, overall project & Phase I objectives, and the historical evolution of DOE and American Electric Power (AEP) sponsored projects leading to the current project; (2) Alstom's Chilled Ammonia Process (CAP) carbon capture retrofit technology and the carbon storage and monitoring system; (3) AEP's retrofit approach in terms of plant operational and integration philosophy; (4) The process island equipment and balance of plant systems for the CAP technology; (5) The carbon storage system, addressing injection wells, monitoring wells, system monitoring and controls logic philosophy; (6) Overall project estimate that includes the overnight cost estimate, cost escalation for future year expenditures, and major project risks that factored into the development of the risk based contingency; and (7) AEP's decision to suspend further work on the project at the end of Phase I, notwithstanding its assessment that the Alstom CAP technology is ready for commercial demonstration at the intended scale.

  6. EIS-0464: Lake Charles Carbon Capture and Storage (CCS) Project in Calcasieu Parish, Louisiana

    Broader source: Energy.gov [DOE]

    This EIS evaluates the potential environmental impacts of providing financial assistance for the construction and operation of a project proposed by Leucadia Energy, LLC. DOE selected this project for an award of financial assistance through a competitive process under the Industrial Carbon Capture and Sequestration Program.

  7. EIS-0431: Hydrogen Energy California's Integrated Gasification Combined Cycle and Carbon Capture and Sequestration Project, California

    Broader source: Energy.gov [DOE]

    This EIS evaluates the potential environmental impacts of a proposal to provide financial assistance for the construction and operation of Hydrogen Energy California's LLC project, which would produce and sell electricity, carbon dioxide and fertilizer. DOE selected this project for an award of financial assistance through a competitive process under the Clean Coal Power Initiative program.

  8. Geologic Carbon Dioxide Storage Field Projects Supported by DOE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    United States and other countries including, Canada, Algeria, Norway, Australia, and Germany. The program has also been supporting a number of complementary R&D projects...

  9. Is the northern high latitude land-based CO2 sink weakening?

    SciTech Connect (OSTI)

    Mcguire, David [University of Alaska; Kicklighter, David W. [Ecosystem Center, The; Gurney, Kevin R [Arizona State University; Burnside, Todd [University of Alaska, Fairbanks; Melillo, Jerry [Marine Biological Laboratory

    2011-01-01T23:59:59.000Z

    Studies indicate that, historically, terrestrial ecosystems of the northern high latitude region may have been responsible for up to 60% of the global net land-based sink for atmospheric CO2. However, these regions have recently experienced remarkable modification of the major driving forces of the carbon cycle, including surface air temperature warming that is significantly greater than the global average and associated increases in the frequency and severity of disturbances. Whether arctic tundra and boreal forest ecosystems will continue to sequester atmospheric CO2 in the face of these dramatic changes is unknown. Here we show the results of model simulations that estimate a 41 Tg C yr-1 sink in the boreal land regions from 1997 to 2006, which represents a 73% reduction in the strength of the sink estimated for previous decades in the late 20th Century. Our results suggest that CO2 uptake by the region in previous decades may not be as strong as previously estimated. The recent decline in sink strength is the combined result of 1) weakening sinks due to warming-induced increases in soil organic matter decomposition and 2) strengthening sources from pyrogenic CO2 emissions as a result of the substantial area of boreal forest burned in wildfires across the region in recent years. Such changes create positive feedbacks to the climate system that accelerate global warming, putting further pressure on emission reductions to achieve atmospheric stabilization targets.

  10. Carbon Tariffs Revisited The Harvard Project on Climate Agreements

    E-Print Network [OSTI]

    Liu, X. Shirley

    pragmatic public policy options for addressing global climate change. Drawing upon leading thinkers in Argentina, Australia, China, Europe, India, Japan, and the United States, the Project conducts research on policy architecture, key design elements, and institutional dimensions of domestic climate policy

  11. The consequences of failure should be considered in siting geologic carbon sequestration projects

    SciTech Connect (OSTI)

    Price, P.N.; Oldenburg, C.M.

    2009-02-23T23:59:59.000Z

    Geologic carbon sequestration is the injection of anthropogenic CO{sub 2} into deep geologic formations where the CO{sub 2} is intended to remain indefinitely. If successfully implemented, geologic carbon sequestration will have little or no impact on terrestrial ecosystems aside from the mitigation of climate change. However, failure of a geologic carbon sequestration site, such as large-scale leakage of CO{sub 2} into a potable groundwater aquifer, could cause impacts that would require costly remediation measures. Governments are attempting to develop regulations for permitting geologic carbon sequestration sites to ensure their safety and effectiveness. At present, these regulations focus largely on decreasing the probability of failure. In this paper we propose that regulations for the siting of early geologic carbon sequestration projects should emphasize limiting the consequences of failure because consequences are easier to quantify than failure probability.

  12. BioCarbon Fund Project Portfolio | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre Biomass FacilityOregon:Great EscapeBinaryBioCarbon Fund

  13. Chapter III. Processes F. Land-Based N Sources and Their Delivery to Coastal Systems

    E-Print Network [OSTI]

    Seitzinger, Sybil

    to terrestrial systems of newly fixed N2 (the conversion of relatively inert N2 gas to more bioavailable N forms can be important pathways for delivery of land-based N sources. This chapter focuses on export of N

  14. E-Print Network 3.0 - advanced land-based gas Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Program Winter 2001 Summary: for metallic components of large, land-based gas turbines call for the use of single crystal airfoils... . The complexity of the manufacture of...

  15. COMPARISON OF THREE METHODS TO PROJECT FUTURE BASELINE CARBON EMISSIONS IN TEMPERATE RAINFOREST, CURINANCO, CHILE

    SciTech Connect (OSTI)

    Patrick Gonzalez; Antonio Lara; Jorge Gayoso; Eduardo Neira; Patricio Romero; Leonardo Sotomayor

    2005-07-14T23:59:59.000Z

    Deforestation of temperate rainforests in Chile has decreased the provision of ecosystem services, including watershed protection, biodiversity conservation, and carbon sequestration. Forest conservation can restore those ecosystem services. Greenhouse gas policies that offer financing for the carbon emissions avoided by preventing deforestation require a projection of future baseline carbon emissions for an area if no forest conservation occurs. For a proposed 570 km{sup 2} conservation area in temperate rainforest around the rural community of Curinanco, Chile, we compared three methods to project future baseline carbon emissions: extrapolation from Landsat observations, Geomod, and Forest Restoration Carbon Analysis (FRCA). Analyses of forest inventory and Landsat remote sensing data show 1986-1999 net deforestation of 1900 ha in the analysis area, proceeding at a rate of 0.0003 y{sup -1}. The gross rate of loss of closed natural forest was 0.042 y{sup -1}. In the period 1986-1999, closed natural forest decreased from 20,000 ha to 11,000 ha, with timber companies clearing natural forest to establish plantations of non-native species. Analyses of previous field measurements of species-specific forest biomass, tree allometry, and the carbon content of vegetation show that the dominant native forest type, broadleaf evergreen (bosque siempreverde), contains 370 {+-} 170 t ha{sup -1} carbon, compared to the carbon density of non-native Pinus radiata plantations of 240 {+-} 60 t ha{sup -1}. The 1986-1999 conversion of closed broadleaf evergreen forest to open broadleaf evergreen forest, Pinus radiata plantations, shrublands, grasslands, urban areas, and bare ground decreased the carbon density from 370 {+-} 170 t ha{sup -1} carbon to an average of 100 t ha{sup -1} (maximum 160 t ha{sup -1}, minimum 50 t ha{sup -1}). Consequently, the conversion released 1.1 million t carbon. These analyses of forest inventory and Landsat remote sensing data provided the data to evaluate the three methods to project future baseline carbon emissions. Extrapolation from Landsat change detection uses the observed rate of change to estimate change in the near future. Geomod is a software program that models the geographic distribution of change using a defined rate of change. FRCA is an integrated spatial analysis of forest inventory, biodiversity, and remote sensing that produces estimates of forest biodiversity and forest carbon density, spatial data layers of future probabilities of reforestation and deforestation, and a projection of future baseline forest carbon sequestration and emissions for an ecologically-defined area of analysis. For the period 1999-2012, extrapolation from Landsat change detection estimated a loss of 5000 ha and 520,000 t carbon from closed natural forest; Geomod modeled a loss of 2500 ha and 250 000 t; FRCA projected a loss of 4700 {+-} 100 ha and 480,000 t (maximum 760,000 t, minimum 220,000 t). Concerning labor time, extrapolation for Landsat required 90 actual days or 120 days normalized to Bachelor degree level wages; Geomod required 240 actual days or 310 normalized days; FRCA required 110 actual days or 170 normalized days. Users experienced difficulties with an MS-DOS version of Geomod before turning to the Idrisi version. For organizations with limited time and financing, extrapolation from Landsat change provides a cost-effective method. Organizations with more time and financing could use FRCA, the only method where that calculates the deforestation rate as a dependent variable rather than assuming a deforestation rate as an independent variable. This research indicates that best practices for the projection of baseline carbon emissions include integration of forest inventory and remote sensing tasks from the beginning of the analysis, definition of an analysis area using ecological characteristics, use of standard and widely used geographic information systems (GIS) software applications, and the use of species-specific allometric equations and wood densities developed for local species.

  16. Projecting the climatic effects of increasing carbon dioxide

    SciTech Connect (OSTI)

    MacCracken, M C; Luther, F M [eds.

    1985-12-01T23:59:59.000Z

    This report presents the current knowns, unknowns, and uncertainties regarding the projected climate changes that might occur as a result of an increasing atmospheric CO/sub 2/ concentration. Further, the volume describes what research is required to estimate the magnitude and rate of a CO/sub 2/-induced clamate change with regional and seasonal resolution. Separate abstracts have been prepared for the individual papers. (ACR)

  17. Project Profile: 10-Megawatt Supercritical Carbon Dioxide Turbine |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d FNEPA/309Department ofDepartmentProject

  18. Fossil Fuel Carbon Dioxide Emissions Data and Data Plots from Project Vulcan

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Gurney, Kevin

    Explore the Vulcan website for the Vulcan gridded data, methodological details, publications, plots and analysis.[Taken from "About Project Vulcan" at http://www.purdue.edu/eas/carbon/vulcan/index.php]Also, see the peer-reviewed paper that provides a "core" description for this project: Gurney, K.R., D. Mendoza, Y. Zhou, M Fischer, S. de la Rue du Can, S. Geethakumar, C. Miller (2009) The Vulcan Project: High resolution fossil fuel combustion CO2 emissions fluxes for the United States, Environ. Sci. Technol., 43, doi:10.1021/es900,806c.

  19. Energy Storage/Conservation and Carbon Emissions Reduction Demonstration Project

    SciTech Connect (OSTI)

    Bigelow, Erik

    2012-10-30T23:59:59.000Z

    The U.S. Department of Energy (DOE) awarded the Center for Transportation and the Environment (CTE) federal assistance for the management of a project to develop and test a prototype flywheel-­?based energy recovery and storage system in partnership with Test Devices, Inc. (TDI). TDI specializes in the testing of jet engine and power generation turbines, which uses a great deal of electrical power for long periods of time. In fact, in 2007, the company consumed 3,498,500 kW-­?hr of electricity in their operations, which is equivalent to the electricity of 328 households. For this project, CTE and TDI developed and tested a prototype flywheel-­?based energy recovery and storage system. This technology is being developed at TDI’s facilities to capture and reuse the energy necessary for the company’s core process. The new technology and equipment is expected to save approximately 80% of the energy used in the TDI process, reducing total annual consumption of power by approximately 60%, saving approximately two million kilowatt-­?hours annually. Additionally, the energy recycling system will allow TDI and other end users to lower their peak power demand and reduce associated utility demand charges. The use of flywheels in this application is novel and requires significant development work from TDI. Flywheels combine low maintenance costs with very high cycle life with little to no degradation over time, resulting in lifetimes measured in decades. All of these features make flywheels a very attractive option compared to other forms of energy storage, including batteries. Development and deployment of this energy recycling technology will reduce energy consumption during jet engine and stationary turbine development. By reengineering the current inefficient testing process, TDI will reduce risk and time to market of efficiency upgrades of gas turbines across the entire spectrum of applications. Once in place the results from this program will also help other US industries to utilize energy recycling technology to lower domestic energy use and see higher net energy efficiency. The prototype system and results will be used to seek additional resources to carry out full deployment of a system. Ultimately, this innovative technology is expected to be transferable to other testing applications involving energy-­?based cycling within the company as well as throughout the industry.

  20. Projecting Impacts of Global Climate Change on the U.S. Forest and Agriculture Sectors and Carbon Budgets

    E-Print Network [OSTI]

    McCarl, Bruce A.

    Projecting Impacts of Global Climate Change on the U.S. Forest and Agriculture Sectors and Carbon Impacts of Global Climate Change on the U.S. Forest and Agriculture Sectors and Carbon Budgets of possible deleterious effects of climate change on agricultural and forest productivity has been raised

  1. Expansion of Michigan EOR Operations Using Advanced Amine Technology at a 600 MW Project Wolverine Carbon Capture and Storage Project

    SciTech Connect (OSTI)

    H Hoffman; Y kishinevsky; S. Wu; R. Pardini; E. Tripp; D. Barnes

    2010-06-16T23:59:59.000Z

    Wolverine Power Supply Cooperative Inc, a member owned cooperative utility based in Cadillac Michigan, proposes to demonstrate the capture, beneficial utilization and storage of CO{sub 2} in the expansion of existing Enhanced Oil Recovery operations. This project is being proposed in response to the US Department of Energy Solicitation DE-FOA-0000015 Section III D, 'Large Scale Industrial CCS projects from Industrial Sources' Technology Area 1. The project will remove 1,000 metric tons per day of CO{sub 2} from the Wolverine Clean Energy Venture 600 MW CFB power plant owned and operated by WPC. CO{sub 2} from the flue gas will be captured using Hitachi's CO{sub 2} capture system and advanced amine technology. The capture system with the advanced amine-based solvent supplied by Hitachi is expected to significantly reduce the cost and energy requirements of CO{sub 2} capture compared to current technologies. The captured CO{sub 2} will be compressed and transported for Enhanced Oil Recovery and CO{sub 2} storage purposes. Enhanced Oil Recovery is a proven concept, widely used to recover otherwise inaccessible petroleum reserves. While post-combustion CO{sub 2} capture technologies have been tested at the pilot scale on coal power plant flue gas, they have not yet been demonstrated at a commercial scale and integrated with EOR and storage operations. Amine-based CO{sub 2} capture is the leading technology expected to be available commercially within this decade to enable CCS for utility and industrial facilities firing coal and waste fuels such as petroleum coke. However, traditional CO{sub 2} capture process utilizing commercial amine solvents is very energy intensive for regeneration and is also susceptible to solvent degradation by oxygen as well as SOx and NO{sub 2} in the flue gas, resulting in large operating costs. The large volume of combustion flue gas with its low CO{sub 2} concentration requires large equipment sizes, which together with the highly corrosive nature of the typical amine-based separation process leads to high plant capital investment. According to recent DOE-NETL studies, MEA-based CCS will increase the cost of electricity of a new pulverized coal plant by 80-85% and reduce the net plant efficiency by about 30%. Non-power industrial facilities will incur similar production output and efficiency penalties when implementing conventional carbon capture systems. The proposed large scale demonstration project combining advanced amine CO{sub 2} capture integrated with commercial EOR operations significantly advances post-combustion technology development toward the DOE objectives of reducing the cost of energy production and improving the efficiency of CO{sub 2} Capture technologies. WPC has assembled a strong multidisciplinary team to meet the objectives of this project. WPC will provide the host site and Hitachi will provide the carbon capture technology and advanced solvent. Burns and Roe bring expertise in overall engineering integration and plant design to the team. Core Energy, an active EOR producer/operator in the State of Michigan, is committed to support the detailed design, construction and operation of the CO{sub 2} pipeline and storage component of the project. This team has developed a Front End Engineering Design and Cost Estimate as part of Phase 1 of DOE Award DE-FE0002477.

  2. Summary of Carbon Storage Project Public Information Meeting and Open House, Hawesville, Kentucky, October 28, 2010

    SciTech Connect (OSTI)

    David Harris; David Williams; J. Richard Bowersox; Hannes Leetaru

    2012-06-01T23:59:59.000Z

    The Kentucky Geological Survey (KGS) completed a second phase of carbon dioxide (CO{sub 2}) injection and seismic imaging in the Knox Group, a Cambrianâ?Ordovician dolomite and sandstone sequence in September 2010. This work completed 2 years of activity at the KGS No. 1 Marvin Blan well in Hancock County, Kentucky. The well was drilled in 2009 by a consortium of State and industry partners (Kentucky Consortium for Carbon Storage). An initial phase of CO{sub 2} injection occurred immediately after completion of the well in 2009. The second phase of injection and seismic work was completed in September 2010 as part of a U.S. DOEâ??funded project, after which the Blan well was plugged and abandoned. Following completion of research at the Blan well, a final public meeting and open house was held in Hancock County on October 28, 2010. This meeting followed one public meeting held prior to drilling of the well, and two onâ?site visits during drilling (one for news media, and one for school teachers). The goal of the final public meeting was to present the results of the project to the public, answer questions, and address any concerns. Despite diligent efforts to publicize the final meeting, it was poorly attended by the general public. Several local county officials and members of the news media attended, but only one person from the general public showed up. We attribute the lack of interest in the results of the project to several factors. First, the project went as planned, with no problems or incidents that affected the local residents. The fact that KGS fulfilled the promises it made at the beginning of the project satisfied residents, and they felt no need to attend the meeting. Second, Hancock County is largely rural, and the technical details of carbon sequestration were not of interest to many people. The county officials attending were an exception; they clearly realized the importance of the project in future economic development for the county.

  3. Seminoe-Kortes transmission line/substation consolidation project, Carbon County, Wyoming

    SciTech Connect (OSTI)

    Not Available

    1990-07-01T23:59:59.000Z

    The existing switchyards at Western Area Power Administration's (WESTERN) Seminoe and Kortes facilities, located approximately 40 miles northeast of Rawlines, Carbon County, Wyoming, were constructed in 1939 and 1951, respectively. The circuit breakers at these facilities are beyond or approaching their service life and need to be replaced. In addition, the switchyards have poor access for maintenance and replacement of equipment, and their locations create potential for oil spills into the North Platte River. WESTERN is proposing to consolidate the switchyard facilities into one new substation to provide easier access, restore proper levels of system reliability, and decrease the potential for oil contamination of the river. This environmental assessment (EA) was prepared to evaluate the impacts of the proposed Seminoe-Kortes Consolidation Project. 57 refs., 12 figs., 8 tabs.

  4. Field-project designs for carbon dioxide sequestration and enhanced coalbed methane production

    SciTech Connect (OSTI)

    W. Neal Sams; Grant Bromhal; Sinisha Jikich; Turgay Ertekin; Duane H. Smith [EG& amp; G Technical Services, Morgantown, WV (United States). National Energy Technology Laboratory

    2005-12-01T23:59:59.000Z

    Worldwide concerns about global warming and possible contributions to it from anthropogenic carbon dioxide have become important during the past several years. Coal seams may make excellent candidates for CO{sub 2} sequestration; coal-seam sequestration could enhance methane production and improve sequestration economics. Reservoir-simulation computations are an important component of any engineering design before carbon dioxide is injected underground. We have performed such simulations for a hypothetical pilot-scale project in representative coal seams. In these simulations we assume four horizontal production wells that form a square, that is, two wells drilled at right angles to each other forming two sides of a square, with another pair of horizontal wells similarly drilled to form the other two sides. Four shorter horizontal wells are drilled from a vertical well at the center of the square, forming two straight lines orthogonal to each other. By modifying coal properties, especially sorption rate, we have approximated different types of coals. By varying operational parameters, such as injector length, injection well pressure, time to injection, and production well pressure, we can evaluate different production schemes to determine an optimum for each coal type. Any optimization requires considering a tradeoff between total CO{sub 2} sequestered and the rate of methane production. Values of total CO{sub 2} sequestered and methane produced are presented for multiple coal types and different operational designs. 30 refs., 11 figs., 1 tab.

  5. Project Title: Carbon cycling at the landscape scale: the effect of changes in climate and fire frequency on age distribution, stand structure, and net ecosystem production.

    E-Print Network [OSTI]

    Turner, Monica G.

    Project Title: Carbon cycling at the landscape scale: the effect of changes in climate and fire: Our project addresses Task 1 in RFP 2003-1. Climate, fire (frequency and intensity), and forest@mhub.zoology.wisc.edu, 4 Tinker@uwyo.edu Duration of Project: 3 years Annual Funding Requested from the Joint Fire Science

  6. The North American Carbon Program Multi-scale synthesis and Terrestrial Model Intercomparison Project Part 1: Overview and experimental design

    SciTech Connect (OSTI)

    Huntzinger, D.N. [Northern Arizona University] [Northern Arizona University; Schwalm, C. [Northern Arizona University] [Northern Arizona University; Michalak, A.M [Carnegie Institution for Science, Stanford] [Carnegie Institution for Science, Stanford; Schaefer, K. [National Snow and Ice Data Center] [National Snow and Ice Data Center; King, A.W. [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL); Wei, Y. [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL); Jacobson, A. [National Snow and Ice Data Center] [National Snow and Ice Data Center; Liu, S. [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL); Cook, R. [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL); Post, W.M. [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL); Berthier, G. [Laboratoire des Sciences du Climat et de l'Environnement (LSCE)] [Laboratoire des Sciences du Climat et de l'Environnement (LSCE); Hayes, D. [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL); Huang, M. [Pacific Northwest National Laboratory (PNNL)] [Pacific Northwest National Laboratory (PNNL); Ito, A. [National Institute for Environmental Studies, Tsukuba, Japan] [National Institute for Environmental Studies, Tsukuba, Japan; Lei, H. [Pacific Northwest National Laboratory (PNNL)] [Pacific Northwest National Laboratory (PNNL); Lu, C. [International Center for Climate and Global Change Research and School of Forestry and Wildlife Sci.] [International Center for Climate and Global Change Research and School of Forestry and Wildlife Sci.; Mao, J. [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL); Peng, C.H. [University of Quebec at Montreal, Institute of Environment Sciences] [University of Quebec at Montreal, Institute of Environment Sciences; Peng, S. [Laboratoire des Sciences du Climat et de l'Environnement (LSCE)] [Laboratoire des Sciences du Climat et de l'Environnement (LSCE); Poulter, B. [Laboratoire des Sciences du Climat et de l'Environnement (LSCE)] [Laboratoire des Sciences du Climat et de l'Environnement (LSCE); Riccuito, D. [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL); Shi, X. [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL); Tian, H. [International Center for Climate and Global Change Research and School of Forestry and Wildlife Sci.] [International Center for Climate and Global Change Research and School of Forestry and Wildlife Sci.; Wang, W. [National Aeronautics and Space Administration (NASA), Ames Research Center, Moffett Field] [National Aeronautics and Space Administration (NASA), Ames Research Center, Moffett Field; Zeng, N. [University of Maryland] [University of Maryland; Zhao, F. [University of Maryland] [University of Maryland; Zhu, Q. [Laboratory for Ecological Forecasting and Northwest Agriculture and Forestry University] [Laboratory for Ecological Forecasting and Northwest Agriculture and Forestry University

    2013-01-01T23:59:59.000Z

    Terrestrial biosphere models (TBMs) have become an integral tool for extrapolating local observations and understanding of land-atmosphere carbon exchange to larger regions. The North American Carbon Program (NACP) Multi-scale synthesis and Terrestrial Model Intercomparison Project (MsTMIP) is a formal model intercomparison and evaluation effort focused on improving the diagnosis and attribution of carbon exchange at regional and global scales. MsTMIP builds upon current and past synthesis activities, and has a unique framework designed to isolate, interpret, and inform understanding of how model structural differences impact estimates of carbon uptake and release. Here we provide an overview of the MsTMIP effort and describe how the MsTMIP experimental design enables the assessment and quantification of TBM structural uncertainty. Model structure refers to the types of processes considered (e.g. nutrient cycling, disturbance, lateral transport of carbon), and how these processes are represented (e.g. photosynthetic formulation, temperature sensitivity, respiration) in the models. By prescribing a common experimental protocol with standard spin-up procedures and driver data sets, we isolate any biases and variability in TBM estimates of regional and global carbon budgets resulting from differences in the models themselves (i.e. model structure) and model-specific parameter values. An initial intercomparison of model structural differences is represented using hierarchical cluster diagrams (a.k.a. dendrograms), which highlight similarities and differences in how models account for carbon cycle, vegetation, energy, and nitrogen cycle dynamics. We show that, despite the standardized protocol used to derive initial conditions, models show a high degree of variation for GPP, total living biomass, and total soil carbon, underscoring the influence of differences in model structure and parameterization on model estimates.

  7. Can reductions in logging damage increase carbon storage over time? Evaluation of a simulation model for a pilot carbon offset project in Malaysia

    SciTech Connect (OSTI)

    Pinard, M.A. [Univ. of Florida, Gainesville, FL (United States)

    1995-09-01T23:59:59.000Z

    Selective timber harvesting operations, if uncontrolled, can severely degrade a forest. Although techniques for reducing logging damage are well-known and inexpensive to apply, incentives to adopt these techniques are generally lacking. Power companies and other emitters of {open_quotes}greenhouse{close_quotes} gases soon may be forced to reduce or otherwise offset their net emissions; one offset option is to fund programs aimed at reducing logging damage. To investigate the consequences of reductions in logging damage for ecosystem carbon storage, I constructed a model to simulate changes in biomass and carbon pools following logging of primary dipterocarp forests in southeast Asia. I adapted a physiologically-driven, tree-based model of natural forest gap dynamics (FORMIX) to simulate forest recovery following logging. Input variables included stand structure, volume extracted, stand damage (% stems), and soil disturbance (% area compacted). Output variables included total biomass, tree density, and total carbon storage over time. Assumptions of the model included the following: (1) areas with soil disturbances have elevated probabilities of vine colonization and reduced rates of tree establishment, (2) areas with broken canopy but no soil disturbance are colonized initially by pioneer tree species and 20 yr later by persistent forest species, (3) damaged trees have reduced growth and increased mortality rates. Simulation results for two logging techniques, conventional and reduced-impact logging, are compared with data from field studies conducted within a pilot carbon offset project in Sabah, Malaysia.

  8. World Bank-Low-carbon Energy Projects for Development in Sub...

    Open Energy Info (EERE)

    Africa has an unprecedented opportunity: choosing a cleaner development pathway via low-carbon energy alternatives that can reduce greenhouse gas (GHG) emissions and, at the same...

  9. Carbon Resistive Random Access Memory Materials -CareRAMM An FP7 NMP Project led by the University of Exeter and in collaboration with IBM Research

    E-Print Network [OSTI]

    Mumby, Peter J.

    Carbon Resistive Random Access Memory Materials - CareRAMM An FP7 NMP Project led by the University, super-paramagnetic limits in magnetic disk storage). In this context the time is ripe for intensive capable of implementation in a flexible format are thus essential. It is in this context that carbon

  10. Comparison of caprock pore networks which potentially will be impacted by carbon sequestration projects.

    SciTech Connect (OSTI)

    McCray, John (Colorado School of Mines); Navarre-Sitchler, Alexis (Colorado School of Mines); Mouzakis, Katherine (Colorado School of Mines); Heath, Jason E.; Dewers, Thomas A.; Rother, Gernot (Oak Ridge National Laboratory)

    2010-12-01T23:59:59.000Z

    Injection of CO2 into underground rock formations can reduce atmospheric CO2 emissions. Caprocks present above potential storage formations are the main structural trap inhibiting CO2 from leaking into overlying aquifers or back to the Earth's surface. Dissolution and precipitation of caprock minerals resulting from reaction with CO2 may alter the pore network where many pores are of the micrometer to nanometer scale, thus altering the structural trapping potential of the caprock. However, the distribution, geometry and volume of pores at these scales are poorly characterized. In order to evaluate the overall risk of leakage of CO2 from storage formations, a first critical step is understanding the distribution and shape of pores in a variety of different caprocks. As the caprock is often comprised of mudstones, we analyzed samples from several mudstone formations with small angle neutron scattering (SANS) and high-resolution transmission electron microscopy (TEM) imaging to compare the pore networks. Mudstones were chosen from current or potential sites for carbon sequestration projects including the Marine Tuscaloosa Group, the Lower Tuscaloosa Group, the upper and lower shale members of the Kirtland Formation, and the Pennsylvanian Gothic shale. Expandable clay contents ranged from 10% to approximately 40% in the Gothic shale and Kirtland Formation, respectively. During SANS, neutrons effectively scatter from interfaces between materials with differing scattering length density (i.e., minerals and pores). The intensity of scattered neutrons, I(Q), where Q is the scattering vector, gives information about the volume and arrangement of pores in the sample. The slope of the scattering data when plotted as log I(Q) vs. log Q provides information about the fractality or geometry of the pore network. On such plots slopes from -2 to -3 represent mass fractals while slopes from -3 to -4 represent surface fractals. Scattering data showed surface fractal dimensions for the Kirtland formation and one sample from the Tuscaloosa formation close to 3, indicating very rough surfaces. In contrast, scattering data for the Gothic shale formation exhibited mass fractal behavior. In one sample of the Tuscaloosa formation the data are described by a surface fractal at low Q (larger pores) and a mass fractal at high Q (smaller pores), indicating two pore populations contributing to the scattering behavior. These small angle neutron scattering results, combined with high-resolution TEM imaging, provided a means for both qualitative and quantitative analysis of the differences in pore networks between these various mudstones.

  11. Construction Begins on DOE-Sponsored Carbon-Capture Project at...

    Energy Savers [EERE]

    solvent will then be recycled to the modules to process more flue gas, while so-called "waste heat" from the carbon-capture system will be recovered in the cooling tower. This...

  12. Carbon Dioxide (CO2) Capture Project Phase 2 (CCP2) - Storage...

    Open Energy Info (EERE)

    eight oil and gas companies and two associate members that are working together to reduce carbon capture and sequestration (CCS) costs. During Phase 2, between 2005 and 2009, the...

  13. Special Issue On Estimation Of Baselines And Leakage In Carbon Mitigation Forestry Projects

    E-Print Network [OSTI]

    Sathaye, Jayant A.; Andrasko, Kenneth

    2008-01-01T23:59:59.000Z

    Tropical Region Estimates Bolivia, Noel Avoided 5-42Tropics; one each in Belize, Bolivia, and Brazil and threeproject, Noel Kempff in Bolivia, the FAC approach projects

  14. EA-1616: National Carbon Research Center Project at Southern Company Services' Power Systems Development Facility near Wilsonville, Alabama

    Broader source: Energy.gov [DOE]

    This EA evaluates and updates the potential environmental impacts of DOE’s proposed continued operations of the NCCC Project at the PSDF plant. The NCCC is designed to test and evaluate carbon dioxide (CO2) control technologies for power generation facilities, including CO2 capture solvents and sorbents, mass-transfer devices, lower cost water-gas shift reactors, and scaled-up membrane technologies. Additionally, the NCCC evaluates methods to integrate CO2 capture technologies with other coal-based power plant systems by testing both pre-combustion and post-combustion technologies. The NCCC provides the capability to test these systems under a wide range of fuels, including bituminous and sub-bituminous coals, lignites and biomass/coal mixtures. The goal of the NCCC project is to accelerate the development, optimization, and commercialization of viable CO2 control technologies.

  15. Engineering Ralstonia eutropha for Production of Isobutanol (IBT) Motor Fuel from Carbon Dioxide, Hydrogen, and Oxygen Project Final Report

    SciTech Connect (OSTI)

    Sinskey, Anthony J. [MIT] [MIT; Worden, Robert Mark [Michigan State University MSU] [Michigan State University MSU; Brigham, Christopher [MIT] [MIT; Lu, Jingnan [MIT] [MIT; Quimby, John Westlake [MIT] [MIT; Gai, Claudia [MIT] [MIT; Speth, Daan [MIT] [MIT; Elliott, Sean [Boston University] [Boston University; Fei, John Qiang [MIT] [MIT; Bernardi, Amanda [MIT] [MIT; Li, Sophia [MIT] [MIT; Grunwald, Stephan [MIT] [MIT; Grousseau, Estelle [MIT] [MIT; Maiti, Soumen [MSU] [MSU; Liu, Chole [MSU] [MSU

    2013-12-16T23:59:59.000Z

    This research project is a collaboration between the Sinskey laboratory at MIT and the Worden laboratory at Michigan State University. The goal of the project is to produce Isobutanol (IBT), a branched-chain alcohol that can serve as a drop-in transportation fuel, through the engineered microbial biosynthesis of Carbon Dioxide, Hydrogen, and Oxygen using a novel bioreactor. This final technical report presents the findings of both the biological engineering work at MIT that extended the native branched-chain amino acid pathway of the wild type Ralstonia eutropha H16 to perform this biosynthesis, as well as the unique design, modeling, and construction of a bioreactor for incompatible gasses at Michigan State that enabled the operational testing of the complete system. This 105 page technical report summarizing the three years of research includes 72 figures and 11 tables of findings. Ralstonia eutropha (also known as Cupriavidus necator) is a Gram-negative, facultatively chemolithoautotrophic bacteria. It has been the principle organism used for the study of polyhydroxybutyrate (PHB) polymer biosynthesis. The wild-type Ralstonia eutropha H16 produces PHB as an intracellular carbon storage material while under nutrient stress in the presence of excess carbon. Under this stress, it can accumulate approximately 80 % of its cell dry weight (CDW) as this intracellular polymer. With the restoration of the required nutrients, the cells are then able to catabolize this polymer. If extracted from the cell, this PHB polymer can be processed into biodegradable and biocompatible plastics, however for this research, it is the efficient metabolic pathway channeling the captured carbon that is of interest. R. eutropha is further unique in that it contains two carbon-fixation Calvin–Benson–Bassham cycle operons, two oxygen-tolerant hydrogenases, and several formate dehydrogenases. It has also been much studied for its ability in the presence of oxygen, to fix carbon dioxide into complex cellular molecules using the energy from hydrogen. In this research project, engineered strains of R. eutropha redirected the excess carbon from PHB storage into the production of isobutanol and 3-methyl-1-butanol (branched-chain higher alcohols). These branched-chain higher alcohols can be used directly as substitutes for fossil-based fuels and are seen as alternative biofuels to ethanol and biodiesel. Importantly, these alcohols have approximately 98 % of the energy content of gasoline, 17 % higher than the current gasoline additive ethanol, without impacting corn market production for feed or food. Unlike ethanol, these branched-chain alcohols have low vapor pressure, hygroscopicity, and water solubility, which make them readily compatible with the existing pipelines, gasoline pumps, and engines in our transportation infrastructure. While the use of alternative energies from solar, wind, geothermal, and hydroelectric has spread for stationary power applications, these energy sources cannot be effectively or efficiently employed in current or future transportation systems. With the ongoing concerns of fossil fuel availability and price stability over the long term, alternative biofuels like branched-chain higher alcohols hold promise as a suitable transportation fuel in the future. We showed in our research that various mutant strains of R. eutropha with isobutyraldehyde dehydrogenase activity, in combination with the overexpression of plasmid-borne, native branched-chain amino acid biosynthesis pathway genes and the overexpression of heterologous ketoisovalerate decarboxylase gene, would produce isobutanol and 3-methyl-1-butanol when initiated during nitrogen or phosphorus limitation. Early on, we isolated one mutant R. eutropha strain which produced over 180 mg/L branched-chain alcohols in flask culture while being more tolerant of isobutanol toxicity. After the targeted elimination of genes encoding several potential carbon sinks (ilvE, bkdAB, and aceE), the production titer of the improved to 270 mg/L isobutanol and 40 mg/L 3-methyl-1-butanol.

  16. Q1Report for CADWR Project: Desalination Using Carbon NAnotube Membranes

    SciTech Connect (OSTI)

    Bakajin, O

    2008-05-14T23:59:59.000Z

    In this research and development project, LLNL will leverage the process for fabrication of the membranes developed by our internally funded effort (LLNL Laboratory Directed Research and Development). LLNL will then employ chemical manipulations to modify charge at the ends of the nanotubes and make the membranes more selective to either positive or negative ions through a combination of size and charge selectivity. LLNL's goal is to demonstrate ion exclusion while preserving high permeabilities and low energy use. Success of this research and development project may warrant further developments in the fabrication of membranes.

  17. Projects Aimed at Advancing State-of-the-Art Carbon Capture from Coal Power

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015 | Department ofThatGrid3 ProgramID ProjectProject

  18. Projects Selected for Safe and Permanent Geologic Storage of Carbon Dioxide

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015 | Department ofThatGrid3 ProgramID ProjectProject|

  19. Final report : LDRD project 79824 carbon nanotube sorting via DNA-directed self-assembly.

    SciTech Connect (OSTI)

    Robinson, David B; Leung, Kevin; Rempe, Susan B.; Dossa, Paul D.; Frischknecht, Amalie Lucile; Martin, Marcus Gary

    2007-10-01T23:59:59.000Z

    Single-wall carbon nanotubes (SWNTs) have shown great promise in novel applications in molecular electronics, biohazard detection, and composite materials. Commercially synthesized nanotubes exhibit a wide dispersion of geometries and conductivities, and tend to aggregate. Hence the key to using these materials is the ability to solubilize and sort carbon nanotubes according to their geometric/electronic properties. One of the most effective dispersants is single-stranded DNA (ssDNA), but there are many outstanding questions regarding the interaction between nucleic acids and SWNTs. In this work we focus on the interactions of SWNTs with single monomers of nucleic acids, as a first step to answering these outstanding questions. We use atomistic molecular dynamics simulations to calculate the binding energy of six different nucleotide monophosphates (NMPs) to a (6,0) single-wall carbon nanotube in aqueous solution. We find that the binding energies are generally favorable, of the order of a few kcal/mol. The binding energies of the different NMPs were very similar in salt solution, whereas we found a range of binding energies for NMPs in pure water. The binding energies are sensitive to the details of the association of the sodium ions with the phosphate groups and also to the average conformations of the nucleotides. We use electronic structure (Density Functional Theory (DFT) and Moller-Plesset second order perturbation to uncorrelated Hartree Fock theory (MP2)) methods to complement the classical force field study. With judicious choices of DFT exchange correlation functionals, we find that DFT, MP2, and classical force field predictions are in qualitative and even quantitative agreement; all three methods should give reliable and valid predictions. However, in one important case, the interactions between ions and metallic carbon nanotubes--the SWNT polarization-induced affinity for ions, neglected in most classical force field studies, is found to be extremely large (on the order of electron volts) and may have important consequences for various SWNT applications. Finally, the adsorption of NMPs onto single-walled carbon nanotubes were studied experimentally. The nanotubes were sonicated in the presence of the nucleotides at various weight fractions and centrifuged before examining the ultraviolet absorbance of the resulting supernatant. A distinct Langmuir adsorption isotherm was obtained for each nucleotide. All of the nucleotides differ in their saturation value as well as their initial slope, which we attribute to differences both in nucleotide structure and in the binding ability of different types or clusters of tubes. Results from this simple system provide insights toward development of dispersion and separation methods for nanotubes: strongly binding nucleotides are likely to help disperse, whereas weaker ones may provide selectivity that may be beneficial to a separation process.

  20. Elevated Temperature Materials for Power Generation and Propulsion The energy industry is designing higher-efficiency land-based turbines for natural gas-fired

    E-Print Network [OSTI]

    Li, Mo

    higher-efficiency land-based turbines for natural gas-fired power generation systems. The high inlet is significant for modeling cyclic deformation in directionally solidified and single crystal turbine blades

  1. Lake Charles Carbon Capture and Sequestration Project U. S. Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't Happen to HighJosephNOx Traps forLM2 LNGLake Charles Carbon

  2. E-Print Network 3.0 - agroforestry sequestration project Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    realities Summary: mechanisms; Mexico; Carbon sequestration; Carbon mitigation; Carbon markets; Community agroforestry... years, the carbon project technician provided advice...

  3. Land-Based Wind Plant Balance-of-System Cost Drivers and Sensitivities (Poster)

    SciTech Connect (OSTI)

    Mone, C.; Maples, B.; Hand, M.

    2014-04-01T23:59:59.000Z

    With Balance of System (BOS) costs contributing up to 30% of the installed capital cost, it is fundamental to understand the BOS costs for wind projects as well as potential cost trends for larger turbines. NREL developed a BOS model using project cost estimates developed by industry partners. Aspects of BOS covered include engineering and permitting, foundations for various wind turbines, transportation, civil work, and electrical arrays. The data introduce new scaling relationships for each BOS component to estimate cost as a function of turbine parameters and size, project parameters and size, and geographic characteristics. Based on the new BOS model, an analysis to understand the non?turbine wind plant costs associated with turbine sizes ranging from 1-6 MW and wind plant sizes ranging from 100-1000 MW has been conducted. This analysis establishes a more robust baseline cost estimate, identifies the largest cost components of wind project BOS, and explores the sensitivity of the capital investment cost and the levelized cost of energy to permutations in each BOS cost element. This presentation shows results from the model that illustrate the potential impact of turbine size and project size on the cost of energy from US wind plants.

  4. Land-Based Wind Turbine Transportation and Logistics Barriers and Their Effects on U.S. Wind Markets (Presentation)

    SciTech Connect (OSTI)

    Cotrell, J.; Stehly, T.; Johnson, J.; Roberts, J.O.; Parker, Z.; Scott, G.; Heimiller, D.

    2014-05-01T23:59:59.000Z

    The average size of land based wind turbines installed in the United States has increased dramatically over time. As a result wind turbines are facing new transportation and logistics barriers that limit the size of utility scale land based wind turbines that can be deployed in the United States. Addressing these transportation and logistics barriers will allow for even further increases in U.S. turbine size using technologies under development for offshore markets. These barriers are important because larger taller turbines have been identified as a path to reducing the levelized cost of energy for electricity. Additionally, increases in turbine size enable the development of new low and moderate speed markets in the U.S. In turn, wind industry stakeholder support, market stability, and ultimately domestic content and manufacturing competitiveness are potentially affected. In general there is very little recent literature that characterizes transportation and logistics barriers and their effects on U.S. wind markets and opportunities. Accordingly, the objective of this paper is to report the results of a recent NREL study that identifies the barriers, assesses their impact and provides recommendations for strategies and specific actions.

  5. Assessment of Brine Management for Geologic Carbon Sequestration

    E-Print Network [OSTI]

    Breunig, Hanna M.

    2014-01-01T23:59:59.000Z

    for  Geologic  Carbon  Sequestration. ”   International  of  Energy.  “Carbon  Sequestration  Atlas  of  the  Water  Extracted  from  Carbon  Sequestration  Projects."  

  6. Results from the Carbon-Land Model Intercomparison Project (C-LAMP) and Availability of the Data on the Earth System Grid (ESG)

    SciTech Connect (OSTI)

    Hoffman, Forrest M [ORNL; Covey, Curtis [Lawrence Livermore National Laboratory (LLNL); Fung, Inez [University of California, Berkeley; Randerson, Jim [University of California, Irvine; Thornton, Peter [National Center for Atmospheric Research (NCAR); Lee, Jeff [National Center for Atmospheric Research (NCAR); Rosenbloom, Nan [National Center for Atmospheric Research (NCAR); Stockli, Reto [Colorado State University, Fort Collins; Running, Steven [University of Montana, Missoula; Bernholdt, David E [ORNL; Williams, Dean [Lawrence Livermore National Laboratory (LLNL)

    2007-01-01T23:59:59.000Z

    This paper describes the Carbon-Land Model Intercomparison Project (C-LAMP) being carried out through a collaboration between the Community Climate System Model (CCSM) Biogeochemistry Working Group, a DOE SciDAC-2 project, and the DOE Program for Climate Model Diagnosis and Intercomparison (PCMDI). The goal of the project is to intercompare terrestrial biogeochemistry models running within the CCSM framework to determine the best set of processes to include in future versions of CCSM. As a part of the project, observational datasets are being collected and used to score the scientific performance of these models following a well-defined set of metrics. In addition, metadata standards for terrestrial biosphere models are being developed to support archival and distribution of the C-LAMP model output via the Earth System Grid (ESG). Progress toward completion of this project and preliminary results from the first set of experiments are reported.

  7. Carbon Additionality: Discussion Paper

    E-Print Network [OSTI]

    ahead, and identifying the carbon pools and other green house gas emissions sources and savings coveredCarbon Additionality: A review Discussion Paper Gregory Valatin November 2009 Forest Research. Voluntary Carbon Standards American Carbon Registry Forest Carbon Project Standard (ACRFCPS) 27 Carbon

  8. THE CARBON-LAND MODEL INTERCOMPARISON PROJECT (C-LAMP): A PROTOTYPE FOR COUPLED BIOSPHERE-ATMOSPHERE MODEL

    E-Print Network [OSTI]

    Hoffman, Forrest M.

    often referred to as Earth System Models (ESMs). While a number of terrestrial and ocean carbon models

  9. Carbon dioxide and climate. [Appendix includes names and addresses of the Principal Investigators for the research projects funded in FY1991

    SciTech Connect (OSTI)

    Not Available

    1991-10-01T23:59:59.000Z

    Global climate change is a serious environmental concern, and the US has developed An Action Agenda'' to deal with it. At the heart of the US effort is the US Global Change Research Program (USGCRP), which has been developed by the Committee on Earth and Environmental Sciences (CEES) of the Federal Coordinating Council for Sciences, Engineering, and Technology (FCCSET). The USGCRP will provide the scientific basis for sound policy making on the climate-change issue. The DOE contribution to the USGCRP is the Carbon Dioxide Research Program, which now places particular emphasis on the rapid improvement of the capability to predict global and regional climate change. DOE's Carbon Dioxide Research Program has been addressing the carbon dioxide-climate change connection for more than twelve years and has provided a solid scientific foundation for the USGCRP. The expansion of the DOE effort reflects the increased attention that the Department has placed on the issue and is reflected in the National Energy Strategy (NES) that was released in 1991. This Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1991 and gives a brief overview of objectives, organization, and accomplishments. The Environmental Sciences Division of the Office of Health and Environmental Research, Office of Energy Research supports a Carbon Dioxide Research Program to determine the scientific linkage between the rise of greenhouse gases in the atmosphere, especially carbon dioxide, and climate and vegetation change. One facet is the Core CO{sub 2} Program, a pioneering program that DOE established more than 10 years ago to understand and predict the ways that fossil-fuel burning could affect atmospheric CO{sub 2} concentration, global climate, and the Earth's biosphere. Major research areas are: global carbon cycle; climate detection and models of climate change; vegetation research; resource analysis; and, information and integration.

  10. Supplemental Feeding of Clam Seed in Land-based Nurseries Shellfish Algae Diet is a commercially available, super-concentrated mix of four marine micro-

    E-Print Network [OSTI]

    Florida, University of

    Supplemental Feeding of Clam Seed in Land-based Nurseries Shellfish Algae Diet is a commercially available, super-concentrated mix of four marine micro- algae that provide a nutritional profile for shellfish. Although the algal cells are intact, the algae are not alive. The diet does not contain

  11. EA-1835: Midwest Regional Carbon Sequestration Partnership (MRCSP) Phase II Michigan Basin Project in Chester Township, Michigan

    Broader source: Energy.gov [DOE]

    NOTE: This EA has been cancelled. This EA will evaluate the environmental impacts of a proposal to provide approximately $65.5 million in financial assistance in a cost-sharing arrangement with the project proponent, MRCSP. MRCSP's proposed project would use CO2 captured from an existing natural gas processing plant in Chester Township, pipe it approximately 1 mile to an injection well, and inject it into a deep saline aquifer for geologic sequestration. This project would demonstrate the geologic sequestration of 1,000,000 metric tons of CO2 over a 4-year period. The project and EA are on hold.

  12. Offshore Wind Farm Layout Optimization (OWFLO) Project: Preliminary Results

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Offshore Wind Farm Layout Optimization (OWFLO) Project: Preliminary Results Christopher N. Elkinton the layout of an offshore wind farm presents a significant engineering challenge. Most of the optimization literature to date has focused on land-based wind farms, rather than on offshore farms. Typically, energy

  13. OFFSHORE WIND FARM LAYOUT OPTIMIZATION (OWFLO) PROJECT: AN INTRODUCTION

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    OFFSHORE WIND FARM LAYOUT OPTIMIZATION (OWFLO) PROJECT: AN INTRODUCTION C. N. Elkinton* , J. F Governors Dr., Amherst, MA 01003, USA * celkinto@ecs.umass.edu ABSTRACT Optimizing the layout of an offshore focused on land-based wind farms, rather than on offshore farms. The conventional method used to lay out

  14. The Carbon-Land Model Intercomparison Project (C-LAMP): A Model-Data Comparison System for Evaluation of Coupled Biosphere-Atmosphere Models

    SciTech Connect (OSTI)

    Hoffman, Forrest M [ORNL; Randerson, Jim [University of California, Irvine; Thornton, Peter E [ORNL; Mahowald, Natalie [Cornell University; Bonan, Gordon [National Center for Atmospheric Research (NCAR); Running, Steven [University of Montana, Missoula; Fung, Inez [University of California, Berkeley

    2009-01-01T23:59:59.000Z

    The need to capture important climate feebacks in general circulation models (GCMs) has resulted in new efforts to include atmospheric chemistry and land and ocean biogeochemistry into the next generation of production climate models, now often referred to as Earth System Models (ESMs). While many terrestrial and ocean carbon models have been coupled to GCMs, recent work has shown that such models can yield a wide range of results, suggesting that a more rigorous set of offline and partially coupled experiments, along with detailed analyses of processes and comparisons with measurements, are warranted. The Carbon-Land Model Intercomparison Project (C-LAMP) provides a simulation protocol and model performance metrics based upon comparisons against best-available satellite- and ground-based measurements (Hoffman et al., 2007). C-LAMP provides feedback to the modeling community regarding model improvements and to the measurement community by suggesting new observational campaigns. C-LAMP Experiment 1 consists of a set of uncoupled simulations of terrestrial carbon models specifically designed to examine the ability of the models to reproduce surface carbon and energy fluxes at multiple sites and to exhibit the influence of climate variability, prescribed atmospheric carbon dioxide (CO{sub 2}), nitrogen (N) deposition, and land cover change on projections of terrestrial carbon fluxes during the 20th century. Experiment 2 consists of partially coupled simulations of the terrestrial carbon model with an active atmosphere model exchanging energy and moisture fluxes. In all experiments, atmospheric CO{sub 2} follows the prescribed historical trajectory from C{sup 4}MIP. In Experiment 2, the atmosphere model is forced with prescribed sea surface temperatures (SSTs) and corresponding sea ice concentrations from the Hadley Centre; prescribed CO{sub 2} is radiatively active; and land, fossil fuel, and ocean CO{sub 2} fluxes are advected by the model. Both sets of experiments have been performed using two different terrestrial biogeochemistry modules coupled to the Community Land Model version 3 (CLM3) in the Community Climate System Model version 3 (CCSM3): The CASA model of Fung, et al., and the carbon-nitrogen (CN) model of Thornton. Comparisons against Ameriflus site measurements, MODIS satellite observations, NOAA flask records, TRANSCOM inversions, and Free Air CO{sub 2} Enrichment (FACE) site measurements, and other datasets have been performed and are described in Randerson et al. (2009). The C-LAMP diagnostics package was used to validate improvements to CASA and CN for use in the next generation model, CLM4. It is hoped that this effort will serve as a prototype for an international carbon-cycle model benchmarking activity for models being used for the Inter-governmental Panel on Climate Change (IPCC) Fifth Assessment Report. More information about C-LAMP, the experimental protocol, performance metrics, output standards, and model-data comparisons from the CLM3-CASA and CLM3-CN models are available at http://www.climatemodeling.org/c-lamp.

  15. The Woodland Carbon Code

    E-Print Network [OSTI]

    The Woodland Carbon Code While society must continue to make every effort to reduce greenhouse gas a role by removing carbon dioxide from the atmosphere. The potential of woodlands to soak up carbon to help compensate for their carbon emissions. But before investing in such projects, people want to know

  16. Carbon Park Environmental Impact Assessment

    E-Print Network [OSTI]

    of offsetting the University's carbon footprint, promoting biodiversity and establishing easily maintained Carbon Park Environmental Impact Assessment A B.E.S.T. Project By, Adam Bond 2011 #12; Bishop's University Carbon Park

  17. Carbon and Water Resource Management for Water Distribution Systems

    E-Print Network [OSTI]

    Hendrickson, Thomas Peter

    2013-01-01T23:59:59.000Z

    in the projections, reducing the carbon intensity of theprojections use renewable energy as a means of reducing the carbon intensity

  18. CO2 Capture and Storage Project, Education and Training Center...

    Energy Savers [EERE]

    Industrial Carbon Capture and Storage (ICCS) Project is one of the nation's largest carbon capture and storage endeavors. Part of the project includes the National...

  19. Central Networks Low Carbon Hub Optimizing renewable energy resources...

    Open Energy Info (EERE)

    Low Carbon Hub Optimizing renewable energy resources in Lincolnshire (Smart Grid Project) Jump to: navigation, search Project Name Central Networks Low Carbon Hub Optimizing...

  20. 6 Monthly Report on MMU Carbon

    E-Print Network [OSTI]

    Monthly Report on MMU Carbon Management Plan #12;2009/10 Emissions MMU Carbon Footprint Trajectory Project Footprint MMU Actual Carbon Footprint Projects that Reduced the 2009/10 CO2 Footprint #12;2010/11 Emissions6 Monthly Report on MMU Carbon Management Plan June 2011 let's make a sustainable planet #12

  1. University of Glasgow Carbon Management Programme Carbon Management Plan working with

    E-Print Network [OSTI]

    Mottram, Nigel

    carbon vision 11 2.3 Strategic themes 12 Targets and objectives 13 3 Emissions Baseline and Projections. Professor Anton Muscatelli, Principal Foreword from the Carbon Trust Cutting carbon emissions as partUniversity of Glasgow Carbon Management Programme Carbon Management Plan working with Page 1 Carbon

  2. IMPACCT: Carbon Capture Technology

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    IMPACCT Project: IMPACCT’s 15 projects seek to develop technologies for existing coal-fired power plants that will lower the cost of carbon capture. Short for “Innovative Materials and Processes for Advanced Carbon Capture Technologies,” the IMPACCT Project is geared toward minimizing the cost of removing carbon dioxide (CO2) from coal-fired power plant exhaust by developing materials and processes that have never before been considered for this application. Retrofitting coal-fired power plants to capture the CO2 they produce would enable greenhouse gas reductions without forcing these plants to close, shifting away from the inexpensive and abundant U.S. coal supply.

  3. E-Print Network 3.0 - activated carbon developed Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Reading Collection: Materials Science 30 Carbon Code Requirements for voluntary carbon sequestration projects Summary: is the time over which project activities are to be...

  4. E-Print Network 3.0 - activated carbons production Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    United States Department of Summary: as qualifying carbon offset activities in existing markets and regis- tries. Forest carbon projects... are primarily concerned with carbon...

  5. Conceptual Design of Optimized Fossil Energy Systems with Capture and Sequestration of Carbon Dioxide

    E-Print Network [OSTI]

    Ogden, Joan M

    2004-01-01T23:59:59.000Z

    a recent study by the Carbon Capture Project (CCP 2000), theof Fossil Hydrogen Energy Systems with Carbon Capture andThe Implications Of New Carbon Capture And Sequestration

  6. E-Print Network 3.0 - activated carbons derived Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forest carbon projects... straightforward way to sequester carbon and is the simplest carbon sequestration activity to account for in forest... reductions achieved by...

  7. E-Print Network 3.0 - activated carbon obtained Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forest carbon projects... straightforward way to sequester carbon and is the simplest carbon sequestration activity to account for in forest... reductions achieved by...

  8. E-Print Network 3.0 - activated carbons obtained Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forest carbon projects... straightforward way to sequester carbon and is the simplest carbon sequestration activity to account for in forest... reductions achieved by...

  9. E-Print Network 3.0 - activated carbons prepared Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forest carbon projects... straightforward way to sequester carbon and is the simplest carbon sequestration activity to account for in forest... reductions achieved by...

  10. E-Print Network 3.0 - activated carbon treated Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forest carbon projects... straightforward way to sequester carbon and is the simplest carbon sequestration activity to account for in forest... reductions achieved by...

  11. E-Print Network 3.0 - activated carbon testing Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forest carbon projects... straightforward way to sequester carbon and is the simplest carbon sequestration activity to account for in forest... reductions achieved by...

  12. Spatially-explicit impacts of carbon capture and sequestration on water supply and demand

    E-Print Network [OSTI]

    Sathre, Roger

    2014-01-01T23:59:59.000Z

    Laboratory). 2010. Carbon Sequestration Atlas of the United2012. National Carbon Sequestration Database and Geographicfor use in geologic carbon sequestration projects. Aquifers

  13. E-Print Network 3.0 - activated carbon comparison Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forest carbon projects... straightforward way to sequester carbon and is the simplest carbon sequestration activity to account for in forest... reductions achieved by...

  14. E-Print Network 3.0 - activated carbon fixed Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forest carbon projects... straightforward way to sequester carbon and is the simplest carbon sequestration activity to account for in forest... reductions achieved by...

  15. E-Print Network 3.0 - activated carbon derived Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forest carbon projects... straightforward way to sequester carbon and is the simplest carbon sequestration activity to account for in forest... reductions achieved by...

  16. E-Print Network 3.0 - active carbons derived Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forest carbon projects... straightforward way to sequester carbon and is the simplest carbon sequestration activity to account for in forest... reductions achieved by...

  17. CARBON-CARBON COMPOSITE ALLCOMP Carbon-Carbon Composite

    E-Print Network [OSTI]

    Rollins, Andrew M.

    materials. MATERIALS AND DESIRED DATA Carbon-Carbon Composites(T300 & SWB): Crush Resistance, Bend StrengthCARBON-CARBON COMPOSITE ALLCOMP Carbon-Carbon Composite · C-C supplied in two forms · T300: C strength 4340 steel, carbon-carbon composite, and Carbon-Silicon Carbide composite were tested to examine

  18. Project Summary Partnership Inspiration

    E-Print Network [OSTI]

    Everest, Graham R

    Businesses are hunting for solutions to reduce their carbon footprint and energy spend. This project follows as they help overcome the challenges of auditing and reducing the organisational carbon footprint. A television the practices of other organisations. University of East Anglia, 5** rated School of Environmental Sciences CRed

  19. Enhanced terrestrial carbon uptake in the Northern High Latitudes in the 21st century from the Coupled Carbon

    E-Print Network [OSTI]

    Zeng, Ning

    the Coupled Carbon Cycle Climate Model Intercomparison Project model projections H A I F E N G Q I A N *, R E Carbon Cycle Climate Model Intercomparison Project. Our analysis suggests that the NHL will be a carbon the intense warming there enhances SOM decomposition, soil organic carbon (SOC) storage continues to increase

  20. Carbon Trading Protocols for Geologic Sequestration

    E-Print Network [OSTI]

    Hoversten, Shanna

    2009-01-01T23:59:59.000Z

    Liability for the Site EOR Projects For a leakage over 0.1%the permitting authority. EOR projects may be consideredproduced oil is "carbon free". EOR projects wishing to be

  1. Energy Department Project Captures and Stores One Million Metric...

    Office of Environmental Management (EM)

    formation. The project is part of the development phase of the Department's Regional Carbon Sequestration Partnerships initiative, which is helping develop and deploy carbon...

  2. Carbon Offsets for Forestry and Bioenergy: Researching Opportunities...

    Open Energy Info (EERE)

    findings from a research study in Uganda and India looking at the opportunities that carbon offset projects offer for poor rural communities." References "Carbon Offsets...

  3. Project Year Project Title

    E-Print Network [OSTI]

    Gray, Jeffrey J.

    the cost of the project to labor only. The efficacy of the examples will be assessed through their useProject Year 2012-2013 Project Title Sight-Reading at the Piano Project Team Ken Johansen, Peabody) Faculty Statement The goal of this project is to create a bank of practice exercises that student pianists

  4. Project Year Project Team

    E-Print Network [OSTI]

    Gray, Jeffrey J.

    design goals for this project include low cost (less than $30 per paddle) and robustness. The projectProject Year 2001 Project Team Faculty: Allison Okamura, Mechanical Engineering, Whiting School Project Title Haptic Display of Dynamic Systems Audience 30 to 40 students per year, enrolled

  5. Project Year Project Team

    E-Print Network [OSTI]

    Gray, Jeffrey J.

    -year section of the summer project will cost $1344.) This project will be measured by the CER surveys conductedProject Year 2005 Project Team Sean Greenberg, Faculty, Philosophy Department, Krieger School of Arts & Sciences; Kevin Clark, Student, Philosophy Department, Krieger School of Arts & Sciences Project

  6. Project EARTH-13-RR3: The blossoming of diatoms in the Late Cretaceous/Early Paleogene: A carbon or silica driver?

    E-Print Network [OSTI]

    Henderson, Gideon

    to decrease atmospheric pCO2. The ecological dominance of diatoms occurred relatively recently ice house. And intriguingly, the carbon isotopes of marine organic matter shifted, for the first time

  7. Project Year Project Team

    E-Print Network [OSTI]

    Gray, Jeffrey J.

    Project Year 2002 Project Team Faculty: Louise Pasternack, Chemistry Department, Krieger School, Krieger School of Arts & Sciences Project Title Introductory Chemistry Lab Demonstrations Audience an interactive virtual lab manual that will facilitate understanding of the procedures and techniques required

  8. Creep performance of candidate SiC and Si{sub 3}N{sub 4} materials for land-based, gas turbine engine components

    SciTech Connect (OSTI)

    Wereszczak, A.A.; Kirkland, T.P.

    1996-03-01T23:59:59.000Z

    Tensile creep-rupture of a commercial gas pressure sintered Si3N4 and a sintered SiC is examined at 1038, 1150, and 1350 C. These 2 ceramics are candidates for nozzles and combustor tiles that are to be retrofitted in land-based gas turbine engines, and there is interest in their high temperature performance over service times {ge} 10,000 h (14 months). For this long lifetime, a static tensile stress of 300 MPa at 1038/1150 C and 125 Mpa at 1350 C cannot be exceeded for Si3N4; for SiC, the corresponding numbers are 300 Mpa at 1038 C, 250 MPa at 1150 C, and 180 MPa at 1350 C. Creep-stress exponents for Si3N4 are 33, 17, and 8 for 1038, 1150, 1350 C; fatigue- stress exponents are equivalent to creep exponents, suggesting that the fatigue mechanism causing fracture is related to the creep mechanism. Little success was obtained in producing failure in SiC after several decades of time through exposure to appropriate tensile stress; if failure did not occur on loading, then the SiC specimens most often did not creep-rupture. Creep-stress exponents for the SiC were determined to be 57, 27, and 11 for 1038, 1150, and 1350 C. For SiC, the fatigue-stress exponents did not correlate as well with creep-stress exponents. Failures that occurred in the SiC were a result of slow crack growth that initiated from the surface.

  9. Project Year Project Title

    E-Print Network [OSTI]

    Gray, Jeffrey J.

    Project Year 2013-2014 Project Title German Online Placement Exam Project Team Deborah Mifflin to increased cost. As well, it lacked listening comprehension, writing and speaking components providing support, we will use Blackboard for this project. The creation will require numerous steps

  10. Project Year Project Title

    E-Print Network [OSTI]

    Gray, Jeffrey J.

    that incorporate video taped procedures for student preview. Solution This project will create videos for more to study the procedure and techniques before coming to class. Our previous fellowship project addressedProject Year 2009 Project Title Enhancing Biology Laboratory Preparation through Video

  11. Project Year Project Team

    E-Print Network [OSTI]

    Gray, Jeffrey J.

    , there is no resource available to view the procedure before class. Solution The purpose of this project is to capture available to view the procedure before class. The purpose #12;of this project is to capture variousProject Year 2007 Project Team Kristina Obom, Faculty, Advanced Academic Programs, Krieger School

  12. Update on the aquifer/wetlands restoration project at Utica, Nebraska, with recommendations for remapping of the carbon tetrachloride contamination in groundwater.

    SciTech Connect (OSTI)

    LaFreniere, L. M.; Environmental Science Division

    2010-04-20T23:59:59.000Z

    In 1992-1993, Argonne National Laboratory investigated potential carbon tetrachloride contamination that might be linked to the former grain storage facility operated by the Commodity Credit Corporation (CCC) of the U.S. Department of Agriculture (USDA) at Utica, Nebraska. These initial studies identified carbon tetrachloride in a plume of contaminated groundwater, extending approximately 3,500 ft southeastward from the former CCC/USDA facility, within a shallow upper aquifer that had been used previously as a municipal water source by the town (Figure 1.1). A deeper aquifer used as the current municipal water source was found to be free of carbon tetrachloride contamination. Although the shallow aquifer was no longer being used as a source of drinking water at Utica, additional studies indicated that the carbon tetrachloride could pose an unacceptable health threat to potential future residents who might install private wells along the expected downgradient migration pathway of the plume. On the basis of these findings, corrective action was recommended to decrease the carbon tetrachloride concentrations in the upper aquifer to acceptable levels (Argonne 1993a,b, 1995). Initial discussions with the Utica village board indicated that any restoration strategies involving nonbeneficial discharge of treated groundwater in the immediate vicinity of Utica would be unacceptable to the town. To address this concern, the CCC/USDA and Argonne, in cooperation with multiple federal and state regulatory and environmental agencies (Table 1.1) proposed a treatment strategy for the Utica groundwater employing groundwater extraction coupled with the seasonal use of agricultural spray irrigation equipment to simultaneously (1) remove carbon tetrachloride from the groundwater (by volatilization to the atmosphere) and (2) discharge the treated groundwater to enhance the development of wetlands in the North Lake Basin Wildlife Management Area, just north of the town (Argonne 2000). To develop this treatment approach, additional groundwater sampling was conducted to update the distribution of carbon tetrachloride in groundwater identified in the preliminary studies in 1992-1993. In March 1998, detailed mapping of the carbon tetrachloride plume was performed by using the Argonne cone penetrometer (CPT) vehicle to collect groundwater samples for analyses for volatile organic compounds (VOCs) at 13 locations (PS01-PS09, PS12, PS16, PS17, PS19; Figure 1.2). The samples were collected in vertical profiles through the aquifer, at 10-ft intervals. The results of this 1998 study (Table 1.2) demonstrated that the three-dimensional distribution of carbon tetrachloride in the aquifer is complex, with multiple 'hot spots' occurring in the plume at various depths and distances along its length (Argonne 2000). In October 2002, the CCC/USDA requested that Argonne perform targeted groundwater sampling at Utica to document the migration of the carbon tetrachloride plume since the 1998 sampling event. In February 2003, vertical-profile groundwater sampling for VOCs analyses was conducted at 8 selected locations (PS01, PS04-PS07, PS12, PS19, PS20; Figure 1.2 and Table 1.3). The lateral and vertical configuration of the carbon tetrachloride plume, as identified in the 2003 study (Argonne 2003), is illustrated in Figures 1.3-1.7. On the basis of the 2003 groundwater sampling results, a remedial system employing four extraction wells (GWEX 1-GWEX 4), with groundwater treatment by spray irrigation and conventional air stripping, was implemented at Utica, with the concurrence of the CCC/USDA and the agencies identified in Table 1.1. The principal components of the Utica system (shown in Figure 1.8) are described briefly in Section 1.2. Operation of well GWEX4 and the associated air stripper began on October 29, 2004, and routine operation of wells GWEX1-GWEX3 and the spray irrigation treatment units began on November 22, 2004.

  13. CARBON OFFSETTING IN A TOURSIM CONTEXT: WHISTLER BC

    E-Print Network [OSTI]

    CARBON OFFSETTING IN A TOURSIM CONTEXT: WHISTLER BC by Katie von Gaza Bachelor of Environmental: Carbon offsetting in a Tourism Context: Whistler, BC. Project No.: 471 Examining Committee: Chair 2.2 Carbon Offsetting

  14. Project Year Project Team

    E-Print Network [OSTI]

    Gray, Jeffrey J.

    Project Year 2002 Project Team Faculty: Gregory Hager, Computer Science, Whiting School of Engineering Fellow: Alan Chen, Biomedical Engineering, Whiting School of Engineering Project Title Robotics is complicated, time-consuming, and costly, making a robot for an introductory-level class is not practical

  15. Project Proposal Project Logistics

    E-Print Network [OSTI]

    Hall, Mary W.

    Project Proposal · Project Logistics: ­ 2-3 person teams ­ Significant implementation, worth 55 and anticipated cost of copying to/from host memory. IV. Intellectual Challenges - Generally, what makes this computation worthy of a project? - Point to any difficulties you anticipate at present in achieving high

  16. Project Year Project Title

    E-Print Network [OSTI]

    Gray, Jeffrey J.

    operators, matrix indexing, vector computations, loops, functions, and plotting graphs, among others basic arithmetic operators, matrix indexing, and vector computations in MATLAB. After creatingProject Year 2011-2012 Project Title Online Tutorial for MATLAB Project Team Eileen Haase, Whiting

  17. Project Year Project Team

    E-Print Network [OSTI]

    Gray, Jeffrey J.

    Project Year 2005 Project Team Krysia Hudson, Faculty, School of Nursing, Undergraduate Instruction for Educational Resources Project Title Enhanced Web-based Learning Environments for Beginning Nursing Students (e.g., demonstrations of procedures or tasks) into the WBL systems, it will be possible to increase

  18. Project Year Project Team

    E-Print Network [OSTI]

    Gray, Jeffrey J.

    Project Year 2002 Project Team Faculty: Michael McCloskey, Cognitive Science/Neuroscience, Krieger of Arts & Sciences Project Title Cognitive Neuropsychology Audience The initial audience to access. The current procedure calls for individual students or researchers to contact the faculty member

  19. EA-1617: Lovell-Yellowtail and Basin-Lovell Transmission Line Rebuild Project, Big Horn County, Wyoming, and Big Horn and Carbon Counties, Montana

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration prepared this EA and a finding of no significant impact for a proposal to rebuild the Lovell-Yellowtail (LV-YT) No. 1 and No. 2 115-kV transmission lines, located in Big Horn County, Wyoming, and Big Horn and Carbon Counties in Montana, and the Basin-Lovell 115-kV transmission line in Big Horn County, Wyoming.

  20. Estimating Mitigation Potential of Agricultural Projects: an...

    Open Energy Info (EERE)

    Mitigation Potential of Agricultural Projects: an Application of the EX-Ante Carbon-balance Tool (EX-ACT) AgencyCompany Organization: Food and Agriculture Organization of...

  1. Project Information Form Project Title The Development of Lifecycle Data for Hydrogen Fuel Production and

    E-Print Network [OSTI]

    California at Davis, University of

    fuel providers to meet annual carbon intensity targets. These targets are based on carbon intensityProject Information Form Project Title The Development of Lifecycle Data for Hydrogen Fuel or organization) ARB $250,000 Total Project Cost $250,000 Agency ID or Contract Number DTRT13-G-UTC29 Start

  2. Lower Cost Carbon Fiber Precursors

    Broader source: Energy.gov (indexed) [DOE]

    1 Lower Cost Carbon Fiber Precursors P.I. Name: Dave Warren Presenter: Dr. Amit K. Naskar Oak Ridge National Laboratory 05162012 Project ID LM004 This presentation does not...

  3. Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide

    Broader source: Energy.gov [DOE]

    Project Objectives: Elucidate comprehensively the carbonation reaction mechanisms between supercritical carbon dioxide (scCO2) and reservoir rocks consisting of different mineralogical compositions in aqueous and non-aqueous environments at temperatures of up to 250ºC, and to develop chemical modeling of CO2-reservior rock interactions.

  4. University of Bath Carbon Management Plan working with

    E-Print Network [OSTI]

    Burton, Geoffrey R.

    at Stake 20 4 Carbon Management Projects 23 4.1 Existing projects 24 4.2 District heating projects 25 4 Department for Environment, Food and Rural Affairs DH District Heating DTI Department of Trade and Industry

  5. Project Year Project Title

    E-Print Network [OSTI]

    Gray, Jeffrey J.

    Project Year 2011-2012 Project Title Using M-Health and GIS Technology in the Field to Improve-specialized, but practically useless skill. Solution One goal of this summer's Applied Geographic Information Systems in Public lessons about observational epidemiology. Technologies Used Geographic Info System (GIS), Blackboard

  6. Carbon Capture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Capture Pre-Combustion Post-Combustion CO2 Compression Systems Analysis Regulatory Drivers Program Plan Capture Handbook Carbon capture involves the separation of CO2 from...

  7. Project Accounts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Accounts Project Accounts Overview Project accounts are designed to facilitate collaborative computing by allowing multiple users to use the same account. All actions...

  8. E-Print Network 3.0 - active carbon process Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    What Point in This Process Will Payments for Offset Activities Occur? 55... as qualifying carbon offset activities in existing markets and regis- tries. Forest carbon projects......

  9. E-Print Network 3.0 - activated carbon effect Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tyne Collection: Materials Science 18 United States Department of Summary: as qualifying carbon offset activities in existing markets and regis- tries. Forest carbon projects......

  10. E-Print Network 3.0 - activated carbon process Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    What Point in This Process Will Payments for Offset Activities Occur? 55... as qualifying carbon offset activities in existing markets and regis- tries. Forest carbon projects......

  11. E-Print Network 3.0 - activated carbons produced Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    United States Department of Summary: as qualifying carbon offset activities in existing markets and regis- tries. Forest carbon projects... straightforward way to sequester...

  12. E-Print Network 3.0 - activated carbon produced Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    United States Department of Summary: as qualifying carbon offset activities in existing markets and regis- tries. Forest carbon projects... straightforward way to sequester...

  13. E-Print Network 3.0 - activated carbon based Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon credits, it is absolutely essential... not credit any soil carbon changes to the bioenergy crops. A second ... Source: Argonne National Laboratory - GREET Model Project...

  14. E-Print Network 3.0 - activated carbon full-scale Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Carbon Dioxide In Deep Summary: full-scale demonstration projects. In closing, carbon sequestration is a promising and necessary... Benson Testimony, November 7, 2007....

  15. E-Print Network 3.0 - activated carbons modified Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    losses... through changes in activity outside of the project focus area. For example, carbon sequestration endeavors... SOIL CARBON: POLICY AND ECONOMICS GREGG ... Source:...

  16. E-Print Network 3.0 - activated carbon modified Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    losses... through changes in activity outside of the project focus area. For example, carbon sequestration endeavors... SOIL CARBON: POLICY AND ECONOMICS GREGG ... Source:...

  17. Socio-economic benefits in Plan Vivo projects: Trees for Global Benefits, Uganda 50 Appendix 6.6

    E-Print Network [OSTI]

    for the Socio-economic study of a carbon offset Plan Vivo project. The methodology has been developed initially in the Jindal studies 2004 and 2008 (on the Nhambita Community Carbon Project, Envirotrade Plan Vivo project

  18. Carbon based prosthetic devices

    SciTech Connect (OSTI)

    Devlin, D.J.; Carroll, D.W.; Barbero, R.S.; Archuleta, T. [Los Alamos National Lab., NM (US); Klawitter, J.J.; Ogilvie, W.; Strzepa, P. [Ascension Orthopedics (US); Cook, S.D. [Tulane Univ., New Orleans, LA (US). School of Medicine

    1998-12-31T23:59:59.000Z

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project objective was to evaluate the use of carbon/carbon-fiber-reinforced composites for use in endoprosthetic devices. The application of these materials for the metacarpophalangeal (MP) joints of the hand was investigated. Issues concerning mechanical properties, bone fixation, biocompatibility, and wear are discussed. A system consisting of fiber reinforced materials with a pyrolytic carbon matrix and diamond-like, carbon-coated wear surfaces was developed. Processes were developed for the chemical vapor infiltration (CVI) of pyrolytic carbon into porous fiber preforms with the ability to tailor the outer porosity of the device to provide a surface for bone in-growth. A method for coating diamond-like carbon (DLC) on the articulating surface by plasma-assisted chemical vapor deposition (CVD) was developed. Preliminary results on mechanical properties of the composite system are discussed and initial biocompatibility studies were performed.

  19. results and benefits... The Bittern Line Carbon

    E-Print Network [OSTI]

    Everest, Graham R

    results and benefits... The Bittern Line Carbon Neutral Stations Transport Regeneration Ltd. June 2008 c a s e s t u d yCRed carbon reduction Project Summary Our client, Transport Regeneration Ltd., aims to make nine stations on the Bittern Line between Norwich and Sheringham carbon neutral

  20. The Importance of Carbon Footprint Estimation Boundaries

    E-Print Network [OSTI]

    Kammen, Daniel M.

    The Importance of Carbon Footprint Estimation Boundaries H . S C O T T M A T T H E W S , C H R I and organizations are pursuing "carbon footprint" projects to estimate their own contributions to global climate change. Protocol definitions from carbon registries help organizations analyze their footprints

  1. Geological carbon sequestration: critical legal issues

    E-Print Network [OSTI]

    Watson, Andrew

    Geological carbon sequestration: critical legal issues Ray Purdy and Richard Macrory January 2004 Tyndall Centre for Climate Change Research Working Paper 45 #12;1 Geological carbon sequestration an integrated assessment of geological carbon sequestration (Project ID code T2.21). #12;2 1 Introduction

  2. Carbon Smackdown: Carbon Capture

    SciTech Connect (OSTI)

    Jeffrey Long

    2010-07-12T23:59:59.000Z

    In this July 9, 2010 Berkeley Lab summer lecture, Lab scientists Jeff Long of the Materials Sciences and Nancy Brown of the Environmental Energy Technologies Division discuss their efforts to fight climate change by capturing carbon from the flue gas of power plants, as well as directly from the air

  3. Carbon Smackdown: Carbon Capture

    ScienceCinema (OSTI)

    Jeffrey Long

    2010-09-01T23:59:59.000Z

    In this July 9, 2010 Berkeley Lab summer lecture, Lab scientists Jeff Long of the Materials Sciences and Nancy Brown of the Environmental Energy Technologies Division discuss their efforts to fight climate change by capturing carbon from the flue gas of power plants, as well as directly from the air

  4. Project Fact Sheet Project Brief

    E-Print Network [OSTI]

    Project Fact Sheet Project Brief: Construction Project Team: Project Facts & Figures: Budget: £500,000 Funding Source: Capital Construction Project Programme: Start on Site: October 2010 End Date : April 2011 Occupation Date: n/a For further information contact Project Manager as listed above or the Imperial College

  5. Project Fact Sheet Project Brief

    E-Print Network [OSTI]

    Project Fact Sheet Project Brief: This project refurbished half of the 5th and 7th floors on the Faculty of Medicine, please visit: http://www1.imperial.ac.uk/medicine/ Construction Project Team: Project Facts & Figures: Budget: £3,500,000 Funding Source: SRIF III Construction Project Programme: Start

  6. Energy Efficiency Project Development

    SciTech Connect (OSTI)

    IUEP

    2004-03-01T23:59:59.000Z

    The International Utility Efficiency Partnerships, Inc. (IUEP) has been a leader among the industry groups that have supported voluntary initiatives to promote international energy efficiency projects and address global climate change. The IUEP maintains its leadership by both supporting international greenhouse gas (GHG) reduction projects under the auspices of the U.S. Department of Energy (DOE) and by partnering with U.S. and international organizations to develop and implement strategies and specific energy efficiency projects. The goals of the IUEP program are to (1) provide a way for U.S. industry to maintain a leadership role in international energy efficiency infrastructure projects; (2) identify international energy project development opportunities to continue its leadership in supporting voluntary market-based mechanisms to reduce GHG emissions; and (3) demonstrate private sector commitment to voluntary approaches to global climate issues. The IUEP is dedicated to identifying, promoting, managing, and assisting in the registration of international energy efficiency projects that result in demonstrated voluntary reductions of GHG emissions. This Final Technical Report summarizes the IUEP's work in identifying, promoting, managing, and assisting in development of these projects and IUEP's effort in creating international cooperative partnerships to support project development activities that develop and deploy technologies that (1) increase efficiency in the production, delivery and use of energy; (2) increase the use of cleaner, low-carbon fuels in processing products; and (3) capture/sequester carbon gases from energy systems. Through international cooperative efforts, the IUEP intends to strengthen partnerships for energy technology innovation and demonstration projects capable of providing cleaner energy in a cost-effective manner. As detailed in this report, the IUEP met program objectives and goals during the reporting period January 1, 2001 through December 31, 2002. At the request of the DOE, we have also included in this report additional activities during the reporting period January, 1999 through January, 2001. This additional information had been reported earlier in the Final Technical Reports that summarized activities undertaken in those earlier periods.

  7. Costa Rica-Low-Carbon Energy for Central America: Building a...

    Open Energy Info (EERE)

    feasibility studies for the most productive projects. The final product will include an atlas illustrating key climate and energy indicators and cost-effective low carbon projects....

  8. El Salvador-Low-Carbon Energy for Central America: Building a...

    Open Energy Info (EERE)

    feasibility studies for the most productive projects. The final product will include an atlas illustrating key climate and energy indicators and cost-effective low carbon projects....

  9. Project Management Project Managment

    E-Print Network [OSTI]

    Stephenson, Ben

    ­ Inspired by agile methods #12;Background · Large-scale software development & IT projects, plagued relations #12;One Agile Approach to Scheduling · The creative nature of game development resist heavy up Problems ­incompatible platforms, 3rd party etc. #12;Is Games Development Similar? · Yes & No

  10. Project Year Project Team

    E-Print Network [OSTI]

    Gray, Jeffrey J.

    An Engineer's Guide to the Structures of Baltimore Audience Students from the Krieger School of Arts City, interfaced through a course website, the team will integrate descriptions of structural behavior format. Technologies Used HTML/Web Design, MySQL Project Abstract Structural analysis is typically taught

  11. Energy Department Awards $66.7 Million for Large-Scale Carbon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    66.7 Million for Large-Scale Carbon Sequestration Project Energy Department Awards 66.7 Million for Large-Scale Carbon Sequestration Project December 18, 2007 - 4:58pm Addthis...

  12. DOE Awards $126.6 Million for Two More Large-Scale Carbon Sequestratio...

    Broader source: Energy.gov (indexed) [DOE]

    126.6 Million for Two More Large-Scale Carbon Sequestration Projects DOE Awards 126.6 Million for Two More Large-Scale Carbon Sequestration Projects May 6, 2008 - 11:30am Addthis...

  13. Baselines For Land-Use Change In The Tropics: Application To Avoided Deforestation Projects

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    in Mexico: making carbon sequestration a by-product ofthe area of the pilot carbon sequestration projects in theseLUCS = Land Use and Carbon Sequestration model, and GEOMOD =

  14. Carbon dioxide reuse and sequestration: The state of the art today

    E-Print Network [OSTI]

    Benson, Sally M.; Dorchak, Thomas; Jacobs, Gary; Ekmann, James; Bishop, Jim; Grahame, Thomas

    2000-01-01T23:59:59.000Z

    projects related to carbon sequestration, Presented at theDOE workshop on carbon sequestration, Washington D.C. ,29. U.S. DOE, Carbon Sequestration: State of the Science,

  15. Streamlined carbon footprint computation : case studies in the food industry

    E-Print Network [OSTI]

    Lee, Yin Jin

    2013-01-01T23:59:59.000Z

    One of the greatest barriers in product Carbon Footprinting is the large amount of time and effort required for data collection across the supply chain. Tesco's decision to downsize their carbon footprint project from the ...

  16. Project Fact Sheet Project Update

    E-Print Network [OSTI]

    Project Fact Sheet Project Update: Project Brief: A state of the art facility, at Hammersmith information visit the Faculty of Medicine web pages http://www1.imperial.ac.uk/medicine/ Construction Project Team: Project Facts & Figures: Budget: £60 000 000 Funding Source: SRIF II (Imperial College), GSK, MRC

  17. Project Fact Sheet Project Update

    E-Print Network [OSTI]

    Project Fact Sheet Project Update: Project Brief: The refurbishment of the instrumentation equipment. This project encompasses refurbishment work on over 1,150m2 of laboratory space across four, the completed project will allow researchers to expand their work in satellite instrumentation, the fabrication

  18. Project Fact Sheet Project Brief

    E-Print Network [OSTI]

    Project Fact Sheet Project Brief: In the first phase of the Union Building re.union.ic.ac.uk/marketing/building Construction Project Team: Project Facts & Figures: Budget: £1,400,000 Funding Source: Capital Plan and Imperial College Union reserves Construction Project Programme: Start on Site: August 2006 End Date: March

  19. The Mississippi CCS Project

    SciTech Connect (OSTI)

    Doug Cathro

    2010-09-30T23:59:59.000Z

    The Mississippi CCS Project is a proposed large-scale industrial carbon capture and sequestration (CCS) project which would have demonstrated advanced technologies to capture and sequester carbon dioxide (CO{sub 2}) emissions from industrial sources into underground formations. Specifically, the Mississippi CCS Project was to accelerate commercialization of large-scale CO{sub 2} storage from industrial sources by leveraging synergy between a proposed petcoke to Substitute Natural Gas (SNG) plant that is selected for a Federal Loan Guarantee and would be the largest integrated anthropogenic CO{sub 2} capture, transport, and monitored sequestration program in the U.S. Gulf Coast Region. The Mississippi CCS Project was to promote the expansion of enhanced oil recovery (EOR) in the Mississippi, Alabama and Louisiana region which would supply greater energy security through increased domestic energy production. The capture, compression, pipeline, injection, and monitoring infrastructure would have continued to sequester CO{sub 2} for many years after the completion of the term of the DOE agreement. The objectives of this project were expected to be fulfilled through two distinct phases. The overall objective of Phase 1 was to develop a fully definitive project basis for a competitive Renewal Application process to proceed into Phase 2 - Design, Construction and Operations. Phase 1 included the studies that establish the engineering design basis for the capture, compression and transportation of CO{sub 2} from the MG SNG Project, and the criteria and specifications for a monitoring, verification and accounting (MVA) plan at the Soso oil field in Mississippi. The overall objective of Phase 2, was to execute design, construction and operations of three capital projects: the CO{sub 2} capture and compression equipment, the Mississippi CO{sub 2} Pipeline to Denbury's Free State Pipeline, and an MVA system at the Soso oil field.

  20. Volume Project

    E-Print Network [OSTI]

    rroames

    2010-01-12T23:59:59.000Z

    Math 13900. Volume Project. For the following project, you may use any materials. This must be your own original creation. Construct a right pyramid with a base ...

  1. CCS Project Permit Acquisition Protocols

    SciTech Connect (OSTI)

    Lee, Si-Yong; Zaluski, Wade; Matthews, Vince; McPherson, Brian

    2013-06-30T23:59:59.000Z

    Geologic carbon storage projects require a vast range of permits prior to deployment. These include land-access permits, drilling permits, seismic survey permits, underground injection control permits, and any number of local and state permits, depending on the location of the project. For the “Characterization of Most Promising Sequestration Formations in the Rocky Mountain Region” (RMCCS) project in particular, critical permits included site access permits, seismic survey permits, and drilling permits for the characterization well. Permits for these and other activities were acquired either prior to or during the project.

  2. Abatement of Air Pollution: Greenhouse Gas Emissions Offset Projects...

    Broader source: Energy.gov (indexed) [DOE]

    Projects that either capture and destroy landfill methane, avoid sulfur hexafluoride emissions, sequester carbon through afforestation, provide end-use energy efficiency, or avoid...

  3. Project Controls

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28T23:59:59.000Z

    Project controls are systems used to plan, schedule, budget, and measure the performance of a project/program. The cost estimation package is one of the documents that is used to establish the baseline for project controls. This chapter gives a brief description of project controls and the role the cost estimation package plays.

  4. Argonne, Western Lithium to develop lithium carbonate for multiple...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory as a step toward the commercialization of lithium carbonate from the Company's Kings Valley Lithium Project located in Humboldt County, Nevada, USA. Under the agreement,...

  5. Methodology for Carbon Accounting of Grouped Mosaic and Landscape...

    Open Energy Info (EERE)

    Grouped Mosaic and Landscape-scale REDD Projects Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Methodology for Carbon Accounting of Grouped Mosaic and Landscape-scale...

  6. Project Fact Sheet Project Update

    E-Print Network [OSTI]

    Project Fact Sheet Project Update: Project Brief: The works cover the refurbishment of floors 4, 5, with `wet' labs for molecular biology, materials characterisation, cell culture and flow studies, and `dry operating theatre. The Bionanotechnology Centre is one of the projects funded from the UK Government's £20

  7. forestry.gov.uk/carboncode The Woodland Carbon Code is an initiative led by the

    E-Print Network [OSTI]

    carbon from these projects brings many benefits in addition to carbon sequestration. is effectivelyforestry.gov.uk/carboncode ® The Woodland Carbon Code is an initiative led by the Forestry Commission and supported by a Carbon Advisory Group of UK forest industry and carbon market experts. A buyers

  8. Project Profile: Regenerative Carbonate-Based Thermochemical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    design of an advanced heat-exchange reactor system, evaluation of the optimized pellets in a simulated bench-scale TCES system over multiple cycles, and Aspen modeling and...

  9. Carbon Use and Reuse Archived Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation Sites Proposed RouteNanotube Templated Asembly ofIllinoisArchived

  10. Carbon Disclosure Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahan DivideCannon (Various) Wind

  11. Project Information Form Project Title Potential to Build Current Natural Gas Infrastructure to Accommodate

    E-Print Network [OSTI]

    California at Davis, University of

    Project Information Form Project Title Potential to Build Current Natural Gas Infrastructure Project Natural gas is often touted as a `bridge' to low carbon fuels in the heavy duty transportation sector, and the number of natural gas-fueled medium and heavy-duty fleets is growing rapidly. Research

  12. Carbon Nanotubes.

    E-Print Network [OSTI]

    Fredriksson, Tore

    2014-01-01T23:59:59.000Z

    ?? Carbon nanotubes have extraordinary mechanical, electrical, thermal andoptical properties. They are harder than diamond yet exible, have betterelectrical conductor than copper, but can also… (more)

  13. Circle Project

    E-Print Network [OSTI]

    This project asks students to decide if a collection of points in space do or do not lie on a ... The project is accessible to linear algebra students who have studied ...

  14. Discounts, Fungibility and Agricultural GHG Offset projects

    E-Print Network [OSTI]

    McCarl, Bruce A.

    arising at an offset price giving $/tonne carbon equiv ·Assumes offsets are perfect substitutes ·Different of Carbon Equivalents Biofuel Offsets Discount for Saturating Sinks No Sink Discounting #12;PortfolioDiscounts, Fungibility and Agricultural GHG Offset projects Bruce A. McCarl Regents Professor

  15. WEST PROJECT AND OPPORTUNITIES FOR US-

    E-Print Network [OSTI]

    /extracted energy in a tokamak (1GJ) Several generations of carbon PFCs designed, manufactured and operated Tore loops 15 MW of HF plasma heating Fuelling systems Diagnostics WEST project ~ few days of ITER operation BECOMES WEST Limiter configuration Carbon Two symmetric divertor coils and supporting structures Plasma

  16. Total Organic Carbon Analyzer | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Total Organic Carbon Analyzer Total Organic Carbon Analyzer The carbon analyzer is used to analyze total carbon (TC), inorganic carbon (IC), total organic carbon (TOC), purgeable...

  17. Monitoring the forest carbon changes Osamu Ochiai

    E-Print Network [OSTI]

    of the project ·Forest change and its global monitoring from the space is the issue for the global environmental are participating ·Global warming and estimation of the terrestrial carbon JERS-1 1992~1998 L-HH ALOS 2006~ L Concentration change(CO2CH4) National Carbon Absorption and Emission (CO2CH4) Measuring Verification Total

  18. A land based radar polarimeter processing system

    E-Print Network [OSTI]

    Kronke, Chester William

    2012-06-07T23:59:59.000Z

    switches in the RF heads. A Cal/Op switch has two positions and requires two signals to control it. A 24 TABLE 1 Port Addresses for the 80/24's Parallel I/O (Hex) 8255A Port 8255A No. 1 8255A No. 2 E4 EB E5 Eg E6 EA pulse on the switch Control 0... are given in Table 3. TABLE 3 Indicator Enable Port Signal Assignments Port E9 Bit Indicator Circuit Assignment Head I Tx. Pol. and Cal/Op Head I Rx. Pol. Head 2 Tx. Pol. and Cal/Op Head 2 Rx. Pol. Head 3 Tx. Pol. and Cal/Op Head 3 Rx. Pol. Head 4...

  19. RESEARCH SUMMARY BY QUANLIN ZHOU During my stay at LBNL from March 2001, I have been working on (1) geologic carbon sequestration

    E-Print Network [OSTI]

    Zhou, Quanlin

    on (1) geologic carbon sequestration (GCS) projects for mitigating global climate change, (2) the DOE projects. 1 Research Highlights 1.1. Geological Carbon Sequestration I have been working on eight research projects in the area of geologic carbon sequestration since 2006. I have been PI or Co-PI for six projects

  20. Historic and Projected Climate Change

    E-Print Network [OSTI]

    Historic and Projected Climate Change F A C T S H E E T This evidence strongly indicates in glaciers and polar ice, and shifts in precipitation intensity and trends. LONG-TERM CLIMATE RECORDS Since) like carbon dioxide (CO2 ) are well-documented. · The atmospheric buildup of CO2 and other GHGs

  1. EDITORIAL ESSAY A "Manhattan Project" for climate change?

    E-Print Network [OSTI]

    Oppenheimer, Michael

    abatement of greenhouse-gas emissions would require not only replacing carbon-intensive fuels (like coal of a "Manhattan Project" on Climate Change would be low-carbon technologies for energy generation and useEDITORIAL ESSAY A "Manhattan Project" for climate change? Chi-Jen Yang & Michael Oppenheimer

  2. 2013 Carbon Management Research Symposium

    E-Print Network [OSTI]

    . BACKGROUND · As a first step towards developing risk assessment strategies for carbon sequestration projects: a. Soil moisture sensors installed at various locations throughout the system b. A gas flow meter.057 m (dia) Fine/ coarse Medium-coarse/ coarse Coarse/ fine 1 2 3 4 5 (only saturation sensors shown) CO

  3. Scale-up of Carbon/Carbon Bipolar Plates

    SciTech Connect (OSTI)

    David P. Haack

    2009-04-08T23:59:59.000Z

    This project was focused upon developing a unique material technology for use in PEM fuel cell bipolar plates. The carbon/carbon composite material developed in this program is uniquely suited for use in fuel cell systems, as it is lightweight, highly conductive and corrosion resistant. The project further focused upon developing the manufacturing methodology to cost-effectively produce this material for use in commercial fuel cell systems. United Technology Fuel Cells Corp., a leading fuel cell developer was a subcontractor to the project was interested in the performance and low-cost potential of the material. The accomplishments of the program included the development and testing of a low-cost, fully molded, net-shape carbon-carbon bipolar plate. The process to cost-effectively manufacture these carbon-carbon bipolar plates was focused on extensively in this program. Key areas for cost-reduction that received attention in this program was net-shape molding of the detailed flow structures according to end-user design. Correlations between feature detail and process parameters were formed so that mold tooling could be accurately designed to meet a variety of flow field dimensions. A cost model was developed that predicted the cost of manufacture for the product in near-term volumes and long-term volumes (10+ million units per year). Because the roduct uses lowcost raw materials in quantities that are less than competitive tech, it was found that the cost of the product in high volume can be less than with other plate echnologies, and can meet the DOE goal of $4/kW for transportation applications. The excellent performance of the all-carbon plate in net shape was verified in fuel cell testing. Performance equivalent to much higher cost, fully machined graphite plates was found.

  4. EXPLAINING THE PRICE OF VOLUNTARY CARBON OFFSETS MARC N. CONTE

    E-Print Network [OSTI]

    Kotchen, Matthew J.

    EXPLAINING THE PRICE OF VOLUNTARY CARBON OFFSETS MARC N. CONTE Stanford University, Stanford, CA of voluntary carbon offsets. We estimate hedonic price functions using a variety of provider- and project-profit or not-for-profit. Keywords: Voluntary carbon offsets; hedonic price method. 1. Introduction

  5. Carbon dioxide and climate

    SciTech Connect (OSTI)

    Not Available

    1990-10-01T23:59:59.000Z

    Scientific and public interest in greenhouse gases, climate warming, and global change virtually exploded in 1988. The Department's focused research on atmospheric CO{sub 2} contributed sound and timely scientific information to the many questions produced by the groundswell of interest and concern. Research projects summarized in this document provided the data base that made timely responses possible, and the contributions from participating scientists are genuinely appreciated. In the past year, the core CO{sub 2} research has continued to improve the scientific knowledge needed to project future atmospheric CO{sub 2} concentrations, to estimate climate sensitivity, and to assess the responses of vegetation to rising concentrations of CO{sub 2} and to climate change. The Carbon Dioxide Research Program's goal is to develop sound scientific information for policy formulation and governmental action in response to changes of atmospheric CO{sub 2}. The Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1990 and gives a brief overview of objectives, organization, and accomplishments.

  6. Carbon Fiber

    ScienceCinema (OSTI)

    McGetrick, Lee

    2014-07-23T23:59:59.000Z

    Lee McGetrick leads ORNL's effort to produce light, durable carbon fiber at lower cost -- a key to improvements in manufacturing that will produce more fuel-efficient vehicles and other advances.

  7. Carbon Fiber

    SciTech Connect (OSTI)

    McGetrick, Lee

    2014-04-17T23:59:59.000Z

    Lee McGetrick leads ORNL's effort to produce light, durable carbon fiber at lower cost -- a key to improvements in manufacturing that will produce more fuel-efficient vehicles and other advances.

  8. Carbon Sequestration

    SciTech Connect (OSTI)

    None

    2013-05-06T23:59:59.000Z

    Carbon Sequestration- the process of capturing the CO2 released by the burning of fossil fuels and storing it deep withing the Earth, trapped by a non-porous layer of rock.

  9. Project Construction

    Broader source: Energy.gov [DOE]

    Integrating renewable energy into Federal new construction or major renovations requires effective structuring of the construction team and project schedule. This overview discusses key construction team considerations for renewable energy as well as timing and expectations for the construction phase. The project construction phase begins after a project is completely designed and the construction documents (100%) have been issued. Construction team skills and experience with renewable energy technologies are crucial during construction, as is how the integration of renewable energy affects the project construction schedule.

  10. Magnesium Projects

    Broader source: Energy.gov (indexed) [DOE]

    cyberinfrastructure projects and will be augmented by original research in Computer Science and Software Engineering towards the creation of large, distributed, autonomic and...

  11. The Lake Charles CCS Project

    SciTech Connect (OSTI)

    Doug Cathro

    2010-06-30T23:59:59.000Z

    The Lake Charles CCS Project is a large-scale industrial carbon capture and sequestration (CCS) project which will demonstrate advanced technologies that capture and sequester carbon dioxide (CO{sub 2}) emissions from industrial sources into underground formations. Specifically the Lake Charles CCS Project will accelerate commercialization of large-scale CO{sub 2} storage from industrial sources by leveraging synergy between a proposed petroleum coke to chemicals plant (the LCC Gasification Project) and the largest integrated anthropogenic CO{sub 2} capture, transport, and monitored sequestration program in the U.S. Gulf Coast Region. The Lake Charles CCS Project will promote the expansion of EOR in Texas and Louisiana and supply greater energy security by expanding domestic energy supplies. The capture, compression, pipeline, injection, and monitoring infrastructure will continue to sequester CO{sub 2} for many years after the completion of the term of the DOE agreement. The objectives of this project are expected to be fulfilled by working through two distinct phases. The overall objective of Phase 1 was to develop a fully definitive project basis for a competitive Renewal Application process to proceed into Phase 2 - Design, Construction and Operations. Phase 1 includes the studies attached hereto that will establish: the engineering design basis for the capture, compression and transportation of CO{sub 2} from the LCC Gasification Project, and the criteria and specifications for a monitoring, verification and accounting (MVA) plan at the Hastings oil field in Texas. The overall objective of Phase 2, provided a successful competitive down-selection, is to execute design, construction and operations of three capital projects: (1) the CO{sub 2} capture and compression equipment, (2) a Connector Pipeline from the LLC Gasification Project to the Green Pipeline owned by Denbury and an affiliate of Denbury, and (3) a comprehensive MVA system at the Hastings oil field.

  12. Carbon Sequestration in Terrestrial Ecosystems (CSiTE) PRINCIPAL INVESTIGATOR: Stan D. Wullschleger

    E-Print Network [OSTI]

    Carbon Sequestration in Terrestrial Ecosystems (CSiTE) PRINCIPAL INVESTIGATOR: Stan D. Wullschleger://csite.eds.ornl.gov PROJECT DESCRIPTION The Carbon Sequestration in Terrestrial Ecosystems (CSiTE) project conducts research of switchgrass growing in the field. #12;Carbon Sequestration in Terrestrial Ecosystems (CSiTE) tion of inputs

  13. Low Carbon Fuel Standards

    E-Print Network [OSTI]

    Sperling, Dan; Yeh, Sonia

    2009-01-01T23:59:59.000Z

    gas, or even coal with carbon capture and sequestration. Afuels that facilitate carbon capture and sequestration. Forenergy and could capture and sequester carbon emissions.

  14. Carbon supercapacitors

    SciTech Connect (OSTI)

    Delnick, F.M.

    1993-11-01T23:59:59.000Z

    Carbon supercapacitors are represented as distributed RC networks with transmission line equivalent circuits. At low charge/discharge rates and low frequencies these networks approximate a simple series R{sub ESR}C circuit. The energy efficiency of the supercapacitor is limited by the voltage drop across the ESR. The pore structure of the carbon electrode defines the electrochemically active surface area which in turn establishes the volume specific capacitance of the carbon material. To date, the highest volume specific capacitance reported for a supercapacitor electrode is 220F/cm{sup 3} in aqueous H{sub 2}SO{sub 4} (10) and {approximately}60 F/cm{sup 3} in nonaqueous electrolyte (8).

  15. Is it Economical to Manage Jointly for Wood and Carbon Under the Climate Action

    E-Print Network [OSTI]

    Standiford, Richard B.

    for greenhouse gases in the United States has spurred the growth of tradable carbon-storage credits, or offsets) emissions. For carbon-storing forestry-offset projects to be viable, the net revenue from carbon services revenue and that thinnings have a negative effect on carbon revenues. The CCX offset market closed in 2010

  16. anagin Forests because Carbon Matters: In grating Energy, Products, and Land

    E-Print Network [OSTI]

    Fried, Jeremy S.

    to the atmosphere. The value of carbon credits generated by forest carbon offset projects differs dramatically and relatively high transaction costs needed for forest carbon offsets warrant consideration of other policiesanagin Forests because Carbon Matters: In grating Energy, Products, and Land Management Policy

  17. THE CARBON CYCLE FROM NORTH TO SOUTH ALONG THE GALATHEA 3 ROUTE

    E-Print Network [OSTI]

    THE CARBON CYCLE FROM NORTH TO SOUTH ALONG THE GALATHEA 3 ROUTE Merete Bruun Christiansen (1 in the Galathea 3 expedition. Among the larger projects is `The marine carbon cycle from north to south along in the global carbon cycle. The World's open oceans are considered to be net absorbers of carbon dioxide (CO2

  18. Atmosphere-crust coupling and carbon sequestration on the young Mars Professor Martin R. Lee1

    E-Print Network [OSTI]

    Guo, Zaoyang

    Atmosphere-crust coupling and carbon sequestration on the young Mars Professor Martin R. Lee1 *, Dr the idea that CO2 was `scrubbed' by precipitation of carbonate minerals within the planet's crust - a reaction termed `carbonation'. This project will seek evidence for carbonation by analysis of martian

  19. Carbon microtubes

    DOE Patents [OSTI]

    Peng, Huisheng (Shanghai, CN); Zhu, Yuntian Theodore (Cary, NC); Peterson, Dean E. (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM)

    2011-06-14T23:59:59.000Z

    A carbon microtube comprising a hollow, substantially tubular structure having a porous wall, wherein the microtube has a diameter of from about 10 .mu.m to about 150 .mu.m, and a density of less than 20 mg/cm.sup.3. Also described is a carbon microtube, having a diameter of at least 10 .mu.m and comprising a hollow, substantially tubular structure having a porous wall, wherein the porous wall comprises a plurality of voids, said voids substantially parallel to the length of the microtube, and defined by an inner surface, an outer surface, and a shared surface separating two adjacent voids.

  20. Project X

    E-Print Network [OSTI]

    Holmes, Steve

    2014-01-01T23:59:59.000Z

    provided by Project X would be a cost- effective approach toin Section I and for the cost estimate necessary as part ofby DOE order 413.3b. The cost range required for CD-0 will

  1. Project Manager

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will serve as a project manager in the Fuel Cell Technologies Office in the DOE-EERE Office of Transportation responsible for a wide variety of highly...

  2. Project Title:

    Broader source: Energy.gov (indexed) [DOE]

    0 181 0 Hazardous Air Pollutants? Is the project subject to emissions limitations in an Air Quality 0 181 0 Control Region? 2 Revised on: 11122008 NEPA COMPLIANCE SURVEY Impacts...

  3. Uncertainty in projected impacts of climate change on water

    E-Print Network [OSTI]

    Maurer,. Edwin P.

    Global Carbon Project · Scenarios trends are averages across all models available for each scenario class1928 2000 Uncertainty in projected impacts of climate change on water Uncertainty in projected-2004Observed Changes: 1970-2004 · High confidence changes in: ­ rainfall intensity ­ extreme temperatures

  4. Working paper: Exploring the Relationships between Carbon Disclosure and Performance in FTSE 350 Companies

    E-Print Network [OSTI]

    Companies Chris Ennis, the Clean Environment Management Centre, Teesside University, York, UK. Joanna. In addition, relationships between carbon emissions performance and companies' operational and financial in FTSE 350 companies, using econometric analysis. Data is obtained from the Carbon Disclosure Project

  5. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    projection to meet the 2050 stabilization goal, the average carbon intensitycarbon intensity reductions. Developing consistent and reasonable cost projectionsprojection should be interpreted as a conservative rate of reduction in the average carbon intensity

  6. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01T23:59:59.000Z

    projection to meet the 2050 stabilization goal, the average carbon intensitycarbon intensity reductions. Developing consistent and reasonable cost projectionsprojection should be interpreted as a conservative rate of reduction in the average carbon intensity

  7. Carbon Storage Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Sequestration Partnership MSU . . . . . . . . . . . . . . . . . . . . . . . Montana State University MVA . . . . . . . . . . . . . . . . . . . . . . . Monitoring,...

  8. Carbon sequestration research and development

    SciTech Connect (OSTI)

    Reichle, Dave; Houghton, John; Kane, Bob; Ekmann, Jim; and others

    1999-12-31T23:59:59.000Z

    Predictions of global energy use in the next century suggest a continued increase in carbon emissions and rising concentrations of carbon dioxide (CO{sub 2}) in the atmosphere unless major changes are made in the way we produce and use energy--in particular, how we manage carbon. For example, the Intergovernmental Panel on Climate Change (IPCC) predicts in its 1995 ''business as usual'' energy scenario that future global emissions of CO{sub 2} to the atmosphere will increase from 7.4 billion tonnes of carbon (GtC) per year in 1997 to approximately 26 GtC/year by 2100. IPCC also projects a doubling of atmospheric CO{sub 2} concentration by the middle of next century and growing rates of increase beyond. Although the effects of increased CO{sub 2} levels on global climate are uncertain, many scientists agree that a doubling of atmospheric CO{sub 2} concentrations could have a variety of serious environmental consequences. The goal of this report is to identify key areas for research and development (R&D) that could lead to an understanding of the potential for future use of carbon sequestration as a major tool for managing carbon emissions. Under the leadership of DOE, researchers from universities, industry, other government agencies, and DOE national laboratories were brought together to develop the technical basis for conceiving a science and technology road map. That effort has resulted in this report, which develops much of the information needed for the road map.

  9. Project Fact Sheet Project Update

    E-Print Network [OSTI]

    medical and dental centre; shop and café area for students and vacation accommodation centre. The new & Figures: Budget: £51,074,000 Funding Source: Capital Plan Construction Project Programme: Start on Site

  10. Project Final Report UBC LBS Project Services1 Project Final Report UBC LBS Project Services2

    E-Print Network [OSTI]

    Project Final Report UBC LBS Project Services1 #12;Project Final Report UBC LBS Project Services2 EXECUTIVE SUMMARY The purpose of the UBC Project Services web-based project management portal project on campus within Project Services, and with the rest of the UBC community. We began this project by defining

  11. Cloudnet Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Hogan, Robin

    Cloudnet is a research project supported by the European Commission. This project aims to use data obtained quasi-continuously for the development and implementation of cloud remote sensing synergy algorithms. The use of active instruments (lidar and radar) results in detailed vertical profiles of important cloud parameters which cannot be derived from current satellite sensing techniques. A network of three already existing cloud remote sensing stations (CRS-stations) will be operated for a two year period, activities will be co-ordinated, data formats harmonised and analysis of the data performed to evaluate the representation of clouds in four major european weather forecast models.

  12. u.s. DEPARTMENT OF ENFRGY !'ERE PROJECT MANAGEME:-.JT C ENTER

    Broader source: Energy.gov (indexed) [DOE]

    their research initiatives in Carbon Harvest Energy to research the suitability of landfill gas combustion products for commercial algae cultivation. This project is focused on...

  13. E-Print Network 3.0 - annex project w-484 Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cellular Biophysics, Columbia University Collection: Biology and Medicine 69 Forest and Carbon offset investments: problems and Summary: project activities that reduce emissions...

  14. Carbon Markets and Technological Innovation

    E-Print Network [OSTI]

    Weber, T A; Neuhoff, Karsten

    absorption of heat, and Arrhenius’ (1898) theoretical model of the greenhouse effect, the question of global warming, in terms of its causes, description, mitigation of its effects, and projection of resulting scenarios, has been on the modern research agenda... Introduction In order to bound global warming, the Intergovernmental Panel on Climate Change (IPCC) noted that worldwide annual carbon emissions need to be cut approximately in half by 2050 (IPCC 2008). A mix of different policy instruments is likely...

  15. Design and implementation of a CO{sub 2} flood utilizing advanced reservoir characterization and horizontal injection wells in a shallow shelf carbonate approaching waterflood depletion: Project management/evaluation plan

    SciTech Connect (OSTI)

    Hallenbeck, L.D.; Harpole, K.J.; Gerard, M.G.

    1995-05-03T23:59:59.000Z

    The objectives of the Management/Evaluation Plan are: (1) clarify management structure, task responsibilities and schedules, and (2) to be used as a basis for judging the Project Evaluation Report submitted as a part of the continuation application. The components addressed in the report are: management structure; project staff organization; management procedure; quality assurance plan; ES and H plan and environmental compliance reporting; task WBS and logic flow diagram; list and schedule of planned deliverables; diagram of existing facilities; industry interaction; and evaluation of technical and economic feasibility.

  16. CO2 leakage in a Geological Carbon Sequestration system: Scenario development and analysis.

    E-Print Network [OSTI]

    Basirat, Farzad

    2011-01-01T23:59:59.000Z

    ?? The aim of this project was to study the leakage of CO2 in a Geological Carbon Sequestration (GCS) system. To define the GCS system,… (more)

  17. Modelling and development of carbon molecular sieve membrane for gas separation.

    E-Print Network [OSTI]

    Su, Jincai.

    2008-01-01T23:59:59.000Z

    ??The objective of the research project was to investigate the feasibility of preparing carbon molecular sieve membranes from Kapton® polyimide film. The effects of carbonisation… (more)

  18. Secretary Chu Announces Up To $154 Million for NRG Energy's Carbon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    project will demonstrate an innovative integration of several important advances in carbon capture and sequestration technologies, including- Fluor's advanced Econamine FG...

  19. Carbon Trading, Carbon Taxes and Social Discounting

    E-Print Network [OSTI]

    Weiblen, George D

    Carbon Trading, Carbon Taxes and Social Discounting Elisa Belfiori belf0018@umn.edu University of Minnesota Abstract This paper considers the optimal design of policies to carbon emissions in an economy, such as price or quantity controls on the net emissions of carbon, are insufficient to achieve the social

  20. Carbon Nanotube Membranes: Carbon Nanotube Membranes for Energy-Efficient Carbon Sequestration

    SciTech Connect (OSTI)

    None

    2010-03-01T23:59:59.000Z

    Broad Funding Opportunity Announcement Project: Porifera is developing carbon nanotube membranes that allow more efficient removal of CO2 from coal plant exhaust. Most of today’s carbon capture methods use chemical solvents, but capture methods that use membranes to draw CO2 out of exhaust gas are potentially more efficient and cost effective. Traditionally, membranes are limited by the rate at which they allow gas to flow through them and the amount of CO2 they can attract from the gas. Smooth support pores and the unique structure of Porifera’s carbon nanotube membranes allows them to be more permeable than other polymeric membranes, yet still selective enough for CO2 removal. This approach could overcome the barriers facing membrane-based approaches for capturing CO2 from coal plant exhausts.

  1. PROJECT REQUEST FORM PROJECT HOLDER INFORMATION

    E-Print Network [OSTI]

    de Leon, Alex R.

    PROJECT REQUEST FORM Last Name: Email: PROJECT HOLDER INFORMATION UCID:Last Name: Email: Institute if different than Project Holder) First Name: Project Short Name: (50 characters max) (for eFIN view only) Project Title: PROJECT INFORMATION Start Date (MM/DD/YYYY): End Date (MM/DD/YYYY): For Questions or HELP

  2. Public Review Draft: A Method for Assessing Carbon Stocks, Carbon

    E-Print Network [OSTI]

    Public Review Draft: A Method for Assessing Carbon Stocks, Carbon Sequestration, and Greenhouse, and Zhu, Zhiliang, 2010, Public review draft; A method for assessing carbon stocks, carbon sequestration

  3. Carbon-Optimal and Carbon-Neutral Supply Chains

    E-Print Network [OSTI]

    Caro, F.; Corbett, C. J.; Tan, T.; Zuidwijk, R.

    2011-01-01T23:59:59.000Z

    Li, M. Daskin. 2009. Carbon Footprint and the Management ofThe Importance of Carbon Footprint Estimation Boundaries.Carbon accounting and carbon footprint - more than just

  4. Kinetics of beneficiated fly ash by carbon burnout

    SciTech Connect (OSTI)

    Okoh, J.M.; Dodoo, J.N.D.; Diaz, A. [Univ. of Maryland Eastern Shore, Princess Anne, MD (United States). Dept. of Natural Sciences; Ferguson, W.; Udinskey, J.R. Jr.; Christiana, G.A. [Delmarva Power, Wilmington, DE (United States)

    1997-12-31T23:59:59.000Z

    The presence of carbon in fly ash requires an increase in the dosage of the air-entraining admixture for concrete mix, and may cause the admixture to lose efficiency. Specifying authorities for the concrete producers have set maximum allowable levels of residual carbon. These levels are the so called Loss On Ignition (LOI). The concrete producers` day-to-day purchasing decisions sets the LOI at 4%. The objective of the project is to investigate the kinetics of oxidation of residual carbon present in coal fly ash as a possible first step toward producing low-carbon fly ash from high-carbon, low quality fly ash.

  5. Project Fact Sheet Project Brief

    E-Print Network [OSTI]

    Name: Centre for Assisted Robotic Surgery Number: BESS1002b Project Champion: Professor Guang-Zong Yang of the refurbishment is to renew and expand the laboratory space for Robotic Assisted Surgery at the South Kensington Campus as par to the Hamlyn Centre for Robotic Surgery. The overall programme incorpo- rates both core

  6. Petascale Post-Doc Project a Supercomputing Success Story

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Martin Head-Gordon and Berend Smit on two carbon capture projects. "I was interested in learning more about high-performance computing, and it seemed like a great opportunity for...

  7. EIS-0394: FutureGen Project

    Broader source: Energy.gov [DOE]

    The EIS provides information about the potential environmental impacts of the DOE's proposal to provide federal funding to FutureGen Alliance, Inc. for the FutureGen Project. The project would include the planning, design, construction, and operation by the Alliance of a coal-fueled electric power and hydrogen gas production plant integrated with carbon dioxide capture and geologic sequestration of the captured gas.

  8. solvent-carbon-capture-scientific | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development of a Novel Gas Pressurized Stripping Process-Based Technology for CO2 Capture Project No.: DE-FE0007567 Carbon Capture Scientific is developing and testing a novel,...

  9. World energy consumption and carbon dioxide emissions : 1950-2050

    E-Print Network [OSTI]

    Schmalensee, Richard

    1995-01-01T23:59:59.000Z

    Emissions of carbon dioxide form combustion of fossil fuels, which may contribute to long-term climate change, are projected through 2050 using reduced form models estimated with national-level panel data for the period ...

  10. World energy consumption and carbon dioxide emissions : 1950-2050

    E-Print Network [OSTI]

    Schmalensee, Richard.; Stoker, Thomas M.; Judson, Ruth A.

    Emissions of carbon dioxide from combustion of fossil fuels, which may contribute to long-term climate change, are projected through 2050 using reduced form models estimated with national-level panel data for the period ...

  11. New Funding from DOE Boosts Carbon Capture and Storage Research...

    Office of Environmental Management (EM)

    586-54940 Addthis Related Articles Energy Department Awards 66.7 Million for Large-Scale Carbon Sequestration Project Department of Energy Announces More than 8.4 Million for...

  12. Uncertainty in future carbon emissions : a preliminary exploration

    E-Print Network [OSTI]

    Webster, Mort David.

    In order to analyze competing policy approaches for addressing global climate change, a wide variety of economic-energy models are used to project future carbon emissions under various policy scenarios. Due to uncertainties ...

  13. Carbonic Acid Pretreatment of Biomass

    SciTech Connect (OSTI)

    G. Peter van Walsum; Kemantha Jayawardhana; Damon Yourchisin; Robert McWilliams; Vanessa Castleberry

    2003-05-31T23:59:59.000Z

    This project sought to address six objectives, outlined below. The objectives were met through the completion of ten tasks. 1) Solidify the theoretical understanding of the binary CO2/H2O system at reaction temperatures and pressures. The thermodynamics of pH prediction have been improved to include a more rigorous treatment of non-ideal gas phases. However it was found that experimental attempts to confirm theoretical pH predictions were still off by a factor of about 1.8 pH units. Arrhenius experiments were carried out and the activation energy for carbonic acid appears to be substantially similar to sulfuric acid. Titration experiments have not yet confirmed or quantified the buffering or acid suppression effects of carbonic acid on biomass. 2) Modify the carbonic acid pretreatment severity function to include the effect of endogenous acid formation and carbonate buffering, if necessary. It was found that the existing severity functions serve adequately to account for endogenous acid production and carbonate effects. 3) Quantify the production of soluble carbohydrates at different reaction conditions and severity. Results show that carbonic acid has little effect on increasing soluble carbohydrate concentrations for pretreated aspen wood, compared to pretreatment with water alone. This appears to be connected to the release of endogenous acids by the substrate. A less acidic substrate such as corn stover would derive benefit from the use of carbonic acid. 4) Quantify the production of microbial inhibitors at selected reaction conditions and severity. It was found that the release of inhibitors was correlated to reaction severity and that carbonic acid did not appear to increase or decrease inhibition compared to pretreatment with water alone. 5) Assess the reactivity to enzymatic hydrolysis of material pretreated at selected reaction conditions and severity. Enzymatic hydrolysis rates increased with severity, but no advantage was detected for the use of carbonic acid compared to water alone. 6) Determine optimal conditions for carbonic acid pretreatment of aspen wood. Optimal severities appeared to be in the mid range tested. ASPEN-Plus modeling and economic analysis of the process indicate that the process could be cost competitive with sulfuric acid if the concentration of solids in the pretreatment is maintained very high (~50%). Lower solids concentrations result in larger reactors that become expensive to construct for high pressure applications.

  14. Page | 1 Managed Print Project Outline Pull Printing

    E-Print Network [OSTI]

    Glasgow, University of

    by extending specialist printing facilities to all users. The principal drivers for the project are carbon. Estimates are: 40% reduction in CO2 (from 477,676kg to 286,857kg; 60% reduction in electricity usage from the completion of these initiatives. The UK government's introduction of the Carbon Reduction Commitments (CRC

  15. Photophysics of carbon nanotubes

    E-Print Network [OSTI]

    Samsonidze, Georgii G

    2007-01-01T23:59:59.000Z

    This thesis reviews the recent advances made in optical studies of single-wall carbon nanotubes. Studying the electronic and vibrational properties of carbon nanotubes, we find that carbon nanotubes less than 1 nm in ...

  16. CALIFORNIA CARBON SEQUESTRATION THROUGH

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION CARBON SEQUESTRATION THROUGH CHANGES IN LAND USE IN WASHINGTON. Carbon Sequestration Through Changes in Land Use in Washington: Costs and Opportunities. California for Terrestrial Carbon Sequestration in Oregon. Report to Winrock International. #12;ii #12;iii Preface

  17. FutureGen Project Report

    SciTech Connect (OSTI)

    Cabe, Jim; Elliott, Mike

    2010-09-30T23:59:59.000Z

    This report summarizes the comprehensive siting, permitting, engineering, design, and costing activities completed by the FutureGen Industrial Alliance, the Department of Energy, and associated supporting subcontractors to develop a first of a kind near zero emissions integrated gasification combined cycle power plant and carbon capture and storage project (IGCC-CCS). With the goal to design, build, and reliably operate the first IGCC-CCS facility, FutureGen would have been the lowest emitting pulverized coal power plant in the world, while providing a timely and relevant basis for coal combustion power plants deploying carbon capture in the future. The content of this report summarizes key findings and results of applicable project evaluations; modeling, design, and engineering assessments; cost estimate reports; and schedule and risk mitigation from initiation of the FutureGen project through final flow sheet analyses including capital and operating reports completed under DOE award DE-FE0000587. This project report necessarily builds upon previously completed siting, design, and development work executed under DOE award DE-FC26- 06NT4207 which included the siting process; environmental permitting, compliance, and mitigation under the National Environmental Policy Act; and development of conceptual and design basis documentation for the FutureGen plant. For completeness, the report includes as attachments the siting and design basis documents, as well as the source documentation for the following: • Site evaluation and selection process and environmental characterization • Underground Injection Control (UIC) Permit Application including well design and subsurface modeling • FutureGen IGCC-CCS Design Basis Document • Process evaluations and technology selection via Illinois Clean Coal Review Board Technical Report • Process flow diagrams and heat/material balance for slurry-fed gasifier configuration • Process flow diagrams and heat/material balance for dry-fed gasifier configuration • Full capital cost report and cost category analysis (CAPEX) • Full operating cost report and assumptions (OPEX) Comparative technology evaluations, value engineering exercises, and initial air permitting activities are also provided; the report concludes with schedule, risk, and cost mitigation activities as well as lessons learned such that the products of this report can be used to support future investments in utility scale gasification and carbon capture and sequestration. Collectively, the FutureGen project enabled the comprehensive site specific evaluation and determination of the economic viability of IGCC-CCS. The project report is bound at that determination when DOE formally proposed the FutureGen 2.0 project which focuses on repowering a pulverized coal power plant with oxy-combustion technology including CCS.

  18. Hallmark Project

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4In 2013 many autoThis road map isofAOnOctoberProject

  19. PROJECT SUMMARY

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDieselEnergyHistoryWATER-ENERGYofPROJECT

  20. Custom Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY 2012 FY 2013 FYCurtailment DateCustom-Projects

  1. Project Gnome

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for4-16Hamada winsProgress ReportProject CostEnergy

  2. Method of making carbon-carbon composites

    DOE Patents [OSTI]

    Engle, Glen B. (16716 Martincoit Rd., Poway, CA 92064)

    1993-01-01T23:59:59.000Z

    A process for making 2D and 3D carbon-carbon composites having a combined high crystallinity, high strength, high modulus and high thermal and electrical conductivity. High-modulus/high-strength mesophase derived carbon fibers are woven into a suitable cloth. Layers of this easily graphitizible woven cloth are infiltrated with carbon material to form green composites. The carbonized composite is then impregnated several times with pitch by covering the composite with hot pitch under pressure. The composites are given a heat treatment between each impregnant step to crack up the infiltrated carbon and allow additional pitch to enter the microstructure during the next impregnation cycle. The impregnated composites are then given a final heat treatment in the range 2500.degree. to 3100.degree. C. to fully graphitize the fibers and the matrix carbon. The composites are then infiltrated with pyrolytic carbon by chemical vapor deposition in the range 1000.degree. C. to 1300.degree. C. at a reduced. pressure.

  3. Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production

    E-Print Network [OSTI]

    Narasayya, Vivek

    #12;Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward

  4. Part II: Project Summaries Project Summaries

    E-Print Network [OSTI]

    Perkins, Richard A.

    Part II: Project Summaries Part II Project Summaries #12 generally cannot be achieved for reasonable computational cost. Applications that require modeling, and in nondestructive testing. The objective of this project is to advance the state of the art in electromagnetic

  5. Low Carbon Fuel Standards

    E-Print Network [OSTI]

    Sperling, Dan; Yeh, Sonia

    2009-01-01T23:59:59.000Z

    in 1990. These many alternative-fuel initiatives failed tolow-cost, low-carbon alternative fuels would thrive. Theto introduce low-carbon alternative fuels. Former Federal

  6. Global Coastal Carbon Program Data from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    CDIAC provides data management support for the Global Coastal Carbon Data Project. The coastal regions data are very important for the understanding of carbon cycle on the continental margins. The Coastal Project data include the bottle (discrete) and surface (underway) carbon-related measurements from coastal research cruises, the data from time series cruises, and coastal moorings. The data from US East Coast, US West Coast, and European Coastal areas are available. CDIAC provides a map interface with vessel or platform names. Clicking on the name brings up information about the vessel or the scientific platform, the kinds of measurements collected and the timeframe, links to project pages, when available, and the links to the data files themselves.

  7. Better Enzymes for Carbon Capture: Low-Cost Biological Catalyst to Enable Efficient Carbon Dioxide Capture

    SciTech Connect (OSTI)

    None

    2010-07-01T23:59:59.000Z

    IMPACCT Project: Codexis is developing new and efficient forms of enzymes known as carbonic anhydrases to absorb CO2 more rapidly and under challenging conditions found in the gas exhaust of coal-fired power plants. Carbonic anhydrases are common and are among the fastest enzymes, but they are not robust enough to withstand the harsh environment found in the power plant exhaust steams. In this project, Codexis will be using proprietary technology to improve the enzymes’ ability to withstand high temperatures and large swings in chemical composition. The project aims to develop a carbon-capture process that uses less energy and less equipment than existing approaches. This would reduce the cost of retrofitting today’s coal-fired power plants.

  8. ASSESSMENT OF HOUSEHOLD CARBON FOOTPRINT REDUCTION POTENTIALS

    SciTech Connect (OSTI)

    Kramer, Klaas Jan; Homan, Greg; Brown, Rich; Worrell, Ernst; Masanet, Eric

    2009-04-15T23:59:59.000Z

    The term ?household carbon footprint? refers to the total annual carbon emissions associated with household consumption of energy, goods, and services. In this project, Lawrence Berkeley National Laboratory developed a carbon footprint modeling framework that characterizes the key underlying technologies and processes that contribute to household carbon footprints in California and the United States. The approach breaks down the carbon footprint by 35 different household fuel end uses and 32 different supply chain fuel end uses. This level of end use detail allows energy and policy analysts to better understand the underlying technologies and processes contributing to the carbon footprint of California households. The modeling framework was applied to estimate the annual home energy and supply chain carbon footprints of a prototypical California household. A preliminary assessment of parameter uncertainty associated with key model input data was also conducted. To illustrate the policy-relevance of this modeling framework, a case study was conducted that analyzed the achievable carbon footprint reductions associated with the adoption of energy efficient household and supply chain technologies.

  9. Carbon Capture (Carbon Cycle 2.0)

    ScienceCinema (OSTI)

    Smit, Berend

    2011-06-08T23:59:59.000Z

    Berend Smit speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 3, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  10. Issued March 2012 Global Climate & Energy Project

    E-Print Network [OSTI]

    Straight, Aaron

    Issued March 2012 Global Climate & Energy Project STANFORD UNIVERSITY Reactivity of CO2 underground. The research team will focus on understanding the chemical reactions that occur when CO2, researchers will determine the optimum geochemical conditions for converting captured CO2 into carbonates

  11. Project Management Practices

    Energy Savers [EERE]

    on the DOE Project Management web page. 1.2 INTENDED USE Federal Project Directors, Contracting Officers, Contracting Officer's Technical Representatives, Integrated Project Team...

  12. PROCEDURES FOR ARC PROJECTS

    E-Print Network [OSTI]

    Collins, Gary S.

    PROCEDURES FOR ARC PROJECTS Revised - May 2013 Agricultural Research Center Washington State University #12;Table of Contents THE PROJECT SYSTEM, AN INTRODUCTION................................................................................. 5 DEVELOPING AN ARC PROJECT

  13. Effects of carbon dioxide injection on the displacement of methane and carbonate dissolution in sandstone cores

    E-Print Network [OSTI]

    Maduakor, Ekene Obioma

    2006-10-30T23:59:59.000Z

    of carbon dioxide in depleted gas reservoirs appears to be a feasible way to dispose of industrial quantities of carbon dioxide generated by fossil fired power plants. Depleted gas reservoirs amongst others (oil reservoirs, saline aquifers) is a very... from the Sleipner Vest field is separated from the produced natural gas and is injected each year into the underlying Utsira aquifer. 1, 7, 8 A combined enhanced oil recovery (EOR) scheme and CO2 sequestration project has been undertaken in which CO2...

  14. On carbon footprints and growing energy use

    SciTech Connect (OSTI)

    Oldenburg, C.M.

    2011-06-01T23:59:59.000Z

    Could fractional reductions in the carbon footprint of a growing organization lead to a corresponding real reduction in atmospheric CO{sub 2} emissions in the next ten years? Curtis M. Oldenburg, head of the Geologic Carbon Sequestration Program of LBNL’s Earth Sciences Division, considers his own organization's carbon footprint and answers this critical question? In addressing the problem of energy-related greenhouse gas (GHG) emissions and climate change, it is essential that we understand which activities are producing GHGs and the scale of emission for each activity, so that reduction efforts can be efficiently targeted. The GHG emissions to the atmosphere of an individual or group are referred to as the ‘carbon footprint’. This terminology is entirely appropriate, because 85% of the global marketed energy supply comes from carbon-rich fossil fuel sources whose combustion produces CO{sub 2}, the main GHG causing global climate change. Furthermore, the direct relation between CO2 emissions and fossil fuels as they are used today makes energy consumption a useful proxy for carbon footprint. It would seem to be a simple matter to reduce energy consumption across the board, both individually and collectively, to help reduce our carbon footprints and therefore solve the energyclimate crisis. But just how much can we reduce carbon footprints when broader forces, such as growth in energy use, cause the total footprint to simultaneously expand? In this feature, I present a calculation of the carbon footprint of the Earth Sciences Division (ESD), the division in which I work at Lawrence Berkeley National Laboratory (LBNL), and discuss the potential for reducing this carbon footprint. It will be apparent that in terms of potential future carbon footprint reductions under projections of expected growth, ESD may be thought of as a microcosm of the situation of the world as a whole, in which alternatives to the business-as-usual use of fossil fuels are needed if absolute GHG emission reductions are to be achieved.

  15. Composite carbon foam electrode

    DOE Patents [OSTI]

    Mayer, Steven T. (San Leandro, CA); Pekala, Richard W. (Pleasant Hill, CA); Kaschmitter, James L. (Pleasanton, CA)

    1997-01-01T23:59:59.000Z

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivty and power to system energy.

  16. Composite carbon foam electrode

    DOE Patents [OSTI]

    Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

    1997-05-06T23:59:59.000Z

    Carbon aerogels used as a binder for granulated materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.

  17. wwwwww..ffrroonnttiieerrssiinneeccoollooggyy..oorrgg The Ecological Society of America Carbon trading

    E-Print Network [OSTI]

    that trad- ing carbon credits between industries and participating in offset programs such as the Clean carbon offset project outcomes, both in terms of the total quantity of reduced or sequestered GHG-reduc- ing technologies (Davies 2007). Our own experience with a first gen- eration carbon offset forestry

  18. An improved strategy to detect CO2 leakage for verification of geologic carbon sequestration

    E-Print Network [OSTI]

    Hilley, George

    An improved strategy to detect CO2 leakage for verification of geologic carbon sequestration J. L the success of geologic carbon sequestration projects. To detect subtle CO2 leakage signals, we present), An improved strategy to detect CO2 leakage for verification of geologic carbon sequestration, Geophys. Res

  19. Evaluating the options for carbon sequestration Clair Gough and Simon Shackley

    E-Print Network [OSTI]

    Watson, Andrew

    Evaluating the options for carbon sequestration Clair Gough and Simon Shackley Tyndall Centre for carbon sequestration Tyndall Centre Technical Report No. 2 November 2002 This is the final report from Tyndall research project IT1.22 (Carbon sequestration: a pilot stage multi-criteria evaluation

  20. OCEAN CARBON SEQUESTRATION: A CASE STUDY IN PUBLIC AND INSTITUTIONAL PERCEPTIONS

    E-Print Network [OSTI]

    OCEAN CARBON SEQUESTRATION: A CASE STUDY IN PUBLIC AND INSTITUTIONAL PERCEPTIONS M. A. de and institutional perceptions for future carbon sequestration projects. INTRODUCTION The United States Department scrutiny. DOE, NEDO and NRC agreed to an initial field experiment on ocean carbon sequestration via direct

  1. Uncertainty in Future Carbon Emissions: A Preliminary Exploration Mort D. Webster

    E-Print Network [OSTI]

    1 Uncertainty in Future Carbon Emissions: A Preliminary Exploration Mort D. Webster Abstract of economic-energy models are used to project future carbon emissions under various policy scenarios. Due distributions of carbon emissions from the MIT Emissions Prediction and Policy Analysis model. From the specific

  2. Project Management Lessons Learned

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-08-05T23:59:59.000Z

    The guide supports DOE O 413.3A, Program and Project Management for the Acquisition of Capital Assets, and aids the federal project directors and integrated project teams in the execution of projects.

  3. Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    SciTech Connect (OSTI)

    Bill Stanley; Patrick Gonzalez; Sandra Brown; Sarah Woodhouse Murdock; Jenny Henman; Zoe Kant; Gilberto Tiepolo; Tim Pearson; Neil Sampson; Miguel Calmon

    2005-10-01T23:59:59.000Z

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between April 1st , 2005 and June 30th, 2005. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

  4. Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    SciTech Connect (OSTI)

    Bill Stanley; Sandra Brown; Patrick Gonzalez; Brent Sohngen; Neil Sampson; Mark Anderson; Miguel Calmon; Sean Grimland; Zoe Kant; Dan Morse; Sarah Woodhouse Murdock; Arlene Olivero; Tim Pearson; Sarah Walker; Jon Winsten; Chris Zganjar

    2007-03-31T23:59:59.000Z

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between January 1st and March 31st 2007. The specific tasks discussed include: Task 1--carbon inventory advancements; Task 2--emerging technologies for remote sensing of terrestrial carbon; Task 3--baseline method development; Task 4--third-party technical advisory panel meetings; Task 5--new project feasibility studies; and Task 6--development of new project software screening tool.

  5. Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    SciTech Connect (OSTI)

    Bill Stanley; Patrick Gonzalez; Sandra Brown; Jenny Henman; Zoe Kant; Sarah Woodhouse Murdock; Neil Sampson; Gilberto Tiepolo; Tim Pearson; Sarah Walker; Miguel Calmon

    2006-01-01T23:59:59.000Z

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between April 1st , 2005 and June 30th, 2005. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

  6. Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    SciTech Connect (OSTI)

    Bill Stanley; Sandra Brown; Patrick Gonzalez; Zoe Kant; Gilberto Tiepolo; Wilber Sabido; Ellen Hawes; Jenny Henman; Miguel Calmon; Michael Ebinger

    2004-07-10T23:59:59.000Z

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas impacts. The research described in this report occurred between July 1, 2002 and June 30, 2003. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: remote sensing for carbon analysis; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

  7. Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    SciTech Connect (OSTI)

    Bill Stanley; Patrick Gonzalez; Sandra Brown; Jenny Henman; Sarah Woodhouse Murdock; Neil Sampson; Tim Pearson; Sarah Walker; Zoe Kant; Miguel Calmon

    2006-04-01T23:59:59.000Z

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between January 1st and March 31st 2006. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

  8. Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    SciTech Connect (OSTI)

    Bill Stanley; Sandra Brown; Patrick Gonzalez; Brent Sohngen; Neil Sampson; Mark Anderson; Miguel Calmon; Sean Grimland; Zoe Kant; Dan Morse; Sarah Woodhouse Murdock; Arlene Olivero; Tim Pearson; Sarah Walker; Jon Winsten; Chris Zganjar

    2006-12-31T23:59:59.000Z

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between October 1st and December 31st 2006. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

  9. Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    SciTech Connect (OSTI)

    Bill Stanley; Sandra Brown; Patrick Gonzalez; Brent Sohngen; Neil Sampson; Mark Anderson; Miguel Calmon; Sean Grimland; Ellen Hawes; Zoe Kant; Dan Morse; Sarah Woodhouse Murdock; Arlene Olivero; Tim Pearson; Sarah Walker; Jon Winsten; Chris Zganjar

    2006-09-30T23:59:59.000Z

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between April 1st and July 30th 2006. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

  10. Windy Gap Firming Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure projects Interconnection OASIS OATT Windy Gap Firming Project, Final Environmental Impact Statement, DOEEIS-0370 (cooperating agency) Western's proposed...

  11. Perspectives on Project Finance

    Broader source: Energy.gov [DOE]

    Plenary III: Project Finance and Investment Perspectives on Project Finance John May, Managing Partner, Stern Brothers & Co.

  12. Final report on the project entitled "The Effects of Disturbance & Climate on Carbon Storage & the Exchanges of CO2 Water Vapor & Energy Exchange of Evergreen Coniferous Forests in the Pacific Northwest: Integration of Eddy Flux, Plant and Soil Measurements at a Cluster of Supersites"

    SciTech Connect (OSTI)

    Beverly E. Law (PI), Christoph K. Thomas (CoI)

    2011-09-20T23:59:59.000Z

    This is the final technical report containing a summary of all findings with regard to the following objectives of the project: (1) To quantify and understand the effects of wildfire on carbon storage and the exchanges of energy, CO2, and water vapor in a chronosequence of ponderosa pine (disturbance gradient); (2) To investigate the effects of seasonal and interannual variation in climate on carbon storage and the exchanges of energy, CO2, and water vapor in mature conifer forests in two climate zones: mesic 40-yr old Douglas-fir and semi-arid 60-yr old ponderosa pine (climate gradient); (3) To reduce uncertainty in estimates of CO2 feedbacks to the atmosphere by providing an improved model formulation for existing biosphere-atmosphere models; and (4) To provide high quality data for AmeriFlux and the NACP on micrometeorology, meteorology, and biology of these systems. Objective (1): A study integrating satellite remote sensing, AmeriFlux data, and field surveys in a simulation modeling framework estimated that the pyrogenic carbon emissions, tree mortality, and net carbon exchange associated with four large wildfires that burned ~50,000 hectares in 2002-2003 were equivalent to 2.4% of Oregon statewide anthropogenic carbon emissions over the same two-year period. Most emissions were from the combustion of the forest floor and understory vegetation, and only about 1% of live tree mass was combusted on average. Objective (2): A study of multi-year flux records across a chronosequence of ponderosa pine forests yielded that the net carbon uptake is over three times greater at a mature pine forest compared with young pine. The larger leaf area and wetter and cooler soils of the mature forest mainly caused this effect. A study analyzing seven years of carbon and water dynamics showed that interannual and seasonal variability of net carbon exchange was primarily related to variability in growing season length, which was a linear function of plant-available soil moisture in spring and early summer. A multi-year drought (2001-2003) led to a significant reduction of net ecosystem exchange due to carry-over effects in soil moisture and carbohydrate reserves in plant-tissue. In the same forest, the interannual variability in the rate carbon is lost from the soil and forest floor is considerable and related to the variability in tree growth as much as it is to variability in soil climatic conditions. Objective (3): Flux data from the mature ponderosa pine site support a physical basis for filtering nighttime data with friction velocity above the canopy. An analysis of wind fields and heat transport in the subcanopy at the mesic 40-year old Douglas site yielded that the non-linear structure and behavior of spatial temperature gradients and the flow field require enhanced sensor networks to estimate advective fluxes in the subcanopy of forest to close the surface energy balance in forests. Reliable estimates for flux uncertainties are needed to improve model validation and data assimilation in process-based carbon models, inverse modeling studies and model-data synthesis, where the uncertainties may be as important as the fluxes themselves. An analysis of the time scale dependence of the random and flux sampling error yielded that the additional flux obtained by increasing the perturbation timescale beyond about 10 minutes is dominated by random sampling error, and therefore little confidence can be placed in its value. Artificial correlation between gross ecosystem productivity (GEP) and ecosystem respiration (Re) is a consequence of flux partitioning of eddy covariance flux data when GEP is computed as the difference between NEE and computed daytime Re (e.g. using nighttime Re extrapolated into daytime using soil or air temperatures). Tower-data must be adequately spatially averaged before comparison to gridded model output as the time variability of both is inherently different. The eddy-covariance data collected at the mature ponderosa pine site and the mesic Douglas fir site were used to develop and evaluate a new method to extra

  13. NSTX Upgrade Project Project Execution Plan

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    NSTX Upgrade Project Project Execution Plan 6 PPPL Laboratory Director S.Prager Deputy Director.Gentile Centerstack Dsgn & Fab J. Chrzanowski NSTX Upgrade Project Manager R. Strykowsky Deputy and Construction Manager E. Perry Project Controls S. Langish NSTXCenterstack Manager L. Dudek NSTXNeutral Beam Manager T

  14. NSTX Upgrade Project Project Execution Plan

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    NSTX Upgrade Project Project Execution Plan Appendix 1 - WBS Dictionary 25 Appendix 1 - NSTX Upgrade Project Work Breakdown Structure This Work Breakdown Structure (WBS) organizes and defines the scope of the NSTX Upgrade using the WBS as established by the original NSTX project and modified

  15. CIMI PROJECT LONG TERM THEMATIC PROJECT

    E-Print Network [OSTI]

    Ledoux, Michel

    thematic projects (3 months) on specific topics in mathematics, computer science and their interactionsCIMI PROJECT LONG TERM THEMATIC PROJECT This document aims at providing guidance on the format to be used when submitting a scientific project to CIMI Executive Committee. CIMI will support long term

  16. Livingston Solar Canopy Project The Project

    E-Print Network [OSTI]

    Delgado, Mauricio

    ,000 high efficiency solar panels on canopy structures over two major surface parking areasLivingston Solar Canopy Project The Project: This project entails the installation of more than 40. In conjunction with the existing 1.4 megawatt solar energy facility on this campus, this project will generate

  17. Information Visualization Graduate Project (Group Project)

    E-Print Network [OSTI]

    Rusu, Adrian

    Information Visualization Fall 2011 Graduate Project (Group Project) (100 points total) Handed out:59PM Research Article due by online submission on Sunday, December 11, 2011, 11:59PM Project Demo due last week of classes The idea of the project is to take the knowledge and background that you

  18. Project Title Project Sponsor (funding agency)

    E-Print Network [OSTI]

    Saskatchewan, University of

    and procedures applicable to the above project; and we confirm that the PI is eligible to apply in accordance Project Title Project Sponsor (funding agency) Declaration of Principal Investigator (PI) I certify that: I agree that my participation in the project must be in accordance with all

  19. Reading the Tea Leaves: How Utilities in the West Are Managing Carbon Regulatory Risk in their Resource Plans

    E-Print Network [OSTI]

    Barbose, Galen

    2008-01-01T23:59:59.000Z

    Table 4. Table 5. Table 6. Utility Resource Plans Included2 Carbon Emission Price Projections in Utility11 Utility Approaches to Incorporating Energy Efficiency

  20. Mesoporous carbon materials

    DOE Patents [OSTI]

    Dai, Sheng; Fulvio, Pasquale Fernando; Mayes, Richard T.; Wang, Xiqing; Sun, Xiao-Guang; Guo, Bingkun

    2014-09-09T23:59:59.000Z

    A conductive mesoporous carbon composite comprising conductive carbon nanoparticles contained within a mesoporous carbon matrix, wherein the conductive mesoporous carbon composite possesses at least a portion of mesopores having a pore size of at least 10 nm and up to 50 nm, and wherein the mesopores are either within the mesoporous carbon matrix, or are spacings delineated by surfaces of said conductive carbon nanoparticles when said conductive carbon nanoparticles are fused with each other, or both. Methods for producing the above-described composite, devices incorporating them (e.g., lithium batteries), and methods of using them, are also described.

  1. New England Wind Energy Education Project (NEWEEP)

    SciTech Connect (OSTI)

    Grace, Robert C.; Craddock, Kathryn A.; von Allmen, Daniel R.

    2012-04-25T23:59:59.000Z

    Project objective is to develop and disseminate accurate, objective information on critical wind energy issues impacting market acceptance of hundreds of land-based projects and vast off-shore wind developments proposed in the 6-state New England region, thereby accelerating the pace of wind installation from today's 140 MW towards the region's 20% by 2030 goals of 12,500 MW. Methodology: This objective will be accomplished by accumulating, developing, assembling timely, accurate, objective and detailed information representing the 'state of the knowledge' on critical wind energy issues impacting market acceptance, and widely disseminating such information. The target audience includes state agencies and local governments; utilities and grid operators; wind developers; agricultural and environmental groups and other NGOs; research organizations; host communities and the general public, particularly those in communities with planned or operating wind projects. Information will be disseminated through: (a) a series of topic-specific web conference briefings; (b) a one-day NEWEEP conference, back-to-back with a Utility Wind Interest Group one-day regional conference organized for this project; (c) posting briefing and conference materials on the New England Wind Forum (NEWF) web site and featuring the content on NEWF electronic newsletters distributed to an opt-in list of currently over 5000 individuals; (d) through interaction with and participation in Wind Powering America (WPA) state Wind Working Group meetings and WPA's annual All-States Summit, and (e) through the networks of project collaborators. Sustainable Energy Advantage, LLC (lead) and the National Renewable Energy Laboratory will staff the project, directed by an independent Steering Committee composed of a collaborative regional and national network of organizations. Major Participants - the Steering Committee: In addition to the applicants, the initial collaborators committing to form a Steering Committee consists of the Massachusetts Renewable Energy Trust; Maine Public Utilities Commission; New Hampshire office of Energy & Planning, the Connecticut Clean Energy Fund;, ISO New England; Utility Wind Interest Group; University of Massachusetts Wind Energy Center; Renewable Energy New England (a new partnership between the renewable energy industry and environmental public interest groups), and Lawrence Berkeley National Laboratory (conditionally). The Steering Committee will: (1) identify and prioritize topics of greatest interest or concern where detailed, objective and accurate information will advance the dialogue in the region; (2) identify critical outreach venues, influencers and experts; (3) direct and coordinate project staff; (4) assist project staff in planning briefings and conferences described below; (5) identify topics needing additional research or technical assistance and (6) identify and recruit additional steering committee members. Impacts/Benefits/Outcomes: By cutting through the clutter of competing and conflicting information on critical issues, this project is intended to encourage the market's acceptance of appropriately-sited wind energy generation.

  2. Chopwell Wood Health Project

    E-Print Network [OSTI]

    Chopwell Wood Health Project An innovative project of school visits and General Practitioner. The project took place at Chopwell Wood a 360 hectare mixed woodland managed by the Forestry Commission to carry on being involved in the project. Next stage of the project Although the project leader has now

  3. Fuel Cell Applied Research Project

    SciTech Connect (OSTI)

    Lee Richardson

    2006-09-15T23:59:59.000Z

    Since November 12, 2003, Northern Alberta Institute of Technology has been operating a 200 kW phosphoric acid fuel cell to provide electrical and thermal energy to its campus. The project was made possible by funding from the U.S. Department of Energy as well as by a partnership with the provincial Alberta Energy Research Institute; a private-public partnership, Climate Change Central; the federal Ministry of Western Economic Development; and local natural gas supplier, ATCO Gas. Operation of the fuel cell has contributed to reducing NAIT's carbon dioxide emissions through its efficient use of natural gas.

  4. Sustainability Project Fund Application Form Requirements Project Title

    E-Print Network [OSTI]

    Volesky, Bohumil

    Sustainability Project Fund Application Form Requirements Project Title: Budget Requested: Applicant/Project Leader: Faculty/Department: Email: Daytime Phone: Project Team: (Please include. Project Overview Project summary: · Provide a brief background, describing the project, objectives

  5. Ultrafast Nonlinear Spectroscopy of Semiconducting Carbon Nanotubes

    E-Print Network [OSTI]

    Graham, Matthew Werden

    2010-01-01T23:59:59.000Z

    metallic nanotubes . . . . . . . . . . . . . . . . . Carbon2 Carbon Nanotubes Physical and ElectronicStructure of Carbon Nanotubes . . . . . . . . . .

  6. Ultrafast Nonlinear Spectroscopy of Semiconducting Carbon Nanotubes

    E-Print Network [OSTI]

    Graham, Matthew Werden

    2010-01-01T23:59:59.000Z

    2 Carbon Nanotubes Physical andElectronic Structure of Carbon Nanotubes . . . . . . . . . .Photophysics in Semiconducting Carbon Nanotubes . . . . .

  7. Preliminary assessment of potential CDM early start projects in Brazil

    SciTech Connect (OSTI)

    Meyers, S.; Sathaye, J.; Lehman, B.; Schumacher, K.; van Vliet, O.; Moreira, J.R.

    2000-11-01T23:59:59.000Z

    The Brazil/US Aspen Global Forum on Climate Change Policies and Programs has facilitated a dialogue between key Brazil and US public and private sector leaders on the subject of the Clean Development Mechanism (CDM). With support from the US government, a cooperative effort between Lawrence Berkeley National Laboratory and the University of Sao Paulo conducted an assessment of a number of projects put forth by Brazilian sponsors. Initially, we gathered information and conducted a screening assessment for ten projects in the energy sector and six projects in the forestry sector. Some of the projects appeared to offer greater potential to be attractive for CDM, or had better information available. We then conducted a more detailed assessment of 12 of these projects, and two other projects that were submitted after the initial screening. An important goal was to assess the potential impact of Certified Emission Reductions (CERs) on the financial performance of projects. With the exception of the two forestry-based fuel displacement projects, the impact of CERs on the internal rate of return (IRR) is fairly small. This is true for both the projects that displace grid electricity and those that displace local (diesel-based) electricity production. The relative effect of CERs is greater for projects whose IRR without CERs is low. CERs have a substantial effect on the IRR of the two short-rotation forestry energy substitution projects. One reason is that the biofuel displaces coke and oil, both of which are carbon-intensive. Another factor is that the product of these projects (charcoal and woodfuel, respectively) is relatively low value, so the revenue from carbon credits has a strong relative impact. CERs also have a substantial effect on the NPV of the carbon sequestration projects. Financial and other barriers pose a challenge for implementation of most of the projects. In most cases, the sponsor lacks sufficient capital, and loans are available only at high interest rate and with substantial guarantee. A few of the projects might go ahead without the benefit of CERs, but most probably would not. Whether the projected revenue from CERs would be sufficient to induce sponsors to proceed with the projects is an important issue that requires further investigation. All of the projects contribute to economic development in Brazil. The forestry projects in particular would create a significant number of rural jobs, and contribute income to rural communities. Some of the carbon sequestration projects would provide environmental benefits with respect to protection of biodiversity and soil.

  8. Create a Consortium and Develop Premium Carbon Products from Coal

    SciTech Connect (OSTI)

    Frank Rusinko; John Andresen; Jennifer E. Hill; Harold H. Schobert; Bruce G. Miller

    2006-01-01T23:59:59.000Z

    The objective of these projects was to investigate alternative technologies for non-fuel uses of coal. Special emphasis was placed on developing premium carbon products from coal-derived feedstocks. A total of 14 projects, which are the 2003 Research Projects, are reported herein. These projects were categorized into three overall objectives. They are: (1) To explore new applications for the use of anthracite in order to improve its marketability; (2) To effectively minimize environmental damage caused by mercury emissions, CO{sub 2} emissions, and coal impounds; and (3) To continue to increase our understanding of coal properties and establish coal usage in non-fuel industries. Research was completed in laboratories throughout the United States. Most research was performed on a bench-scale level with the intent of scaling up if preliminary tests proved successful. These projects resulted in many potential applications for coal-derived feedstocks. These include: (1) Use of anthracite as a sorbent to capture CO{sub 2} emissions; (2) Use of anthracite-based carbon as a catalyst; (3) Use of processed anthracite in carbon electrodes and carbon black; (4) Use of raw coal refuse for producing activated carbon; (5) Reusable PACs to recycle captured mercury; (6) Use of combustion and gasification chars to capture mercury from coal-fired power plants; (7) Development of a synthetic coal tar enamel; (8) Use of alternative binder pitches in aluminum anodes; (9) Use of Solvent Extracted Carbon Ore (SECO) to fuel a carbon fuel cell; (10) Production of a low cost coal-derived turbostratic carbon powder for structural applications; (11) Production of high-value carbon fibers and foams via the co-processing of a low-cost coal extract pitch with well-dispersed carbon nanotubes; (12) Use of carbon from fly ash as metallurgical carbon; (13) Production of bulk carbon fiber for concrete reinforcement; and (14) Characterizing coal solvent extraction processes. Although some of the projects funded did not meet their original goals, the overall objectives of the CPCPC were completed as many new applications for coal-derived feedstocks have been researched. Future research in many of these areas is necessary before implementation into industry.

  9. Macroalgae Analysis A National GIS-based Analysis of Macroalgae Production Potential Summary Report and Project Plan

    SciTech Connect (OSTI)

    Roesijadi, Guritno; Coleman, Andre M.; Judd, Chaeli; Van Cleve, Frances B.; Thom, Ronald M.; Buenau, Kate E.; Tagestad, Jerry D.; Wigmosta, Mark S.; Ward, Jeffrey A.

    2011-12-01T23:59:59.000Z

    The overall project objective is to conduct a strategic analysis to assess the state of macroalgae as a feedstock for biofuels production. The objective in FY11 is to develop a multi-year systematic national assessment to evaluate the U.S. potential for macroalgae production using a GIS-based assessment tool and biophysical growth model developed as part of these activities. The initial model development for both resource assessment and constraints was completed and applied to the demonstration areas. The model for macroalgal growth was extended to the EEZ off the East and West Coasts of the United States, and a plan to merge the findings for an initial composite assessment was developed. In parallel, an assessment of land-based, port, and offshore infrastructure needs based on published and grey literature was conducted. Major information gaps and challenges encountered during this analysis were identified. Also conducted was an analysis of the type of local, state, and federal requirements that pertain to permitting land-based facilities and nearshore/offshore culture operations

  10. A Novel Approach to Mineral Carbonation: Enhancing Carbonation While Avoiding Mineral Pretreatment Process Cost

    SciTech Connect (OSTI)

    Andrew V. G. Chizmeshya; Michael J. McKelvy; Kyle Squires; Ray W. Carpenter; Hamdallah Bearat

    2007-06-21T23:59:59.000Z

    Known fossil fuel reserves, especially coal, can support global energy demands for centuries to come, if the environmental problems associated with CO{sub 2} emissions can be overcome. Unlike other CO{sub 2} sequestration candidate technologies that propose long-term storage, mineral sequestration provides permanent disposal by forming geologically stable mineral carbonates. Carbonation of the widely occurring mineral olivine (e.g., forsterite, Mg{sub 2}SiO{sub 4}) is a large-scale sequestration process candidate for regional implementation, which converts CO{sub 2} into the environmentally benign mineral magnesite (MgCO{sub 3}). The primary goal is cost-competitive process development. As the process is exothermic, it inherently offers low-cost potential. Enhancing carbonation reactivity is key to economic viability. Recent studies at the U.S. DOE Albany Research Center have established that aqueous-solution carbonation using supercritical CO{sub 2} is a promising process; even without olivine activation, 30-50% carbonation has been achieved in an hour. Mechanical activation (e.g., attrition) has accelerated the carbonation process to an industrial timescale (i.e., near completion in less than an hour), at reduced pressure and temperature. However, the activation cost is too high to be economical and lower cost pretreatment options are needed. We have discovered that robust silica-rich passivating layers form on the olivine surface during carbonation. As carbonation proceeds, these passivating layers thicken, fracture and eventually exfoliate, exposing fresh olivine surfaces during rapidly-stirred/circulating carbonation. We are exploring the mechanisms that govern carbonation reactivity and the impact that (1) modeling/controlling the slurry fluid-flow conditions, (2) varying the aqueous ion species/size and concentration (e.g., Li+, Na+, K+, Rb+, Cl-, HCO{sub 3}{sup -}), and (3) incorporating select sonication offer to enhance exfoliation and carbonation. Thus far, we have succeeded in nearly doubling the extent of carbonation observed compared with the optimum procedure previously developed by the Albany Research Center. Aqueous carbonation reactivity was found to be a strong function of the ionic species present and their aqueous activities, as well as the slurry fluid flow conditions incorporated. High concentration sodium, potassium, and sodium/potassium bicarbonate aqueous solutions have been found to be the most effective solutions for enhancing aqueous olivine carbonation to date. Slurry-flow modeling using Fluent indicates that the slurry-flow dynamics are a strong function of particle size and mass, suggesting that controlling these parameters may offer substantial potential to enhance carbonation. During the first project year we developed a new sonication exfoliation apparatus with a novel sealing system to carry out the sonication studies. We also initiated investigations to explore the potential that sonication may offer to enhance carbonation reactivity. During the second project year, we extended our investigations of the effects of sonication on the extent of carbonation as a function of the following parameters: particle size distribution, the mass of solid reactant, volume fraction of aqueous solution present, sonication power, time, temperature, and CO{sub 2} pressure. To date, none of the conditions investigated have significantly enhanced carbonation. Mechanistic investigations of the stirred ({approx}1,500 rpm) aqueous olivine carbonation process indicate the carbonation process involves both incongruent magnesium dissolution and silica precipitation, which results in robust silica-rich passivating layer formation. Secondary ion mass spectrometry observation of H within the passivating layer that forms during static carbonation suggests 2H{sup +}/Mg{sup 2+} ion exchange is associated with incongruent dissolution. Apparently, H{sub 2}O forms at or near the olivine/passivating-layer interface during the process and diffuses out through the passivating layers during the carbonation reaction. This is

  11. Carbon fuel cells with carbon corrosion suppression

    DOE Patents [OSTI]

    Cooper, John F. (Oakland, CA)

    2012-04-10T23:59:59.000Z

    An electrochemical cell apparatus that can operate as either a fuel cell or a battery includes a cathode compartment, an anode compartment operatively connected to the cathode compartment, and a carbon fuel cell section connected to the anode compartment and the cathode compartment. An effusion plate is operatively positioned adjacent the anode compartment or the cathode compartment. The effusion plate allows passage of carbon dioxide. Carbon dioxide exhaust channels are operatively positioned in the electrochemical cell to direct the carbon dioxide from the electrochemical cell.

  12. Soil metagenomics and carbon cycling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Soil metagenomics and carbon cycling Soil metagenomics and carbon cycling Establishing a foundational understanding of the microbial and ecosystem factors that control carbon...

  13. Carbon Nanostructure-Based Sensors

    E-Print Network [OSTI]

    Sarkar, Tapan

    2012-01-01T23:59:59.000Z

    Control of Single-Walled Carbon Nanotube Functionalization.M. S. Characterizing carbon nanotube samples with resonancewith a Single-Walled Carbon Nanotube Capacitor. Science

  14. The Australian terrestrial carbon budget

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    Australian terrestrial carbon budget Open Access 3 , G. P.The Australian terrestrial carbon budget Luo, C. , Mahowald,terrestrial carbon budget Richards, G. P. , Borough, C. ,

  15. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Large Magnetization at Carbon Surfaces Print Wednesday, 31 August 2011 00:00 From organic matter to pencil lead, carbon is a versatile...

  16. Carbon dioxide sequestration by aqueous mineral carbonation of magnesium silicate minerals

    SciTech Connect (OSTI)

    Gerdemann, Stephen J.; Dahlin, David C.; O'Connor, William K.; Penner, Larry R.

    2003-01-01T23:59:59.000Z

    The dramatic increase in atmospheric carbon dioxide since the Industrial Revolution has caused concerns about global warming. Fossil-fuel-fired power plants contribute approximately one third of the total human-caused emissions of carbon dioxide. Increased efficiency of these power plants will have a large impact on carbon dioxide emissions, but additional measures will be needed to slow or stop the projected increase in the concentration of atmospheric carbon dioxide. By accelerating the naturally occurring carbonation of magnesium silicate minerals it is possible to sequester carbon dioxide in the geologically stable mineral magnesite (MgCO3). The carbonation of two classes of magnesium silicate minerals, olivine (Mg2SiO4) and serpentine (Mg3Si2O5(OH)4), was investigated in an aqueous process. The slow natural geologic process that converts both of these minerals to magnesite can be accelerated by increasing the surface area, increasing the activity of carbon dioxide in the solution, introducing imperfections into the crystal lattice by high-energy attrition grinding, and in the case of serpentine, by thermally activating the mineral by removing the chemically bound water. The effect of temperature is complex because it affects both the solubility of carbon dioxide and the rate of mineral dissolution in opposing fashions. Thus an optimum temperature for carbonation of olivine is approximately 185 degrees C and 155 degrees C for serpentine. This paper will elucidate the interaction of these variables and use kinetic studies to propose a process for the sequestration of the carbon dioxide.

  17. APPLICATION AND DEVELOPMENT OF APPROPRIATE TOOLS AND TECHNOLOGIES FOR COST-EFFECTIVE CARBON

    SciTech Connect (OSTI)

    Bill Stanley; Sandra Brown; Ellen Hawes; Zoe Kant; Miguel Calmon; Patrick Gonzalez; Brad Kreps; Gilberto Tiepolo

    2003-09-01T23:59:59.000Z

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas impacts. The research described in this report occurred between July 1, 2002 and June 30, 2003. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: advanced videography testing; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

  18. THE APPLICATION AND DEVELOPMENT OF APPROPRIATE TOOLS AND TECHNOLOGIES FOR COST-EFFECTIVE CARBON SEQUESTRATION

    SciTech Connect (OSTI)

    Bill Stanley; Sandra Brown; Ellen Hawes; Zoe Kant; Miguel Calmon; Gilberto Tiepolo

    2002-09-01T23:59:59.000Z

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research projects is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas impacts. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: advanced videography testing; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

  19. Design and Implementation of a C02 Flood Utilizing Advanced Reservoir Characterization and Horizontal Injection Wells in a Shallow Shelf Carbonate Approaching Waterflood Depletion

    SciTech Connect (OSTI)

    None

    1997-08-01T23:59:59.000Z

    The objective is to utilize reservoir characteristics and advanced technologies to optimize the design of a carbon dioxide (CO2) project for the South Cowden Unit (SCU) located in Ector County, Texas. The SCU is a mature, relatively small, shallow shelf carbonate unit nearing waterflood depletion. Also the project seeks to demonstrate the performance and economic viability of the project in the field.

  20. Design and Implementation of a CO2 Flood Utilizing Advanced Reservoir Characterization and Horizontal Injection Wells In a Shallow Shelf Carbonate Approaching Waterflood Depletion, Class II

    SciTech Connect (OSTI)

    Czirr, K.L.; Gaddis, M.P.; Moshell, M.K.

    2002-02-21T23:59:59.000Z

    The principle objective of this project is to demonstrate the economic viability and widespread applicability of an innovative reservoir management and carbon dioxide (CO2) flood project development approach for improving CO2 flood project economics in shallow shelf carbonate (SSC) reservoirs.

  1. Project Sponsor Professor Peter

    E-Print Network [OSTI]

    Levi, Ran

    Project Sponsor Professor Peter McGearoge Project Director Nicki Matthew Audit / Quality Mazars Architect IT ServicesProcess Owners Build Team Lead Nicki Matthew Project Manager ­ Unit4 Joe Cairney Student Lifecycle Project Board InfrastructureDBA's TBC TBC TBC Process 1 Process 2 Project Sponsor ­ Unit

  2. Project Structure Elke Karrenberg

    E-Print Network [OSTI]

    Kaus, Boris

    Project Structure Elke Karrenberg Project Manager, Head of Personnel Development Phone +49 6131 39-20634 Dr. Jana Leipold Project Staff, Personnel Development Consultant Phone +49 6131 39-25433 Antje Swietlik Project Staff Phone +49 6131 39-20140 Project Office JGU Leadership Forum Universitatis 3, Room 00

  3. Global Carbon Budget from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Global Carbon Project (GCP) was established in 2001 in recognition of the scientific challenge and critical importance of the carbon cycle for Earth's sustainability. The growing realization that anthropogenic climate change is a reality has focused the attention of the scientific community, policymakers and the general public on the rising concentration of greenhouse gases, especially carbon dioxide (CO2) in the atmosphere, and on the carbon cycle in general. Initial attempts, through the United Nations Framework Convention on Climate Change and its Kyoto Protocol, are underway to slow the rate of increase of greenhouse gases in the atmosphere. These societal actions require a scientific understanding of the carbon cycle, and are placing increasing demands on the international science community to establish a common, mutually agreed knowledge base to support policy debate and action. The Global Carbon Project is responding to this challenge through a shared partnership between the International Geosphere-Biosphere Programme (IGBP), the International Human Dimensions Programme on Global Environmental Change (IHDP), the World Climate Research Programme (WCRP) and Diversitas. This partnership constitutes the Earth Systems Science Partnership (ESSP). This CDIAC collection includes datasets, images, videos, presentations, and archived data from previous years.

  4. Part II: Project Summaries Project Summaries

    E-Print Network [OSTI]

    Perkins, Richard A.

    Part II: Project Summaries Part II Project Summaries #12;22 Math & Computational Sciences Division generally cannot be achieved for reasonable computational cost. Applications that require modeling of this project is to advance the state of the art in electromagnetic computations by eliminating three existing

  5. CS348 Project 1 Oracle Project

    E-Print Network [OSTI]

    Elmagarmid, Ahmed K.

    CS348 Project 1 Oracle Project Due Date: 2/12/2009 You are going to use Oracle to design a simple; if nothing else, mark each query with its number. Turnin You may turn in the project for grading using the procedure described below. Run the following shell command (see 'man turnin' for details): turnin -c cs348

  6. Project Name Project Number Tagging Type

    E-Print Network [OSTI]

    Project Name Project Number Primary Tagging Type Secondary Tagging Type Fish Species Tagging/ Secondary Legal Driver (BiOp, MOA, Accord, etc.) Tagging Purpose Funded Entity Tagging Location Retrieval CWT Recovery Project 2010-036-00 CWT PIT Chinook, coho retrieval, analysis, address PSMFC sampling

  7. Method of making carbon-carbon composites

    DOE Patents [OSTI]

    Engle, Glen B. (16716 Martincoit Rd., Poway, CA 92064)

    1991-01-01T23:59:59.000Z

    A process for making a carbon-carbon composite having a combination of high crystallinity, high strength, high modulus and high thermal and electrical conductivity. High-modulus/high-strength mesophase derived carbon fibers are woven into a suitable cloth. Layers of this easily graphitizable woven cloth are covered with petroleum or coal tar pitch and pressed at a temperature a few degrees above the softening point of the pitch to form a green laminated composite. The green composite is restrained in a suitable fixture and heated slowly to carbonize the pitch binder. The carbonized composite is then impregnated several times with pitch by covering the composite with hot pitch under pressure. The composites are given a heat treatment between each impregnation step to crack up the infiltrated carbon and allow additional pitch to enter the microstructure during the next impregnation cycle. The impregnated composites are then given a final heat treatment in the range 2500.degree. to 3000.degree. C. to fully graphitize the fibers and the matrix carbon. The composites are then infiltrated with pyrolytic carbon by chemical vapor deposition in the range 1000.degree. to 1300.degree. C. at a reduced pressure for approximately one hundred and fifty (150) hours.

  8. Phase II Final Project Report SBIR Project: "A High Efficiency PV to Hydrogen Energy System"

    SciTech Connect (OSTI)

    Slade, A; Turner, J; Stone, K; McConnell, R

    2008-09-02T23:59:59.000Z

    The innovative research conducted for this project contributed greatly to the understanding of generating low-cost hydrogen from solar energy. The project’s research identified two highly leveraging and complementary pathways. The first pathway is to dramatically increase the efficiency of converting sunlight into electricity. Improving solar electric conversion efficiency directly increases hydrogen production. This project produced a world record efficiency for silicon solar cells and contributed to another world record efficiency for a solar concentrator module using multijunction solar cells. The project’s literature review identified a second pathway in which wasted heat from the solar concentration process augments the electrolysis process generating hydrogen. One way to do this is to use a “heat mirror” that reflects the heat-producing infrared and transmits the visible spectrum to the solar cells; this also increases solar cell conversion efficiency. An economic analysis of this concept confirms that, if long-term concentrator photovoltaic (CPV) and solid-oxide electrolyzer cost goals can be achieved, hydrogen will be produced from solar energy cheaper than the cost of gasoline. The potential public benefits from this project are significant. The project has identified a potential energy source for the nation’s future electricity and transportation needs that is entirely “home grown” and carbon free. As CPV enter the nation’s utility markets, the opportunity for this approach to be successful is greatly increased. Amonix strongly recommends further exploration of this project’s findings.

  9. Carbon nanotube nanoelectrode arrays

    DOE Patents [OSTI]

    Ren, Zhifeng (Newton, MA); Lin, Yuehe (Richland, WA); Yantasee, Wassana (Richland, WA); Liu, Guodong (Fargo, ND); Lu, Fang (Burlingame, CA); Tu, Yi (Camarillo, CA)

    2008-11-18T23:59:59.000Z

    The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.

  10. Carbon Monoxide Safety Tips

    E-Print Network [OSTI]

    Shaw, Bryan W.; Garcia, Monica L.

    1999-07-26T23:59:59.000Z

    Protect yourself and your family from the deadly effects of carbon monoxide--a colorless, odorless poisonous gas. This publication describes the warning signs of carbon monoxide exposure and includes a home safety checklist....

  11. Ultra High-Resolution Global Climate Simulation Project PRINCIPAL INVESTIGATOR: James J. Hack

    E-Print Network [OSTI]

    changes in the frequency and intensity of extreme events. This project is developing the scientific a terrestrial carbon modeling capabil- ity. #12;Ultra High-Resolution Global Climate Simulation Project elersUltra High-Resolution Global Climate Simulation Project PRINCIPAL INVESTIGATOR: James J. Hack

  12. project.m

    E-Print Network [OSTI]

    function project(u,w) %last updated 5/9/94 %PROJECT Projecting vector U onto vector W orthogonally. Vectors % U and W can be either a pair of 2D or 3D ...

  13. Super Projects (Arkansas)

    Broader source: Energy.gov [DOE]

    A 2004 amendment to the state constitution authorizes the state to attract super projects by issuing bonds to fund a project’s infrastructure, limited to 5% of the net general revenues during the...

  14. Project Selection - Record Keeping

    E-Print Network [OSTI]

    Howard, Jeff W.

    2005-05-10T23:59:59.000Z

    4-H members have many project areas to choose from, depending on where they live. Members should consult with their parents and 4-H leaders when choosing a project. This publication outlines project considerations....

  15. ESM 271 Carbon Footprints and Carbon Accounting Instructor: Sangwon Suh

    E-Print Network [OSTI]

    California at Santa Barbara, University of

    1 ESM 271 Carbon Footprints and Carbon Accounting Instructor: Sangwon Suh Bren hall 3422, suh Week 1: Introduction to carbon footprint and carbon account - Background: carbon awareness, major out a report or a web site about carbon footprint results of a product or of a company. Write a two

  16. Big Sky Carbon Atlas

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    (Acknowledgment to the Big Sky Carbon Sequestration Partnership (BSCSP); see home page at http://www.bigskyco2.org/)

  17. Intro to Carbon Sequestration

    ScienceCinema (OSTI)

    None

    2010-01-08T23:59:59.000Z

    NETL's Carbon Sequestration Program is helping to develop technologies to capture, purify, and store carbon dioxide (CO2) in order to reduce greenhouse gas emissions without adversely influencing energy use or hindering economic growth. Carbon sequestration technologies capture and store CO2 that would otherwise reside in the atmosphere for long periods of time.

  18. Intro to Carbon Sequestration

    SciTech Connect (OSTI)

    2008-03-06T23:59:59.000Z

    NETL's Carbon Sequestration Program is helping to develop technologies to capture, purify, and store carbon dioxide (CO2) in order to reduce greenhouse gas emissions without adversely influencing energy use or hindering economic growth. Carbon sequestration technologies capture and store CO2 that would otherwise reside in the atmosphere for long periods of time.

  19. Carbon-Carbon Composites as Recuperator Material for Direct Gas Brayton Systems

    SciTech Connect (OSTI)

    RA Wolf

    2006-07-19T23:59:59.000Z

    Of the numerous energy conversion options available for a space nuclear power plant (SNPP), one that shows promise in attaining reliable operation and high efficiency is the direct gas Brayton (GB) system. In order to increase efficiency, the GB system incorporates a recuperator that accounts for nearly half the weight of the energy conversion system (ECS). Therefore, development of a recuperator that is lighter and provides better performance than current heat exchangers could prove to be advantageous. The feasibility of a carbon-carbon (C/C) composite recuperator core has been assessed and a mass savings of 60% and volume penalty of 20% were projected. The excellent thermal properties, high-temperature capabilities, and low density of carbon-carbon materials make them attractive in the GB system, but development issues such as material compatibility with other structural materials in the system, such as refractory metals and superalloys, permeability, corrosion, joining, and fabrication must be addressed.

  20. Falls Creek Hydroelectric Project

    SciTech Connect (OSTI)

    Gustavus Electric Company; Richard Levitt; DOE Project Officer - Keith Bennett

    2007-06-12T23:59:59.000Z

    This project was for planning and construction of a 700kW hydropower project on the Fall River near Gustavus, Alaska.

  1. EV Project Overview Report

    Broader source: Energy.gov (indexed) [DOE]

    Leafs Enrolled to Date EV Project Chevrolet Volts Enrolled to Date EV Project Smart Electric Drives Enrolled to Date Distance Driven (mi) Phoenix, AZ Metropolitan Area 274...

  2. EV Project Overview Report

    Broader source: Energy.gov (indexed) [DOE]

    Leafs Enrolled to Date EV Project Chevrolet Volts Enrolled to Date EV Project Smart Electric Drives Enrolled to Date Distance Driven (mi) Phoenix, AZ Metropolitan Area 259...

  3. Project Risk Management:.

    E-Print Network [OSTI]

    Koelmeyer, Chris

    2013-01-01T23:59:59.000Z

    ?? The recent increase in international projects has resulted in higher risk along with difficulties in control and coordination. Effective project management can therefore be… (more)

  4. Contract/Project Management

    Broader source: Energy.gov (indexed) [DOE]

    3 rd Quarter Overall Contract and Project Management Performance Metrics and Targets ContractProject Management Performance Metrics FY 2009 Target FY 2009 Actual Comment 1....

  5. Project BETA Cover Page

    E-Print Network [OSTI]

    Cover Page, Project BETA

    2012-01-01T23:59:59.000Z

    and Distribution of the Project BETA articles were funded inproduct is discussed in the BETA articles. Western JournalProject BETA: Best practices in Evaluation and Treatment of

  6. EV Project Overview Report

    Broader source: Energy.gov (indexed) [DOE]

    Report Project to date through March 2013 Charging Infrastructure Region Number of EV Project Charging Units Installed To Date Number of Charging Events Performed Electricity...

  7. Project Finance and Investments

    Broader source: Energy.gov [DOE]

    Plenary III: Project Finance and Investment Project Finance and Investments Chris Cassidy, National Business Renewable Energy Advisor, U.S. Department of Agriculture

  8. Clean Coal Projects (Virginia)

    Broader source: Energy.gov [DOE]

    This legislation directs the Virginia Air Pollution Control Board to facilitate the construction and implementation of clean coal projects by expediting the permitting process for such projects.

  9. CALLA ENERGY BIOMASS COFIRING PROJECT

    SciTech Connect (OSTI)

    Francis S. Lau

    2003-09-01T23:59:59.000Z

    The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Natural gas and waste coal fines were evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. A design was developed for a cofiring combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures in a power generation boiler, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. Following the preliminary design, GTI evaluated the gasification characteristics of selected feedstocks for the project. To conduct this work, GTI assembled an existing ''mini-bench'' unit to perform the gasification tests. The results of the test were used to confirm the process design completed in Phase Task 1. As a result of the testing and modeling effort, the selected biomass feedstocks gasified very well, with a carbon conversion of over 98% and individual gas component yields that matched the RENUGAS{reg_sign} model. As a result of this work, the facility appears very attractive from a commercial standpoint. Similar facilities can be profitable if they have access to low cost fuels and have attractive wholesale or retail electrical rates for electricity sales. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. Phase II has not been approved for construction at this time.

  10. MATERIALS AND COMPONENT DEVELOPMENT FOR ADVANCED TURBINE SYSTEMS ? PROJECT SUMMARY

    SciTech Connect (OSTI)

    M. A. Alvin

    2010-06-18T23:59:59.000Z

    Future hydrogen-fired or oxy-fuel turbines will likely experience an enormous level of thermal and mechanical loading, as turbine inlet temperatures (TIT) approach ?1425-1760?C (?2600-3200?F) with pressures of ?300-625 psig, respectively. Maintaining the structural integrity of future turbine components under these extreme conditions will require (1) durable thermal barrier coatings (TBCs), (2) high temperature creep resistant metal substrates, and (3) effective cooling techniques. While advances in substrate materials have been limited for the past decades, thermal protection of turbine airfoils in future hydrogen-fired and oxy-fuel turbines will rely primarily on collective advances in the TBCs and aerothermal cooling. To support the advanced turbine technology development, the Office of Research and Development (ORD) at National Energy Technology Laboratory (NETL) has continued its collaborative research efforts with the University of Pittsburgh and West Virginia University, while working in conjunction with commercial material and coating suppliers. This paper presents the technical accomplishments that were made during FY09 in the initial areas of advanced materials, aerothermal heat transfer and non-destructive evaluation techniques for use in advanced land-based turbine applications in the Materials and Component Development for Advanced Turbine Systems project, and introduces three new technology areas ? high temperature overlayer coating development, diffusion barrier coating development, and oxide dispersion strengthened (ODS) alloy development that are being conducted in this effort.

  11. project-information | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 Joint JOULECorrective Actions3 weProjectProject

  12. SmallholderSmallholder CarbonCarbon AgroforestryAgroforestry && Carbon for Poverty ReductionCarbon for Poverty Reduction

    E-Print Network [OSTI]

    SmallholderSmallholder CarbonCarbon AgroforestryAgroforestry && Carbon for Poverty ReductionCarbon for Poverty Reduction Roundtable (CAPR)Roundtable (CAPR) GEO Forest Monitoring SymposiumGEO Forest Monitoring)Amazon Initiative Consortium (IA) #12;Carbon for Poverty Reduction Roundtable (CAPR)Carbon for Poverty Reduction

  13. Formation of Carbon Dwarfs

    E-Print Network [OSTI]

    Charles L. Steinhardt; Dimitar D. Sasselov

    2012-01-27T23:59:59.000Z

    We consider the formation of dwarf carbon stars via accretion from a carbon AGB companion in light of the new 107 object sample of Downes et al. (2004). This sample is now large enough to allow good mass determination via comparison of a composite spectrum to theoretical atmospheric models. Carbon dwarfs of spectral type M are indeed main sequence M dwarfs with enhanced metallicity and carbon abundance. We also calculate the predicted abundance of both M and of F/G carbon dwarfs, and show that the latter should be falsifiable in the near future.

  14. A supply chain carbon footprint analysis of the University of California, Berkeley Christopher M. Jones and Daniel M. Kammen

    E-Print Network [OSTI]

    Kammen, Daniel M.

    A supply chain carbon footprint analysis of the University of California, Berkeley Christopher M.S. university to calculate its supply chain carbon footprint. The genesis of this project was an understanding conducted a carbon footprint analysis that combined information from the reported emissions inventory

  15. Keeping British Columbia "the best place on Earth": Reducing the carbon footprint of air traffic in British Columbia

    E-Print Network [OSTI]

    Northern British Columbia, University of

    ). Aviation is not only intricately integrated into the global economy but also one of the most carbon-intensive modes of transportation. Moreover, it is projected to be one of the fastest-growing sources of carbon1 Keeping British Columbia "the best place on Earth": Reducing the carbon footprint of air traffic

  16. Yucca Mountain Area Saturated Zone Dissolved Organic Carbon Isotopic Data

    SciTech Connect (OSTI)

    Thomas, James; Decker, David; Patterson, Gary; Peterman, Zell; Mihevc, Todd; Larsen, Jessica; Hershey, Ronald

    2007-06-25T23:59:59.000Z

    Groundwater samples in the Yucca Mountain area were collected for chemical and isotopic analyses and measurements of water temperature, pH, specific conductivity, and alkalinity were obtained at the well or spring at the time of sampling. For this project, groundwater samples were analyzed for major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC). The U.S. Geological Survey (USGS) performed all the fieldwork on this project including measurement of water chemistry field parameters and sample collection. The major ions dissolved in the groundwater, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) were analyzed by the USGS. All preparation and processing of samples for DOC carbon isotopic analyses and geochemical modeling were performed by the Desert Research Institute (DRI). Analysis of the DOC carbon dioxide gas produced at DRI to obtain carbon-13 and carbon-14 values was conducted at the University of Arizona Accelerator Facility (a NSHE Yucca Mountain project QA qualified contract facility). The major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of DIC were used in geochemical modeling (NETPATH) to determine groundwater sources, flow paths, mixing, and ages. The carbon isotopes of DOC were used to calculate groundwater ages that are independent of DIC model corrected carbon-14 ages. The DIC model corrected carbon-14 calculated ages were used to evaluate groundwater travel times for mixtures of water including water beneath Yucca Mountain. When possible, groundwater travel times were calculated for groundwater flow from beneath Yucca Mountain to down gradient sample sites. DOC carbon-14 groundwater ages were also calculated for groundwaters in the Yucca Mountain area. When possible, groundwater travel times were estimated for groundwater flow from beneath Yucca Mountain to down gradient groundwater sample sites using the DOC calculated groundwater ages. The DIC calculated groundwater ages were compared with DOC calculated groundwater ages and both of these ages were compared to travel times developed in ground-water flow and transport models. If nuclear waste is stored in Yucca Mountain, the saturated zone is the final barrier against the release of radionuclides to the environment. The most recent rendition of the TSPA takes little credit for the presence of the saturated zone and is a testament to the inadequate understanding of this important barrier. If radionuclides reach the saturated zone beneath Yucca Mountain, then there is a travel time before they would leave the Yucca Mountain area and flow down gradient to the Amargosa Valley area. Knowing how long it takes groundwater in the saturated zone to flow from beneath Yucca Mountain to down gradient areas is critical information for potential radionuclide transport. Radionuclide transport in groundwater may be the quickest pathway for radionuclides in the proposed Yucca Mountain repository to reach land surface by way of groundwater pumped in Amargosa Valley. An alternative approach to ground-water flow and transport models to determine the travel time of radionuclides from beneath Yucca Mountain to down gradient areas in the saturated zone is by carbon-14 dating of both inorganic and organic carbon dissolved in the groundwater. A standard method of determining ground-water ages is to measure the carbon-13 and carbon-14 of DIC in the groundwater and then correct the measured carbon-14 along a flow path for geochemical reactions that involve carbon containing phases. These geochemical reactions are constrained by carbon-13 and isotopic fractionations. Without correcting for geochemical reactions, the ground-water ages calculated from only the differences in carbon-14 measured along a flow path (assuming the decrease in carbon-14 is due strictly to radioactive decay) could be tens of thousands of years too old. The computer program NETPATH, developed by the USGS, is the best geochemical program for correcting carbon-14 activities for geochemical r

  17. Carbon in detonations

    SciTech Connect (OSTI)

    Johnson, J.D.

    1989-01-01T23:59:59.000Z

    We review three principal results from a five year study of carbon and its properties in detonations and discuss the implications of these results to the behavior of explosives. We first present a new determination of the carbon melt line from release wave velocity measurements in the shocked state. We then outline a colloidal theory of carbon clustering which from diffusion limited coagulation predicts a slow energy release rate for the carbon chemistry. Finally, we show the results from the examination of recovered soot. Here we see support for the colloid theory and find the diamond phase of carbon. The main theme of this paper is that the carbon in detonation products is in the form of a colloidal suspension of carbon clusters which grow through diffusion limited collisions. Even the final state is not bulk graphite or diamond, but is a collection of small, less than 100 /angstrom/A, diamond and graphitic clusters. 23 refs., 4 figs.

  18. SOUTHWEST REGIONAL PARTNERSHIP ON CARBON SEQUESTRATION

    SciTech Connect (OSTI)

    Brian McPherson; Rick Allis; Barry Biediger; Joel Brown; Jim Cappa; George Guthrie; Richard Hughes; Eugene Kim; Robert Lee; Dennis Leppin; Charles Mankin; Orman Paananen; Rajesh Pawar; Tarla Peterson; Steve Rauzi; Jerry Stuth; Genevieve Young

    2004-11-01T23:59:59.000Z

    The Southwest Partnership Region includes six whole states, including Arizona, Colorado, Kansas, New Mexico, Oklahoma, and Utah, roughly one-third of Texas, and significant portions of adjacent states. The Partnership comprises a large, diverse group of expert organizations and individuals specializing in carbon sequestration science and engineering, as well as public policy and outreach. The main objective of the Southwest Partnership project is to achieve an 18% reduction in carbon intensity by 2012. The Partnership made great progress in this first year. Action plans for possible Phase II carbon sequestration pilot tests in the region are almost finished, including both technical and non-technical aspects necessary for developing and carrying out these pilot tests. All partners in the Partnership are taking an active role in evaluating and ranking optimum sites and technologies for capture and storage of CO{sub 2} in the Southwest Region. We are identifying potential gaps in all aspects of potential sequestration deployment issues.

  19. Technical Progress Report on Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    SciTech Connect (OSTI)

    Bill Stanley; Patrick Gonzalez; Sandra Brown; Jenny Henman; Ben Poulter; Sarah Woodhouse Murdock; Neil Sampson; Tim Pearson; Sarah Walker; Zoe Kant; Miguel Calmon; Gilberto Tiepolo

    2006-06-30T23:59:59.000Z

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between April 1st and July 30th 2006. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool. Work is being carried out in Brazil, Belize, Chile, Peru and the USA.

  20. MIDWEST REGIONAL CARBON SEQUESTRATION PARTNERSHIP (MRCSP)

    SciTech Connect (OSTI)

    David Ball; Judith Bradbury; Rattan Lal; Larry Wickstrom; Neeraj Gupta; Robert Burns; Bob Dahowski

    2004-04-30T23:59:59.000Z

    This is the first semiannual report for Phase I of the Midwest Carbon Sequestration Partnership (MRCSP). The project consists of nine tasks to be conducted over a two year period that started in October 2003. The makeup of the MRCSP and objectives are described. Progress on each of the active Tasks is also described and where possible, for those Tasks at some point of completion, a summary of results is presented.

  1. Ultracomputer Research Project

    SciTech Connect (OSTI)

    Gottlieb, A.

    1992-10-01T23:59:59.000Z

    This document presents significant accomplishments made on the Ultracomputer Research Project during CY92.

  2. Building Energy in China: Forward to Low-Carbon Economy

    E-Print Network [OSTI]

    Weiding, L.

    Building Energy in China: Forward to Low- Carbon Economy Prof. LONG Weiding Tongji University - 8 th International Conference for Enhanced Building Operations Oct. 20-22, 2008 Berlin, Germany ESL-IC-08-10-06 Proceedings of the Eighth... International Conference for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008 - Interrlational Status and Trends of Building Energy in China Contents Status and Trends of GHG Mitigation in China On-going Projects for Low-Carbon Building...

  3. Evaluation of Project Achievements in VOMARE -project.

    E-Print Network [OSTI]

    Kokkarinen, Eeva

    2011-01-01T23:59:59.000Z

    ??The purpose of the thesis is to study the achievements of VOMARE –project from the Finnish Lifeboat Institutions perspective. The organisation is a roof organisation… (more)

  4. NEPA COMPLIANCE SURVEY Project Information Project Title:

    Broader source: Energy.gov (indexed) [DOE]

    Pollutants? NEPA COMPLIANCE SURVEY Is the project subject to emissions limitations In an Air 0 81 0 Quality Control Region? Impacts If YES, then complete below. Anticipated?...

  5. Carbon dioxide sensor

    DOE Patents [OSTI]

    Dutta, Prabir K. (Worthington, OH); Lee, Inhee (Columbus, OH); Akbar, Sheikh A. (Hilliard, OH)

    2011-11-15T23:59:59.000Z

    The present invention generally relates to carbon dioxide (CO.sub.2) sensors. In one embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor that incorporates lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3). In another embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor has a reduced sensitivity to humidity due to a sensing electrode with a layered structure of lithium carbonate and barium carbonate. In still another embodiment, the present invention relates to a method of producing carbon dioxide (CO.sub.2) sensors having lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3).

  6. UK Oil and Gas Collaborative Doctoral Training Centre (2015 start) Project Title: Authigenic mineral corrosion and the origins of secondary porosity in lacustrine

    E-Print Network [OSTI]

    Henderson, Gideon

    UK Oil and Gas Collaborative Doctoral Training Centre (2015 start) Project Title: Authigenic mineral corrosion and the origins of secondary porosity in lacustrine carbonate reservoirs). Additionally, the project will assess late diagenetic corrosion by examining the pathways triggered by shallow

  7. NSTX Upgrade Project Execution Plan NSTX Upgrade Project

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    NSTX Upgrade Project Execution Plan NSTX Upgrade Project Project Execution Plan National Spherical Torus Experiment (NSTX) Upgrade Project Execution Plan Revision 1 October 6, 2011 Submitted by: R. Strykowsky NSTX Upgrade Project Manager _____________________________ M. Williams Associate Director, PPPL

  8. NSTX Upgrade Project Execution Plan NSTX Upgrade Project

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    NSTX Upgrade Project Execution Plan NSTX Upgrade Project Project Execution Plan National Spherical Torus Experiment (NSTX) Upgrade Project Execution Plan Revision 3 October 12, 2012 Administrative Change Submitted by: ______________________________ R. Strykowsky NSTX Upgrade Project Manager Anthony Indelicato

  9. CALLA ENERGY BIOMASS COFIRING PROJECT

    SciTech Connect (OSTI)

    Unknown

    2002-09-30T23:59:59.000Z

    The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. During this Performance Period work efforts focused on completion of the Topical Report, summarizing the design and techno-economic study of the project's feasibility. GTI received supplemental authorization A002 from DOE contracts for additional work to be performed under Phase I that will further extend the performance period until the end of February 2003. The additional scope of work is for GTI to develop the gasification characteristics of selected feedstock for the project. To conduct this work, GTI will assemble an existing ''mini-bench'' unit to perform the gasification tests. The results of the test will be used to confirm or if necessary update the process design completed in Phase Task 1.

  10. CALLA ENERGY BIOMASS COFIRING PROJECT

    SciTech Connect (OSTI)

    Unknown

    2001-12-31T23:59:59.000Z

    The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. During this Performance Period work efforts focused on completion of the Topical Report, summarizing the design and techno-economic study of the project's feasibility. GTI received supplemental authorization A002 from DOE contracts for additional work to be performed under Phase I that will further extend the performance period until the end of 2002. GTI worked with DOE to develop the Statement of Work for the supplemental activities. DOE granted an interim extension of the project until the end of January 2002 to complete the contract paperwork. GTI worked with Calla Energy to develop request for continued funding to proceed with Phase II, submitted to DOE on November 1, 2001.

  11. CALLA ENERGY BIOMASS COFIRING PROJECT

    SciTech Connect (OSTI)

    Unknown

    2002-06-30T23:59:59.000Z

    The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. During this Performance Period work efforts focused on completion of the Topical Report, summarizing the design and techno-economic study of the project's feasibility. GTI received supplemental authorization A002 from DOE contracts for additional work to be performed under Phase I that will further extend the performance period until the end of February 2003. The additional scope of work is for GTI to develop the gasification characteristics of selected feedstock for the project. To conduct this work, GTI will assemble an existing ''mini-bench'' unit to perform the gasification tests. The results of the test will be used to confirm or if necessary update the process design completed in Phase Task 1.

  12. CALLA ENERGY BIOMASS COFIRING PROJECT

    SciTech Connect (OSTI)

    Unknown

    2002-03-31T23:59:59.000Z

    The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. During this Performance Period work efforts focused on completion of the Topical Report, summarizing the design and techno-economic study of the project's feasibility. GTI received supplemental authorization A002 from DOE contracts for additional work to be performed under Phase I that will further extend the performance period until the end of February 2003. The additional scope of work is for GTI to develop the gasification characteristics of selected feedstock for the project. To conduct this work, GTI will assemble an existing ''mini-bench'' unit to perform the gasification tests. The results of the test will be used to confirm or if necessary update the process design completed in Phase Task 1.

  13. Voluntary Carbon Confusion: A Consumer's Guide to Purchasing Carbon Offsets

    E-Print Network [OSTI]

    Hoffman, Andrew J.

    Voluntary Carbon Confusion: A Consumer's Guide to Purchasing Carbon Offsets and Renewable Energy 4 Report Introduction 5 Product Types 5 A. Carbon Offsets 5 B. Certified Emission Reductions (CERs. Voluntary Carbon Confusion: A Consumer's Guide to Purchasing Carbon Offsets and Renewable Energy

  14. Carbon RRLs Carbon RRLs towards Ultra-compact HII Regions

    E-Print Network [OSTI]

    Balser, Dana S.

    Carbon RRLs Carbon RRLs towards Ultra-compact HII Regions Dana S. Balser D. Anish Roshi (Raman (Agnes Scott College) #12;Carbon RRLs Carbon Radio Recombination Lines (RRLs) NGC 2024 (Orion B) IC 1795 (W3) Palmer et al. (1967) #12;Carbon RRLs Photodissociation Regions (PDRs) Hollenbach & Tielens (1997

  15. Would Border Carbon Adjustments prevent carbon leakage and heavy industry

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    No 52-2013 Would Border Carbon Adjustments prevent carbon leakage and heavy industry halshs-00870689,version1-7Oct2013 #12;Would Border Carbon Adjustments prevent carbon leakage and heavy The efficiency of unilateral climate policies may be hampered by carbon leakage and competitiveness losses

  16. Cumulative Carbon and Just Allocation of the Global Carbon Commons

    E-Print Network [OSTI]

    Pierrehumbert, Raymond

    Cumulative Carbon and Just Allocation of the Global Carbon Commons R.T. Pierrehumbert1 on climate can be characterized by a single statistic, called Cumulative Carbon. This is the aggregate amount of carbon emitted in the form of carbon dioxide by activities such as fossil fuel burning and deforestation

  17. Carbon Sequestration via Mineral Carbonation: Overview and Assessment

    E-Print Network [OSTI]

    1 Carbon Sequestration via Mineral Carbonation: Overview and Assessment 14 March 2002 Howard Herzog overview and assessment of carbon sequestration by mineral carbonation (referred to as "mineral sequestration R&D. The first is that carbonates have a lower energy state than CO2. Therefore, at least

  18. Carbon sequestration, optimum forest rotation and their environmental impact

    SciTech Connect (OSTI)

    Kula, Erhun, E-mail: erhun.kula@bahcesehir.edu.tr [Department of Economics, Bahcesehir University, Besiktas, Istanbul (Turkey); Gunalay, Yavuz, E-mail: yavuz.gunalay@bahcesehir.edu.tr [Department of Business Studies, Bahcesehir University, Besiktas, Istanbul (Turkey)

    2012-11-15T23:59:59.000Z

    Due to their large biomass forests assume an important role in the global carbon cycle by moderating the greenhouse effect of atmospheric pollution. The Kyoto Protocol recognises this contribution by allocating carbon credits to countries which are able to create new forest areas. Sequestrated carbon provides an environmental benefit thus must be taken into account in cost-benefit analysis of afforestation projects. Furthermore, like timber output carbon credits are now tradable assets in the carbon exchange. By using British data, this paper looks at the issue of identifying optimum felling age by considering carbon sequestration benefits simultaneously with timber yields. The results of this analysis show that the inclusion of carbon benefits prolongs the optimum cutting age by requiring trees to stand longer in order to soak up more CO{sub 2}. Consequently this finding must be considered in any carbon accounting calculations. - Highlights: Black-Right-Pointing-Pointer Carbon sequestration in forestry is an environmental benefit. Black-Right-Pointing-Pointer It moderates the problem of global warming. Black-Right-Pointing-Pointer It prolongs the gestation period in harvesting. Black-Right-Pointing-Pointer This paper uses British data in less favoured districts for growing Sitka spruce species.

  19. Generation and Solid Oxide Fuel Cell Carbon Sequestration in Northwest Indiana

    SciTech Connect (OSTI)

    Kevin Peavey; Norm Bessette

    2007-09-30T23:59:59.000Z

    The objective of the project is to develop the technology capable of capturing all carbon monoxide and carbon dioxide from natural gas fueled Solid Oxide Fuel Cell (SOFC) system. In addition, the technology to electrochemically oxidize any remaining carbon monoxide to carbon dioxide will be developed. Success of this R&D program would allow for the generation of electrical power and thermal power from a fossil fuel driven SOFC system without the carbon emissions resulting from any other fossil fueled power generationg system.

  20. Mesoporous carbon materials

    DOE Patents [OSTI]

    Dai, Sheng; Wang, Xiqing

    2013-08-20T23:59:59.000Z

    The invention is directed to a method for fabricating a mesoporous carbon material, the method comprising subjecting a precursor composition to a curing step followed by a carbonization step, the precursor composition comprising: (i) a templating component comprised of a block copolymer, (ii) a phenolic compound or material, (iii) a crosslinkable aldehyde component, and (iv) at least 0.5 M concentration of a strong acid having a pKa of or less than -2, wherein said carbonization step comprises heating the precursor composition at a carbonizing temperature for sufficient time to convert the precursor composition to a mesoporous carbon material. The invention is also directed to a mesoporous carbon material having an improved thermal stability, preferably produced according to the above method.

  1. Mesoporous carbon materials

    DOE Patents [OSTI]

    Dai, Sheng (Knoxville, TN); Wang, Xiqing (Oak Ridge, TN)

    2012-02-14T23:59:59.000Z

    The invention is directed to a method for fabricating a mesoporous carbon material, the method comprising subjecting a precursor composition to a curing step followed by a carbonization step, the precursor composition comprising: (i) a templating component comprised of a block copolymer, (ii) a phenolic compound or material, (iii) a crosslinkable aldehyde component, and (iv) at least 0.5 M concentration of a strong acid having a pKa of or less than -2, wherein said carbonization step comprises heating the precursor composition at a carbonizing temperature for sufficient time to convert the precursor composition to a mesoporous carbon material. The invention is also directed to a mesoporous carbon material having an improved thermal stability, preferably produced according to the above method.

  2. Project Profile: Supercritical Carbon Dioxide Turbo-Expander...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    performance and the performance of the optimized s-CO2 Brayton cycle over a wide range of partial-load conditions and during transient operations representative of a typical CSP...

  3. The Projected Impacts of Carbon Dioxide Emissions Reduction Legislation on

    E-Print Network [OSTI]

    of wind and natural gas generation, retirement of older coal- fired units that have not been retrofitted by 2025. Due to the state's heavy reliance on coal as a fuel source for electricity generation, Indiana allowances and offsets, shifting production technology from coal-fired baseload resources to a combination

  4. Geologic Carbon Dioxide Storage Field Projects Supported by DOE's

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject: Guidance for naturalGeneral

  5. DOE Signs Cooperative Agreement for Carbon Capture Project | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA - U.S. Department ofThe U.S. DepartmentContract atEnergy The

  6. DOE-Supported Project Advances Clean Coal, Carbon Capture Technology |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orAChiefAppropriation FYGStrategicSiteThree

  7. Industrial Carbon Capture Project Selections | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi NationalBusiness PlanPosting of|ofIndustrialIndustrialIndustrial

  8. New Texas Oil Project Will Help Keep Carbon Dioxide Underground |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andDataNational Libraryornl.gov RonStaff ResearchNewNewDepartment

  9. Worldwide Carbon Capture and Storage Projects on the Increase | Department

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf TheViolations |Join the ChallengeWorkshop onDepartment ofWorld'sof

  10. Project Profile: Carbon Dioxide Shuttling Thermochemical Storage Using

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy1.pdfMarket |21,-CommitteeItems at6ACity

  11. Project Profile: Regenerative Carbonate-Based Thermochemical Energy Storage

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy1.pdfMarket |21,-CommitteeItemsHiTek logo HiTek Services,System

  12. DOE Awards First Three Large-Scale Carbon Sequestration Projects |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmartDepartment of Energy 2010DepartmentContracts

  13. DOE Completes Large-Scale Carbon Sequestration Project Awards | Department

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmartDepartment of1 Ingrid A.C.ofCommentsCompletes Fiveof

  14. DOE Announces Clean Energy Projects for Low-Carbon Communities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Defense Council (NRDC), will create an Energy Efficiency Center in Costa Rica that will train and certify professionals in energy efficient technology and auditing procedures, and...

  15. Indonesia-Low Carbon Growth Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power BasicsGermany:InformationInformation andMeasures (TRANSfer)for

  16. World's Largest Post-Combustion Carbon Capture Project Begins

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste and Materials Disposition InformationWindWood andEmploymentUs

  17. Energy Department Investments in Innovative Carbon Capture Projects |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department ofto Cellulosic Bioenergyat U.S. Army's

  18. Carbon Disclosure Project Webinar: Climate Change: A Challenge for Bond

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombined Heat & Power Deployment » CHPCalendar Year Reports

  19. Breakthrough Industrial Carbon Capture, Utilization and Storage Project

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccess toSustainable Transportation »BiomassBrandon GuzzoneBegins

  20. Breakthrough Large-Scale Industrial Project Begins Carbon Capture and

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe HouseStudents Heal the LandRemarks asFact Sheet, April 20152:45PM

  1. Project Profile: Direct Supercritical Carbon Dioxide Receiver Development |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d FNEPA/309DepartmentDepartment of Energy Direct Supercritical

  2. Project Profile: High-Efficiency Receivers for Supercritical Carbon Dioxide

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d FNEPA/309DepartmentDepartment ofCycles | Department of Energy

  3. Project Profile: Molten Salt-Carbon Nanotube Thermal Storage | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d FNEPA/309DepartmentDepartment ofCyclesEnergyCSP | Departmentof

  4. Project Profile: Supercritical Carbon Dioxide Turbo-Expander and Heat

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d FNEPA/309DepartmentDepartmentPower Generation

  5. International Carbon Storage Body Praises Department of Energy Projects |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartmentJune 20,Among States inSelected CornellDepartment of

  6. Forestry-based Carbon Sequestration Projects in Africa: Potential benefits

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlintFlux PowerFootprintOn Climate"theand

  7. Carbon project-atmosphere "BL meteorology along route

    E-Print Network [OSTI]

    in the ocean surface #12;Goal: - A better quantification of the global air-sea exchange of CO2 - A better of surface wind heteogenity #12;The input side of the CO2 cycle Wind turbines and energy production Energy production from windturbines does cover 20% of the the total energy production in Denmark Energy from a wind

  8. Senior projectS corporate Sponsored

    E-Print Network [OSTI]

    Stuart, Josh

    --Professor, Computer Engineering | http://users.soe.ucsc. edu/~larrabee/Site/Professor_Tracy_Larrabee.html Charlie McSenior projectS program corporate Sponsored Partner's Day May 31, 2012 Baskin School of Engineering earning their engineering degree and fulfilling this capstone design sequence. Our students who have

  9. Project Description: page 1 Project Description

    E-Print Network [OSTI]

    Segall, Ken

    Project Description: page 1 Project Description I. Introduction: Josephson junction networks Over the past 25 years, superconducting Josephson junctions have gradually become one of the major topics standards. Our research uses Josephson junctions as model systems for problems in nonlinear and neural

  10. Livingston Campus Geothermal Project The Project

    E-Print Network [OSTI]

    Delgado, Mauricio

    Livingston Campus Geothermal Project The Project: Geothermal power is a cost effective, reliable is a Closed Loop Geothermal System involving the removal and storage of approximately four feet of dirt from the entire Geothermal Field and the boring of 321 vertical holes reaching a depth of 500 feet. These holes

  11. Big Sky Carbon Sequestration Partnership

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2005-11-01T23:59:59.000Z

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork is in place to provide an assessment of storage capabilities for CO2 utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research agenda in Carbon Sequestration. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other DOE regional partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the Partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long-term viability. Scientifically sound MMV is critical for public acceptance of these technologies. Deliverables for the 7th Quarter reporting period include (1) for the geological efforts: Reports on Technology Needs and Action Plan on the Evaluation of Geological Sinks and Pilot Project Deployment (Deliverables 2 and 3), and Report on the Feasibility of Mineralization Trapping in the Snake River Plain Basin (Deliverable 14); (2) for the terrestrial efforts: Report on the Evaluation of Terrestrial Sinks and a Report of the Best Production Practices for Soil C Sequestration (Deliverables 8 and 15). In addition, the 7th Quarter activities for the Partnership included further development of the proposed activities for the deployment and demonstration phase of the carbon sequestration pilots including geological and terrestrial pilots, expansion of the Partnership to encompass regions and institutions that are complimentary to the steps we have identified, building greater collaborations with industry and stakeholders in the region, contributed to outreach efforts that spanned all partnerships, co-authorship on the Carbon Capture and Separation report, and developed a regional basis to address future energy opportunities in the region. The deliverables and activities are discussed in the following sections and appended to this report. The education and outreach efforts have resulted in a comprehensive plan which serves as a guide for implementing the outreach activities under Phase I. The public website has been expanded and integrated with the GIS carbon atlas. We have made presentations to stakeholders and policy makers including two tribal sequestration workshops, and made connections to other federal and state agencies concerned with GHG emissions, climate change, and efficient and environmental

  12. Reinforced Carbon Nanotubes.

    DOE Patents [OSTI]

    Ren, Zhifen (Newton, MA); Wen, Jian Guo (Newton, MA); Lao, Jing Y. (Chestnut Hill, MA); Li, Wenzhi (Brookline, MA)

    2005-06-28T23:59:59.000Z

    The present invention relates generally to reinforced carbon nanotubes, and more particularly to reinforced carbon nanotubes having a plurality of microparticulate carbide or oxide materials formed substantially on the surface of such reinforced carbon nanotubes composite materials. In particular, the present invention provides reinforced carbon nanotubes (CNTs) having a plurality of boron carbide nanolumps formed substantially on a surface of the reinforced CNTs that provide a reinforcing effect on CNTs, enabling their use as effective reinforcing fillers for matrix materials to give high-strength composites. The present invention also provides methods for producing such carbide reinforced CNTs.

  13. Carbon Fiber SMC

    Broader source: Energy.gov (indexed) [DOE]

    110,000 ACC capital) in 2008 * 54,000 for 2009 Partners * Continental Structural Plastic (CSP), a Tier One supplier * Discounted compounding and molding * Zoltek, a carbon...

  14. Activated Carbon Injection

    SciTech Connect (OSTI)

    None

    2014-07-16T23:59:59.000Z

    History of the Clean Air Act and how the injection of carbon into a coal power plant's flu smoke can reduce the amount of mercury in the smoke.

  15. Activated Carbon Injection

    ScienceCinema (OSTI)

    None

    2014-07-22T23:59:59.000Z

    History of the Clean Air Act and how the injection of carbon into a coal power plant's flu smoke can reduce the amount of mercury in the smoke.

  16. Progress on project to produce SNG and other fuels from peat

    SciTech Connect (OSTI)

    Not Available

    1982-01-01T23:59:59.000Z

    Developments in peat gasification research projects at the Institute of Gas Technology are briefly described. This includes developments in the Peatgas pilot plant and in the wet carbonization process. US peat resources are tabulated.

  17. Microsoft Word - PhycalAlgaePilotProject_NEPAFinalEA_October2011...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technology for the reuse of carbon dioxide (CO 2 ) emissions from industrial sources for green energy products. This project would use CO 2 to grow algae for the production of...

  18. DOE Research Projects to Examine Promising Geologic Formations for CO2 Storage

    Broader source: Energy.gov [DOE]

    The Department of Energy today announced 11 projects valued at $75.5 million aimed at increasing scientific understanding about the potential of promising geologic formations to safely and permanently store carbon dioxide (CO2).

  19. State and Regional Control of Geological Carbon Sequestration

    SciTech Connect (OSTI)

    Reitze, Arnold; Durrant, Marie

    2011-03-31T23:59:59.000Z

    The United States has economically recoverable coal reserves of about 261 billion tons, which is in excess of a 250-­?year supply based on 2009 consumption rates. However, in the near future the use of coal may be legally restricted because of concerns over the effects of its combustion on atmospheric carbon dioxide concentrations. Carbon capture and geologic sequestration offer one method to reduce carbon emissions from coal and other hydrocarbon energy production. While the federal government is providing increased funding for carbon capture and sequestration, recent congressional legislative efforts to create a framework for regulating carbon emissions have failed. However, regional and state bodies have taken significant actions both to regulate carbon and facilitate its capture and sequestration. This article explores how regional bodies and state government are addressing the technical and legal problems that must be resolved in order to have a viable carbon sequestration program. Several regional bodies have formed regulations and model laws that affect carbon capture and storage, and three bodies comprising twenty-­?three states—the Regional Greenhouse Gas Initiative, the Midwest Regional Greenhouse Gas Reduction Accord, and the Western Climate initiative—have cap-­?and-­?trade programs in various stages of development. State property, land use and environmental laws affect the development and implementation of carbon capture and sequestration projects, and unless federal standards are imposed, state laws on torts and renewable portfolio requirements will directly affect the liability and viability of these projects. This paper examines current state laws and legislative efforts addressing carbon capture and sequestration.

  20. EMBODIED CARBON TARIFFS Christoph Bhringer

    E-Print Network [OSTI]

    EMBODIED CARBON TARIFFS Christoph Böhringer Jared C. Carbone Thomas F. Rutherford Revised: August 2013 Abstract Embodied carbon tariffs tax the direct and indirect carbon emissions embodied in trade -- an idea popularized by countries seeking to extend the reach of domestic carbon regu- lations. We

  1. A Reusable Process Control System Framework for the Orbiting Carbon Observatory and NPP Sounder PEATE missions

    E-Print Network [OSTI]

    Mattmann, Chris

    PEATE missions Chris A. Mattmann, Dana Freeborn, Dan Crichton, Brian Foster, Andrew Hart, David Woollard missions: the Orbiting Carbon Observatory (OCO), and NPP Sounder PEATE projects. 1 Introduction Data volume

  2. Southeast Regional Carbon Sequestration Partnership

    SciTech Connect (OSTI)

    Kenneth J. Nemeth

    2006-08-30T23:59:59.000Z

    The Southeast Regional Carbon Sequestration Partnership's (SECARB) Phase I program focused on promoting the development of a framework and infrastructure necessary for the validation and commercial deployment of carbon sequestration technologies. The SECARB program, and its subsequent phases, directly support the Global Climate Change Initiative's goal of reducing greenhouse gas intensity by 18 percent by the year 2012. Work during the project's two-year period was conducted within a ''Task Responsibility Matrix''. The SECARB team was successful in accomplishing its tasks to define the geographic boundaries of the region; characterize the region; identify and address issues for technology deployment; develop public involvement and education mechanisms; identify the most promising capture, sequestration, and transport options; and prepare action plans for implementation and technology validation activity. Milestones accomplished during Phase I of the project are listed below: (1) Completed preliminary identification of geographic boundaries for the study (FY04, Quarter 1); (2) Completed initial inventory of major sources and sinks for the region (FY04, Quarter 2); (3) Completed initial development of plans for GIS (FY04, Quarter 3); (4) Completed preliminary action plan and assessment for overcoming public perception issues (FY04, Quarter 4); (5) Assessed safety, regulatory and permitting issues (FY05, Quarter 1); (6) Finalized inventory of major sources/sinks and refined GIS algorithms (FY05, Quarter 2); (7) Refined public involvement and education mechanisms in support of technology development options (FY05, Quarter 3); and (8) Identified the most promising capture, sequestration and transport options and prepared action plans (FY05, Quarter 4).

  3. Reversing Climate Change: Using Carbon Technology to Offset Carbon Emissions

    E-Print Network [OSTI]

    Reversing Climate Change: Using Carbon Technology to Offset Carbon Emissions Climate change is real not only emitting less greenhouse gas (GHG), but actually sources of negative carbon. We then present two

  4. Carbon-Optimal and Carbon-Neutral Supply Chains

    E-Print Network [OSTI]

    Caro, F.; Corbett, C. J.; Tan, T.; Zuidwijk, R.

    2011-01-01T23:59:59.000Z

    Y. Li, M. Daskin. 2009. Carbon Footprint and the ManagementJ. van Houtum. 2011. E?ect of carbon emission regulations onStreamlined Enterprise Carbon Footprinting. Environmental

  5. Lac Courte Oreilles Energy Analysis Project

    SciTech Connect (OSTI)

    Leslie Isham; Denise Johnson

    2009-04-01T23:59:59.000Z

    The Lac Courte Oreilles Tribe applied for first step funding in 2007 and was awarded in October of that year. We wanted to perform an audit to begin fulfilling two commitments we made to our membership and resolutions that we adopted. One was the Kyoto Protocol and reduce our carbon emissions by 25% and to produce 25% of our energy by sustainable means. To complete these goals we needed to begin with first assessing what our carbon emissions are and begin taking the steps to conserve on the energy we currently use. The First Step Grant gave us the opportunity to do this. Upon funding the Energy Project was formed under the umbrella of the LCO Public Works Department and Denise Johnson was hired as the coordinator. She quickly began fulfilling the objectives of the project. Denise began by contact the LCO College and hiring interns who were able to go to each Tribal entity and perform line logging to read and document the energy used for each electrical appliance. Data was also gathered for one full year from each entity for all their utility bills (gasoline, electric, natural gas, fuel oil, etc.). Relationships were formed with the Green Team and other Green Committees in the area that could assist us in this undertaking. The Energy Task Force was of great assistance as well recommending other committees and guidance to completing our project. The data was gathered, compiled and placed into spreadsheets that would be understandable for anyone who didn't have a background in Renewable Resources. While gathering the data Denise was also looking for ways to conserve energy usage, policies changes to implement and any possible viable renewable energy resources. Changes in the social behaviors of our members and employees will require further education by workshops, energy fairs, etc.. This will be looked into and done in coordination with our schools. The renewable resources seem most feasible are wind resources as well as Bio Mass both of which need further assessment and funding to do so will be sought. While we already are in ownership of a Hydro Dam it is currently not functioning to its full capacity we are seeking operation and maintenance firm proposals and funding sources. One of our biggest accomplishment this project gave us was our total Carbon Emissions 9989.45 tons, this will be the number that we will use to base our reductions from. It will help us achieve our goals we have set for ourselves in achieving the Kyoto Protocol and saving our Earth for our future generations. Another major accomplishment and lesson learned is we need to educate ourselves and our people on how to conserve energy to both impact the environment and our own budgets. The Lac Courte Oreilles (LCO) Energy Analysis Project will perform an energy audit to gather information on the Tribe's energy usage and determine the carbon emissions. By performing the audit we will be able to identify areas where conservation efforts are most viable and recommend policies that can be implemented. These steps will enable LCO to begin achieving the goals that have been set by the Tribal Governing Board and adopted through resolutions. The goals are to reduce emissions by 25% and to produce 25% of its energy using sustainable sources. The project objectives were very definitive to assist the Tribe in achieving its goals; reducing carbon emissions and obtaining a sustainable source of energy. The following were the outlined objectives: (1) Coordinate LCO's current and future conservation and renewable energy projects; (2) Establish working relationships with outside entities to share information and collaborate on future projects; (3) Complete energy audit and analyze LCO's energy load and carbon emissions; (4) Identify policy changes, education programs and conservation efforts which are appropriate for the LCO Reservation; and (5) Create a plan to identify the most cost effective renewable energy options for LCO.

  6. SEQUESTERING CARBON DIOXIDE IN COALBEDS

    SciTech Connect (OSTI)

    K.A.M. Gasem; R.L. Robinson, Jr.; J.E. Fitzgerald; Z. Pan; M. Sudibandriyo

    2003-04-30T23:59:59.000Z

    The authors' long-term goal is to develop accurate prediction methods for describing the adsorption behavior of gas mixtures on solid adsorbents over complete ranges of temperature, pressure, and adsorbent types. The originally-stated, major objectives of the current project are to: (1) measure the adsorption behavior of pure CO{sub 2}, methane, nitrogen, and their binary and ternary mixtures on several selected coals having different properties at temperatures and pressures applicable to the particular coals being studied, (2) generalize the adsorption results in terms of appropriate properties of the coals to facilitate estimation of adsorption behavior for coals other than those studied experimentally, (3) delineate the sensitivity of the competitive adsorption of CO{sub 2}, methane, and nitrogen to the specific characteristics of the coal on which they are adsorbed; establish the major differences (if any) in the nature of this competitive adsorption on different coals, and (4) test and/or develop theoretically-based mathematical models to represent accurately the adsorption behavior of mixtures of the type for which measurements are made. As this project developed, an important additional objective was added to the above original list. Namely, we were encouraged to interact with industry and/or governmental agencies to utilize our expertise to advance the state of the art in coalbed adsorption science and technology. As a result of this additional objective, we participated with the Department of Energy and industry in the measurement and analysis of adsorption behavior as part of two distinct investigations. These include (a) Advanced Resources International (ARI) DOE Project DE-FC26-00NT40924, ''Adsorption of Pure Methane, Nitrogen, and Carbon Dioxide and Their Mixtures on Wet Tiffany Coal'', and (b) the DOE-NETL Project, ''Round Robin: CO{sub 2} Adsorption on Selected Coals''. These activities, contributing directly to the DOE projects listed above, also provided direct synergism with the original goals of our work. Specific accomplishments of this project are summarized below in three broad categories: experimentation, model development, and coal characterization.

  7. Financing coal mine, methane recovery and utilization projects

    SciTech Connect (OSTI)

    NONE

    2006-07-01T23:59:59.000Z

    The article describes types and sources of funding that may be available to project developers and investors that are interested in pursuing coal mine methane (CMM) project opportunities particularly in developing countries or economies in transition. It briefly summarizes prefeasibility and feasibility studies and technology demonstrations. It provides a guide to key parties involved in project financing (equity, debt or carbon financing) as well as project risk reduction support. This article provides an update to the information contained in two previous guides - Catalogue of Coal Mine Methane Project Finance Sources (2002) and A Guide to Financing Coalbed Methane Projects (1997) - both available on the CMOP web site http://www.epa.gov/cmop/resources/reports/finance.html.

  8. Contract/Project Management

    Broader source: Energy.gov (indexed) [DOE]

    and Targets 1 ContractProject Management Performance Metric FY 2012 Target FY 2012 Forecast FY 2012 Pre- & Post-CAP Forecast Comment Capital Asset Project Success: Complete 90%...

  9. Contract/Project Management

    Energy Savers [EERE]

    on a 3-year rolling average (FY09 to FY11). TPC is Total Project Cost. 2a. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and Disposal) Projects: (Pre-...

  10. Rank Project Name Directorate,

    E-Print Network [OSTI]

    Rank Project Name Directorate, Dept/Div and POC Cost Savings Payback (Years) Waste Reduction 1 NATIONAL LABORATORY FY02 Funded Pollution Prevention Projects 0.4 Years (~5 months) #12;

  11. The 4-H Project

    E-Print Network [OSTI]

    Howard, Jeff W.

    2005-05-10T23:59:59.000Z

    As a 4-H volunteer, you will find that projects are useful tools for teaching a wide variety of skills to young people. This publication will help you plan and evaluate 4-H learning projects....

  12. Information Technology Project Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-03T23:59:59.000Z

    The Order provides program and project management direction for the acquisition and management of IT projects, investments, and initiatives. Cancels DOE G 200.1-1. Admin Chg 1 approved 1-16-2013.

  13. Planning the Project Meeting

    E-Print Network [OSTI]

    Howard, Jeff W.

    2005-05-10T23:59:59.000Z

    Project group meetings must be planned well in advance. Members should be involved in completing some type of work before the next meeting. This helps the leader plan the next project meeting and makes efficient use of time....

  14. Information Technology Project Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-03T23:59:59.000Z

    The Order provides program and project management direction for the acquisition and management of IT projects, investments, and initiatives. Cancels DOE G 200.1-1. Admin Chg 1, dated 1-16-2013, cancels DOE O 415.1.

  15. Page 1 of 26 INDEPENDENT PROJECT

    E-Print Network [OSTI]

    Evans, Paul

    Page 1 of 26 INDEPENDENT PROJECT EVALUATION PROJECT NAME: HIVE PROOF-OF- CONCEPT PROJECT PROJECT ............................................................................................................................................3 The Project..............................................................................................................................................3 Project Objectives and Achievements

  16. NSTX Upgrade Project Execution Plan NSTX Upgrade Project

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    #12;#12;NSTX Upgrade Project Execution Plan NSTX Upgrade Project Project Execution Plan i Record;NSTX Upgrade Project Execution Plan NSTX Upgrade Project Project Execution Plan ii Table of Contents 1 ..............................................................................................................................1 1.2.1 DOE-approved project documents

  17. NSTX Upgrade Project Execution Plan NSTX Upgrade Project

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    #12;NSTX Upgrade Project Execution Plan NSTX Upgrade Project Project Execution Plan i Record/schedule baseline updates #12;NSTX Upgrade Project Execution Plan NSTX Upgrade Project Project Execution Plan ii ..............................................................................................................................1 1.2.1 DOE-approved project documents

  18. WIPP Projects Interative Map

    Broader source: Energy.gov [DOE]

    View WIPP Projects in a larger map. To report corrections, please email WeatherizationInnovation@ee.doe.gov.

  19. GHPsRUS Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Battocletti, Liz

    The GHPsRUS Project's full name is "Measuring the Costs and Benefits of Nationwide Geothermal Heat Pump Deployment." The dataset contains employment and installation price data collected by four economic surveys: (1)GHPsRUS Project Manufacturer & OEM Survey, (2) GHPsRUS Project Geothermal Loop Survey, (3) GHPsRUS Project Mechanical Equipment Installation Survey, and (4) GHPsRUS Geothermal Heat Pump Industry Survey

  20. GHPsRUS Project

    SciTech Connect (OSTI)

    Battocletti, Liz

    2013-07-09T23:59:59.000Z

    The GHPsRUS Project's full name is "Measuring the Costs and Benefits of Nationwide Geothermal Heat Pump Deployment." The dataset contains employment and installation price data collected by four economic surveys: (1)GHPsRUS Project Manufacturer & OEM Survey, (2) GHPsRUS Project Geothermal Loop Survey, (3) GHPsRUS Project Mechanical Equipment Installation Survey, and (4) GHPsRUS Geothermal Heat Pump Industry Survey

  1. Project: BELLA Bldg. #: 71

    E-Print Network [OSTI]

    : BEVATRON Bldg. #: 51 Affected Area: Lot I (6) Lower Lot (52) Dates: 6/2009 - 11/2011 Project: Seismic PhaseProject: BELLA Bldg. #: 71 Affected Area: Lot M-1(12) B81 (18) Dates: 10/2010 ­ 10/2011 Project II Bldg. #: 74 Affected Area: U1 (50) U3 (21) Dates: 10/2009 ­ 4/2012 Project: Old Town Demo Bldg

  2. Carbon-Optimal and Carbon-Neutral Supply Chains

    E-Print Network [OSTI]

    Caro, F.; Corbett, C. J.; Tan, T.; Zuidwijk, R.

    2011-01-01T23:59:59.000Z

    Pearce, D. 2003. The Social Cost Of Carbon And Its PolicyR.S.J. 2008. The Social Cost of Carbon: Trends, Outliers and

  3. Carbonation Mechanism of Reservoir Rock by Supercritical Carbon...

    Open Energy Info (EERE)

    from reservoir rock formation. - Task 2: Carbonation study of minerals. - Task 3: Mechanical behaviors of carbonated minerals. - Task 4: Modeling of CO2- reservoir rock...

  4. Carbon monoxide absorbing liquid

    SciTech Connect (OSTI)

    Arikawa, Y.; Horigome, S.; Kanehori, K.; Katsumoto, M.

    1981-07-07T23:59:59.000Z

    The present disclosure is directed to a carbon monoxide absorbing liquid containing a cuprous ion, hydrochloric acid and titanum trichloride. Titanium trichloride is effective in increasing the carbon monoxide absorption quantity. Furthermore, titanium trichloride remarkably increases the oxygen resistance. Therefore, this absorbing liquid can be used continuously and for a long time.

  5. Fly ash carbon passivation

    DOE Patents [OSTI]

    La Count, Robert B; Baltrus, John P; Kern, Douglas G

    2013-05-14T23:59:59.000Z

    A thermal method to passivate the carbon and/or other components in fly ash significantly decreases adsorption. The passivated carbon remains in the fly ash. Heating the fly ash to about 500 and 800 degrees C. under inert gas conditions sharply decreases the amount of surfactant adsorbed by the fly ash recovered after thermal treatment despite the fact that the carbon content remains in the fly ash. Using oxygen and inert gas mixtures, the present invention shows that a thermal treatment to about 500 degrees C. also sharply decreases the surfactant adsorption of the recovered fly ash even though most of the carbon remains intact. Also, thermal treatment to about 800 degrees C. under these same oxidative conditions shows a sharp decrease in surfactant adsorption of the recovered fly ash due to the fact that the carbon has been removed. This experiment simulates the various "carbon burnout" methods and is not a claim in this method. The present invention provides a thermal method of deactivating high carbon fly ash toward adsorption of AEAs while retaining the fly ash carbon. The fly ash can be used, for example, as a partial Portland cement replacement in air-entrained concrete, in conductive and other concretes, and for other applications.

  6. Fundamental Aeronautics Hypersonics Project

    E-Print Network [OSTI]

    Fundamental Aeronautics Hypersonics Project Reference Document Principal Investigator: James and detailed content of a comprehensive Fundamental Aeronautics Hypersonics research project. It contains) Hypersonic Project is based on the fact that all access to earth or planetary orbit, and all entry into earth

  7. Project Website Information Architecture

    E-Print Network [OSTI]

    Project Website Information Architecture Overview Purpose: To describe up front what your initiative/project does. This section does not need to literally be called "Overview;" you can come up with anther suitable title that is more specific to your project. Examples of what to include: Information

  8. Project Scheduling (3) Corequisite

    E-Print Network [OSTI]

    Barrash, Warren

    ) CMGT 111 Construction Materials & Methods Lab (1) CMGT 460 Project Cost Controls (3) FA SP CMGT 320 FASYMBOLS CMGT 417 Project Scheduling (3) Corequisite Offered FALL Only CMGT 240 Intro) CMGT 475 Construction Project Management (3) MATH 108 College Algebra (4) Construction Elective

  9. Project Scheduling (3) Corequisite

    E-Print Network [OSTI]

    Barrash, Warren

    460 Project Cost Controls (3) FA SP FA CE 210/211 Surveying & Lab (3) CMGT 410 Concrete FormworkSYMBOLS CMGT 417 Project Scheduling (3) Corequisite Offered FALL Only CMGT 240 Intro Construction Project Management (3) MATH 108 College Algebra (4) MGMT 301 Leadership Skills (3) ENGL 101

  10. New Project Opportunities

    E-Print Network [OSTI]

    Michelson, David G.

    /year. Most projects will be sponsored by between four and ten companies. The cost of participation may changeNew Project Opportunities PIMS: Porphyry Indicator Minerals The characteristics and relative, the next phase of this project has started and MDRU are looking for industry partners. Exploring Lithocaps

  11. Kansas Advanced Semiconductor Project

    SciTech Connect (OSTI)

    Baringer, P.; Bean, A.; Bolton, T.; Horton-Smith, G.; Maravin, Y.; Ratra, B.; Stanton, N.; von Toerne, E.; Wilson, G.

    2007-09-21T23:59:59.000Z

    KASP (Kansas Advanced Semiconductor Project) completed the new Layer 0 upgrade for D0, assumed key electronics projects for the US CMS project, finished important new physics measurements with the D0 experiment at Fermilab, made substantial contributions to detector studies for the proposed e+e- international linear collider (ILC), and advanced key initiatives in non-accelerator-based neutrino physics.

  12. Electronic Properties of Carbon Nanotubes

    E-Print Network [OSTI]

    Collins, Philip G

    2008-01-01T23:59:59.000Z

    P. Avouris, in Carbon Nanotubes M. S. Dresselhaus, P.Physics of Carbon Nanotubes S. V. Rotkin, S. Subramoney,Properties of Carbon Nanotubes Philip G. Collins 1 and

  13. Electronic Properties of Carbon Nanotubes

    E-Print Network [OSTI]

    Collins, Philip G

    2008-01-01T23:59:59.000Z

    P. Avouris, in Carbon Nanotubes M. S. Dresselhaus, P.in Applied Physics of Carbon Nanotubes S. V. Rotkin, S.Electronic Properties of Carbon Nanotubes Philip G. Collins

  14. Net Carbon Flux from US Croplands at 1km2 Resolution.

    E-Print Network [OSTI]

    -resolution projections of feedstock production in analyses of soil carbon change, soil erosion, energy use, net carbon, soil erosion, energy use, net greenhouse gas emissions, and nutrient loading are simulated using greenhouse gas emissions, and water quality/nutrient loading. ORNL research evaluating the changes in soil

  15. Carbon Dioxide Information Analysis Center (CDIAC) PRINCIPAL INVESTIGATOR: Thomas A Boden (CDIAC Di-

    E-Print Network [OSTI]

    Carbon Dioxide Information Analysis Center (CDIAC) PRINCIPAL INVESTIGATOR: Thomas A Boden (CDIAC Di of Biological and Environmental Research (BER) PARTNERS: National Aeronautic and Space Administra- tion's (NASA://cdiac.ornl.gov/ PROJECT DESCRIPTION The Carbon Dioxide Information Analysis Center (CDIAC) is the primary climate -change

  16. Examining strategies to improve the carbon balance of corn/soybean agriculture using eddy covariance and

    E-Print Network [OSTI]

    Minnesota, University of

    if it occurs rapidly. Consequently, there is intense interest in finding ways to damp projected changesExamining strategies to improve the carbon balance of corn/soybean agriculture using eddy There is much interest in the role that agricultural practices might play in sequestering carbon to help offset

  17. CALLA ENERGY BIOMASS COFIRING PROJECT

    SciTech Connect (OSTI)

    Unknown

    2001-10-01T23:59:59.000Z

    The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications.

  18. Product Guide Project Standard and Project Professional

    E-Print Network [OSTI]

    Narasayya, Vivek

    ................................................................................................................................................................6 Manage Projects and Programs, or other intellectual property that are the subject matter of this document. #12;Table of Contents .......................................................................................................9 Make It Yours ­ Personalize the Ribbon

  19. Project Overload in Project Based Organizations - Causes, Symptoms and Effects.

    E-Print Network [OSTI]

    Hochdorfer, Tobias

    2007-01-01T23:59:59.000Z

    ?? This study investigates the matter of project overload which project members have to face in project based organizations. The thesis is based on 13… (more)

  20. Energy Department Releases New Land-Based/Offshore Wind Resource...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    shows the predicted mean annual wind speeds at 80-m height produced from AWS Truepower's data at a spatial resolution of 2.5 km and interpolated to a finer scale. Read more about...

  1. Pacific Northwest rangeland carbon sequestration.

    E-Print Network [OSTI]

    Wiggins, Seth T.

    2012-01-01T23:59:59.000Z

    ??This paper models the supply curve of carbon sequestration on Pacific Northwest rangelands. Rangeland managers have the ability to sequester carbon in agricultural soils by… (more)

  2. CARBON SEQUESTRATION STRATEGIES FOR CALIFORNIA

    E-Print Network [OSTI]

    GEOLOGIC CARBON SEQUESTRATION STRATEGIES FOR CALIFORNIA: REPORT TO THE LEGISLATURE Regional Carbon Sequestration Partnership (WESTCARB) studies that we used, including Cameron Downey

  3. Southeast Regional Carbon Sequestration Partnership (SECARB)

    SciTech Connect (OSTI)

    Kenneth J. Nemeth

    2005-09-30T23:59:59.000Z

    The Southeast Regional Carbon Sequestration Partnership (SECARB) is a diverse partnership covering eleven states involving the Southern States Energy Board (SSEB) an interstate compact; regulatory agencies and/or geological surveys from member states; the Electric Power Research Institute (EPRI); academic institutions; a Native American enterprise; and multiple entities from the private sector. Figure 1 shows the team structure for the partnership. In addition to the Technical Team, the Technology Coalition, an alliance of auxiliary participants, in the project lends yet more strength and support to the project. The Technology Coalition, with its diverse representation of various sectors, is integral to the technical information transfer, outreach, and public perception activities of the partnership. The Technology Coalition members, shown in Figure 2, also provide a breadth of knowledge and capabilities in the multiplicity of technologies needed to assure a successful outcome to the project and serve as an extremely important asset to the partnership. The eleven states comprising the multi-state region are: Alabama; Arkansas; Florida; Georgia; Louisiana; Mississippi; North Carolina; South Carolina; Tennessee; Texas; and Virginia. The states making up the SECARB area are illustrated in Figure 3. The primary objectives of the SECARB project include: (1) Supporting the U.S. Department of Energy (DOE) Carbon Sequestration Program by promoting the development of a framework and infrastructure necessary for the validation and deployment of carbon sequestration technologies. This requires the development of relevant data to reduce the uncertainties and risks that are barriers to sequestration, especially for geologic storage in the SECARB region. Information and knowledge are the keys to establishing a regional carbon dioxide (CO{sub 2}) storage industry with public acceptance. (2) Supporting the President's Global Climate Change Initiative with the goal of reducing greenhouse gas intensity by 18 percent by 2012. A corollary to the first objective, this objective requires the development of a broad awareness across government, industry, and the general public of sequestration issues and establishment of the technological and legal frameworks necessary to achieve the President's goal. The information developed by the SECARB team will play a vital role in achieving the President's goal for the southeastern region of the United States. (3) Evaluating options and potential opportunities for regional CO{sub 2} sequestration. This requires characterization of the region regarding the presence and location of sources of greenhouse gases (GHGs), primarily CO{sub 2}, the presence and location of potential carbon sinks and geological parameters, geographical features and environmental concerns, demographics, state and interstate regulations, and existing infrastructure.

  4. CALLA ENERGY BIOMASS COFIRING PROJECT

    SciTech Connect (OSTI)

    Unknown

    2002-12-31T23:59:59.000Z

    The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. GTI received supplemental authorization A002 from DOE for additional work to be performed under Phase I that will further extend the performance period until the end of February 2003. The additional scope of work is for GTI to develop the gasification characteristics of selected feedstock for the project. To conduct this work, GTI assembles an existing ''mini-bench'' unit to perform the gasification tests. The results of the test will be used to confirm or if necessary update the process design completed in Phase Task 1. During this Performance Period work efforts focused on conducting tests of biomass feedstock samples on the 2 inch mini-bench gasifier.

  5. CALLA ENERGY BIOMASS COFIRING PROJECT

    SciTech Connect (OSTI)

    Unknown

    2001-07-01T23:59:59.000Z

    The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. During this Performance Period work efforts proceeded, and Carbona completed the gasifier island design package. Nexant has completed the balance of plant support systems design and the design for the biomass feed system. Work on the Technoeconomic Study is proceeding. Approximately 75% of the specified hardware quotations have been received at the end of the reporting period. A meeting is scheduled for July 23 rd and 24 th to review the preliminary cost estimates. GTI presented a status review update of the project at the DOE/NETL contractor's review meeting in Pittsburgh on June 21st.

  6. EA-1829: Phycal Algae Pilot Project, Wahiawa and Kalaeloa, Hawaii

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal, through a cooperative agreement with Phycal, Inc., to partially fund implementing and evaluating new technology for the reuse of Carbon dioxide (CO2) emissions from industrial sources for green energy products. This project would use CO2 to grow algae for the production of algal oil and subsequent conversion to fuel.

  7. Renewable Energy Project Refinement Webinar

    Broader source: Energy.gov [DOE]

    Attendees will become familiar with the three components of project refinement: project financing strategies, off-taker agreements, and vendor selection. Project refinement obstacles, particularly...

  8. RENOTER Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    RENOTER Project RENOTER Project Overview of French project on thermoelectric waste heat recovery for cars and trucks with focus on cheap, available, efficient, and sustainable TE...

  9. CARBON NANOTUBES: PROPERTIES AND APPLICATIONS

    SciTech Connect (OSTI)

    Fischer, John, E.

    2009-07-24T23:59:59.000Z

    Carbon nanotubes were discovered in 1991 as a minority byproduct of fullerene synthesis. Remarkable progress has been made in the ensuing years, including the discovery of two basic types of nanotubes (single-wall and multi-wall), great strides in synthesis and purification, elucidation of many fundamental physical properties, and important steps towards practical applications. Both the underlying science and technological potential of SWNT can profitably be studied at the scale of individual tubes and on macroscopic assemblies such as fibers. Experiments on single tubes directly reveal many of the predicted quantum confinement and mechanical properties. Semiconductor nanowires have many features in common with nanotubes, and many of the same fundamental and practical issues are in play – quantum confinement and its effect on properties; possible device structures and circuit architectures; thermal management; optimal synthesis, defect morphology and control, etc. In 2000 we began a small effort in this direction, conducted entirely by undergraduates with minimal consumables support from this grant. With DOE-BES approval, this grew into a project in parallel with the carbon nanotube work, in which we studied of inorganic semiconductor nanowire growth, characterization and novel strategies for electronic and electromechanical device fabrication. From the beginnings of research on carbon nanotubes, one of the major applications envisioned was hydrogen storage for fuel-cell powered cars and trucks. Subsequent theoretical models gave mixed results, the most pessimistic indicating that the fundamental H2-SWNT interaction was similar to flat graphite (physisorption) with only modest binding energies implying cryogenic operation at best. New material families with encouraging measured properties have emerged, and materials modeling has gained enormously in predictive power, sophistication, and the ability to treat a realistically representative number of atoms. One of the new materials, highly porous carbide-derived carbons (CDC), is the subject of an add-on to this grant awarded to myself and Taner Yildirim (NIST). Results from the add-on led eventually to a new 3-year award DE-FG02-08ER46522 “From Fundamental Understanding to Predicting New Nanomaterials for High Capacity Hydrogen Storage”, $1000K, (05/31/2008 - 05/01/2011) with Taner Yildirim and myself as co-PI’s.

  10. Incorporating Carbon in Energy Planning at Industrial Facilities

    E-Print Network [OSTI]

    Smith, K.

    for emissions, or (3) purchases of carbon offsets (i.e., CO2 reduction or sequestration projects to offset emissions). Although much remains uncertain as to the nature of the legislation, the inevitability of a per-tonne emissions cost makes it important...

  11. Regional Carbon Sequestration Partnerships Initiatives review meeting. Proceedings

    SciTech Connect (OSTI)

    NONE

    2006-07-01T23:59:59.000Z

    A total of 32 papers were presented at the review meeting in sessions entitled: updates on regional characterization activities; CO{sub 2} sequestration with EOR; CO{sub 2} sequestration in saline formations I and II; and terrestrial carbon sequestration field projects. In addition are five introductory papers. These are all available on the website in slide/overview/viewgraph form.

  12. Short Communication Potential Remobilization of Belowground Permafrost Carbon under Future

    E-Print Network [OSTI]

    Wagner, Diane

    ). This is a positive feedback within the Earth System, as climate warming results in permafrost thawing that causes. This effect is not yet considered in climate model projections of future global warming. PERMAFROSTShort Communication Potential Remobilization of Belowground Permafrost Carbon under Future Global

  13. Cacao Intensification in Sulawesi: A Green Prosperity Model Project

    SciTech Connect (OSTI)

    Moriarty, K.; Elchinger, M.; Hill, G.; Katz, J.; Barnett, J.

    2014-09-01T23:59:59.000Z

    NREL conducted eight model projects for Millennium Challenge Corporation's (MCC) Compact with Indonesia. Green Prosperity, the largest project of the Compact, seeks to address critical constraints to economic growth while supporting the Government of Indonesia's commitment to a more sustainable, less carbon-intensive future. This study evaluates techniques to improve cacao farming in Sulawesi Indonesia with an emphasis on Farmer Field Schools and Cocoa Development Centers to educate farmers and for train the trainer programs. The study estimates the economic viability of cacao farming if smallholder implement techniques to increase yield as well as social and environmental impacts of the project.

  14. BEACON SOLAR ENERGY PROJECT (08-AFC-2) Project Title: Beacon Solar Energy Project (Beacon)

    E-Print Network [OSTI]

    BEACON SOLAR ENERGY PROJECT (08-AFC-2) FACT SHEET Project Title: Beacon Solar Energy Project and operate the Beacon Solar Energy Project (Beacon). Location: The project is located in eastern Kern County;BEACON SOLAR ENERGY PROJECT (08-AFC-2) FACT SHEET Licensing: The Beacon project would have a nominal

  15. Carbon pricing, nuclear power and electricity markets

    SciTech Connect (OSTI)

    Cameron, R.; Keppler, J. H. [OECD Nuclear Energy Agency, 12, boulevard des Iles, 92130 Issy-les-Moulineaux (France)

    2012-07-01T23:59:59.000Z

    In 2010, the NEA in conjunction with the International Energy Agency produced an analysis of the Projected Costs of Electricity for almost 200 power plants, covering nuclear, fossil fuel and renewable electricity generation. That analysis used lifetime costs to consider the merits of each technology. However, the lifetime cost analysis is less applicable in liberalised markets and does not look specifically at the viewpoint of the private investor. A follow-up NEA assessment of the competitiveness of nuclear energy against coal- and gas-fired generation under carbon pricing has considered just this question. The economic competition in electricity markets is today between nuclear energy and gas-fired power generation, with coal-fired power generation not being competitive as soon as even modest carbon pricing is introduced. Whether nuclear energy or natural gas comes out ahead in their competition depends on a number of assumptions, which, while all entirely reasonable, yield very different outcomes. The analysis in this study has been developed on the basis of daily data from European power markets over the last five-year period. Three different methodologies, a Profit Analysis looking at historic returns over the past five years, an Investment Analysis projecting the conditions of the past five years over the lifetime of plants and a Carbon Tax Analysis (differentiating the Investment Analysis for different carbon prices) look at the issue of competitiveness from different angles. They show that the competitiveness of nuclear energy depends on a number of variables which in different configurations determine whether electricity produced from nuclear power or from CCGTs generates higher profits for its investors. These are overnight costs, financing costs, gas prices, carbon prices, profit margins (or mark-ups), the amount of coal with carbon capture and electricity prices. This paper will present the outcomes of the analysis in the context of a liberalised electricity market, looking at the impact of the seven key variables and provide conclusions on the portfolio that a utility would be advised to maintain, given the need to limit risks but also to move to low carbon power generation. Such portfolio diversification would not only limit financial investor risk, but also a number of non-financial risks (climate change, security of supply, accidents). (authors)

  16. National Compact Stellarator Experiment Project Closeout Report PROJECT CLOSEOUT REPORT

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    National Compact Stellarator Experiment Project Closeout Report i PROJECT CLOSEOUT REPORT NATIONAL of Science Princeton Plasma Physics Laboratory Oak Ridge National Laboratory #12;National Compact Stellarator Experiment Project Closeout Report PROJECT CLOSEOUT REPORT NATIONAL COMPACT STELLARATOR EXPERIMENT (NCSX

  17. RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES

    SciTech Connect (OSTI)

    J. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

    2003-12-18T23:59:59.000Z

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. In this quarterly report, we present a preliminary comparison of the carbon sequestration benefits for two forest types used to convert abandoned grasslands for carbon sequestration. Annual mixed hardwood benefits, based on total stand carbon volume present at the end of a given year, range from a minimum of $0/ton of carbon to a maximum of $5.26/ton of carbon (low prices). White pine benefits based on carbon volume range from a minimum of $0/ton of carbon to a maximum of $18.61/ton of carbon (high prices). The higher maximum white pine carbon payment can primarily be attributed to the fact that the shorter rotation means that payments for white pine carbon are being made on far less cumulative carbon tonnage than for that of the long-rotation hardwoods. Therefore, the payment per ton of white pine carbon needs to be higher than that of the hardwoods in order to render the conversion to white pine profitable by the end of a rotation. These carbon payments may seem appealingly low to the incentive provider. However, payments (not discounted) made over a full rotation may add up to approximately $17,493/ha for white pine (30-year rotation), and $18,820/ha for mixed hardwoods (60-year rotation). The literature suggests a range of carbon sequestration costs, from $0/ton of carbon to $120/ton of carbon, although the majority of studies suggest a cost below $50/ ton of carbon, with van Kooten et al. (2000) suggesting a cutoff cost of $20/ton of carbon sequestered. Thus, the ranges of carbon payments estimated for this study fall well within the ranges of carbon sequestration costs estimated in previous studies.

  18. A Novel Approach To Mineral Carbonation: Enhancing Carbonation While Avoiding Mineral Pretreatment Process Cost

    SciTech Connect (OSTI)

    Michael J. McKelvy; Andrew V. G. Chizmeshya; Kyle Squires; Ray W. Carpenter; Hamdallah Bearat

    2006-06-21T23:59:59.000Z

    Known fossil fuel reserves, especially coal, can support global energy demands for centuries to come, if the environmental problems associated with CO{sub 2} emissions can be overcome. Unlike other CO{sub 2} sequestration candidate technologies that propose long-term storage, mineral sequestration provides permanent disposal by forming geologically stable mineral carbonates. Carbonation of the widely occurring mineral olivine (e.g., forsterite, Mg{sub 2}SiO{sub 4}) is a large-scale sequestration process candidate for regional implementation, which converts CO{sub 2} into the environmentally benign mineral magnesite (MgCO{sub 3}). The primary goal is cost-competitive process development. As the process is exothermic, it inherently offers low-cost potential. Enhancing carbonation reactivity is key to economic viability. Recent studies at the U.S. DOE Albany Research Center have established that aqueous-solution carbonation using supercritical CO{sub 2} is a promising process; even without olivine activation, 30-50% carbonation has been achieved in an hour. Mechanical activation (e.g., attrition) has accelerated the carbonation process to an industrial timescale (i.e., near completion in less than an hour), at reduced pressure and temperature. However, the activation cost is too high to be economical and lower cost pretreatment options are needed. Herein, we report our second year progress in exploring a novel approach that offers the potential to substantially enhance carbonation reactivity while bypassing pretreatment activation. As our second year progress is intimately related to our earlier work, the report is presented in that context to provide better overall understanding of the progress made. We have discovered that robust silica-rich passivating layers form on the olivine surface during carbonation. As carbonation proceeds, these passivating layers thicken, fracture and eventually exfoliate, exposing fresh olivine surfaces during rapidly-stirred/circulating carbonation. We are exploring the mechanisms that govern carbonation reactivity and the impact that (i) modeling/controlling the slurry fluid-flow conditions, (ii) varying the aqueous ion species/size and concentration (e.g., Li{sup +}, Na{sup +}, K{sup +}, Rb{sup +}, Cl{sup -}, HCO{sub 3}{sup -}), and (iii) incorporating select sonication offer to enhance exfoliation and carbonation. We have succeeded in nearly doubling the extent of carbonation observed compared with the optimum procedure previously developed by the Albany Research Center. Aqueous carbonation reactivity was found to be a strong function of the ionic species present and their aqueous activities, as well as the slurry fluid flow conditions incorporated. High concentration sodium, potassium, and sodium/potassium bicarbonate aqueous solutions have been found to be the most effective solutions for enhancing aqueous olivine carbonation to date. Slurry-flow modeling using Fluent indicates that the slurry-flow dynamics are a strong function of particle size and mass, suggesting that controlling these parameters may offer substantial potential to enhance carbonation. Synergistic control of the slurry-flow and aqueous chemistry parameters offers further potential to improve carbonation reactivity, which is being investigated during the no-cost extension period. During the first project year we developed a new sonication exfoliation system with a novel sealing system to carry out the sonication studies. We also initiated(Abstract truncated).

  19. Cumulative Carbon and Just Allocation of the Global Carbon Commons

    E-Print Network [OSTI]

    Pierrehumbert, Raymond

    Cumulative Carbon and Just Allocation of the Global Carbon Commons R.T. Pierrehumbert* Abstract statistic, called cumulative carbon. This statistic is the aggregate amount ofcarbon emitted in theform such activitiespersist.In thispaper the conceptis usedto addressthe question offair allocation of carbon emissions

  20. International Conference on Carbon Nanotechnology: Potential and Challenges (Carbon 10)

    E-Print Network [OSTI]

    Srivastava, Kumar Vaibhav

    International Conference on Carbon Nanotechnology: Potential and Challenges (Carbon 10) 15 - 17th Since the discovery of the carbon nanotube (CNT) about two decades ago, research related to its of Materials and Process Engineering Kanpur Chapter hosted the `International Conference on Carbon

  1. Trading Water for Carbon with Biological Carbon Sequestration

    E-Print Network [OSTI]

    Nacional de San Luis, Universidad

    Trading Water for Carbon with Biological Carbon Sequestration Robert B. Jackson,1 * Esteban G. Farley,1 David C. le Maitre,5 Bruce A. McCarl,6 Brian C. Murray7 Carbon sequestration strategies plantations feature prominently among tools for carbon sequestration (1­8). Plantations typi- cally combine

  2. advanced carbon-carbon composites: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 CARBON-CARBON COMPOSITE ALLCOMP Carbon-Carbon Composite Biology and Medicine Websites Summary: CARBON-CARBON...

  3. Near Sub-and Supercritical solvolysis of Carbon Fibre Reinforced Polymers (CFRPs) for Recycling Carbon Fibres as a Valuable Resource

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    * REcycling Carbon fibre reinforced Composites (RECCO) project *Highlights hal-00695025,version1-1Oct2013 #12 of more complex and efficient composite materials has boosted many industrial fields such as aeronautics, automobile and sports. Nowadays studies focus on finding new composite materials and developing better

  4. Carbon nanotubes : synthesis, characterization, and applications

    E-Print Network [OSTI]

    Deck, Christian Peter

    2009-01-01T23:59:59.000Z

    fibers, carbon nanotubes, and carbon capsule structures canand multi-walled nanotubes and carbon fiber, and occurs withMulti- walled carbon nanotubes”, Carbon, v.43, pp.2608-2617,

  5. Integrating Steel Production with Mineral Carbon Sequestration

    SciTech Connect (OSTI)

    Klaus Lackner; Paul Doby; Tuncel Yegulalp; Samuel Krevor; Christopher Graves

    2008-05-01T23:59:59.000Z

    The objectives of the project were (i) to develop a combination iron oxide production and carbon sequestration plant that will use serpentine ores as the source of iron and the extraction tailings as the storage element for CO2 disposal, (ii) the identification of locations within the US where this process may be implemented and (iii) to create a standardized process to characterize the serpentine deposits in terms of carbon disposal capacity and iron and steel production capacity. The first objective was not accomplished. The research failed to identify a technique to accelerate direct aqueous mineral carbonation, the limiting step in the integration of steel production and carbon sequestration. Objective (ii) was accomplished. It was found that the sequestration potential of the ultramafic resource surfaces in the US and Puerto Rico is approximately 4,647 Gt of CO2 or over 500 years of current US production of CO2. Lastly, a computer model was developed to investigate the impact of various system parameters (recoveries and efficiencies and capacities of different system components) and serpentinite quality as well as incorporation of CO2 from sources outside the steel industry.

  6. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect (OSTI)

    David A. Green; Brian S. Turk; Raghubir P. Gupta; Douglas P. Harrison; Ya Liang

    2001-10-01T23:59:59.000Z

    The objective of this project is to develop a simple, inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbent being used in this project is sodium carbonate which is converted to sodium bicarbonate, ''baking soda,'' through reaction with carbon dioxide and water vapor. Sodium bicarbonate is regenerated to sodium carbonate when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. Testing conducted previously confirmed that the reaction rate and achievable CO{sub 2} capacity of sodium carbonate decreased with increasing temperature, and that the global rate of reaction of sodium carbonate to sodium bicarbonate increased with an increase in both CO{sub 2} and H{sub 2}O concentrations. Energy balance calculations indicated that the rate of heat removal from the particle surface may determine the reaction rate for a particular particle system. This quarter, thermogravimetric analyses (TGA) were conducted which indicated that calcination of sodium bicarbonate at temperatures as high as 200 C did not cause a significant decrease in activity in subsequent carbonation testing. When sodium bicarbonate was subjected to a five cycle calcination/carbonation test, activity declined slightly over the first two cycles but was constant thereafter. TGA tests were also conducted with two other potential sorbents. Potassium carbonate was found to be less active than sodium carbonate, at conditions of interest in preliminary TGA tests. Sodium carbonate monohydrate showed negligible activity. Testing was also conducted in a 2-inch internal diameter quartz fluidized-bed reactor system. A five cycle test demonstrated that initial removals of 10 to 15 percent of the carbon dioxide in a simulated flue gas could be achieved. The carbonation reaction proceeded at temperatures as low as 41 C. Future work by TGA and in fixed-bed, fluidized-bed, and transport reactor systems is planned to demonstrate the feasibility of this process in large scale operations to separate carbon dioxide from flue gas.

  7. Proceedings of the 17th Central Hardwood Forest Conference GTR-NRS-P-78 (2011) 134 MAXIMIZING CARBON STORAGE IN THE APPALACHIANS

    E-Print Network [OSTI]

    may also provide a baseline for a full accounting of forestry carbon offset projects. The ability CARBON STORAGE IN THE APPALACHIANS: A METHOD FOR CONSIDERING THE RISK OF DISTURBANCE EVENTS Michael R to disturbance events can influence the prediction of carbon flux over a planning horizon, and can affect

  8. Carbon Tax and 100% Dividend No Alligator Shoes! The charts for my talk (Climate Threat to the Planet: Implications for Energy Policy) on 3

    E-Print Network [OSTI]

    Hansen, James E.

    effect. Carbon emissions will plummet far faster than in top-down or Manhattan projects. A clean is needed to figure this out. If the initial carbon tax averages $1200 per person per year, $100 will raise energy prices, but lower and middle income people, especially, will find ways to reduce carbon

  9. NSTX Upgrade Project Execution Plan NSTX Upgrade Project

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    #12;NSTX Upgrade Project Execution Plan NSTX Upgrade Project Project Execution Plan i Record 10/12/2012 Update to WBS Level 2 Threshold (top of page 20), Change DOE Federal Project Director and Deputy Federal Project Director. Various OBS changes. #12;NSTX Upgrade Project Execution Plan NSTX

  10. The CHPRC Columbia River Protection Project Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2008-11-30T23:59:59.000Z

    Pacific Northwest National Laboratory researchers are working on the CHPRC Columbia River Protection Project (hereafter referred to as the Columbia River Project). This is a follow-on project, funded by CH2M Hill Plateau Remediation Company, LLC (CHPRC), to the Fluor Hanford, Inc. Columbia River Protection Project. The work scope consists of a number of CHPRC funded, related projects that are managed under a master project (project number 55109). All contract releases associated with the Fluor Hanford Columbia River Project (Fluor Hanford, Inc. Contract 27647) and the CHPRC Columbia River Project (Contract 36402) will be collected under this master project. Each project within the master project is authorized by a CHPRC contract release that contains the project-specific statement of work. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Columbia River Project staff.

  11. Battleground Energy Recovery Project

    SciTech Connect (OSTI)

    Daniel Bullock

    2011-12-31T23:59:59.000Z

    In October 2009, the project partners began a 36-month effort to develop an innovative, commercial-scale demonstration project incorporating state-of-the-art waste heat recovery technology at Clean Harbors, Inc., a large hazardous waste incinerator site located in Deer Park, Texas. With financial support provided by the U.S. Department of Energy, the Battleground Energy Recovery Project was launched to advance waste heat recovery solutions into the hazardous waste incineration market, an area that has seen little adoption of heat recovery in the United States. The goal of the project was to accelerate the use of energy-efficient, waste heat recovery technology as an alternative means to produce steam for industrial processes. The project had three main engineering and business objectives: Prove Feasibility of Waste Heat Recovery Technology at a Hazardous Waste Incinerator Complex; Provide Low-cost Steam to a Major Polypropylene Plant Using Waste Heat; and ï?· Create a Showcase Waste Heat Recovery Demonstration Project.

  12. Estimating the greenhouse gas benefits of forestry projects: A Costa Rican Case Study

    SciTech Connect (OSTI)

    Busch, Christopher; Sathaye, Jayant; Sanchez Azofeifa, G. Arturo

    2000-09-01T23:59:59.000Z

    If the Clean Development Mechanism proposed under the Kyoto Protocol is to serve as an effective means for combating global climate change, it will depend upon reliable estimates of greenhouse gas benefits. This paper sketches the theoretical basis for estimating the greenhouse gas benefits of forestry projects and suggests lessons learned based on a case study of Costa Rica's Protected Areas Project, which is a 500,000 hectare effort to reduce deforestation and enhance reforestation. The Protected Areas Project in many senses advances the state of the art for Clean Development Mechanism-type forestry projects, as does the third-party verification work of SGS International Certification Services on the project. Nonetheless, sensitivity analysis shows that carbon benefit estimates for the project vary widely based on the imputed deforestation rate in the baseline scenario, e.g. the deforestation rate expected if the project were not implemented. This, along with a newly available national dataset that confirms other research showing a slower rate of deforestation in Costa Rica, suggests that the use of the 1979--1992 forest cover data originally as the basis for estimating carbon savings should be reconsidered. When the newly available data is substituted, carbon savings amount to 8.9 Mt (million tones) of carbon, down from the original estimate of 15.7 Mt. The primary general conclusion is that project developers should give more attention to the forecasting land use and land cover change scenarios underlying estimates of greenhouse gas benefits.

  13. ATK - Supersonic Carbon Capture

    ScienceCinema (OSTI)

    Castrogiovanni, Anthony (ACEnT Laboratories, President and CEO); Calayag, Bon (ATK, Program Manager)

    2014-04-11T23:59:59.000Z

    ATK and ACEnt Laboratories, with the help of ARPA-E funding, have taken an aerospace problem, supersonic condensation, and turned it into a viable clean energy solution for carbon capture.

  14. Extrasolar Carbon Planets

    E-Print Network [OSTI]

    Marc J. Kuchner; S. Seager

    2005-05-02T23:59:59.000Z

    We suggest that some extrasolar planets planets and low-mass white dwarf planets are especially good candidate members of this new class of planets, but these objects could also conceivably form around stars like the Sun. This planet-formation pathway requires only a factor of two local enhancement of the protoplanetary disk's C/O ratio above solar, a condition that pileups of carbonaceous grains may create in ordinary protoplanetary disks. Hot, Neptune-mass carbon planets should show a significant paucity of water vapor in their spectra compared to hot planets with solar abundances. Cooler, less massive carbon planets may show hydrocarbon-rich spectra and tar-covered surfaces. The high sublimation temperatures of diamond, SiC, and other carbon compounds could protect these planets from carbon depletion at high temperatures.

  15. ATK - Supersonic Carbon Capture

    SciTech Connect (OSTI)

    Castrogiovanni, Anthony (ACEnT Laboratories, President and CEO) [ACEnT Laboratories, President and CEO; Calayag, Bon (ATK, Program Manager) [ATK, Program Manager

    2014-03-05T23:59:59.000Z

    ATK and ACEnt Laboratories, with the help of ARPA-E funding, have taken an aerospace problem, supersonic condensation, and turned it into a viable clean energy solution for carbon capture.

  16. Carbon Capture Pilots (Kentucky)

    Broader source: Energy.gov [DOE]

    Support for the Carbon Management Research Group (CMRG), a public/private partnership consisting of most of the Commonwealth’s utilities, the Electric Power Research Institute, the Center for...

  17. Activated carbon aerogels

    SciTech Connect (OSTI)

    Hanzawa, Y.; Kaneko, K. [Chiba Univ. (Japan)] [Chiba Univ. (Japan); Pekala, R.W. [Lawrence Livermore National Lab., CA (United States)] [Lawrence Livermore National Lab., CA (United States); Dresselhaus, M.S. [Massachusetts Inst. of Technology, Cambridge, MA (United States)] [Massachusetts Inst. of Technology, Cambridge, MA (United States)

    1996-12-25T23:59:59.000Z

    Activated carbon aerogels were obtained from the CO{sub 2} activation of the carbon aerogels. The adsorption isotherms of nitrogen on activated carbon aerogels at 77 K were measured and analyzed by the high-resolution {alpha}{sub s} plot to evaluate their porosities. The {alpha}{sub s} plot showed an upward deviation from linearity below {alpha}{sub s} = 0.5, suggesting that the presence of micropores becomes more predominant with the extent of the activation. Activation increased noticeably the pore volume and the surface area (the maximum value: 2600 m{sup 2}.g{sup -1}) without change of the basic network structure of primary particles. Activated carbon aerogels had a bimodal pore size distribution of uniform micropores and mesopores. 16 refs., 2 figs., 1 tab.

  18. Low Carbon Fuel Standards

    E-Print Network [OSTI]

    Sperling, Dan; Yeh, Sonia

    2009-01-01T23:59:59.000Z

    S O N I A YE H Low Carbon Fuel Standards The most direct andalternative transportation fuels is to spur innovation withstandard for upstream fuel producers. hen it comes to energy

  19. Regional Carbon Sequestration Partnerships

    Broader source: Energy.gov [DOE]

    DOE has created a network of seven Regional Carbon Sequestration Partnerships (RCSPs) to help develop the technology, infrastructure, and regulations to implement large-scale CO2 storage (also...

  20. Research Summary Carbon Additionality

    E-Print Network [OSTI]

    of the quality assurance of emissions reduction and carbon sequestration activities, but remains a source of much/reporting additionality rules. Technological Application of specific technology. Term Abatement arises within a specified