Sample records for land evaluation section

  1. {sup 16}O neutron cross section evaluation

    SciTech Connect (OSTI)

    Caro, E. [Lockheed Martin Corp., Schenectady, NY (United States)

    1998-06-01T23:59:59.000Z

    This work has resulted from a need to compute more accurately the neutron scattering cross sections and angular distributions for {sup 16}O. Several oxygen evaluations have been performed in the past with R-Matrix theory, including ENDF/B-V and ENDF/B-VI. ENDF/B-VI is an improvement over ENDF/B-V, but still underpredicts in general the forward scattering of neutrons below 2.5 MeV. R-Matrix theory is used in describing cross sections at and near the resonance energies; but may not always be adequate in describing cross sections between resonances, especially when they are widely spaced. The optical (potential well) model of the nucleus is very good in representing cross sections that vary smoothly with energy, but not at describing all of the detailed resonance cross sections. A combination of the potential well model and R-Matrix theory was used for this work to represent cross sections with isolated resonances with large spacings between them. The total neutron cross section of oxygen-16 below 3.0 MeV has widely separated resonances and a dip in the cross section at 2.35 MeV. In the vicinity of resonances, where cross sections vary rapidly with energy, R-Matrix theory has been successful in fitting experimental data. In the region between resonances, an analytical procedure with physical basis is needed that agrees with data over a wide range of energies bracketing regions where experimental measurements are lacking.

  2. Covariance Evaluation Methodology for Neutron Cross Sections

    SciTech Connect (OSTI)

    Herman,M.; Arcilla, R.; Mattoon, C.M.; Mughabghab, S.F.; Oblozinsky, P.; Pigni, M.; Pritychenko, b.; Songzoni, A.A.

    2008-09-01T23:59:59.000Z

    We present the NNDC-BNL methodology for estimating neutron cross section covariances in thermal, resolved resonance, unresolved resonance and fast neutron regions. The three key elements of the methodology are Atlas of Neutron Resonances, nuclear reaction code EMPIRE, and the Bayesian code implementing Kalman filter concept. The covariance data processing, visualization and distribution capabilities are integral components of the NNDC methodology. We illustrate its application on examples including relatively detailed evaluation of covariances for two individual nuclei and massive production of simple covariance estimates for 307 materials. Certain peculiarities regarding evaluation of covariances for resolved resonances and the consistency between resonance parameter uncertainties and thermal cross section uncertainties are also discussed.

  3. GIS IN LAND RESOURCE MANAGEMENT On-Campus Section

    E-Print Network [OSTI]

    Ma, Lena

    GIS and geospatial analysis using real-world spatial data. Learning about GIS is fun and a creative process that all, the ArcGIS geographic information system (GIS) and geospatial methods as applied to land resource will be able to independently conduct your own GIS projects and find solutions to geospatial problems. OTHER

  4. GIS IN LAND RESOURCE MANAGEMENT Distance Education Section

    E-Print Network [OSTI]

    Ma, Lena

    : In this course you will gain ample hands-on experience in using ArcGIS and geospatial analysis using real information system (GIS) and geospatial methods as applied to land resource management issues. GOOD TO KNOW projects and find solutions to geospatial problems. OTHER INFORMATION: The course counts towards the ICGIS

  5. Economic land evaluation: why and how Page 1 of 22 Soil Use & Management 11: 132-140 Economic land evaluation: why and how

    E-Print Network [OSTI]

    Rossiter, D G "David"

    Economic land evaluation: why and how Page 1 of 22 Soil Use & Management 11: 132-140 Economic land-140 Copyright © Blackwell Scientific Abstract: Economic land evaluation is a method for predicting the micro-economic of economic value. Measures of economic suitability include the gross margin, net present value, internal rate

  6. Section M: Evaluations Factors for Award

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary of Energy Advisory Board FollowSection 3161L-1 SectionIVV

  7. The Evaluation of Transportation and Land Use Plans Using Linked Economic and GIS Models

    E-Print Network [OSTI]

    Johnston, Robert A.

    1995-01-01T23:59:59.000Z

    Attempts to base the economic evaluation travel no state isurban economyand and economic evaluations. for devlsing andEvaluation of Transportation and Land Use Plans Using Linked Economic and

  8. Nuclear Science and Technology, November 2000. NEUTRON CROSS SECTION EVALUATIONS

    E-Print Network [OSTI]

    Nuclear Science and Technology, November 2000. 1 NEUTRON CROSS SECTION EVALUATIONS FOR 238 U UP and Power Engineering, 249020 Obninsk, Russia A.Ventura ENEA, Nuclear Data Center and INFN, Bologna Section of the statistical description that includes direct, pre-equilibrium and equilibrium mechanisms of nuclear reactions

  9. Approaches used for Clearance of Lands from Nuclear Facilities among Several Countries: Evaluation for Regulatory Input

    Broader source: Energy.gov [DOE]

    The study entitled, Approaches used for Clearance of Lands from Nuclear Facilities among Several Countries: Evaluation for Regulatory Input, focuses on the issue of showing compliance with given...

  10. agricultural land evaluation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    land change science, to better understand of the three foci outlined in the science plan of the Land-use and -cover change (LUCC) project (Turner et al Brown, Daniel G. First...

  11. International evaluation cooperation Subgroup 7: Multigroup cross section processing

    SciTech Connect (OSTI)

    Roussin, R.W.; White, J.E. (Oak Ridge National Lab., TN (USA)); Sartori, E. (NEA Data Bank, 91 - Gif-sur-Yvette (France)); Panini, G. (ENEA, Bologna (Italy)); MacFarlane, R. (Los Alamos National Lab., NM (USA)); Muir, D. (International Atomic Energy Agency, Vienna (Austria). Nuclear Data Section); Mattes, M. (Stuttgart Univ. (Germany, F.R.). Inst. fuer Kernenergetik und Energiesysteme); Hasegawa, I

    1991-01-01T23:59:59.000Z

    The chairmen of the ENDF/B, JEF, EFF, and JENDL evaluated data files adopted a proposal to develop a fine-group processed cross section library based on the VITAMIN'' concept. The authors listed above, with support from others, are participating in this project. The end result will be a pseudo-problem-independent fine-group cross section library generated from the latest evaluated data in ENDF/B-VI, JEF-2, EFF-2, and JENDL-3. Initial applications of the library will be for shielding, fast reactor physics, and fusion neutronics. Progress made to date will be discussed. 8 refs.

  12. Rotordynamic evaluation of a roughened-land hybrid bearing

    E-Print Network [OSTI]

    Fayolle, Patrice Gerard

    1997-01-01T23:59:59.000Z

    " seals. This thesis presents experimental as well as theoretical static and dynamic results for a five-pocket orifice-compensated hole-pattern-land hybrid bearing. Experimental data show a significant improvement in stability compared to a smooth hybrid...

  13. Using soft-systems methods to evaluate the outputs from multi-objective land use planning tools

    E-Print Network [OSTI]

    Coello, Carlos A. Coello

    of soft-systems based analysis of land-use planning tool outputs is recommended, not only for evaluating? This paper reports on a soft-systems based evaluation of the multi-objective land-use planning tools within-off between objectives. The paper then details the soft- systems-based evaluation strategy. Land managers

  14. Theory in evaluation of actinide fission and capture cross sections.

    SciTech Connect (OSTI)

    Lynn, J. E. (J. Eric)

    2004-01-01T23:59:59.000Z

    The authors discuss the possibilities and limitations of the use of theory as a tool in the evaluation of actinide fission and capture cross-sections. They consider especially the target {sup 235}U as an example. They emphasize the roles of intermediate structure in the fission cross-section and of level width fluctuations in both intermediate structure and fine structure, noting that these lead to a breakdown of Hauser-Feshbach theory at sub-barrier and near barrier energies. At higher energies (where fluctuation-averaged Hauser-Feshbach theory is applicable) semi-quantitative and intuitive representations of transition state spectra and barrier level density functions have to be tested against experimental data wherever these are available. Adjustment of the fission cross-section against inelastic scattering to the much better known levels of the residual nucleus should then lead to a fairly sound estimate of the capture cross-section. They compare such estimates with evaluated and experimental data for {sup 235}U.

  15. Overview of recent U235 neutron cross section evaluation work

    SciTech Connect (OSTI)

    Lubitz, C. [Lockheed Martin Corp., Schenectady, NY (United States)

    1998-10-01T23:59:59.000Z

    This report is an overview (through 1997) of the U235 neutron cross section evaluation work at Oak Ridge National Laboratory (ORNL), AEA Technology (Harwell) and Lockheed Martin Corp.-Schenectady (LMS), which has influenced, or appeared in, ENDF/B-VI through Release 5. The discussion is restricted to the thermal and resolved resonance regions, apart from some questions about the unresolved region which still need investigation. The important role which benchmark testing has played will be touched on.

  16. CROSS SECTION EVALUATIONS FOR ENDF/B-VII.

    SciTech Connect (OSTI)

    HERMAN, M.; ROCHMAN, D.; OBLOZINSKY, P.

    2006-06-05T23:59:59.000Z

    This is the final report of the work performed under the LANL contract on neutron cross section evaluations for ENDF/B-VII (April 2005-May 2006). The purpose of the contract was to ensure seamless integration of the LANL neutron cross section evaluations in the new ENDF/B-VII library. The following work was performed: (1) LANL evaluated data files submitted for inclusion in ENDF/B-VII were checked and, when necessary, formal formatting errors were corrected. As a consequence, ENDF checking codes, run on all LANL files, do not report any errors that would rise concern. (2) LANL dosimetry evaluations for {sup 191}Ir and {sup 193}Ir were completed to match ENDF requirements for the general purpose library suitable for transport calculations. A set of covariances for both isotopes is included in the ENDF files. (3) Library of fission products was assembled and successfully tested with ENDF checking codes, processed with NJOY-99.125 and simple MCNP calculations. (4) KALMAN code has been integrated with the EMPIRE system to allow estimation of covariances based on the combination of measurements and model calculations. Covariances were produced for 155,157-Gd and also for 6 remaining isotopes of Gd.

  17. Introduction to special section on the Phoenix Mission: Landing Site Characterization Experiments, Mission Overviews, and

    E-Print Network [OSTI]

    Duck, Thomas J.

    braking strategy. After a safe landing, twin fan-like solar panels are unfurled and provide the energy. 5 Department of Earth Sciences, University of Bristol, Bristol, UK. 6 Lockheed Martin, Littleton

  18. Evaluation of "all weather" microwave-derived land surface temperatures with in situ CEOP measurements

    E-Print Network [OSTI]

    Evaluation of "all weather" microwave-derived land surface temperatures with in situ CEOP conditions. Ts estimates from infrared satellite observations can only be derived under clear sky. Passive from Special Sensor Microwave/Imager measurements, with a spatial resolution of 0.25 0.25, at least

  19. Energy transport corridors: the potential role of Federal lands in states identified by the Energy Policy Act of 2005, section 368(b).

    SciTech Connect (OSTI)

    Krummel, J.; Hlohowskyj, I.; Kuiper, J.; Kolpa, R.; Moore, R.; May, J.; VanKuiken, J.C.; Kavicky, J.A.; McLamore, M.R.; Shamsuddin, S. (Decision and Information Sciences); ( EVS)

    2011-09-01T23:59:59.000Z

    On August 8, 2005, the President signed the Energy Policy Act of 2005 (EPAct) into law. In Subtitle F of EPAct, Congress set forth various provisions that would change the way certain federal agencies (Agencies) coordinate to authorize the use of land for a variety of energy-related purposes. As part of Subtitle F of EPAct, Section 368 addresses the issue of energy transportation corridors on federal land for oil, gas, and hydrogen pipelines, as well as electricity transmission and distribution facilities. Because of the critical importance of improving the nation's electrical transmission grid, Congress recognized that electricity transmission issues should receive added attention when the Agencies address corridor location and analysis issues. In Section 368, Congress specifically directed the Agencies to consider the need for upgraded and new facilities to deliver electricity: In carrying out [Section 368], the Secretaries shall take into account the need for upgraded and new electricity transmission and distribution facilities to (1) improve reliability; (2) relieve congestion; and (3) enhance capability of the national grid to deliver electricity. Section 368 does not require the Agencies to consider or approve specific projects, applications for rights-of-way (ROWs), or other permits within designated energy corridors. Importantly, Section 368 does not direct, license, or otherwise permit any on-the-ground activity of any sort. If an applicant is interested in obtaining an authorization to develop a project within any corridor designated under Section 368, the applicant would have to apply for a ROW authorization and applicable permits. The Agencies would consider each application by applying appropriate project-specific reviews under requirements of laws and related regulations, including, but not limited to, the National Environmental Policy Act (NEPA), the Clean Water Act, the Clean Air Act, Section 7 of the Endangered Species Act (ESA), and Section 106 of the National Historic Preservation Act (NHPA). Under Section 368, Congress divided the United States into two groups of states: the 11 contiguous western states and the remaining states. Direction for energy transportation corridor analysis and selection in the 11 western states was addressed in Section 368(a) of EPAct, while direction for energy transportation corridor analysis and selection in all other states was addressed under Section 368(b) of EPAct. It was clearly the priority of Congress to conduct corridor location studies and designation first on federal lands in the western states. Under Section 368(a), the Agencies produced a programmatic environmental impact statement (EIS), Designation of Energy Corridors on Federal Land in the 11 Western States (DOE and DOI 2008), that was used in part as the basis for designating more than 6,000 mi (9,656 km) of energy transportation corridors on federal land in 11 western states. Under Section 368(a) of EPAct, Congress clearly stated the Agencies needed to (1) designate energy transportation corridors on federal land, (2) conduct the necessary environmental review of the designated corridors, and (3) incorporate the designated corridors into the appropriate land use plans. Congressional direction under Section 368(b) of EPAct differs from that provided under Section 368(a). Specifically, Section 368(b) requires the secretaries of the Agencies, in consultation with the Federal Energy Regulatory Commission (FERC), affected utility industries, and other interested persons, to jointly: (1) Identify corridors for oil, gas, and hydrogen pipelines and electricity transmission and distribution facilities on federal land in states other than the 11 western states identified under Section 368(a) of EPAct, and (2) Schedule prompt action to identify, designate, and incorporate the corridors into the applicable land use plans. While Section 368(a) clearly directs designation as a necessary first step for energy transportation corridors in the 11 western states, Section 368(b) directs the Agencies to first identify corridor

  20. Evaluation of erosion and cover re-establishment following site preparation on east Texas forest lands

    E-Print Network [OSTI]

    Blume, Timothy Allen

    1979-01-01T23:59:59.000Z

    damage following mechanical site prepara- tion. (uantitative data characterizing the rate of recovery of soi. l protective cover, used in combination with erosion data, gives planners and forest managers an indication of the total impact of mechanical...EVALUATION OF EROSION AND COVER RE-ESTABLISHMENT 1'OLLOWING SITE PREPARATION ON EAST TEXAS FOREST LANDS A Thesis by Timothy Allen Blume Submitted to the Graduate College of Texas A&M Uniuersity in partial fullfillment of the requir ment...

  1. JOURNAL OF GEOPHYSICAL RESEARCH, VOL. ???, XXXX, DOI:10.1029/, Evaluation of 'all weather' microwave-derived land

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. ???, XXXX, DOI:10.1029/, Evaluation of 'all weather measurements over land are still limited, especially under cloudy con- ditions. Ts estimates from infrared water vapor, cloud liquid wa- ter, and surface emissivities over land from Special Sensor Microwave / Im

  2. Neutron Cross-Section Evaluations for {sup 238}U up to 150 MeV

    SciTech Connect (OSTI)

    Ignatyuk, A.V. [Institute of Physics and Power Engineering, Obninsk (Russian Federation); Lunev, V.P. [Institute of Physics and Power Engineering, Obninsk (Russian Federation); Shubin, Yu.N. [Institute of Physics and Power Engineering, Obninsk (Russian Federation); Gai, E.V. [Institute of Physics and Power Engineering, Obninsk (Russian Federation); Titarenko, N.N. [Institute of Physics and Power Engineering, Obninsk (Russian Federation); Ventura, A. [ENEA (Italy); Gudowski, W. [Royal Institute of Technology, Stockholm (Sweden)

    2000-11-15T23:59:59.000Z

    Investigations aimed at the development of neutron cross-section evaluations for {sup 238}U at intermediate energies are briefly described. The coupled-channels optical model is used to calculate the neutron total, the elastic and reaction cross sections, and the elastic-scattering angular distributions. Evaluations of the neutron and charged particle emission cross sections and of the fission cross sections are obtained on the basis of the statistical description that includes direct, preequilibrium, and equilibrium mechanisms of nuclear reactions. The Kalbach parameterization of angular distributions is used to describe the double-differential cross sections of emitted neutrons and charged particles in ENDF/B-VI format.

  3. Cross Section Evaluation Group shielding benchmark compilation. Volume II

    SciTech Connect (OSTI)

    Rose, P.F.; Roussin, R.W.

    1983-12-01T23:59:59.000Z

    At the time of the release of ENDF/B-IV in 1974, the Shielding Subcommittee had identified a series of 12 shielding data testing benchmarks (the SDT series). Most were used in the ENDF/B-IV data testing effort. A new concept and series was begun in the interim, the so-called Shielding Benchmark (SB) series. An effort was made to upgrade the SDT series as far as possible and to add new SB benchmarks. In order to be designated in the SB class, both an experiment and analysis must have been performed. The current recommended benchmark for Shielding Data Testing are listed. Until recently, the philosophy has been to include only citations to published references for shielding benchmarks. It is now our intention to provide adequate information in this volume for proper analysis of any new benchmarks added to the collection. These compilations appear in Section II, with the SB5 Fusion Reactor Shielding Benchmark as the first entry.

  4. New Neutron Cross-Section Measurements from ORELA and New Resonance Parameter Evaluations

    SciTech Connect (OSTI)

    Guber, Klaus H [ORNL; Koehler, Paul [ORNL; Wiarda, Dorothea [ORNL; Harvey, John A [ORNL; Valentine, Timothy E [ORNL; Sayer, Royce O [ORNL; Leal, Luiz C [ORNL; Larson, Nancy M [ORNL; Bigelow, Tim S [ORNL

    2008-01-01T23:59:59.000Z

    A series of new measurements has been undertaken in response to deficiencies identified in nuclear data libraries of crucial importance to the Nuclear Criticality Safety Program. New data and evaluations, including covariances, are required for several materials found in mixtures with uranium. For this purpose we performed neutron capture and total cross-section measurements on natural potassium, {sup 41}K, and manganese.

  5. Evaluating next-generation environmental policy tools : adaptive management in the Bureau of Land Management

    E-Print Network [OSTI]

    Brandenburg, Peter (Peter J.)

    2005-01-01T23:59:59.000Z

    The U.S. Bureau of Land Management (BLM) has begun to embrace the concept adaptive management as an alternative to traditional natural resource planning and management models. Adaptive management may provide BLM managers ...

  6. A unified Monte Carlo approach to fast neutron cross section data evaluation.

    SciTech Connect (OSTI)

    Smith, D.; Nuclear Engineering Division

    2008-03-03T23:59:59.000Z

    A unified Monte Carlo (UMC) approach to fast neutron cross section data evaluation that incorporates both model-calculated and experimental information is described. The method is based on applications of Bayes Theorem and the Principle of Maximum Entropy as well as on fundamental definitions from probability theory. This report describes the formalism, discusses various practical considerations, and examines a few numerical examples in some detail.

  7. Evaluating runoff simulations from the Community Land Model 4.0 using observations from flux towers and a mountainous watershed

    E-Print Network [OSTI]

    Land Model (CLM) is the land component within the Community Earth System Model (CESM) (formerly known earth system model b

  8. Methods and procedures for evaluation of neutron-induced activation cross sections

    SciTech Connect (OSTI)

    Gardner, M.A.

    1981-09-01T23:59:59.000Z

    One cannot expect measurements alone to supply all of the neutron-induced activation cross-section data required by the fission reactor, fusion reactor, and nuclear weapons development communities, given the wide ranges of incident neutron energies, the great variety of possible reaction types leading to activation, and targets both stable and unstable. Therefore, the evaluator must look to nuclear model calculations and systematics to aid in fulfilling these cross-section data needs. This review presents some of the recent developments and improvements in the prediction of neutron activation cross sections, with specific emphasis on the use of empirical and semiempirical methods. Since such systematics require much less nuclear informaion as input and much less computational time than do the multistep Hauser-Feshbach codes, they can often provide certain cross-section data at a sufficient level of accuracy within a minimum amount of time. The cross-section information that these systematics can and cannot provide and those cases in which they can be used most reliably are discussed.

  9. Evaluation of In-House Windrow Composting as a Poultry Litter Treatment Prior to Land Application

    E-Print Network [OSTI]

    Winkler, Scott

    2013-08-05T23:59:59.000Z

    . An experiment was conducted to determine the effectiveness of in-house windrow composting (IWC) of poultry litter prior to land application in terms of bacteria, odors and nutrients compared to untreated (fresh) litter. In the second part of the research...

  10. Evaluation of Methods to Assess and Reduce Bacterial Contamination of Surface Water from Grazing Lands

    E-Print Network [OSTI]

    Wagner, Kevin

    2012-10-19T23:59:59.000Z

    assessed the ability of alternative water supplies and grazing management to reduce E. coli loading from cattle and evaluated the ability of quantitative polymerase chain reaction analysis of total and bovine-associated Bacteroides markers (AllBac and Bo...

  11. An evaluation of the safety and utilization of short passing sections

    E-Print Network [OSTI]

    Jones, James Robert

    1970-01-01T23:59:59.000Z

    AND RECO~NDATIONS Summary of Findings Conclusions Recommendations 45 46 46 REFERENCES VITA 50 vi LI ST OF TAB LE S Table Page l. Observed Pass Occurrences, 400-Foot Passing Section (Site P-4) 21 2. Observed Pass Occurrences, 640-Foot Passing... Section (Site P-5) 22 3. Observed Pass Occurrences, 880-Foot Passing Section (Site P-6) 23 4. Pass Acceptance Rates 25 5. Traffic Utilization of Short Passing Sections 30 LIST OF FIGURES Figure 1. Plan and Profile Views, 400-Foot Passing Section 2...

  12. R-Matrix Evaluation of {sup 16}O neutron cross sections up to 6.3 MeV

    SciTech Connect (OSTI)

    Sayer, R.O.; Leal, L.C.; Larson, N.M.; Spencer, R.R.; and Wright, R.Q.

    2000-08-01T23:59:59.000Z

    In this paper the authors describe an evaluation of {sup 16}O neutron cross sections in the resolved resonance region with the multilevel Reich-Moore R-matrix formalism. Resonance analyses were performed with the computer code SAMMY [LA98] which utilizes Bayes' method, a generalized least squares technique.

  13. R-Matrix Evaluation of 16O Neutron Cross Sections up to 6.3 MeV

    SciTech Connect (OSTI)

    Sayer, R.O.

    2000-08-21T23:59:59.000Z

    In this paper we describe an evaluation of {sup 16}O neutron cross sections in the resolved resonance region with the multilevel Reich-Moore R-matrix formalism. Resonance analyses were performed with the computer code SAMMY [LA98] which utilizes Bayes method, a generalized least squares technique. Over the years the nuclear community has developed a collection of evaluated nuclear data for applications in thermal, fast reactor, and fusion systems. However, typical neutron spectra in criticality safety applications are different from the spectra relevant to thermal, fast reactor, and fusion systems. In fact, the neutron spectra important for these non-reactor systems appear to peak in the epithermal energy range. Nuclear data play a major role in the calculation of the criticality safety margins for these systems. A thorough examination of how the present collection of nuclear data evaluations behaves in criticality safety calculations is needed. Many older evaluations will probably need to be revised, and new evaluations will be needed. Oxygen is an important element in criticality safety applications where oxides are present in significant abundance. The existing ENDF/B-VI.5 evaluation is expressed in terms of point-wise cross sections derived from the analysis of G. Hale [HA91]. Unfortunately such an evaluation is not directly useful for resonance analysis of data from samples in which oxygen is combined with other elements; for that purpose, Reich-Moore resonance parameters are needed. This paper addresses the task of providing those parameters. In the following sections we discuss the data, resonance analysis procedure, and results.

  14. Evaluation of the ?n???p differential cross section in the ?-isobar region

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Briscoe, W. J.; Kudryavtsev, A. E.; Pedroni, P.; Strakovsky, I. I.; Tarasov, V. E.; Workman, R. L.

    2012-12-01T23:59:59.000Z

    Differential cross sections for the process ?n???p have been extracted from MAMI-B measurements of ?d???pp, accounting for final-state interaction effects, using a diagrammatic technique taking into account the NN and ?N final-state interaction amplitudes. Results are compared to previous measurements of the inverse process, ??p?n?, and recent multipole analyses.

  15. MEASUREMENT AND BASIC PHYSICS COMMITTEE OF THE U.S. CROSS-SECTION EVALUATION WORKING GROUP, ANNUAL REPORT 1997

    SciTech Connect (OSTI)

    SMITH,D.L.; MCLANE,V.

    1998-10-20T23:59:59.000Z

    The Cross-Section Evaluation Working Group (CSEWG) is a long-standing committee charged with responsibility for organizing and overseeing the US cross-section evaluation effort. Its main product is the official US evaluated nuclear data file, ENDF. The current version of this file is Version VI. All evaluations included in ENDF, as well as periodic modifications and updates to the file, are reviewed and approved by CSEWG and issued by the US Nuclear Data Center, Brookhaven National Laboratory. CSEWG is comprised of volunteers from the US nuclear data community who possess expertise in evaluation methodologies and who collectively have been responsible for producing most of the evaluations included in ENDF. In 1992 CSEWG added the Measurements Committee to its list of standing committees and subcommittees. This action was based on a recognition of the importance of experimental data in the evaluation process as well as the realization that measurement activities in the US were declining at an alarming rate and needed considerable encouragement to avoid the loss of this resource. The mission of the Committee is to maintain contact with experimentalists in the US and to encourage them to contribute to the national nuclear data effort. Improved communication and the facilitation of collaborative activities are among the tools employed in achieving this objective. In 1994 the Committee was given an additional mission, namely, to serve as an interface between the applied interests represented in CSEWG and the basic nuclear science community. Accordingly, its name was changed to the Measurement and Basic Physics Committee. The present annual report is the third such document issued by the Committee. It contains voluntary contributions from several laboratories in the US. Their contributions were submitted to the Chairman for compilation and editing.

  16. Measurement and Basic Physics Committee of the U.S. Cross-Section Evaluation Working Group annual report 1997

    SciTech Connect (OSTI)

    Smith, D.L. [ed.] [comp.] [Argonne National Lab., IL (United States)] [ed.; comp.; Argonne National Lab., IL (United States); McLane, V. [ed.] [comp.] [Brookhaven National Lab., Upton, NY (United States)] [ed.; comp.; Brookhaven National Lab., Upton, NY (United States)

    1997-10-01T23:59:59.000Z

    The Cross-Section Evaluation Working Group (CSEWG) is a long-standing committee charged with responsibility for organizing and overseeing the US cross-section evaluation effort. It`s main product is the official US evaluated nuclear data file, ENDF. In 1992 CSEWG added the Measurements Committee to its list of standing committees and subcommittees. This action was based on a recognition of the importance of experimental data in the evaluation process as well as the realization that measurement activities in the US were declining at an alarming rate and needed considerable encouragement to avoid the loss of this resource. The mission of the Committee is to maintain contact with experimentalists in the Us and to encourage them to contribute to the national nuclear data effort. Improved communication and the facilitation of collaborative activities are among the tools employed in achieving this objective. In 1994 the Committee was given an additional mission, namely, to serve as an interface between the applied interests represented in CSEWG and the basic nuclear science community. Accordingly, its name was changed to the Measurement and Basic Physics Committee. The present annual report is the third such document issued by the Committee. It contains voluntary contributions from several laboratories in the US. Their contributions were submitted to the Chairman for compilation and editing.

  17. Minerals on School and Public Lands

    Broader source: Energy.gov [DOE]

    The Commissioner of School and Public Lands is authorized to lease the mineral interests of such lands for development. Section 5-7 of the SD Codified Laws describes provisions for the leasing of...

  18. Preliminary Evaluation of the Impact of the Section 1603 Treasury Grant Program on Renewable Energy Deployment in 2009

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan; Darghouth, Naim

    2010-03-31T23:59:59.000Z

    Federal support for renewable energy deployment in the United States has traditionally been delivered primarily through tax benefits, including the production tax credit ('PTC') in Section 45 of the U.S. tax code, investment tax credits ('ITC') in Sections 25D and 48, and accelerated tax depreciation in Section 168. Many renewable power project developers are unable to use the majority of these tax benefits directly or immediately, however, and have therefore often relied on third-party 'tax equity' investors for the necessary investment capital in order to monetize the available tax benefits. As has been well-publicized, most of these tax equity investors were hit hard by the global financial crisis that unfolded in the last months of 2008 and, as a result, most either withdrew from the renewable power market at that time or reduced their available investment capital. This left a significant financing gap beginning in late 2008, and placed at some risk the continued near-term growth of renewable energy supply in the U.S. In recognition of these developments, the U.S. Congress passed two stimulus bills - The Energy Improvement and Extension Act ('the Extension Act') in October 2008 and The American Recovery and Reinvestment Act ('the Recovery Act') in February 2009 - parts of which were intended to address the growing shortage of finance for renewable power projects. Most notably, Section 1603 of the Recovery Act enables qualifying commercial renewable energy projects to choose between the Section 45 PTC, the Section 48 ITC, or a cash grant of equal value to the Section 48 ITC (i.e., 30% of the project's eligible basis in most cases). By giving developers the option to receive a 30% cash grant (administered by the U.S. Department of the Treasury) in lieu of either the ITC or the PTC, Congress hoped to 'temporarily fill the gap created by the diminished investor demand for tax credits,' and thereby achieve 'the near term goal of creating and retaining jobs - as well as the long-term benefit of expanding the use of clean and renewable energy and decreasing our dependency on non-renewable energy sources' (U.S. Department of the Treasury 2009). More than a year has now passed since the Recovery Act became law. Although the Section 1603 program has been operational for only part of that time - roughly eight months - the program faces a looming milestone in just another nine months. Specifically, in order to qualify for the Section 1603 grant, eligible projects must have commenced construction by the end of 2010. With this deadline approaching, the Committee on Ways and Means of the U.S. House of Representatives requested that Lawrence Berkeley National Laboratory evaluate the effectiveness of the Section 1603 grant program to date (see Attachment 1), focusing on specific elements of the program that were subsequently agreed upon by Committee staff, the U.S. Department of Energy, and Berkeley Lab. This report responds to the Committee's request. The evaluation focuses primarily on the commercial wind power sector, for two reasons: (1) commercial wind power projects had received nearly 86% of all grant money awarded as of March 1, 2010; and (2) there is substantially more market-related information available for the commercial wind power sector than there is for other renewable power sectors, thereby facilitating analysis. Despite the focus on wind power, this initial analysis does endeavor to provide relevant information on other technologies, and in particular geothermal (the second-largest recipient of grant money), where possible.

  19. Improvements in Low-Frequency, Ultrasonic Phased-Array Evaluation for Thick Section Cast Austenitic Stainless Steel Piping Components

    SciTech Connect (OSTI)

    Anderson, Michael T.; Crawford, Susan L.; Diaz, Aaron A.; Moran, Traci L.

    2010-12-01T23:59:59.000Z

    Research is being conducted for the U.S. Nuclear Regulatory Commission (NRC) at the Pacific Northwest National Laboratory (PNNL) to assess the effectiveness and reliability of advanced nondestructive examination (NDE) methods for the inspection of light water reactor (LWR) components. A primary objective of this work is to evaluate various NDE methods to assess their ability to detect, localize, and size cracks in coarse-grained steel components. This particular study focused on the evaluation of custom-designed, low-frequency (500 kHz) phased-array (PA) probes for examining welds in thick-section cast austenitic stainless steel (CASS) piping. In addition, research was conducted to observe ultrasonic sound field propagation effects from known coarse-grained microstructures found in parent CASS material. The study was conducted on a variety of thick-wall, coarse-grained CASS specimens that were previously inspected by an older generation 500-kHz PA-UT probe and acquisition instrument configuration. This comparative study describes the impact of the new PA probe design on flaw detection and sizing in a low signal-to-noise environment. The set of Pressurized Water Reactor Owners Group (PWROG) CASS specimens examined in this study are greater than 50.8-mm (2.0-in.) thick with documented flaws and microstructures. These specimens are on loan to PNNL from the Electric Power Research Institute (EPRI) NDE Center in Charlotte, North Carolina. The flaws contained within these specimens are thermal fatigue cracks (TFC) or mechanical fatigue cracks (MFC) and range from 13% to 42% in through-wall extent. In addition, ultrasonic signal continuity was evaluated on two CASS parent material ring sections by examining the edge-of-pipe response (corner geometry) for regions of signal loss.

  20. CSEWG SYMPOSIUM, A CSWEG RETROSPECTIVE. 35TH ANNIVERSARY CROSS SECTION EVALUATION WORKING GROUP, NOV. 5, 2001, BROOKHAVEN NATIONAL LABORATORY.

    SciTech Connect (OSTI)

    DUNFORD, C.; HOLDEN, N.; PEARLSTEIN, S.

    2001-11-05T23:59:59.000Z

    This publication has been prepared to record some of the history of the Cross Section Evaluation Working Group (CSEWG). CSEWG is responsible for creating the evaluated nuclear data file (ENDF/B) which is widely used by scientists and engineers who are involved in the development and maintenance of applied nuclear technologies. This organization has become the model for the development of nuclear data libraries throughout the world. The data format (ENDF) has been adopted as the international standard. On November 5, 2001, a symposium was held at Brookhaven National Laboratory to celebrate the 50 th meeting of the CSEWG organization and the 35 th anniversary of its first meeting in November 1966. The papers presented in this volume were prepared by present and former CSEWG members for presentation at the November 2001 symposium. All but two of the presentations are included. I have included an appendix to list all of the CSEWG members and their affiliations, which has been compiled from the minutes of each of the CSEWG meetings. Minutes exist for all meetings except the 4 th meeting held in January 1968. The list includes 348 individuals from 71 organizations. The dates for each of the 50 CSEWG meetings are listed. The committee structure and chairmen of all committees and subcommittees are also included in the appendix. This volume is dedicated to three individuals whose foresight and talents made CSEWG possible and successful. They are Henry Honeck who lead the effort to develop the ENDF format and the CSEWG system, Ira Zartman, the Atomic Energy Commission program manager who provided the programmatic direction and support, and Sol Pearlstein who led the development of the CESWG organization and the ENDF/B evaluated nuclear data library.

  1. Evaluated cross section libraries and kerma factors for neutrons up to 100 MeV on {sup 16}O and {sup 14}N

    SciTech Connect (OSTI)

    Chadwick, M.B.; Young, P.G.

    1995-07-01T23:59:59.000Z

    We present evaluations of the interaction of 20 to 100 MeV neutrons with oxygen and nitrogen nuclei, which follows on from our previous work on carbon. Our aim is to accurately represent integrated cross sections, inclusive emission spectra, and kerma factors, in a data library which can be used in radiation transport calculations. We apply the FKK-GNASH nuclear model code, which includes Hauser-Feshbach, preequilibrium, and direct reaction mechanisms, and use experimental measurements to optimize the calculations. We determine total, elastic, and nonelastic cross sections, angle-energy correlated emission spectra, for light ejectiles with A{<=}4 and gamma-rays, and average energy depositions. Our results for charged-particle emission spectra agree well with the measurements of Subramanian et al.. We compare kerma factors derived from our evaluated cross sections with experimental data, providing an integral benchmarking of our work. The evaluated data libraries are available as electronic files.

  2. Energy and land use

    SciTech Connect (OSTI)

    Not Available

    1981-12-01T23:59:59.000Z

    This report addresses the land use impacts of past and future energy development and summarizes the major federal and state legislation which influences the potential land use impacts of energy facilities and can thus influence the locations and timing of energy development. In addition, this report describes and presents the data which are used to measure, and in some cases, predict the potential conflicts between energy development and alternative uses of the nation's land resources. The topics section of this report is divided into three parts. The first part describes the myriad of federal, state and local legislation which have a direct or indirect impact upon the use of land for energy development. The second part addresses the potential land use impacts associated with the extraction, conversion and combustion of energy resources, as well as the disposal of wastes generated by these processes. The third part discusses the conflicts that might arise between agriculture and energy development as projected under a number of DOE mid-term (1990) energy supply and demand scenarios.

  3. The CSIRO Mk3L climate system model v1.0 coupled to the CABLE land surface scheme v1.4b: evaluation of the control climatology

    SciTech Connect (OSTI)

    Mao, Jiafu [ORNL; Phipps, S.J. [University of New South Wales; Pitman, A.J. [University of New South Wales; Wang, Yingping [CSIRO Marine and Atmospheric Research; Abramowitz, G. [University of New South Wales; Pak, B. [CSIRO Marine and Atmospheric Research

    2011-01-01T23:59:59.000Z

    The CSIRO Mk3L climate system model, a reduced-resolution coupled general circulation model, has previously been described in this journal. The model is configured for millennium scale or multiple century scale simulations. This paper reports the impact of replacing the relatively simple land surface scheme that is the default parameterisation in Mk3L with a sophisticated land surface model that simulates the terrestrial energy, water and carbon balance in a physically and biologically consistent way. An evaluation of the new model s near-surface climatology highlights strengths and weaknesses, but overall the atmospheric variables, including the near-surface air temperature and precipitation, are simulated well. The impact of the more sophisticated land surface model on existing variables is relatively small, but generally positive. More significantly, the new land surface scheme allows an examination of surface carbon-related quantities including net primary productivity which adds significantly to the capacity of Mk3L. Overall, results demonstrate that this reduced-resolution climate model is a good foundation for exploring long time scale phenomena. The addition of the more sophisticated land surface model enables an exploration of important Earth System questions including land cover change and abrupt changes in terrestrial carbon storage.

  4. Calculation and evaluation of cross-sections for p+184W reactions up to 200MeV

    E-Print Network [OSTI]

    Jianping Sun; Zhengjun Zhang; Yinlu Han

    2015-02-06T23:59:59.000Z

    The cross-sections of proton-induced reactions on 184W at incident proton energy below 200MeV are calculated and analyzed including reaction cross-sections, elastic scattering angular distributions, energy spectra and double differential cross section. Nuclear theoretical models which integrate the optical model, distorted born wave approximation theory, the intra-nuclear cascade model, the exciton model, the Hauser-Feshbach theory and the evaporation model are used in the reactions. Theoretical results are compared with the existent experimental data.

  5. APOLLO MANNED LUNAR LANDING SCIENTIFIC EXPERIMENT PROPOSAL

    E-Print Network [OSTI]

    Rathbun, Julie A.

    APOLLO MANNED LUNAR LANDING SCIENTIFIC EXPERIMENT PROPOSAL GEOLOGICAL FIELD INVESTIGATION IN EARLY APOLLO MANNED LUNAR LANDING MISSIONS Abstract and Techi~icalSection E. M.Shoemaker, U. S-investigator November 1965 #12;APOLLO MANNED 1,UNAR I,ANDING SCIENTIFIC EXPERIMENT PROPOSAL GEOLOGICAL FIETADINi

  6. RESULTS FOR THE INTERMEDIATE-SPECTRUM ZEUS BENCHMARK OBTAINED WITH NEW 63,65Cu CROSS-SECTION EVALUATIONS

    SciTech Connect (OSTI)

    Sobes, Vladimir [ORNL] [ORNL; Leal, Luiz C [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    The four HEU, intermediate-spectrum, copper-reflected Zeus experiments have shown discrepant results between measurement and calculation for the last several major releases of the ENDF library. The four benchmarks show a trend in reported C/E values with increasing energy of average lethargy causing fission. Recently, ORNL has made improvements to the evaluations of three key isotopes involved in the benchmark cases in question. Namely, an updated evaluation for 235U and evaluations of 63,65Cu. This paper presents the benchmarking results of the four intermediate-spectrum Zeus cases using the three updated evaluations.

  7. Land Use and Land Cover Change

    SciTech Connect (OSTI)

    Brown, Daniel; Polsky, Colin; Bolstad, Paul V.; Brody, Samuel D.; Hulse, David; Kroh, Roger; Loveland, Thomas; Thomson, Allison M.

    2014-05-01T23:59:59.000Z

    A contribution to the 3rd National Climate Assessment report, discussing the following key messages: 1. Choices about land-use and land-cover patterns have affected and will continue to affect how vulnerable or resilient human communities and ecosystems are to the effects of climate change. 2. Land-use and land-cover changes affect local, regional, and global climate processes. 3. Individuals, organizations, and governments have the capacity to make land-use decisions to adapt to the effects of climate change. 4. Choices about land use and land management provide a means of reducing atmospheric greenhouse gas levels.

  8. EIS-0406: Designation of Energy Corridors on Federal Land in 39 States

    Broader source: Energy.gov [DOE]

    DOE has canceled this EIS, which was to evaluate the environmental impacts of the designation, under Section 368(b) of the Energy Policy Act of 2005, of energy corridors on federal lands in 39 nonwestern states. The corridors, which were to be jointly identified by the Secretaries of Agriculture, Commerce, Defense, Energy, and the Interior, might have been used for oil, gas, and hydrogen pipelines and electricity transmission and distribution facilities.

  9. Downscaling Global Land Cover Projections from an Integrated Assessment Model for Use in Regional Analyses: Results and Evaluation for the US from 2005 to 2095

    SciTech Connect (OSTI)

    West, Tristram O.; Le Page, Yannick LB; Huang, Maoyi; Wolf, Julie; Thomson, Allison M.

    2014-06-05T23:59:59.000Z

    Projections of land cover change generated from Integrated Assessment Models (IAM) and other economic-based models can be applied for analyses of environmental impacts at subregional and landscape scales. For those IAM and economic models that project land use at the sub-continental or regional scale, these projections must be downscaled and spatially distributed prior to use in climate or ecosystem models. Downscaling efforts to date have been conducted at the national extent with relatively high spatial resolution (30m) and at the global extent with relatively coarse spatial resolution (0.5 degree).

  10. Primitive Land Plants 37 PRIMITIVE LAND PLANTS

    E-Print Network [OSTI]

    Koptur, Suzanne

    Primitive Land Plants 37 PRIMITIVE LAND PLANTS These are the plants that were present soon after land was colonized, over 400 mil- lion years ago. A few plants living today are closely related to those ancient plants, and we often call them "living fossils". Two major lineages of plants evolved

  11. Tables and graphs of electron-interaction cross sections from 10 eV to 100 GeV derived from the LLNL Evaluated Electron Data Library (EEDL), Z = 1--100

    SciTech Connect (OSTI)

    Perkins, S.T.; Cullen, D.E. (Lawrence Livermore National Lab., CA (United States)); Seltzer, S.M. (National Inst. of Standards and Technology (NML), Gaithersburg, MD (United States). Center for Radiation Research)

    1991-11-12T23:59:59.000Z

    Energy-dependent evaluated electron interaction cross sections and related parameters are presented for elements H through Fm (Z = 1 to 100). Data are given over the energy range from 10 eV to 100 GeV. Cross sections and average energy deposits are presented in tabulated and graphic form. In addition, ionization cross sections and average energy deposits for each shell are presented in graphic form. This information is derived from the Livermore Evaluated Electron Data Library (EEDL) as of July, 1991.

  12. New Technologies to Reclaim Arid Lands User's Manual

    SciTech Connect (OSTI)

    W. K. Ostler

    2002-10-01T23:59:59.000Z

    Approximately 70 percent of all U.S. military training lands are located in arid and semi-arid areas. Training activities in such areas frequently adversely affect vegetation, damaging plants and reducing the resilience of vegetation to recover once disturbed. Fugitive dust resulting from a loss of vegetation creates additional problems for human health, increasing accidents due to decreased visibility, and increasing maintenance costs for roads, vehicles, and equipment. Under conventional technologies to mitigate these impacts, it is estimated that up to 35 percent of revegetation projects in arid areas will fail due to unpredictable natural environmental conditions, such as drought, and reclamation techniques that were inadequate to restore vegetative cover in a timely and cost-effective manner. New reclamation and restoration techniques are needed in desert ranges to help mitigate the adverse effects of military training and other activities to arid-land environments. In 1999, a cooperative effort between the U.S. Department of Energy (DOE), the US. Department of Defense (DoD), and selected university scientists was undertaken to focus on mitigating military impacts in arid lands. As arid lands are impacted due to DoD and DOE activities, biological and soil resources are gradually lost and the habitat is altered. A conceptual model of that change in habitat quality is described for varying levels of disturbance in the Mojave Desert. As the habitat quality degrades and more biological and physical resources are lost from training areas, greater costs are required to return the land to sustainable levels. The purpose of this manual is to assist land managers in recognizing thresholds associated with habitat degradation and provide reclamation planning and techniques that can reduce the costs of mitigation for these impacted lands to ensure sustainable use of these lands. The importance of reclamation planning is described in this manual with suggestions about establishing project objectives, scheduling, budgeting, and selecting cost-effective techniques. Reclamation techniques include sections describing: (1) erosion control (physical, chemical, and biological), (2) site preparation, (3) soil amendments, (4) seeding, (5) planting, (6) grazing and weed control, (7) mulching, (8) irrigation, and (9) site protection. Each section states the objectives of the technique, the principles, an in-depth look at the techniques, and any special considerations as it relates to DoD or DOE lands. The need for monitoring and remediation is described to guide users in monitoring reclamation efforts to evaluate their cost-effectiveness. Costs are provided for the proposed techniques for the major deserts of the southwestern U.S. showing the average and range of costs. A set of decision tools are provided in the form of a flow diagram and table to guide users in selecting effective reclamation techniques to achieve mitigation objectives. Recommendations are provided to help summarize key reclamation principles and to assist users in developing a successful program that contributes to sustainable uses of DoD and DOE lands. The users manual is helpful to managers in communicating to installation management the needs and consequences of training decisions and the costs required to achieve successful levels of sustainable use. This users manual focuses on the development of new reclamation techniques that have been implemented at the National Training Center at Fort Irwin, California, and are applicable to most arid land reclamation efforts.

  13. Land Use Change in theLand Use Change in the United States:United States

    E-Print Network [OSTI]

    Gray, Matthew

    . This would require a 10-fold increase in biomass supply, . . . how much land? Future Biofuel Production Flexibility Program for Bioenergy Producers Section 9011: Biomass Crop Assistance Program Section 9012: Forest of fuel a year; 30% would be about 95 billion gallons, which would require 1 billion tons of biomass

  14. The Carbon-Land Model Intercomparison Project (C-LAMP): A Model-Data Comparison System for Evaluation of Coupled Biosphere-Atmosphere Models

    SciTech Connect (OSTI)

    Hoffman, Forrest M [ORNL; Randerson, Jim [University of California, Irvine; Thornton, Peter E [ORNL; Mahowald, Natalie [Cornell University; Bonan, Gordon [National Center for Atmospheric Research (NCAR); Running, Steven [University of Montana, Missoula; Fung, Inez [University of California, Berkeley

    2009-01-01T23:59:59.000Z

    The need to capture important climate feebacks in general circulation models (GCMs) has resulted in new efforts to include atmospheric chemistry and land and ocean biogeochemistry into the next generation of production climate models, now often referred to as Earth System Models (ESMs). While many terrestrial and ocean carbon models have been coupled to GCMs, recent work has shown that such models can yield a wide range of results, suggesting that a more rigorous set of offline and partially coupled experiments, along with detailed analyses of processes and comparisons with measurements, are warranted. The Carbon-Land Model Intercomparison Project (C-LAMP) provides a simulation protocol and model performance metrics based upon comparisons against best-available satellite- and ground-based measurements (Hoffman et al., 2007). C-LAMP provides feedback to the modeling community regarding model improvements and to the measurement community by suggesting new observational campaigns. C-LAMP Experiment 1 consists of a set of uncoupled simulations of terrestrial carbon models specifically designed to examine the ability of the models to reproduce surface carbon and energy fluxes at multiple sites and to exhibit the influence of climate variability, prescribed atmospheric carbon dioxide (CO{sub 2}), nitrogen (N) deposition, and land cover change on projections of terrestrial carbon fluxes during the 20th century. Experiment 2 consists of partially coupled simulations of the terrestrial carbon model with an active atmosphere model exchanging energy and moisture fluxes. In all experiments, atmospheric CO{sub 2} follows the prescribed historical trajectory from C{sup 4}MIP. In Experiment 2, the atmosphere model is forced with prescribed sea surface temperatures (SSTs) and corresponding sea ice concentrations from the Hadley Centre; prescribed CO{sub 2} is radiatively active; and land, fossil fuel, and ocean CO{sub 2} fluxes are advected by the model. Both sets of experiments have been performed using two different terrestrial biogeochemistry modules coupled to the Community Land Model version 3 (CLM3) in the Community Climate System Model version 3 (CCSM3): The CASA model of Fung, et al., and the carbon-nitrogen (CN) model of Thornton. Comparisons against Ameriflus site measurements, MODIS satellite observations, NOAA flask records, TRANSCOM inversions, and Free Air CO{sub 2} Enrichment (FACE) site measurements, and other datasets have been performed and are described in Randerson et al. (2009). The C-LAMP diagnostics package was used to validate improvements to CASA and CN for use in the next generation model, CLM4. It is hoped that this effort will serve as a prototype for an international carbon-cycle model benchmarking activity for models being used for the Inter-governmental Panel on Climate Change (IPCC) Fifth Assessment Report. More information about C-LAMP, the experimental protocol, performance metrics, output standards, and model-data comparisons from the CLM3-CASA and CLM3-CN models are available at http://www.climatemodeling.org/c-lamp.

  15. School Land Board (Texas)

    Broader source: Energy.gov [DOE]

    The School Land Board oversees the use of land owned by the state or held in trust for use and benefit by the state or one of its departments, boards, or agencies. The Board is responsible for...

  16. Chesapeake Forest Lands (Maryland)

    Broader source: Energy.gov [DOE]

    The Chesapeake Forest Lands are most of the former land holdings of the Chesapeake Forest Products Company, which now includes more than 66,000 acres in five lower Eastern Shore counties. These...

  17. Land Reclamation Act (Missouri)

    Broader source: Energy.gov [DOE]

    It is the policy of the state to balance surface mining interests with the conservation of natural resources and land preservation. This Act authorizes the Land Reclamation Commission of the...

  18. SECTION B

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FY2015 is 200,000. SECTION V - PERFORMANCE REQUIREMENTS DEFINE COMPLETION: Specify Performance Elements and describe indicators of success (qualityprogress). Include...

  19. Section B

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    121 B-i PART I - THE SCHEDULE SECTION B - SUPPLIES OR SERVICES AND PRICESCOSTS TABLE OF CONTENTS B.1 TYPE OF CONTRACT - ITEMS BEING ACQUIRED ......

  20. SECTION E

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - E8 - Electrical load list panel schedules - E9 - Details sections - EC - 480V motor control center schedules - Setroute report identifying released cables and raceway WTP...

  1. Survey of Critical Wetlands Bureau of Land Management Lands

    E-Print Network [OSTI]

    Survey of Critical Wetlands Bureau of Land Management Lands South Park, Park County, Colorado 2003 Delivery Colorado State University #12;Survey of Critical Wetlands Bureau of Land Management Lands South

  2. Waste Isolation Pilot Plant, Land Management Plan

    SciTech Connect (OSTI)

    Not Available

    1993-12-01T23:59:59.000Z

    To reflect the requirement of section 4 of the Wastes Isolation Pilot Plant Land Withdrawal Act (the Act) (Public Law 102-579), this land management plan has been written for the withdrawal area consistent with the Federal Land Policy and Management Act of 1976. The objective of this document, per the Act, is to describe the plan for the use of the withdrawn land until the end of the decommissioning phase. The plan identifies resource values within the withdrawal area and promotes the concept of multiple-use management. The plan also provides opportunity for participation in the land use planning process by the public and local, State, and Federal agencies. Chapter 1, Introduction, provides the reader with the purpose of this land management plan as well as an overview of the Waste Isolation Pilot Plant. Chapter 2, Affected Environment, is a brief description of the existing resources within the withdrawal area. Chapter 3, Management Objectives and Planned Actions, describes the land management objectives and actions taken to accomplish these objectives.

  3. Geohydrologic evaluation for the 200 Area Effluent Treatment Facility State-Approved Land Disposal Site: Addendum to WAC 173-240 Engineering Report

    SciTech Connect (OSTI)

    Ballantyne, N.A.

    1993-08-01T23:59:59.000Z

    This document provides a geohydrologic evaluation for the disposal of liquid effluent from the 200 Area Effluent Treatment Facility (ETF) at the Hanford Site. This work forms an addendum to the engineering report that supports the completion of the ETF.

  4. Hierarchical Marginal Land Assessment for Land Use Planning

    SciTech Connect (OSTI)

    Kang, Shujiang [ORNL; Post, Wilfred M [ORNL; Wang, Dali [ORNL; Nichols, Dr Jeff A [ORNL; Bandaru, Vara Prasad [ORNL

    2013-01-01T23:59:59.000Z

    Marginal land provides an alternative potential for food and bioenergy production in the face of limited land resources; however, effective assessment of marginal lands is not well addressed. Concerns over environmental risks, ecosystem services and sustainability for marginal land have been widely raised. The objective of this study was to develop a hierarchical marginal land assessment framework for land use planning and management. We first identified major land functions linking production, environment, ecosystem services and economics, and then classified land resources into four categories of marginal land using suitability and limitations associated with major management goals, including physically marginal land, biologically marginal land, environmental-ecological marginal land, and economically marginal land. We tested this assessment framework in south-western Michigan, USA. Our results indicated that this marginal land assessment framework can be potentially feasible on land use planning for food and bioenergy production, and balancing multiple goals of land use management. We also compared our results with marginal land assessment from the Conservation Reserve Program (CRP) and land capability classes (LCC) that are used in the US. The hierarchical assessment framework has advantages of quantitatively reflecting land functions and multiple concerns. This provides a foundation upon which focused studies can be identified in order to improve the assessment framework by quantifying high-resolution land functions associated with environment and ecosystem services as well as their criteria are needed to improve the assessment framework.

  5. Section J

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary of Energy Advisory Board FollowSection 3161L-1 Section J

  6. Section J

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary of Energy Advisory Board FollowSection 3161L-1 Section JM-1

  7. Section Number:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary of Energy Advisory Board FollowSection 3161L-1 SectionIVV

  8. A framework for benchmarking land models

    SciTech Connect (OSTI)

    Luo, Yiqi; Randerson, J.; Abramowitz, G.; Bacour, C.; Blyth, E.; Carvalhais, N.; Ciais, Philippe; Dalmonech, D.; Fisher, J.B.; Fisher, R.; Friedlingstein, P.; Hibbard, Kathleen A.; Hoffman, F. M.; Huntzinger, Deborah; Jones, C.; Koven, C.; Lawrence, David M.; Li, D.J.; Mahecha, M.; Niu, S.L.; Norby, Richard J.; Piao, S.L.; Qi, X.; Peylin, P.; Prentice, I.C.; Riley, William; Reichstein, M.; Schwalm, C.; Wang, Y.; Xia, J. Y.; Zaehle, S.; Zhou, X. H.

    2012-10-09T23:59:59.000Z

    Land models, which have been developed by the modeling community in the past few decades to predict future states of ecosystems and climate, have to be critically evaluated for their performance skills of simulating ecosystem responses and feedback to climate change. Benchmarking is an emerging procedure to measure performance of models against a set of defined standards. This paper proposes a benchmarking framework for evaluation of land model performances and, meanwhile, highlights major challenges at this infant stage of benchmark analysis. The framework includes (1) targeted aspects of model performance to be evaluated, (2) a set of benchmarks as defined references to test model performance, (3) metrics to measure and compare performance skills among models so as to identify model strengths and deficiencies, and (4) model improvement. Land models are required to simulate exchange of water, energy, carbon and sometimes other trace gases between the atmosphere and land surface, and should be evaluated for their simulations of biophysical processes, biogeochemical cycles, and vegetation dynamics in response to climate change across broad temporal and spatial scales. Thus, one major challenge is to select and define a limited number of benchmarks to effectively evaluate land model performance. The second challenge is to develop metrics of measuring mismatches between models and benchmarks. The metrics may include (1) a priori thresholds of acceptable model performance and (2) a scoring system to combine datamodel mismatches for various processes at different temporal and spatial scales. The benchmark analyses should identify clues of weak model performance to guide future development, thus enabling improved predictions of future states of ecosystems and climate. The near-future research effort should be on development of a set of widely acceptable benchmarks that can be used to objectively, effectively, and reliably evaluate fundamental properties of land models to improve their prediction performance skills.

  9. SECTION M

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the statement to allow a meaningful evaluation by the Government of the potential effect of the interest on the performance of the statement of work. For any actual or...

  10. Program management plan for development, demonstration, testing, and evaluation efforts associated with Oak Ridge Reservation`s Land Disposal Restrictions Federal Facility Compliance Agreement

    SciTech Connect (OSTI)

    Conley, T.B.

    1994-04-01T23:59:59.000Z

    This program management plan covers the development, demonstration, testing, and evaluation efforts necessary to identify treatment methods for all the waste listed in Appendix B of the ORR`s LDR/FFCA as well as any new wastes which meet Appendix B criteria. To successfully identify a treatment method, at least a proof-of-principle level of understanding must be obtained: that is, the candidate processes must be demonstrated as effective in treating the wastes to the LDR; however, an optimized process is not required. Where applicable and deemed necessary and where the budgets will support them, pilot-scale demonstrations will be pursued. The overall strategy being adopted in this program will be composed of the following activities: Scoping of the study; characterization; development and screening of alternatives; treatability investigations; and detailed analysis of alternatives.

  11. Assessment of Biomass Resources from Marginal Lands in APEC Economies

    SciTech Connect (OSTI)

    Milbrandt, A.; Overend, R. P.

    2009-08-01T23:59:59.000Z

    The goal of this study is to examine the marginal lands in Asia-Pacific Economic Cooperation (APEC) economies and evaluate their biomass productivity potential. Twelve categories of marginal lands are identified using the Global Agro-Ecological Zones system of the United Nations Food and Agriculture Organization.

  12. SECTION J

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-EnergySEAB_Minutes_1_20_11.pdfSEB SecretariatJ-1 SECTION J

  13. SECTION J

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-EnergySEAB_Minutes_1_20_11.pdfSEB SecretariatJ-1 SECTION JK-1

  14. Analysis of the approximations applied in the continuum-distorted-wave-eikonal-initial-state theory for the evaluation of ionization cross sections: Post-prior discrepancy, axial symmetry, and ion-ion interaction

    SciTech Connect (OSTI)

    Lopez, S. D.; Garibotti, C. R. [CONICET and Centro Atomico Bariloche, 8400 S.C. de Bariloche (Argentina); Fiori, M. [Departamento de Fisica, Universidad Nacional de Salta, 4400 Salta (Argentina)

    2011-03-15T23:59:59.000Z

    When the continuum distorted wave with eikonal initial state (CDW-EIS) [D. S. Crothers and J. F. McCann, J. Phys B 16, 3229 (1983)] theory is applied to the evaluation of ionization cross sections, many additional approximations are assumed. However, usually, the influence of these approximations is not clear. Aiming to estimate them, we compare the differential and total cross sections obtained with diverse approximations for ionization of He atoms by proton impact. We analyze the post-prior discrepancy, which depends on the perturbative Hamiltonian applied in the scattering amplitude. We study the dependence of the cross sections on the description of the initial and final states. For this purpose, we use the 1Z and 5Z variational and numerical Optimized Potential Model (OPM) [J. D. Talman, Comput. Phys. Commun. 54, 85 (1989)] bound states for the initial target state, and for the final target state we set Coulomb waves with proper effective charges or the continuum state of an OPM potential model. The cross sections resulting from OPM post and prior versions are identical and show excellent agreement with experimental data in each case. Nevertheless, the cross section derived by the prior CDW-EIS, 5Z initial wave, and corresponding continuum state gives comparable results, requiring shorter computational work. Then we study the determination of the impact parameter ionization probability from the transition amplitudes, also including an axial symmetry for the ionization process. The hypothesis of this axial symmetry saves an angular integration in the evaluation of the probabilities. We analyze the variation of these probabilities within the post and prior formalisms and mention initial and final states, according to the supposed symmetry. We found that the probabilities derived with the axial symmetry concentrate at a lower impact parameter than the usual ones and are quite sensitive to the approximations used for the CDW-EIS evaluation. Furthermore, these probabilities underestimate distant collisions. In the last section we introduce the projectile-residual ion potential, and we discuss the effect of the diverse approximations on the dependence of the cross section as a function of the projectile scattering angle. We compare the projectile angular distribution resulting from a full Coulomb interaction between the ions with the one obtained by a screened potential, but in the latter case the theoretical distributions underestimate the experimental data. The OPM and 5Z functions give a good description of the experimental data.

  15. Section 41

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating the

  16. Section 53

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating

  17. Section 31

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating the Seasonal Variations of

  18. Section 31

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating the Seasonal Variations of89

  19. Section 32

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating the Seasonal Variations1 CART

  20. Section 33

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating the Seasonal Variations1in '

  1. Section 33

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating the Seasonal Variations1in '5

  2. Section 34

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating the Seasonal Variations1inx '

  3. Section 34

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating the Seasonal Variations1inx

  4. Section 35

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating the SeasonalFigure 1. a)

  5. Section 35

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating the SeasonalFigure 1.

  6. Section 36

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating the SeasonalFigure

  7. Section 36

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating the SeasonalFigure7 Cloud and

  8. Section 37

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating the SeasonalFigure7 Cloud

  9. Section 37

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating the SeasonalFigure7

  10. Section 38

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating the SeasonalFigure75

  11. Section 38

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating the SeasonalFigure75Time

  12. Section 39

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating the SeasonalFigure75Time9

  13. Section 39

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating the SeasonalFigure75Time9 e '

  14. Section 4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating the SeasonalFigure75Time9 e

  15. Section 4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating the SeasonalFigure75Time9 eA

  16. Section 40

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating the SeasonalFigure75Time9 eA5

  17. Section 40

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating the SeasonalFigure75Time9

  18. Section 41

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating the SeasonalFigure75Time99

  19. Section 42

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating theActive InstitutionalA

  20. Section 42

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating theActive

  1. Section 43

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating theActive for the Wastei ' A

  2. Section 43

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating theActive for the Wastei '

  3. Section 44

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating theActive for the WasteiAn

  4. Section 44

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating theActive for the

  5. Section 45

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating theActive for

  6. Section 45

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating theActive forComparison of

  7. Section 46

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating theActive forComparison

  8. Section 46

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating theActive forComparisonFigure

  9. Section 47

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating theActiveComparisons Among

  10. Section 47

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating theActiveComparisons

  11. Section 48

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating theActiveComparisons5 Raman

  12. Section 48

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating theActiveComparisons5 Raman3

  13. Section 49

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating theActiveComparisons5

  14. Section 5

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating theActiveComparisons5Are

  15. Section 5

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating theActiveComparisons5Areu % m

  16. Section 50

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating theActiveComparisons5Areu %

  17. Section 50

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating theActiveComparisons5Areu

  18. Section 51

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating theActiveComparisons5Areuv '

  19. Section 51

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating theActiveComparisons5Areuv '7

  20. Section 52

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating theActiveComparisons5Areuv3

  1. Section 52

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating theActiveComparisons5Areuv39

  2. Section 53

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t . F(2, p, p s ) . '

  3. Section 54

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t . F(2, p, p s ) .An

  4. Section 54

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t . F(2, p, p s ) .AneT

  5. Section 55

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t . F(2, p, p s )F

  6. Section 55

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t . F(2, p, p s )FW/m 2

  7. Section 56

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t . F(2, p, p s )FW/m3

  8. Section 56

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t . F(2, p, p s

  9. Section 57

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t . F(2, p, p sFigure

  10. Section 57

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t . F(2, p, p

  11. Section 58

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t . F(2, p, p' 1 3 km m

  12. Section 58

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t . F(2, p, p' 1 3 km

  13. Section 59

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t . F(2, p, p' 1 3

  14. Section 59

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t . F(2, p, p' 1 3e '

  15. Section 6

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t . F(2, p, p' 1 3e '8

  16. Section 6

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t . F(2, p, p' 1 3e '8

  17. Section 60

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t . F(2, p, p' 1 3e

  18. Section 60

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t . F(2, p, p' 1 3e7

  19. Section 61

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t . F(2, p, p' 1

  20. Section 61

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t . F(2, p, p'

  1. Section 62

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t . F(2, p, p'Flux

  2. Section 62

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t . F(2, p,

  3. Section 63

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t . F(2, p,Atmospheric

  4. Section 63

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t . F(2, p,Atmospheric7

  5. Section 64

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t . F(2,

  6. Section 64

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t . F(2,Time series of

  7. Section 65

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t . F(2,Time series of5

  8. Section 65

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t . F(2,Time series

  9. Section 66

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t . F(2,Time

  10. Section 66

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t . F(2,TimeCFCl 3 )

  11. Section 67

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t . F(2,TimeCFCl 3

  12. Section 68

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t . F(2,TimeCFCl 3An

  13. Section 68

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t . F(2,TimeCFCl

  14. Section 69

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t . F(2,TimeCFCl1

  15. Section 69

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t . F(2,TimeCFCl19

  16. Section 7

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t . F(2,TimeCFCl19x 10

  17. Section 7

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t . F(2,TimeCFCl19x 10

  18. Section 70

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t . F(2,TimeCFCl19x

  19. Section 70

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .

  20. Section 71

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9 ' 12 µm * 8 µm F

  1. Section 71

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9 ' 12 µm * 8 µm

  2. Section 72

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9 ' 12 µm * 8

  3. Section 73

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9 ' 12 µm * 8,sw Cu

  4. Section 73

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9 ' 12 µm * 8,sw

  5. Section 74

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9 ' 12 µm *

  6. Section 74

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9 ' 12 µm *sw ' b 0

  7. Section 75

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9 ' 12 µm *sw ' b

  8. Section 75

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9 ' 12 µm *sw '

  9. Section 76

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9 ' 12 µm *sw 'On

  10. Section 77

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9 ' 12 µm *sw

  11. Section 77

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9 ' 12 µm *swFigure

  12. Section 78

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9 ' 12 µm

  13. Section 78

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9 ' 12 µm' " 0

  14. Section 79

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9 ' 12 µm' "

  15. Section 8

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9 ' 12 µm'

  16. Section 8

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9 ' 12 µm'N F o F c

  17. Section 80

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9 ' 12 µm'N F o F

  18. Section 80

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9 ' 12 µm'N F o F'

  19. Section 81

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9 ' 12 µm'N F o

  20. Section 81

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9 ' 12 µm'N F oMq

  1. Section 82

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9 ' 12 µm'N F oMq1

  2. Section 82

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9 ' 12 µm'N F

  3. Section 83

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9 ' 12 µm'N FUse of

  4. Section 83

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9 ' 12 µm'N FUse

  5. Section 84

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9 ' 12 µm'N FUse1

  6. Section 84

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9 ' 12 µm'N

  7. Section 85

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9 ' 12 µm'N5

  8. Section 85

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9 ' 12 µm'N5i ' -ln

  9. Section 86

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9 ' 12 µm'N5i '

  10. Section 86

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9 ' 12 µm'N5i '5

  11. Section 87

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9 ' 12 µm'N5i '53

  12. Section 87

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9 ' 12 µm'N5i '539

  13. Section 88

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9 ' 12 µm'N5i '5395

  14. Section 89

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9 ' 12 µm'N5i

  15. Section 9

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9 ' 12

  16. Section 9

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9 ' 12 Figure 1.

  17. Section 90

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9 ' 12 Figure 1.SGP

  18. Section 92

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9 ' 12 Figure

  19. Section 93

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9 ' 12 FigureCO 2 O

  20. Section 94

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9 ' 12 FigureCO 2 O9

  1. Section 95

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9 ' 12 FigureCO 2

  2. Section 96

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9 ' 12 FigureCO

  3. Section 97

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9 ' 12

  4. Section 98

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9 ' 123 Site Trivia

  5. Section 99

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9 ' 123 Site Trivia8

  6. Section B

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9 ' 123 Site

  7. Section B

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9 ' 123 Site124 B-i

  8. Section B

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9 ' 123 Site124

  9. Section C

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9 ' 123 Site124C

  10. Section CC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9 ' 123 Site124C30

  11. Section CC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9 ' 123 Site124C30C

  12. Section CC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9 ' 123 Site124C30C

  13. Section I

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9 ' 1238B

  14. Section I

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9 ' 1238BIsoscalar

  15. Section I

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9 '

  16. Section I

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9 'Isoscalar Giant

  17. Section I

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9 'Isoscalar

  18. Section I

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9 'Isoscalar P. May,

  19. Section I

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9 'Isoscalar P. May,

  20. Section II

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9 'Isoscalar

  1. Section III

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9

  2. Section IV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9Target-atom

  3. Section V

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9Target-atomP. May,

  4. Section: Front

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9Target-atomP.

  5. Land-use Leakage

    SciTech Connect (OSTI)

    Calvin, Katherine V.; Edmonds, James A.; Clarke, Leon E.; Bond-Lamberty, Benjamin; Kim, Son H.; Wise, Marshall A.; Thomson, Allison M.; Kyle, G. Page

    2009-12-01T23:59:59.000Z

    Leakage occurs whenever actions to mitigate greenhouse gas emissions in one part of the world unleash countervailing forces elsewhere in the world so that reductions in global emissions are less than emissions mitigation in the mitigating region. While many researchers have examined the concept of industrial leakage, land-use policies can also result in leakage. We show that land-use leakage is potentially as large as or larger than industrial leakage. We identify two potential land-use leakage drivers, land-use policies and bioenergy. We distinguish between these two pathways and run numerical experiments for each. We also show that the land-use policy environment exerts a powerful influence on leakage and that under some policy designs leakage can be negative. International offsets are a potential mechanism to communicate emissions mitigation beyond the borders of emissions mitigating regions, but in a stabilization regime designed to limit radiative forcing to 3.7 2/m2, this also implies greater emissions mitigation commitments on the part of mitigating regions.

  6. Choreographing [in] Pakistan: Indu Mitha, Dancing Occluded histories in "The Land of the Pure"

    E-Print Network [OSTI]

    Aslam, Feriyal Amal

    2012-01-01T23:59:59.000Z

    Bloch, N. A. Land of Pakistan: Perspectives, Historical andCrisis: Re-evaluating Pakistan. New Delhi: Routledge, 2010.University Press, . Pakistan: A Modern History. Palgrave

  7. Permits and Easements for Construction and Related Activities on Public Lands and Waters (Iowa)

    Broader source: Energy.gov [DOE]

    These rules establish procedures and regulate the evaluation and issuance of permits for construction or other related activities that alter the physical characteristics of public lands and waters...

  8. Lands & Community

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLSLaboratoryRowland to receiveLand ManagementLands

  9. Title: Canada Land Inventory: Land Capability for Recreation Data Creator /

    E-Print Network [OSTI]

    Title: Canada Land Inventory: Land Capability for Recreation Data Creator / Copyright Owner: National Archives of Canada, Visual and Sound Archives Division Publisher: National Archives of Canada, Visual and Sound Archives Division; developed under the auspices of Environment Canada; distributed

  10. Title: Canada Land Inventory: Land Capability for Ungulates Data Creator /

    E-Print Network [OSTI]

    Title: Canada Land Inventory: Land Capability for Ungulates Data Creator / Copyright Owner: National Archives of Canada, visual and Sound Archives Division Publisher: National Archives of Canada, Visual and Sound Archives Division; developed under the auspices of Environment Canada; distributed

  11. Title: Canada Land Inventory: Land Capability for Agriculture Data Creator /

    E-Print Network [OSTI]

    Title: Canada Land Inventory: Land Capability for Agriculture Data Creator / Copyright Owner: National Archives of Canada, Visual and Sound Archives Division Publisher: National Archives of Canada, Visual and Sound Archives Division; developed under the auspices of Environment Canada; distributed

  12. National Forest Land Scheme

    E-Print Network [OSTI]

    and Community Right to Buy. Communities are encouraged to register an interest in the land they wish to buy Ministers to make a late registration of interest. When Forestry Commission Scotland decides to sell, a community organisation could consider the opportunities for working in partnership with Forestry Commission

  13. County Land Preservation and Use Commissions (Iowa)

    Broader source: Energy.gov [DOE]

    This ordinance creates Land Preservation and Use Commissions in each county to provide for the orderly use and development of land, to protect agricultural land from nonagricultural development,...

  14. Aggressive landing maneuvers for unmanned aerial vehicles

    E-Print Network [OSTI]

    Bayraktar, Selcuk

    2006-01-01T23:59:59.000Z

    VTOL (Vertical Take Off and Landing) vehicle landing is considered to be a critically difficult task for both land, marine, and urban operations. This thesis describes one possible control approach to enable landing of ...

  15. Penobscot Indian Nation's Strategic Energy Planning Efficiency on tribal Lands

    SciTech Connect (OSTI)

    Sockalexis, Mike; Fields, Brenda

    2006-11-30T23:59:59.000Z

    The energy grant provided the resources to evaluate the wind, hydro, biomass, geothermal and solar resource potential on all Penobscot Indian Naiton's Tribal lands. The two objectives address potential renewable energy resources available on tribal lands and energy efficiency measures to be taken after comprehensive energy audits of commercial facilities. Also, a Long Term Strategic Energy Plan was developed along with a plan to reduce high energy costs.

  16. Biofuels, land and water : a systems approach to sustainability.

    SciTech Connect (OSTI)

    Gopalakrishnan, G.; Negri, M. C.; Wang, M.; Wu, M.; Snyder, S. W.; LaFreniere, L.

    2009-08-01T23:59:59.000Z

    There is a strong societal need to evaluate and understand the sustainability of biofuels, especially because of the significant increases in production mandated by many countries, including the United States. Sustainability will be a strong factor in the regulatory environment and investments in biofuels. Biomass feedstock production is an important contributor to environmental, social, and economic impacts from biofuels. This study presents a systems approach where the agricultural, energy, and environmental sectors are considered as components of a single system, and environmental liabilities are used as recoverable resources for biomass feedstock production. We focus on efficient use of land and water resources. We conducted a spatial analysis evaluating marginal land and degraded water resources to improve feedstock productivity with concomitant environmental restoration for the state of Nebraska. Results indicate that utilizing marginal land resources such as riparian and roadway buffer strips, brownfield sites, and marginal agricultural land could produce enough feedstocks to meet a maximum of 22% of the energy requirements of the state compared to the current supply of 2%. Degraded water resources such as nitrate-contaminated groundwater and wastewater were evaluated as sources of nutrients and water to improve feedstock productivity. Spatial overlap between degraded water and marginal land resources was found to be as high as 96% and could maintain sustainable feedstock production on marginal lands. Other benefits of implementing this strategy include feedstock intensification to decrease biomass transportation costs, restoration of contaminated water resources, and mitigation of greenhouse gas emissions.

  17. Policy message Access to land and land rights,

    E-Print Network [OSTI]

    Richner, Heinz

    agriculture can reduce land deg- radation, support agricultural development, and mitigate rural poverty conservation tech- niques by producing food, fodder, fibre, or fuel. Sustainable farming practices produce

  18. Land Management - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLSLaboratoryRowland to receiveLand Management About

  19. SNL RML recommended dosimetry cross section compendium

    SciTech Connect (OSTI)

    Griffin, P.J.; Kelly, J.G.; Luera, T.F. [Sandia National Labs., Albuquerque, NM (United States)] [Sandia National Labs., Albuquerque, NM (United States); VanDenburg, J. [Science and Engineering Associates, Inc., Albuquerque, NM (United States)] [Science and Engineering Associates, Inc., Albuquerque, NM (United States)

    1993-11-01T23:59:59.000Z

    A compendium of dosimetry cross sections is presented for use in the characterization of fission reactor spectrum and fluence. The contents of this cross section library are based upon the ENDF/B-VI and IRDF-90 cross section libraries and are recommended as a replacement for the DOSCROS84 multigroup library that is widely used by the dosimetry community. Documentation is provided on the rationale for the choice of the cross sections selected for inclusion in this library and on the uncertainty and variation in cross sections presented by state-of-the-art evaluations.

  20. EA-1856: Conveyance of Land and Facilities at the Portsmouth Gaseous Diffusion Plant for Economic Development Purposes, Piketon, Ohio

    Broader source: Energy.gov [DOE]

    This EA will evaluate the environmental impacts of conveyance of land and facilities at the Portsmouth Gaseous Diffusion Plant, in Piketon, Ohio, for economic development purposes.

  1. Title: Canada Land Inventory: Land Capability for Forestry Data Creator /

    E-Print Network [OSTI]

    Title: Canada Land Inventory: Land Capability for Forestry Data Creator / Copyright Owner: National Archives of Canada, Visual and Sound Archives Division; Publisher: National Archives of Canada, Visual and Sound Archives Division; developed under the auspices of Environment Canada; distributed by Natural

  2. Title: Canada Land Inventory: 1966 Land Use Data Creator /

    E-Print Network [OSTI]

    Title: Canada Land Inventory: 1966 Land Use Data Creator / Copyright Owner: National Archives of Canada, Visual and Sound Archives Division Publisher: National Archives of Canada, Visual and Sound Archives Division; developed under the auspices of Environment Canada; distributed by Natural Resources

  3. Bus Rapid Transit Impacts on Land Uses and Land Values in Seoul, Korea

    E-Print Network [OSTI]

    Cervero, Robert; Kang, Chang Deok

    2009-01-01T23:59:59.000Z

    an ambitious campaign of land reclamation, taking valuablehub of Seouls ambitious land reclamation and redevelopment

  4. Oil and Gas on Public Lands (Texas)

    Broader source: Energy.gov [DOE]

    The School Land Board may choose to lease lands for the production of oil and natural gas, on the condition that oil and gas resources are leased together and separate from other minerals. Lands...

  5. Land O Lakes Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou NewKorea PartsLLNLLaizhouLand O Lakes Inc Jump to:

  6. Land Use Assessment Toolkit | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou NewKorea PartsLLNLLaizhouLand O Lakes Inc

  7. Soil Taxonomy and Land Evaluationfor Forest Establishment1 HaruyoshiIkawa2

    E-Print Network [OSTI]

    Standiford, Richard B.

    Soil Taxonomy and Land Evaluationfor Forest Establishment1 HaruyoshiIkawa2 Abstract: Soil Taxonomy, the United States system of soil classification, can be used for land evaluation for selected structure, and rainfall intensity. This paper describesthe taxonomy and systemfor classify- ing soilsand

  8. Making Sustainable Energy Choices: Insights on the Energy/Water/Land Nexus

    SciTech Connect (OSTI)

    Not Available

    2014-10-01T23:59:59.000Z

    This periodic publication summarizes insights from the body of NREL analysis work. In this issue of Analysis Insights, we examine the implications of our energy choices on water, land use, climate, developmental goals, and other factors. Collectively, NREL's work helps policymakers and investors understand and evaluate energy choices within the complex web of connections, or nexus, between energy, water, and land.

  9. FOR 323.201, FOR 323.202 Land Measurement

    E-Print Network [OSTI]

    Hung, I-Kuai

    1 FOR 323.201, FOR 323.202 Land Measurement 1 Credit, Summer II 2014 Instructors: Dr. Daniel R to accurately measure elevation differences. The students learn how to use auto-level and leveling rod in the field and how to evaluate measurement accuracy. Leveling is a vital operation for mapping, engineering

  10. Minerals on Public Lands (Texas)

    Broader source: Energy.gov [DOE]

    Any tract of land that belongs to the state, including islands, salt and freshwater lakes, bays, inlets, marshes, and reefs owned by the state within tidewater limits, the part of the Gulf of...

  11. Delaware Land Protection Act (Delaware)

    Broader source: Energy.gov [DOE]

    The Land Protection Act requires the Department of Natural Resources and Environmental Control to work with the Delaware Open Space Council to develop standards and criteria for determining the...

  12. Riparian Rights: State Land (Indiana)

    Broader source: Energy.gov [DOE]

    The state reserves the power to sell, transfer, and convey, as provided by law, rights-of-way in public land for several purposes, including pipelines, gas pipelines, water pipelines, sewer lines,...

  13. Land and Facility Use Planning

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-07-09T23:59:59.000Z

    The Land and Facility Use Planning process provides a way to guide future site development and reuse based on the shared long-term goals and objectives of the Department, site and its stakeholders. Does not cancel other directives.

  14. Land Reclamation Program annual report, 1979

    SciTech Connect (OSTI)

    None

    1980-09-01T23:59:59.000Z

    The Argonne Land Reclamation Program, sponsored by the United States Department of Energy's Assistant Secretary for Environment, is a joint effort of two Argonne divisions: Energy and Environmental Systems and Environmental Impact Studies. The program is carried out by a multidisciplinary team of scientists and engineers and has three primary objectives: (1) to develop energy-efficient and cost-effective mining and reclamation techniques; (2) to assist industry in evaluating the viability of environmental regulations and demonstrating techniques to meet these regulations; and (3) to supply data and evaluation techniques to decisionmakers concerned with trade-offs between energy development and environmental quality. Six integrated field research sites have been established to address problems associated with surface mining operations. This program relies heavily on input from industry and has developed working arrangements with coal companies at each of the current mining sites. A major area of interest is the development of a ten-year environmental mining and reclamation research plan for the Assistant Secretary for Environment. The Land Reclamation Program assigns the highest priority to the transfer to users of information generated by its research.

  15. Building Performance Evaluation

    E-Print Network [OSTI]

    King, A.; Harris, J.; Mbentin, B.

    2012-01-01T23:59:59.000Z

    Building Performance Evaluation Anne King and Jo Harris, MBEKTN and BSRIA Agenda ? Background to funding and programme ? The Building Performance Evaluation Programme in the UK ? Requirements ? Results ? Impact ? Discussion ? Do you/ How do... you do Building Performance Evaluation? ? What gaps are there and what could research do to fill them? Background ? The Technology Strategy Board ? the funders ? Low Impact Building programme ? BSRIA and others ? evaluators ? Soft Landings...

  16. SECTION 12-HAZARD COMMUNICATION PROGRAM (HCP) 29 CFR Section 1920-"Hazardous Communications" states that, "the purpose of this section is to ensure

    E-Print Network [OSTI]

    Selmic, Sandra

    144 SECTION 12- HAZARD COMMUNICATION PROGRAM (HCP) 29 CFR Section 1920- "Hazardous Communications" states that, "the purpose of this section is to ensure that the hazards of all chemicals produced or imported are evaluated, and that information concerning their hazards is transmitted to employers

  17. Urban land subdivision : a case for more practical by-laws, Kaohsiung, Taiwan

    E-Print Network [OSTI]

    Chen, Hsueh-Jane

    1981-01-01T23:59:59.000Z

    This thesis, dealing with the land subdivision in urban areas, evaluates inefficiency of the case studies resulting from inadequate and improper existing by-laws in Kaohsiung and provides guidelines for urban development. ...

  18. Global Climate Change,Global Climate Change, Land Cover Change, andLand Cover Change, and

    E-Print Network [OSTI]

    1 Global Climate Change,Global Climate Change, Land Cover Change, andLand Cover Change Changes Due to Climate Change Land Cover / Land Use Change Interaction of Climate and Land Cover Change Resolution Space Time Hydro-Climatic Change Variability vs. Change (Trends) Point data

  19. Land-use transition for bioenergy and climate stabilization: model comparison of drivers, impacts and interactions with other land use based mitigation options

    SciTech Connect (OSTI)

    Popp, Alexander; Rose, Steven K.; Calvin, Katherine V.; Van Vuuren, Detlef; Dietrich, Jan P.; Wise, Marshall A.; Stehfest, Eike; Humpenoder, Florian; Kyle, G. Page; Van Vliet, Jasper; Bauer, Nico; Lotze-Campen, Hermann; Klein, David; Kriegler, Elmar

    2014-04-01T23:59:59.000Z

    This study is a model comparison assessing the drivers and impacts of bioenergy production on the global land system and the interaction with other land use based mitigation options in the context of the EMF 27 project. We compare and evaluate results from three integrated assessment models (GCAM, IMAGE, and ReMIND/MAgPIE). All three models project that dedicated bioenergy crops and biomass residues are a potentially important and cost-effective component of the energy system. But bioenergy deployment levels and feedstock composition vary notably across models as do the implications for land-use and greenhouse gas emissions and the interaction with other land use based mitigation measures. Despite numerous model differences, we identify a few that are likely contributing to differences in land-use and emissions attributable to energy crop deployment.

  20. Section 1: Contact Information Section 2: Employment History

    E-Print Network [OSTI]

    Section 1: Contact Information Section 2: Employment History Section 3: Educational History Section 4: Additional Required Information Employment Application The Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer committed to the development of a diverse workforce

  1. Land Use Requirements of Modern Wind Power Plants in the United States

    SciTech Connect (OSTI)

    Denholm, P.; Hand, M.; Jackson, M.; Ong, S.

    2009-08-01T23:59:59.000Z

    This report provides data and analysis of the land use associated with modern, large wind power plants (defined as greater than 20 megawatts (MW) and constructed after 2000). The analysis discusses standard land-use metrics as established in the life-cycle assessment literature, and then discusses their applicability to wind power plants. The report identifies two major 'classes' of wind plant land use: 1) direct impact (i.e., disturbed land due to physical infrastructure development), and 2) total area (i.e., land associated with the complete wind plant project). The analysis also provides data for each of these classes, derived from project applications, environmental impact statements, and other sources. It attempts to identify relationships among land use, wind plant configuration, and geography. The analysts evaluated 172 existing or proposed projects, which represents more than 26 GW of capacity. In addition to providing land-use data and summary statistics, they identify several limitations to the existing wind project area data sets, and suggest additional analysis that could aid in evaluating actual land use and impacts associated with deployment of wind energy.

  2. Employment and land-use impacts of resource program elements

    SciTech Connect (OSTI)

    Shankle, S A; Baechler, M C; Blondin, D W; Grover, S E

    1992-03-01T23:59:59.000Z

    The Pacific Northwest Laboratory (PNL) evaluated several power resource alternatives under consideration by the Bonneville Power Administration in its Resource Program Environmental Impact Statement (RPEIS). The purpose of this evaluation was to determine the potential impacts of each alternative in terms of land use and employment. We reviewed the literature that describes land-use and employment impacts to derive estimates of each type of effect. These estimates were scaled to a per-megawatt basis for use as multipliers in the RPEIS analysis. Multipliers for employment were taken from the literature and developed from power plant capital cost estimates. Land-use multipliers were taken from the literature or estimated from existing plants. In this report we compared information sources and estimates to develop the most applicable multipliers. Employment levels required (in terms of employee years per MW of plant capacity) for the construction and operation phases of each energy-generating resource alternative analyzed are shown. The amounts of land required (in terms of acres per MW capacity) for the construction and operation phases of each energy-generating resource alternatives analyzed are also shown.

  3. 2011LandesBioscience. Donotdistribute.

    E-Print Network [OSTI]

    /November/December 2011; 2011 Landes Bioscience MethODs & techNicaL aDvaNces MethODs & techNicaL a of the GFP- or YFP-expressing balancers has specific advantages, but all share a common draw- back a Tubby1 (Tb1 ) dominant transgene. Flies heterozygous for these FM7a and CyO derivatives exhibit

  4. Marginal, Erodible Land Retirement Policy (Minnesota)

    Broader source: Energy.gov [DOE]

    It is state policy to encourage the retirement of marginal, highly erodible land, particularly land adjacent to public waters and drainage systems, from crop production and to reestablish a cover...

  5. Mapping Savanna Land Change of Belize

    E-Print Network [OSTI]

    Wilson, Lauren

    2011-11-24T23:59:59.000Z

    was assessed using a confusion matrix. The results of the research confirmed the capabilities of Landsat imagery for mapping savannas and their land use. The classification of forest and savanna along with major land use pressures from agriculture...

  6. Addressing land-based discrimination in

    E-Print Network [OSTI]

    Richner, Heinz

    , feudalism was based on ownership of land, the dominant mode of production. Political power was dominated by absolute kings and feudal overlords. Wealth and position in society was derived from the land ownership

  7. Coastal Public Lands Management Act (Texas)

    Broader source: Energy.gov [DOE]

    The coastal public lands of the state are managed in accordance with the following principles: (a) The natural resources of the surface land, including their aesthetic value and their ability to...

  8. 14655 Section J

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0, Revision 4 ATTACHMENT J.10 WAGE DETERMINATIONS - SERVICE CONTRACT ACT (SCA) AND DAVIS-BACON ACT J.10-1 Plateau Remediation Contract Section J Contract No. DE-AC06-08RL14788...

  9. Building, landscape and section

    E-Print Network [OSTI]

    Johnson, Daniel B. (Daniel Bryant)

    1992-01-01T23:59:59.000Z

    All buildings have in their section a relationship to the landscape on which they are sited. Therefore we as inhabitants of these buildings may or may not have a relationship with the landscape. It is the supposition of ...

  10. Name: ) Section: ' PID:

    E-Print Network [OSTI]

    MATH 173 ' Quiz 4 Thursday Sep. 23. Name: ) Section: ' PID: Solve the problem systematically and neatly and show all your work. 1.(3pts) Find the length of the...

  11. Modification ofregional groundwater regimes by land reclamation

    E-Print Network [OSTI]

    Jiao, Jiu Jimmy

    Modification ofregional groundwater regimes by land reclamation Jiu Jimmy Jiao Department ofEarth Sciences, The University ofHong Kong, P. R. China Abstract JJ.Jiao Land reclamation has played;Bouchardetal., 1998;Schofield etal., 1992). While reclamation provides valuable land, it also creates various

  12. Land Tenure (to the End of the Ptolemaic Period)

    E-Print Network [OSTI]

    Katary, Sally

    2012-01-01T23:59:59.000Z

    for highly successful land reclamation in the Fayum,successful large-scale land reclamation (Kehoe 2010: 316).

  13. LAND APPLICATION OF MANURE A supplement to Manure Management for Environmental Protection

    E-Print Network [OSTI]

    Guiltinan, Mark

    regulations concerning animal manures and agricultural process wastewaters. The criteria established in this manual are required to be followed by all operations applying manure or agricultural process wastewater. Code Section 91.36(b). POLICY: The land application of animal manures and agricultural process

  14. Testing (Validating?) Cross Sections with ICSBEP Benchmarks

    SciTech Connect (OSTI)

    Kahler, Albert C. III [Los Alamos National Laboratory

    2012-06-28T23:59:59.000Z

    We discuss how to use critical benchmarks from the International Handbook of Evaluated Criticality Safety Benchmark Experiments to determine the applicability of specific cross sections to the end-user's problem of interest. Particular attention is paid to making sure the selected suite of benchmarks includes the user's range of applicability (ROA).

  15. Section D - G

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary of Energy Advisory Board FollowSection 3161 SECTION BPART

  16. Neutrino geophysics with KamLAND and future prospects

    E-Print Network [OSTI]

    S. Enomoto; E. Ohtani; K. Inoue; A. Suzuki

    2005-10-20T23:59:59.000Z

    The Kamioka liquid scintillator anti-neutrino detector (KamLAND) is a low-energy and low-background neutrino detector which could be a useful probe for determining the U and Th abundances of the Earth. We constructed a model of the Earth in order to evaluate the rate of geologically produced anti-neutrinos (geo-neutrinos) detectable by KamLAND. We found that KamLAND can be used to determine the absolute abundances of U and Th in the Earth with an accuracy sufficient for placing important constraints on Earth's accretional process and succeeding thermal history. The present observation of geo-neutrinos with KamLAND is consistent with our model prediction based on the bulk silicate Earth (BSE) composition within the uncertainty of the measurement. If a neutrino detector were to be built in Hawaii, where effects of the continental crust would be negligible, it could be used to estimate the U and Th content in the lower mantle and the core. Our calculation of the geo-neutrino event rate on the Earth's surface indicates that geo-neutrino observation can provide key information for testing the current models for the content and distribution of U and Th in the Earth.

  17. A Dynamic Simulation of the Indirect Land Use Implications of Recent Biofuel Production and Use in the United States.

    SciTech Connect (OSTI)

    Oladosu, Gbadebo A [ORNL] [ORNL; Kline, Keith L [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    The global indirect land use change (ILUC) implications of biofuel use in the United States of America (USA) from 2001 to 2010 are evaluated with a dynamic general equilibrium model. The effects of biofuels production on agricultural land area vary by year; from a net expansion of 0.17 ha per 1000 gallons produced (2002) to a net contraction of 0.13 ha per 1000 gallons (2018) in Case 1 of our simulation. In accordance with the general narrative about the implications of biofuel policy, agricultural land area increased in many regions of the world. However, oil-export dependent economies experienced agricultural land contraction because of reductions in their revenues. Reducing crude oil imports is a major goal of biofuel policy, but the land use change implications have received little attention in the literature. Simulations evaluating the effects of doubling supply elasticities for land and fossil resources show that these parameters can significantly influence the land use change estimates. Therefore, research that provides empirically-based and spatially-detailed agricultural land-supply curves and capability to project future fossil energy prices is critical for improving estimates of the effects of biofuel policy on land use.

  18. Stewardship of public school land by the General Land Office

    E-Print Network [OSTI]

    Zechiel, Tod Peter

    1987-01-01T23:59:59.000Z

    (a V. Nrelnh Nnl da (L Nr(PN Huis I. Veil Ill(en S. Hncnf th hraa( 4 hn Ihpr. i ha Ner(n J. (Irasr ~ Veiler N. Irene Caryn @riot( S. ladler laali ~ N. Seal Nalrnvl lie J. R Ie Saa Nrrcn J Mf((ay Satan 1. Srpp ~ (luhorttlls liar ll ~ 9(5/bh... AND CHARACTERISTICS OF THE RANGELAND The Area Under Stewardshi p Climate of the Trans-Pecos Vegetational Associations of the Trans-Pecos Uses of the Range Resources OPERATIONS OF THE ALPINE FIELD OFFICE Responsibi 1ities Assisting the Land Management Division...

  19. Introduction Introduction Section 1

    E-Print Network [OSTI]

    of many people. These people share a love for the Deschutes, though they value the river in many different. The voices of many of people throughout the Deschutes subbasin were heard during the subbasin planningIntroduction Introduction Section 1 Now as in the past, The Deschutes River binds the people

  20. POLICY SECTIONS POLICY OFFICE

    E-Print Network [OSTI]

    Minnesota, University of

    POLICY SECTIONS POLICY OFFICE POLICIES FORMS PROCEDURES UNIVERSITY POLICY #12;guide to WRITING POLICIES Administrative policies align opera- tions, set behavior expectations across the University system and communicate policy roles and responsibilities. You, as the policy owner or writer, have the important task

  1. EA-1042: Proposed Changes to the Sanitary Sludge Land Application Program on the Oak Ridge Reservation, Oak Ridge, Tennesee

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to raise the sludge land application loading limits from the current, self-imposed conservative 48 metric tons/ha lifetime loading to the...

  2. Hanford land disposal restrictions plan for mixed wastes

    SciTech Connect (OSTI)

    Not Available

    1990-10-01T23:59:59.000Z

    Since the early 1940s, the Hanford Site has been involved in the production and purification of nuclear defense materials. These production activities have resulted in the generation of large quantities of liquid and solid radioactive mixed waste. This waste is subject to regulation under authority of both the Resource Conservation and Recovery Act of 1976 (RCRA) and the Atomic Energy Act. The State of Washington Department of Ecology (Ecology), the US Environmental Protection Agency (EPA), and the US Department of Energy (DOE) have entered into an agreement, the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) to bring Hanford Site Operations into compliance with dangerous waste regulations. The Tri-Party Agreement was amended to require development of the Hanford Land Disposal Restrictions Plan for Mixed Wastes (this plan) to comply with land disposal restrictions requirements for radioactive mixed waste. The Tri-Party Agreement requires, and the this plan provides, the following sections: Waste Characterization Plan, Storage Report, Treatment Report, Treatment Plan, Waste Minimization Plan, a schedule, depicting the events necessary to achieve full compliance with land disposal restriction requirements, and a process for establishing interim milestones. 34 refs., 28 figs., 35 tabs.

  3. Wind Development on Tribal Lands

    SciTech Connect (OSTI)

    Ken Haukaas; Dale Osborn; Belvin Pete

    2008-01-18T23:59:59.000Z

    Background: The Rosebud Sioux Tribe (RST) is located in south central South Dakota near the Nebraska border. The nearest community of size is Valentine, Nebraska. The RST is a recipient of several Department of Energy grants, written by Distributed Generation Systems, Inc. (Disgen), for the purposes of assessing the feasibility of its wind resource and subsequently to fund the development of the project. Disgen, as the contracting entity to the RST for this project, has completed all the pre-construction activities, with the exception of the power purchase agreement and interconnection agreement, to commence financing and construction of the project. The focus of this financing is to maximize the economic benefits to the RST while achieving commercially reasonable rates of return and fees for the other parties involved. Each of the development activities required and its status is discussed below. Land Resource: The Owl Feather War Bonnet 30 MW Wind Project is located on RST Tribal Trust Land of approximately 680 acres adjacent to the community of St. Francis, South Dakota. The RST Tribal Council has voted on several occasions for the development of this land for wind energy purposes, as has the District of St. Francis. Actual footprint of wind farm will be approx. 50 acres. Wind Resource Assessment: The wind data has been collected from the site since May 1, 2001 and continues to be collected and analyzed. The latest projections indicate a net capacity factor of 42% at a hub height of 80 meters. The data has been collected utilizing an NRG 9300 Data logger System with instrumentation installed at 30, 40 and 65 meters on an existing KINI radio tower. The long-term annual average wind speed at 65-meters above ground level is 18.2 mph (8.1 mps) and 18.7 mph (8.4 mps) at 80-meters agl. The wind resource is excellent and supports project financing.

  4. Carbon Calculator for Land Use Change from Biofuels Production (CCLUB). Users' manual and technical documentation.

    SciTech Connect (OSTI)

    Mueller, S; Dunn, JB; Wang, M (Energy Systems); (Univ. of Illinois at Chicago)

    2012-06-07T23:59:59.000Z

    The Carbon Calculator for Land Use Change from Biofuels Production (CCLUB) calculates carbon emissions from land use change (LUC) for four different ethanol production pathways including corn grain ethanol and cellulosic ethanol from corn stover, miscanthus, and switchgrass. This document discusses the version of CCLUB released May 31, 2012 which includes corn, as did the previous CCLUB version, and three cellulosic feedstocks: corn stover, miscanthus, and switchgrass. CCLUB calculations are based upon two data sets: land change areas and above- and below-ground carbon content. Table 1 identifies where these data are stored and used within the CCLUB model, which is built in MS Excel. Land change area data is from Purdue University's Global Trade Analysis Project (GTAP) model, a computable general equilibrium (CGE) economic model. Section 2 describes the GTAP data CCLUB uses and how these data were modified to reflect shrubland transitions. Feedstock- and spatially-explicit below-ground carbon content data for the United States were generated with a surrogate model for CENTURY's soil organic carbon sub-model (Kwon and Hudson 2010) as described in Section 3. CENTURY is a soil organic matter model developed by Parton et al. (1987). The previous CCLUB version used more coarse domestic carbon emission factors. Above-ground non-soil carbon content data for forest ecosystems was sourced from the USDA/NCIAS Carbon Online Estimator (COLE) as explained in Section 4. We discuss emission factors used for calculation of international greenhouse gas (GHG) emissions in Section 5. Temporal issues associated with modeling LUC emissions are the topic of Section 6. Finally, in Section 7 we provide a step-by-step guide to using CCLUB and obtaining results.

  5. Renewable Energy Development on Tribal Lands

    SciTech Connect (OSTI)

    Not Available

    2006-10-01T23:59:59.000Z

    Brochure describes the Tribal Energy Program, which provides American Indian tribes with financial and technical assistance for developing renewable energy projects on tribal land.

  6. Land and Renewable Resources | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a rich and thorough analysis to determine what areas of public lands are best suited for solar, wind, and geothermal project development and assess the associated environmental,...

  7. Albeni Falls land acquisitions.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Idaho The Bonneville Power Administration is working with the Idaho Department of Fish and Game to acquire and manage two parcels of land in northern Idaho to preserve,...

  8. Global Biofuels Modeling and Land Use

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Modeling and Land Use DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review Strategic Analysis & Cross-cutting Sustainability March 25 2015 Gbadebo Oladosu...

  9. Landholders, Residential Land Conversion, and Market Signals

    E-Print Network [OSTI]

    Margulis, Harry L.

    2006-01-01T23:59:59.000Z

    465 Margulis: Landholders, Residential Land Conversion, and1983. An Analysis of Residential Developer Location FactorsHow Regulation Affects New Residential Development. New

  10. Sustainable Land Management in Northern Namibia

    E-Print Network [OSTI]

    and low water holding capacity (Bolivia) #12;Perspective Similar soil (Kavango) #12;Increased Demand for Food + Energy Production Expansion onto Less Resilient Lands Reduced Production per Unit Area

  11. Title: Canada Land Inventory: Land Capability for Waterfowl Wildlife Data Creator /

    E-Print Network [OSTI]

    Title: Canada Land Inventory: Land Capability for Waterfowl Wildlife Data Creator / Copyright Owner: National Archives of Canada, Visual and Sound Archives Division Publisher: National Archives of Canada, Visual and Sound Archives Division; developed under the auspices of Environment Canada; distributed

  12. Modeling the effect of land cover land use change on estuarine environmental flows

    E-Print Network [OSTI]

    Sahoo, Debabrata

    2009-05-15T23:59:59.000Z

    Environmental flows are important to maintain the ecological integrity of the estuary. In a watershed, it is influenced by land use land cover (LULC) change, climate variability, and water regulations. San Antonio, Texas, ...

  13. Electromagnetic-gravitational cross-sections in external electromagnetic fields

    E-Print Network [OSTI]

    Long, H N; Tran, T A; Tuan, T A; Long, Hoang Ngoc; Van Soa, Dang; Tran, Tuan A; Tuan, Tran Anh

    1994-01-01T23:59:59.000Z

    The classical processes: the conversion of photons into gravitons in the static electromagnetic fields are considered by using Feynman perturbation techniques. The differential cross sections are presented for the conversion in the electric field of the flat condesor and the magnetic field of the selenoid. A numerical evaluation shows that the cross sections may have the observable value in the present technical scenario.

  14. Electromgnetic-gravitational cross-sections in external elctromagnetic fields

    E-Print Network [OSTI]

    Hoang Ngoc Long; Dang Van Soa; Tuan A. Tran

    1994-10-03T23:59:59.000Z

    The classical processes: the conversion of photons into gravitons in the static electromagnetic fields are considered by using Feynman perturbation techniques. The differential cross sections are presented for the conversion in the electric field of the flat condesor and the magnetic field of the selenoid. A numerical evaluation shows that the cross sections may have the observable value in the present technical scenario.

  15. Interaction effects of climate and land use/land cover change on soil organic carbon sequestration

    E-Print Network [OSTI]

    Grunwald, Sabine

    Interaction effects of climate and land use/land cover change on soil organic carbon sequestration carbon sequestration Climate change Soil carbon change Historically, Florida soils stored the largest in Florida (FL) have acted as a sink for carbon (C) over the last 40 years. Climate interacting with land

  16. Section I: Contract Clause

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary of Energy Advisory Board FollowSection 3161

  17. Land Reform and Exclusion of Poor Jagat Basnet

    E-Print Network [OSTI]

    Richner, Heinz

    141 CHAPTER 6 Land Reform and Exclusion of Poor People Jagat Basnet 6.1 Land Questions Firstly, by land reform, it is widely understood to be a process of confiscating someone's land and award Planning Commission (NPC). Land reform is an important factor for improving the economic status

  18. Workshop proceedings: Developing the scientific basis for long-term land management of the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    Sperber, T.D.; Reynolds, T.D. [eds.] [Environmental Science and Research Foundation, Inc., Idaho Falls, ID (United States); Breckenridge, R.P. [ed.] [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States)

    1998-03-01T23:59:59.000Z

    Responses to a survey on the INEEL Comprehensive Facility and Land Use Plan (US DOE 1996a) indicated the need for additional discussion on environmental resources, disturbance, and land use issues on the Idaho National Engineering and Environmental Laboratory (INEEL). As a result, in September 1997, a workshop evaluated the existing scientific basis and determined future data needs for long-term land management on the INEEL. This INEEL Long-Term Land Management Workshop examined existing data on biotic, abiotic, and heritage resources and how these resources have been impacted by disturbance activities of the INEEL. Information gained from this workshop will help guide land and facility use decisions, identify data gaps, and focus future research efforts. This report summarizes background information on the INEEL and its long-term land use planning efforts, presentations and discussions at the workshop, and the existing data available at the INEEL. In this document, recommendations for future INEEL land use planning, research efforts, and future workshops are presented. The authors emphasize these are not policy statements, but comments and suggestions made by scientists and others participating in the workshop. Several appendices covering land use disturbance, legal drivers, land use assumptions and workshop participant comments, workshop participants and contributors, and the workshop agenda are also included.

  19. Evaluation of a land management based infiltration equation on rangelands

    E-Print Network [OSTI]

    Bouraoui, Faycal

    1990-01-01T23:59:59.000Z

    de Tunis Chair of Advisory Committee: Mary Leigh Wolfe SPUR is the newest model developed for use on rangelands. It is a comprehensive model simulating all the broad aspects of the range ecosystem. The original SPUR model computes the runoff... of the equations. Aase et al. (1973), Hanks (1974), de Jong and McDonald (1975), Hanson (1976), Ritchie et al. (1976) and Rasmusssen and Hanks (1978) developed such models to predict evapotranspiration from native rangelands. However, rangeland managers were...

  20. automated land evaluation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pitched at angles up to 60 degrees. Such maneuvers require considerable agility from the vehicle and its avionics system, and they pose significant technical and safety...

  1. ARM - Evaluation Product - Critical soil quantities for describing land

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006Datastreamstwrcam40m Documentation DataDatastreamsxsaprhsrhi1-min (NAVBE1M)Doppler Lidarproperties

  2. USDA - NRCS Land Evaluation and Site Assessment: Guidebook | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global Energy LLC Place: Dallas,UGIURDB Ell-Saline WindInformation

  3. Land Tenure Center 50th Anniversary Celebration

    E-Print Network [OSTI]

    Sheridan, Jennifer

    + implementation. Jon Unruh will summarize land tenure obstacles to the implementation of carbon sequestration that clarifying tenure and carbon rights will be necessary for effective REDD+ implementation. REDD stands 2011 Madison workshop on Land Tenure and Forest Carbon Management. Barney Barnes will summarize

  4. 21 Sustainable Land Management and Global Development

    E-Print Network [OSTI]

    Richner, Heinz

    427 21 Sustainable Land Management and Global Development: Factors Affecting Land Users' Efforts for Sustainable Development: Foundations, Experiences, and Perspectives 428 North-South perspectives 21 the concept of sustainable develop- ment and a clearer focus on operational implications, Hurni and colleagues

  5. Biofuels and indirect land use change

    E-Print Network [OSTI]

    Biofuels and indirect land use change The case for mitigation October 2011 #12;About this study), Malaysian Palm Oil Board, National Farmers Union, Novozymes, Northeast Biofuels Collaborative, Patagonia Bio contributed views on a confidential basis. #12;1Biofuels and indirect land use change The case for mitigation

  6. Practice Note Planning for brownfield land

    E-Print Network [OSTI]

    Practice Note Planning for brownfield land regeneration to woodland and wider green infrastructure 1FCPN022 Gail Atkinson and Kieron Doick March 2014 The regeneration of brownfield land to green of brownfield regeneration to woodland in order to inform project planning, raise awareness of lessons learnt

  7. Heilougjiang adopts measures to strengthen land management-each square millimeter of land is utterly cherished and rationally used

    SciTech Connect (OSTI)

    Tan Peiquan; Liu, Y.

    1983-07-30T23:59:59.000Z

    This article reports on how a Chinese province with a large area of land and a small population has adopted a series of measures to strengthen land management, to stop the illegal occupying of land, and to protect land resources. Investigations of land resources and of the state of land use, as well as soil surveys, have been launched in order to determine the rights of land ownership and use. Many counties and cities have experimented with dividing farm areas into districts and comprehensive land planning, established land files, trained key personnel in land management skills, and have launched scientific land research. Illegal occupation, waste and destruction of land have risen with the increase in population and construction. Per capita cultivated acreage has declined to 4.1 mu. An effort has been made to reach the people in urban and rural areas with this message: ''Cherish every square millimeter of land utterly and use it rationally''.

  8. Reactor On-Off Antineutrino Measurement with KamLAND

    E-Print Network [OSTI]

    The KamLAND Collaboration

    2013-03-20T23:59:59.000Z

    The recent long-term shutdown of Japanese nuclear reactors has resulted in a significantly reduced reactor $\\bar{nu}_{e}$ flux at KamLAND. This running condition provides a unique opportunity to confirm and constrain backgrounds for the reactor $\\bar{nu}_{e}$ oscillation analysis. The data set also has improved sensitivity for other $\\bar{nu}_{e}$ signals, in particular $\\bar{nu}_{e}$'s produced in $\\beta$-decays from $^{238}$U and $^{232}$Th within the Earth's interior, whose energy spectrum overlaps with that of reactor $\\bar{nu}_{e}$'s. Including constraints on $\\theta_{13}$ from accelerator and short-baseline reactor neutrino experiments, a combined three-flavor analysis of solar and KamLAND data gives fit values for the oscillation parameters of $tan^{2} \\theta_{12} = 0.436^{+0.029}_{-0.025}$, $\\Delta m^{2}_{21} = 7.53^{+0.18}_{-0.18} \\times 10^{-5} {eV}^{2}$, and $sin^{2} \\theta_{13} = 0.023^{+0.002}_{-0.002}$. Assuming a chondritic Th/U mass ratio, we obtain $116^{+28}_{-27}$ $\\bar{nu}_{e}$ events from $^{238}$U and $^{232}$Th, corresponding to a geo $\\bar{nu}_{e}$ flux of $3.4^{+0.8}_{-0.8} \\times 10^{6} {cm^{-2}s^{-1}}$ at the KamLAND location. We evaluate various bulk silicate Earth composition models using the observed geo $\\bar{nu}_{e}$ rate.

  9. Human spatial orientation perceptions during simulated lunar landing

    E-Print Network [OSTI]

    Clark, Torin Kristofer

    2010-01-01T23:59:59.000Z

    During crewed lunar landings, astronauts are expected to guide a stable and controlled descent to a landing zone that is level and free of hazards by either making landing point (LP) redesignations or taking direct manual ...

  10. Land Transport Sector in Bangladesh: An Analysis Toward Motivating GHG

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou NewKorea PartsLLNLLaizhouLand O Lakes Inc Jump

  11. Land-use Scenario Analysis Toolkit | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou NewKorea PartsLLNLLaizhouLand O Lakes Incsource

  12. SECTION 17 Table of Contents 17 Pend Oreille Subbasin Inventory of Existing Programs Terrestrial ............ 2

    E-Print Network [OSTI]

    Quality (IDEQ) and Washington Department of Ecology (WDOE) are involved in programs that affect the land at this time are: 1. Water Quality. Goal ­ Meet rules, regulations of section 319 of Water Quality Act. A major thrust of NRCS at this time is to help write Total Maximum Daily Loads (TMDLs). Conservation

  13. Analytical approximations for x-ray cross sections III

    SciTech Connect (OSTI)

    Biggs, F; Lighthill, R

    1988-08-01T23:59:59.000Z

    This report updates our previous work that provided analytical approximations to cross sections for both photoelectric absorption of photons by atoms and incoherent scattering of photons by atoms. This representation is convenient for use in programmable calculators and in computer programs to evaluate these cross sections numerically. The results apply to atoms of atomic numbers between 1 and 100 and for photon energiesgreater than or equal to10 eV. The photoelectric cross sections are again approximated by four-term polynomials in reciprocal powers of the photon energy. There are now more fitting intervals, however, than were used previously. The incoherent-scattering cross sections are based on the Klein-Nishina relation, but use simpler approximate equations for efficient computer evaluation. We describe the averaging scheme for applying these atomic results to any composite material. The fitting coefficients are included in tables, and the cross sections are shown graphically. 100 graphs, 1 tab.

  14. Green Infrastructure and Flood Resiliency-Land Use Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure and Flood Resiliency-Land Use Management as an Adaptation Strategy in the Built Environment Green Infrastructure and Flood Resiliency-Land Use Management as an...

  15. Pollution on the Federal Lands II: Water Pollution Law

    E-Print Network [OSTI]

    Glicksman, Robert L.

    1993-01-01T23:59:59.000Z

    text. FEDERAL LANDS WATER POLLUTION nonpoint sources. 19Comment, Nonpoint Source Pollution, Groundwater, and theat 622. FEDERAL LANDS WATER POLLUTION The third requirement,

  16. arid land: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and indirect land use change The case for mitigation 359 Practice Note Planning for brownfield land Renewable Energy Websites Summary: space can deliver multiple benefits to...

  17. 20Ne Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, 2014Energy,F β--Decay EvaluatedMgNNap,

  18. 18O Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isN Ground-State Decay Evaluated Dataargeα, X)p,8O(p, X)

  19. 18O Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isN Ground-State Decay Evaluated Dataargeα, X)p,8O(p, X)α,

  20. 19F Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isN Ground-StateNovember 1997B β--Decay Evaluated DataCp, X)

  1. 19F Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isN Ground-StateNovember 1997B β--Decay Evaluated DataCp,

  2. Section 42: Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating theActive for the Waste

  3. Section 44: Engineered Barriers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating theActive for theEngineered

  4. Section I - Contract Clauses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking OverEvaluating ' M M t .9 'Isoscalar P.

  5. 12C Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isN Ground-State Decay Evaluated Data Measured2ThirdBep, X)

  6. 12C Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isN Ground-State Decay Evaluated Data Measured2ThirdBep, X)α,

  7. 13C Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isN Ground-State Decay Evaluated Dataarge E ddy S imula/onCp,

  8. 13C Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isN Ground-State Decay Evaluated Dataarge E ddy S

  9. 14655 Section A

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isN Ground-State Decay Evaluated Dataarge E ddy SN21E I N N

  10. 14655 Section B

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isN Ground-State Decay Evaluated Dataarge E ddy SN21E I N NB

  11. 14655 Section C

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isN Ground-State Decay Evaluated Dataarge E ddy SN21E I N NBC

  12. 14655 Section D

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isN Ground-State Decay Evaluated Dataarge E ddy SN21E I N NBCD

  13. 14655 Section E

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isN Ground-State Decay Evaluated Dataarge E ddy SN21E I N

  14. 14655 Section I

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isN Ground-State Decay Evaluated Dataarge E ddy SN21E I NI

  15. 14655 Section J

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isN Ground-State Decay Evaluated Dataarge E ddy SN21E I NI6,

  16. 14655 Section J

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isN Ground-State Decay Evaluated Dataarge E ddy SN21E I NI6,7,

  17. 14655 Section J

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isN Ground-State Decay Evaluated Dataarge E ddy SN21E I

  18. 14655 Section J

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isN Ground-State Decay Evaluated Dataarge E ddy SN21E I2 J-1

  19. 14655 Section J

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isN Ground-State Decay Evaluated Dataarge E ddy SN21E I2 J-1J

  20. 14655 Section J

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isN Ground-State Decay Evaluated Dataarge E ddy SN21E I2 J-1J9

  1. 14655 Section J

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isN Ground-State Decay Evaluated Dataarge E ddy SN21E I2 J-1J9

  2. 14C Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isN Ground-State Decay Evaluated Dataarge E ddy

  3. 14N Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isN Ground-State Decay Evaluated Dataarge E ddyF

  4. 14N Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isN Ground-State Decay Evaluated Dataarge E ddyF4N(α, X)

  5. 15N Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isN Ground-State Decay Evaluated Dataarge EC β--DecayFNp, X)

  6. 15N Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isN Ground-State Decay Evaluated Dataarge EC β--DecayFNp,

  7. 16O Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isN Ground-State Decay Evaluated Dataarge

  8. 16O Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isN Ground-State Decay Evaluated Dataargeα, X) (Current as of

  9. 17O Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isN Ground-State Decay Evaluated Dataargeα, X)p, X) (Current

  10. 17O Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isN Ground-State Decay Evaluated Dataargeα, X)p, X)

  11. Introduction to special section on Impacts of Land Use Change on Water Resources

    E-Print Network [OSTI]

    Scanlon, Bridget R.

    agriculture consumes up to 90% of the world's fresh water supplies [Shiklomanov, 2000], with estimated amounts populations but also due to policy shifts that are creating markets for biofuel and agricultural carbon of ground- water resources is a growing problem throughout the world [Konikow and Kendy, 2005], yet

  12. Making land fly : the institutionalization of China's land quota markets and its implications for urbanization, property rights, and intergovernmental politics

    E-Print Network [OSTI]

    Xiao, Yuan, Ph. D. Massachusetts Institute of Technology

    2014-01-01T23:59:59.000Z

    This dissertation investigates China's land quota markets, a recent land policy innovation that virtually transfers urbanization permission from the countryside to cities. To circumvent national government's quota restrictions ...

  13. RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES

    SciTech Connect (OSTI)

    Jonathan Aggett

    2003-12-15T23:59:59.000Z

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. In this segment of work, our goal was to review methods for estimating tree survival, growth, yield and value of forests growing on surface mined land in the eastern coalfields of the USA, and to determine the extent to which carbon sequestration is influenced by these factors. Public Law 95-87, the Surface Mining Control and Reclamation Act of 1977 (SMCRA), mandates that mined land be reclaimed in a fashion that renders the land at least as productive after mining as it was before mining. In the central Appalachian region, where prime farmland and economic development opportunities for mined land are scarce, the most practical land use choices are hayland/pasture, wildlife habitat, or forest land. Since 1977, the majority of mined land has been reclaimed as hayland/pasture or wildlife habitat, which is less expensive to reclaim than forest land, since there are no tree planting costs. As a result, there are now hundreds of thousands of hectares of grasslands and scrublands in various stages of natural succession located throughout otherwise forested mountains in the U.S. A literature review was done to develop the basis for an economic feasibility study of a range of land-use conversion scenarios. Procedures were developed for both mixed hardwoods and white pine under a set of low product prices and under a set of high product prices. Economic feasibility is based on land expectation values. Further, our review shows that three types of incentive schemes might be important: (1) lump sum payment at planting (and equivalent series of annual payments); (2) revenue incentive at harvest; and (3) benefit based on carbon volume.

  14. Atmospheric Moisture Transports from Ocean to Land and Global Energy Flows in Reanalyses

    E-Print Network [OSTI]

    Fasullo, John

    Atmospheric Moisture Transports from Ocean to Land and Global Energy Flows in Reanalyses KEVIN E energy and hydrological cycles from eight current atmospheric reanalyses and their depiction of changes over time. A brief evaluation of the water and energy cycles in the latest version of the NCAR climate

  15. Marine Habitats and Land Use (Virginia)

    Broader source: Energy.gov [DOE]

    The Virginia Marine Resources Commission has jurisdiction over submerged lands off the state's coast and in inland rivers and streams, wetlands and tidal wetlands, coastal sand dunes and beaches,...

  16. Biomass Energy and Competition for Land

    E-Print Network [OSTI]

    Reilly, John

    We describe an approach for incorporating biomass energy production and competition for land into the MIT Emissions Prediction and Policy Analysis (EPPA) model, a computable general equilibrium model of the world economy, ...

  17. LAND USE AND WATER QUALITY MANAGEMENT

    E-Print Network [OSTI]

    #12;LAND USE AND WATER QUALITY MANAGEMENT IN THE BRIDGE CREEK BASIN Prepared for: Water Quality ............................................. DESCRIPTION OF BRIDGE CREEK BASIN ........................ PHYSICAL SETTING'T. ................................ 5.1 CUMULATIVE IMPACTS ....................................... 5.1.1 Bridge Creek basin upstream

  18. Hydroelectric Resources on State Lands (Montana)

    Broader source: Energy.gov [DOE]

    This chapter authorizes the leasing of state lands for the development of hydroelectric resources. It provides regulations for the granting and duration of leases, as well as for the inspection of...

  19. Management and Use of Public Lands (Virginia)

    Broader source: Energy.gov [DOE]

    The Virginia Department of Conservation and Recreation may elect to lease its lands for the development of mineral interests (defined herein as petroleum, natural gas, coal, ore, rock and any other...

  20. Land Assemblage Tax Credit Program (Missouri)

    Broader source: Energy.gov [DOE]

    The Land Assemblage Tax Credit Programs the redevelopment of blighted areas in Missouri into productive use. Redevelopers must incur acquisition costs for at least 50 acres of 75+ acre parcels,...

  1. A framework for benchmarking land models

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    their inclu- sion in Earth system models (ESMs). State-of-land models cou- pled to Earth system models should simulateland models within Earth system models, however, can help

  2. Land and its uses - actual and potential

    SciTech Connect (OSTI)

    Last, F.T.; Bell, B.G.; Holz, M.C.B.

    1986-01-01T23:59:59.000Z

    This book discusses information on the following topics: identification of ecological factors characterizing the range of terrestrial habitats (urban, rural); land classifications; water resources; conservation and landscape; remote sensing; and case studies.

  3. Wilderness designation of Bureau of Land Management lands and impacts on the availability of energy resources

    SciTech Connect (OSTI)

    Oakes, E.H.; Voelker, A.H.

    1983-02-01T23:59:59.000Z

    In 1964 Congress mandated the establishment of the National Wilderness Preservation System - a collection of federal lands dedicated to the preservation of selected parts of our once vast wilderness. Because wilderness management precludes many traditional land uses, controversy has plagued the efforts of land-management agencies to select and recommend areas for wilderness inclusion. This study examines potential impacts on the supply of energy resources from the possible withdrawal by the Bureau of Land Management (BLM) of some part of the 24.3 million acres of public lands now under study for inclusion in the wilderness system. Except for uranium, the energy-resource potential of the total WSA-acreage is low. Wilderness designation of some WSAs is therefore not expected to cause serious impacts on the future availability of energy resources. Because the significance of land withdrawals by the BLM will depend to some extent on the availability of other federal lands for mineral activities, an up-to-date estimate of the current and future status-of-access to western federal lands for mineral activities was prepared. Overall conclusions of the report are that (1) the inclusion of some BLM land in the National Wilderness Preservation System will not interfere with the nation's required supply of energy resources, (2) there is sufficient federal land currently available in the West for mineral activities, (3) the availability of western federal land for mineral activities will increase in the future, (4) the administration should continue to support the major land-review programs, and (5) the administration should accelerate the review process for WSAs in regions that have a high energy-resource potential.

  4. MARS IN A MINUTE: How Do You Land on Mars? How do you land on Mars?

    E-Print Network [OSTI]

    to land safely! Here are some options: 1. With a small- to mid-size rover, use a cushion of airbags along

  5. agricultural land based: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Preparing a Conservation Plan INTRODUCTION Conservation of land, water and other natural features. Examples of goals...

  6. ICSBEP Criticality Benchmark Eigenvalues with ENDF/B-VII.1 Cross Sections

    SciTech Connect (OSTI)

    Kahler, Albert C. III [Los Alamos National Laboratory; MacFarlane, Robert [Los Alamos National Laboratory

    2012-06-28T23:59:59.000Z

    We review MCNP eigenvalue calculations from a suite of International Criticality Safety Benchmark Evaluation Project (ICSBEP) Handbook evaluations with the recently distributed ENDF/B-VII.1 cross section library.

  7. SECTION J, APPENDIX A - SOW

    National Nuclear Security Administration (NNSA)

    and improve the industrial competitiveness and national security of the United States. Section J, Appendix A, Page 19 (Replaced Mod 002; Modified Mod 016; Replaced Mod...

  8. SECTION J, APPENDIX A - SOW

    National Nuclear Security Administration (NNSA)

    and improve the industrial competitiveness and national security of the United States. Section J, Appendix A, Page 17 Request for Proposal No. DE-SOL-0007749 CHAPTER...

  9. REPORT NO. 4 ESTIMATES AND EVALUATION OF

    E-Print Network [OSTI]

    ESTIMATES AND EVALUATION OF FALLOUT IN THE UNITED STATES FROM NUCLEAR WEAPONS TESTING CONDUCTED THROUGH 1962 Section II History of Nuclear Weapons Testing. . . . . . . . . . . . . . . . 4 Section III Atmospheric, "Health Implications of Fallout From Nuclear Weapons Testing Through 1961", May 1962

  10. Electron capture cross sections for stellar nucleosynthesis

    E-Print Network [OSTI]

    Giannaka, P G

    2015-01-01T23:59:59.000Z

    In the first stage of this work, we perform detailed calculations for the cross sections of the electron capture on nuclei under laboratory conditions. Towards this aim we exploit the advantages of a refined version of the proton-neutron quasi-particle random-phase approximation (pn-QRPA) and carry out state-by-state evaluations of the rates of exclusive processes that lead to any of the accessible transitions within the chosen model space. In the second stage of our present study, we translate the above mentioned $e^-$-capture cross sections to the stellar environment ones by inserting the temperature dependence through a Maxwell-Boltzmann distribution describing the stellar electron gas. As a concrete nuclear target we use the $^{66}Zn$ isotope, which belongs to the iron group nuclei and plays prominent role in stellar nucleosynthesis at core collapse supernovae environment.

  11. EA-1212: Lease of Land for the Development of a Research Park at Los Alamos National Laboratory, Los Alamos, New Mexico

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to lease undeveloped land that is part of the U.S. Department of Energy's Los Alamos National Laboratory in Los Alamos, New Mexico, to...

  12. EA-1332: Leasing Land for the Siting, Construction and Operation of a Commercial AM Radio Antenna at Los Alamos National Laboratory, Los Alamos, New Mexico

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to lease approximately 3 acres of land at the U.S. Department of Energy's Los Alamos National Laboratory on the southeast tip of...

  13. EA-1915: Conveyance of Approximately 1,641 Acres of Unimproved Land to the Tri-City Development Council, the Local Community Reuse Organization, Richland, WA

    Broader source: Energy.gov [DOE]

    This EA will evaluate the environmental impacts of conveyance of approximately 1,641 acres of unimproved land at DOEs Hanford Site, Richland, Washington to the Tri-City Development Council (TRIDEC), the local community reuse organization (CRO).

  14. Cross Sections for Inner-Shell Ionization by Electron Impact

    SciTech Connect (OSTI)

    Llovet, Xavier, E-mail: xavier@ccit.ub.edu [Centres Cientfics i Tecnolgics, Universitat de Barcelona, Llus Sol i Sabars 1-3, 08028 Barcelona (Spain)] [Centres Cientfics i Tecnolgics, Universitat de Barcelona, Llus Sol i Sabars 1-3, 08028 Barcelona (Spain); Powell, Cedric J. [Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8370 (United States)] [Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8370 (United States); Salvat, Francesc [Facultat de Fsica (ECM and ICC), Universitat de Barcelona, Diagonal 645, 08028 Barcelona (Spain)] [Facultat de Fsica (ECM and ICC), Universitat de Barcelona, Diagonal 645, 08028 Barcelona (Spain); Jablonski, Aleksander [Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw (Poland)] [Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw (Poland)

    2014-03-15T23:59:59.000Z

    An analysis is presented of measured and calculated cross sections for inner-shell ionization by electron impact. We describe the essentials of classical and semiclassical models and of quantum approximations for computing ionization cross sections. The emphasis is on the recent formulation of the distorted-wave Born approximation by Bote and Salvat [Phys. Rev. A 77, 042701 (2008)] that has been used to generate an extensive database of cross sections for the ionization of the K shell and the L and M subshells of all elements from hydrogen to einsteinium (Z = 1 to Z = 99) by electrons and positrons with kinetic energies up to 1 GeV. We describe a systematic method for evaluating cross sections for emission of x rays and Auger electrons based on atomic transition probabilities from the Evaluated Atomic Data Library of Perkins et al. [Lawrence Livermore National Laboratory, UCRL-ID-50400, 1991]. We made an extensive comparison of measured K-shell, L-subshell, and M-subshell ionization cross sections and of L? x-ray production cross sections with the corresponding calculated cross sections. We identified elements for which there were at least three (for K shells) or two (for L and M subshells) mutually consistent sets of cross-section measurements and for which the cross sections varied with energy as expected by theory. The overall average root-mean-square deviation between the measured and calculated cross sections was 10.9% and the overall average deviation was ?2.5%. This degree of agreement between measured and calculated ionization and x-ray production cross sections was considered to be very satisfactory given the difficulties of these measurements.

  15. A fault location approach for fuzzy fault section estimation on radial distribution feeders

    E-Print Network [OSTI]

    Andoh, Kwame Sarpong

    2000-01-01T23:59:59.000Z

    was involved in the fault was evaluated using the event-phase possibility values and line section phase topology information. The fault distance algorithm was used to eliminate sections of the feeder that were not likely to be possible faulted section...

  16. Land Tenure and Land Administration Issues in Guatemala Danielle Kelly Donovan

    E-Print Network [OSTI]

    Onsrud, Harlan J.

    Civilization's hierarchical system and the Spanish exploitation. The Mayan Civilization involved communally by Mexico, on the southeast by Honduras and El Salvador, and on the southwest by the Pacific Ocean in 1523 lead to ruthless exploitation of Mayan land. Geography, amount and accessibility of arable land

  17. Section 3.3 Equivalence Relations1 Section 3.3 Equivalence RelationSection 3.3 Equivalence RelationSection 3.3 Equivalence RelationSection 3.3 Equivalence Relationssss

    E-Print Network [OSTI]

    Farlow, Jerry

    Section 3.3 Equivalence Relations1 Section 3.3 Equivalence RelationSection 3.3 Equivalence RelationSection 3.3 Equivalence RelationSection 3.3 Equivalence Relationssss Purpose of SectionPurpose of SectionPurpose of SectionPurpose of Section To introduce the concept of an equivalence relationequivalence

  18. The Public Lands Commission of 1879

    E-Print Network [OSTI]

    Odom, Danna Evelyn

    1971-01-01T23:59:59.000Z

    can be positively iden- tified. Each territory was divided into townships, six 3 miles square. Each township was divided into areas, ca' led. sections, measuring one mile square, or 640 acres' Each section was given a specific number, and.... was later sub- divided by multiples of forty acres, down to "lots. " The government retained. sections eight, eleven, twenty-six, and twenty-nine in each township, and laid. claim to one- third of all precious me als discovered. . Section sixteen...

  19. Review of Section XI inservice inspection program effectiveness

    SciTech Connect (OSTI)

    Cook, J.F. Sr.

    1993-08-01T23:59:59.000Z

    To evaluate the effectiveness of Section XI, Division 1, {open_quotes}Rules for Inservice Inspection of Nuclear Power Plant Components,{close_quotes} of the American Society of Mechanical Engineers Boiler and Pressure Vessel Code, searches were performed of the Licensing Event Report and Nuclear Plant Reliability Data System computerized data bases, and a review was made of inservice inspection summary reports. It was found that the Section XI examinations and tests detect flaws in welds and plant components and result in subsequent corrective action. This study also shows that the format and topics of information provided in Section XI-prescribed inservice inspection summary reports vary widely.

  20. Development of High Resolution Land Surface Parameters for the Community Land Model

    SciTech Connect (OSTI)

    Ke, Yinghai; Leung, Lai-Yung R.; Huang, Maoyi; Coleman, Andre M.; Li, Hongyi; Wigmosta, Mark S.

    2012-11-06T23:59:59.000Z

    There is a growing need for high-resolution land surface parameters as land surface models are being applied at increasingly higher spatial resolution offline as well as in regional and global models. The default land surface parameters for the most recent version of the Community Land Model (i.e. CLM 4.0) are at 0.5 or coarser resolutions, released with the Community Earth System Model (CESM). Plant Functional Types (PFTs), vegetation properties such as Leaf Area Index (LAI), Stem Area Index (SAI), and non-vegetated land covers were developed using remotely sensed datasets retrieved in late 1990s and the beginning of this century. In this study, we developed new land surface parameters for CLM 4.0, specifically PFTs, LAI, SAI and non-vegetated land cover composition, at 0.05 resolution globally based on the most recent MODIS land cover and improved MODIS LAI products. Compared to the current CLM 4.0 parameters, the new parameters produced a decreased coverage by bare soil and trees, but an increased coverage by shrub, grass, and cropland. The new parameters result in a decrease in global seasonal LAI, with the biggest decrease in boreal forests; however, the new parameters also show a large increase in LAI in tropical forest. Differences between the new and the current parameters are mainly caused by changes in the sources of remotely sensed data and the representation of land cover in the source data. Advantages and disadvantages of each dataset were discussed in order to provide guidance on the use of the data. The new high-resolution land surface parameters have been used in a coupled land-atmosphere model (WRF-CLM) applied to the western U.S. to demonstrate their use in high-resolution modeling. A remapping method from the latitude/longitude grid of the CLM data to the WRF grids with map projection was also demonstrated. Future work will include global offline CLM simulations to examine the impacts of source data resolution and subsequent land parameter changes on simulated land surface processes.

  1. Carbon Sequestration on Surface Mine Lands

    SciTech Connect (OSTI)

    Donald Graves; Christopher Barton; Richard Sweigard; Richard Warner; Carmen Agouridis

    2006-03-31T23:59:59.000Z

    Since the implementation of the federal Surface Mining Control and Reclamation Act of 1977 (SMCRA) in May of 1978, many opportunities have been lost for the reforestation of surface mines in the eastern United States. Research has shown that excessive compaction of spoil material in the backfilling and grading process is the biggest impediment to the establishment of productive forests as a post-mining land use (Ashby, 1998, Burger et al., 1994, Graves et al., 2000). Stability of mine sites was a prominent concern among regulators and mine operators in the years immediately following the implementation of SMCRA. These concerns resulted in the highly compacted, flatly graded, and consequently unproductive spoils of the early post-SMCRA era. However, there is nothing in the regulations that requires mine sites to be overly compacted as long as stability is achieved. It has been cultural barriers and not regulatory barriers that have contributed to the failure of reforestation efforts under the federal law over the past 27 years. Efforts to change the perception that the federal law and regulations impede effective reforestation techniques and interfere with bond release must be implemented. Demonstration of techniques that lead to the successful reforestation of surface mines is one such method that can be used to change perceptions and protect the forest ecosystems that were indigenous to these areas prior to mining. The University of Kentucky initiated a large-scale reforestation effort to address regulatory and cultural impediments to forest reclamation in 2003. During the three years of this project 383,000 trees were planted on over 556 acres in different physiographic areas of Kentucky (Table 1, Figure 1). Species used for the project were similar to those that existed on the sites before mining was initiated (Table 2). A monitoring program was undertaken to evaluate growth and survival of the planted species as a function of spoil characteristics and reclamation practice. In addition, experiments were integrated within the reforestation effort to address specific questions pertaining to sequestration of carbon (C) on these sites.

  2. RCRA, superfund and EPCRA hotline training module. Introduction to: Land disposal restrictions (40 cfr parts 268) updated July 1996

    SciTech Connect (OSTI)

    NONE

    1996-07-01T23:59:59.000Z

    The module presents an overview of the land disposal restrictions (LDR) program. It defines the basic terms and describes the structure of the LDR regulations. It identifies the statutory basis for LDR and describes the applicability of LDR. It explains how EPA sets treatment standards and identifies treatment standards for wastes subject to land disposal restrictions and cites the CFR section. It describes and identifies how exemptions and variances from treatment requirements are obtained, including federal register citations. It defines generator and Treatment, Storage, and Disposal Facility (TSDF) requirements under the LDR program. It summarizes the schedule of existing restrictions and the plan for restricting newly identified wastes.

  3. Characterization of oil and gas reservoirs and recovery technology deployment on Texas State Lands

    SciTech Connect (OSTI)

    Tyler, R.; Major, R.P.; Holtz, M.H. [Univ. of Texas, Austin, TX (United States)] [and others

    1997-08-01T23:59:59.000Z

    Texas State Lands oil and gas resources are estimated at 1.6 BSTB of remaining mobile oil, 2.1 BSTB, or residual oil, and nearly 10 Tcf of remaining gas. An integrated, detailed geologic and engineering characterization of Texas State Lands has created quantitative descriptions of the oil and gas reservoirs, resulting in delineation of untapped, bypassed compartments and zones of remaining oil and gas. On Texas State Lands, the knowledge gained from such interpretative, quantitative reservoir descriptions has been the basis for designing optimized recovery strategies, including well deepening, recompletions, workovers, targeted infill drilling, injection profile modification, and waterflood optimization. The State of Texas Advanced Resource Recovery program is currently evaluating oil and gas fields along the Gulf Coast (South Copano Bay and Umbrella Point fields) and in the Permian Basin (Keystone East, Ozona, Geraldine Ford and Ford West fields). The program is grounded in advanced reservoir characterization techniques that define the residence of unrecovered oil and gas remaining in select State Land reservoirs. Integral to the program is collaboration with operators in order to deploy advanced reservoir exploitation and management plans. These plans are made on the basis of a thorough understanding of internal reservoir architecture and its controls on remaining oil and gas distribution. Continued accurate, detailed Texas State Lands reservoir description and characterization will ensure deployment of the most current and economically viable recovery technologies and strategies available.

  4. Recent Trends in Land Tenure in Texas.

    E-Print Network [OSTI]

    Motheral, Joe

    1944-01-01T23:59:59.000Z

    colored; in Harrison County, 70 per cent; in Gregg County, 60 per cent; in San Jacinto County, 57 per cent; and in Walker County, 51 per cent. Almost one-third of the farm operators in counties along the lower reaches of the Colorado and Brazos rivers...RECENT TRENDS IN LAND TENURE IN TEXAS JOE MOTHERAL Division of Farm and Ranch Economics [Blank Page in Original Bulletin] Public interest in the subject of land tenure has been height- ened by the swift changes, in the tenure pattern...

  5. Ecological perspectives of land use history: The Arid Lands Ecology (ALE) Reserve

    SciTech Connect (OSTI)

    Hinds, N R; Rogers, L E

    1991-07-01T23:59:59.000Z

    The objective of this study was to gather information on the land use history of the Arid Land Ecology (ALE) Reserve so that current ecological research could be placed within a historical perspective. The data were gathered in the early 1980s by interviewing former users of the land and from previously published research (where available). Interviews with former land users of the ALE Reserve in Benton County, Washington, revealed that major land uses from 1880 to 1940 were homesteading, grazing, oil/gas production, and road building. Land use practices associated with grazing and homesteading have left the greatest impact on the landscape. Disturbed sites where succession is characterized by non-native species, plots where sagebrush was railed away, and sheep trails are major indications today of past land uses. Recent estimates of annual bunchgrass production do ALE do not support the widespread belief that bunchgrass were more productive during the homesteading era, though the invasion of cheatgrass (Bromus tectorum), Jim Hill mustard (Sisymbrium altissium), and other European alien plant species has altered pre-settlement succession patterns. 15 refs., 6 figs., 1 tab.

  6. Waterfowl habitats on reclaimed surface mined lands in southwestern Illinois

    SciTech Connect (OSTI)

    O'Leary, W.G.; Klimstra, W.D.; Nawrot, J.R.

    1984-12-01T23:59:59.000Z

    Loss of quality wetland habitat is probably the most important factor affecting populations of waterfowl in the United States. To counteract this problem programs for protecting critical habitats have been established and research for innovative methods to create wetlands are being pursued. Recently, attention has been given to evaluation of wetland habitats on lands surface-mined and to methods of reclamation to enhance their development as part of future planning. These data indicate quality wetland habitats can be a legitimate aspect of reclaimed surface-mined lands; and selective overburden handling, grading so as to maximize biologically productive zones and selective plantings contribute importantly to their value. Currently bond release criteria by the Illinois regulatory authority for wildlife habitat and developed water resources discourages reclamation that would maximize quality wetland habitats. Suggested changes in these criteria include alternative vegetation requirements for wetland habitats, more leniency on seasonally inundated shallow water areas, and variation from topsoil requirements when adequate unconsolidated substitute material is available. It is believed that such allowances would result in incentives for the industry to develop wetland habitats so vital to continued enjoyment of waterfowl resources.

  7. Assessing the Feasibility of Renewable Energy Development and Energy Efficiency Deployment on Tribal Lands

    SciTech Connect (OSTI)

    Nominelli, Gregg R.

    2012-12-17T23:59:59.000Z

    The Keweenaw Bay Indian Community (KBIC) is committed to preserving our natural environment and reducing the amount of fossil fuels consumed while developing "green" business manufacturing jobs on tribal lands. The Tribe's Comprehensive Strategic Plan seeks to diversify the Tribal Economy through the creation of alternative energy businesses, such as wind, solar and bio-mass facilities while protecting the waters of Lake Superior, tribal inland lakes and streams. In addition, the Community desired to utilize clean/green energy resources to promote the self-sufficiency of the Tribal Nation. The objective of the study is to preserve our environment and maintain our cultural goals of using the resources of the land wisely. To reduce our consumption of fossil fuels, mercury and carbon dioxide emissions, which harm our water and land; we have decided to evaluate the opportunities of utilizing wind power. Preliminary projections show that we may eliminate pollution from our land in a cost effective manner. This study will evaluate wind capacity and our current energy consumption while projecting the feasibility of converting to wind power for operations at our major facilities. This project will study the feasibility of wind power at two locations for the purpose of reducing the Tribe's reliance upon fossil fuels and creating business opportunities, jobs and revenue for the community.

  8. Center for Environmental Management of Military Lands

    E-Print Network [OSTI]

    for professionalism and hard work. Sincerely, Dr. Lee Barber, Director Center for Environmental Management of MilitaryCenter for Environmental Management of Military Lands 1490 Campus Delivery Fort Collins, Colorado extent been due to our ability to address our sponsors' natural and cultural resource management

  9. www.publiclandsday.org Public Lands Program

    E-Print Network [OSTI]

    US Army Corps of Engineers

    awareness of local public lands and issues #12;www.publiclandsday.org Facebook.com - Fan Page http://www.facebook.com/pages/create.php #12;www.publiclandsday.org Facebook Fan Page http://www.facebook.com/pages/create.php #12;www.publiclandsday.org Facebook Fan Page #12;www.publiclandsday.org Facebook Fan Page #12;www.publiclandsday.org Facebook Event

  10. The land use climate change energy nexus

    SciTech Connect (OSTI)

    Dale, Virginia H [ORNL; Efroymson, Rebecca Ann [ORNL; Kline, Keith L [ORNL

    2011-01-01T23:59:59.000Z

    Landscape ecology focuses on the spatial patterns and processes of ecological and human interactions. These patterns and processes are being altered both by changing human resource-management practices and changing climate conditions associated, in part, with increases in atmospheric concentrations of greenhouse gases. Dominant resource extraction and land management activities involve energy, and the use of fossil energy is one of the key drivers behind increasing greenhouse gas emissions as well as land-use changes. Alternative energy sources (such as wind, solar, nuclear, and bioenergy) are being explored to reduce greenhouse gas emission rates. Yet, energy production, including alternative-energy options, can have a wide range of effects on land productivity, surface cover, albedo, and other factors that affect carbon, water and energy fluxes and, in turn, climate. Meanwhile, climate influences the potential output, relative efficiencies and sustainability of alternative energy sources. Thus climate change, energy choices, and land-use change are linked, and any analysis in landscape ecology that considers one of these factors should consider them all. This analysis explores the implications of those linkages and points out ecological patterns and processes that may be affected by these interactions.

  11. Mitigating climate change through land use

    E-Print Network [OSTI]

    Watson, Andrew

    , offsetting the use of fossil fuels and reducing carbon emissions. Avoiding deforestation, increasing plant storage through afforestation or plant management, and substituting bioenergy for fossil fuels all use increasing deforestation by increasing demand for crop land, undermining the primary GHG emissions reduction

  12. Purdue extension PurdueLandUseTeam

    E-Print Network [OSTI]

    Purdue extension Val Slack Jon Cain Co-Chairs, PurdueLandUseTeam PurdueUniversity ID-351 CAFOs. The role of the Agricultural & Natural Resources (ANR) Educator as a plan commission member is to help plan and natural resources and provide insight into the impact on these two areas when there are proposed changes

  13. Environment and Land in Bushbuckridge, South Africa

    E-Print Network [OSTI]

    Environment and Land in Bushbuckridge, South Africa © 2002, Professor Robert Thornton Department of Anthropology University of the Witwatersrand, Johannesburg, South Africa Acknowledgements: Research), and by the Centre for Science Development, Human Sciences Research Council, Pretoria, South Africa. Printed:24 April

  14. Land Use Baseline Report Savannah River Site

    SciTech Connect (OSTI)

    Noah, J.C.

    1995-06-29T23:59:59.000Z

    This document is to serve as a resource for Savannah River Site managers, planners, and SRS stakeholders by providing a general description of the site and land-use factors important to future use decisions and plans. The intent of this document is to be comprehensive in its review of SRS and the surrounding area.

  15. Arid Lands Ecology Facility management plan

    SciTech Connect (OSTI)

    None

    1993-02-01T23:59:59.000Z

    The Arid Lands Ecology (ALE) facility is a 312-sq-km tract of land that lies on the western side of the Hanford Site in southcentral Washington. The US Atomic Energy Commission officially set aside this land area in 1967 to preserve shrub-steppe habitat and vegetation. The ALE facility is managed by Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE) for ecological research and education purposes. In 1971, the ALE facility was designated the Rattlesnake Hills Research Natural Area (RNA) as a result of an interagency federal cooperative agreement, and remains the largest RNA in Washington. it is also one of the few remaining large tracts of shrub-steppe vegetation in the state retaining a predominant preeuropean settlement character. This management plan provides policy and implementation methods for management of the ALE facilities consistent with both US Department of Energy Headquarters and the Richland Field Office decision (US Congress 1977) to designate and manage ALE lands as an RNA and as a component of the DOE National Environmental Research Park System.

  16. Bureau of Land Management Oil Shale Development

    E-Print Network [OSTI]

    Utah, University of

    Bureau of Land Management Oil Shale Development Unconventional Fuels Conference University of Utah May 17, 2011 #12;#12;Domestic Oil Shale Resources Primary oil shale resources in the U.S. are in the Green River Formation in Wyoming, Utah, and Colorado. 72 % of this oil shale resource is on Federal

  17. Climate Effects of Global Land Cover Change

    SciTech Connect (OSTI)

    Gibbard, S G; Caldeira, K; Bala, G; Phillips, T; Wickett, M

    2005-08-24T23:59:59.000Z

    There are two competing effects of global land cover change on climate: an albedo effect which leads to heating when changing from grass/croplands to forest, and an evapotranspiration effect which tends to produce cooling. It is not clear which effect would dominate in a global land cover change scenario. We have performed coupled land/ocean/atmosphere simulations of global land cover change using the NCAR CAM3 atmospheric general circulation model. We find that replacement of current vegetation by trees on a global basis would lead to a global annual mean warming of 1.6 C, nearly 75% of the warming produced under a doubled CO{sub 2} concentration, while global replacement by grasslands would result in a cooling of 0.4 C. These results suggest that more research is necessary before forest carbon storage should be deployed as a mitigation strategy for global warming. In particular, high latitude forests probably have a net warming effect on the Earth's climate.

  18. Land and Atmospheric Science GRAD STUDENT HANDBOOK

    E-Print Network [OSTI]

    Minnesota, University of

    , transport, and fate of pollutants in soil, air, and water; improving and protecting land, air, and water, Policy and Management Agricultural Industries and Marketing The Department occupies the entire Soil are predominantly occupied by Soil Morphology and Genesis, Environmental Biophysics, and Atmospheric Sciences, plus

  19. Acquiring Land Use Rights in Today's China: A Snapshot from on the Ground

    E-Print Network [OSTI]

    Stein, Gregory M.

    2006-01-01T23:59:59.000Z

    the effectiveness of land reclamation, noting that reclaimedand that reclamation of marginally fertile land may havereclamation process as "turning mud into agri- cultural land."

  20. Interseismic deformation and creep along the central section of the North Anatolian Fault (Turkey): InSAR observations

    E-Print Network [OSTI]

    Sandwell, David T.

    Interseismic deformation and creep along the central section of the North Anatolian Fault (Turkey Anatolian Fault (NAF) in Turkey using interferometric synthetic aperture radar data from the Advanced Land Anatolian Fault (Turkey): InSAR observations and implications for rate-and-state friction properties, J

  1. Resource Management Services: Land Use, Part 501: Use of Flood Control Lands (New York)

    Broader source: Energy.gov [DOE]

    No regulated activity or development is allowed to take place on lands used for flood control purposes unless a permit is obtained. These regulations describe provisions for the application,...

  2. Developing Lunar Landing Vehicle Display Requirements through Content Analysis of Apollo Lunar Landing Voice Communications

    E-Print Network [OSTI]

    Smith, C. A.

    2008-01-01T23:59:59.000Z

    The lengthy period since the Apollo landings limits present-day engineers attempting to draw from the experiences of veteran Apollo engineers and astronauts in the design of a new lunar lander. In order to circumvent these ...

  3. Gasbuggy Site Assessment and Risk Evaluation

    SciTech Connect (OSTI)

    None

    2011-03-01T23:59:59.000Z

    The Gasbuggy site is in northern New Mexico in the San Juan Basin, Rio Arriba County (Figure 1-1). The Gasbuggy experiment was designed to evaluate the use of a nuclear detonation to enhance natural gas production from the Pictured Cliffs Formation, a tight, gas-bearing sandstone formation. The 29-kiloton-yield nuclear device was placed in a 17.5-inch wellbore at 4,240 feet (ft) below ground surface (bgs), approximately 40 ft below the Pictured Cliffs/Lewis shale contact, in an attempt to force the cavity/chimney formed by the detonation up into the Pictured Cliffs Sandstone. The test was conducted below the southwest quarter of Section 36, Township 29 North, Range 4 West, New Mexico Principal Meridian. The device was detonated on December 10, 1967, creating a 335-ft-high chimney above the detonation point and a cavity 160 ft in diameter. The gas produced from GB-ER (the emplacement and reentry well) during the post-detonation production tests was radioactive and diluted, primarily by carbon dioxide. After 2 years, the energy content of the gas had recovered to 80 percent of the value of gas in conventionally developed wells in the area. There is currently no technology capable of remediating deep underground nuclear detonation cavities and chimneys. Consequently, the U.S. Department of Energy (DOE) must continue to manage the Gasbuggy site to ensure that no inadvertent intrusion into the residual contamination occurs. DOE has complete control over the 1/4 section (160 acres) containing the shot cavity, and no drilling is permitted on that property. However, oil and gas leases are on the surrounding land. Therefore, the most likely route of intrusion and potential exposure would be through contaminated natural gas or contaminated water migrating into a producing natural gas well outside the immediate vicinity of ground zero. The purpose of this report is to describe the current site conditions and evaluate the potential health risks posed by the most plausible contaminant exposure scenario, drilling of natural gas wells near the site. The results of this risk evaluation will guide DOE's future surveillance and monitoring activities in the area to ensure that site conditions are adequately protective of human health. This evaluation is not a comprehensive risk assessment for the site; it is intended to provide assurance that DOE's monitoring approach can detect the presence of site-related contamination at levels well below those that would pose an unacceptable risk to human health.

  4. Precipitation, Recycling, and Land Memory: An Integrated Analysis

    E-Print Network [OSTI]

    Dirmeyer, Paul A.

    A synthesis of several approaches to quantifying landatmosphere interactions is presented. These approaches use data from observations or atmospheric reanalyses applied to atmospheric tracer models and stand-alone land ...

  5. Relative efficiency of land surface energy balance components

    E-Print Network [OSTI]

    Bateni, S. M.

    [1] The partitioning of available energy into dissipative fluxes over land surfaces is dependent on the state variable of the surface energy balance (land surface temperature) and the state variable of the surface water ...

  6. RADBOUDUNIVERSITY NIJMEGEN, THE NETHERLANDS ICT for Ethiopia's land

    E-Print Network [OSTI]

    Lucas, Peter

    RADBOUDUNIVERSITY NIJMEGEN, THE NETHERLANDS ICT for Ethiopia's land administration Bachelor Thesis Information Science Sander van Hooft 7/15/2009 Supervisor: Luca Consoli, Phd. #12;ICT for Ethiopia........................................................................................... 5 4.1 Ethiopia's history of land administration

  7. admiral cockburn land: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NSCAT Views Land and Ice David G. Long Engineering Websites Summary: NSCAT Views Land and Ice David G. Long Brigham YoungUniversityMicrowaveEarth Remote Sensing- ment Agency of...

  8. Regulatory Impacts for Renewable Energy Projects on Indian Lands...

    Office of Environmental Management (EM)

    Regulatory Impacts for Renewable Energy Projects on Indian Lands Webinar Regulatory Impacts for Renewable Energy Projects on Indian Lands Webinar June 24, 2015 11:00AM to 12:30PM...

  9. CARBON SEQUESTRATION THROUGH CHANGES IN LAND USE IN OREGON

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION CARBON SEQUESTRATION THROUGH CHANGES IN LAND USE IN OREGON: COSTS, and J. Kadyszewski (Winrock International). 2007. Carbon Sequestration Through Changes in Land Use Curves, and Pilot Actions for Terrestrial Carbon Sequestration in Oregon. Report to Winrock

  10. Conditions and effectiveness of land use as a mobility tool

    E-Print Network [OSTI]

    Zhang, Ming, 1963 Apr. 22-

    2002-01-01T23:59:59.000Z

    This dissertation examines the potential of land use as a mobility tool to affect travel, a subject of long and ongoing policy debate. Land use strategies such as densification, mixed-use development, and non-driving-oriented ...

  11. arnhem land northern: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1,476 24.7 Total Land 5,972 100.0 Note: Campus areas include land leased by Rutgers. Source: Office of Facilities and Capital Planning Office Garfunkel, Eric 105...

  12. Geothermal Power Plants Minimizing Land Use and Impact

    Broader source: Energy.gov [DOE]

    For energy production and development, geothermal power plants don't use much land compared to coal and nuclear power plants. And the environmental impact upon the land they use is minimal.

  13. agricultural land final: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    land change science, to better understand of the three foci outlined in the science plan of the Land-use and -cover change (LUCC) project (Turner et al Brown, Daniel G. 273...

  14. Green Lands Blue Water 2014 Fall Conference | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Green Lands Blue Water 2014 Fall Conference Green Lands Blue Water 2014 Fall Conference November 18, 2014 10:00AM CST to November 20, 2014 4:00PM CST Richland Community College...

  15. Chapter 10. Land Application of Biosolids Gregory K. Evanylo

    E-Print Network [OSTI]

    Kaye, Jason P.

    Chapter 10. Land Application of Biosolids Gregory K. Evanylo Department of Crop and Soil..................................................................................................................... 228 What are biosolids and how are they different from sewage sludge?......................... 228 Benefits of land application of biosolids

  16. arid lands ecology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by land use land cover (LULC) change, climate variability, and water regulations. San Antonio, Texas, the 8th largest city... Sahoo, Debabrata 2009-05-15 84 A study of...

  17. arid land ecology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by land use land cover (LULC) change, climate variability, and water regulations. San Antonio, Texas, the 8th largest city... Sahoo, Debabrata 2009-05-15 84 A study of...

  18. Land-atmosphere interaction and radiative-convective equilibrium

    E-Print Network [OSTI]

    Cronin, Timothy (Timothy Wallace)

    2014-01-01T23:59:59.000Z

    I present work on several topics related to land-atmosphere interaction and radiative-convective equilibrium: the first two research chapters invoke ideas related to land-atmosphere interaction to better understand ...

  19. An appraisal of the Texas veterans' land program

    E-Print Network [OSTI]

    Dorries, W. L.

    1955-01-01T23:59:59.000Z

    , and Mr. L. C. Jackson, Executive Secretary of the Veterans' Land Board, who made the Land Board records available for this study. Credit also belongs to the many veterans who gave information concerning their land purchases. Finally, the writer 'V... is indebted to his wife, Virginia Dorries^ for reading the disserta- tion and offering valuable suggestions. m CONTENTS I. Introduction and historical background--------------------- - 1 II. Provisions for a Veterans* Land Board purchase--------------- 1...

  20. MSU Departmental Assessment Plan Department: Land Resources and Environmental Sciences

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    MSU Departmental Assessment Plan 2007-2009 Department: Land Resources and Environmental Sciences (cross-college) #12;Student Outcomes Assessment Plan Land Resources and Environmental Sciences Department The Department of Land Resources and Environmental Sciences (LRES) will undertake a continuing assessment

  1. Land Acquisition Prepared by: Ben Floyd, Economic & Engineering Services

    E-Print Network [OSTI]

    Land Acquisition Prepared by: Ben Floyd, Economic & Engineering Services May 2004 Introduction Land taxpayer pockets"), and require no specific economic return to justify the expenditure. · There is also a general perception that long-term negative economic impacts may result if additional lands are taken out

  2. Land use planning and early warning systems for limiting drought

    E-Print Network [OSTI]

    Land use planning and early warning systems for limiting drought impacts and promoting recovery J response 3b. Drought early warning systems #12;Land classification based on the land's potential: soils response 3b. Drought early warning systems #12;Grassland Shrubland high wind erosion Knowledge

  3. CLASSIFYING AGRICULTURAL LAND IN AN URBAN LANDSCAPE WITH APPLICATION

    E-Print Network [OSTI]

    CLASSIFYING AGRICULTURAL LAND IN AN URBAN LANDSCAPE WITH APPLICATION TO WATERFOWL CONSERVATION: Master of Resource Management Title of Research Project: Classifying Agricultural Land in an Urban to remotely sense agricultural lands and demonstrates how the results can be used for waterfowl conservation

  4. ORIGINAL ARTICLE Determining air permeability in reclaimed coastal land

    E-Print Network [OSTI]

    Zhan, Hongbin

    Springer-Verlag 2011 Abstract Coastal land reclamation is a common practice in many regions around Tidal fluctuations Type curves Water table variation Introduction Coastal land reclamation in these regions and countries are from the coastal land reclamation (Plant et al. 1998; Lee 2010). The reclaimed

  5. Analytical studies on transient groundwater flow induced by land reclamation

    E-Print Network [OSTI]

    Jiao, Jiu Jimmy

    Analytical studies on transient groundwater flow induced by land reclamation Litang Hu,1 Jiu Jimmy materials into the sea. Land reclamation may have a significant effect on groundwater regimes, especially when the reclamation is at large scale. Analytical studies on the impact of land reclamation on steady

  6. ORIGINAL ARTICLE Determining air permeability in reclaimed coastal land

    E-Print Network [OSTI]

    Zhan, Hongbin

    / Published online: 24 September 2011 Springer-Verlag 2011 Abstract Coastal land reclamation is a common land reclamation is a common practice in many regions and countries around the world, including Nether, airfield and urban expansion in these regions and countries are from the coastal land reclamation (Plant et

  7. Technical Note/ Impact of Coastal Land Reclamation on

    E-Print Network [OSTI]

    Jiao, Jiu Jimmy

    Technical Note/ Impact of Coastal Land Reclamation on Ground Water Level and the Sea Water Interface by Haipeng Guo1 and Jiu Jimmy Jiao2 Abstract Land reclamation in coastal areas may have water (Fetter 1972; Jiao and Tang 1999), but such an interaction may be modified by land reclamation

  8. Late Quaternary history of Washington Land, North Greenland OLE BENNIKE

    E-Print Network [OSTI]

    Inglfsson, lafur

    Late Quaternary history of Washington Land, North Greenland OLE BENNIKE Bennike, O. 2002 (September): Late Quaternary history of Washington Land, North Greenland. Boreas, Vol. 31, 260272. Oslo. ISSN 0300-9483. During the last glacial stage, Washington Land in western North Greenland was probably completely inun

  9. Measuring the poverty reduction potential of land in rural Mexico

    E-Print Network [OSTI]

    Sadoulet, Elisabeth

    Measuring the poverty reduction potential of land in rural Mexico Frederico Finan, Elisabeth debate on the role of land as an instrument for poverty reduction, we analyze the conditions under which access to land reduces poverty in Mexican rural communities. Semi-parametric regression results show

  10. The Legal Environment for Hardwood Lands in California1

    E-Print Network [OSTI]

    Standiford, Richard B.

    and suburban expansion have served to focus new demands on hardwood lands. Concerns today focus upon (1, residential, and agricultural uses. The use of California's hardwood lands is evolving rapidly stocking or hardwood land use. This inventory of state and Federal statutes was then combined with profiles

  11. PETROLEUM LAND MANAGEMENT (PLMA) Bachelor of Commerce Degree

    E-Print Network [OSTI]

    Habib, Ayman

    PETROLEUM LAND MANAGEMENT (PLMA) Bachelor of Commerce Degree The Haskayne School of Business offers a Bachelor of commerce degree with a concentration in Petroleum Land Management that prepares graduates average, and other documentation. Two third-year courses, PLMA 475 (Introduction to Petroleum Land

  12. Status of the International Neutron Cross-Section Standards File

    SciTech Connect (OSTI)

    Pronyaev, Vladimir G. [International Atomic Energy Agency, Vienna (Austria); Badikov, Sergei A.; Gai, Evgeny V. [Institute of Physics and Power Engineering (Russian Federation); Chen Zhenpeng [Tsinghua University (China); Carlson, Allan D. [National Institute of Standards and Technology (United States); Hale, Gerald M. [Los Alamos National Laboratory (United States); Hambsch, Franz-Josef [Institute for Reference Materials and Measurements (Belgium); Hofmann, Hartmut M. [Universitaet Erlangen-Nuernberg (Germany); Larson, Nancy M. [Oak Ridge National Laboratory (United States); Smith, Donald L. [Argonne National Laboratory (United States); Oh, Soo-Youl [Korea Atomic Energy Research Institute (Korea, Republic of); Tagesen, Siegfried; Vonach, Herbert [Institute for Isotopenforschung (Austria); Kernphysik der Universitaet Vienna (Austria)

    2005-05-24T23:59:59.000Z

    A report is given of the progress achieved in an IAEA Co-ordinated Research Project (CRP) to improve the cross-section standards. The objectives of the CRP, started in 2002, were initially the understanding of the origin of the strong uncertainty reduction in R-matrix model fits and the improvement of the evaluation methodology. These aims were extended in 2003 to the preparation of new evaluations for the standard 6Li(n,t), 10B(n,{alpha}), 10B(n,{alpha}1), 197Au(n,{gamma}), 235U(n,f), and 238U(n,f) reactions. The methodology, codes, and experimental database developed by Poenitz and Hale for the ENDF/B-VI standards evaluation were taken as the basis for the new evaluation. The major results achieved by the CRP participants include the testing and intercomparison of a number of codes that can be used in the standards evaluation, updating the database of experimental results, analysis of the reasons leading to the strong uncertainty reduction in model fits, and a study of the bias in evaluated data caused by the Peelles's Pertinent Puzzle (PPP) effect, which has been widely discussed in the nuclear data community since the ENDF/B-VI standards evaluation was completed. Preliminary results of the new standards evaluation are shown. The use of the new 235U(n,f) cross section leads to better consistency in calculations of some important integral experiments.

  13. Section H: Special Contract Requirements

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary of Energy Advisory Board FollowSection 3161 SECTION

  14. Moving towards pro-poor systems of land administration: Challenges for land and asset distribution in Africa

    E-Print Network [OSTI]

    Deininger, Klaus

    2009-01-01T23:59:59.000Z

    resources to finance public services, discourage speculation, and generate incentives for effective land use (Bird and Slack

  15. EA-1831: Phase II ICCS Initiative Funding Award for Calera Corporation, Moss Landing, California

    Broader source: Energy.gov [DOE]

    This EA will evaluate the environmental impacts of a proposal to provide American Recovery and Reinvestment Act funds for a project that would receive flue gas from the gas-fired Moss Landing, CA power plant and capture CO2 for permanent storage in a cementitious substitute material and process useless byproducts into useable chemicals. NOTE: This EA has been cancelled. NEPA coverage for this project is now a CX as of 9/17/2012.

  16. Wind Generation on Winnebago Tribal Lands

    SciTech Connect (OSTI)

    Multiple

    2009-09-30T23:59:59.000Z

    The Winnebago Wind Energy Study evaluated facility-scale, community-scale and commercial-scale wind development on Winnebago Tribal lands in northeastern Nebraska. The Winnebago Tribe of Nebraska has been pursuing wind development in various forms for nearly ten years. Wind monitoring utilizing loaned met towers from NREL took place during two different periods. From April 2001 to April 2002, a 20-meter met tower monitored wind data at the WinnaVegas Casino on the far eastern edge of the Winnebago reservation in Iowa. In late 2006, a 50-meter tower was installed, and subsequently monitored wind data at the WinnaVegas site from late 2006 through late 2008. Significant challenges with the NREL wind monitoring equipment limited the availability of valid data, but based on the available data, average wind speeds between 13.6 14.3 miles were indicated, reflecting a 2+/3- wind class. Based on the anticipated cost of energy produced by a WinnaVegas wind turbine, and the utility policies and rates in place at this time, a WinnaVegas wind project did not appear to make economic sense. However, if substantial grant funding were available for energy equipment at the casino site, and if either Woodbury REC backup rates were lower, or NIPCO was willing to pay more for wind power, a WinnaVegas wind project could be feasible. With funding remaining in the DOE-funded project budget,a number of other possible wind project locations on the Winnebago reservation were considered. in early 2009, a NPPD-owned met tower was installed at a site identified in the study pursuant to a verbal agreement with NPPD which provided for power from any ultimately developed project on the Western Winnebago site to be sold to NPPD. Results from the first seven months of wind monitoring at the Western Winnebago site were as expected at just over 7 meters per second at 50-meter tower height, reflecting Class 4 wind speeds, adequate for commercial development. If wind data collected in the remaining months of the twelve-month collection period is consistent with that collected in the first seven months, the Western Winnebago site may present an interesting opportunity for Winnebago. Given the distance to nearby substations, and high cost of interconnection at higher voltage transmission lines, Winnebago would likely need to be part of a larger project in order to reduce power costs to more attractive levels. Another alternative would be to pursue grant funding for a portion of development or equipment costs, which would also help reduce the cost of power produced. The NREL tower from the WinnaVegas site was taken down in late 2008, re-instrumented and installation attempted on the Thunderway site south of the Winnebago community. Based on projected wind speeds, current equipment costs, and the projects proximity to substations for possible interconnection, a Thunderway community-scale wind project could also be feasible.

  17. An assessment of the available windy land area and wind energy potential in the contiguous United States

    SciTech Connect (OSTI)

    Elliott, D.L.; Wendell, L.L.; Gower, G.L.

    1991-08-01T23:59:59.000Z

    Estimates of land areas with various levels of wind energy resource and resultant wind energy potential have been developed for each state in the contiguous United States. The estimates are based on published wind resource data and account for the exclusion of some windy lands as a result of environmental and land-use considerations. Despite these exclusions, the amount of wind resource estimated over the contiguous United States is surprisingly large and has the potential to supply a substantial fraction of the nation's energy needs, even with the use of today's wind turbine technology. Although this study shows that, after exclusions, only about 0.6% of the land area in the contiguous United States is characterized by high wind resource (comparable to that found in windy areas of California where wind energy is being cost-effectively developed), the wind electric potential that could be extracted with today's technology from these areas across the United States is equivalent to about 20% of the current US electric consumption. Future advances in wind turbine technology will further enhance the potential of wind energy. As advances in turbine technology allow areas of moderate wind resource to be developed, more than a tenfold increase in the wind energy potential is possible. These areas, which cover large sections of the Great Plains and are widely distributed throughout many other sections of the country, have the potential of producing more than three times the nation's current electric consumption. 9 refs., 12 figs., 13 tabs.

  18. Impacts of Land-use Changes on Biofuels ORNL History of Exploring Changes in Land Use in the United States

    E-Print Network [OSTI]

    Impacts of Land-use Changes on Biofuels ORNL History of Exploring Changes in Land Use in the United. Building from their work on environmental costs and benefits associated with biofuel production, ORNL positively impact the sustainability of the biofuels industry. Building understanding of land-use change from

  19. EA-1779: Proposed Changes to the Sanitary Biosolids Land Application Program on the Oak Ridge Reservation, Oak Ridge, Tennessee

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to amend (e.g., by changing setback requirements from surface water features and potential channels to groundwater) the Sanitary Biosolids Land Application Program at the Oak Ridge Reservation in Oak Ridge, Tennessee.

  20. An international land-biosphere model benchmarking activity for the IPCC Fifth Assessment Report (AR5)

    SciTech Connect (OSTI)

    Hoffman, Forrest M [ORNL; Randerson, James T [ORNL; Thornton, Peter E [ORNL; Bonan, Gordon [National Center for Atmospheric Research (NCAR); Erickson III, David J [ORNL; Fung, Inez [University of California, Berkeley

    2009-12-01T23:59:59.000Z

    The need to capture important climate feedbacks in general circulation models (GCMs) has resulted in efforts to include atmospheric chemistry and land and ocean biogeochemistry into the next generation of production climate models, called Earth System Models (ESMs). While many terrestrial and ocean carbon models have been coupled to GCMs, recent work has shown that such models can yield a wide range of results (Friedlingstein et al., 2006). This work suggests that a more rigorous set of global offline and partially coupled experiments, along with detailed analyses of processes and comparisons with measurements, are needed. The Carbon-Land Model Intercomparison Project (C-LAMP) was designed to meet this need by providing a simulation protocol and model performance metrics based upon comparisons against best-available satellite- and ground-based measurements (Hoffman et al., 2007). Recently, a similar effort in Europe, called the International Land Model Benchmark (ILAMB) Project, was begun to assess the performance of European land surface models. These two projects will now serve as prototypes for a proposed international land-biosphere model benchmarking activity for those models participating in the IPCC Fifth Assessment Report (AR5). Initially used for model validation for terrestrial biogeochemistry models in the NCAR Community Land Model (CLM), C-LAMP incorporates a simulation protocol for both offline and partially coupled simulations using a prescribed historical trajectory of atmospheric CO2 concentrations. Models are confronted with data through comparisons against AmeriFlux site measurements, MODIS satellite observations, NOAA Globalview flask records, TRANSCOM inversions, and Free Air CO2 Enrichment (FACE) site measurements. Both sets of experiments have been performed using two different terrestrial biogeochemistry modules coupled to the CLM version 3 in the Community Climate System Model version 3 (CCSM3): the CASA model of Fung, et al., and the carbon-nitrogen (CN) model of Thornton. Comparisons of the CLM3 offline results against observational datasets have been performed and are described in Randerson et al. (2009). CLM version 4 has been evaluated using C-LAMP, showing improvement in many of the metrics. Efforts are now underway to initiate a Nitrogen-Land Model Intercomparison Project (N-LAMP) to better constrain the effects of the nitrogen cycle in biosphere models. Presented will be new results from C-LAMP for CLM4, initial N-LAMP developments, and the proposed land-biosphere model benchmarking activity.

  1. High energy neutrino cross sections

    E-Print Network [OSTI]

    M. H. Reno

    2004-10-07T23:59:59.000Z

    The theoretical status of the neutrino-nucleon cross section is reviewed for incident neutrino energies up to E_nu=10^12 GeV, including different approaches to high energy extrapolations. Nonstandard model physics may play a role at ultrahigh energies. The cases of mini-black hole production and electroweak instanton contributions are discussed as examples in the context of ultrahigh energy neutrino scattering.

  2. Neutron capture cross section standards for BNL 325, Fourth Edition

    SciTech Connect (OSTI)

    Holden, N.E.

    1981-01-01T23:59:59.000Z

    This report evaluates the experimental data and recommends values for the thermal neutron cross sections and resonance integrals for the neutron capture reactions: /sup 55/Mn(n,..gamma..), /sup 59/Co(n,..gamma..) and /sup 197/Au(n,..gamma..). The failure of lithium and boron as standards due to the natural variation of the absorption cross sections of these elements is discussed. The Westcott convention, which describes the neutron spectrum as a thermal Maxwellian distribution with an epithermal component, is also discussed.

  3. West Virginia University 1 In this section

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    West Virginia University 1 Admissions In this section: Application: · General Information · Robert

  4. Autonomous land navigation in a structured environment

    SciTech Connect (OSTI)

    Klarer, P.R. (Sandia National Lab., Advanced Technology Div., Albuquerque, NM (US))

    1990-03-01T23:59:59.000Z

    This paper describes a hardware and software system developed to perform autonomous navigation of a land vehicle in a structured environment. The vehicle used for development and testing of the system was the Jeep Cherokee Mobile Robotics Testbed Vehicle developed at Sandia National Laboratories in Albuquerque. Since obstacle detection and avoidance have not yet been incorporated into the system, a structured environment is postulated that presumes the paths to be traversed are free of obstacles. The system performs path planning and execution based on maps constructed using the vehicle's on board navigation system and map-maker. The system software, hardware and performance data are discussed.

  5. how much land | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind Home Rmckeel's Homeguidance documentmuch land Home

  6. pv land use | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind Home Rmckeel'slinkedpolicy Homepv land use Home

  7. AG Land 2 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind6:00-06:00 U.S.ratios in CenozoicACALADAAG Land 2

  8. AG Land 4 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind6:00-06:00 U.S.ratios in CenozoicACALADAAG Land 24

  9. AG Land 6 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind6:00-06:00 U.S.ratios in CenozoicACALADAAG Land 246

  10. Land-Use Change Data Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLEDControl Concept |Energy MicroGrid |Land

  11. Ewing Land Development Services | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania: Energy Resources(RECP)Coolers JumpOpenRoadEwing Land

  12. IDRISI Land Change Modeler | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind Farm Jump to: navigation, search NameIDRISI Land

  13. Cross sections for pentaquark baryon production from protons in reactions induced by hadrons and photons

    E-Print Network [OSTI]

    Liu, W.; Ko, Che Ming.

    2003-01-01T23:59:59.000Z

    Using hadronic Lagrangians that include the interaction of pentaquark Theta(+) baryon with K and N, we evaluate the cross sections for its production from meson-proton, proton-proton, and photon-proton reactions near threshold.,With empirical...

  14. Perturbative zero-point energy for a cylinder of elliptical section

    E-Print Network [OSTI]

    Adrian R. Kitson; August Romeo

    2006-07-25T23:59:59.000Z

    We examine the Casimir effect for a perfectly conducting cylinder of elliptical section, taking as reference the known case of circular section. The zero-point energy of this system is evaluated by the mode summation method, using the ellipticity as a perturbation parameter. Mathieu function techniques are applied.

  15. A Subbasin-based framework to represent land surface processes in an Earth System Model

    SciTech Connect (OSTI)

    Tesfa, Teklu K.; Li, Hongyi; Leung, Lai-Yung R.; Huang, Maoyi; Ke, Yinghai; Sun, Yu; Liu, Ying

    2014-05-20T23:59:59.000Z

    Realistically representing spatial heterogeneity and lateral land surface processes within and between modeling units in earth system models is important because of their implications to surface energy and water exchange. The traditional approach of using regular grids as computational units in land surface models and earth system models may lead to inadequate representation of lateral movements of water, energy and carbon fluxes, especially when the grid resolution increases. Here a new subbasin-based framework is introduced in the Community Land Model (CLM), which is the land component of the Community Earth System Model (CESM). Local processes are represented assuming each subbasin as a grid cell on a pseudo grid matrix with no significant modifications to the existing CLM modeling structure. Lateral routing of water within and between subbasins is simulated with the subbasin version of a recently-developed physically based routing model, Model for Scale Adaptive River Routing (MOSART). As an illustration, this new framework is implemented in the topographically diverse region of the U.S. Pacific Northwest. The modeling units (subbasins) are delineated from high-resolution Digital Elevation Model while atmospheric forcing and surface parameters are remapped from the corresponding high resolution datasets. The impacts of this representation on simulating hydrologic processes are explored by comparing it with the default (grid-based) CLM representation. In addition, the effects of DEM resolution on parameterizing topography and the subsequent effects on runoff processes are investigated. Limited model evaluation and comparison showed that small difference between the averaged forcing can lead to more significant difference in the simulated runoff and streamflow because of nonlinear horizontal processes. Topographic indices derived from high resolution DEM may not improve the overall water balance, but affect the partitioning between surface and subsurface runoff. More systematic analyses are needed to determine the relative merits of the subbasin representation compared to the commonly used grid-based representation, especially when land surface models are approaching higher resolutions.

  16. On the connection between continental-scale land surface processes and the tropical climate in a coupled ocean-atmosphere-land system

    SciTech Connect (OSTI)

    Ma, Hsi-Yen; Mechoso, C. R.; Xue, Yongkang; Xiao, Heng; Neelin, David; Ji, Xuan

    2013-11-15T23:59:59.000Z

    The impact of global tropical climate to perturbations in land surface processes (LSP) are evaluated using perturbations given by different LSP representations of continental-scale in a global climate model that includes atmosphere-ocean interactions. One representation is a simple land scheme, which specifies climatological albedos and soil moisture availability. The other representation is the more comprehensive Simplified Simple Biosphere Model, which allows for interactive soil moisture and vegetation biophysical processes. The results demonstrate that LSP processes such as interactive soil moisture and vegetation biophysical processes have strong impacts on the seasonal mean states and seasonal cycles of global precipitation, clouds, and surface air temperature. The impact is especially significant over the tropical Pacific. To explore the mechanisms for such impact, different LSP representations are confined to selected continental-scale regions where strong interactions of climate-vegetation biophysical processes are present. We find that the largest impact is mainly from LSP perturbations over the tropical African continent. The impact is through anomalous convective heating in tropical Africa due to changes in the surface heat fluxes, which in turn affect basinwide teleconnections in the Pacific through equatorial wave dynamics. The modifications in the equatorial Pacific climate are further enhanced by strong air-sea coupling between surface wind stress and upwelling, as well as effect of ocean memory. Our results further suggest that correct representations of land surface processes, land use change and the associated changes in the deep convection over tropical Africa are crucial to reducing the uncertainty when performing future climate projections under different climate change scenarios.

  17. SECTION J, APPENDIX B - PEP

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysis andBHoneywell9/%2ARequest forMod 002; SECTION

  18. all weather landing systems: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    likely that unambiguous habitable zone terrestrial planets of unknown water content will soon be discovered. Water content helps determine surface land fraction, which influences...

  19. Bureau of Land Management, Colorado collaborate to advance efficient...

    Open Energy Info (EERE)

    Colorado collaborate to advance efficient geothermal development Jump to: navigation, search OpenEI Reference LibraryAdd to library Memorandum: Bureau of Land Management, Colorado...

  20. Hawaii Department of Land and Natural Resources Division of Forestry...

    Open Energy Info (EERE)

    Name: Hawaii Department of Land and Natural Resources Division of Forestry and Wildlife Address: Kalanimoku Building 1151 Punchbowl St., Room 325 Place: Honolulu, Hawaii Zip:...

  1. Sustainable Land Management Through Market-Oriented Commodity...

    Open Energy Info (EERE)

    Market-Oriented Commodity Development: Case studies from Ethiopia Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Sustainable Land Management Through Market-Oriented...

  2. Reclamation of Land Used for Mineral Mining (Virginia)

    Broader source: Energy.gov [DOE]

    This legislation aims to provide for the rehabilitation and conservation of land affected by the mining of minerals through proper planning, proper use of appropriate methods of mining,...

  3. Land Transport Sector in Bangladesh: An Analysis Toward Motivating...

    Open Energy Info (EERE)

    Motivating GHG Emission Reduction Strategies Jump to: navigation, search Name Land Transport Sector in Bangladesh: An Analysis Toward Motivating GHG Emission Reduction...

  4. Precision Measurement of Neutrino Oscillation Parameters with KamLAND

    E-Print Network [OSTI]

    ODonnell, Thomas Michael

    2011-01-01T23:59:59.000Z

    default and new reactor-spectra calculations are given inusing the default reactor-spectrum calculation presented incores for reactor neutrino flux calculations for the KamLAND

  5. Precision Measurement of Neutrino Oscillation Parameters with KamLAND

    E-Print Network [OSTI]

    O'Donnell, Thomas

    2013-01-01T23:59:59.000Z

    default and new reactor-spectra calculations are given inusing the default reactor-spectrum calculation presented incores for reactor neutrino flux calculations for the KamLAND

  6. Land use regulation and intraregional population-employment interaction

    E-Print Network [OSTI]

    Kim, JH; Hewings, GJD

    2013-01-01T23:59:59.000Z

    Levine J (2006) Zoned out: Regulation, markets, and choicesprices, externalities, and regulation in U.S. metropolitanCT (2000) Land use regulation and new construction. Regional

  7. What's Happening in the Texas Farm and Ranch Land Market.

    E-Print Network [OSTI]

    Andrews, F. B.; Wooten, A. B.

    1965-01-01T23:59:59.000Z

    of the 1963 Texas land market activity is based on information JJ. obtained from 26 sample counties in 16 of the 17 type-of-farming area\\. In each sample county, specific data were obtained from warranty deed recortl\\ cri all bona fide sales containing 20... farm and ranch income has fluctuated. Results of the 196r land market study deviated from this pattern. Land prices continued to ~icr and volume of land sales increased, reversing its position from the trend of a constant decrease. Net farm and ranch...

  8. Omak Creek land acquisition Fact Sheet.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    factsheet factsheet Omak Creek acquisition to protect summer steelhead habitat The Bonneville Power Administration is proposing to fund the purchase of two adjacent land parcels to...

  9. Cougar Creek land acquisition Fact Sheet.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of wildlife habitat along Cougar Creek The Bonneville Power Administration proposes to fund the acquisition of wildlife mitigation lands in the Cougar Creek watershed in Shoshone...

  10. automated cultivation land: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Websites Summary: . In the meanwhile, the USA funded the DARPA Autonomous Land Vehicle (ALV) project. Here, laser-based (ERIM full automation with the first DARPA Grand...

  11. Coordination of Federal Transmission Permitting on Federal Lands...

    Office of Environmental Management (EM)

    transmission facilities on federal lands. In most instances, the Departments of Agriculture or Interior will be the Lead Agency, since they have jurisdiction over most of the...

  12. Iowa Land Recycling and Environmental Remediation Standards Act (Iowa)

    Broader source: Energy.gov [DOE]

    This chapter establishes remediation standards for land, other than standards for water quality, hazardous conditions, underground storage tanks, and groundwater protection, which are discussed in...

  13. Land Reclamation and the Resource Extraction Reclamation Act (Florida)

    Broader source: Energy.gov [DOE]

    The Department of Environmental Protection's Mining Program is responsible for enacting and implementing regulations pertaining to land reclamation. The program primarily focuses on the reclamation...

  14. Hawaii Department of Land and Natural Resources Commission on...

    Open Energy Info (EERE)

    Hawaii Department of Land and Natural Resources Commission on Water Resource Management Address: Kalanimoku Building 1151 Punchbowl Street Room 227 Place: Honolulu, Hawaii Zip:...

  15. Texas General Land Office Construction Certificate and Dune Protection...

    Open Energy Info (EERE)

    Texas General Land Office Construction Certificate and Dune Protection Permit Requirements Checklist Jump to: navigation, search OpenEI Reference LibraryAdd to library Permitting...

  16. Land Acquisition protects fish habitat in Wahkiakum County -...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (BPA) is proposing to fund the Columbia Land Trust (CLT) through its contract with the Lower Columbia River Estuary Partnership (LCREP) to acquire 305 acres of hillside forest,...

  17. Energy Corridors on Federal Lands | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    of Federal Lands in States Identified by EPAct 2005 (August 2011) Related Links West-wide Energy Corridor Programmatic EIS Information Center East-wide Energy Corridor Programmatic...

  18. Wind Power Siting: Public Acceptance and Land Use

    Wind Powering America (EERE)

    by the Alliance for Sustainable Energy, LLC. Wind Power Siting: Public Acceptance and Land Use Suzanne Tegen WINDExchange Webinar June 17, 2015 2 Overview * Current NREL Research *...

  19. Geothermal Direct-Use Minimizing Land Use and Impact

    Broader source: Energy.gov [DOE]

    With geothermal direct-use applications, land use issues usually only arise during exploration and development when geothermal reservoirs are located in or near urbanized areas, critical habitat...

  20. Apollo: Adaptive power optimization and Control for the land Warrior

    E-Print Network [OSTI]

    Pedram, Massoud

    Apollo: Adaptive power optimization and Control for the land Warrior Massoud Pedram Dept. of EE management Architecture organization techniquesArchitecture organization techniques Apollo TestbedApollo

  1. Moving Toward Exclusive Tribal Autonomy over Lands and Natural Resources

    E-Print Network [OSTI]

    Leeds, Stacy L.

    2006-01-01T23:59:59.000Z

    (implying that when land is held in fee by a non- Indian there is a presumption against tribal jurisdiction). 446 [Vol. 46 TOWARD TRIBAL AUTONOMY OF LANDS held in fee, even when the tribal government is the land owner. 56 Federal courts have determined... of Discovery in American Indian Law, 42 IDAHO L. REV. 1, 115 (2005). NATURAL RESOURCES JOURNAL government would take on a brief supervisory and protectorate role as trustee over the newly allotted lands. 4 After an adjustment period for the new individual...

  2. From Forest to Solar Farm: An Evaluation of Habitat Availability on a Solar

    E-Print Network [OSTI]

    Homes, Christopher C.

    : Crystalline solar photovoltaic modules Land use: ~200 acres Over 164,000 Panels #12;Sustainability ForestFrom Forest to Solar Farm: An Evaluation of Habitat Availability on a Solar Farm - Amherst December 13, 2012 #12;Solar Energy Land intensive Growing number of facilities Little research

  3. RCRA/UST, superfund, and EPCRA hotline training module. Introduction to: Land disposal restrictions (40 CFR part 268) updated as of July 1995

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    This module presents an overview of the Land Disposal Restrictions (LDR) Program. It defines the basic terms and describes the structure of the LDR regulation, identifies the statutory basis for LDR, and describes the applicability of LDR. It explains how EPA sets treatment standards and identifies treatment standards for wastes subject to land disposal restrictions and cites the CFR section. It describes and identifies how extensions and variances from treatment requirements are obtained, including, Federal Register citations. It defines generator and treatment, storage, and disposal facility (TSDF) requirements under the LDR program. It also summarizes the schedule of existing restrictions and the plan for restricting newly identified wastes.

  4. Land Use Manager Application Ensures Protectiveness Following Remediation on the Oak Ridge Reservation - 13355

    SciTech Connect (OSTI)

    Garland, Sid; Brown, Sally; Sims, Lynn [Restoration Services, Inc., P.O. Box 4699, Oak Ridge, Tennessee 37831 (United States)] [Restoration Services, Inc., P.O. Box 4699, Oak Ridge, Tennessee 37831 (United States); Darby, Jason [U.S. Department of Energy, Office of Environmental Management, Oak Ridge Site (United States)] [U.S. Department of Energy, Office of Environmental Management, Oak Ridge Site (United States)

    2013-07-01T23:59:59.000Z

    Long-term stewardship is the set of activities necessary to return contaminated land to safe and beneficial use. The activities include physical and legal controls to prevent inappropriate exposure to contamination left in place at a site. It is the longest phase of the Department of Energy's Environmental Management Program and ensures the protection of human health and the environment for varied end uses. At the Department of Energy's Oak Ridge Reservation an automated program has been developed and implemented that tracks the multitude of long-term stewardship activities. The Oak Ridge Reservation is a large site that currently has over 50 actions requiring long-term stewardship activities. The Oak Ridge Reservation consists primarily of three plant sites, and long-term stewardship will enable these sites to be leased to private entities (East Tennessee Technology Park), modernized for an evolving national security mission (Y-12 National Security Complex), and revitalized to continue multi-disciplinary research (Oak Ridge National Laboratory). The varied site end uses of the individual plant sites coupled with the multitude of controls required by leaving waste in place presents challenges. A single remedial action may include surveillance and maintenance activities, media monitoring, property record notices as well as physical controls such as fences and signs. Thus, the array of long-term stewardship activities is complex and intermingled (over 200 inspections each year at various frequencies are required currently) and requires an effective tracking program, termed the Land Use Manager. The Land Use Manager is a web-based data management application for use by personnel responsible for implementing, maintaining, and verifying engineering and land use controls on the Oak Ridge Reservation. The program is a data entry and tracking tool, as well as a notification tool. The status and performance of engineering and land use controls are checked annually for evaluation in the required Remediation Effectiveness Report, and the automated Land Use Manager collects, maintains, tracks, notifies, monitors, and manages the information necessary to perform this evaluation. Land Use Manager tracks site information including type of contamination, regulatory requirements, locates land use controls; provides information on inspections, certification, and reporting; and provides reports. Most data access features, e.g., view, print, query, and download, are available to all users; however, data input, updating, and editing are restricted to the personnel directly responsible for monitoring and inspection. The Land Use Manager application was developed for the Department of Energy Oak Ridge Office by URS - CH2M Oak Ridge LLC, Restoration Services Incorporated, and MIJARA Corporation to meet the specific needs of long-term stewardship tracking on the Oak Ridge Reservation. The successful implementation of long-term stewardship enables the future government and private activities being planned on the Oak Ridge Reservation to proceed. (authors)

  5. Siting Evaluation for Biomass-Ethanol Production in Hawaii

    SciTech Connect (OSTI)

    Kinoshita, C.M.; Zhou, J.

    2000-10-15T23:59:59.000Z

    This report examines four Hawaiian islands, Oahu, Hawaii, Maui, and Kauai, to identify three best combinations of potential sites and crops for producing dedicated supplies of biomass for conversion to ethanol. Key technical and economic factors considered in the siting evaluation include land availability (zoning and use), land suitability (agronomic conditions), potential quantities and costs of producing biomass feedstocks, infrastructure (including water and power supplies), transportation, and potential bioresidues to supplement dedicated energy crops.

  6. Alternative energy sources for non-highway transportation: technical section

    SciTech Connect (OSTI)

    Not Available

    1980-06-01T23:59:59.000Z

    Eighteen different alternative fuels were considered in the preliminary screening, from three basic resource bases. Coal can be used to provide 13 of the fuels; oil shale was the source for three of the fuels; and biomass provided the resource base for two fuels not provided from coal. In the case of biomass, six different fuels were considered. Nuclear power and direct solar radiation were also considered. The eight prime movers that were considered in the preliminary screening are boiler/steam turbine; open and closed cycle gas turbines; low and medium speed diesels; spark ignited and stratified charge Otto cycles; electric motor; Stirling engine; free piston; and fuel cell/electric motor. Modes of transport considered are pipeline, marine, railroad, and aircraft. Section 2 gives the overall summary and conclusions, the future outlook for each mode of transportation, and the R and D suggestions by mode of transportation. Section 3 covers the preliminary screening phase and includes a summary of the data base used. Section 4 presents the methodology used to select the fuels and prime movers for the detailed study. Sections 5 through 8 cover the detailed evaluation of the pipeline, marine, railroad, and aircraft modes of transportation. Section 9 covers the demand related issues.

  7. Trace Metal Retention in the Incorporation Zone of Land-Applied

    E-Print Network [OSTI]

    Walter, M.Todd

    , with agricultural, forest, and range lands as well as land reclamation sites increasingly used for land applicationTrace Metal Retention in the Incorporation Zone of Land-Applied Sludge T A M M O S . S T E E N H U, Ithaca, New York 14853 Recycling nutrients in wastewater sludge (biosolids) via land application

  8. Global Soil Change: Land Use, Soil and Water SWS4231C, SWS5234

    E-Print Network [OSTI]

    Ma, Lena

    of the soil system to withstand global-scale perturbations (e.g., climate or land use change, spread Properties 4. Land Use Change Impacts on Soils 5. Land Use and Agriculture (Irrigation and Fertilization In Soil) 6. Land Use and Soil Erosion 7. Climate Change Impacts on Soils 8. Land Use-Climate

  9. Absorption cross section in Lifshitz black hole

    E-Print Network [OSTI]

    Taeyoon Moon; Yun Soo Myung

    2012-10-05T23:59:59.000Z

    We derive the absorption cross section of a minimally coupled scalar in the Lifshitz black hole obtained from the new massive gravity. The absorption cross section reduces to the horizon area in the low energy and massless limit of s-wave mode propagation, indicating that the Lifshitz black hole also satisfies the universality of low energy absorption cross section for black holes.

  10. Draft 2-5-06 appendix B: Land Leases

    E-Print Network [OSTI]

    Lee, Jason R.

    background Draft 2-5-06 appendix B: Land Leases appendices tract / Parcel / Buildings acres Wilson (Grizzly Peak Substation) 0.50 The Berkeley Lab main site is a 202 acre parcel of land owned and managed Figure F.1 3 Photo the new Molecular Foundry building earned the u.s. green building council's "silver

  11. Land Use and natUraL resoUrces

    E-Print Network [OSTI]

    California at Davis, University of

    Land Use and natUraL resoUrces summer 2012 Including: Climate Change and Local Planning Strategies Overview of Environmental Statistics Green Building Design Studio CONTINuING AND PrOFessIONAL eDuCATION #12Ndar........................................................................................................................4 laNd USe plaNNiNg Climate Change and Local Planning Strategies

  12. MSU Departmental Assessment Plan Department: Land Resources and Environmental Sciences

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    MSU Departmental Assessment Plan 2009-2010 Department: Land Resources and Environmental Sciences: Ecology and Environmental Sciences (cross-college) #12;Student Outcomes Assessment Plan Land Resources Department Head: Tracy M. Sterling Assessment Coordinator: Cathy Zabinski Degrees/Majors/Options Offered

  13. Geospatial Analysis of Renewable Energy Technical Potential on Tribal Lands

    SciTech Connect (OSTI)

    Doris, E.; Lopez, A.; Beckley, D.

    2013-02-01T23:59:59.000Z

    This technical report uses an established geospatial methodology to estimate the technical potential for renewable energy on tribal lands for the purpose of allowing Tribes to prioritize the development of renewable energy resources either for community scale on-tribal land use or for revenue generating electricity sales.

  14. Important land tenure influences on soil conservation in the southwest

    E-Print Network [OSTI]

    Southern, John Hoyle

    1949-01-01T23:59:59.000Z

    for landoening bas bosn eoononio returns through inoacs from orops, or froc sale of lend 'Land hunger" as esproseed by en attitude of olinging to the seourity of land through all phases of a Oyelis esmany ie nst generally Oiaraeteriotie Of 1andhslding...

  15. ITAM SERVICES CENTER FOR ENVIRONMENTAL MANAGEMENT OF MILITARY LANDS

    E-Print Network [OSTI]

    ITAM SERVICES CENTER FOR ENVIRONMENTAL MANAGEMENT OF MILITARY LANDS CEMML | 1490 Campus Delivery://www.cemml.colostate.edu The Integrated Training Area Management (ITAM) Program maintains training lands so that they meet Army doctrinal with conservation of the soils, water, flora, and fauna on military installations. The ITAM Program comprises four

  16. Global Ice and Land Climate Studies Using Scatterometer Image Data

    E-Print Network [OSTI]

    Long, David G.

    1 Global Ice and Land Climate Studies Using Scatterometer Image Data David G. Long Brigham Young CA 91109 ben@pacific.jpl.nasa.gov Sasan.Saatchi@jpl.nasa.gov Cheryl Bertoia U. S. National Ice Center: Long, D. G., M. R. Drinkwater, B. Holt, S. Saatchi, and C. Bertoia, Global ice and land climate studies

  17. CHARACTERIZATION OF LAND DEGRADATION PROCESSES USING AIRBORNE LASER SCANNING

    E-Print Network [OSTI]

    Marco, Shmuel "Shmulik"

    CHARACTERIZATION OF LAND DEGRADATION PROCESSES USING AIRBORNE LASER SCANNING Sagi Filin1 , Amit@tau.ac.il Commission VIII/8 KEY WORDS: Airborne laser scanning, Geomorphology, Dead Sea, Land Degradation, Sinkholes of collapse sinkholes in high resolution using airborne laser scanning technology. As a study case, we use

  18. In this issue: New Tax Incentives for Land in Conservation

    E-Print Network [OSTI]

    Watson, Craig A.

    In this issue: New Tax Incentives for Land in Conservation Florida's Outstanding Tree Farmers Quantifies Economic Impact of Private, Working Forests New Longleaf Book for Landowners and Foresters Get Landowners and Resource Professionals Volume 16, No. 4 Spring 2010 New Tax Incentives for Land

  19. Analysis of Land Suitable for Algae State of Hawaii

    E-Print Network [OSTI]

    Analysis of Land Suitable for Algae Production State of Hawaii Prepared for the U.S. Department agency thereof. #12;Analysis of Land Suitable for Algae Production State of Hawaii Prepared by Mele University of Hawaii at Manoa August 2011 #12;i Executive Summary Algae are considered to be a viable crop

  20. The Impact of Biofuel Mandates on Land Use Suhail Ahmad

    E-Print Network [OSTI]

    The Impact of Biofuel Mandates on Land Use by Suhail Ahmad B.E., Avionics Engineering National, Technology and Policy Program #12;#12;3 The Impact of Biofuel Mandates on Land Use by Suhail Ahmad Submitted of Master of Science in Technology and Policy ABSTRACT The use of biofuels in domestic transportation sector