Powered by Deep Web Technologies
Note: This page contains sample records for the topic "land areas wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Stakeholder Engagement and Outreach: Wind Power on State Lands  

Wind Powering America (EERE)

Wind Power on State Lands Wind Power on State Lands Wind development can be an attractive revenue option for states that have viable wind resources on their trust lands. Wind can provide much higher revenue per acre than many other sources of typical revenue. An added benefit is that harvesting the wind does not deplete any finite resources. Several state land offices are already pursuing wind development on state trust lands. The first such wind project, in west Texas, is a joint project by the Texas General Land Office and the Lower Colorado River Authority, a public utility in central Texas. Wind Powering America Assistance to State Land Offices Analysis of State Land Potential NREL can assist state land offices in analyzing their trust lands for wind development potential. By overlaying wind resource maps with land use,

2

Wind farm land suitability indexing using multi-criteria analysis  

Science Journals Connector (OSTI)

Wind farm siting can be considered as Multi Criteria Decision Making (MCDM) problem that consists of set of alternative locations and set of selection criteria. This study applied multi-criteria decision making approach using Analytical Hierarchy Process with Ordered Weigh Averaging AHP-OWA aggregation function to derive wind farm land suitability index and classification under Geographical Information System (GIS) environment. Linguistic quantifier’s version of AHP-OWA aggregation function was used to classify lands based on their suitability for wind farm installation. Different selection criteria were considered including economical (distance to road, terrain slope), social (urban area), environmental (historical locations, wildlife and natural reserves) and technical (wind power density, energy demand matching, percentage of sustainable wind, turbulence intensity, sand dunes). A case study of the proposed approach is implemented and presented for Oman.

Sultan Al-Yahyai; Yassine Charabi; Adel Gastli; Abdullah Al-Badi

2012-01-01T23:59:59.000Z

3

Wind Opportunities for Idaho State Lands  

Wind Powering America (EERE)

and Local Initiatives Group and Local Initiatives Group National Renewable Energy Laboratory Terri Walters Carol Tombari 303-275-3005 303-275-3821 terri_walters@nrel.gov carol_tombari@nrel.gov Wind Opportunities For Idaho State Lands March 3, 2004 Wind Overview Wind Overview * Technology * Resources * Markets and Drivers * Economic Development Opportunities * Wind Powering America U.S. Electricity Fuel Mix U.S. Electricity Fuel Mix Coal 51.8% Nuclear 19.8% Hydro 7.2% Petroleum 2.9% Gas 16.1% Other/Renewables 2.2% Sizes and Applications Sizes and Applications Small (≤10 kW) * Homes * Farms * Remote Applications (e.g. water pumping, telecom sites, icemaking) Intermediate (10-100 kW) * Village Power * Hybrid Systems * Distributed Power Large (660 kW - 2+MW) * Central Station Wind Farms * Distributed Power Growth of Wind Energy Capacity Growth of Wind Energy Capacity

4

Wind Generation on Winnebago Tribal Lands  

SciTech Connect

The Winnebago Wind Energy Study evaluated facility-scale, community-scale and commercial-scale wind development on Winnebago Tribal lands in northeastern Nebraska. The Winnebago Tribe of Nebraska has been pursuing wind development in various forms for nearly ten years. Wind monitoring utilizing loaned met towers from NREL took place during two different periods. From April 2001 to April 2002, a 20-meter met tower monitored wind data at the WinnaVegas Casino on the far eastern edge of the Winnebago reservation in Iowa. In late 2006, a 50-meter tower was installed, and subsequently monitored wind data at the WinnaVegas site from late 2006 through late 2008. Significant challenges with the NREL wind monitoring equipment limited the availability of valid data, but based on the available data, average wind speeds between 13.6 – 14.3 miles were indicated, reflecting a 2+/3- wind class. Based on the anticipated cost of energy produced by a WinnaVegas wind turbine, and the utility policies and rates in place at this time, a WinnaVegas wind project did not appear to make economic sense. However, if substantial grant funding were available for energy equipment at the casino site, and if either Woodbury REC backup rates were lower, or NIPCO was willing to pay more for wind power, a WinnaVegas wind project could be feasible. With funding remaining in the DOE-funded project budget,a number of other possible wind project locations on the Winnebago reservation were considered. in early 2009, a NPPD-owned met tower was installed at a site identified in the study pursuant to a verbal agreement with NPPD which provided for power from any ultimately developed project on the Western Winnebago site to be sold to NPPD. Results from the first seven months of wind monitoring at the Western Winnebago site were as expected at just over 7 meters per second at 50-meter tower height, reflecting Class 4 wind speeds, adequate for commercial development. If wind data collected in the remaining months of the twelve-month collection period is consistent with that collected in the first seven months, the Western Winnebago site may present an interesting opportunity for Winnebago. Given the distance to nearby substations, and high cost of interconnection at higher voltage transmission lines, Winnebago would likely need to be part of a larger project in order to reduce power costs to more attractive levels. Another alternative would be to pursue grant funding for a portion of development or equipment costs, which would also help reduce the cost of power produced. The NREL tower from the WinnaVegas site was taken down in late 2008, re-instrumented and installation attempted on the Thunderway site south of the Winnebago community. Based on projected wind speeds, current equipment costs, and the project’s proximity to substations for possible interconnection, a Thunderway community-scale wind project could also be feasible.

Multiple

2009-09-30T23:59:59.000Z

5

Land Use Requirements of Modern Wind Power Plants in the United States  

SciTech Connect

This report provides data and analysis of the land use associated with modern, large wind power plants (defined as greater than 20 megawatts (MW) and constructed after 2000). The analysis discusses standard land-use metrics as established in the life-cycle assessment literature, and then discusses their applicability to wind power plants. The report identifies two major 'classes' of wind plant land use: 1) direct impact (i.e., disturbed land due to physical infrastructure development), and 2) total area (i.e., land associated with the complete wind plant project). The analysis also provides data for each of these classes, derived from project applications, environmental impact statements, and other sources. It attempts to identify relationships among land use, wind plant configuration, and geography. The analysts evaluated 172 existing or proposed projects, which represents more than 26 GW of capacity. In addition to providing land-use data and summary statistics, they identify several limitations to the existing wind project area data sets, and suggest additional analysis that could aid in evaluating actual land use and impacts associated with deployment of wind energy.

Denholm, P.; Hand, M.; Jackson, M.; Ong, S.

2009-08-01T23:59:59.000Z

6

Wind Forecast Improvement Project Southern Study Area Final Report...  

Office of Environmental Management (EM)

Wind Forecast Improvement Project Southern Study Area Final Report Wind Forecast Improvement Project Southern Study Area Final Report Wind Forecast Improvement Project Southern...

7

Stakeholder Engagement and Outreach: Wind Power on Public Lands  

Wind Powering America (EERE)

Resources Public Power Regional Activities State Activities State Lands Siting Wind Power on Public Lands Through its programs at the National Renewable Energy Laboratory (NREL) and partners, Wind Powering America is assisting with the evaluation of wind energy development on public lands. The cover of the publication. Federal Wind Energy Assistance through NREL The National Renewable Energy Laboratory assists with wind resource assessment and development activities initiated by federal agencies to facilitate distributed renewable energy projects at federal agency sites. This brief outlines the process for requesting National Renewable Energy Laboratory assistance with federal wind energy projects. Army National Guard NREL provided the Army National Guard at Fort Carson, Colorado, with a 50-m

8

Trimont Area Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Trimont Area Wind Farm Trimont Area Wind Farm Jump to: navigation, search Name Trimont Area Wind Farm Facility Trimont Area Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner PPM Energy Inc Developer PPM Energy Inc Energy Purchaser Great River Energy Location Southwest MN MN Coordinates 43.779594°, -94.852874° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.779594,"lon":-94.852874,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

9

Making Offshore Wind Areas Available for Leasing   

Energy.gov (U.S. Department of Energy (DOE))

When the U.S. Department of the Interior's Bureau of Ocean Energy Management (BOEM) needed a process to delineate the bureau's proposed offshore Wind Energy Areas (WEA) into auctionable leasing areas, the agency turned to DOE's National Renewable Energy Laboratory (NREL). Under an interagency agreement, wind energy experts from NREL helped develop a process to evaluate BOEM's designated offshore WEAs in terms of energy production, resource, water depth, and other physical criteria and delineate specific WEAs into two or more leasing areas.

10

Wind Projects on Native American Lands | Open Energy Information  

Open Energy Info (EERE)

Projects on Native American Lands Projects on Native American Lands Jump to: navigation, search The United States is home to more than 700 nations, tribes, bands, villages, regional corporations, and communities of indigenous peoples, from Alaska to Hawaii and the Pacific and Caribbean Islands. Native American tribes on reservation lands in the lower 48 states comprise the largest and most diverse of these indigenous peoples. Consideration of wind energy opportunities and issues for Native Americans must recognize this diversity, including cultures, histories, beliefs, relationships to surrounding communities, control of and access to resources, governmental and social organization, land tenure and jurisdiction, and energy infrastructure. Contents 1 Native American Wind Opportunities 1.1 Tremendous Wind Resources

11

United States- Land Based and Offshore Annual Average Wind Speed at 100 Meters  

Energy.gov (U.S. Department of Energy (DOE))

Full-size, high resolution version of the 100-meter land-based and offshore wind speed resource map.

12

Economic and Technical Feasibility Study of Utility-Scale Wind Generation for the New York Buffalo River and South Buffalo Brownfield Opportunity Areas  

SciTech Connect

Through the RE-Powering America's Land initiative, the economic and technical feasibility of utilizing contaminated lands in the Buffalo, New York, area for utility-scale wind development is explored. The study found that there is available land, electrical infrastructure, wind resource, and local interest to support a commercial wind project; however, economies of scale and local electrical markets may need further investigation before significant investment is made into developing a wind project at the Buffalo Reuse Authority site.

Roberts, J. O.; Mosey, G.

2014-04-01T23:59:59.000Z

13

Stakeholder Engagement and Outreach: Utility-Scale Land-Based 80-Meter Wind  

Wind Powering America (EERE)

Maps & Data Maps & Data Printable Version Bookmark and Share Utility-Scale Land-Based Maps Wind Resource Potential Offshore Maps Community-Scale Maps Residential-Scale Maps Anemometer Loan Programs & Data Utility-Scale Land-Based 80-Meter Wind Maps The U.S. Department of Energy provides an 80-meter (m) height, high-resolution wind resource map for the United States with links to state wind maps. States, utilities, and wind energy developers use utility-scale wind resource maps to locate and quantify the wind resource, identifying potentially windy sites within a fairly large region and determining a potential site's economic and technical viability. A wind resource map of the United States. Washington wind map and resources. Oregon wind map and resources. California wind map and resources. Idaho wind map and resources. Nevada wind map and resources. Arizona wind map and resources. Utah wind map and resources. Montana wind map and resources. Wyoming wind map and resources. North Dakota wind map and resources. South Dakota wind map and resources. Nebraska wind map and resources. Colorado wind map and resources. New Mexico wind map and resources. Kansas wind map and resources. Oklahoma wind map and resources. Texas wind map and resources. Minnesota wind map and resources. Iowa wind map and resources. Missouri wind map and resources. Arkansas wind map and resources. Lousiana wind map and resources. Wisconsin wind map and resources. Michigan wind map and resources. Michigan wind map and resources. Illinois wind map and resources. Indiana wind map and resources. Ohio wind map and resources. Kentucky wind map and resources. Tennessee wind map and resources. Mississippi wind map and resources. Alabama wind map and resources. Georgia wind map and resources. Florida wind map and resources. South Carolina wind map and resources. North Carolina wind map and resources. West Virginia wind map and resources. Virginia wind map and resources. Maryland wind map and resources. Pennsylvania wind map and resources. Delaware wind map and resources. New Jersey wind map and resources. New York wind map and resources. Maine wind map and resources. Vermont wind map and resources. New Hampshire wind map and resources. Massachusetts wind map and resources. Rhode Island wind map and resources. Connecticut wind map and resources. Alaska wind map and resources. Hawaii wind map and resources.

14

Landed Costs of Imported Crude by Area  

U.S. Energy Information Administration (EIA) Indexed Site

Area Area (Dollars per Barrel) Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Average Landed Cost 95.72 97.41 96.90 101.19 103.27 102.19 1973-2013 Persian Gulf 102.31 101.35 101.26 103.15 104.94 104.24 1996-2013 Total OPEC 101.76 101.62 101.21 103.96 105.34 105.33 1973-2013 Non OPEC 90.79 93.50 93.49 98.66 101.65 100.05 1973-2013 Selected Countries Canada 83.02 86.83 88.26 94.16 98.81 96.09 1973-2013 Colombia 101.42 100.70 99.47 102.47 106.04 105.49 1996-2013 Angola 105.56 106.32 106.73 110.43 111.75 115.03 1996-2013 Mexico 100.63 100.07 97.56 101.87 101.52 101.12 1975-2013

15

Analysis of Offshore Wind Energy Leasing Areas for the Rhode Island/Massachusetts Wind Energy Area  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis of Offshore Wind Analysis of Offshore Wind Energy Leasing Areas for the Rhode Island/Massachusetts Wind Energy Area W. Musial, D. Elliott, J. Fields, Z. Parker, and G. Scott Produced under direction of the Bureau of Ocean Energy Management (BOEM) by the National Renewable Energy Laboratory (NREL) under Interagency Agreement M13PG00002 and Task No WFS3.1000. Technical Report NREL/TP-5000-58091 April 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Contract No. DE-AC36-08GO28308 National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000 * www.nrel.gov Analysis of Offshore Wind

16

Parcel-Level Land Architecture and Land Surface Temperature in the Phoenix Metropolitan Area  

E-Print Network (OSTI)

Parcel-Level Land Architecture and Land Surface Temperature in the Phoenix Metropolitan Area Xiaoxiao Li1, Yun Ouyang1, Billie Turner II1,2, Sharon Harlan3, Anthony Brazel2 1 School of Sustainability system architecture--composition and configuration of different land-cover classes--on LST in the central

Hall, Sharon J.

17

Stochastic Modeling of Multi-Area Wind Power Production  

E-Print Network (OSTI)

Stochastic Modeling of Multi-Area Wind Power Production Anthony Papavasiliou Department model accounts for the inter-temporal and spatial dependencies of multi-area wind power production. Results are presented for a case study of the California power system. Keywords - Wind power generation

Oren, Shmuel S.

18

WINDExchange: Utility-Scale Land-Based 80-Meter Wind Maps  

Wind Powering America (EERE)

Programs & Data Utility-Scale Land-Based 80-Meter Wind Maps The U.S. Department of Energy provides an 80-meter (m) height, high-resolution wind resource map for the United...

19

Wind Energy Development as an Economic Development Strategy for Rural Areas  

E-Print Network (OSTI)

Why does wind development make sense for rural areas? In many rural areas, utility scale wind energy developments can be a great way to expand and grow the economy through direct investment and job creation, in addition to significant potential spinoff development activities. Because of renewable state standards and incentives, including the Federal Production Tax Credit (PTC) and the Ohio SB 232 (which levels the playing field for wind projects by setting a property tax ceiling), more wind companies view Ohio as a new and exciting market for investment. Siting requirements for wind are also prevalent in Ohio, including good transmission lines and available land and wind resources. Ohio also has a skilled workforce that can construct and provide maintenance on wind systems as well as manufacture component parts for the industry. Utility Wind Basics Utility scale wind developments are large “wind farms ” that generate 5 megawatts per hour or greater. They are governed by the Ohio Power Siting Board (OPSB) under provisions found in House Bill 562, 2008

Nancy Bowen-ellzey

20

Aquifer Protection Area Land Use Regulations (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations describe allowable activities within aquifer protection areas, the procedure by which such areas are delineated, and relevant permit requirements. The regulations also describe...

Note: This page contains sample records for the topic "land areas wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Assessment of Offshore Wind Energy Leasing Areas for the BOEM Massachusetts Wind Energy Area  

SciTech Connect

The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL), under an interagency agreement with the Bureau of Ocean Energy Management (BOEM), is providing technical assistance to identify and delineate leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM. This report focuses on NREL's development of three delineated leasing area options for the Massachusetts (MA) WEA and the technical evaluation of these leasing areas. The overarching objective of this study is to develop a logical process by which the MA WEA can be subdivided into non-overlapping leasing areas for BOEM's use in developing an auction process in a renewable energy lease sale. NREL worked with BOEM to identify an appropriate number of leasing areas and proposed three delineation alternatives within the MA WEA based on the boundaries announced in May 2012. A primary output of the interagency agreement is this report, which documents the methodology, including key variables and assumptions, by which the leasing areas were identified and delineated.

Musial, W.; Parker, Z.; Fields, M.; Scott, G.; Elliott, D.; Draxl, C.

2013-12-01T23:59:59.000Z

22

Assessing the land use suitability of mined areas in Appalachia  

SciTech Connect

The Land Use Decision Methodology (LUDM) is a planning framework for mined area land use planning. The LUDM was developed to consider the range of institutional and environmental factors that impact reclamation and land use planning for mined lands. The LUDM was developed as a generalized planning framework rather than a complex/rigid methodology. A matrix that supports the detailed site analysis component of the LUDM was also developed. The matrix has utility for illustrating the impacts that a number of mining related conditions/environmental problems can exert on the environmental feasibility and economics of alternative reclamation plans.

Gorton, W.T.; Yuill, C.B.

1982-12-01T23:59:59.000Z

23

Wind flow modeling for wind energy analysis of the Nellis Dunes area in Nevada.  

E-Print Network (OSTI)

??A wind energy analysis of the Nellis Dunes area in Nevada was conducted. A DEM file which contains the elevation data was used to generate… (more)

Rangegowda, Upendra

2010-01-01T23:59:59.000Z

24

Production of Wind or Solar Energy on School and Public Lands (Nebraska) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Production of Wind or Solar Energy on School and Public Lands Production of Wind or Solar Energy on School and Public Lands (Nebraska) Production of Wind or Solar Energy on School and Public Lands (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Solar Buying & Making Electricity Wind Program Info State Nebraska Program Type Siting and Permitting Provider Board of Educational Lands and Funds These regulations govern the implementation and development of wind and

25

Magnetotellurics At Salt Wells Area (Bureau of Land Management, 2009) |  

Open Energy Info (EERE)

Salt Wells Area (Bureau of Land Management, 2009) Salt Wells Area (Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Salt Wells Area (Bureau of Land Management, 2009) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Magnetotellurics Activity Date 2008 - 2008 Usefulness not indicated DOE-funding Unknown Exploration Basis Vulcan increased exploration efforts in the summer and fall of 2008, during which time the company drilled two temperature gradient holes (86-15 O on Pad 1 and 17-16 O on Pad 3); conducted seismic, gravity and magnetotelluric surveys; and drilled deep exploration wells at Pads 6 and 8 and binary wells at Pads 1, 2, 4, and 7. Notes Data from these wells is proprietary, and so were unavailable for inclusion

26

Landed Costs of Imported Crude by Area  

Gasoline and Diesel Fuel Update (EIA)

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History Average Landed Cost 67.97 93.33 60.23 76.50 102.92 101.00 1973-2012 Persian Gulf 69.83 93.59 62.15 78.60 108.01 107.74 1973-2012 Total OPEC 71.14 95.49 61.90 78.28 107.84 107.56 1973-2012 Non OPEC 63.96 90.59 58.58 74.68 98.64 95.05 1973-2012 Selected Countries Canada 60.38 90.00 57.60 72.80 89.92 84.24 1973-2012 Colombia 70.91 93.43 58.50 74.25 102.57 107.07 1973-2012 Angola 71.27 98.18 61.32 80.61 114.05 114.95 1973-2012 Mexico 62.31 85.97 57.35 72.86 101.21 102.45 1973-2012 Nigeria 78.01 104.83 68.01 83.14 116.43 116.88 1973-2012 Saudi Arabia 70.78 94.75 62.14 79.29 108.83 108.15 1973-2012 United Kingdom 72.47 96.95 63.87 80.29 118.45 W 1973-2012 Venezuela

27

Wind Power on Native American Lands: Process and Progress (Poster)  

SciTech Connect

The United States is home to more than 700 American Indian tribes and Native Alaska villages and corporations located on 96 million acres. Many of these tribes and villages have excellent wind resources that could be commercially developed to meet their electricity needs or for electricity export. The Wind Powering America program engages Native Americans in wind energy development. This poster describes the process and progress of Wind Powering America's involvement with Native American wind energy projects.

Jimenez, A.; Flowers, L.; Gough, R.; Taylor, R.

2005-05-01T23:59:59.000Z

28

Wind Monitoring Report for Fort Wainwright's Donnelly Training Area  

SciTech Connect

Using the wind data collected at a location in Fort Wainwright’s Donnelly Training Area (DTA) near the Cold Regions Test Center (CRTC) test track, Pacific Northwest National Laboratory (PNNL) estimated the gross and net energy productions that proposed turbine models would have produced exposed to the wind resource measured at the meteorological tower (met tower) location during the year of measurement. Calculations are based on the proposed turbine models’ standard atmospheric conditions power curves, the annual average wind speeds, wind shear estimates, and standard industry assumptions.

Orrell, Alice C.; Dixon, Douglas R.

2011-01-18T23:59:59.000Z

29

E-Print Network 3.0 - area land reclamation Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering ; Biology and Medicine 27 LAND USE SUITABILITY INDEX FOR USE IN HARDEE COUNTY Summary: by that date, no soils ("land areas") directly resulting from mining or...

30

Short-term wind forecast for the safety management of complex areas during hazardous wind events  

Science Journals Connector (OSTI)

Abstract This paper describes the short-term wind forecast system realised in the framework of the European Project “Wind and Ports: The forecast of wind for the management and safety of port areas”. The project?s aim is to contribute improving the safety and accessibility to the harbour areas of the largest ports in the Northern Tyrrhenian Sea, which are frequently exposed to hazardous winds, in order to minimise the risks for users, structures, transport means, stored goods and boats within the ports. The short-term wind forecast system is based on a mixed statistical-numerical procedure, trained by means of local wind measurements and implemented into an operational chain for the real-time prediction of the maximum expected wind velocity corresponding to three forecast horizons (30, 60 and 90 min) and three non-exceeding probabilities (90%, 95%, and 99%). The local wind measurements used to train the forecast algorithms have been recorded from the 15 ultra-sonic anemometers installed in the Ports of Savona, La Spezia, and Livorno. This wind-monitoring network is used also to carry out the short-term forecast system a posteriori verification and validation.

M. Burlando; M. Pizzo; M.P. Repetto; G. Solari; P. De Gaetano; M. Tizzi

2014-01-01T23:59:59.000Z

31

Land tenure and farm management efficiency: The case of smallholder rubber production in customary land areas of Sumatra  

Science Journals Connector (OSTI)

This study assesses the impact of land tenure institutions on the efficiency of farm management based on a case study of rubber production in customary land areas of Sumatra, Indonesia ... rates of return to tree...

S. Suyanto; T. P. Tomich; K. Otsuka

32

Final Report, Wind Power Resource Assessment on the Warm Springs Reservation Tribal Lands, Report No. DOE/GO/12103  

SciTech Connect

This report concludes a five-year assessment of wind energy potential on the Confederated Tribes of Warm Springs Reservation of Oregon lands.

Jim Manion, Warm Springs Power & Water Enterprises; David McClain, McClain & Associates; HDR Engineering; Dr. Stel Walker, Oregon State University

2007-09-10T23:59:59.000Z

33

Energy Department Releases New Land-Based/Offshore Wind Resource...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

shows the predicted mean annual wind speeds at 80-m height produced from AWS Truepower's data at a spatial resolution of 2.5 km and interpolated to a finer scale. Read more about...

34

Property:PotentialOnshoreWindArea | Open Energy Information  

Open Energy Info (EERE)

PotentialOnshoreWindArea PotentialOnshoreWindArea Jump to: navigation, search Property Name PotentialOnshoreWindArea Property Type Quantity Description The area of potential onshore wind in a place. Use this type to express a quantity of two-dimensional space. The default unit is the square meter (m²). http://en.wikipedia.org/wiki/Area Acceptable units (and their conversions) are: Square Meters - 1 m²,m2,m^2,square meter,square meters,Square Meter,Square Meters,Sq. Meters,SQUARE METERS Square Kilometers - 0.000001 km²,km2,km^2,square kilometer,square kilometers,square km,square Kilometers,SQUARE KILOMETERS Square Miles - 0.000000386 mi²,mi2,mi^2,mile²,square mile,square miles,square mi,Square Miles,SQUARE MILES Square Feet - 10.7639 ft²,ft2,ft^2,square feet,square foot,FT²,FT2,FT^2,Square Feet, Square Foot

35

Property:PotentialOffshoreWindArea | Open Energy Information  

Open Energy Info (EERE)

PotentialOffshoreWindArea PotentialOffshoreWindArea Jump to: navigation, search Property Name PotentialOffshoreWindArea Property Type Quantity Description The area of potential offshore wind in a place. Use this type to express a quantity of two-dimensional space. The default unit is the square meter (m²). http://en.wikipedia.org/wiki/Area Acceptable units (and their conversions) are: Square Meters - 1 m²,m2,m^2,square meter,square meters,Square Meter,Square Meters,Sq. Meters,SQUARE METERS Square Kilometers - 0.000001 km²,km2,km^2,square kilometer,square kilometers,square km,square Kilometers,SQUARE KILOMETERS Square Miles - 0.000000386 mi²,mi2,mi^2,mile²,square mile,square miles,square mi,Square Miles,SQUARE MILES Square Feet - 10.7639 ft²,ft2,ft^2,square feet,square foot,FT²,FT2,FT^2,Square Feet, Square Foot

36

Reducing biosolids disposal costs using land application in forested areas  

SciTech Connect

Switching biosolids land application from a reclamation site to a forested site significantly reduced the cost of biosolids disposal at the Savannah River Site. Previous beneficial reuse programs focused on reclamation of existing borrow pits. While extremely beneficial, this program became very costly due to the regulatory requirements for groundwater monitoring, soil monitoring and frequent biosolids analyses. A new program was developed to reuse biosolids in forested areas where the biosolids could be used as a soil conditioner and fertilizer to enhance timber yield. The forested land application site was designed so that groundwater monitoring and soil monitoring could be eliminated while biosolids monitoring and site maintenance were minimized. Monitoring costs alone were reduced by 80%. Capital costs for site preparation were also significantly reduced since there was no longer a need for expensive groundwater monitoring wells.

Huffines, R.L.

1995-11-01T23:59:59.000Z

37

Land-Based Wind Turbine Transportation and Logistics Barriers and Their Effects on U.S. Wind Markets (Presentation)  

SciTech Connect

The average size of land based wind turbines installed in the United States has increased dramatically over time. As a result wind turbines are facing new transportation and logistics barriers that limit the size of utility scale land based wind turbines that can be deployed in the United States. Addressing these transportation and logistics barriers will allow for even further increases in U.S. turbine size using technologies under development for offshore markets. These barriers are important because larger taller turbines have been identified as a path to reducing the levelized cost of energy for electricity. Additionally, increases in turbine size enable the development of new low and moderate speed markets in the U.S. In turn, wind industry stakeholder support, market stability, and ultimately domestic content and manufacturing competitiveness are potentially affected. In general there is very little recent literature that characterizes transportation and logistics barriers and their effects on U.S. wind markets and opportunities. Accordingly, the objective of this paper is to report the results of a recent NREL study that identifies the barriers, assesses their impact and provides recommendations for strategies and specific actions.

Cotrell, J.; Stehly, T.; Johnson, J.; Roberts, J.O.; Parker, Z.; Scott, G.; Heimiller, D.

2014-05-01T23:59:59.000Z

38

Wind Power on Native American Lands: Opportunities, Challenges, and Status (Poster)  

SciTech Connect

The United States is home to more than 700 American Indian tribes and Native Alaska villages and corporations located on 96 million acres. Many of these tribes and villages have excellent wind resources that could be commercially developed to meet their electricity needs or for electricity export. This conference poster for Windpower 2007 describes the opportunities, challenges, and status of wind energy projects on Native American lands in the United States.

Jimenez, A.; Johnson, P. B.; Gough, R.; Robichaud, R.; Flowers, L.; Taylor, R.

2007-06-01T23:59:59.000Z

39

Preliminary evaluation of wind energy potential: Cook Inlet area, Alaska  

SciTech Connect

This report summarizes work on a project performed under contract to the Alaska Power Administration (APA). The objective of this research was to make a preliminary assessment of the wind energy potential for interconnection with the Cook Inlet area electric power transmission and distribution systems, to identify the most likely candidate regions (25 to 100 square miles each) for energy potential, and to recommend a monitoring program sufficient to quantify the potential.

Hiester, T.R.

1980-06-01T23:59:59.000Z

40

Wind Resource Maps (Postcard)  

SciTech Connect

The U.S. Department of Energy's Wind Powering America initiative provides high-resolution wind maps and estimates of the wind resource potential that would be possible from development of the available windy land areas after excluding areas unlikely to be developed. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to Wind Powering America's online wind energy resource maps.

Not Available

2011-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "land areas wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Market Channels and Value Added to Fish Landed at Monterey Bay Area Ports  

E-Print Network (OSTI)

Sample Input-Output Data to Port Level Summaries with PacFINMonterey Bay area (MBA) ports: Moss Landing, Monterey andlanded at Monterey Bay ports (i.e. , Moss Landing, Monterey

Pomeroy, Caroline; Dalton, Michael

2005-01-01T23:59:59.000Z

42

E-Print Network 3.0 - area jameson land Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

for: area jameson land Page: << < 1 2 3 4 5 > >> 1 J. Franklin Jameson Written when political Summary: banks, but spread abroad upon the land." Jameson's book was among the first...

43

The Influence of Boundary Layer Processes on the Diurnal Variation of the Climatological Near-Surface Wind Speed Probability Distribution over Land  

Science Journals Connector (OSTI)

Knowledge of the diurnally varying land surface wind speed probability distribution is essential for surface flux estimation and wind power management. Global observations indicate that the surface wind speed probability density function (PDF) is ...

Yanping He; Norman A. McFarlane; Adam H. Monahan

2012-09-01T23:59:59.000Z

44

Land-Use Requirements of Modern Wind Power Plants in the United States  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 August 2009 Land-Use Requirements of Modern Wind Power Plants in the United States Paul Denholm, Maureen Hand, Maddalena Jackson, and Sean Ong National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-6A2-45834 August 2009 Land-Use Requirements of Modern Wind Power Plants in the United States Paul Denholm, Maureen Hand, Maddalena Jackson, and Sean Ong Prepared under Task No. WER9.3550 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

45

DOE - Office of Legacy Management -- Shallow Land Disposal Area - PA 45  

Office of Legacy Management (LM)

Shallow Land Disposal Area - PA 45 Shallow Land Disposal Area - PA 45 FUSRAP Considered Sites Shallow Land Disposal Area, PA Alternate Name(s): Parks Township Shallow Land Disposal Area Nuclear Materials and Equipment Corporation (NUMEC) Babcox and Wilcox Parks Facilities PA.45-1 PA.45-5 PA.45-6 Location: PA Route 66 and Kissimere Road, Parks Township, Apollo, Pennsylvania PA.45-1 Historical Operations: Fabricated nulcear fuel under an NRC license as an extension of NUMEC Apollo production facilities. PA.45-1 PA.45-5 Eligibility Determination: Eligible PA.45-6 Radiological Survey(s): None Site Status: Cleanup in progress by U.S. Army Corps of Engineers. PA.45-6 USACE Website Long-term Care Requirements: To be determined upon completion. Also see Documents Related to Shallow Land Disposal Area, PA

46

Temporal Analysis of Incompatible Land-Use and Land-Cover: The Proximity between Residential Areas and Gas Stations in Bucharest Suburban Area  

Science Journals Connector (OSTI)

Incompatible land-use and land-cover indicate the trend in territorial planning and generate instability and conflicts leading to degradation in terms of environmental quality. Urban landscape structure of Bucharest suburban area has changed lately, especially due to expansion of residential areas, increasing the risks of a chaotic urban development. The consequences of this residential expansion have led to malfunctions, outlining a disadvantage area due to environmental problems. In this context, residential areas are frequently located in the proximity of gas stations in Bucharest suburban area. This paper presents the relation between residential areas and gas stations in order to evaluate causes that led to their proximity. Results have pointed out using a number of 60 gas stations (21 gas stations in residential areas and 39 in non-residential areas) the causes and the temporal dynamics of locational conflicts, suggesting that unplanned development and residential agglomeration are the main consequences of territorial conflicts. In this respect of incompatible land-use and land-cover expansion, it is required an evaluation and hierarchy in order to start new coherent plans of space development.

Cristian Ioan Ioj?; Constantina Alina Tudor

2012-01-01T23:59:59.000Z

47

A sensitivity study of the WRF model in wind simulation for an area of high wind energy  

Science Journals Connector (OSTI)

The performance of the Weather Research and Forecast (WRF) model in wind simulation was evaluated under different numerical and physical options for an area of Portugal, located in complex terrain and characterized by its significant wind energy resource. The grid nudging and integration time of the simulations were the tested numerical options. Since the goal is to simulate the near-surface wind, the physical parameterization schemes regarding the boundary layer were the ones under evaluation. Also, the influences of the local terrain complexity and simulation domain resolution on the model results were also studied. Data from three wind measuring stations located within the chosen area were compared with the model results, in terms of Root Mean Square Error, Standard Deviation Error and Bias. Wind speed histograms, occurrences and energy wind roses were also used for model evaluation. Globally, the model accurately reproduced the local wind regime, despite a significant underestimation of the wind speed. The wind direction is reasonably simulated by the model especially in wind regimes where there is a clear dominant sector, but in the presence of low wind speeds the characterization of the wind direction (observed and simulated) is very subjective and led to higher deviations between simulations and observations. Within the tested options, results show that the use of grid nudging in simulations that should not exceed an integration time of 2 days is the best numerical configuration, and the parameterization set composed by the physical schemes MM5–Yonsei University–Noah are the most suitable for this site. Results were poorer in sites with higher terrain complexity, mainly due to limitations of the terrain data supplied to the model. The increase of the simulation domain resolution alone is not enough to significantly improve the model performance. Results suggest that error minimization in the wind simulation can be achieved by testing and choosing a suitable numerical and physical configuration for the region of interest together with the use of high resolution terrain data, if available.

David Carvalho; Alfredo Rocha; Moncho Gómez-Gesteira; Carlos Santos

2012-01-01T23:59:59.000Z

48

Stochastic Modeling of Multi-Area Wind Power Production Anthony Papavasiliou  

E-Print Network (OSTI)

Stochastic Modeling of Multi-Area Wind Power Production Anthony Papavasiliou CORE, UCL anthony of wind power production on power system operations over an entire year, it is necessary to account for the non-stationary (seasonal and diurnal) patterns of wind power production. This paper presents a multi

Oren, Shmuel S.

49

Extreme wind studies in Singapore. An area with mixed weather system  

Science Journals Connector (OSTI)

This paper presents an extreme wind studies in Singapore, which is an area with mixed weather systems. The extreme winds in Singapore are generated by both monsoon and thunderstorms (or squalls). Thus, the design wind speed is expected to be influenced by these weather systems. Two methods, i.e. Gumbel's and Independent Storm methods, were used in this study. However, the co-existence of the weather systems suggested that the estimation of the design wind speed might not be done in a straightforward manner. Extreme wind data need to be sorted according to the different wind producing weather system before any analyses could be carried out. In this study, the wind extreme data were separated into two weather systems, namely the large- and small-scale systems. Although the area of Singapore is about 40 km×20 km, the result suggests that the wind characteristics at Tengah (west side of Singapore) were different from Seletar (central) and Changi (east of Singapore).

E.C.C Choi; A Tanurdjaja

2002-01-01T23:59:59.000Z

50

The Influence of Boundary Layer Processes on the Diurnal Variation of the Climatological Near-Surface Wind Speed Probability Distribution over Land*  

E-Print Network (OSTI)

diurnally varying vertical structure of the leading three climatological moments of near-surface wind speed-Surface Wind Speed Probability Distribution over Land* YANPING HE School of Earth and Ocean Sciences wind speed probability distribution is essential for surface flux estimation and wind power management

He, Yanping

51

AWEA Wind Energy Regional Summit: Northeast  

Office of Energy Efficiency and Renewable Energy (EERE)

The AWEA Wind Energy Northeast Regional Summit will connect you with New England-area wind energy professionals and offers the opportunity to discuss significant issues related to land-based and...

52

Wind Resource Mapping for United States Offshore Areas: Preprint  

SciTech Connect

The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) is producing validated wind resource maps for priority offshore regions of the United States. This report describes the methodology used to validate the maps and to build a Geographic Information Systems (GIS) database to classify the offshore wind resource by state, water depth, distance from shore, and administrative unit.

Elliott, D.; Schwartz, M.

2006-06-01T23:59:59.000Z

53

Thermal Gradient Holes At Salt Wells Area (Bureau of Land Management, 2009)  

Open Energy Info (EERE)

Thermal Gradient Holes At Salt Wells Area (Bureau of Land Management, 2009) Thermal Gradient Holes At Salt Wells Area (Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Salt Wells Area (Bureau of Land Management, 2009) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date 2008 - 2008 Usefulness not indicated DOE-funding Unknown Exploration Basis Vulcan increased exploration efforts in the summer and fall of 2008, during which time the company drilled two temperature gradient holes (86-15 O on Pad 1 and 17-16 O on Pad 3); conducted seismic, gravity and magnetotelluric surveys; and drilled deep exploration wells at Pads 6 and 8 and binary wells at Pads 1, 2, 4, and 7. Notes

54

Single-Well and Cross-Well Seismic At Salt Wells Area (Bureau of Land  

Open Energy Info (EERE)

Single-Well and Cross-Well Seismic At Salt Wells Area (Bureau of Land Single-Well and Cross-Well Seismic At Salt Wells Area (Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Single-Well and Cross-Well Seismic At Salt Wells Area (Bureau of Land Management, 2009) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Single-Well And Cross-Well Seismic Activity Date 2008 - 2008 Usefulness not indicated DOE-funding Unknown Exploration Basis Vulcan increased exploration efforts in the summer and fall of 2008, during which time the company drilled two temperature gradient holes (86-15 O on Pad 1 and 17-16 O on Pad 3); conducted seismic, gravity and magnetotelluric surveys; and drilled deep exploration wells at Pads 6 and 8 and binary

55

Exploratory Well At Salt Wells Area (Bureau of Land Management, 2009) |  

Open Energy Info (EERE)

Exploratory Well At Salt Wells Area (Bureau of Land Management, 2009) Exploratory Well At Salt Wells Area (Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At Salt Wells Area (Bureau of Land Management, 2009) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Exploratory Well Activity Date 2008 - 2008 Usefulness not indicated DOE-funding Unknown Exploration Basis Vulcan increased exploration efforts in the summer and fall of 2008, during which time the company drilled two temperature gradient holes (86-15 O on Pad 1 and 17-16 O on Pad 3); conducted seismic, gravity and magnetotelluric surveys; and drilled deep exploration wells at Pads 6 and 8 and binary wells at Pads 1, 2, 4, and 7. Notes Data from these wells is proprietary, and so were unavailable for inclusion

56

Ground Gravity Survey At Salt Wells Area (Bureau of Land Management, 2009)  

Open Energy Info (EERE)

Salt Wells Area (Bureau of Land Management, 2009) Salt Wells Area (Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Salt Wells Area (Bureau of Land Management, 2009) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Ground Gravity Survey Activity Date 2008 - 2008 Usefulness not indicated DOE-funding Unknown Exploration Basis Vulcan increased exploration efforts in the summer and fall of 2008, during which time the company drilled two temperature gradient holes (86-15 O on Pad 1 and 17-16 O on Pad 3); conducted seismic, gravity and magnetotelluric surveys; and drilled deep exploration wells at Pads 6 and 8 and binary wells at Pads 1, 2, 4, and 7. Notes Data from these wells is proprietary, and so were unavailable for inclusion

57

Wind Power Career Chat  

SciTech Connect

This document will teach students about careers in the wind energy industry. Wind energy, both land-based and offshore, is expected to provide thousands of new jobs in the next several decades. Wind energy companies are growing rapidly to meet America's demand for clean, renewable, and domestic energy. These companies need skilled professionals. Wind power careers will require educated people from a variety of areas. Trained and qualified workers manufacture, construct, operate, and manage wind energy facilities. The nation will also need skilled researchers, scientists, and engineers to plan and develop the next generation of wind energy technologies.

Not Available

2011-01-01T23:59:59.000Z

58

Wind Powering America  

Wind Powering America (EERE)

These news items are notable additions These news items are notable additions to the Wind Powering America Web site. The Wind Powering America Web site reports recent national and state wind market changes by cataloging wind activities such as wind resource maps, small wind consumer's guides, local wind workshops, news articles, and publications in the areas of policy, public power, small wind, Native Americans, agricultural sector, economic development, public lands, and schools. en-us julie.jones@nrel.gov (Julie Jones) http://www.windpoweringamerica.gov/images/wpa_logo_sm.jpg Wind Powering America http://www.windpoweringamerica.gov/ Nominate an Electric Cooperative for Wind Power Leadership Award by January 15 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4076 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4076 Mon, 16

59

Definition: Wind power | Open Energy Information  

Open Energy Info (EERE)

Wind power Wind power Jump to: navigation, search Dictionary.png Wind power The amount of power available to a wind turbine depends on: air density, wind speed and the swept area of the rotor. While the power is proportional to air density and swept area, it varies with the cube of wind speed, so small changes in wind speed can have a relatively large impact on wind power.[1] View on Wikipedia Wikipedia Definition Wind power is the conversion of wind energy into a useful form of energy, such as using wind turbines to make electrical power, windmills for mechanical power, windpumps for water pumping or drainage, or sails to propel ships. Large wind farms consist of hundreds of individual wind turbines which are connected to the electric power transmission network. Offshore wind is steadier and stronger than on land, and offshore farms

60

Extreme wind characteristics over Singapore – an area in the equatorial belt  

Science Journals Connector (OSTI)

Areas close to the equator, e.g. places like Singapore, are outside the belt of severe tropical cyclone. The monsoon winds over these regions are also mild. Thus, strong winds due to these weather systems are relatively less severe. On the other hand, equatorial regions have frequent tropical thunderstorms. Wind speeds of the gust fronts of these thunderstorms can be relatively high. As the wind characteristics for the thunderstorm (TS) wind and the non-thunderstorm (NTS) wind are expected to be different, it is important to understand their contributions and effects towards the wind loading design of structures. This paper looks at the extreme wind characteristics in Singapore. Extreme wind speeds during thunderstorms and non-thunderstorms are studied. The findings show that while extreme TS gust speeds are consistently higher than those of NTS. Extreme mean wind speeds for TS are smaller than those of NTS. It is also observed that gust factors for peak over 10-min mean as well as peak over hourly mean during thunderstorms are both higher than those for non-thunderstorms.

Edmund C.C Choi

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "land areas wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

The spatial response function of SeaWinds backscatter measurements  

E-Print Network (OSTI)

regions are used to produce images of the Earth's land and ice surfaces to support climate studies in a wide variety of studies, including ocean wind retrieval, sea-ice mapping and classification, iceberg are also collected over the land and ice areas of the Earth. SeaWinds measurements over these land and ice

Long, David G.

62

H2A Delivery: GH2 and LH2 Forecourt Land Areas  

NLE Websites -- All DOE Office Websites (Extended Search)

GH2 and LH2 Forecourt GH2 and LH2 Forecourt GH2 and LH2 Forecourt Land Areas Land Areas Hydrogen Delivery Analysis Meeting May 8-9, 2007 Columbia, Maryland TIAX LLC Matthew Hooks 1601 S. D Anza Blvd. hooks.matthew@TIAXLLC.com Cupertino CA, 95014 Tel. 408-517-1550 Reference: D0348 © 2007 TIAX LLC General Assumptions ƒ Forecourt stations with fewer than 6 hydrogen dispensers will have both hydrogen and gasoline dispensers on-site (6 total) ƒ Forecourt area (not including convenience store) will be allocated based on relative number of hydrogen/gasoline dispensers ƒ All stations with more than 6 hydrogen dispensers will only dispense hydrogen ƒ 100% of forecourt area (not including convenience store) will be allocated to hydrogen delivery ƒ Area allocated to hydrogen storage will be in excess of the

63

Harnessing the Power of the Sun, Solar Impulse Plane Lands in DC Area |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Harnessing the Power of the Sun, Solar Impulse Plane Lands in DC Harnessing the Power of the Sun, Solar Impulse Plane Lands in DC Area Harnessing the Power of the Sun, Solar Impulse Plane Lands in DC Area June 17, 2013 - 6:15pm Addthis Watch Energy Secretary Ernest Moniz give remarks at the Solar Impulse Press Conference in Washington, D.C. Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs More on Solar Impulse View a slideshow of photos from today's event on Secretary Moniz's Facebook Page. Today, Secretary Moniz spoke at an event welcoming the arrival of the solar-powered Solar Impulse plane at Dulles International Airport near Washington, D.C. During the event, held at the National Air and Space Museum's Steven F. Udvar-Hazy Center, Secretary Moniz highlighted the rapid expansion of the solar industry in the United States over the past

64

Harnessing the Power of the Sun, Solar Impulse Plane Lands in DC Area |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Harnessing the Power of the Sun, Solar Impulse Plane Lands in DC Harnessing the Power of the Sun, Solar Impulse Plane Lands in DC Area Harnessing the Power of the Sun, Solar Impulse Plane Lands in DC Area June 17, 2013 - 6:15pm Addthis Watch Energy Secretary Ernest Moniz give remarks at the Solar Impulse Press Conference in Washington, D.C. Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs More on Solar Impulse View a slideshow of photos from today's event on Secretary Moniz's Facebook Page. Today, Secretary Moniz spoke at an event welcoming the arrival of the solar-powered Solar Impulse plane at Dulles International Airport near Washington, D.C. During the event, held at the National Air and Space Museum's Steven F. Udvar-Hazy Center, Secretary Moniz highlighted the rapid expansion of the solar industry in the United States over the past

65

Ionospheric Threat Parameterization for Local Area Global-Positioning-System-Based Aircraft Landing Systems  

E-Print Network (OSTI)

Ionospheric Threat Parameterization for Local Area Global-Positioning-System-Based Aircraft Landing of user separation. The method of data analysis that produced these results is described, and a threat space that parameterizes these possible threats to user integrity is defined. Certain configurations

Stanford University

66

Wind energy potential in the United States  

SciTech Connect

Estimates of the electricity that could potentially be generated by wind power and of the land area available for wind energy development have been calculated for the contiguous United States. The estimates are based on published wind resource data and exclude windy lands that are not suitable for development as a result of environmental and land-use considerations. Despite these exclusions, the potential electric power from wind energy is surprisingly large. Good wind areas, which cover 6% of the contiguous US land area, have the potential to supply more than one and a half times the current electricity consumption of the United States. Technology under development today will be capable of producing electricity economically from good wind sites in many regions of the country.

Elliott, D.L.; Schwartz, M.N.

1993-06-01T23:59:59.000Z

67

Are global wind power resource estimates overstated?  

Science Journals Connector (OSTI)

Estimates of the global wind power resource over land range from 56 to 400 TW. Most estimates have implicitly assumed that extraction of wind energy does not alter large-scale winds enough to significantly limit wind power production. Estimates that ignore the effect of wind turbine drag on local winds have assumed that wind power production of 2–4 W m?2 can be sustained over large areas. New results from a mesoscale model suggest that wind power production is limited to about 1 W m?2 at wind farm scales larger than about 100 km2. We find that the mesoscale model results are quantitatively consistent with results from global models that simulated the climate response to much larger wind power capacities. Wind resource estimates that ignore the effect of wind turbines in slowing large-scale winds may therefore substantially overestimate the wind power resource.

Amanda S Adams; David W Keith

2013-01-01T23:59:59.000Z

68

Potential order-of-magnitude enhancement of wind farm power density via counter-rotating vertical-axis wind  

E-Print Network (OSTI)

Potential order-of-magnitude enhancement of wind farm power density via counter-rotating vertical constraint limits the amount of power that can be extracted from a given wind farm footprint. The resulting-axis wind turbines (VAWTs) in order to achieve higher power output per unit land area than existing wind

Dabiri, John O.

69

Bird Mortaility at the Altamont Pass Wind Resource Area: March 1998--September 2001  

SciTech Connect

Over the past 15 years, research has shown that wind turbines in the Altamont Pass Wind Resource Area (APWRA) kill many birds, including raptors, which are protected by the Migratory Bird Treaty Act (MBTA), the Bald and Golden Eagle Protection Act, and/or state and federal Endangered Species Acts. Early research in the APWRA on avian mortality mainly attempted to identify the extent of the problem. In 1998, however, the National Renewable Energy Laboratory (NREL) initiated research to address the causal relationships between wind turbines and bird mortality. NREL funded a project by BioResource Consultants to perform this research directed at identifying and addressing the causes of mortality of various bird species from wind turbines in the APWRA.With 580 megawatts (MW) of installed wind turbine generating capacity in the APWRA, wind turbines there provide up to 1 billion kilowatt-hours (kWh) of emissions-free electricity annually. By identifying and implementing new methods and technologies to reduce or resolve bird mortality in the APWRA, power producers may be able to increase wind turbine electricity production at the site and apply similar mortality-reduction methods at other sites around the state and country.

Smallwood, K. S.; Thelander, C. G.

2005-09-01T23:59:59.000Z

70

GIS-based pre-mining land damage assessment for underground coal mines in high groundwater area  

Science Journals Connector (OSTI)

Coal mining cause different degrees of damage to both land and ecosystems. Evaluation of disturbed land is a fundamental and prerequisite work for land reclamation and rehabilitation. However, most of those evaluations were carried out when mining was under process or after it cease. This paper proposes an innovative assessment model for pre-evaluation which could be implemented before mining activity begins. A geographic information system (GIS) was constructed to evaluate land damage. Three natural condition factors and three geological condition factors were chosen for evaluation. The results show that: land damage was categorised as five degrees, which are negligible, slight, moderate, severe, and very severe. Furthermore, very severely damaged areas are mainly concentrated in the northwest part of the coal mine, whereas slight damaged areas are mainly concentrated in the southwest. The developed coupling technique was used to forecast land damage, and provide reference for reclamation work.

Wu Xiao; Zhenqi Hu

2014-01-01T23:59:59.000Z

71

A study of wind speed modification and internal boundary-layer heights in a coastal region  

Science Journals Connector (OSTI)

Wind profile data within the first two kilometres of a coast have been used to study the wind field modification downstream of this surface discontinuity. The land area is generally very flat, having an overal...

Hans Bergström; Per-Erik Johansson; Ann-Sofi Smedman

1988-03-01T23:59:59.000Z

72

Remote area wind energy harvesting for low-power autonomous sensors Abstract--A growing demand for deployment of autonomous  

E-Print Network (OSTI)

Remote area wind energy harvesting for low-power autonomous sensors Abstract--A growing demand wind energy harvesting is presented, with a focus on an anemometer-based solution. By utilizing for localized, independent energy harvesting capabilities for each node. In this paper, a method of remote area

73

Stakeholder Engagement and Outreach: Where Is Wind Power?  

Wind Powering America (EERE)

Where Is Wind Power? Where Is Wind Power? Wind Powering America offers maps to help you visualize the wind resource at a local level and to show how much wind power has been installed in the United States. How much wind power is on my land? Go to the wind resource maps. Go to the wind resource maps. Go to the wind resource maps. If you want to know how much wind power is in a particular area, these wind resource maps can give you a visual indication of the average wind speeds to a local level such as a neighborhood. These maps have been developed using the same mathematical models that are used by weather forecasters and are even used to estimate the wind energy potential-or how much wind energy could potentially be produced at the state level, if wind power were developed there.

74

State and National Wind Resource Potential at Various Capacity...  

Wind Powering America (EERE)

4 8 650 1 2 806 3 0 69% 75 5% 14 031 7 49 073 Estimates of Windy 1 Land Area and Wind Energy Potential, by State, for areas > 35% Capacity Factor at 80m These estimates show, for...

75

Dynamic valuation model For wind development in regard to land value, proximity to transmission lines, and capacity factor  

E-Print Network (OSTI)

Developing a wind farm involves many variables that can make or break the success of a potential wind farm project. Some variables such as wind data (capacity factor, wind rose, wind speed, etc.) are readily available in ...

Nikandrou, Paul

2009-01-01T23:59:59.000Z

76

Career Map: Land Acquisition Specialist  

Energy.gov (U.S. Department of Energy (DOE))

The Wind Program's Career Map provides job description information for Land Acquisition Specialist positions.

77

Land-Based Wind Plant Balance-of-System Cost Drivers and Sensitivities (Poster)  

SciTech Connect

With Balance of System (BOS) costs contributing up to 30% of the installed capital cost, it is fundamental to understand the BOS costs for wind projects as well as potential cost trends for larger turbines. NREL developed a BOS model using project cost estimates developed by industry partners. Aspects of BOS covered include engineering and permitting, foundations for various wind turbines, transportation, civil work, and electrical arrays. The data introduce new scaling relationships for each BOS component to estimate cost as a function of turbine parameters and size, project parameters and size, and geographic characteristics. Based on the new BOS model, an analysis to understand the non?turbine wind plant costs associated with turbine sizes ranging from 1-6 MW and wind plant sizes ranging from 100-1000 MW has been conducted. This analysis establishes a more robust baseline cost estimate, identifies the largest cost components of wind project BOS, and explores the sensitivity of the capital investment cost and the levelized cost of energy to permutations in each BOS cost element. This presentation shows results from the model that illustrate the potential impact of turbine size and project size on the cost of energy from US wind plants.

Mone, C.; Maples, B.; Hand, M.

2014-04-01T23:59:59.000Z

78

A preliminary energy and environmental assessment of a micro wind turbine prototype in natural protected areas  

Science Journals Connector (OSTI)

Abstract This paper presents a preliminary energy and environmental analysis of a vertical-axis micro wind turbine with a nominal electric power of 3.7 kW. This prototype is called AM300. The main aim of the paper is to assess the amount of electric energy production of the AM300 and its feasible use in low wind speed areas. Furthermore, analyzing its low environmental impact, a potential installation in a natural protected area was considered. The turbine power curve was estimated by anemometric measurements. Furthermore, foreseeable prototype hybridization with PV array was analyzed. The environmental performance was assessed evaluating the soil, hydro geological, biodiversity and noise impacts. Finally, an analysis of the CO2 emissions avoided is reported. The obtained results show good sustainability perspectives.

Livio de Santoli; Angelo Albo; Davide Astiaso Garcia; Daniele Bruschi; Fabrizio Cumo

2014-01-01T23:59:59.000Z

79

WIND TURBINE STRUCTURAL HEALTH MONITORING: A SHORT INVESTIGATION BASED ON SCADA DATA  

E-Print Network (OSTI)

.papatheou@sheffield.ac.uk ABSTRACT The use of offshore wind farms has been growing in recent years, as steadier and higher wind to complicate the construction of land wind farms, offshore locations, which can be found more easily near densely populated areas, can be seen as an attrac- tive choice. However, the cost of an offshore wind farm

Boyer, Edmond

80

Influences of Urban Land-Use on the Frequency of Scorpion Stings in the Phoenix Metropolitan Area  

E-Print Network (OSTI)

and beestings. Between 3000-4000 people in the Phoenix metro area report being stung by scorpions each yearInfluences of Urban Land-Use on the Frequency of Scorpion Stings in the Phoenix Metropolitan Area Nancy E. McIntyre Center for Environmental Studies, Arizona State University Summary Between 3000

Hall, Sharon J.

Note: This page contains sample records for the topic "land areas wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Stakeholder Engagement and Outreach: Wind Resource Potential  

Wind Powering America (EERE)

Wind Resource Potential Offshore Maps Community-Scale Maps Residential-Scale Maps Anemometer Loan Programs & Data Wind Resource Potential State Wind Resource Potential Tables Find state wind resource potential tables in three versions: Microsoft Excel 2007, 2003, and Adobe Acrobat PDF. 30% Capacity Factor at 80-Meters Microsoft 2007 Microsoft 2003 Adobe Acrobat PDF Additional 80- and 100-Meter Wind Resource Potential Tables Microsoft 2007 Microsoft 2003 Adobe Acrobat PDF The National Renewable Energy Laboratory (NREL) estimated the windy land area and wind energy potential for each state using AWS Truepower's gross capacity factor data. This provides the most up to date estimate of how wind energy can support state and national energy needs. The table lists the estimates of windy land area with a gross capacity of

82

WindPACT Turbine Design Scaling Studies: Technical Area 4ƒBalance-of-Station Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

1 * NREL/SR-500-29950 1 * NREL/SR-500-29950 D.A. Shafer, K.R. Strawmyer, R.M. Conley, J.H. Guidinger, D.C. Wilkie, and T.F. Zellman With assistance from D.W. Bernadett Commonwealth Associates, Inc. Jackson, Michigan WindPACT Turbine Design Scaling Studies: Technical Area 4- Balance-of-Station Cost 21 March 2000-15 March 2001 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute * * * * Battelle * * * * Bechtel Contract No. DE-AC36-99-GO10337 July 2001 * NREL/SR-500-29950 WindPACT Turbine Desing Scaling Studies: Technical Area 4- Balance-of-Station Cost 21 March 2000-15 March 2001 D.A. Shafer, K.R. Strawmyer, R.M. Conley, J.H. Guidinger, D.C. Wilkie, and T.F. Zellman

83

Modeling urban growth and land use/land cover change in the Houston Metropolitan Area from 2002 - 2030  

E-Print Network (OSTI)

spatially explicit cellular automata model, to simulate future (2002-2030) urban growth in the Houston metropolitan area, one of the fastest growing metropolises in the United States during the past decades. The model is calibrated with historical data...

Oguz, Hakan

2005-08-29T23:59:59.000Z

84

Distribution of Extreme Winds in the Bonneville Power Administration Service Area  

Science Journals Connector (OSTI)

Annual extreme 1 min wind speeds at 78 Pacific Northwest locations were analyzed using the Fisher-Tippet type II extreme value function. From computed mean recurrence intervals, we could easily determine the wind speed likely to recur in a ...

J. William Wantz; Robert E. Sinclair

1981-12-01T23:59:59.000Z

85

BIRD MORTALITY IN THE ALTAMONT PASS WIND RESOURCE AREA 3.1 INTRODUCTION  

E-Print Network (OSTI)

The approximately 5,400 wind turbines operating in the APWRA generate about 580 MW of electricity, but they also relative to the number of megawatts generated by the wind turbines and the time span over which and the recruitment rate of each species, thus estimating the degree to which the wind turbines adversely affect

86

BIRD BEHAVIORS IN THE ALTAMONT PASS WIND RESOURCE AREA 8.1 INTRODUCTION  

E-Print Network (OSTI)

with operating wind turbines (Estep 1989; Howell and DiDonato 1991; Howell and Noone 1992; Orloff and Flannery proposed as a contributing factor to the susceptibility of birds to collide with wind turbines (Cade 1995 was confounded by evidence that the existence and operation of wind turbines may have already changed bird

87

U.S. State Wind Resource Potential | OpenEI  

Open Energy Info (EERE)

State Wind Resource Potential State Wind Resource Potential Dataset Summary Description Estimates for each of the 50 states and the entire United States showing the windy land area with a gross capacity factor (without losses) of 30% and greater at 80-m height above ground and the wind energy potential from development of the "available" windy land area after exclusions. The "Installed Capacity" shows the potential megawatts (MW) of rated capacity that could be installed on the available windy land area, and the "Annual Generation" shows annual wind energy generation in gigawatt-hours (GWh) that could be produced from the installed capacity. AWS Truewind, LLC developed the wind resource data for windNavigator® with a spatial resolution of 200 m. NREL produced the estimates of windy land area and windy energy potential, including filtering the estimates to exclude areas unlikely to be developed such as wilderness areas, parks, urban areas, and water features (see the "Wind Resource Exclusion Table" sheet within the Excel file for more detail).

88

EIS-0427: Grapevine Canyon Wind Project, Coconino County, Arizona |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

27: Grapevine Canyon Wind Project, Coconino County, Arizona 27: Grapevine Canyon Wind Project, Coconino County, Arizona EIS-0427: Grapevine Canyon Wind Project, Coconino County, Arizona Summary This EIS evaluates the environmental impacts of a proposed wind energy generation project in Coconino County, Arizona, on privately owned ranch lands and trust lands administered by the Arizona State Land Department. The proposed project includes a new transmission tie-line that would cross lands administered by Coconino National Forest and interconnect with DOE's Western Area Power Administration's existing Glen Canyon-Pinnacle Peak transmission lines. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download September 11, 2012 EIS-0427: Record of Decision Interconnection of the Grapevine Canyon Wind Project, Coconino County,

89

Estimation methods review and analysis of offshore extreme wind speeds and wind energy resources  

Science Journals Connector (OSTI)

Abstract Offshore wind resources are more abundant and stronger and they blow more consistently than land-based wind resources. While gale force winds are easier to hit on the sea, the strong wind vibration and wind loads may exert severe damage and shock to wind turbines and wind power grids, even resulting in power grid collapse. Thus, to develop offshore wind power, apart from accurate quantitative wind energy potential assessments, it is necessary to effectively estimate extreme wind speeds. Toward this purpose, this paper investigates the current status of extreme wind speeds and wind energy assessment from literature review. It turns out that much work on wind energy estimation has been performed, whereas relatively little research involves extreme wind speeds, the main challenge stemming from the limited availability of derived extreme winds. Then a GH method based on artificial intelligence optimization algorithms is developed to re-analyze future samples of extreme wind speeds. On the basis of the re-analyzed extreme samples, as well as the Generalized Extreme Value (GEV) and Gumbel models optimized by Cuckoo Search (CS) and Chaotic Particle Swarm Optimization (CPSO) algorithms, the potential risks of extreme wind speeds are conducted based on 23-year (1990–2012) historic wind speeds. Thus, in terms of wind speeds, a comprehensive estimation for offshore wind energy is initially implemented in Bohai Rim, China. The assessment shows that the study areas have high-strength wind power but are rarely subjected to extreme wind speeds, which implies that it is suitable for wind farm construction.

Jianzhou Wang; Shanshan Qin; Shiqiang Jin; Jie Wu

2015-01-01T23:59:59.000Z

90

2010 Wind Technologies Market Report  

E-Print Network (OSTI)

Fish and Wildlife Service?s Draft Land- Based Wind Energywildlife impacts are addressed in the planning, siting, and permitting process for wind

Wiser, Ryan

2012-01-01T23:59:59.000Z

91

EIS-0441: Mohave County Wind Farm Project, Mohave County, Arizona  

Energy.gov (U.S. Department of Energy (DOE))

This EIS, prepared by the Bureau of Land Management with DOE’s Western Area Power Administration as a cooperating agency, evaluated the environmental impacts of a proposed wind energy project on public lands in Mohave County, Arizona. Power generated by this project would tie to the electrical power grid through an interconnection to one of Western’s transmission lines.

92

American Institute of Aeronautics and Astronautics Wind Shear over Forested Areas  

E-Print Network (OSTI)

a Workshop on the Influence of Trees on Wind Farm Energy Yields in March 2004. At that workshop Raferty4. Rogers* , James F. Manwell and Anthony F. Ellis Renewable Energy Research Laboratory, University of Massachusetts, Amherst, MA 01003 Nomenclature d = displacement distance h = tree height U = wind speed Uref

Massachusetts at Amherst, University of

93

Changes of Land Use and Landscape Pattern in Feicheng Coal Mining Area Based on Remote Sensing  

Science Journals Connector (OSTI)

The spatial changes of landscape pattern of Feicheng Coal Mining Area were analyzed in order to improve landscape and ecological environment quality and to guarantee sustainable development in mining areas. Methods employed include RS, GIS, and landscape ... Keywords: Feicheng Coal Mining Area, landscape pattern, RS, landscape pattern index, dynamics analysis

Lu Yanyan; Li Xinju; Guo Suli; Wang Mei

2011-10-01T23:59:59.000Z

94

Greater Sage-Grouse Habitat Use and Population Demographics at the Simpson Ridge Wind Resource Area, Carbon County, Wyoming  

SciTech Connect

This study was conducted to obtain baseline data on use of the proposed Simpson Ridge Wind Resource Area (SRWRA) in Carbon County, Wyoming by greater sage-grouse. The first two study years were designed to determine pre-construction seasonally selected habitats and population-level vital rates (productivity and survival). The presence of an existing wind energy facility in the project area, the PacifiCorp Seven Mile Hill (SMH) project, allowed us to obtain some information on initial sage-grouse response to wind turbines the first two years following construction. To our knowledge these are the first quantitative data on sage-grouse response to an existing wind energy development. This report presents results of the first two study years (April 1, 2009 through March 30, 2011). This study was selected for continued funding by the National Wind Coordinating Collaborative Sage-Grouse Collaborative (NWCC-SGC) and has been ongoing since March 30, 2011. Future reports summarizing results of this research will be distributed through the NWCC-SGC. To investigate population trends through time, we determined the distribution and numbers of males using leks throughout the study area, which included a 4-mile radius buffer around the SRWRA. Over the 2-year study, 116 female greater sage-grouse were captured by spotlighting and use of hoop nets on roosts surrounding leks during the breeding period. Radio marked birds were located anywhere from twice a week to once a month, depending on season. All radio-locations were classified to season. We developed predictor variables used to predict success of fitness parameters and relative probability of habitat selection within the SRWRA and SMH study areas. Anthropogenic features included paved highways, overhead transmission lines, wind turbines and turbine access roads. Environmental variables included vegetation and topography features. Home ranges were estimated using a kernel density estimator. We developed resource selection functions (RSF) to estimate probability of selection within the SRWRA and SMH. Fourteen active greater sage-grouse leks were documented during lek surveys Mean lek size decreased from 37 in 2008 to 22 in 2010. Four leks located 0.61, 1.3, 1.4 and 2.5 km from the nearest wind turbine remained active throughout the study, but the total number of males counted on these four leks decreased from 162 the first year prior to construction (2008), to 97 in 2010. Similar lek declines were noted in regional leks not associated with wind energy development throughout Carbon County. We obtained 2,659 sage-grouse locations from radio-equipped females, which were used to map use of each project area by season. The sage-grouse populations within both study areas are relatively non-migratory, as radio-marked sage-grouse used similar areas during all annual life cycles. Potential impacts to sage-grouse from wind energy infrastructure are not well understood. The data rom this study provide insight into the early interactions of wind energy infrastructure and sage-grouse. Nest success and brood-rearing success were not statistically different between areas with and without wind energy development in the short-term. Nest success also was not influenced by anthropogenic features such as turbines in the short-term. Additionally, female survival was similar among both study areas, suggesting wind energy infrastructure was not impacting female survival in the short-term; however, further analysis is needed to identify habitats with different levels of risk to better understand the impact of wind enregy development on survival. Nest and brood-rearing habitat selection were not influenced by turbines in the short-term; however, summer habitat selection occurred within habitats closer to wind turbines. Major roads were avoided in both study areas and during most of the seasons. The impact of transmission lines varied among study areas, suggesting other landscape features may be influencing selection. The data provided in this report are preliminary and are not meant to provide a basis for fo

Gregory D. Johnson; Chad W. LeBeau; Ryan Nielsen; Troy Rintz; Jamey Eddy; Matt Holloran

2012-03-27T23:59:59.000Z

95

Examination of the benefits of the reduced planting alternatives of the 1985 farm bill for crop producers in the Blacklands land resource area of Texas  

E-Print Network (OSTI)

EXAMINATION OF THE BENEFITS OF THE REDUCED PLANTING ALTERNATIVES OF THE 1985 FARM BILL FOR CROP PRODUCERS IN THE BLACKLANDS LAND RESOURCE AREA OF TEXAS A Thesis by TROY MEAL THOMPSON Submitted to the Office of Graduate Studies Texas Atk.... Padber (Head of Departm t) December 1989 kB STRICT Examination of the Benefits of the Reduced Planting Alternatives of the 1985 Farm Bill for Crop Producers in the Blackiands Land Resource Area of Texas. (December 1989) Troy Neal Thompson, B. S...

Thompson, Troy Neal

1989-01-01T23:59:59.000Z

96

United States Wind Resource Potential Chart  

Wind Powering America (EERE)

18,000 18,000 Rated Capacity Above Indicated CF (GW) United States - Wind Resource Potential Cumulative Rated Capacity vs. Gross Capacity Factor (CF) 80 m The estimates show the potential gigawatts of rated capacity that could be installed on land above a given gross capacity factor (without losses) at 80-m and 100-m heights above ground. Areas greater than 30% at 80 m are generally considered to have suitable wind resource for potential wind development with today's advanced wind turbine technology. AWS Truewind, LLC developed the wind resource data for windNavigator® (http://navigator.awstruewind.com) with a spatial resolution of 200 m. NREL filtered the wind potential estimates to

97

Challenges and strategies for increasing adoption of small wind turbines in urban areas  

E-Print Network (OSTI)

A student group at MIT in cooperation with the MIT Department of Facilities is currently working to install a Skystream 3.7 wind turbine on MIT's campus. This has raised several questions about how to best develop small ...

Ferrigno, Kevin J. (Kevin James)

2010-01-01T23:59:59.000Z

98

The catchment area of wind farms for European bats: A plea for international regulations  

Science Journals Connector (OSTI)

Wind turbines are increasingly established throughout Europe and North America with often fatal consequences for wildlife, most importantly bats and birds. Yet, it is often unknown over what geographical distances wind farms are affecting animal populations. Based on stable hydrogen isotopes in fur, we assessed the geographic provenance of bats killed in summer and autumn at German wind turbines. We found that killed Pipistrellus nathusii originated from Estonia or Russia, and Pipistrellus pipistrellus from more local populations. Noctule bats (Nyctalus noctula) and Leisler’s bats (Nyctalus leisleri) were of Scandinavian or northeastern origin. Our isotopic geo-location reveals that wind turbines kill bats not only of sedentary local populations but also of distant populations, thus having potentially a negative impact beyond political borders; an observation that calls for international regulations for implementing mitigation measures to prevent large-scale detrimental effects on endangered bat populations.

Christian C. Voigt; Ana G. Popa-Lisseanu; Ivo Niermann; Stephanie Kramer-Schadt

2012-01-01T23:59:59.000Z

99

WindPACT Turbine Design Scaling Studies Technical Area 1ÂŒComposite Blades for 80- to 120-Meter Rotor  

NLE Websites -- All DOE Office Websites (Extended Search)

1 * NREL/SR-500-29492 1 * NREL/SR-500-29492 Dayton A. Griffin Global Energy Concepts Kirkland, Washington WindPACT Turbine Design Scaling Studies Technical Area 1-Composite Blades for 80- to 120-Meter Rotor March 21, 2000 - March 15, 2001 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute * * * * Battelle * * * * Bechtel Contract No. DE-AC36-99-GO10337 April 2001 * NREL/SR-500-29492 WindPACT Turbine Design Scaling Studies Technical Area 1-Composite Blades for 80- to 120-Meter Rotor March 21, 2000 - March 15, 2001 Dayton A. Griffin Global Energy Concepts Kirkland, Washington NREL Technical Monitor: Alan Laxson Prepared under Subcontract No. YAM-0-30203-01 National Renewable Energy Laboratory

100

WindPACT Turbine Design Scaling Studies Technical Area 3ÂŒSelf-Erecting Tower and Nacelle Feasibility  

NLE Websites -- All DOE Office Websites (Extended Search)

1 * NREL/SR-500-29493 1 * NREL/SR-500-29493 Global Energy Concepts, LLC Kirkland, Washington WindPACT Turbine Design Scaling Studies Technical Area 3-Self-Erecting Tower and Nacelle Feasibility March 2000-March 2001 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute * * * * Battelle * * * * Bechtel Contract No. DE-AC36-99-GO10337 May 2001 * NREL/SR-500-29493 WindPACT Turbine Design Scaling Studies Technical Area 3-Self-Erecting Tower and Nacelle Feasibility March 2000-March 2001 Global Energy Concepts, LLC Kirkland, Washington NREL Technical Monitor: Alan Laxson Prepared under Subcontract No. YAM-0-30203-01 National Renewable Energy Laboratory 1617 Cole Boulevard

Note: This page contains sample records for the topic "land areas wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Landowners and Wind Energy Development | Open Energy Information  

Open Energy Info (EERE)

Landowners and Wind Energy Development Landowners and Wind Energy Development Jump to: navigation, search Photo from Cielo Wind Power Corporation, NREL 10558 Many people will benefit from the clean air and economic growth brought about by wind power development, but farmers and other rural landowners may benefit the most. The best wind resources tend to be located in rural areas and on farmland in the Great Plains states. Wind power can provide a new cash crop for farmers and ranchers. Large wind turbines use only about one quarter-acre of land, including access roads, so farmers can continue to plant crops and graze livestock right up to the base of the turbines. One of the easiest and most attractive ways for farmers and other landowners to benefit from wind power is to allow wind developers to

102

NREL: Wind Research - Wind Resource Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Resource Assessment Wind Resource Assessment A map of the United States is color-coded to indicate the high winds at 80 meters. This map shows the wind resource at 80 meters for both land-based and offshore wind resources in the United States. Correct estimation of the energy available in the wind can make or break the economics of wind plant development. Wind mapping and validation techniques developed at the National Wind Technology Center (NWTC) along with collaborations with U.S. companies have produced high-resolution maps of the United States that provide wind plant developers with accurate estimates of the wind resource potential. State Wind Maps International Wind Resource Maps Dynamic Maps, GIS Data, and Analysis Tools Due to the existence of special use airspace (SUA) (i.e., military airspace

103

EA-1581: Sand Hills Wind Project, Wyoming  

Energy.gov (U.S. Department of Energy (DOE))

The Bureau of Land Management, with DOE’s Western Area Power Administration as a cooperating agency, is preparing this EA to evaluate the environmental impacts of a proposal to construct, operate, and maintain the Sand Hills Wind Energy Facility on private and federal lands in Albany County, Wyoming. If the proposed action is implemented, Western would interconnect the proposed facility to an existing transmission line.

104

Field studies of the potential for wind transport of plutonium- contaminated soils at sites in Areas 6 and 11, Nevada Test Site  

SciTech Connect

This report describes and documents a series of field experiments carried out in Areas 6 and 11 of the Nevada Test Site in June and July 1994 to determine parameters of boundary layer winds, surface characteristics, and vegetation cover that can be used to predict dust emissions from the affected sites. Aerodynamic roughness of natural sites is determined largely by the lateral cover of the larger and more permanent roughness elements (shrubs). These provide a complete protection of the surface from wind erosion. Studies using a field-portable wind tunnel demonstrated that natural surfaces in the investigated areas of the Nevada Test Site are stable except at very high wind speeds (probably higher than normally occur, except perhaps in dust devils). However, disturbance of silty-clay surfaces by excavation devices and vehicles reduces the entrainment threshold by approximately 50% and makes these areas potentially very susceptible to wind erosion and transport of sediments.

Lancaster, N.; Bamford, R.; Metzger, S. [University and Community Coll. System of Nevada, Reno, NV (United States). Quaternary Sciences Center, Desert Research Institute

1995-07-01T23:59:59.000Z

105

Geographical and seasonal variability of the global “practical” wind resources  

Science Journals Connector (OSTI)

Abstract This paper provides global and seasonal estimates of the “practical” wind power obtained with a 3-D numerical model (GATOR-GCMOM) that dynamically calculates the instantaneous wind power of a modern 5 MW wind turbine at 100-m hub height at each time step. “Practical” wind power is defined as that delivered from wind turbines in high-wind locations (year-average 100-m wind speed ? 7 m/s) over land and near-shore, excluding both polar regions, mountainous, and conflicting land use areas, and including transmission, distribution, and wind farm array losses. We found that seasonal variations in the global practical wind resources are significant. The highest net land plus near-shore capacity factors globally are found during December–January–February and the lowest during June–July–August. The capacity factors in the transitional seasons (March–April–May and September–October–November) are rather similar to one another in terms of geographical patterns and frequency distributions. The yearly-average distributions of capacity factors, whether in terms of geographic patterns or frequency distributions, differ from those in all four seasons, although they are closest to the transitional seasons. Regional practical wind resources are sensitive to seasons and to thresholds in year-average wind speed and bathymetry, but are more than enough to supply local electricity demand in all regions except Japan.

Cristina L. Archer; Mark Z. Jacobson

2013-01-01T23:59:59.000Z

106

Particle Swarm Optimization and Gradient Descent Methods for Optimization of PI Controller for AGC of Multi-area Thermal-Wind-Hydro Power Plants  

Science Journals Connector (OSTI)

The automatic generation control (AGC) of three unequal interconnected Thermal, Wind and Hydro power plant has been designed with PI controller. Further computational intelligent technique Particle Swarm Optimization and conventional Gradient Descent ... Keywords: Automatic generation control, Particle swarm optimization, Gradient Descent method, Generation rate constraint, Area control error, Wind energy conversion system

Naresh Kumari; A N. Jha

2013-04-01T23:59:59.000Z

107

NREL: Wind Research - Wind Energy Videos  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Energy Videos The National Wind Technology Center (NWTC) is pleased to offer video presentations of its world-class capabilities, facilities, research areas, and personnel. As...

108

Planning For Wind Energy: Evaluating Municipal Wind Energy Land Use Planning Frameworks in Southwestern Ontario with a Focus on Developing Wind Energy Planning Policies for the City of Stratford.  

E-Print Network (OSTI)

??Wind energy provides an environmentally friendly and renewable source of electricity, that can help meet Canada's Kyoto commitments, help safeguard against future blackouts, reduce air… (more)

Longston, Kristopher, J.

2007-01-01T23:59:59.000Z

109

Talbot County- Wind Ordinance  

Energy.gov (U.S. Department of Energy (DOE))

This ordinance amends the Talbot County Code, Chapter 190, Zoning, Subdivision and Land Development, to permit small wind turbine systems with wind turbine towers not to exceed 160 feet in total...

110

Survey of Revegetated Areas on the Fitzner/Eberhardt Arid Lands Ecology Reserve: Status and Initial Monitoring Results  

SciTech Connect

During 2010, the U.S. Department of Energy (DOE), Richland Operations Office removed a number of facilities and debris from the Fitzner/Eberhardt Arid Lands Ecology Reserve (ALE), which is part of the Hanford Reach National Monument (HRNM). Revegetation of disturbed sites is necessary to stabilize the soil, reduce invasion of these areas by exotic weeds, and to accelerate re-establishment of native plant communities. Seven revegetation units were identified on ALE based on soils and potential native plant communities at the site. Native seed mixes and plant material were identified for each area based on the desired plant community. Revegetation of locations affected by decommissioning of buildings and debris removal was undertaken during the winter and early spring of 2010 and 2011, respectively. This report describes both the details of planting and seeding for each of the units, describes the sampling design for monitoring, and summarizes the data collected during the first year of monitoring. In general, the revegetation efforts were successful in establishing native bunchgrasses and shrubs on most of the sites within the 7 revegetation units. Invasion of the revegetation areas by exotic annual species was minimal for most sites, but was above initial criteria in 3 areas: the Hodges Well subunit of Unit 2, and Units 6 and 7.

Downs, Janelle L.; Link, Steven O.; Rozeboom, Latricia L.; Durham, Robin E.; Cruz, Rico O.; Mckee, Sadie A.

2011-09-01T23:59:59.000Z

111

Analysis of the Impact of Balancing Area Cooperation on the Operation of the Western Interconnection with Wind and Solar Generation (Presentation)  

SciTech Connect

This presentation describes the analysis of the impact of balancing area cooperation on the operation of the Western Interconnection with wind and solar generation, including a discussion of operating reserves, ramping, production simulation, and conclusions.

Milligan, M.; Lew, D.; Jordan, G.; Piwko, R.; Kirby, B.; King, J.; Beuning, S.

2011-05-01T23:59:59.000Z

112

EIS-0441: Mohave County Wind Farm Project, Mohave County, Arizona |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

41: Mohave County Wind Farm Project, Mohave County, Arizona 41: Mohave County Wind Farm Project, Mohave County, Arizona EIS-0441: Mohave County Wind Farm Project, Mohave County, Arizona Summary This EIS, prepared by the Bureau of Land Management with DOE's Western Area Power Administration as a cooperating agency, evaluated the environmental impacts of a proposed wind energy project on public lands in Mohave County, Arizona. Power generated by this project would tie to the electrical power grid through an interconnection to one of Western's transmission lines.The project website is http://www.blm.gov/az/st/en/prog/energy/wind/mohave.html. Public Comment Opportunities None available at this time. Documents Available for Download Draft EIS posted at http://www.blm.gov/az/st/en/prog/energy/wind/mohave/reports/DEIS.html.

113

EA-1581: Sand Hills Wind Project, Wyoming | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

81: Sand Hills Wind Project, Wyoming 81: Sand Hills Wind Project, Wyoming EA-1581: Sand Hills Wind Project, Wyoming Location of the proposed Sand Hills Wind Project, near Laramie, Wyoming Location of the proposed Sand Hills Wind Project, near Laramie, Wyoming Summary The Bureau of Land Management, with DOE's Western Area Power Administration as a cooperating agency, is preparing this EA to evaluate the environmental impacts of a proposal to construct, operate, and maintain the Sand Hills Wind Energy Facility on private and federal lands in Albany County, Wyoming. If the proposed action is implemented, Western would interconnect the proposed facility to an existing transmission line. Public Comment Opportunities No public comment opportunities available at this time. List of Available Documents

114

NREL: Wind Research - International Wind Resource Maps  

NLE Websites -- All DOE Office Websites (Extended Search)

projections of wind resources worldwide. This allows for more accurate siting of wind turbines and has led to the recognition of higher class winds in areas where none were...

115

Connecting Land Use and Transportation Toward Sustainable Development: A Case Study of Houston-Galveston Metropolitan Area  

E-Print Network (OSTI)

How do land use characteristics affect individual and household travel behavior in a regional context? Can the investigation justify the land use policies to reduce automobile dependence and achieve the goals of sustainable development...

Lee, Jae Su

2011-02-22T23:59:59.000Z

116

Wind Program Accomplishments | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

performance, lower costs, and accelerate deployment of wind technologies on land and offshore. Wind Accomplishments.pdf More Documents & Publications Securing Clean, Domestic,...

117

Cleanup and treatment (CAT) test: a land-area decontamination project utilizing a vacuum method of soil removal  

SciTech Connect

Areas 11 and 13 of the Nevada Test Site (NTS) are contaminated with varying concentrations of Pu-239, 240 and Am-241. An investigation of a vacuum method of soil removal, the Cleanup and Treatment (CAT) test, was conducted over a 3-month period in the plutonium safety shot or Plutonium Valley portion of Area 11. Soil in Plutonium Valley is of the Aridisol Order. The surface 0 to 10 cm is a gravelly loam, and is strongly alkaline (pH 8.8). A large truck-mounted vacuum unit, rather than conventional earth-moving equipment, was used as the primary soil collection unit. Effectiveness of the vacuum method of soil removal was evaluated in relation to conventional earthmoving procedures, particularly in terms of volume reduction of removed soil achieved over conventional techniques. Radiological safety considerations associated with use of the vacuum unit were evaluated in relation to their impact on a full-scale land decontamination program. Environmental and operational impacts of devegetation with retention of root crowns or root systems were investigated. It is concluded that the CAT test was successful under difficult environmental conditions.

Orcutt, J.A.

1982-08-01T23:59:59.000Z

118

Searchlight Wind Energy Project DEIS Appendix A  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DEIS Appendix A DEIS Appendix A Page | A Appendix A: Public Scoping Report SCOPING SUMMARY REPORT SEARCHLIGHT WIND ENERGY PROJECT ENVIRONMENTAL IMPACT STATEMENT (NVN-084626 Searchlight Wind Energy Project and NVN-085777 Western Area Power Administration Substation) Prepared for: U.S. Department of Interior Bureau of Land Management Las Vegas Field Office Las Vegas, Nevada Prepared by: URS Corporation April 2009 Scoping Summary Report: April 2009 i Table of Contents Searchlight Wind Energy Project EIS TABLE OF CONTENTS 1.0 INTRODUCTION ........................................................................................................................1-1 1.1 OVERVIEW ....................................................................................................................1-1

119

Searchlight Wind Energy Project FEIS Appendix A  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1: Scoping Report 1: Scoping Report SCOPING SUMMARY REPORT SEARCHLIGHT WIND ENERGY PROJECT ENVIRONMENTAL IMPACT STATEMENT (NVN-084626 Searchlight Wind Energy Project and NVN-085777 Western Area Power Administration Substation) Prepared for: U.S. Department of Interior Bureau of Land Management Las Vegas Field Office Las Vegas, Nevada Prepared by: URS Corporation April 2009 Scoping Summary Report: April 2009 i Table of Contents Searchlight Wind Energy Project EIS TABLE OF CONTENTS 1.0 INTRODUCTION ........................................................................................................................1-1 1.1 OVERVIEW ....................................................................................................................1-1

120

Avian Monitoring and Risk Assessment at the Tehachapi Pass Wind Resource Area; Period of Performance: October 2, 1996--May 27, 1998  

SciTech Connect

Observations of dead raptors at the Altamont Pass Wind Resource Area triggered concerns on the parts of regulatory agencies, environmental/conservation groups, wildlife resource agencies, and wind and electric utility industries about possible impacts to birds from wind energy development. Bird fatality rates observed at most wind projects are not currently considered significant to individual bird species populations. Although many bird species have observed fatalities, raptors have received the most attention. The primary objective of this study was to estimate and compare bird utilization, fatality rates, and collision risk indices among factors such as bird taxonomic groups, turbine types, and turbine locations within the operating wind plant in the Tehachapi Pass WRA, in south-central California between October 1996 and May 1998.

Anderson, R.; Neumann, N.; Tom, J.; Erickson, W. P.; Strickland, M. D.; Bourassa, M.; Bay, K. J.; Sernka, K. J.

2004-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "land areas wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Historical Antarctic mean sea ice area, sea ice trends, and winds in CMIP5 simulations  

E-Print Network (OSTI)

In contrast to Arctic sea ice, average Antarctic sea ice area is not retreating but has slowly increased since satellite measurements began in 1979. While most climate models from the Coupled Model Intercomparison Project ...

Mahlstein, Irina

122

Wind-Field and Pollutant Mass-Flow Simulation over an Urban Area  

Science Journals Connector (OSTI)

The air quality level and its trend in large urban areas are generally deduced from a network of fixed monitoring stations, whose number and distribution depend mostly on economic and local policy factors. Loc...

G. Clerici; S. Sandroni; L. Santomauro

1985-01-01T23:59:59.000Z

123

EIS-0442: Reauthorization of Permits, Maintenance, and Vegetation Management on Western Area Power Administration Transmission Lines on Forest Service Lands, Colorado, Nebraska, and Utah  

Energy.gov (U.S. Department of Energy (DOE))

This EIS is being prepared jointly by DOE’s Western Area Power Administration and the U.S. Forest Service. The EIS evaluates the potential environmental impacts of Western’s proposed changes to vegetation management along its transmission line rights-of-way on National Forest System lands in Colorado, Utah, and Nebraska.

124

Groundwater Monitoring and Tritium-Tracking Plan for the 200 Area State-Approved Land Disposal Site  

SciTech Connect

The 200 Area State-Approved Land Disposal Site (SALDS) is a drainfield which receives treated wastewater, occasionally containing high levels of tritium from treatment of Hanford Site liquid wastes. Only the SALDS proximal wells (699-48-77A, 699-48-77C, and 699-48-77D) have been affected by tritium from the facility thus far; the highest activity observed (2.1E+6 pCi/L) occurred in well 699-48-77D in February 1998. Analytical results of groundwater geochemistry since groundwater monitoring began at the SALDS indicate that all constituents with permit enforcement limits have been below those limits with the exception of one measurement of total dissolved solids (TDS) in 1996. The revised groundwater monitoring sampling and analysis plan eliminates chloroform, acetone, tetrahydrofuran, benzene, and ammonia as constituents. Replicate field measurements will replace laboratory measurements of pH for compliance purposes. A deep companion well to well 699-51-75 will be monitored for tritium deeper in the uppermost aquifer.

Barnett, D. Brent

2000-08-31T23:59:59.000Z

125

Land suitability assessment for wind power plant site selection using ANP-DEMATEL in a GIS environment: case study of Ardabil province, Iran  

Science Journals Connector (OSTI)

Wind energy is a renewable energy resource that ... . Site selection for the establishment of large wind turbines, called wind farms, like any other engineering project, ... . This study assessed the possibility ...

Ali Azizi; Bahram Malekmohammadi…

2014-10-01T23:59:59.000Z

126

The Wind Project Development Process  

Wind Powering America (EERE)

Wind Project Wind Project Development Process Developed for the National Renewable Energy Laboratory by Dale Osborn Distributed Generation Systems, Inc. September 1998 The Wind Project Development Process Site Selection Land Agreements Wind Assessment Environmental Review Economic Modeling Interconnection Studies Financing Permitting Sales Agreements Turbine Procurement Construction Contracting Operations & Maintenance Site Selection Evidence of Significant Wind Preferably Privately Owned Remote Land Proximity to Transmission Lines Reasonable Road Access Few Environmental Concerns Receptive Community Land Agreements Term: Expected Life of the Turbine Assignable Indemnification Rights Compensation: Percentage of Revenues Reclamation Provision Wind Rights, Ingress/Egress Rights, Transmission Rights

127

EIS-0413: Searchlight Wind Energy Project, Searchlight, NV | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

13: Searchlight Wind Energy Project, Searchlight, NV 13: Searchlight Wind Energy Project, Searchlight, NV EIS-0413: Searchlight Wind Energy Project, Searchlight, NV Summary The Department of the Interior's Bureau of Land Management, with DOE's Western Area Power Administration as a cooperating agency, prepared this EIS to evaluate the environmental impacts of a proposal to construct and operate 156 wind turbine generators and related facilities on public lands surrounding the town of Searchlight, Nevada. The proposal includes a substation that would be operated by Western. Public Comment Opportunities None available at this time. Documents Available for Download May 16, 2013 EIS-0413: Record of Decision Searchlight Wind Energy Project, Searchlight, NV January 15, 2013 EIS-0413: Final Environmental Impact Statement

128

United States (48 Contiguous States) Wind Resource Potential Chart  

Wind Powering America (EERE)

Rated Capacity Above Indicated CF (GW) Rated Capacity Above Indicated CF (GW) United States (48 Contiguous States) - Wind Resource Potential Cumulative Rated Capacity vs. Gross Capacity Factor (CF) 80 m The estimates show the potential gigawatts of rated capacity that could be installed on land above a given gross capacity factor (without losses) at 80-m and 100-m heights above ground. Areas greater than 30% at 80 m are generally considered to have suitable wind resource for potential wind development with today's advanced wind turbine technology. AWS Truewind, LLC developed the wind resource data for windNavigator® (http://navigator.awstruewind.com) with a spatial resolution of 200 m. NREL filtered the wind potential estimates to

129

Voltage quality behaviour of a wind turbine based Remote Area Power System  

Science Journals Connector (OSTI)

The power quality behaviour of a Remote Area Power System (RAPS) consisting of a Doubly Fed Induction Generator (DFIG), its main loads and a dummy load is presented in this paper. The dummy load is used to maintain the power balance of the system under ...

Nishad Mendis; Kashem M. Muttaqi; Sarath Perera

2009-02-01T23:59:59.000Z

130

Deerskins and Cotton. Ecological impacts of historical land use in the Central Savannah River Area of the Southeastern US before 1950.  

SciTech Connect

White, D.L. 2004. Deerskins and Cotton. Ecological impacts of historical land use in the Central Savannah River Area of the Southeastern US before 1950. Final Report. USDA Forest Service, Savannah River, Aiken, SC. 324 pp. Abstract: The history of land use for an area is the history of the way in which humans have manipulated or altered the environment. Most land use activities can be viewed as disturbance to ecosystems. Within a given climatic regime, the interaction of the disturbance regime with vegetation, soil, and landform factors largely determines the distribution and composition of plant and associated animal communities. For these reasons, a greater understanding of the ecological impacts of both human and non-human related disturbance is needed to improve our ability to make natural resource management decisions. This document outlines the land use history of the Savannah River Site and surrounding areas from about 1780 thru 1950, when the site was converted to a government facility for the purposes of national defense.

D.L. White

2004-01-01T23:59:59.000Z

131

Double-stage genetic algorithm for wind farm layout optimization on complex terrains  

Science Journals Connector (OSTI)

This paper deals with the problem of optimal wind turbine micro siting on complex terrains. A realistic wind farm terrain can be very complex not only for the topography of the terrain but also for other factors. Such factors are the environmental impact of the wind farm the costs of land the costs of access roads wind turbine installation and maintenance costs the costs of electrical infrastructure etc. A grid-based wind farm model that takes all of these factors into consideration is proposed. For the purpose of an optimization algorithm a double-stage genetic algorithm is proposed. In the first stage the optimal micro-areas for wind turbine positioning are determined whereas the second stage defines precise optimal positions of wind turbine foundations. The double-stage genetic algorithm increases the accuracy of wind turbine positioning and decreases the dimensionality of the problem. The algorithm has been tested on a realistic wind farm terrain in Serbia.

Goran Dobri?

2014-01-01T23:59:59.000Z

132

New England Wind Forum: Siting Considerations  

Wind Powering America (EERE)

Siting Considerations Siting Considerations Choosing a proper site for a wind turbine or farm is critical to a successful project. While the most important factors may vary from site to site, in any given instance a single factor can undermine success of an otherwise superlative project. On the other hand, sometimes a site may be weak in one area but so strong in another area that it is viable, such as a site with very strong winds that is farther than normal from a transmission line. A viable wind energy site generally includes the following key factors: Attractive Wind Resource Landowner and Community Support Feasible Permitting Compatible Land Use Nearby Access to an Appropriate Electrical Interconnect Point Appropriate Site Conditions for Access During Construction and Operations

133

FINAL REPORT WIND POWER WARM SPRINGS RESERVATION TRIBAL LANDS DOE GRANT NUMBER DE-FG36-07GO17077 SUBMITTED BY WARM SPRINGS POWER & WATER ENTERPRISES A CORPORATE ENTITY OF THE CONFEDERATED TRIBES OF WARM SPRINGS WARM SPRINGS, OREGON  

SciTech Connect

Wind Generation Feasibility Warm Springs Power and Water Enterprises (WSPWE) is a corporate entity owned by the Confederated Tribes of the Warm Springs Reservation, located in central Oregon. The organization is responsible for managing electrical power generation facilities on tribal lands and, as part of its charter, has the responsibility to evaluate and develop renewable energy resources for the Confederated Tribes of Warm Springs. WSPWE recently completed a multi-year-year wind resource assessment of tribal lands, beginning with the installation of wind monitoring towers on the Mutton Mountains site in 2003, and collection of on-site wind data is ongoing. The study identified the Mutton Mountain site on the northeastern edge of the reservation as a site with sufficient wind resources to support a commercial power project estimated to generate over 226,000 MWh per year. Initial estimates indicate that the first phase of the project would be approximately 79.5 MW of installed capacity. This Phase 2 study expands and builds on the previously conducted Phase 1 Wind Resource Assessment, dated June 30, 2007. In order to fully assess the economic benefits that may accrue to the Tribes through wind energy development at Mutton Mountain, a planning-level opinion of probable cost was performed to define the costs associated with key design and construction aspects of the proposed project. This report defines the Mutton Mountain project costs and economics in sufficient detail to allow the Tribes to either build the project themselves or contract with a developer under the most favorable terms possible for the Tribes.

Jim Manion; Michael Lofting; Wil Sando; Emily Leslie; Randy Goff

2009-03-30T23:59:59.000Z

134

Wind energy | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Wind) (Redirected from Wind) Jump to: navigation, search Wind energy is a form of solar energy.[1] Wind energy (or wind power) describes the process by which wind is used to generate electricity. Wind turbines convert the kinetic energy in the wind into mechanical power. A generator can convert mechanical power into electricity[2]. Mechanical power can also be utilized directly for specific tasks such as pumping water. The US DOE developed a short wind power animation that provides an overview of how a wind turbine works and describes the wind resources in the United States. Contents 1 Wind Energy Basics 1.1 Equation for Wind Power 2 DOE Wind Programs and Information 3 Worldwide Installed Capacity 3.1 United States Installed Capacity 4 Wind Farm Development 4.1 Land Requirements

135

COST EFFECTIVE SIMULATION OF THE HYBRID SOLAR/WIND AND DIESEL ENERGY SYSTEM IN RURAL AREA  

Science Journals Connector (OSTI)

This paper describes the optimization of a hybrid energy system model. Currently in Sarawak people living in the rural areas still depend on diesel generators to generate electricity. This increases the demand for fossil fuel creates noise pollution and toxic gas is emitted to the environment. Hence hybrid energy systems were introduced to replace this conventional energy system as well as improving the living standard in the villages. In this paper several hybrid energy system configurations were investigated in order to find out the most cost effective hybrid system through Hybrid Optimization Model for Electric Renewability (Homer) software. Homer simulates optimizes and analyzes the sensitivity variables for each of the system configurations.

Ee. Y. Sim; Nader Barsoum

2008-01-01T23:59:59.000Z

136

Investigation on installation of offshore wind turbines  

Science Journals Connector (OSTI)

Wind power has made rapid progress and should ... interest in renewable energy and clean energy. Offshore wind energy resources have attracted significant attention, as, compared with land-based wind energy resou...

Wei Wang; Yong Bai

2010-06-01T23:59:59.000Z

137

Wastewater management utilizing land application for the Boston Harbor-Eastern Massachusetts Metropolitan Area. Technical data. Volume 5  

SciTech Connect

The U.S. Army Corps of Engineers, NED, in cooperation with several agencies under the administration of the Technical Subcommittee on Boston Harbor, is directing a segment of the Wastewater Management Study for Eastern Massachusetts which proposed the utilization of land application methods to further treat and make use of conventionally treated wastewaters. The entire wastewater management study for Eastern Massachusetts consisted of five alternatives. Four of the conceptual alternatives are being prepared under the direction of the Metropolitan District Commission (MDC). The land application alternative is labeled Concept 5 and provides land application treatment for effluents from five of the regional waste treatment plant locations described in Concept 4. The report presented herein constitutes the land-oriented treatment system known as Concept 5.

NONE

1995-06-01T23:59:59.000Z

138

Behind "successful" land acquisition : a case study of the Van Quan new urban area project in Hanoi, Vietnam  

E-Print Network (OSTI)

The transition to a market economy has sparked Vietnam's unprecedented urbanization and industrialization. In order to accommodate the spiraling land demand triggered by urban and economic growth, the Vietnamese government ...

Bui, Phuong Anh, M. C. P. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

139

Road Effects on a Population of Copperhead Snakes in the Land Between the Lakes National Recreation Area, K.Y.  

E-Print Network (OSTI)

the Lakes National Recreation Area (LBL) in Kentucky. LBL isBetween the Lakes National Recreation Area in Kentucky andthe Lakes National Recreation Area, Kentucky. Methods

Titus, Valorie R.; Zimmerer, Ed

2007-01-01T23:59:59.000Z

140

Design of Wind Turbines in an Area with Tropical Cyclones Niels-Erik Clausen, niels-erik.clausen@risoe.dk, Sren Ott, Niels-Jacob Tarp-Johansen, Per Nrgrd and  

E-Print Network (OSTI)

Design of Wind Turbines in an Area with Tropical Cyclones Niels-Erik Clausen, niels and cost of wind turbines is influenced by a combination of fatigue and extreme loads and the applied design codes. In general wind turbines are designed for 20 years of operation using design standards

Note: This page contains sample records for the topic "land areas wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Order-of-magnitude enhancement of wind farm power density via counter-rotating vertical-axis wind turbine arrays  

E-Print Network (OSTI)

Modern wind farms require significant land resources to separate each wind turbine from the adjacent turbine wakes. These aerodynamic constraints limit the amount of power that can be extracted from a given wind farm footprint. We conducted full-scale field tests of vertical-axis wind turbines in counter-rotating configurations under natural wind conditions. Whereas wind farms consisting of propeller-style turbines produce 2 to 3 watts of power per square meter of land area, these field tests indicate that power densities approaching 100 W m^-2 can be achieved by arranging vertical-axis wind turbines in layouts that enable them to extract energy from adjacent wakes. In addition, we calculated that the global wind resource available to 10-m tall turbines based on the present approach is approximately 225 trillion watts (TW), which significantly exceeds the global wind resource available to 80-m tall, propeller-style wind turbines, approximately 75 TW. This improvement is due to the closer spacing that can be a...

Dabiri, John O

2010-01-01T23:59:59.000Z

142

Wind Technology Advancements and Impacts on Western Wind Resources (Presentation)  

SciTech Connect

Robi Robichaud made this presentation at the Bureau of Land Management West-wide Wind Opportunities and Constraints Mapping (WWOCM) Project public meeting in Denver, Colorado in September 2014. This presentation outlines recent wind technology advancements, evolving turbine technologies, and industry challenges. The presentation includes maps of mean wind speeds at 50-m, 80-m, and 100-m hub heights on BLM lands. Robichaud also presented on the difference in mean wind speeds from 80m to 100m in Wyoming.

Robichaud, R.

2014-09-01T23:59:59.000Z

143

Wind Program Newsletter: Second Quarter 2012 | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

with Wind Program staff. More. In the News Energy Department Releases New Land-BasedOffshore Wind Resource Map Wind Powering America's Wind for Schools Team Honored with Wirth...

144

The Wind Forecast Improvement Project (WFIP): A Public/Private Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations – the Northern Study Area.  

SciTech Connect

This report contains the results from research aimed at improving short-range (0-6 hour) hub-height wind forecasts in the NOAA weather forecast models through additional data assimilation and model physics improvements for use in wind energy forecasting. Additional meteorological observing platforms including wind profilers, sodars, and surface stations were deployed for this study by NOAA and DOE, and additional meteorological data at or near wind turbine hub height were provided by South Dakota State University and WindLogics/NextEra Energy Resources over a large geographical area in the U.S. Northern Plains for assimilation into NOAA research weather forecast models. The resulting improvements in wind energy forecasts based on the research weather forecast models (with the additional data assimilation and model physics improvements) were examined in many different ways and compared with wind energy forecasts based on the current operational weather forecast models to quantify the forecast improvements important to power grid system operators and wind plant owners/operators participating in energy markets. Two operational weather forecast models (OP_RUC, OP_RAP) and two research weather forecast models (ESRL_RAP, HRRR) were used as the base wind forecasts for generating several different wind power forecasts for the NextEra Energy wind plants in the study area. Power forecasts were generated from the wind forecasts in a variety of ways, from very simple to quite sophisticated, as they might be used by a wide range of both general users and commercial wind energy forecast vendors. The error characteristics of each of these types of forecasts were examined and quantified using bulk error statistics for both the local wind plant and the system aggregate forecasts. The wind power forecast accuracy was also evaluated separately for high-impact wind energy ramp events. The overall bulk error statistics calculated over the first six hours of the forecasts at both the individual wind plant and at the system-wide aggregate level over the one year study period showed that the research weather model-based power forecasts (all types) had lower overall error rates than the current operational weather model-based power forecasts, both at the individual wind plant level and at the system aggregate level. The bulk error statistics of the various model-based power forecasts were also calculated by season and model runtime/forecast hour as power system operations are more sensitive to wind energy forecast errors during certain times of year and certain times of day. The results showed that there were significant differences in seasonal forecast errors between the various model-based power forecasts. The results from the analysis of the various wind power forecast errors by model runtime and forecast hour showed that the forecast errors were largest during the times of day that have increased significance to power system operators (the overnight hours and the morning/evening boundary layer transition periods), but the research weather model-based power forecasts showed improvement over the operational weather model-based power forecasts at these times. A comprehensive analysis of wind energy forecast errors for the various model-based power forecasts was presented for a suite of wind energy ramp definitions. The results compiled over the year-long study period showed that the power forecasts based on the research models (ESRL_RAP, HRRR) more accurately predict wind energy ramp events than the current operational forecast models, both at the system aggregate level and at the local wind plant level. At the system level, the ESRL_RAP-based forecasts most accurately predict both the total number of ramp events and the occurrence of the events themselves, but the HRRR-based forecasts more accurately predict the ramp rate. At the individual site level, the HRRR-based forecasts most accurately predicted the actual ramp occurrence, the total number of ramps and the ramp rates (40-60% improvement in ramp rates over the coarser resolution forecast

Finley, Cathy [WindLogics

2014-04-30T23:59:59.000Z

145

Property:WindTurbineManufacturer | Open Energy Information  

Open Energy Info (EERE)

WindTurbineManufacturer WindTurbineManufacturer Jump to: navigation, search This is a property of type Page. Pages using the property "WindTurbineManufacturer" Showing 25 pages using this property. (previous 25) (next 25) 3 3-D Metals + Northern Power Systems + A AB Tehachapi Wind Farm + Vestas + AFCEE MMR Turbines + GE Energy + AG Land 1 + GE Energy + AG Land 2 + GE Energy + AG Land 3 + GE Energy + AG Land 4 + GE Energy + AG Land 5 + GE Energy + AG Land 6 + GE Energy + AVTEC + Northern Power Systems + Adair Wind Farm I + Vestas + Adair Wind Farm II + Siemens + Adams Wind Project + Alstom + Aeroman Repower Wind Farm + GE Energy + Affinity Wind Farm + Suzlon Energy Company + Agassiz Beach Wind Farm + Vestas + Agriwind Wind Farm + Suzlon Energy Company + Ainsworth Wind Energy Facility + Vestas +

146

Making the Economic Case for Small-Scale Distributed Wind -- A Screening for Distributed Generation Wind Opportunities: Preprint  

SciTech Connect

This study was an offshoot of a previous assessment, which examined the potential for large-scale, greater than 50 MW, wind development on occupied federal agency lands. The study did not find significant commercial wind development opportunities, primarily because of poor wind resource on available and appropriately sized land areas or land use or aesthetic concerns. The few sites that could accommodate a large wind farm failed to have transmission lines in optimum locations required to generate power at competitive wholesale prices. The study did identify a promising but less common distributed generation (DG) development option. This follow-up study documents the NREL/Global Energy Concepts team efforts to identify economic DG wind projects at a select group of occupied federal sites. It employs a screening strategy based on project economics that go beyond quantity of windy land to include state and utility incentives as well as the value of avoided power purchases. It attempts to account for the extra costs and difficulties associated with small projects through the use of project scenarios that are more compatible with federal facilities and existing land uses. These benefits and barriers of DG are discussed, and the screening methodology and results are included. The report concludes with generalizations about the screening method and recommendations for improvement and other potential applications for this methodology.

Kandt, A.; Brown, E.; Dominick, J.; Jurotich, T.

2007-06-01T23:59:59.000Z

147

Variation of urban momentum roughness length with land use in the upwind source area, as observed in two UK cities.  

E-Print Network (OSTI)

in two UK cities. G.G.Rooney (gabriel.rooney@metoffice.com), I.D.Longley and J.F.Barlow Met Office Field fraction of different cover types, Birmingham 20 4 roughness lengths against wind direction, Salford 21 5 in building wakes to its blended final state at some height above the urban canopy, for a real city, tests

Reading, University of

148

III International Conference of CABERNET 2012, Managing Urban Land VI International Conference Innovative Solutions for Revitalization of Degraded Areas  

E-Print Network (OSTI)

), Environmental and contaminated land engineers 3, avenue Claude Guillemin, BP36009, 45060 Orléans Cedex 2 for sustainable reuse of excavated soils which would ensure human health and environmental protection. One (professional unions, environmental protection association, planners, lawyers, etc.). The tools are now freely

Boyer, Edmond

149

Sale of Water Resource Land (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sale of Water Resource Land (Maine) Sale of Water Resource Land (Maine) Sale of Water Resource Land (Maine) < Back Eligibility Municipal/Public Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maine Program Type Siting and Permitting This rule requires an eight month advance notice period whenever a consumer-owned water utility intends to transfer water resource land, defined as any land or real property owned by a water utility for the purposes of providing a source of supply, storing water or protecting sources of supply or water storage, including reservoirs, lakes, ponds, rivers or streams, wetlands and watershed areas. The rule also provides an assignable right of first refusal to the municipality or municipalities

150

Wind | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Wind Wind America is home to one of the largest and fastest growing wind markets in the world. Watch the video to learn more about the latest trends in the U.S. wind power market and join us this Thursday, August 8 at 3 pm ET for a Google+ Hangout on wind energy in America. The United States is home to one of the largest and fastest growing wind markets in the world. To stay competitive in this sector, the Energy Department invests in wind projects, both on land and offshore, to advance technology innovations, create job opportunities and boost economic growth. Moving forward, the U.S. wind industry remains a critical part of the Energy Department's all-of-the-above energy strategy to cut carbon pollution, diversify our energy economy and bring the next-generation of

151

NREL: Wind Research - Offshore Wind Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Offshore Wind Research Offshore Wind Research Photo of a European offshore wind farm. Early progress in European Offshore Wind Energy over the last decade provides a glimpse into the vast potential of the global offshore resource. For more than eight years, NREL has worked with the Department of Energy to become an international leader in offshore wind energy research. Capabilities NREL's offshore wind capabilities focus on critical areas that reflect the long-term needs of the offshore wind energy industry and the U.S. Department of Energy including: Offshore Design Tools and Methods Offshore Standards and Testing Energy Analysis of Offshore Systems Offshore Wind Resource Characterization Grid Integration of Offshore Wind Key Research NREL documented the status of offshore wind energy in the United States in

152

WindPACT Turbine Design Scaling Studies Technical Area 2: Turbine, Rotor, and Blade Logistics; March 27, 2000 to December 31, 2000  

NLE Websites -- All DOE Office Websites (Extended Search)

1 * NREL/SR-500-29439 1 * NREL/SR-500-29439 Kevin Smith Global Energy Concepts LLC Kirkland, Washington WindPACT Turbine Design Scaling Studies Technical Area 2: Turbine, Rotor, and Blade Logistics March 27, 2000 to December 31, 2000 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute * * * * Battelle * * * * Bechtel Contract No. DE-AC36-99-GO10337 June 2001 * NREL/SR-500-29439 WindPACT Turbine Design Scaling Studies Technical Area 2: Turbine, Rotor, and Blade Logistics March 27, 2000 to December 31, 2000 Kevin Smith Global Energy Concepts LLC Kirkland, Washington NREL Technical Monitor: Alan Laxson Prepared under Subcontract No. YAM-0-30203-01 National Renewable Energy Laboratory

153

land | OpenEI  

Open Energy Info (EERE)

land land Dataset Summary Description This dataset is part of a larger internal dataset at the National Renewable Energy Laboratory (NREL) that explores various characteristics of large solar electric (both PV and CSP) facilities around the United States. This dataset focuses on the land use characteristics for solar facilities that are either under construction or currently in operation. Source Land-Use Requirements for Solar Power Plants in the United States Date Released June 25th, 2013 (5 months ago) Date Updated Unknown Keywords acres area average concentrating solar power csp Density electric hectares km2 land land requirements land use land-use mean photovoltaic photovoltaics PV solar statistics Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Master Solar Land Use Spreadsheet (xlsx, 1.5 MiB)

154

Stakeholder Engagement and Outreach: Offshore 90-Meter Wind Maps and Wind  

Wind Powering America (EERE)

Offshore 90-Meter Wind Maps and Wind Resource Potential Offshore 90-Meter Wind Maps and Wind Resource Potential The Stakeholder Engagement and Outreach initiative provides 90-meter (m) height, high-resolution wind maps and estimates of the total offshore wind potential that would be possible from developing the available offshore areas. The offshore wind resource maps can be used as a guide to identify regions for commercial wind development. A map of the United States showing offshore wind resource. Washington offshore wind map. Oregon offshore wind map. California offshore wind map. Texas offshore wind map. Minnesota offshore wind map. Lousiana offshore wind map. Wisconsin offshore wind map. Michigan offshore wind map. Michigan offshore wind map. Illinois offshore wind map. Indiana offshore wind map. Ohio offshore wind map. Georgia offshore wind map. South Carolina offshore wind map. North Carolina offshore wind map. Virginia offshore wind map. Maryland offshore wind map. Pennsylvania offshore wind map. Delaware offshore wind map. New Jersey offshore wind map. New York offshore wind map. Maine offshore wind map. Massachusetts offshore wind map. Rhode Island offshore wind map. Connecticut offshore wind map. Hawaii offshore wind map. Delaware offshore wind map. New Hampshire offshore wind map.

155

SAT-WIND project Final report  

E-Print Network (OSTI)

-2840 ISBN 87-550-3570-1 The SAT-WIND project `Winds from satellites for offshore and coastal wind energy) technologies for wind energy tools for wind resources and wind-indexing. The study area was the Danish Seas microwave polarimetric 223.3.1 History 3.3.2 Measurement principle 22 223.3.3 WindSat (passive microwave

156

WINDExchange: Wind Potential Capacity  

Wind Powering America (EERE)

area with a gross capacity factor1 of 35% and higher, which may be suitable for wind energy development. AWS Truepower LLC produced the wind resource data with a spatial...

157

Lower Sioux Wind Feasibility & Development  

SciTech Connect

This report describes the process and findings of a Wind Energy Feasibility Study (Study) conducted by the Lower Sioux Indian Community (Community). The Community is evaluating the development of a wind energy project located on tribal land. The project scope was to analyze the critical issues in determining advantages and disadvantages of wind development within the Community. This analysis addresses both of the Community's wind energy development objectives: the single turbine project and the Commerical-scale multiple turbine project. The main tasks of the feasibility study are: land use and contraint analysis; wind resource evaluation; utility interconnection analysis; and project structure and economics.

Minkel, Darin

2012-04-01T23:59:59.000Z

158

NREL: Wind Research - Small Wind Turbine Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Wind Turbine Research Small Wind Turbine Research The National Renewable Energy Laboratory and U.S. Department of Energy (NREL/DOE) Small Wind Project's objectives are to reduce barriers to wind energy expansion, stabilize the market, and expand the number of small wind turbine systems installed in the United States. "Small wind turbine" refers to a turbine smaller than or equal to 100 kilowatts (kW). "Distributed wind" includes small and midsize turbines (100 kW through 1 megawatt [MW]). Since 1996, NREL's small wind turbine research has provided turbine testing, turbine development, and prototype refinement leading to more commercially available small wind turbines. Work is conducted under the following areas. You can also learn more about state and federal policies

159

NREL: Wind Research - Grid Integration of Offshore Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

Grid Integration of Offshore Wind Grid Integration of Offshore Wind Photograph of a wind turbine in the ocean. Located about 10 kilometers off the coast of Arklow, Ireland, the Arklow Bank offshore wind park consists of seven GE Wind 3.6-MW wind turbines. Much can be learned from the existing land-based integration research for handling the variability and uncertainty of the wind resource. Integration and Transmission One comprehensive grid integration study is the Eastern Wind Integration and Transmission Study (EWITS), in which offshore wind scenarios were analyzed. Nearly 80 GW of offshore wind was studied in the highest penetration scenario. Specific offshore grid distribution and transmission solutions were identified, including cost estimates. With the Atlantic coast likely to lead the way in offshore wind power deployment, EWITS is a benchmark for

160

Searchlight Wind Energy Project FEIS Appendix E  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

E E Page | E 21B Appendix E: Visual Simulations and Contrast Rating Forms Form 8400-4 UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT VISUAL CONTRAST RATING WORKSHEET Date June 2, 2009 District Las Vegas Field Office Resource Area Activity (program) Proposed Wind Generation SECTION A. PROJECT INFORMATION 1. Project Name Searchlight Wind Project 4. Location Township 23S Range 63E Section 2 5. Location Sketch 2. Key Observation Point KOP 1 - Railroad Pass Hotel/Casino 3. VRM Class NA SECTION B. CHARACTERISTIC LANDSCAPE DESCRIPTION 1. LAND/WATER 2. VEGETATION 3. STRUCTURES FORM Gently rolling to flat valleys with angular and jagged mountainous features Pixilated and amorphous/patchy Vertical, horizontal, angular, cylindrical, and geometric

Note: This page contains sample records for the topic "land areas wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

The National Wind Technology Center  

SciTech Connect

Wind energy research began at the Rocky Flats test site in 1976 when Rockwell International subcontracted with the Energy Research and Development Administration (ERDA). The Rocky Flats Plant was competitively selected from a number of ERDA facilities primarily because it experienced high instantaneous winds and provided a large, clear land area. By 1977, several small wind turbines were in place. During the facility`s peak of operation, in 1979-1980, researchers were testing as many as 23 small wind turbines of various configurations, including commercially available machines and prototype turbines developed under subcontract to Rocky Flats. Facilities also included 8-kW, 40-kW, and 225-kW dynamometers; a variable-speed test bed; a wind/hybrid test facility; a controlled velocity test facility (in Pueblo, Colorado); a modal test facility, and a multimegawatt switchgear facility. The main laboratory building was dedicated in July 1981 and was operated by the Rocky Flats Plant until 1984, when the Solar Energy Research Institute (SERI) and Rocky Flats wind energy programs were merged and transferred to SERI. SERI and now the National Renewable Energy Laboratory (NREL) continued to conduct wind turbine system component tests after 1987, when most program personnel were moved to the Denver WEst Office Park in Golden and site ownership was transferred back to Rocky Flats. The Combined Experiment test bed was installed and began operation in 1988, and the NREL structural test facility began operation in 1990. In 1993, the site`s operation was officially transferred to the DOE Golden Field Office that oversees NREL. This move was in anticipation of NREL`s renovation and reoccupation of the facility in 1994.

Thresher, R.W.; Hock, S.M. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States); Loose, R.R.; Cadogon, J.B.

1994-07-01T23:59:59.000Z

162

Naval Station Newport Wind Resource Assessment. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites, and The Naval Facilities Engineering Service Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Naval Station Newport Naval Station Newport Wind Resource Assessment A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites, and The Naval Facilities Engineering Service Center Robi Robichaud, Jason Fields, and Joseph Owen Roberts Technical Report NREL/TP-6A20-52801 February 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Naval Station Newport

163

New England Wind Forum: Determining Factors Influencing Wind Economics in  

Wind Powering America (EERE)

Determining Factors Influencing Wind Economics in New England Determining Factors Influencing Wind Economics in New England Figure 1: Installed Wind Project Costs by Region: 2003 through 2006 Projects Only New England's high land values, smaller land parcels, varied terrain, and more moderate wind speeds make for projects of smaller scale and higher unit cost than those likely to be built in Texas or the Great Plains states. Click on the graph to view a larger version. New England's high land values, smaller land parcels, varied terrain, and more moderate wind speeds make for projects of smaller scale and higher unit cost than those likely to be built in Texas or the Great Plains states. View a larger version of the graph. Figure 2: 2006 Project Capacity Factors by Region: 2002 through 2005 Projects Only The chart depicts project capacity factor by region. Click on the graph to view a larger version.

164

Stakeholder Engagement and Outreach: Resources for Public Lands  

Wind Powering America (EERE)

Resources Public Power Regional Activities State Activities State Lands Siting Resources for Public Lands This page lists wind-related resources and tools such as publications, Web resources, and news about public lands. Search the Stakeholder Engagement and Outreach initiative's Database Choose a Type of Information All News Publications Web Resource Videos Choose # of Records per Page Default (10 per page) 5 25 50 To search the titles, enter a word or phrase. Start Search Clear Contents Total of 24 records found. Page 1 of 5, Sorted by descending date Filtered by: Public Lands 1 2 3 4 5 Next Page >> Date sort by ascending date sort by descending date State sort by ascending state sort by descending state Type of Information Program Area Title sort by ascending title sort by descending title

165

Renewable Energy Project Leasing on Tribal Lands Webinar | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Leasing on Tribal Lands Webinar Project Leasing on Tribal Lands Webinar Renewable Energy Project Leasing on Tribal Lands Webinar June 26, 2013 11:00AM MDT Webinar The U.S. Department of Energy (DOE) Office of Indian Energy Policy and Programs, Office of Energy Efficiency and Renewable Energy Tribal Energy Program, and Western Area Power Administration are pleased to continue their sponsorship of the Tribal Renewable Energy Webinar Series. According to the Intertribal Council on Utility Policy, wind resources on tribal lands in the Great Plains alone could power more than 50 million homes. The HEARTH Act of 2012 provides the opportunity for Tribes to eliminate delays, costs, federal environmental reviews, federal administrative and judicial litigation, and risks associated with Bureau of

166

Argonne National Laboratory Develops Extreme-Scale Wind Farm...  

Office of Environmental Management (EM)

studies of complex flow and wind turbine interactions in large land-based and offshore wind farms that will improve wind plant design and reduce the levelized cost of energy....

167

Wind Power Across Native America: Opportunities, Challenges, and Status (Poster)  

SciTech Connect

Wind projects on tribal lands are differennt, and this poster outlines the ways in which these projects differ, a summary of existing and pending Native American Wind Projects (50 kW and larger), and tribal wind opportunities and issues.

Jimenez, A.; Gough, R.; Flowers, L.; Taylor, R.

2009-05-01T23:59:59.000Z

168

Stakeholder Engagement and Outreach: State Wind Activities  

Wind Powering America (EERE)

Federal, Federal, State, & Local Printable Version Bookmark and Share Economic Development Policy Public Lands Public Power Regional Activities State Activities State Lands Siting State Wind Activities The U.S. map below summarizes Wind Powering America's state activities as of February 2010, which include Wind Working Groups, validated wind maps, anemometer loan programs, small wind guides, Wind for Schools Wind Applications Centers, exhibits, and workshops or webcasts. To read more state-specific news, click on a state. You can also view an enlarged map or print the state wind activities map. U.S. map showing Wind Powering America's activities in each state. Washington has an inactive/evolved wind working group, validated wind map, and a small wind guide. Exhibits have been displayed. Oregon has a wind working group, validated wind map, small wind guide, an anemometer loan program, and has had workshops or Webcasts. California has an inactive/evolved wind working group and valided wind map. Exhibits have been displayed. Idaho has an inactive/evolved wind working group, validated wind map, small wind guide, an anemometer loan program, has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. Nevada has a wind working group, validated wind map, a small wind guide, an anemometer loan program, and has had workshops or Webcasts and exhibits. Montana has a wind working group, validated wind map, small wind guide, an anemometer loan program, and has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. Wyoming has a wind working group, validated wind map, small wind guide, anemometer loan program, and has had workshops or Webcasts and exhibits. Utah has a wind working group, validated wind map, a small wind guide, an anemometer loan program, and has had workshops or Webcasts. Arizona has a wind working group, validated wind map, small wind guide, an anemometer loan program, has had workshops or Webcasts, and exhibits have been displayed. Colorado has a wind working group, a validated wind map, small wind guide, an anemometer loan program, has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. New Mexico has a wind working group, validated wind map, small wind guide, an anemometer loan program, has had workshops or Webcasts, and exhibits have been displayed. North Dakota has a wind working group, validated wind map, small wind guide, an anemometer loan program, and has had workshops or Webcasts and exhibits. South Dakota has a wind working group, a validated wind map, small wind guide, an anemometer loan program, has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. Nebraska has a wind working group, a validated wind map, a small wind guide, has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. Kansas has a wind working group, a validated wind map, a small wind guide, has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. Oklahoma has a wind working group, validated wind map, small wind guide, an anemometer loan program, and has had workshops or Webcasts. Texas currently does not have any Wind Powering America activities. Minnesota has a small wind guide. Iowa has a small wind guide and has had exhibits. Missouri has a wind working group, validated wind map, small wind guide, an anemometer loan program, and has had workshops or Webcasts. Arkansas has a wind working group, validated wind map, and workshops or Webcasts. Lousiana currently does not have any Wind Powering America activities. Mississippi currently does not have any Wind Powering America activities. Alabama currently does not have any Wind Powering America activities. Georgia has a wind working group, a validated wind map, and has had workshops or Webcasts. Florida currently does not have any Wind Powering America activities. South Carolina has a wind working group. Alaska has a wind working group, validated wind map, an anemometer loan program, has had workshops or Webcasts, and it has a Wind for Schools Wind Applications Center. Hawaii has a wind working group, validated wind map, a small wind guide, and has had exhibits. Puerto Rico has a validated wind map and a planned wind working group. Wisconsin has a wind working group, a small wind guide, an anemometer loan program, and has had workshops or Webcasts. Illinois has a wind working group, validated wind map, a small wind guide, and has had workshops or Webcasts. Michigan has a wind working group, validated wind map, a small wind guide, an anemometer loan program, and has had workshops or Webcasts and exhibits. Indiana has a wind working group, a validated wind map, a small wind guide, and has had workshops or Webcasts and exhibits. Kentucky has a wind working group and a validated wind map. Tennessee has a wind working group, a validated wind map, small wind guide, anemometer loan program, and has had workshops or Webcasts. North Carolina has a wind working group, validated wind map, a small wind guide, an anemometer loan program, has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. Virginia has a wind working group, a validated wind map, a small wind guide, an anemometer loan program, has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. West Virginia has a wind working group, a validated wind map, and has had workshops or Webcasts. Ohio has a wind working group, validated wind map, a small wind guide, an anemometer loan program, and has had workshops or Webcasts. Maryland has a wind working group, a validated wind map, a small wind guide, and an anemometer loan program. Pennsylvania has a wind working group, a validated wind map, small wind guide, an anemometer loan program, has had workshops or Webcasts, and it has a Wind for Schools Wind Applications Center. Delaware has a validated wind map and a small wind guide. New Jersey has a wind working group, validated wind map, a small wind guide, an anemometer loan program, and has had workshops or Webcasts. Connecticut has a wind working group and a validated wind map. New York has a small wind guide. Vermont has a validated wind map and a small wind guide. Massachusetts has a wind working group, validated wind map, a small wind guide, an anemometer loan program, and has had exhibits. New Hampshire has a validated wind map and small wind guide. Maine has a wind working group, validated wind map, small wind guide, an anemometer loan program, and has had workshops or Webcasts. Rhode Island has a validated wind map and small wind guide. The U.S. Virgin Islands have a validated wind map.

169

Colorado Highlands Wind Project, Western's RM Environment  

NLE Websites -- All DOE Office Websites (Extended Search)

by adding 11 wind turbine generators (WTGs) on approximately 1,200 acres of State and private land adjoining the eastern border of the existing Project. The electricity...

170

NREL: Wind Research - Offshore Wind Resource Characterization  

NLE Websites -- All DOE Office Websites (Extended Search)

Offshore Wind Resource Characterization Offshore Wind Resource Characterization Map of the United States, showing the wind potential of offshore areas across the country. Enlarge image US offshore wind speed estimates at 90-m height NREL scientists and engineers are leading efforts in resource mapping, remote sensor measurement and development, and forecasting that are essential for the development of offshore wind. Resource Mapping For more than 15 years, NREL's meteorologists, engineers, and Geographic Information System experts have led the production of wind resource characterization maps and reports used by policy makers, private industry, and other government organizations to inform and accelerate the development of wind energy in the United States. Offshore wind resource data and mapping has strategic uses. As with terrestrial developments, traditional

171

Wind Easements | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Easements Wind Easements Wind Easements < Back Eligibility Agricultural Fed. Government Institutional Local Government Nonprofit Residential Schools State Government Tribal Government Savings Category Wind Buying & Making Electricity Program Info State North Dakota Program Type Solar/Wind Access Policy North Dakota allows property owners to grant an easement that ensures adequate exposure of a wind-energy system to the wind. The easement runs with the land benefited and burdened, and terminates upon the conditions stated in the easement. The statutes authorizing the creation of wind easements include several provisions to protect property owners. For example, a wind easement may not make the property owner liable for any property tax associated with the wind-energy system or other equipment

172

AREA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AREA AREA FAQ # Question Response 316 vs DCAA FAQ 1 An inquiry from CH about an SBIR recipient asking if a DCAA audit is sufficient to comply with the regulation or if they need to add this to their audit they have performed yearly by a public accounting firm. 316 audits are essentially A-133 audits for for-profit entities. They DO NOT replace DCAA or other audits requested by DOE to look at indirect rates or incurred costs or closeouts. DCAA would never agree to perform A-133 or our 316 audits. They don't do A-133 audits for DOD awardees. The purpose of the audits are different, look at different things and in the few instances of overlap, from different perspectives. 316

173

BACKGROUND AND PURPOSE In hilly areas and climates prone to local controls, thermally-induced wind systems develop (e.g., Fernando et al, 2001 and Hunt et al, In Review). Two "transitions" occur morning and evening when winds reverse from downvalley to  

E-Print Network (OSTI)

BACKGROUND AND PURPOSE In hilly areas and climates prone to local controls, thermally-induced wind and at the west end of the lake. A complete energy budget set of sensors are recording diurnal data and records

Hall, Sharon J.

174

LARGE SCALE WIND CLIMATOLOGICAL EXAMINATIONS OF WIND ENERGY UTILIZATION  

E-Print Network (OSTI)

The aim of this article is to describe the particular field of climatology which analyzes air movement characteristics regarding utilization of wind for energy generation. The article describes features of wind energy potential available in Hungary compared to wind conditions in other areas of the northern quarter sphere in order to assist the wind energy use development in Hungary. Information on wind climate gives a solid basis for financial and economic decisions of stakeholders in the field of wind energy utilization.

Andrea Kircsi

175

Analyzing Wind Power Potential in Cauvery Delta Areas for Implementation of Renewable Energy based Standalone Pumping System for Irrigation  

Science Journals Connector (OSTI)

Abstract The power demand plays vital role in economic development of the country. Industrial development is mainly depending on power .Tamilnadu faces severe power demand of around 18 percent and the Wind power generation is not utilized properly because of the weak grid and lack of energy storage units. For the agriculture the power is free of cost .This paper suggests the innovative non grid high power pumping system for irrigation to reduce the demand on grid and to improve the economy of Tamilnadu Electricity board.

B. Shanthi saravana; V. Rajini; A. Paramasivam

2013-01-01T23:59:59.000Z

176

Wind Power | Open Energy Information  

Open Energy Info (EERE)

Wind Power Wind Power Jump to: navigation, search Wind Power WIndfarm.Sunset.jpg Wind power is a form of solar energy.[1] Wind is caused by the uneven heating of the atmosphere by the sun, variations in the earth's surface, and rotation of the earth. Mountains, bodies of water, and vegetation all influence wind flow patterns[2], [3]. Wind energy (or wind power) describes the process by which wind is used to generate electricity. Wind turbines convert the energy in wind to electricity by rotating propeller-like blades around a rotor. The rotor turns the drive shaft, which turns an electric generator.[2] Three key factors affect the amount of energy a turbine can harness from the wind: wind speed, air density, and swept area.[4] Mechanical power can also be utilized directly for specific tasks such as

177

Climate and Land Use Change Processes in East Africa While some regions of East Africa are being preserved as natural areas, others, including the  

E-Print Network (OSTI)

at Michigan State University in the Climate-Land Interaction Project (CLIP) . The overall objective of the project is to establish the mechanisms that determine how climate and land use (primarily in the human of climate to land use, a prerequisite for the potential of feedback. #12;Rationale This project will address

178

The Wind Forecast Improvement Project (WFIP): A Public/Private Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations – the Southern Study Area  

SciTech Connect

This Final Report presents a comprehensive description, findings, and conclusions for the Wind Forecast Improvement Project (WFIP)--Southern Study Area (SSA) work led by AWS Truepower (AWST). This multi-year effort, sponsored by the Department of Energy (DOE) and National Oceanographic and Atmospheric Administration (NOAA), focused on improving short-term (15-minute – 6 hour) wind power production forecasts through the deployment of an enhanced observation network of surface and remote sensing instrumentation and the use of a state-of-the-art forecast modeling system. Key findings from the SSA modeling and forecast effort include: 1. The AWST WFIP modeling system produced an overall 10 – 20% improvement in wind power production forecasts over the existing Baseline system, especially during the first three forecast hours; 2. Improvements in ramp forecast skill, particularly for larger up and down ramps; 3. The AWST WFIP data denial experiments showed mixed results in the forecasts incorporating the experimental network instrumentation; however, ramp forecasts showed significant benefit from the additional observations, indicating that the enhanced observations were key to the model systems’ ability to capture phenomena responsible for producing large short-term excursions in power production; 4. The OU CAPS ARPS simulations showed that the additional WFIP instrument data had a small impact on their 3-km forecasts that lasted for the first 5-6 hours, and increasing the vertical model resolution in the boundary layer had a greater impact, also in the first 5 hours; and 5. The TTU simulations were inconclusive as to which assimilation scheme (3DVAR versus EnKF) provided better forecasts, and the additional observations resulted in some improvement to the forecasts in the first 1 – 3 hours.

Freedman, Jeffrey M.; Manobianco, John; Schroeder, John; Ancell, Brian; Brewster, Keith; Basu, Sukanta; Banunarayanan, Venkat; Hodge, Bri-Mathias; Flores, Isabel

2014-04-30T23:59:59.000Z

179

Results of Tritium Tracking and Groundwater Monitoring at the Hanford Site 200 Area State-Approved Land Disposal Site-FY1999  

SciTech Connect

The Hanford Site 200 Area Effluent Treatment Facility (ETF) processes contaminated liquids derived from Hanford Site facilities. The clean water generated by these processes is occasionally enriched in tritium and is discharged to the 200 Area State Approved Land Disposal Site (SALDS). Groundwater monitoring for tritium and other constituents is required by the state-issued permit at 21 wells surrounding the facility. During FY 1999, average tritium activities in most wells declined from average activities in 1998. The exception was deep well 69948-77C, where tritium results were at an all-time high (77,000 pCi/L) as a result of the delayed penetration of effluent deeper into the aquifer. Of the 12 constituents with permit enforcement limits, which are monitored in SALDS proximal wells, all were within limits during FY 1999. Water level measurements in nearby wells indicate that a small hydraulic mound exists around the SALDS facility as a result of discharges. This feature is directing groundwater flow radially outward a short distance before the regional northeasterly flow predominates. Evaluation of this condition indicates that the network is currently adequate for tracking potential effects of the SALDS on the groundwater. Recommendations include the discontinuation of ammonia, benzene, tetrahydrofuran, and acetone from the regular groundwater constituent list; designating background well 299-W8-1 as a tritium-tracking well only, and the use of quadruplicate averages of field pH, instead of a single laboratory measurement, as a permit compliance parameter.

Barnett, D.B.

1999-10-20T23:59:59.000Z

180

Offshore Wind Research (Fact Sheet), National Wind Technology Center (NWTC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Offshore Offshore Wind Research The National Renewable Energy Laboratory is internationally recognized for offshore wind energy research and development (R&D). Its experience and capabilities cover a wide spectrum of wind energy disciplines. NREL's offshore wind R&D efforts focus on critical areas that address the long-term needs of the offshore wind energy industry and the Department of Energy (DOE). R&D efforts include: * Developing offshore design tools and methods * Collaborating with international partners * Testing offshore systems and developing standards * Conducting economic analyses * Characterizing offshore wind resources * Identifying and mitigating offshore wind grid integration challenges and barriers NREL documented the status of offshore wind energy in the United

Note: This page contains sample records for the topic "land areas wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

High Resolution Atmospheric Modeling for Wind Energy Applications  

SciTech Connect

The ability of the WRF atmospheric model to forecast wind speed over the Nysted wind park was investigated as a function of time. It was found that in the time period we considered (August 1-19, 2008), the model is able to predict wind speeds reasonably accurately for 48 hours ahead, but that its forecast skill deteriorates rapidly after 48 hours. In addition, a preliminary analysis was carried out to investigate the impact of vertical grid resolution on the forecast skill. Our preliminary finding is that increasing vertical grid resolution does not have a significant impact on the forecast skill of the WRF model over Nysted wind park during the period we considered. Additional simulations during this period, as well as during other time periods, will be run in order to validate the results presented here. Wind speed is a difficult parameter to forecast due the interaction of large and small length scale forcing. To accurately forecast the wind speed at a given location, the model must correctly forecast the movement and strength of synoptic systems, as well as the local influence of topography / land use on the wind speed. For example, small deviations in the forecast track or strength of a large-scale low pressure system can result in significant forecast errors for local wind speeds. The purpose of this study is to provide a preliminary baseline of a high-resolution limited area model forecast performance against observations from the Nysted wind park. Validating the numerical weather prediction model performance for past forecasts will give a reasonable measure of expected forecast skill over the Nysted wind park. Also, since the Nysted Wind Park is over water and some distance from the influence of terrain, the impact of high vertical grid spacing for wind speed forecast skill will also be investigated.

Simpson, M; Bulaevskaya, V; Glascoe, L; Singer, M

2010-03-18T23:59:59.000Z

182

A COOLING SYSTEM FOR BUIDINGS USING WIND ENERGY  

E-Print Network (OSTI)

A COOLING SYSTEM FOR BUIDINGS USING WIND ENERGY Hamid Daiyan Islamic Azad University - Semnan in dray land, and only uses wind energy for conditioning. It technologies date back over 1000 years. Wind system, Wind energy, Temperature Fig.1 Wind tower of Doulat-Abad garden of Yazd with it's altitude is 33

183

WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy  

E-Print Network (OSTI)

wind resource class areas could also include limited transmission availability, environmental and wildlife

Lantz, Eric

2014-01-01T23:59:59.000Z

184

Sault Tribe Wind Energy Feasibility Study  

SciTech Connect

The Sault Tribe conducted a feasibility study on tribal lands in the Upper Peninsula of Michigan to determine the technical and economic feasibility of both small and large-scale wind power development on tribal lands. The study included a wind resource assessment, transmission system analysis, engineering and regulatory analyzes and assessments.

Toni Osterhout; Global Energy Concepts

2005-07-31T23:59:59.000Z

185

A new hybrid pneumatic combustion engine to improve fuel consumption of wind–Diesel power system for non-interconnected areas  

Science Journals Connector (OSTI)

This paper presents an evaluation of an optimized Hybrid Pneumatic-Combustion Engine (HPCE) concept that permits reducing fuel consumption for electricity production in non-interconnected remote areas, originally equipped with hybrid Wind–Diesel System (WDS). Up to now, most of the studies on the pneumatic hybridization of Internal Combustion Engines (ICE) have dealt with two-stroke pure pneumatic mode. The few studies that have dealt with hybrid pneumatic-combustion four-stroke mode require adding a supplementary valve to charge compressed air in the combustion chamber. This modification means that a new cylinder head should be fabricated. Moreover, those studies focus on spark ignition engines and are not yet validated for Diesel engines. Present HPCE is capable of making a Diesel engine operate under two-stroke pneumatic motor mode, two-stroke pneumatic pump mode and four-stroke hybrid mode, without needing an additional valve in the combustion chamber. This fact constitutes this study’s strength and innovation. The evaluation of the concept is based on ideal thermodynamic cycle modeling. The optimized valve actuation timings for all modes lead to generic maps that are independent of the engine size. The fuel economy is calculated for a known site during a whole year, function of the air storage volume and the wind power penetration rate.

Tammam Basbous; Rafic Younes; Adrian Ilinca; Jean Perron

2012-01-01T23:59:59.000Z

186

Development of Land Use Regression Models for elemental, organic carbon, PAH and hopanes/steranes in 10 ESCAPE/TRANSPHORM European study areas  

Science Journals Connector (OSTI)

Land use regression (LUR) models have been used to model concentrations of mainly traffic related air pollutants (nitrogen oxides (NOx), particulate matter (PM) mass or absorbance). ...

Aleksandra Jedynska; Gerard Hoek; Meng Wang; Marloes Eeftens; Josef Cyrys; Menno Keuken; Christophe Ampe; Rob Beelen; Giulia Cesaroni; Francesco Forastiere; Marta Cirach; Kees de Hoogh; Audrey De Nazelle; Wenche Nystad; Christophe Declercq; Kirsten Thorup Eriksen; Konstantina Dimakopoulou; Timo Lanki; Kees Meliefste; Mark J Nieuwenhuijsen; Tarja Yli-Tuomi; Ole Raaschou-Nielsen; Bert Brunekreef; Ingeborg Kooter

2014-10-15T23:59:59.000Z

187

IDRISI Land Change Modeler | Open Energy Information  

Open Energy Info (EERE)

IDRISI Land Change Modeler IDRISI Land Change Modeler Jump to: navigation, search Tool Summary LAUNCH TOOL Name: IDRISI Land Change Modeler Agency/Company /Organization: Clark Labs Sector: Land Focus Area: Agriculture, Forestry Topics: Co-benefits assessment, - Environmental and Biodiversity, Resource assessment Resource Type: Maps, Software/modeling tools User Interface: Desktop Application Website: www.clarklabs.org/ Cost: Paid IDRISI Land Change Modeler Screenshot References: IDRISI Land Change Modeler[1] Overview "The Land Change Modeler is revolutionary land cover change analysis and prediction software with tools to analyze, measure and project the impacts of such change on habitat and biodiversity." References ↑ "IDRISI Land Change Modeler" Retrieved from

188

Resource Areas of Texas: Land.  

E-Print Network (OSTI)

days. Trans-Pecos I s.ooo.ooo Acres Vegetation: Uplands - at higher elevations, short grasses, some oak, pinon and ponder- osa pine; at lower elevations, short grasses, desert shrubs including salt-tolerant plants. Bottomlands - bunch grasses..., often covered with sea water in places. Elevation: Sea level to a few feet above sea level. Annual rainfall: 40 - 55 inches. Annual frost-free period: 270 - 300 days. Vegetation: Sedges, rushes, salt grasses. Coast Marsh 500,000 Acres Soils Dark...

Godfrey, Curtis L.; Carter, Clarence R.; McKee, Gordon S.

1967-01-01T23:59:59.000Z

189

Wind Energy Update  

Wind Powering America (EERE)

by the Alliance for Sustainable Energy, LLC. by the Alliance for Sustainable Energy, LLC. Wind Energy Update Wind Powering America January 2012 NATIONAL RENEWABLE ENERGY LABORATORY Evolution of Commercial Wind Technology NATIONAL RENEWABLE ENERGY LABORATORY Small (≤100 kW) Homes Farms Remote Applications (e.g. water pumping, telecom sites, icemaking) Midscale (100-1000 kW) Village Power Hybrid Systems Distributed Power Large, Land-based (1-3 MW) Utility-scale wind farms Large Distributed Power Sizes and Applications Large, Offshore (3-7 MW) Utility-scale wind farms, shallow coastal waters No U.S. installations NATIONAL RENEWABLE ENERGY LABORATORY Capacity & Cost Trends As of January 2012 (AWEA) 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 $- $200 $400 $600 $800 $1,000 $1,200

190

Wind derivatives: hedging wind risk:.  

E-Print Network (OSTI)

??Wind derivatives are financial contracts that can be used to hedge or mitigate wind risk. In this thesis, the focus was on pricing these wind… (more)

Hoyer, S.A.

2013-01-01T23:59:59.000Z

191

Wind News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind News Wind News Wind News RSS February 7, 2011 Salazar, Chu Announce Major Offshore Wind Initiatives Strategic plan, $50 million in R&D funding, identified Wind Energy Areas will speed offshore wind energy development December 16, 2010 Department of Energy Finalizes Loan Guarantee to Support World's Largest Wind Project 845-Megawatt Wind Facility Will Create Hundreds of Jobs and Avoid Over 1.2 Million Tons of Carbon Dioxide Annually October 29, 2010 Statement by Energy Secretary Steven Chu on Today's Grand Opening of the Nordex Manufacturing Facility in Jonesboro, Arkansas Recovery Act investment creates jobs, helps lay the foundation for a clean energy economy September 13, 2010 DOE Announces More than $5 Million to Support Wind Energy Development Funds to Enhance Short-Term Wind Forecasting and Accelerate Midsize Wind

192

Analysis of Temporal and Spatial Characteristics on Output of Wind Farms with Doubly Fed Induction Generator Wind Turbines  

Science Journals Connector (OSTI)

Due to the large number of wind turbines and covering too large area in a large wind farm, wake effects among wind turbines and wind speed time delays will have a greater impact of wind farms models. Taking wind farms with doubly fed induction generator(DFIG) ... Keywords: wind farm, modeling, temporal and spatial characteristics, DFIG, output characteristics

Shupo Bu; Xunwen Su

2012-12-01T23:59:59.000Z

193

Economic Impacts of Wind Turbine Development in U.S. Counties  

NLE Websites -- All DOE Office Websites (Extended Search)

are the economic development impacts on U.S. counties of are the economic development impacts on U.S. counties of wind power projects, as defined by growth in per capita income and employment? Objective To address the research question using post-project construction, county-level data, and econometric evaluation methods. Background * Wind energy is expanding rapidly in the United States: Over the last 4 years, wind power has contributed approximately 35 percent of all new electric power capacity. * Wind power plants are often developed in rural areas where local economic development impacts from the installation are projected, including land lease and property tax payments and employment growth during plant construction and operation. * Wind energy represented 2.3 percent of the U.S. electricity supply in 2010, but studies show

194

Viability of Small Wind Distributed Generation for Farmers Who Irrigate (Poster)  

SciTech Connect

About 14% of U.S. farms are irrigated, representing 55 million acres of irrigated land. Irrigation on these farms is a major energy user in the United States, accounting for one-third of water withdrawals and 137 billion gallons per day. More than half of the Irrigation systems use electric energy. Wind energy can be a good choice for meeting irrigation energy needs. Nine of the top 10 irrigation states (California, Texas, Idaho, Arkansas, Colorado, Nebraska, Arizona, Kansas, Washington, and Oregon) have good to excellent wind resources. Many rural areas have sufficient wind speeds to make wind an attractive alternative, and farms and ranches can often install a wind energy system without impacting their ability to plant crops and graze livestock. Additionally, the rising and uncertain future costs of diesel, natural gas, and even electricity increase the potential effectiveness for wind energy and its predictable and competitive cost. In general, wind-powered electric generation systems generate more energy in the winter months than in the summer months when most crops need the water. Therefore, those states that have a supportive net metering policy can dramatically impact the viability of an onsite wind turbine. This poster presentation highlights case studies that show favorable and unfavorable policies that impact the growth of small wind in this important sector and demonstrate how net metering policies affect the viability of distributed wind generation for farmers who irrigate.

Meadows, B.; Forsyth, T.; Johnson, S.; Healow, D.

2010-05-01T23:59:59.000Z

195

Wind Energy Resource Atlas of Armenia  

SciTech Connect

This wind energy resource atlas identifies the wind characteristics and distribution of the wind resource in the country of Armenia. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies for utility-scale power generation and off-grid wind energy applications. The maps portray the wind resource with high-resolution (1-km2) grids of wind power density at 50-m above ground. The wind maps were created at the National Renewable Energy Laboratory (NREL) using a computerized wind mapping system that uses Geographic Information System (GIS) software.

Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

2003-07-01T23:59:59.000Z

196

Stakeholder Engagement and Outreach: Resources and Tools for Siting Wind  

Wind Powering America (EERE)

Federal, Federal, State, & Local Printable Version Bookmark and Share Economic Development Policy Public Lands Public Power Regional Activities State Activities State Lands Siting Resources & Tools Resources for Siting Wind Turbines This page lists information resources such as publications, websites, and news for siting wind turbines. Search the Stakeholder Engagement and Outreach initiative's Database Choose a Type of Information All News Publications Web Resource Videos Choose # of Records per Page Default (10 per page) 5 25 50 To search the titles, enter a word or phrase. Start Search Clear Contents Total of 39 records found. Page 1 of 8, Sorted by descending date Filtered by: Siting 1 2 3 4 5 6 7 8 Next Page >> Date sort by ascending date sort by descending date State sort by ascending state sort by descending state Type of Information Program Area Title sort by ascending title sort by descending title

197

Vertical axis wind turbine acoustics  

E-Print Network (OSTI)

Vertical Axis Wind Turbine Acoustics Charlie Pearson Corpus Christi College Cambridge University Engineering Department A thesis submitted for the degree of Doctor of Philosophy September 2013 Declaration Described in this dissertation is work... quickly to changing wind conditions, small- scale vertical axis wind turbines (VAWTs) have been proposed as an efficient solution for deployment in built up areas, where the wind is more gusty in nature. If VAWTs are erected in built up areas...

Pearson, Charlie

2014-04-08T23:59:59.000Z

198

Towers for Offshore Wind Turbines  

Science Journals Connector (OSTI)

Increasing energy demand coupled with pollution free production of energy has found a viable solution in wind energy. Land based windmills have been utilized for power generation for more than two thousand years. In modern times wind generated power has become popular in many countries. Offshore wind turbines are being used in a number of countries to tap the energy from wind over the oceans and convert to electric energy. The advantages of offshore wind turbines as compared to land are that offshore winds flow at higher speed than onshore winds and the more available space. In some land based settings for better efficiency turbines are separated as much as 10 rotor diameters from each other. In offshore applications where only two wind directions are likely to predominate the distances between the turbines arranged in a line can be shortened to as little as two or four rotor diameters. Today more than a dozen offshore European wind facilities with turbine ratings of 450 kw to 3.6 MW exist offshore in very shallow waters of 5 to 12 m. Compared to onshore wind turbines offshore wind turbines are bigger and the tower height in offshore are in the range of 60 to 80 m. The water depths in oceans where offshore turbines can be located are within 30 m. However as the distance from land increases the costs of building and maintaining the turbines and transmitting the power back to shore also increase sharply. The objective of this paper is to review the parameters of design for the maximum efficiency of offshore wind turbines and to develop types offshore towers to support the wind turbines. The methodology of design of offshore towers to support the wind turbine would be given and the environmental loads for the design of the towers would be calculated for specific cases. The marine corrosion on the towers and the methods to control the corrosion also would be briefly presented. As the wind speeds tend to increase with distance from the shore turbines build father offshore will be able to capture more wind energy. Currently two types of towers are considered. Cylindrical tubular structures and truss type structures. But truss type structures have less weight and flexibility in design. The construction of the offshore towers to harness the wind energy is also presented. The results will include the calculation of wind and wave forces on the tower and the design details for the tower.

V. J. Kurian; S. P. Narayanan; C. Ganapathy

2010-01-01T23:59:59.000Z

199

Wind Project Development | Open Energy Information  

Open Energy Info (EERE)

Project Development Project Development Jump to: navigation, search This page provides links to information resources regarding project development steps. Photo from Iberdrola Renewables Inc., NREL 16702 To finance and construct a wind energy project, five areas must be addressed: Detailed wind resource data for the site being developed The right to access and use the land on which the project will be constructed Permission to construct and operate the project from local permitting authorities Rights to interconnect to the transmission or distribution system and to transport (wheel) that energy to its purchaser A power purchase agreement between the project owner (seller) and the power purchaser (buyer). If any of these items are not contractually supported with the proper documentation, the project is unlikely to obtain financing.[1]

200

In-Situ Radiological Surveys to Address Nuclear Criticality Safety Requirements During Remediation Activities at the Shallow Land Disposal Area, Armstrong County, Pennsylvania - 12268  

SciTech Connect

Cabrera Services Inc. (CABRERA) is the remedial contractor for the Shallow Land Disposal Area (SLDA) Site in Armstrong County Pennsylvania, a United States (US) Army Corps of Engineers - Buffalo District (USACE) contract. The remediation is being completed under the USACE's Formerly Utilized Sites Remedial Action Program (FUSRAP) which was established to identify, investigate, and clean up or control sites previously used by the Atomic Energy Commission (AEC) and its predecessor, the Manhattan Engineer District (MED). As part of the management of the FUSRAP, the USACE is overseeing investigation and remediation of radiological contamination at the SLDA Site in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), 42 US Code (USC), Section 9601 et. seq, as amended and, the National Oil and Hazardous Substance Pollution Contingency Plan (NCP), Title 40 of the Code of Federal Regulations (CFR) Section 300.430(f) (2). The objective of this project is to clean up radioactive waste at SLDA. The radioactive waste contains special nuclear material (SNM), primarily U-235, in 10 burial trenches, Cabrera duties include processing, packaging and transporting the waste to an offsite disposal facility in accordance with the selected remedial alternative as defined in the Final Record of Decision (USACE, 2007). Of particular importance during the remediation is the need to address nuclear criticality safety (NCS) controls for the safe exhumation and management of waste containing fissile materials. The partnership between Cabrera Services, Inc. and Measutronics Corporation led to the development of a valuable survey tool and operating procedure that are essential components of the SLDA Criticality Safety and Material Control and Accountability programs. Using proven existing technologies in the design and manufacture of the Mobile Survey Cart, the continued deployment of the Cart will allow for an efficient and reliable methodology to allow for the safe exhumation of the Special Nuclear Material in existing SLDA trenches. (authors)

Norris, Phillip; Mihalo, Mark; Eberlin, John; Lambert, Mike [Cabrera Services (United States); Matthews, Brian [Nuclear Safety Associates (United States)

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "land areas wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

U.S. Wind Energy Manufacturing and Supply Chain: A Competitiveness Analysis  

SciTech Connect

The goal of the project was to develop a greater understanding of the key factors determining wind energy component manufacturing costs and pricing on a global basis in order to enhance the competitiveness of U.S. manufacturers, and to reduce installed systems cost. Multiple stakeholders including DOE, turbine OEMs, and large component manufactures will all benefit by better understanding the factors determining domestic competitiveness in the emerging offshore and next generation land-based wind industries. Major objectives of this project were to: 1. Carry out global cost and process comparisons for 5MW jacket foundations, blades, towers, and permanent magnet generators; 2. Assess U.S. manufacturers’ competitiveness and potential for cost reduction; 3. Facilitate informed decision-making on investments in U.S. manufacturing; 4. Develop an industry scorecard representing the readiness of the U.S. manufacturers’ to produce components for the next generations of wind turbines, nominally 3MW land-based and 5MW offshore; 5. Disseminate results through the GLWN Wind Supply Chain GIS Map, a free website that is the most comprehensive public database of U.S. wind energy suppliers; 6. Identify areas and develop recommendations to DOE on potential R&D areas to target for increasing domestic manufacturing competitiveness, per DOE’s Clean Energy Manufacturing Initiative (CEMI). Lists of Deliverables 1. Cost Breakdown Competitive Analyses of four product categories: tower, jacket foundation, blade, and permanent magnet (PM) generator. The cost breakdown for each component includes a complete Bill of Materials with net weights; general process steps for labor; and burden adjusted by each manufacturer for their process categories of SGA (sales general and administrative), engineering, logistics cost to a common U.S. port, and profit. 2. Value Stream Map Competitiveness Analysis: A tool that illustrates both information and material flow from the point of getting a customer order at the manufacturing plant; to the orders being forwarded by the manufacturing plant to the material suppliers; to the material being received at the manufacturing plant and processed through the system; to the final product being shipped to the Customer. 3. Competitiveness Scorecard: GLWN developed a Wind Industry Supply Chain Scorecard that reflects U.S. component manufacturers’ readiness to supply the next generation wind turbines, 3MW and 5MW, for land-based and offshore applications. 4. Wind Supply Chain Database & Map: Expand the current GLWN GIS Wind Supply Chain Map to include offshore elements. This is an on-line, free access, wind supply chain map that provides a platform for identifying active and emerging suppliers for the land-based and offshore wind industry, including turbine component manufacturers and wind farm construction service suppliers.

Fullenkamp, Patrick H; Holody, Diane S

2014-06-15T23:59:59.000Z

202

A tiered approach for the human health risk assessment for consumption of vegetables from with cadmium-contaminated land in urban areas  

SciTech Connect

Consumption of vegetables that are grown in urban areas takes place worldwide. In developing countries, vegetables are traditionally grown in urban areas for cheap food supply. In developing and developed countries, urban gardening is gaining momentum. A problem that arises with urban gardening is the presence of contaminants in soil, which can be taken up by vegetables. In this study, a scientifically-based and practical procedure has been developed for assessing the human health risks from the consumption of vegetables from cadmium-contaminated land. Starting from a contaminated site, the procedure follows a tiered approach which is laid out as follows. In Tier 0, the plausibility of growing vegetables is investigated. In Tier 1 soil concentrations are compared with the human health-based Critical soil concentration. Tier 2 offers the possibility for a detailed site-specific human health risk assessment in which calculated exposure is compared to the toxicological reference dose. In Tier 3, vegetable concentrations are measured and tested following a standardized measurement protocol. To underpin the derivation of the Critical soil concentrations and to develop a tool for site-specific assessment the determination of the representative concentration in vegetables has been evaluated for a range of vegetables. The core of the procedure is based on Freundlich-type plant–soil relations, with the total soil concentration and the soil properties as variables. When a significant plant–soil relation is lacking for a specific vegetable a geometric mean of BioConcentrationFactors (BCF) is used, which is normalized according to soil properties. Subsequently, a ‘conservative’ vegetable-group-consumption-rate-weighted BioConcentrationFactor is calculated as basis for the Critical soil concentration (Tier 1). The tool to perform site-specific human health risk assessment (Tier 2) includes the calculation of a ‘realistic worst case’ site-specific vegetable-group-consumption-rate-weighted BioConcentrationFactor. -- Highlights: • A scientifically-based and practical procedure has been developed for assessing the human health risks from the consumption of vegetables. • Uptake characteristics of cadmium in a series of vegetables is represented by a vegetable-group-consumption-rate-weighted BioConcentrationFactor. • Calculations and measurement steps are combined.

Swartjes, Frank A., E-mail: frank.swartjes@rivm.nl; Versluijs, Kees W.; Otte, Piet F.

2013-10-15T23:59:59.000Z

203

Lands & Community  

NLE Websites -- All DOE Office Websites (Extended Search)

& Community Transmission Tower Software Public Comments Lands & Community Bonneville Power Administration owns and maintains hundreds of properties in Oregon, Washington,...

204

Potential climatic impacts and reliability of large-scale offshore wind farms  

Science Journals Connector (OSTI)

The vast availability of wind power has fueled substantial interest in this renewable energy source as a potential near-zero greenhouse gas emission technology for meeting future world energy needs while addressing the climate change issue. However, in order to provide even a fraction of the estimated future energy needs, a large-scale deployment of wind turbines (several million) is required. The consequent environmental impacts, and the inherent reliability of such a large-scale usage of intermittent wind power would have to be carefully assessed, in addition to the need to lower the high current unit wind power costs. Our previous study (Wang and Prinn 2010 Atmos. Chem. Phys. 10 2053) using a three-dimensional climate model suggested that a large deployment of wind turbines over land to meet about 10% of predicted world energy needs in 2100 could lead to a significant temperature increase in the lower atmosphere over the installed regions. A global-scale perturbation to the general circulation patterns as well as to the cloud and precipitation distribution was also predicted. In the later study reported here, we conducted a set of six additional model simulations using an improved climate model to further address the potential environmental and intermittency issues of large-scale deployment of offshore wind turbines for differing installation areas and spatial densities. In contrast to the previous land installation results, the offshore wind turbine installations are found to cause a surface cooling over the installed offshore regions. This cooling is due principally to the enhanced latent heat flux from the sea surface to lower atmosphere, driven by an increase in turbulent mixing caused by the wind turbines which was not entirely offset by the concurrent reduction of mean wind kinetic energy. We found that the perturbation of the large-scale deployment of offshore wind turbines to the global climate is relatively small compared to the case of land-based installations. However, the intermittency caused by the significant seasonal wind variations over several major offshore sites is substantial, and demands further options to ensure the reliability of large-scale offshore wind power. The method that we used to simulate the offshore wind turbine effect on the lower atmosphere involved simply increasing the ocean surface drag coefficient. While this method is consistent with several detailed fine-scale simulations of wind turbines, it still needs further study to ensure its validity. New field observations of actual wind turbine arrays are definitely required to provide ultimate validation of the model predictions presented here.

Chien Wang; Ronald G Prinn

2011-01-01T23:59:59.000Z

205

NREL: Wind Research - Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities Our facilities are designed to meet the wind industry's critical research needs with state-of-the-art design and testing facilities. NREL's unique and highly versatile facilities at the National Wind Technology Center offer research and analysis of wind turbine components and prototypes rated from 400 watts to 3 megawatts. Satellite facilities support the growth of wind energy development across the United States. National Wind Technology Center Facilities Our facilities are contained within a 305-acre area that comprises field test sites, test laboratories, industrial high-bay work areas, machine shops, electronics and instrumentation laboratories, and office areas. In addition, there are hundreds of test articles and supporting components such as turbines, meteorological towers, custom test apparatus, test sheds,

206

Blown in the wind: bats and wind farms in Brazil  

Science Journals Connector (OSTI)

Abstract The number of wind turbines in operation in Brazil will triple in five years, raising concern for the conservation of Brazilian bats. We analyzed the status of bat species richness and occurrence in areas with high wind potential in Brazil. By crossing datasets on species records and wind potential we identified 21 hotspots and 226 data gap areas. Overall, 70% of the areas with the highest wind potential are data gaps, lacking elementary information about species presence. Current Environment Impact Assessments system for wind farms in Brazil has relaxed regulations and questionable effectiveness. Environmental agencies should require de facto Environment Impact Assessments in data gap areas, with technical rigor proportional to the investment under course. At least for bats, the Brazilian wind power sector must raise the bar, adopting a more rigorous licensing. Alliances to minimize bat mortality at wind farms are necessary and this goal should be pursued in Brazil.

Enrico Bernard; Adriana Paese; Ricardo Bomfim Machado; Ludmilla Moura de Souza Aguiar

2014-01-01T23:59:59.000Z

207

PJM Interconnection Interview on Wind  

Wind Powering America (EERE)

Vol. 9, No. 5 - December 5, 2007 Vol. 9, No. 5 - December 5, 2007 PJM on wind Wind power is growing rapidly in the United States and in Pennsylvania where 8 wind farms that total 259 megawatts now operate. Those wind farms already generate enough power for about 80,000 homes. Another 4,714 megawatts are in various stages of development within Pennsylvania, which would create enough power for an additional 1.4 mil- lion homes. Just in the Keystone state, wind power is creating thousands of jobs. Across the nation, wind power provides hundreds of millions of dollars of tax payments and rental fees to land- owners, and displaces more and more electricity that would otherwise be made by burning coal, oil, or natural gas. Wind farms create zero air pollution; require no destructive

208

June 26 Webinar to Explore Renewable Energy Project Leasing on Tribal Lands  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 26 Webinar to Explore Renewable Energy Project Leasing on June 26 Webinar to Explore Renewable Energy Project Leasing on Tribal Lands June 26 Webinar to Explore Renewable Energy Project Leasing on Tribal Lands June 19, 2013 - 7:28pm Addthis The U.S. Department of Energy (DOE) Office of Indian Energy, the DOE Office of Energy Efficiency and Renewable Energy's Tribal Energy Program, and the Western Area Power Administration will present the next Tribal Renewable Energy Series webinar, "Renewable Energy Project Leasing on Tribal Lands," on Wednesday, June 26, 2013, from 1:00 p.m. to 2:30 p.m. Eastern Time. According to the Intertribal Council on Utility Policy, wind resources on tribal lands in the Great Plains alone could power more than 50 million homes. This webinar will explore the opportunities for Tribes to reap the

209

Wind-Wildlife Impacts Literature Database (WILD)(Fact Sheet)  

SciTech Connect

The Wind-Wildlife Impacts Literature Database (WILD), developed and maintained by the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL), is comprised of over 1,000 citations pertaining to the effects of land-based wind, offshore wind, marine and hydrokinetic, power lines, and communication and television towers on wildlife.

Not Available

2015-01-01T23:59:59.000Z

210

Switching transients in wind farm grids Poul Srensen1)  

E-Print Network (OSTI)

's point of view seems to have been on the fault- ride-through capability of the wind turbines, in order offshore wind farms than from distributed wind turbines on land sites [4], [5]. However according the internal sub-sea cable grid interconnecting the wind turbines, often referred to as the power collection

211

Colorado and South Carolina: New Wind Test Facilities Open |...  

Energy Savers (EERE)

Act, the new facilities will accelerate the development and deployment of next-generation wind energy technologies for both offshore and land-based applications. Located on a...

212

Airborne Wind Turbine  

SciTech Connect

Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

None

2010-09-01T23:59:59.000Z

213

Small Body Landings Using Autonomous Onboard Optical Navigation  

Science Journals Connector (OSTI)

Spacecraft landings on small bodies (asteroids and comets) present special challenges from a navigation perspective ... , with the resultant accuracy requirement to target landing areas fairly tight. Because the ...

Shyam Bhaskaran; Sumita Nandi…

2011-07-01T23:59:59.000Z

214

Economic Development Impacts of Community Wind Projects: A Review and Empirical Evaluation; Preprint  

SciTech Connect

'Community wind' refers to a class of wind energy ownership structures. The extent of local ownership may range from a small minority share to full ownership by persons in the immediate area surrounding the wind project site. Potential project owners include local farmers, businesses, Native American tribes, universities, cooperatives, or any other local entity seeking to invest in wind energy. The opposite of community wind is an 'absentee' project, in which ownership is completely removed from the state and community surrounding the facility. Thus, there is little or no ongoing direct financial benefit to state and local populations aside from salaries for local repair technicians, local property tax payments, and land lease payments. In recent years, the community wind sector has been inhibited by manufacturers' preference for larger turbine orders. This often puts smaller community wind developers and projects at a competitive disadvantage. However, state policies specifically supporting community wind may become a more influential market factor as turbines are now more readily available given manufacturer ramp-ups and the slow-down in the industry that has accompanied the recent economic and financial crises. This report examines existing literature to provide an overview of economic impacts resulting from community wind projects, compares results, and explains variability.

Lantz, E.; Tegen, S.

2009-04-01T23:59:59.000Z

215

INDEPENDENT CONFIRMATORY SURVEY REPORT FOR THE REACTOR BUILDING, HOT LABORATORY, PRIMARY PUMP HOUSE, AND LAND AREAS AT THE PLUM BROOK REACTOR FACILITY, SANDUSKY, OHIO  

SciTech Connect

In 1941, the War Department acquired approximately 9,000 acres of land near Sandusky, Ohio and constructed a munitions plant. The Plum Brook Ordnance Works Plant produced munitions, such as TNT, until the end of World War II. Following the war, the land remained idle until the National Advisory Committee for Aeronautics later called the National Aeronautics and Space Administration (NASA) obtained 500 acres to construct a nuclear research reactor designed to study the effects of radiation on materials used in space flight. The research reactor was put into operation in 1961 and was the first of fifteen test facilities eventually built by NASA at the Plum Brook Station. By 1963, NASA had acquired the remaining land at Plum Brook for these additional test facilities

Erika N. Bailey

2011-10-10T23:59:59.000Z

216

A Study on the Effect of Nudging on Long-Term Boundary Layer Profiles of Wind and Weibull Distribution Parameters in a Rural Coastal Area  

Science Journals Connector (OSTI)

By use of 1 yr of measurements performed with a wind lidar up to 600-m height, in combination with a tall meteorological tower, the impact of nudging on the simulated wind profile at a flat coastal site (Høvsøre) in western Denmark using the ...

S.-E. Gryning; E. Batchvarova; R. Floors

2013-05-01T23:59:59.000Z

217

Compensation Packages Wind Energy Easements  

E-Print Network (OSTI)

to provide rural landowners with information about the wind industry, which was just beginning to emerge in the Midwest and Great Plains. In particular, we focused on land leases and wind energy easements because such agreements provided the primary means for farmers to participate in wind energy development. Since then, the U.S. wind industry has grown dramatically, with commercial-scale installations in more than 30 states and the expectation of a record year for new installations in 2005. As wind energy development has spread, the knowledge base among landowners and rural communities has grown, and options for local participation have increased substantially. With more options and information sources on wind basics available, we believed this was the right time for Windustry to revisit our work on what continues to be the principal means for landowners to participate in wind development: land leases and wind energy easements. This work addresses the ever more sophisticated questions landowners have raised about hosting wind turbines, and also begins to define good practices for developers as many new companies, large and small, enter the industry. Our primary goals are:

Lease Agreement

218

Ex Post Analysis of Economic Impacts from Wind Power Development in U.S. Counties  

E-Print Network (OSTI)

use requirements of modern wind power plants in the Unitedrural areas, where wind power plants are often constructedimpacts of actual wind power plants (e.g. ,Pedden, 2006;

Brown, Jason P.

2014-01-01T23:59:59.000Z

219

Ex post analysis of economic impacts from wind power development in U.S. counties  

E-Print Network (OSTI)

use requirements of modern wind power plants in the Unitedrural areas, where wind power plants are often constructedimpacts of actual wind power plants (e.g. ,Pedden, 2006;

Brown, Jason P

2014-01-01T23:59:59.000Z

220

WIND ENERGY Wind Energ. (2014)  

E-Print Network (OSTI)

WIND ENERGY Wind Energ. (2014) Published online in Wiley Online Library (wileyonlinelibrary Correspondence M. Wächter, ForWind-Center for Wind Energy Research, Institute of Physics, Carl Von Ossietzky on the operation of wind energy converters (WECs) imposing different risks especially in terms of highly dynamic

Peinke, Joachim

Note: This page contains sample records for the topic "land areas wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

wind energy  

National Nuclear Security Administration (NNSA)

5%2A en Pantex to Become Wind Energy Research Center http:nnsa.energy.govfieldofficesnponpopressreleasespantex-become-wind-energy-research-center

222

land requirements | OpenEI  

Open Energy Info (EERE)

requirements requirements Dataset Summary Description This dataset is part of a larger internal dataset at the National Renewable Energy Laboratory (NREL) that explores various characteristics of large solar electric (both PV and CSP) facilities around the United States. This dataset focuses on the land use characteristics for solar facilities that are either under construction or currently in operation. Source Land-Use Requirements for Solar Power Plants in the United States Date Released June 25th, 2013 (5 months ago) Date Updated Unknown Keywords acres area average concentrating solar power csp Density electric hectares km2 land land requirements land use land-use mean photovoltaic photovoltaics PV solar statistics Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Master Solar Land Use Spreadsheet (xlsx, 1.5 MiB)

223

land use | OpenEI  

Open Energy Info (EERE)

use use Dataset Summary Description This dataset is part of a larger internal dataset at the National Renewable Energy Laboratory (NREL) that explores various characteristics of large solar electric (both PV and CSP) facilities around the United States. This dataset focuses on the land use characteristics for solar facilities that are either under construction or currently in operation. Source Land-Use Requirements for Solar Power Plants in the United States Date Released June 25th, 2013 (5 months ago) Date Updated Unknown Keywords acres area average concentrating solar power csp Density electric hectares km2 land land requirements land use land-use mean photovoltaic photovoltaics PV solar statistics Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Master Solar Land Use Spreadsheet (xlsx, 1.5 MiB)

224

Searchlight Wind Energy Project FEIS Appendix C  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

C C Page | C 19B Appendix C: BLM Wind Energy Development Program Policies and BMPs A-1 ATTACHMENT A BLM WIND ENERGY DEVELOPMENT PROGRAM POLICIES AND BEST MANAGEMENT PRACTICES (BMPS) A-2 ATTACHMENT A BLM WIND ENERGY DEVELOPMENT PROGRAM POLICIES AND BEST MANAGEMENT PRACTICES (BMPS) The BLM's Wind Energy Development Program will establish a number of policies and BMPs, provided below, regarding the development of wind energy resources on BLM- administered public lands. The policies and BMPs will be applicable to all wind energy development projects on BLM-administered public lands. The policies address the administration of wind energy development activities, and the BMPs identify required mitigation measures that would need to be incorporated into project-specific Plans of Development (PODs)

225

Condon Wind Project Draft Environmental Impact Statement  

SciTech Connect

BPA needs to acquire resources to meet its customers' load growth. In meeting that need for power, BPA will consider the following purposes: protecting BPA and its customers against risk by diversifying its resource portfolio; assuring consistency with its responsibilities under the Pacific Northwest Electric Power Planning and Conservation Act to encourage the development of renewable resources; meeting customer demand for renewable resources; assuring consistency with its resource acquisition strategy; and meeting the objectives of its Power Business Line's Strategic Plan. The Draft Environmental Impact Statement (DEIS) evaluates the environmental impacts of the Proposed Action (to execute one or more power purchase and transmission services agreements to acquire and transmit up to the full electric output of the proposed Condon Wind Project) and the No Action Alternative. BPA's preferred alternative is the Proposed Action. BPA has also identified the Proposed Action as the environmentally-preferred alternative. The proposed wind project is located on private agricultural land in Gilliam County, Oregon. The 38-acre project site is located within a 4,200-acre study area located on both sides of Oregon Highway 206, approximately 5 miles northwest of the town of Condon. The project would use modern, efficient 600-kilowatt (kW) wind turbines to convert energy in the winds to electricity that would be transmitted over the existing BPA transmission system. The project would consist of one or two phases: the first phase would use 41 wind turbines to yield a capacity of approximately 24.6 megawatts (MW). A second phase (if built) would use 42 wind turbines to yield a capacity of approximately 25.2 MW. For purposes of this DEIS, the size of the project is assumed to be 49.8 MW, built in two phases. Major components of the wind project include wind turbines and foundations, small pad-mounted transformers, an operation and maintenance building, power collection and communication cables, project access roads, meteorological towers on foundations, and a substation. During construction there would also be temporary equipment storage and construction staging areas. The first phase is proposed for construction in late 2001; the second phase could be constructed during spring/summer 2002 or later.

N /A

2001-06-01T23:59:59.000Z

226

State and National Wind Resource Potential at Various Capacity Factor Ranges for 80 and 100 Meters  

Wind Powering America (EERE)

February 4, 2010 (updated April 13, 2011 to add Alaska and Hawaii) February 4, 2010 (updated April 13, 2011 to add Alaska and Hawaii) State Total (km 2 ) Excluded 2 (km 2 ) Available (km 2 ) Available % of State % of Total Windy Land Excluded Installed Capacity 3 (MW) Annual Generation (GWh) Alabama 15.9 13.3 2.6 0.00% 83.4% 13.2 42 Alaska 267,897.7 209,673.4 58,224.3 3.87% 78.3% 291,121.3 1,051,210 Arizona 611.7 417.3 194.4 0.07% 68.2% 972.1 3,100 Arkansas 1,130.0 687.5 442.5 0.32% 60.8% 2,212.5 7,215 C lif i 11 456 4 8 650 1 2 806 3 0 69% 75 5% 14 031 7 49 073 Estimates of Windy 1 Land Area and Wind Energy Potential, by State, for areas >= 35% Capacity Factor at 80m These estimates show, for each of the 50 states and the total U.S., the windy land area with a gross capacity factor (without losses) of 35% and greater at 80-m height above ground and the wind energy potential that could be possible from development of the "available" windy land area

227

New England Wind Forum: A Wind Powering America Project - Newsletter #6 - September 2010, (NEWF), Wind and Water Power Program (WWPP)  

Wind Powering America (EERE)

6 - September 2010 6 - September 2010 WIND AND WATER POWER PROGRAM PIX 16204 New England and Northeast Look to the Horizon...and Beyond, for Offshore Wind In early December, Boston hosted the American Wind Energy Association's second annual Offshore Wind Project Workshop. U.S. and European offshore wind stakeholders convened to discuss the emerging U.S. offshore wind industry and provided evidence of a significant increase in activity along the Atlantic Coast from the Carolinas to Maine. The wind power industry and policymakers are looking to offshore for long-term growth, driven by aggressive policy goals, economic develop- ment opportunities, a finite set of attractive land-based wind sites, and immense wind energy potential at a modest distance from major population centers.

228

A Fast and Effective Local Search Algorithm for Optimizing the Placement of Wind Turbines  

E-Print Network (OSTI)

The placement of wind turbines on a given area of land such that the wind farm produces a maximum amount of energy is a challenging optimization problem. In this article, we tackle this problem, taking into account wake effects that are produced by the different turbines on the wind farm. We significantly improve upon existing results for the minimization of wake effects by developing a new problem-specific local search algorithm. One key step in the speed-up of our algorithm is the reduction in computation time needed to assess a given wind farm layout compared to previous approaches. Our new method allows the optimization of large real-world scenarios within a single night on a standard computer, whereas weeks on specialized computing servers were required for previous approaches.

Wagner, Markus; Neumann, Frank

2012-01-01T23:59:59.000Z

229

Stakeholder Engagement and Outreach: How Do I Get Wind Power?  

Wind Powering America (EERE)

Education Education Printable Version Bookmark and Share Learn About Wind About Wind Power Locating Wind Power Getting Wind Power Installed Wind Capacity Wind for Schools Project Collegiate Wind Competition School Project Locations Education & Training Programs Curricula & Teaching Materials Resources How do I get Wind Power? Learn how you can own, partner with, host, and support wind power. Construct A Wind Project On Your Own Land There are wind turbines designed for everyone from residential homeowners to utilities, and from private to corporate use. Small wind turbines can be bought with cash, and commercial-scale projects can be financed. To learn more about small projects, such as those for a home or ranch or business that are less than or equal to 100 kilowatts (kW), see the small wind

230

Wellhead Protection Area Act (Nebraska) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wellhead Protection Area Act (Nebraska) Wellhead Protection Area Act (Nebraska) Wellhead Protection Area Act (Nebraska) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Wind Program Info State Nebraska Program Type Environmental Regulations Provider Nebraska Department of Environmental Quality This section regulates activities which can occur on or below the land

231

Requirements for Wind Development | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Requirements for Wind Development Requirements for Wind Development Requirements for Wind Development < Back Eligibility Commercial Construction Industrial Installer/Contractor Utility Savings Category Wind Buying & Making Electricity Program Info State Oklahoma Program Type Solar/Wind Permitting Standards In 2010, Oklahoma passed HB 2973, known as The Oklahoma Wind Energy Development Act. The bill becomes effective January 1, 2011. The Act provides sets rules for owners of wind energy facilities related to decommissioning, payments, and insurance. * Within one year of abandonment of a project, equipment from wind energy facilities must be removed and the land must be returned to its condition prior to the facility construction, except for roads. * After 15 years of operation, wind energy facility owners must file an

232

Spatial distribution of non-native invasive plants following large-scale wind damage at LaRue Pine Hills - Otter Pond Research Natural Area, Union County, Illinois.  

E-Print Network (OSTI)

??The objective of this study was to determine if a large-scale wind disturbance facilitated the invasion of forest interiors by non-native invasive plant species. The… (more)

Romano, Anthony John

2012-01-01T23:59:59.000Z

233

Land Assemblage Tax Credit Program (Missouri) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assemblage Tax Credit Program (Missouri) Assemblage Tax Credit Program (Missouri) Land Assemblage Tax Credit Program (Missouri) < Back Eligibility Commercial Construction Developer Industrial Installer/Contractor Institutional Systems Integrator Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Missouri Program Type Personal Tax Incentives Provider Missouri Department of Economic Development The Land Assemblage Tax Credit Programs the redevelopment of blighted areas in Missouri into productive use. Redevelopers must incur acquisition costs for at least 50 acres of 75+ acre parcels, enter into redevelopment agreement, and be approved for redevelopment incentives. The maximum aggregate amount of tax credits for all projects is $95 million and while

234

A Spatial Hedonic Analysis of the Effects of Wind Energy Facilities on Surrounding Property Values in the United States  

E-Print Network (OSTI)

of Economic Impacts from Wind Power Development in U.S.A Hedonic Analysis of Wind Power Facilities. Working Paper:A Hedonic Analysis of Wind Power Facilities. Land Economics.

Hoen, Ben

2014-01-01T23:59:59.000Z

235

Stakeholder Engagement and Outreach: Wind Resource Maps and Anemometer Loan  

Wind Powering America (EERE)

Maps & Data Maps & Data Printable Version Bookmark and Share Utility-Scale Land-Based Maps Offshore Maps Community-Scale Maps Residential-Scale Maps Anemometer Loan Programs & Data Wind Resource Maps and Anemometer Loan Program Data The Stakeholder Engagement and Outreach initiative provides wind maps and validation to help states and regions build capacity to support and accelerate wind energy deployment. Read about the available wind maps for utility-, community-, and residential-scale wind development. A wind resource map of the United States showing land-based with offshore resources. The Energy Department, the National Renewable Energy Laboratory, and AWS Truepower provide the wind resource map that shows land-based with offshore resources. This map is the first to provide wind developers and policy

236

AG Land 4 | Open Energy Information  

Open Energy Info (EERE)

AG Land 4 AG Land 4 Facility AG Land 4 Sector Wind energy Facility Type Community Wind Facility Status In Service Owner AG Land Energy LLC Developer AG Land Energy LLC Energy Purchaser Alliant Energy Location Story County IA Coordinates 42.206397°, -93.325714° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.206397,"lon":-93.325714,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

237

AG Land 3 | Open Energy Information  

Open Energy Info (EERE)

Name AG Land 3 Name AG Land 3 Facility AG Land 3 Sector Wind energy Facility Type Community Wind Facility Status In Service Owner AG Land Energy LLC Developer AG Land Energy LLC Energy Purchaser Alliant Energy Location Story County IA Coordinates 42.146061°, -93.428028° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.146061,"lon":-93.428028,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

238

AG Land 2 | Open Energy Information  

Open Energy Info (EERE)

AG Land 2 AG Land 2 Facility AG Land 2 Sector Wind energy Facility Type Community Wind Facility Status In Service Owner AG Land Energy LLC Developer AG Land Energy LLC Energy Purchaser Alliant Energy Location Story County IA Coordinates 41.904231°, -93.354864° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.904231,"lon":-93.354864,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

239

AG Land 6 | Open Energy Information  

Open Energy Info (EERE)

AG Land 6 AG Land 6 Jump to: navigation, search Name AG Land 6 Facility AG Land 6 Sector Wind energy Facility Type Community Wind Facility Status In Service Owner AG Land Energy LLC Developer Enervation LLC Energy Purchaser Alliant Energy Location Hamilton County IA Coordinates 42.335536°, -93.632344° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.335536,"lon":-93.632344,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

240

Mitigating Wind-Radar Interference | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

mitigating radar interference caused by the physical and electromagnetic effects of wind turbines. These new mitigation technologies are expected to open up new areas to wind...

Note: This page contains sample records for the topic "land areas wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Sandia National Laboratories: Offshore Wind RD&D: Sediment Transport  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind RD&D: Sediment Transport Offshore Wind RD&D: Sediment Transport This project focuses on three technical areas Flow chart of sediment stability risk assessment methodology....

242

EIS-0485: Interconnection of the Grande Prairie Wind Farm, Holt...  

Energy Savers (EERE)

Interconnection of the Grande Prairie Wind Farm, Holt County, Nebraska EIS-0485: Interconnection of the Grande Prairie Wind Farm, Holt County, Nebraska SUMMARY DOE's Western Area...

243

Utility Wind Integration Group Distributed Wind/Solar Interconnection  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility Wind Integration Group Distributed Wind/Solar Utility Wind Integration Group Distributed Wind/Solar Interconnection Workshop Utility Wind Integration Group Distributed Wind/Solar Interconnection Workshop May 21, 2013 8:00AM MDT to May 22, 2013 5:00PM MDT Golden, Colorado This two-day workshop will answer your questions about interconnecting wind and solar plants and other distributed generation applications to electric distribution systems while providing insight on integrating large-scale renewable generation into the transmission system. Held at the National Renewable Energy Laboratory's (NREL) state-of-the-art Energy Systems Integration Facility (ESIF) on the first day and at the Western Area Power Administration's Electric Power Training Center (EPTC) on the second day, the workshop will provide an overview of wind and solar interconnection

244

Wind Powering America Webinar: Wind Power Economics: Past, Present, and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Powering America Webinar: Wind Power Economics: Past, Present, Wind Powering America Webinar: Wind Power Economics: Past, Present, and Future Trends Wind Powering America Webinar: Wind Power Economics: Past, Present, and Future Trends November 23, 2011 - 1:43pm Addthis Wind turbine prices in the United States have declined, on average, by nearly one-third since 2008, after doubling from 2002 through 2008. Over this entire period, the average nameplate capacity rating, hub height, and rotor swept area of turbines installed in the United States have increased significantly, while other design improvements have also boosted turbine energy production. In combination, these various trends have had a significant-and sometimes surprising-impact on the levelized cost of energy delivered by wind projects. This webinar will feature three related presentations that explore these

245

Wind Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FUPWG Meeting FUPWG Meeting NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC Robi Robichaud November 18, 2009 Topics Introduction Review of the Current Wind Market Drivers for Wind Development Siting g Issues Wind Resource Assessment Wind Characteristics Wind Power Potential Basic Wind Turbine Theory Basic Wind Turbine Theory Types of Wind Turbines Facts About Wind Siting Facts About Wind Siting Wind Performance 1. United States: MW 1 9 8 2 1 9 8 3 1 9 8 4 1 9 8 5 1 9 8 6 1 9 8 7 1 9 8 8 1 9 8 9 1 9 9 0 1 9 9 1 1 9 9 2 1 9 9 3 1 9 9 4 1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8 1 9 9 9 2 0 0 0 2 0 0 1 2 0 0 2 2 0 0 3 2 0 0 4 2 0 0 5 2 0 0 6 2 0 0 7 2 0 0 8 Current Status of the Wind Industry Total Global Installed Wind Capacity Total Global Installed Wind Capacity Total Global Installed Wind Capacity

246

Solar and Wind Resource Assessments for Afghanistan and Pakistan  

SciTech Connect

The U.S. National Renewable Energy Laboratory (NREL) has recently completed the production of high-resolution wind and solar energy resource maps and related data products for Afghanistan and Pakistan. The resource data have been incorporated into a geospatial toolkit (GsT), which allows the user to manipulate the resource information along with country-specific geospatial information such as highway networks, power facilities, transmission corridors, protected land areas, etc. The toolkit allows users to then transfer resource data for specific locations into NREL's micropower optimization model known as HOMER.

Renne, D. S.; Kelly, M.; Elliott, D.; George, R.; Scott, G.; Haymes, S.; Heimiller, D.; Milbrandt, A.; Cowlin, S.; Gilman, P.; Perez, R.

2007-01-01T23:59:59.000Z

247

Alta Wind Energy Center | Open Energy Information  

Open Energy Info (EERE)

Alta Wind Energy Center Alta Wind Energy Center Address 10315 Oak Creek Road Place Mojave, California Zip 93501 Sector Wind energy Phone number 1-877-4WI-ND88 (1-877-494-6388) Website http://altawindenergycenter.co Region Southern CA Area References Alta Wind Energy Center[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! The Alta Wind Energy Center (AWEC) is located in the heart of one of the most proven wind resources in the United States - the Tehachapi-Mojave Wind Resource Area. Terra-Gen is developing the AWEC, California's largest wind energy project, adjacent to existing wind projects between the towns of Mojave and Tehachapi. Due to a welcoming community and the participation of a diverse group of landowners (private and public, local and non-local,

248

MODIS Land Products Subsets  

NLE Websites -- All DOE Office Websites (Extended Search)

Global Subsetting and Visualization Tool Global Subsetting and Visualization Tool The Global Subsetting and Visualization Tool provides customized subsets of MODIS Land products in ASCII format on demand for any location on Earth. Users select a site (either from a picklist or by entering the site's geographic coordinates) and the area surrounding that site, from one pixel up to 201 x 201 km. The tool is expected to take up to 60 minutes to complete the processing, and the tool will send you an email message containing the URL where you can access the output. The tool provides time series plots of the measurement, an ASCII file of the pixel values for the selected product along with quality information, average and standard deviations for the area selected, and a file that can be imported directly into GIS software. In addition we provide a land cover grid (IGBP classification) of the area, along with an estimate of heterogeneity (Shannon richness and evenness).

249

Description of Model Data for SNL13.2-00-Land: A  

NLE Websites -- All DOE Office Websites (Extended Search)

Description of Model Data for SNL13.2-00-Land: A 13.2 MW Land-based Turbine Model with SNL100-00 Blades D. Todd Griffith, Brian R. Resor Sandia National Laboratories Wind and Water...

250

Analysis the Present Situation of Inner Mongolia Wind Power  

Science Journals Connector (OSTI)

The wind energy resource is rich and superior in the Inner Mongolia area. Wind power industry reach a preliminary scale. But with the wind power industry rapid development, appear some critical problems such as power

Linjing Hu; Dongmin Xi

2012-01-01T23:59:59.000Z

251

Wind Powering America Initiative (Fact Sheet)  

SciTech Connect

The U.S. Department of Energy's Wind Powering America initiative engages in technology market acceptance, barrier reduction, and technology deployment support activities. This fact sheet outlines ways in which the Wind Powering America team works to reduce barriers to appropriate wind energy deployment, primarily by focusing on six program areas: workforce development, communications and outreach, stakeholder analysis and resource assessment, wind technology technical support, wind power for Native Americans, and federal sector support and collaboration.

Not Available

2011-01-01T23:59:59.000Z

252

Estimated changes in wind speed and wind power density over the western High Plains, 1971–2000  

Science Journals Connector (OSTI)

This manuscript presents the results of research on the temporal patterns in wind speed and wind power density from 1971 to 2000. The ... Mountains in an area which has a proven wind power resource. Policies and ...

J. Scott Greene; Matthew Chatelain; Mark Morrissey…

2012-08-01T23:59:59.000Z

253

Solar Land Use | Open Energy Information  

Open Energy Info (EERE)

Land Use Land Use Jump to: navigation, search (The following text is derived from a National Renewable Energy Laboratory report on solar land use in the United States.)[1] One concern regarding large-scale deployment of solar energy is its potentially significant land use. This article summarizes data and analysis of the land use associated with U.S. utility-scale ground-mounted photovoltaic (PV) and concentrating solar power (CSP) facilities. This article presents total and direct land-use results for various solar technologies and system configurations, on both a capacity and an electricity-generation basis. The total area corresponds to all land enclosed by the site boundary. The direct area comprises land directly occupied by solar arrays, access roads, substations, service buildings, and

254

Wind Mills  

Science Journals Connector (OSTI)

Over 5,000 years ago, the ancient Egyptians used wind to sail ships on the Nile River. While the proliferation of water mills was in full swing, windmills appeared to harness more inanimate energy by employing wind

J. S. Rao

2011-01-01T23:59:59.000Z

255

Wind Farm  

Office of Energy Efficiency and Renewable Energy (EERE)

The wind farm in Greensburg, Kansas, was completed in spring 2010, and consists of ten 1.25 megawatt (MW) wind turbines that supply enough electricity to power every house, business, and municipal...

256

Wind Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Power As the accompanying map of New Mexico shows, the best wind power generation potential near WIPP is along the Delaware Mountain ridge line of the southern Guadalupe...

257

Wind Power  

Science Journals Connector (OSTI)

For off-shore wind energy, it is not economically profitable to locate wind turbines in waters with depths larger than about 40 m. For this reason, some floating turbine prototypes are being tested, which can be ...

Ricardo Guerrero-Lemus; José Manuel Martínez-Duart

2013-01-01T23:59:59.000Z

258

San Diego County- Wind Regulations (California)  

Energy.gov (U.S. Department of Energy (DOE))

The County of San Diego has established zoning guidelines for wind turbine systems of varying sizes in the unincorporated areas of San Diego County. Wind turbine systems can be classified as small,...

259

Landscape Measures of Rangeland Condition in the BLM Owyhee Pilot Project: Shrub Canopy Mapping, Vegetation Classification, and Detection of Anomalous Land Areas  

SciTech Connect

In 2006, the BLM tasked PNNL to collaborate in research being conducted under the Owyhee Uplands Pilot Project to assess rangeland condition. The objective of this effort was to provide Owyhee Uplands Pilot Project with a sophisticated suite of data and tools to assist in evaluating the health and condition of the Owyhee Uplands study area. We focused on three technical areas. The first involved enhancing existing algorithms to estimate shrub canopy cover in the Lower Reynolds Creek Watershed. The second task involved developing and applying a strategy to assess and compare three vegetation map products for the Idaho portion of the Owyhee study area. The third task developed techniques and data that can be used to identify areas exhibiting anomalous rangeland conditions (for example exotic plants or excessive bare soil exposure). This report documents the methods used, results obtained, and conclusions drawn.

Tagestad, Jerry D.; Downs, Janelle L.

2007-12-28T23:59:59.000Z

260

land-use | OpenEI  

Open Energy Info (EERE)

land-use land-use Dataset Summary Description This dataset is part of a larger internal dataset at the National Renewable Energy Laboratory (NREL) that explores various characteristics of large solar electric (both PV and CSP) facilities around the United States. This dataset focuses on the land use characteristics for solar facilities that are either under construction or currently in operation. Source Land-Use Requirements for Solar Power Plants in the United States Date Released June 25th, 2013 (5 months ago) Date Updated Unknown Keywords acres area average concentrating solar power csp Density electric hectares km2 land land requirements land use land-use mean photovoltaic photovoltaics PV solar statistics Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Master Solar Land Use Spreadsheet (xlsx, 1.5 MiB)

Note: This page contains sample records for the topic "land areas wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Stakeholder Engagement and Outreach: Wind Policy  

Wind Powering America (EERE)

Federal, Federal, State, & Local Printable Version Bookmark and Share Economic Development Policy Cap & Trade State Implementation Plans Supplemental Environmental Projects Resources & Tools Public Lands Public Power Regional Activities State Activities State Lands Siting Wind Policy Federal, state, and local policies play an important role in wind energy development. More than 20 states have established renewable portfolio standards that require electricity providers to obtain a portion of their power from renewable sources. More than 15 states have established renewable energy funds that provide financial incentives and other types of support for wind energy development. In addition, voluntary consumer decisions to purchase green power can provide an important revenue stream

262

Wind energy  

Science Journals Connector (OSTI)

...is approximately 4.5-6.01 for onshore wind farms. The price for offshore wind farms is estimated to be 50% higher. For comparison...visually intrusive. The visual impact of offshore wind farms quickly diminishes with distance and 10km...

2007-01-01T23:59:59.000Z

263

‘Chinook winds.’  

Science Journals Connector (OSTI)

...of south-easterly winds, which blow over the...Ocean, from which the winds come, can at this season...freezing-point. The wind well known in the Alps as the foehn is another example of...result is complicated by local details; regions of...

George M. Dawson

1886-01-08T23:59:59.000Z

264

Wind-Tunnel Simulation of Pedestrian-Level Wind in Los Angeles Bruce R. White  

E-Print Network (OSTI)

Wind-Tunnel Simulation of Pedestrian-Level Wind in Los Angeles Bruce R. White University-level winds within the South Coast Air Basin, a 6,000-square mile area that includes Orange County, most of Los Angeles and Riverside Counties. Working with the city of Los Angeles officials guidelines for wind

White, Bruce

265

Report on the Night of the Big Wind The Big Wind of 1839 was  

E-Print Network (OSTI)

the sea, causing widespread flooding in some areas telling me how extremely strong this wind wasReport on the Night of the Big Wind The Big Wind of 1839 was Ireland's worst natural disaster. It brought hurricane force winds very rare in such a temperate climate during the night of 6th - 7th January

266

MESOSCALE MODELLING OF WIND ENERGY OVER NON-HOMOGENEOUS TERRAIN  

E-Print Network (OSTI)

MESOSCALE MODELLING OF WIND ENERGY OVER NON-HOMOGENEOUS TERRAIN (ReviewArticle) Y. MAHRER.1. OBSERVATIONALAPPROACHES Evaluations of wind energy based on wind observations (usually surface winds) at well, the resolution of the wind energy pattern throughout an extended area by this methodology requires a large number

Pielke, Roger A.

267

E-Print Network 3.0 - area 1994-1995 technical Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

affecting wind farm investments and market... procedures for wind turbines and wind farms 12;R&D Priority Areas - cont. Grid ... Source: Ris National Laboratory Collection:...

268

Simulation of a STOL airlifter in wind shear, using total energy and glideslope angular error methods for glidepath control  

E-Print Network (OSTI)

. Nonlinear Time History Simulation of Landing Approach in Moderate Intensity Wind Shear 105 52. Nonlinear Time History Simulation of Landing Approach and Go-Around in Severe Wind Shear Set 1 116 53. Comparison of Nonlinear Time History Simulations of TEC... HTTB's Go-Around in Severe Wind Shear Using Differing Parameters Go-Around Parameters 126 54. Comparison of Time History Simulations of TEC HTTB's Landing Approach in Low Intensity Wind Shear Using Differing TES Analytical Models 136 LIST...

Johnson, Eric William

2012-06-07T23:59:59.000Z

269

AG Land 1 | Open Energy Information  

Open Energy Info (EERE)

1 1 Jump to: navigation, search Name AG Land 1 Facility AG Land 1 Sector Wind energy Facility Type Community Wind Facility Status In Service Owner AG Land Energy LLC Developer AG Land Energy LLC Energy Purchaser Alliant Energy Location Story County IA Coordinates 42.145531°, -93.432161° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.145531,"lon":-93.432161,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

270

Wind Blog  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

wind-blog Office of Energy Efficiency & Renewable wind-blog Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Two Facilities, One Goal: Advancing America's Wind Industry http://energy.gov/eere/articles/two-facilities-one-goal-advancing-america-s-wind-industry wind-industry" class="title-link">Two Facilities, One Goal: Advancing America's Wind Industry

271

Offshore Wind Potential Tables  

Wind Powering America (EERE)

Offshore wind resource by state and wind speed interval within 50 nm of shore. Offshore wind resource by state and wind speed interval within 50 nm of shore. Wind Speed at 90 m (m/s) 7.0 - 7.5 7.5 - 8.0 8.0 - 8.5 8.5 - 9.0 9.0 - 9.5 9.5 - 10.0 >10.0 Total >7.0 State Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) California 11,439 (57,195) 24,864 (124,318) 23,059 (115,296) 22,852 (114,258) 13,185 (65,924) 15,231 (76,153) 6,926 (34,629) 117,555 (587,773) Connecticut 530 (2,652) 702 (3,508) 40 (201) 0 (0) 0 (0) 0 (0) 0 (0) 1,272 (6,360) Delaware 223 (1,116) 724 (3,618) 1,062 (5,310) 931 (4,657) 0 (0) 0 (0) 0 (0) 2,940 (14,701) Georgia 3,820 (19,102) 7,741 (38,706) 523 (2,617) 0 (0) 0 (0) 0 (0) 0 (0) 12,085 (60,425) Hawaii 18,873 (94,363) 42,298 (211,492)

272

Effects of urban land cover modifications in a mesoscale meteorological model on surface temperature and heat fluxes in the Phoenix metropolitan area.  

E-Print Network (OSTI)

and latent heat fluxes and therefore the ground temperature, Tg. Evaporation, E, for each grid cell temperature and heat fluxes in the Phoenix metropolitan area. S. Grossman-Clarke1, J.A. Zehnder2, and W) satellite images [2]. The data were upscaled to a 30-second grid and used to augment and correct

Hall, Sharon J.

273

Manzanita Wind Energy Feasibility Study  

SciTech Connect

The Manzanita Indian Reservation is located in southeastern San Diego County, California. The Tribe has long recognized that the Reservation has an abundant wind resource that could be commercially utilized to its benefit. Manzanita has explored the wind resource potential on tribal land and developed a business plan by means of this wind energy feasibility project, which enables Manzanita to make informed decisions when considering the benefits and risks of encouraging large-scale wind power development on their lands. Technical consultant to the project has been SeaWest Consulting, LLC, an established wind power consulting company. The technical scope of the project covered the full range of feasibility assessment activities from site selection through completion of a business plan for implementation. The primary objectives of this feasibility study were to: (1) document the quality and suitability of the Manzanita Reservation as a site for installation and long-term operation of a commercially viable utility-scale wind power project; and, (2) develop a comprehensive and financeable business plan.

Trisha Frank

2004-09-30T23:59:59.000Z

274

Wind power forecast error smoothing within a wind farm  

Science Journals Connector (OSTI)

Smoothing of wind power forecast errors is well-known for large areas. Comparable effects within a wind farm are investigated in this paper. A Neural Network was taken to predict the power output of a wind farm in north-western Germany comprising 17 turbines. A comparison was done between an algorithm that fits mean wind and mean power data of the wind farm and a second algorithm that fits wind and power data individually for each turbine. The evaluation of root mean square errors (RMSE) shows that relative small smoothing effects occur. However, it can be shown for this wind farm that individual calculations have the advantage that only a few turbines are needed to give better results than the use of mean data. Furthermore different results occurred if predicted wind speeds are directly fitted to observed wind power or if predicted wind speeds are first fitted to observed wind speeds and then applied to a power curve. The first approach gives slightly better RMSE values, the bias improves considerably.

Nadja Saleck; Lueder von Bremen

2007-01-01T23:59:59.000Z

275

ANALYSIS OF THE PERFORMANCE AND COST EFFECTIVENESS OF NINE SMALL WIND ENERGY CONVERSION SYSTEMS FUNDED BY THE DOE SMALL GRANTS PROGRAM  

E-Print Network (OSTI)

W.R. (May 1977), Wind Energy tics for Large Arrays Statis-land-use related permits. Wind Energy Report (May 1981) p.2.R. Cappelli, B. Dawley, I. Wind Energy Conversion System

Kay, J.

2009-01-01T23:59:59.000Z

276

Session: Wind industry project development  

SciTech Connect

This first session at the Wind Energy and Birds/Bats workshop consisted of two presentations followed by a question and answer period. The session was intended to provide a general overview of wind energy product development, from the industry's perspective. Tom Gray of AWEA presented a paper titled ''State of the Wind Energy Industry in 2004'', highlighting improved performance and lower cost, efforts to address avian impacts, a status of wind energy in comparison to other energy-producing sources, and ending on expectations for the near future. Sam Enfield of Atlantic Renewable Energy Corporation presented a paper titled ''Key Factors for Consideration in Wind Plant Siting'', highlighting factors that wind facility developers must consider when choosing a site to build wind turbines and associated structures. Factors covered include wind resources available, ownership and land use patterns, access to transmission lines, accessibility and environmental impacts. The question and answer sum mary included topics related to risk taking, research and development, regulatory requirements, and dealing with utilities.

Gray, Tom; Enfield, Sam

2004-09-01T23:59:59.000Z

277

High Resolution Wind Retrieval from SeaWinds David G. Long  

E-Print Network (OSTI)

proven useful in a variety of land and ice applications and are being operationally used for sea ice monitoring and iceberg tracking. SeaWinds land and ice appli- cations have been aided by the use- surement response, is exploited by reconstruction and resolu- tion enhancement algorithms to produce

Long, David G.

278

NREL: Wind-Wildlife Impacts Literature Database (WILD) Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind-Wildlife Impacts Literature Database (WILD) Wind Research WILD WILD Wind-Wildlife Impacts Literature Database (WILD) Wind Research WILD WILD Browse By Reset All Geography Africa (11) Apply Africa filter Asia (12) Apply Asia filter Australia and Oceania (10) Apply Australia and Oceania filter Europe (219) Apply Europe filter Global (7) Apply Global filter North America (217) Apply North America filter Technology Land-Based Wind (280) Apply Land-Based Wind filter Marine Energy (58) Apply Marine Energy filter Offshore Wind (161) Apply Offshore Wind filter Power Lines (66) Apply Power Lines filter Towers (23) Apply Towers filter Animal Birds (334) Apply Birds filter Fish (71) Apply Fish filter Invertebrates (44) Apply Invertebrates filter Mammals (185) Apply Mammals filter Reptiles (10) Apply Reptiles filter Publication Year 2013 (92) Apply 2013 filter

279

Wind Energy Ordinances | Open Energy Information  

Open Energy Info (EERE)

Wind Energy Ordinances Wind Energy Ordinances Jump to: navigation, search Photo from First Wind, NREL 17545 Due to increasing energy demands in the United States and more installed wind projects, rural communities and local governments with limited or no experience with wind energy now have the opportunity to become involved in this industry. Communities with good wind resources may be approached by entities with plans to develop the resource. Although these opportunities can create new revenue in the form of construction jobs and land lease payments, they also create a new responsibility on the part of local governments to create ordinances to regulate wind turbine installations. Ordinances are laws, often found within municipal codes that provide various degrees of control to local governments. These laws cover issues

280

Solar and Wind Rights | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Wind Rights and Wind Rights Solar and Wind Rights < Back Eligibility Commercial Fed. Government General Public/Consumer Industrial Local Government Nonprofit Residential Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Buying & Making Electricity Water Heating Wind Program Info State Wisconsin Program Type Solar/Wind Access Policy Provider Public Service Commission of Wisconsin Wisconsin has several laws that protect a resident's right to install and operate a solar or wind energy system. These laws cover zoning restrictions by local governments, private land use restrictions, and system owner rights to unobstructed access to resources. Wisconsin permitting rules and model policy for small wind can be found [http://dsireusa.org/incentives/incentive.cfm?Incentive_Code=WI16R&re=1&ee=1

Note: This page contains sample records for the topic "land areas wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Wind Resources in Alaska | OpenEI  

Open Energy Info (EERE)

Resources in Alaska Resources in Alaska Dataset Summary Description Wind resource data for Alaska and southeast Alaska, both high resolution wind resource maps and gridded wind parameters. The two high resolution wind maps are comprised of a grid of cells each containing a single value of average wind speed (m/s) at a hub height of 30, 50, 70, and 100 meters and wind power density (W/m^2) at a hub height of 50 meters for a 40,000 square meter area. The additional gridded wind parameter data includes data for points spaced 2 kilometers apart, and include: predicted wind speed frequency distribution as well as speed and energy in 16 directions (the information needed to produce a wind rose image at a given point). Data included here as .kml files (for viewing in Google Earth). GIS shape files available for the gridded wind parameters datasets from AEDI (http://akenergyinventory.org/data.shtml).

282

Wind Resource Map: Mexico | Open Energy Information  

Open Energy Info (EERE)

Wind Resource Map: Mexico Wind Resource Map: Mexico Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Wind Resource Map: Mexico Focus Area: Renewable Energy Topics: Potentials & Scenarios Website: www.altestore.com/howto/Reference-Materials/Wind-Resource-Map-Mexico/a Equivalent URI: cleanenergysolutions.org/content/wind-resource-map-mexico,http://clean Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This is on-shore wind resource map for rural power applications in Mexico. The map can be used to aid in appropriate siting of wind power installations. Please note that the wind speed classes are taken at 30 m (100 feet [ft]), instead of the usual 10 m (33 ft). Each wind power class should span two power densities. For example, Wind Power Class = 3

283

Offshore Wind Research (Fact Sheet)  

SciTech Connect

This 2-page fact sheet describes NREL's offshore wind research and development efforts and capabilities. The National Renewable Energy Laboratory is internationally recognized for offshore wind energy research and development (R&D). Its experience and capabilities cover a wide spectrum of wind energy disciplines. NREL's offshore wind R&D efforts focus on critical areas that address the long-term needs of the offshore wind energy industry and the Department of Energy (DOE). R&D efforts include: (1) Developing offshore design tools and methods; (2) Collaborating with international partners; (3) Testing offshore systems and developing standards; (4) Conducting economic analyses; (5) Characterizing offshore wind resources; and (6) Identifying and mitigating offshore wind grid integration challenges and barriers. NREL has developed and maintains a robust, open-source, modular computer-aided engineering (CAE) tool, known as FAST. FAST's state-of-the-art capabilities provide full dynamic system simulation for a range of offshore wind systems. It models the coupled aerodynamic, hydrodynamic, control system, and structural response of offshore wind systems to support the development of innovative wind technologies that are reliable and cost effective. FAST also provides dynamic models of wind turbines on offshore fixed-bottom systems for shallow and transitional depths and floating-platform systems in deep water, thus enabling design innovation and risk reduction and facilitating higher performance designs that will meet DOE's cost of energy, reliability, and deployment objectives.

Not Available

2011-10-01T23:59:59.000Z

284

PNNL Reviews Wildlife-Interaction Monitoring for Offshore Wind Farms — Technology Hybrids Show Best Potential  

Energy.gov (U.S. Department of Energy (DOE))

Adding offshore wind to the U.S. renewable energy portfolio promises access to a large, reliable new energy source that is less subject to some of the challenges faced by land-based wind...

285

Sensitivity analysis of offshore wind turbine tower caused by the external force  

Science Journals Connector (OSTI)

Generally, faster wind speeds are observed in coastal areas than ... inland areas. Therefore, for the development of offshore wind energy, more electricity is expected to be generated using wind turbines. This al...

Namhyeong Kim; Jung Woon Jin

2013-07-01T23:59:59.000Z

286

New England Wind Forum; A Wind Powering America Project, Volume 1, Issue 4 - May 2008 (Newsletter)  

Wind Powering America (EERE)

4 - May 2008 4 - May 2008 New England Wind Takes a Wild Ride The past several months have been full of news on the regional wind power development front. The Stetson Ridge and Kibby Mountain Wind Projects in Maine received approvals from the Land Use Regulation Commission (these projects would constitute the two largest wind farms in New England). Under development since 1989, the Maine Mountain wind project was denied the same approval despite substantially downsizing the proposed project in an attempt to address objections. While the Lempster (New Hampshire) Wind Project weathered an appeal and construction has begun, key permits granted are now under appeal for the Sheffield (Vermont) and Hoosac (Massachusetts) wind projects. The Berkshire Wind project (under development

287

DOE Hydrogen Program Record 5011 - Hydrogen Potential from Solar and Wind Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Hydrogen Program Record Record #: 5011 Date: December 15, 2005 Title: Hydrogen Potential from Solar and Wind Resources Items: - Data/resource maps indicate that the potential exists to use wind and solar resources to produce more than 15 times the amount of hydrogen needed to displace the petroleum used by light duty vehicles in 2040. - About one billion metric tons of hydrogen could be produced by renewable electrolysis annually, based upon solar and wind resource potential. - The other three solar pathways - thermochemical, photoelectrochemical, and photobiological - would have similar or possibly higher productivity per unit of land area. Data: Figure 1: Hydrogen Potential from Solar Resources Note: Map shows total kilograms of hydrogen per county, normalized by

288

Time-domain Fatigue Response and Reliability Analysis of Offshore Wind Turbines with  

E-Print Network (OSTI)

Time-domain Fatigue Response and Reliability Analysis of Offshore Wind Turbines with Emphasis of offshore wind turbines Defense: 09.12.2012 2012 - : Structural Engineer in Det Norske Veritas (DNV) 2007 of the drive train of an on-land wind turbine under dynamic wind loads. The main tasks of this study are to

Nørvåg, Kjetil

289

ECE 457 Dawson Fall 2010 Course Syllabus & Policies Fundamentals of Wind Power  

E-Print Network (OSTI)

land/offshore turbines. 2. To identify and mathematically model the wind turbine components, calculate, Wind Turbines: Fundamentals, Technologies, Applications, Economics, Springer, 2nd Edition, 2006, (ISBN-0471489979) Catalog Description: Introduction to wind turbine systems including wind energy potential and application

Bolding, M. Chad

290

South Carolina Opens Nation’s Largest Wind Drivetrain Testing Facility  

Office of Energy Efficiency and Renewable Energy (EERE)

Clemson University Project Converted Former Navy Warehouse to First-of-its-Kind Testing Facility for Land-Based and Offshore Wind Turbines

291

Wind Power Forecasting  

NLE Websites -- All DOE Office Websites (Extended Search)

Retrospective Reports 2011 Smart Grid Wind Integration Wind Integration Initiatives Wind Power Forecasting Wind Projects Email List Self Supplied Balancing Reserves Dynamic...

292

Soils and Climate... Of the Texas A&M University Research and Extension Center at Stephenville in Relation to the Cross Timbers Land Resource Area.  

E-Print Network (OSTI)

area served by the Texas identified as members of the Stephenville series at. the A&M University Reserach and Extension Center at time would currently be classified into other series, e.g. SteDhnvilk. the Duffau or Weatherford. Several formations... and Weatherford soils, while similar to Duffau with re- spect to several important characteristics, differ with re- gard to solum thickness (Table 4). Specifically, carbo- nates occur within the 40-60 inch depth in the Cisco series and sandstone occurs within...

Stahnke, C.R.; Godfrey, C.L.; Moore, Joe; Newman, J.S.

1980-01-01T23:59:59.000Z

293

International Workshop on Small Scale Wind Energy for Developing Countries  

Open Energy Info (EERE)

Scale Wind Energy for Developing Countries Scale Wind Energy for Developing Countries Jump to: navigation, search Name International Workshop on Small Scale Wind Energy for Developing Countries Agency/Company /Organization Risoe DTU Sector Energy Focus Area Renewable Energy, Wind Topics Implementation, Technology characterizations Resource Type Workshop, Training materials, Lessons learned/best practices Website http://www.risoe.dtu.dk/~/medi References International Workshop on Small Scale Wind Energy for Developing Countries[1] Background "The workshop covers the following main themes: Wind energy technologies, their perspectives and applications in developing countries. Reliability of wind turbines, lifetime and strength of wind turbine components. Low cost and natural materials for wind turbines.

294

Wind turbine  

SciTech Connect

The improvement in a wind turbine comprises providing a tower with a freely liftable mount and adapting a nacelle which is fitted with a propeller windwheel consisting of a plurality of rotor blades and provided therein with means for conversion of wind energy to be shifted onto said mount attached to the tower. In case of a violent wind storm, the nacelle can be lowered down to the ground to protect the rotor blades from breakage due to the force of the wind. Required maintenance and inspection of the nacelle and replacement of rotor blades can be safely carried out on the ground.

Abe, M.

1982-01-19T23:59:59.000Z

295

Land Division: Uniform Environmental Covenants Program (Alabama) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Land Division: Uniform Environmental Covenants Program (Alabama) Land Division: Uniform Environmental Covenants Program (Alabama) Land Division: Uniform Environmental Covenants Program (Alabama) < Back Eligibility Agricultural Commercial Construction Fed. Government Industrial Local Government Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Alabama Program Type Environmental Regulations These regulations apply to environmental covenants arising from environmental response projects conducted under any of the following Alabama Department of Environmental Management programs: Scrap tire remediation sites, Soil and groundwater remediation sites, Leaking storage tank remediation sites, Solid waste disposal sites, Hazardous waste

296

Acquisition Of Land (Tennessee) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Acquisition Of Land (Tennessee) Acquisition Of Land (Tennessee) Acquisition Of Land (Tennessee) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Tennessee Program Type Siting and Permitting Provider Tennessee Regulatory Authority Every corporation organized under the laws of any state of the United

297

Land Conservation (Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Land Conservation (Virginia) Land Conservation (Virginia) Land Conservation (Virginia) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Virginia Program Type Siting and Permitting Provider Virginia Department of Conservation and Recreation The Virginia Department of Conservation and Recreation has developed the

298

MODIS Land Products Subsets  

NLE Websites -- All DOE Office Websites (Extended Search)

Introduction Introduction The goal of the MODIS Land Product Subsets project is to provide summaries of selected MODIS Land Products for the community to use for validation of models and remote-sensing products, and to characterize field sites. The MODIS Land Product Subsets are derived from MODIS products that were generated with Collection 4 or later algorithms. Please be advised that these products are subject to continual review and revision. The MODIS land product subsets are provided in ASCII and GeoTIFF format. The subsets are stored as individual text(ASCII) files, each file represents one field site and one MODIS product.The ASCII data covers 7x7 km of the field site. These ASCII files contain comma-delimited rows of parameter values (image bands) for each pixel in the selected area. Each row in the file will contain data from one 8-day, 16-day, or annual period (depending on the temporal frequency of the data product represented).

299

NREL: Wind Research - Mariah Power's Windspire Wind Turbine Testing and  

NLE Websites -- All DOE Office Websites (Extended Search)

Mariah Power's Windspire Wind Turbine Testing and Results Mariah Power's Windspire Wind Turbine Testing and Results A video of Mariah Power's Windspire wind turbine. Text Version As part of the National Renewable Energy Laboratory and U.S. Department of Energy (NREL/DOE) Independent Testing project, NREL tested Mariah Power's Windspire Giromill small wind turbine at the National Wind Technology Center (NWTC) through January 14, 2009 when NREL terminated its testing. Read a chronology of events and letter from Mariah Power to NREL. The Windspire is a 1.2-kilowatt (kW) vertical-axis small wind turbine. The turbine tower is 9.1 meters tall, and its rotor area is 1.2 by 6.1 meters. The turbine has a permanent-magnet generator with a single-phase output at 120 volts AC. Testing Summary Testing was terminated January 14, 2009. Published test reports include

300

Land Tenure, Land Use, and Land Reform at Dwesa–Cwebe, South Africa: Local Transformations and the Limits of the State  

E-Print Network (OSTI)

and Reverse Resettlement in South Africa’s Transkei. (Ph.D.Land and Development in South Africa's Black Rural Areas (the Land Question in South Africa, Michael de Klerk, ed. (

Fay, Derick A

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "land areas wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Wind Powering America: Wind Events  

Wind Powering America (EERE)

calendar.asp Lists upcoming wind calendar.asp Lists upcoming wind power-related events. en-us julie.jones@nrel.gov (Julie Jones) http://www.windpoweringamerica.gov/images/wpa_logo_sm.jpg Wind Powering America: Wind Events http://www.windpoweringamerica.gov/calendar.asp Pennsylvania Wind for Schools Educator Workshop https://www.regonline.com/builder/site/Default.aspx?EventID=1352684 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4068 Wed, 4 Dec 2013 00:00:00 MST 2014 Joint Action Workshop http://www.windpoweringamerica.gov/filter_detail.asp?itemid=3996 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=3996 Mon, 21 Oct 2013 00:00:00 MST AWEA Wind Project Operations and Maintenance and Safety Seminar http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4009 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4009 Mon, 21

302

Commercial Scale Wind Incentive Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Scale Wind Incentive Program Commercial Scale Wind Incentive Program Commercial Scale Wind Incentive Program < Back Eligibility Agricultural Commercial Local Government Nonprofit Residential Schools State Government Savings Category Wind Buying & Making Electricity Maximum Rebate Project Development Assistance: $40,000 Program Info State Oregon Program Type State Rebate Program Rebate Amount Varies Provider Energy Trust of Oregon Energy Trust of Oregon's Commercial Scale Wind offering provides resources and cash incentives to help communities, businesses land owners, and government entities install wind turbine systems up to 20 megawatts (MW) in capacity. Projects may consist of a single turbine or a small group of turbines. A variety of ownership models are allowed. Incentive programs

303

Attitude and acceptance of offshore wind farms—The influence of travel time and wind farm attributes  

Science Journals Connector (OSTI)

Generally people are more positive towards offshore wind farms compared to on-land wind farms. However, the attitudes are commonly assumed to be independent of experience with wind farms. Important relations between attitude and experience might therefore be disregarded. The present paper gives a novel contribution to this field. First of all, we give a thorough review of the studies that have analysed the relation between experience with wind turbines and attitude. In addition, we supplement the review by analysing the effect of travel distance to the nearest offshore wind farm and the wind farms attributes on attitude towards offshore wind farms. The results point towards that the travel time and the attributes of the nearest offshore wind farm influence the attitude significantly. Travel time has mixed effects on the attitude, whilst offshore wind farms with many turbines generate more positive attitudes compared to wind farms with fewer turbines.

Jacob Ladenburg; Bernd Möller

2011-01-01T23:59:59.000Z

304

Chesapeake Forest Lands (Maryland) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chesapeake Forest Lands (Maryland) Chesapeake Forest Lands (Maryland) Chesapeake Forest Lands (Maryland) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info Start Date 1999 State Maryland Program Type Siting and Permitting Provider Maryland Department of Natural Resources The Chesapeake Forest Lands are most of the former land holdings of the

305

Status of Power Generation by Domestic Scale Wind Turbines in Australia  

Science Journals Connector (OSTI)

The world's fossil fuel energy resources are diminishing at a faster rate and most importantly the liquid fossil fuel is expected to be finished by 2060s. Moreover, the fossil fuel is directly related to air pollution, land and water degradation. The danger of climate change due to global warming caused by greenhouse gas emissions compels the policy makers, scientists and researchers globally to explore power generation from renewable sources such as wind. Despite significant progresses have been made in power generation using large scale wind turbines recently, domestic scale wind turbines that have immense potentials for standalone power generation are not explored and adequately researched. Therefore, the primary objective of this study is to review and analyse the potentials for power generation by domestic scale wind turbines for the residential and semi-commercial applications. The study reviews the current status of wind characteristics in built-up areas, economic feasibility, aerodynamic and technological limits, local government planning requirement, local and foreign small scale wind turbine manufacturers.

Firoz Alam; Abdulkadir Ali; Iftekhar Khan; Saleh Mobin

2012-01-01T23:59:59.000Z

306

THE CONSERVATION OF OUR LAND RESOURCES  

Science Journals Connector (OSTI)

...Used by Flying Fish: DR. C. A...present-day farm land had not been...silt deposits in offshore waters, of lowlands...he had paid to wind and water uncontrolled...These large farms will be held either...living on small farms and deriving a...sanctuaries; for fish-eries; for...

Jacob G. Lipman

1936-01-24T23:59:59.000Z

307

Flow Simulations of a Rotating MidSized Rim Driven Wind Turbine  

E-Print Network (OSTI)

relatively high free stream wind velocities that limit the geographic areas suitable for wind energy. The Keuka rimdriven wind turbine (RDWT) (U.S. Patent 7399162) developed by Keuka Energy LLC is one wind turbine designed for wind energy extraction in locations of wind class three

Maccabe, Barney

308

Wind: wind speed and wind power density maps at 10m and 50m above surface  

Open Energy Info (EERE)

maps at 10m and 50m above surface maps at 10m and 50m above surface and 0.25 degree resolution for global oceans from NREL Dataset Summary Description (Abstract): Raster GIS ASCII data files of wind speed and wind power density at 10 and 50 m heights. Global data of offshore wind resource as generated by NASA's QuikSCAT SeaWinds scatterometer. (Purpose): To provide information on the wind resource potential of offshore areas. Source NREL Date Released December 31st, 2005 (9 years ago) Date Updated November 01st, 2007 (7 years ago) Keywords GEF GIS NASA NREL SWERA UNEP wind Data application/zip icon Download Maps (zip, 36.3 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period 2000 - 2004 License License Other or unspecified, see optional comment below

309

Wind: wind speed and wind power density GIS data at 10m and 50m above  

Open Energy Info (EERE)

10m and 50m above 10m and 50m above surface and 0.25 degree resolution for global oceans from NREL Dataset Summary Description (Abstract): Raster GIS ASCII data files of wind speed and wind power density at 10 and 50 m heights. Global data of offshore wind resource as generated by NASA's QuikScat SeaWinds scatterometer. (Purpose): To provide information on the wind resource potential of offshore areas. Source NREL Date Released December 31st, 2005 (9 years ago) Date Updated November 01st, 2007 (7 years ago) Keywords GEF GIS NASA NREL ocean offshore QuikScat SWERA UNEP wind Data application/msword icon Download Documentation (doc, 53.8 KiB) application/zip icon Download Data (zip, 41 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period 01/01/2000 - 12/31/2004

310

Small Wind Electric Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small Wind Electric Systems Small Wind Electric Systems Small Wind Electric Systems July 15, 2012 - 5:22pm Addthis Wind power is the fastest growing source of energy in the world -- efficient, cost effective, and non-polluting. What does this mean for me? Small wind electric systems can be one of the most efficient ways of producing electricity for your home. Wind energy is a fast growing market, because it is effective and cost efficient. If you have enough wind resource in your area and the situation is right, small wind electric systems are one of the most cost-effective home-based renewable energy systems -- with zero emissions and pollution. Small wind electric systems can: Lower your electricity bills by 50%-90% Help you avoid the high costs of having utility power lines extended

311

Wyoming Wind Power Project (generation/wind)  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Power > Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Wyoming Wind Power Project (Foote Creek Rim I and II) Thumbnail image of wind...

312

Wind Energy Resource Atlas of Southeast China  

SciTech Connect

This wind energy resource atlas identifies the wind characteristics and distribution of the wind resource in two regions of southeast China. The first region is the coastal area stretching from northern Fujian south to eastern Guangdong and extending approximately 100 km inland. The second region is centered on the Poyang Lake area in northern Jiangxi. This region also includes parts of two other provinces-Anhui and Hubei-and extends from near Anqing in Anhui south to near Nanchang in Jiangxi. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies, both for utility-scale power generation and off-grid wind energy applications. We created the high-resolution (1-km2) maps in 1998 using a computerized wind resource mapping system developed at the National Renewable Energy Laboratory (NREL). The mapping system uses software known as a Geographical Information System (GIS).

Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

2002-11-01T23:59:59.000Z

313

Optimum propeller wind turbines  

SciTech Connect

The Prandtl-Betz-Theodorsen theory of heavily loaded airscrews has been adapted to the design of propeller windmills which are to be optimized for maximum power coefficient. It is shown that the simpler, light-loading, constant-area wake assumption can generate significantly different ''optimum'' performance and geometry, and that it is therefore not appropriate to the design of propeller wind turbines when operating in their normal range of high-tip-speed-to-wind-speed ratio. Design curves for optimum power coefficient are presented and an example of the design of a typical two-blade optimum rotor is given.

Sanderson, R.J.; Archer, R.D.

1983-11-01T23:59:59.000Z

314

Land Turtles  

NLE Websites -- All DOE Office Websites (Extended Search)

Turtles Turtles Nature Bulletin No. 157 May 29, 1948 Forest Preserve District of Cook County William N. Erickson, President Roberts Mann, Supt. of Conservation LAND TURTLES Turtles are four-legged reptiles that originated before the dinosaurs appeared, some 175 million years ago. The distinguishing feature of the turtle is its shell, varying in shape and markings with the different species: an arched upper shell grown fast to the backbone, and a flat lower shell grown fast to the breastbone, the two connected on either side by a bony bridge. In some species, like the box turtles, the lower shell is hinged, enabling the animal to completely conceal its head, tail and limbs by closing the two shells together. Most turtles live in water all or part of the time, but all of them lay their eggs on land, and neither the nest nor the young is attended by the parents. Each species has its own method of nest construction, using the hind legs to dig a hole in the ground, but the eggs are covered and left to be hatched by the heat of the sun. The eggs are relished by many animals such as skunks and squirrels; the young, before their armor hardens, are devoured by birds, mammals, fishes and other turtles.

315

Offshore Wind Power USA  

Energy.gov (U.S. Department of Energy (DOE))

The Offshore Wind Power USA conference provides the latest offshore wind market updates and forecasts.

316

AG Land 5 | Open Energy Information  

Open Energy Info (EERE)

5 5 Jump to: navigation, search Name AG Land 5 Facility AG Land 5 Sector Wind energy Facility Type Community Wind Facility Status In Service Owner AG Land Energy LLC Developer Enervation LLC Energy Purchaser Alliant Energy Location Hamilton County IA Coordinates 42.335544°, -93.636953° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.335544,"lon":-93.636953,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

317

Definition: Community Wind | Open Energy Information  

Open Energy Info (EERE)

Wind Wind Jump to: navigation, search Dictionary.png Community Wind A community owned wind project. The asset can be owned by one or several types of community groups, including: farmers, small business, local groups and organizations, schools and local electric cooperatives and municipal utilities.[1] View on Wikipedia Wikipedia Definition Community wind projects are locally owned by farmers, investors, businesses, schools, utilities, or other public or private entities who utilize wind energy to support and reduce energy costs to the local community. The key feature is that local community members have a significant, direct financial stake in the project beyond land lease payments and tax revenue. Projects may be used for on-site power or to generate wholesale power for sale, usually on a commercial-scale greater

318

Stakeholder Engagement and Outreach: Regional Wind Activities  

Wind Powering America (EERE)

Regional Activities Regional Activities State Activities State Lands Siting Regional Wind Activities Learn more about regional activities in New England. New England Wind Forum The New England Wind Forum has its own website with information particular to the region and its own unique circumstances. Find regional events, news, projects, and information about wind technology, economics, markets for wind energy, siting considerations, policies and public acceptance issues as they all pertain to the New England region. The site was launched in 2005 to provide a single comprehensive source of up-to-date, Web-based information on a broad array of wind-energy-related issues pertaining to New England. Contacts | Website Policies | U.S. Department of Energy | USA.gov Content Last Updated: 9/2

319

NREL: National Wind Technology Center Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

National Wind Technology Center National Wind Technology Center National Wind Technology Center NREL's National Wind Technology Center (NWTC) is the nation's premier wind energy technology research facility. The NWTC advances the development of innovative land-based and offshore wind energy technologies through its research and testing facilities. Researchers draw on years of experience and their wealth of expertise in fluid dynamics and structural testing to also advance marine and hydrokinetic water power technologies. At the NWTC researchers work side-by-side with industry partners to develop new technologies that can compete in the global market and to increase system reliability and reduce costs. Learn more about the facilities and capabilities at the NWTC by viewing our fact sheet.

320

The Need for Open Lands  

NLE Websites -- All DOE Office Websites (Extended Search)

Need for Open Lands Need for Open Lands Nature Bulletin No. 742 February 8, 1964 Forest Preserve District of Cook County Seymour .Simon, President Roberts Mann, Conservation Editor THE NEED FOR OPEN LANDS There is an old saying: The proof of the pudding is the eating . In other words, if it's good, people enjoy it and beg for more. The proof of the need for open lands -- publicly owned areas for recreational uses and open spaces undisturbed -- is the tremendous and ever-increasing use of those we have. We need more now. Year after year we will need more and more. It is imperative that areas desirable for future use be acquired now or as soon as possible, regardless of cost and even though they may stand idle ' -- vacant and undeveloped -- until more funds become available. Otherwise they may be gone, or the asking price may be a hundred times greater. Open spaces such as farm lands and prairies may have been occupied by residential, commercial or industrial developments. Woodlands may have been cut, stream channels dredged and wetlands drained, destroying all but a memory of their beauty and recreational values. There are compelling reasons for our need of open lands and why we should waste no time in providing more. Those reasons have been confirmed and emphasized by exhaustive studies and statistical analyses nationwide in scope.

Note: This page contains sample records for the topic "land areas wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

offshore wind farm  

Science Journals Connector (OSTI)

offshore wind farm, wind farm [‘Wind park’ which one may find on the ... engineers and should not be used. A wind farm consists of a network of wind turbines] ? Windkraftanlage f, Windpark m; Offshore

2014-08-01T23:59:59.000Z

322

Wind Energy Leasing Handbook  

E-Print Network (OSTI)

Wind Energy Leasing Handbook Wind Energy Leasing Handbook E-1033 Oklahoma Cooperative Extension?..................................................................................................................... 31 What do wind developers consider in locating wind energy projects?............................................................................................ 37 How do companies and individuals invest in wind energy projects?....................................................................

Balasundaram, Balabhaskar "Baski"

323

Design Wind Speed  

Science Journals Connector (OSTI)

Wind is characterized by various different parameters. They include the following items: (1) wind speed, such as the mean wind speed and maximum instantaneous wind speed; (2) wind direction such as the azimuth di...

Yozo Fujino; Kichiro Kimura; Hiroshi Tanaka

2012-01-01T23:59:59.000Z

324

EIA - Greenhouse Gas Emissions - Land use  

Gasoline and Diesel Fuel Update (EIA)

6. Land use 6. Land use 6.1. Total land use, land use change, and forests This chapter presents estimates of carbon sequestration (removal from the atmosphere) and emissions (release into the atmosphere) from forests, croplands, grasslands, and residential areas (urban trees, grass clippings, and food scraps) in the United States. In 2008, land use, land use change, and forests were responsible for estimated net carbon sequestration of 940 MMTCO2e (Table 31), representing 16 percent of total U.S. CO2 emissions. The largest sequestration category in 2008 was forest lands and harvested wood pools,49 with estimated sequestration increasing from 730 MMTCO2e in 1990 to 792 MMTCO2e in 2008. The second-largest carbon sequestration category was urban trees,50 responsible for 57 MMTCO2e in 1990 and 94

325

Wind Powering America: New England Wind Forum  

Wind Powering America (EERE)

About the New England Wind Forum About the New England Wind Forum New England Wind Energy Education Project Historic Wind Development in New England State Activities Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share The New England Wind Forum was conceived in 2005 as a platform to provide a single, comprehensive and objective source of up-to-date, Web-based information on a broad array of wind-energy-related issues pertaining to New England. The New England Wind Forum provides information to wind energy stakeholders through Web site features, periodic newsletters, and outreach activities. The New England Wind Forum covers the most frequently discussed wind energy topics.

326

Wind Resource Atlas of Oaxaca | Open Energy Information  

Open Energy Info (EERE)

Resource Atlas of Oaxaca Resource Atlas of Oaxaca Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Wind Resource Atlas of Oaxaca Focus Area: Renewable Energy Topics: Potentials & Scenarios Website: www.nrel.gov/wind/pdfs/34519.pdf Equivalent URI: cleanenergysolutions.org/content/wind-resource-atlas-oaxaca,http://cle Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This wind resource atlas identifies wind characteristics and distribution of wind resources in Oaxaca, Mexico, at a wind power density of 50 meters above ground. The detailed wind resource maps contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies for utility-scale power generation, village power, and off-grid wind energy applications. The wind maps were created using a

327

Klondike III/Biglow Canyon Wind Integration Project; Final Environmental Impact Statement, September 2006.  

SciTech Connect

BPA has been asked by PPM Energy, Inc. to interconnect 300 megawatts (MW) of electricity generated from the proposed Klondike III Wind Project to the Federal Columbia River Transmission System. Orion Energy LLC has also asked BPA to interconnect 400 MW of electricity from its proposed Biglow Canyon Wind Farm, located north and east of the proposed Klondike III Wind Project. (Portland General Electric recently bought the rights to develop the proposed Biglow Canyon Wind Farm from Orion Energy, LLC.) Both wind projects received Site Certificates from the Oregon Energy Facility Siting Council on June 30, 2006. To interconnect these projects, BPA would need to build and operate a 230-kV double-circuit transmission line about 12 miles long, expand one substation and build one new substation. The wind projects would require wind turbines, substation(s), access roads, and other facilities. Two routes for the transmission line are being considered. Both begin at PPM's Klondike Schoolhouse Substation then travel north (Proposed Action) or north and westerly (Middle Alternative) to a new BPA 230-kV substation next to BPA's existing John Day 500-kV Substation. BPA is also considering a No Action Alternative in which BPA would not build the transmission line and would not interconnect the wind projects. The proposed BPA and wind projects would be located on private land, mainly used for agriculture. If BPA decides to interconnect the wind projects, construction of the BPA transmission line and substation(s) could commence as early as the winter of 2006-07. Both wind projects would operate for much of each year for at least 20 years. The proposed projects would generally create no or low impacts. Wildlife resources and local visual resources are the only resources to receive an impact rating other than ''none'' or ''low''. The low to moderate impacts to wildlife are from the expected bird and bat mortality and the cumulative impact of this project on wildlife when combined with other proposed wind projects in the region. The low to high impacts to visual resources reflect the effect that the transmission line and the turbine strings from both wind projects would have on viewers in the local area, but this impact diminishes with distance from the project.

United States. Bonneville Power Administration

2006-09-01T23:59:59.000Z

328

Wind News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

news Office of Energy Efficiency & Renewable news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en New Report Shows Trend Toward Larger Offshore Wind Systems, with 11 Advanced Stage Projects Proposed in U.S. Waters http://energy.gov/eere/articles/new-report-shows-trend-toward-larger-offshore-wind-systems-11-advanced-stage-projects wind-systems-11-advanced-stage-projects" class="title-link">New Report Shows Trend Toward Larger Offshore Wind Systems, with 11 Advanced Stage Projects Proposed in U.S. Waters

329

A method of micrositing of wind turbine on building roof-top by using joint distribution of wind speed and direction, and computational fluid dynamics  

Science Journals Connector (OSTI)

Urban wind turbines are recommended for installation on a building roof-top to capture more wind energy. It is critical to decide an exact location for the wind turbine installation on the roof-top area. ... this...

Bavuudorj Ovgor; Sang-Kwon Lee…

2012-12-01T23:59:59.000Z

330

The atmospheric chemistry of trace gases and particulate matter emitted by different land uses in Borneo  

Science Journals Connector (OSTI)

...photochemistry and land-system change using measurements...Coupling in the Earth System (OP3/ACES) campaign...guineensis Elaeis oleifera hybrids of the progeny...East Asian land-system change on atmospheric...and land cover: solar radiation is efficiently...based on the vertical wind. There is no consensus...

2011-01-01T23:59:59.000Z

331

Title: Ontario Wind Power Allocation Ontario Ministry of Natural Resources  

E-Print Network (OSTI)

Title: Ontario Wind Power Allocation Data Creator / Copyright Owner: Ontario Ministry of Natural/A Updates: N/A Abstract: This data consists of a polygon shapefile, Wind Power Allocation Block. A Wind Power Allocation Block is an area that could be allocated for the exploration of wind power generation

332

Wind energy  

Science Journals Connector (OSTI)

Wind energy is rapidly growing. In 2006 the installed generating capacity in the world increased by 25%, a growth rate which has more or less been sustained during the last decade. And there is no reason to believe that this growth will slow significantly in the coming years. For example, the United Kingdom's goal for installed wind turbines by 2020 is 33 GW up from 2 GW in 2006, an average annual growth rate of 22% over that period. More than half of all turbines are installed in Europe, but United States, India and lately China are also rapidly growing markets. The cradle of modern wind energy was set by innovative blacksmiths in rural Denmark. Now the wind provides more than 20% of the electrical power in Denmark, the industry has professionalized and has close ties with public research at universities. This focus issue is concerned with research in wind energy. The main purposes of research in wind energy are to: decrease the cost of power generated by the wind; increase the reliability and predictability of the energy source; investigate and reduce the adverse environmental impact of massive deployment of wind turbines; build research based educations for wind energy engineers. This focus issue contains contributions from several fields of research. Decreased costs cover a very wide range of activities from aerodynamics of the wind turbine blades, optimal site selection for the turbines, optimization of the electrical grid and power market for a fluctuating source, more efficient electrical generators and gears, and new materials and production techniques for turbine manufacturing. The United Kingdom recently started the construction of the London Array, a 1 GW off-shore wind farm east of London consisting of several hundred turbines. To design such a farm optimally it is necessary to understand the chaotic and very turbulent flow downwind from a turbine, which decreases the power production and increases the mechanical loads on other nearby turbines. Also addressed within the issue is how much conventional power production can be replaced by the ceaseless wind, with the question of how Greece's target of 29% renewables by 2020 is to be met efficiently. Other topics include an innovative way to determine the power curve of a turbine experimentally more accurately, the use of fluid dynamics tools to investigate the implications of placing vortex generators on wind turbine blades (thereby possibly improving their efficiency) and a study of the perception of wind turbine noise. It turns out that a small but significant fraction of wind turbine neighbours feel that turbine generated noise impairs their ability to rest. The annoyance is correlated with a negative attitude towards the visual impact on the landscape, but what is cause and effect is too early to say. As mentioned there is a rush for wind turbines in many countries. However, this positive development for the global climate is currently limited by practical barriers. One bottleneck is the difficulties for the sub-suppliers of gears and other parts to meet the demand. Another is the difficulties to meet the demand for engineers specialized in wind. For that reason the Technical University of Denmark (DTU) recently launched the world's first Wind Energy Masters Program. Here and elsewhere in the world of wind education and research we should really speed up now, as our chances of contributing to emission free energy production and a healthier global climate have never been better. Focus on Wind Energy Contents The articles below represent the first accepted contributions and further additions will appear in the near future. Wind turbines—low level noise sources interfering with restoration? Eja Pedersen and Kerstin Persson Waye On the effect of spatial dispersion of wind power plants on the wind energy capacity credit in Greece George Caralis, Yiannis Perivolaris, Konstantinos Rados and Arthouros Zervos Large-eddy simulation of spectral coherence in a wind turbine wake A Jimenez, A Crespo, E Migoya and J Garcia How to improve the estimation of

Jakob Mann; Jens Nørkær Sørensen; Poul-Erik Morthorst

2008-01-01T23:59:59.000Z

333

E-Print Network 3.0 - altamont pass wind Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

2 UNDERSTANDING THE PROBLEM 1.1 INTRODUCTION Summary: consistently documented that wind turbines in the Altamont Pass Wind Resource Area (APWRA) kill large numbers... et al....

334

Overview of Existing Wind Energy Ordinances  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

government and community, typically to the level of restoring the area(s) where the wind turbines are located to their original condition at the end of the project life or facility...

335

Critical Areas of State Concern (Maryland) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of State Concern (Maryland) of State Concern (Maryland) Critical Areas of State Concern (Maryland) < Back Eligibility Construction Developer Industrial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maryland Program Type Siting and Permitting Provider Maryland Department of the Environment This legislation designates the Chesapeake Bay, other Atlantic Coastal Bays, and their tributaries and adjacent lands as critical areas of state concern. It is state policy to protect these areas and to prevent the further degradation of water quality. Further development of non-water dependent structures and increase in lot coverage in these areas is presumed to be contrary to the policy of the state, and construction is

336

NREL-International Wind Resource Maps | Open Energy Information  

Open Energy Info (EERE)

International Wind Resource Maps International Wind Resource Maps Jump to: navigation, search Tool Summary Name: NREL-International Wind Resource Maps Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Wind Topics: Resource assessment Website: www.nrel.gov/wind/international_wind_resources.html NREL-International Wind Resource Maps Screenshot References: International Wind Resource Maps [1] Logo: NREL-International Wind Resource Maps This resource provides access to NREL-developed wind resource maps and atlases for several countries. NREL's wind mapping projects have been supported by the U.S. Department of Energy, U.S. Agency for International Development, and United Nations International Programme. "NREL is helping to develop high-resolution projections of wind resources

337

20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply  

Energy.gov (U.S. Department of Energy (DOE))

The report considers some associated challenges, estimates the impacts and considers specific needs and outcomes in various areas associated with a 20% Wind Scenario.

338

Maintaining Productivity of Rural Area in Indonesia: A Perspective of Total Customers Involvement from Design to Maintenance of a Local Wind Pump (LWP) Application  

Science Journals Connector (OSTI)

A sustainable study development on a local wind pump (LWP) has been indicated as one of solutions for maintaining stable productivity of marginal societies (traditional farmers peasant and tribes) in facing multi crisis happened in Indonesia. Moreover the study is designed to assess the LWP by accommodating a total participation of the societies as targeted customers. The participation was formulated from design to maintenance stages of the LWP. The approaches of implementation a QFD method a field survey and life skill training have been fitted to the formulation. In this article significant achievements resulted by the approaches are reported. The QFD was adopted to classify all of the parameters constraints and boundaries which were obtained by questionnaire to the customers. All of the parameters were plotted in to a house of quality matrix (HOQ) which contributed to manufacture criteria and as well as maintenance criteria. The field study was accomplished in order to assess an availability value of the LWP components. The life skill training was conducted to equip manufacturing skill to the customers. Throughout the study it was observed that the LWP was manufactured by accommodating 90% of a local materials and local components available in district markets of Lampung province Indonesia. Throughout the survey critical parameters for a sustainable development of the LWP have been defined namely government protection capital investment for supplying component and maintenance networking for supporting the LWP performance. The life skill training given to the customers affected to incremental value of reliability in terms of maintenance skill. As a result the LWP was indicated as a local competitive product of renewable energy (RE) to the society.

Beny Yudiantoro; Ahmad Taufik

2007-01-01T23:59:59.000Z

339

Section 4 - Wind  

Science Journals Connector (OSTI)

The exploitation of wind power for useful energy is both a practice dating back to ancient times and a key component of today’s effort to substitute renewable energy sources for fossil fuels. Use of wind energy has progressed historically through three stages. First came the use of wind for propulsion of water craft via sails. Then the windmill came into use in agriculture, originally to grind grain and then later to drain water from fields or raise it from a well. Finally (much later) came the use of wind to power turbines to generate electricity. The two historic uses of wind power, sailing ships and windmills, are both still in existence today, though on a lesser scale than in the past. The earliest use of the sail is thought to have occurred more than 5,000 years ago on the Nile River and in the Mediterranean Sea. A major advance in sailing came in the era of the Roman Empire, as early as the 2nd century A.D., with the appearance on the Mediterranean of the lateen (triangular) sail, which was capable of taking the wind on either side and thus could sail into the wind, as opposed to the earlier square sail which could only sail with the wind. This technology is believed to have originated with Arab sailors on the Red Sea about 200 years earlier. The use of multiple triangular sails, in combination with square sails, led to the Age of Sail, during which sailing vessels were employed for global exploration, international trade, and naval warfare. The ultimate in wind-powered ships were the clipper ships of the mid 19th century, famous for their high speed, elegant design, and graceful appearance. Ironically, the finest clipper ships appeared just as the Age of Sail was in its twilight years, having been overtaken by the development of the steam-powered ship. The classic European windmill first appeared in the Middle Ages, probably in the 12th century. A written record of one in England dates from the 1180s. The common type was the tower mill, which was developed shortly afterward. It became known as the Dutch windmill because it was ubiquitous in that country, and even today it is a popular symbol of the Dutch nation. The windmill influenced the topography of the Netherlands in that it was widely used to provide the power to reclaim submerged land. The windmill also was reported in China at about the same time it emerged in Europe, though it may have developed even earlier. In the United States the so-called American farm or American-style windmill became a familiar sight from the middle of the 19th century onward, especially in the developing Western region. It was used to provide power to raise well water and to run farm machinery. New technology enabled it to turn its wheel to adjust to changing wind direction, and also to restrict the wheel speed so that the blades would not be destroyed during storms. The use of steel rather than wood as the blade material was a later refinement. This type of windmill eventually spread far beyond the U.S. borders to be used globally. The beginnings of the use of wind power to generate electricity came in the late 1880s and early 1890s, through the work of Charles Brush in the U.S. and Poul la Cour in Denmark. Brush modified a windmill to operate a DC generator, creating what is considered to be the first wind power plant. The experiments of la Cour with wind turbines laid the foundation for modern wind energy technology. In the 1920s the U.S. wind pioneer Marcellus Jacobs developed the first commercial propeller-type rotor for a wind turbine. Companies such as his Jacobs Wind continued on the path established by Brush of modifying existing windmills to provide power to drive DC generators, especially for use by farms that were not on the electrical grid prior to the coming of widespread rural electrification. Another major development of the 1920s was the vertical axis wind turbine (VAWT), which was patented by the French engineer Georges J. M. Darrieus. This new type of wind turbine had a distinctive “eggbeater”or “skipping rope” design, in contrast with the horizontal a

Cutler J. Cleveland; Christopher Morris

2014-01-01T23:59:59.000Z

340

ISET-Wind-Index Assessment of the Annual Available Wind Energy  

E-Print Network (OSTI)

Particularly in years with wind speeds that are clearly below average, dissatisfaction of operators and even liquidity problems are sparked through the unexpected low annual power production. An objective standard for the evaluation of the respective “wind year ” is required for the internal estimation of the performance of wind farms, and for justification to share owners and banks. The annual wind conditions are composed from such a multitude of meteorological situations, differing from location to location, that the available wind energy at every individual location develops totally differently. A single code is therefore not sufficient to describe the “wind year ” in Germany and, moreover, the evaluation of annual available wind energy must be carried out separately for the smallest areas possible. With the support of the Gothaer Rückversicherungen AG, a procedure has been developed at ISET which provides the proportion of the respective annual available wind energy, in relation to the long-term average available wind energy, for each 10 km x 10 km sized plan area in Germany. This amount, the ISET-Wind-Index, is founded on wind measurements at locations that are typical for wind energy use and therefore presents an objective standard. The measurement grid is part of the “Scientific Measurement and Evaluation Programme ” (WMEP), which accompanies the “250 MW Wind ” project of the German Federal Ministry for Economy and Labour. The ISET-Wind-Index, which will be regularly updated, provides an objective standard for the estimation of annual available

Berthold Hahn; Kurt Rohrig

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "land areas wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Final environmental impact report for the California Energy Commission Solar Program and Wind Program  

SciTech Connect

This Final Environmental Impact Report analyzes the California Energy Commission's Solar Program and Wind Program. The Solar Program is not expected to have any significant environmental effects. The assembly of solar systems will require the manufacture of certain component materials such as steel, aluminum, glass, copper, fiberglass insulation and polyurethane insulation. With the exception of copper and aluminum, all the materials can be manufactured in California. The air quality impacts associated with the production of these materials are insignificant and, in most cases, are more than offset by reduced emissions from decreased electrical generation and natural gas consumption. There are no expected water quality impacts associated with the production of the materials. The Solar Program will also have socioeconomic effects. The purchase price of some new housing will increase as a result of installing solar systems. The Solar Program will have a positive effect on employment, increasing the number of jobs available in both the manufacturing and installation of solar systems. The Wind Program has a near-term goal of 500 megawatts of wind generated electricity on line in California by 1985. Potential sites for wind development from a wind resource standpoint, occur in the desert and mountains where strong, persistent winds occur. The siting of a specified number of wind turbines may pose potential environmental impacts, but these effects are mitigable. The most substantial concern is the need for scattered wind turbines over a given area. Construction impacts from turbine pad leveling, access roads and transmission corridors could be considerable. Conflicts with existing and future land use may also occur. Operational effects include minor changes in microclimate, bird collisions with the turbine blades, noise, increased off-road vehicle use, aesthetics and radio and television wave interference.

Not Available

1980-05-01T23:59:59.000Z

342

Economic Benefit of Land Conservation in Protecting  

E-Print Network (OSTI)

by plants instead of traveling into the water system #12;Water Storage on Conservation Lands · Upland areas.9 billion · In terms of water quality and groundwater purification, returns of $13.2 billion estimated #12Economic Benefit of Land Conservation in Protecting Water Resources November 2, 2011 Presented by

Demers, Nora Egan

343

Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power Program (WWPP) Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power...

344

LIDAR Wind Speed Measurements of Evolving Wind Fields  

SciTech Connect

Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feedforward control systems that are designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. Past studies have assumed the validity of physicist G.I. Taylor's 1938 frozen turbulence hypothesis, which implies that turbulence remains unchanged as it advects downwind at the mean wind speed. With Taylor's hypothesis applied, the only source of wind speed measurement error is distortion caused by the LIDAR. This study introduces wind evolution, characterized by the longitudinal coherence of the wind, to LIDAR measurement simulations using the National Renewable Energy Laboratory's (NREL's) 5-megawatt turbine model to create a more realistic measurement model. A simple model of wind evolution was applied to a frozen wind field that was used in previous studies to investigate the effects of varying the intensity of wind evolution. LIDAR measurements were also evaluated using a large eddy simulation (LES) of a stable boundary layer that was provided by the National Center for Atmospheric Research. The LIDAR measurement scenario investigated consists of a hub-mounted LIDAR that scans a circle of points upwind of the turbine in order to estimate the wind speed component in the mean wind direction. Different combinations of the preview distance that is located upwind of the rotor and the radius of the scan circle were analyzed. It was found that the dominant source of measurement error for short preview distances is the detection of transverse and vertical wind speeds from the line-of-sight LIDAR measurement. It was discovered in previous studies that, in the absence of wind evolution, the dominant source of error for large preview distances is the spatial averaging caused by the LIDAR's sampling volume. However, by introducing wind evolution, the dominant source of error for large preview distances was found to be the coherence loss caused by evolving turbulence. Different measurement geometries were compared using the bandwidth for which the measurement coherence remained above 0.5 and also the area under the measurement coherence curve. Results showed that, by increasing the intensity of wind evolution, the measurement coherence decreases. Using the coherence bandwidth metric, the optimal preview distance for a fixed-scan radius remained almost constant for low and moderate amounts of wind evolution. For the wind field with the simple wind evolution model introduced, the optimal preview distance for a scan radius of 75% blade span (47.25 meters) was found to be 80 meters. Using the LES wind field, the optimal preview distance was 65 meters. When comparing scan geometries using the area under the coherence curve, results showed that, as the intensity of wind evolution increases, the optimal preview distance decreases.

Simley, E.; Pao, L. Y.; Kelley, N.; Jonkman, B.; Frehlich, R.

2012-01-01T23:59:59.000Z

345

Global land and water grabbing  

Science Journals Connector (OSTI)

...ratio between blue water and irrigation efficiency. Values per unit area refer to green and max blue water per...Arab Emirates, India, United Kingdom, Egypt, China, and Israel (Table 2...land and water grabbing enhance food and energy availability in the grabbing country...

Maria Cristina Rulli; Antonio Saviori; Paolo D’Odorico

2013-01-01T23:59:59.000Z

346

European Wind Atlas: Offshore | Open Energy Information  

Open Energy Info (EERE)

European Wind Atlas: Offshore European Wind Atlas: Offshore Jump to: navigation, search Tool Summary LAUNCH TOOL Name: European Wind Atlas: Offshore Focus Area: Renewable Energy Topics: Potentials & Scenarios Website: www.windatlas.dk/Europe/oceanmap.html Equivalent URI: cleanenergysolutions.org/content/european-wind-atlas-offshore,http://c Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This is a European offshore wind resources over open sea map developed by Riso National Laboratory in 1989. The map shows the so-called generalised wind climate over Europe, also sometimes referred to as the regional wind climate or simply the wind atlas. In such a map, the influences of local topography have been removed and only the variations on the large scale are

347

Siting Wind Energy | Open Energy Information  

Open Energy Info (EERE)

Siting Wind Energy Siting Wind Energy Jump to: navigation, search Wind turbines at the Forward Wind Energy Center in Fond du Lac and Dodge Counties, Wisconsin. Photo from Ruth Baranowski/NREL, NREL 21207 The following resources provide information about siting wind energy projects. Some are specific to a state or region but may still contain information applicable to other areas. Wind project siting tools, such as calculators and databases, can be found here. Resources American Wind Energy Association. (Updated 2011). Siting, Health, and the Environment. Accessed August 13, 2013. This fact sheet provides an overview of siting myths and facts. Environmental Law Institute. Siting Wind Energy Facilities: What Do Local Elected Officials Need to Know?. Accessed November 29, 2013.

348

European Wind Atlas: Onshore | Open Energy Information  

Open Energy Info (EERE)

European Wind Atlas: Onshore European Wind Atlas: Onshore Jump to: navigation, search Tool Summary LAUNCH TOOL Name: European Wind Atlas: Onshore Focus Area: Renewable Energy Topics: Potentials & Scenarios Website: www.windatlas.dk/Europe/landmap.html Equivalent URI: cleanenergysolutions.org/content/european-wind-atlas-onshore,http://cl Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This is a European on-shore wind resources at 50 meters of altitude map, developed by Riso National Laboratory in 1989. The map shows the so-called generalised wind climate over Europe, also sometimes referred to as the regional wind climate or simply the wind atlas. In such a map, the influences of local topography have been removed and only the variations on

349

ERCOT Wind Scraper | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » ERCOT Wind Scraper Jump to: navigation, search Tool Summary Name: ERCOT Wind Scraper Agency/Company /Organization: Prof. Mack Grady, Baylor University Sector: Energy Focus Area: Wind Resource Type: Software/modeling tools User Interface: Desktop Application Website: web.ecs.baylor.edu/faculty/grady/ OpenEI Keyword(s): Community Generated ERCOT Wind Scraper Screenshot References: W. Mack Grady[1] ERCOT Wind Scraper retrieves, displays, and logs minute-by-minute system generation, load, and wind generation from ERCOT's public web site. ERCOT Wind Scraper retrieves, displays, and logs minute-by-minute system generation, load, and wind generation from ERCOT's public web site. Instructions are included in a zipped file along with the program.

350

County Wind Ordinance Standards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

County Wind Ordinance Standards County Wind Ordinance Standards County Wind Ordinance Standards < Back Eligibility Agricultural Commercial Industrial Local Government Residential Savings Category Wind Buying & Making Electricity Program Info State California Program Type Solar/Wind Permitting Standards Provider California Energy Commission [http://www.leginfo.ca.gov/pub/09-10/bill/asm/ab_0001-0050/ab_45_bill_200... Assembly Bill 45] of 2009 authorized counties to adopt ordinances to provide for the installation of small wind systems (50 kW or smaller) outside urbanized areas but within the county's jurisdiction. The bill also addressed specific aspects of a typical wind ordinance and established the limiting factors by which a county's wind ordinance can be no more restrictive. Counties may freely make more lenient ordinances, but AB 45

351

Wind Resource Assessment Overview | Open Energy Information  

Open Energy Info (EERE)

Wind Resource Assessment Overview Wind Resource Assessment Overview Jump to: navigation, search Maps.jpg The first step in developing a wind project is to locate and quantify the wind resource. The magnitude of the wind and the characteristics of the resource are the largest factors in determining a potential site's economic and technical viability. There are three basic steps to identifying and characterizing the wind resource: prospecting, validating, and micrositing. The process of locating sites for wind energy development is similar to exploration for other resources, such as minerals and petroleum. Thus, the term prospecting is often used to describe the identification and preliminary evaluation of a wind resource area. Prospecting includes identifying potentially windy sites within a fairly large region - such

352

Community Wind Development Handbook | Open Energy Information  

Open Energy Info (EERE)

Community Wind Development Handbook Community Wind Development Handbook Jump to: navigation, search Tool Summary Name: Community Wind Development Handbook Agency/Company /Organization: Windustry Partner: AURI AG Innovations, The Minnesota Project, MC&PC, Clean Energy Resource Teams, Southwest Initiative Foundation Sector: Energy Focus Area: Wind, Economic Development Phase: Evaluate Options, Develop Goals, Prepare a Plan, Create Early Successes Resource Type: Guide/manual User Interface: Other Website: www.auri.org/research/Community%20Wind%20Handbook.pdf Cost: Free References: Community Wind Development Handbook[1] Provides developers practical knowledge of what to expect when developing commercial-scale community wind energy projects in the range of 2 to 50 Megawatts. Overview The Community Wind Development Handbook "is designed to give developers of

353

Shallow Land Disposal Area Public Meeting  

E-Print Network (OSTI)

RemedialSite Designation Preliminary Assessment Site Inspection Remedial Investigation Feasibility Study Proposed Plan Record of Decision Project We are here RemedialRemedial A removal action may be initiated

US Army Corps of Engineers

354

Parks Township Shallow Land Disposal Area  

E-Print Network (OSTI)

of the trenches will also be removed. Uranium, thorium, americium and plutonium contaminated waste has been- ment. Americium and plutonium, whose presence is attributed to storage of equipment used

US Army Corps of Engineers

355

New England Wind Forum: Historic Wind Development in New England  

Wind Powering America (EERE)

First Large Scale Windmill First Large Scale Windmill 1970s OPEC Oil Embargo Sparks Renewed Interest Age of PURPA Spawns the Wind Farm An Industry in Transition More New England Wind Farms Modern Wind Turbines History Wrap Up State Activities Projects in New England Building Wind Energy in New England Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Historic Wind Development in New England Wind has been an important energy source for centuries. In the United States, mechanical windmills provided as much as 25% of all non-transportation energy by the end of the 1800s. New England has relied on the wind from its early days, from powering seafaring commerce to grinding grain in the windmills of Cape Cod, several of which still stand. Some 6 million windmills across the nation were used for small-scale generation of electricity from the 1920s until the 1950s, when the U.S. government's rural electrification programs successfully reached remote areas. By the early 1970s, the number of windmills operating in the U.S. had dwindled to 150,000 - used mostly for watering livestock in remote areas of the western United States - although their widespread use continued elsewhere in the world.

356

USGS-Land Cover Institute (LCI) | Open Energy Information  

Open Energy Info (EERE)

USGS-Land Cover Institute (LCI) USGS-Land Cover Institute (LCI) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: USGS-Land Cover Institute (LCI) Agency/Company /Organization: United States Geological Survey Sector: Land Focus Area: Land Use Topics: Resource assessment Resource Type: Maps User Interface: Website Website: landcover.usgs.gov/landcoverdata.php Cost: Free USGS-Land Cover Institute (LCI) Screenshot References: USGS-Land Cover Institute (LCI)[1] "Welcome to the U.S Geological Survey (USGS) Land Cover Institute (LCI). The USGS currently houses the institute at the Center for Earth Resources Observation and Science (EROS) in Sioux Falls, South Dakota. The LCI will address land cover topics from local to global scales, and in both domestic and international settings. The USGS through the Land Cover Institute

357

New England Wind Forum: Wind Power Technology  

Wind Powering America (EERE)

Wind Power Technology Wind Power Technology Modern wind turbines have become sophisticated power plants while the concept of converting wind energy to electrical energy remains quite simple. Follow these links to learn more about the science behind wind turbine technology. Wind Power Animation An image of a scene from the wind power animation. The animation shows how moving air rotates a wind turbine's blades and describes how the internal components work to produce electricity. It shows small and large wind turbines and the differences between how they are used, as stand alone or connected to the utility grid. How Wind Turbines Work Learn how wind turbines make electricity; what are the types, sizes, and applications of wind turbines; and see an illustration of the components inside a wind turbine.

358

2011 Wind Technologies Market Report  

E-Print Network (OSTI)

that includes wind turbine towers. 2011 Wind TechnologiesSets Other Wind Turbine Components Towers Wind-Poweredselected wind turbine components includes towers as well as

Bolinger, Mark

2013-01-01T23:59:59.000Z

359

2010 Wind Technologies Market Report  

E-Print Network (OSTI)

that includes wind turbine towers. 2010 Wind TechnologiesImports : Other Wind Turbine Components Towers Wind-Poweredselected wind turbine components includes towers as well as

Wiser, Ryan

2012-01-01T23:59:59.000Z

360

Microsoft Word - WACM wind.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

WACM Wind Production WACM Wind Production Summary Overview October 2006 Summary by Joseph Liberatore 2 The following report is designed to give a graphical representation of the wind production on Western's transmission system in the Western Area Colorado/Missouri (WACM) control area for five (5) wind farms. A map and the general locations of the various farms is shown in figure A. Production output graphs of farms A, B, C, D and E were created to be read as follows The horizontal (X) axis is hour of day in military time and The vertical (Y) axis is month of year from January thru December, 1 thru 12 respectively. Color variations are to be interpreted as follows: Dark blue areas represent little or no wind production and are graduated to bright red which depict maximum wind farm output. All levels are normalized

Note: This page contains sample records for the topic "land areas wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Energy 101: Wind Turbines  

ScienceCinema (OSTI)

See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

None

2013-05-29T23:59:59.000Z

362

Balancing of Wind Power.  

E-Print Network (OSTI)

?? In the future, renewable energy share, especially wind power share, in electricity generation is expected to increase. Due to nature of the wind, wind… (more)

Ülker, Muhammed Akif

2011-01-01T23:59:59.000Z

363

Energy 101: Wind Turbines  

SciTech Connect

See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

None

2011-01-01T23:59:59.000Z

364

WINDExchange: Learn About Wind  

Wind Powering America (EERE)

Curricula & Teaching Materials Resources Learn About Wind Learn about how wind energy generates power; where the best wind resources are; how you can own, host, partner...

365

Wind power and Wind power and  

E-Print Network (OSTI)

Wind power and the CDM #12; Wind power and the CDM Emerging practices in developing wind power 2005 Jyoti P. Painuly, Niels-Erik Clausen, Jørgen Fenhann, Sami Kamel and Romeo Pacudan #12; WIND POWER AND THE CDM Emerging practices in developing wind power projects for the Clean Development Mechanism Energy

366

Assessment of the acoustic effects on marine animals by an offshore wind farm.  

Science Journals Connector (OSTI)

As part of the planning for an offshore wind farm in Rhode Island coastal waters an assessment of the potential acoustic effects on the ecosystem is being conducted. The developer has proposed to initially deploy eight 3.6?MW wind turbines within 3 nm of Block Island. Two passive aquatic listener (PAL) systems were deployed south of Block Island from October 6 to November 11 2008. Using data from the PALs ambient noise histograms were computed for this pre?construction phase. The largest sources of noise in the area at low frequencies were found to be from shipping wind rain and biological sources. In addition transmission loss measurements were also made in the region to calibrate a geoacoustic model. Measurements of airborne noise from a 1.5?MW land?based wind turbine already in operation in Rhode Island were made in 1/3?octave bands and near the proposed windfarm site. A preliminary assessment of the effects of the offshore wind farm on marine animals at these sites will be presented. A plan for monitoring the noise field and potential biological effects during construction and operation of the windfarm is presented. [Funding provided by the RI Office of Energy Resources.

James H. Miller; Gopu R. Potty; Kathleen Vigness Raposa; David Casagrande; Lisa A. Miller; Jeffrey A. Nystuen; Peter M. Scheifele

2010-01-01T23:59:59.000Z

367

Wind River Watershed Restoration 2004-2005 Annual Report.  

SciTech Connect

During 2004, researchers from U.S. Geological Survey's Columbia River Research Laboratory (USGS-CRRL) collected temperature, flow, and habitat data to characterize physical habitat condition and variation within and among tributaries and mainstem sections in the Wind River subbasin. Juvenile salmonid population surveys were conducted within select study areas throughout the subbasin. We expanded our survey coverage of the mainstem Wind River to a reach in the vicinity of Carson National Fish Hatchery to assess effects of non-indigenous Chinook on native steelhead. These efforts add to a database of habitat and fish data collected in the Wind River since 1996. This research contributes to the Wind River Restoration Project, which includes active stream habitat restoration and monitoring of adult and juvenile steelhead populations. We maintained a network of 32 thermographs in the Wind River subbasin during 2004. Additionally, Underwood Conservation District provided us with data from seven thermographs that they maintained during 2004. Thermograph data are identifying areas with chronic high water temperatures and stream sections where high rates of warming are occurring. During 2004, water temperatures at 26 thermograph sites exceeded the 16 C limit for surface waters set by the Washington Department of Ecology. Water temperatures exceeded 20 C at five sites in the Trout Creek watershed. Our thermograph dataset includes information from as early as 1996 at some sites and has become a valuable long-term dataset, which will be crucial in determining bioenergetic relationships with habitat and life-histories. We have monitored salmonid populations throughout the Wind River subbasin by electrofishing and snorkeling. We electrofished four stream sections for population estimates during 2004. In these sections, and others where we simply collected fish without a population estimate, we tagged juvenile steelhead and Chinook salmon with Passive Integrated Transponder (PIT) tags to track growth and movement of individuals. We snorkeled nine stream sections during 2004. Juvenile steelhead populations have varied greatly between streams and between years. Numbers of age-0 steelhead have increased substantially since 2000 within the MINE reach (rkm 35.0-40.0) section of the upper Wind River. Because of potential negative interactions with steelhead, naturally spawned populations of introduced juvenile Chinook salmon are of concern in the mainstem of the Wind River. During 2004, we deployed over 3,000 PIT tags in the Wind River subbasin, primarily in juvenile steelhead, but also in juvenile Chinook. We are compiling a dataset of recapture information on these tagged fish as well as interrogation information from Bonneville Dam and other sites. The habitat and fish data collected have been used in Ecosystem Diagnosis and Treatment modeling efforts, the Wind River Subbasin Plan, and the Total Maximum Daily Load report from Washington Department of Ecology. Continued monitoring of changes in habitat, combined with data on fish populations, will help guide planning efforts of land and fish managers. As long-term active and passive restoration actions are implemented in the Wind River and its tributaries, these data will provide the ability to measure change. Because the Wind River subbasin has no steelhead hatchery or supplementation, these data will be useful to compare population trends in subbasins with hatchery or supplementation management.

Connolly, Patrick J.; Jezorek, Ian G. [U.S. Geological Survey

2008-11-10T23:59:59.000Z

368

Delaware Land Protection Act (Delaware) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delaware Land Protection Act (Delaware) Delaware Land Protection Act (Delaware) Delaware Land Protection Act (Delaware) < Back Eligibility Utility Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Nonprofit Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info Start Date 1990 State Delaware Program Type Environmental Regulations Provider Delaware Department of Natural Resources and Environmental Control The Land Protection Act requires the Department of Natural Resources and Environmental Control to work with the Delaware Open Space Council to develop standards and criteria for determining the existence and location

369

Metropolitan Land Use Planning (Minnesota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Land Use Planning (Minnesota) Land Use Planning (Minnesota) Metropolitan Land Use Planning (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Minnesota Program Type Environmental Regulations This statute establishes the Metropolitan Land Use Advisory Committee within the Metropolitan Council to coordinate plans, programs, and controls

370

Management and Use of Public Lands (Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management and Use of Public Lands (Virginia) Management and Use of Public Lands (Virginia) Management and Use of Public Lands (Virginia) < Back Eligibility Commercial Construction Developer Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Systems Integrator Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Virginia Program Type Leasing Program Siting and Permitting Provider Virginia Department of Conservation and Recreation The Virginia Department of Conservation and Recreation may elect to lease its lands for the development of mineral interests (defined herein as petroleum, natural gas, coal, ore, rock and any other solid chemical

371

Landowners' Frequently Asked Questions about Wind Development  

Wind Powering America (EERE)

Landowners' Frequently Asked Questions Landowners' Frequently Asked Questions about Wind Development 1 Landowners' Frequently Asked Questions about Wind Development Jay Haley, P.E. 1. How much money can I make? Based on wind projects in southern Minnesota and northern Iowa, landowners can expect to receive annual land-lease payments ranging from $2,000 to more than $4,000 per turbine. The amount depends on the size of the wind turbine and how much electricity it produces as well as the selling price of the electricity. The same turbine will produce more in one location than another depending on the annual average wind speed at the site. The payments typically represent from 2% to 4% of the annual gross revenue of the turbine. 2. How many turbines can be placed on a section of

372

Searchlight Wind Energy Project FEIS Appendix F  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

F F Page | F 22B Appendix F: Literature Review of Socioeconomic Effects of Wind Project and Transmission Lines Searchlight Wind Energy Project FEIS Appendix F Page | 1 Prepared for" The Bureau of Land Management For the Searchlight Wind Energy Project Prepared by Bootstrap Solutions 752 E. Braemere Road Boise, ID 83702 Literature on Property Value Impacts of Wind Projects The economic effects of wind energy projects have been well documented. Several studies that have evaluated potential property value impacts are highlighted below (organized chronologically). No clear inference can be drawn from these studies and available research as the analyses vary in terms of rigor; methodology (e.g., survey sampling, statistical analysis, and expert opinion); size, location and site

373

Probleme bei der Nutzung von Offshore-Wind-energie aus Sicht des Naturschutzes  

Science Journals Connector (OSTI)

Permissions for wind parks of together more than 1000 wind mills have been asked for regarding only the ... fauna will be affected by the installation. Wind energy plants in the offshore area are...

Thomas Merck; Henning von Nordheim

1999-12-01T23:59:59.000Z

374

Small Business Innovation Research Grant Helps Propel Innovative Wind  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small Business Innovation Research Grant Helps Propel Innovative Small Business Innovation Research Grant Helps Propel Innovative Wind Energy Small Business Small Business Innovation Research Grant Helps Propel Innovative Wind Energy Small Business March 11, 2011 - 10:32am Addthis Link to image of Wind Tower System's Space Frame Tower™ Link to image of Wind Tower System's Space Frame Tower(tm) Mark Higgins Operations Supervisor, Wind & Water Power Technologies Office Wind Tower Systems, a subsidiary of Wasatch Wind, was founded in 2002 to research, develop and commercialize new ways to make lighter, taller and easier- to-assemble land-based wind turbines. Since then, the Park City, Utah-based small business received early funding from the Department of Energy, which catalyzed investment from the California Energy Commission

375

New England Wind Forum: Wind Power Economics  

Wind Powering America (EERE)

State Activities Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Cost Components Determining Factors Influencing Wind Economics in New England How does wind compare to the cost of other electricity options? Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Wind Power Economics Long-Term Cost Trends Since the first major installations of commercial-scale wind turbines in the 1980s, the cost of energy from wind power projects has decreased substantially due to larger turbine generators, towers, and rotor lengths; scale economies associated with larger projects; improvements in manufacturing efficiency, and technological advances in turbine generator and blade design. These technological advances have allowed for higher generating capacities per turbine and more efficient capture of wind, especially at lower wind speeds.

376

New England Wind Forum: Large Wind  

Wind Powering America (EERE)

Small Wind Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Large Wind When establishing wind farms, wind energy developers generally approach landowners where they want to build. Interest in wind farms is frequently spurred by external pressures such as tax and other financial incentives and legislative mandates. Since each situation is influenced by local policies and permitting, we can only provide general guidance to help you learn about the process of installing wind turbines. Publications Wind Project Development Process Permitting of Wind Energy Facilities: A Handbook. (August 2002). National Wind Coordinating Collaborative. Landowner Frequently Asked Questions and Answers. (August 2003). "State Wind Working Group Handbook." pp. 130-133.

377

Environmental assessment of offshore wind power generation near Rhode Island: Acoustic and electromagnetic effects on marine animals.  

Science Journals Connector (OSTI)

An offshore wind farm is planned for Rhode Island coastal waters. The developer has proposed to deploy wind turbines in two stages: 5 turbines in shallow waters 5 km south of Block Island and 100 turbines in deeper waters 30 km to the east. As part of the planning of the proposed offshore wind powergeneration project under the Rhode Island Special Area Management Plan ambient acoustic and electromagneticmeasurements were made in the area. Two passive acoustic listener (PAL) systems were deployed within 4 km of Block Island from October 6 to November 11 2008. Data from the PALs were used to compute the ocean acousticnoise budget and other statistics by source. Transmission loss measurements were also made to support the noise budget calculation. Measurements of airborne noise from a 1.5?MW land?based wind turbine already in operation in Rhode Island were made. To support the electromagneticeffect study an underwater magnetometer was towed at the two proposed sites and over an operational underwater 23?kV power cable. A preliminary assessment of the effects of the offshore wind farm on marine animals at these sites will be presented. [Funding provided by the RI Office of Energy Resources.

James H. Miller; Gopu R. Potty; Kathleen Vigness Raposa; David Casagrande; Lisa Miller; Steven E. Crocker; Robert Tyce; Jonathan Preston; Brian Roderick; Jeffrey A. Nystuen; Peter M. Scheifele

2009-01-01T23:59:59.000Z

378

NREL-Wind Resource Assessment Handbook | Open Energy Information  

Open Energy Info (EERE)

Wind Resource Assessment Handbook Wind Resource Assessment Handbook Jump to: navigation, search Tool Summary LAUNCH TOOL Name: NREL-Wind Resource Assessment Handbook Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Wind Topics: Resource assessment Resource Type: Guide/manual, Training materials Website: www.nrel.gov/docs/legosti/fy97/22223.pdf NREL-Wind Resource Assessment Handbook Screenshot References: Wind Resource Assessment Handbook[1] Logo: NREL-Wind Resource Assessment Handbook This handbook presents industry-accepted guidelines for planning and conducting a wind resource measurement program to support a wind energy feasibility initiative. About "This handbook presents industry-accepted guidelines for planning and conducting a wind resource measurement program to support a wind energy

379

Geothermal Direct-Use — Minimizing Land Use and Impact  

Energy.gov (U.S. Department of Energy (DOE))

With geothermal direct-use applications, land use issues usually only arise during exploration and development when geothermal reservoirs are located in or near urbanized areas, critical habitat...

380

Advanced Hydraulic Wind Energy  

Science Journals Connector (OSTI)

The Jet Propulsion Laboratory, California Institute of Technology, has developed a novel advanced hydraulic wind energy design, which has up to 23% performance improvement over conventional wind turbine and conventional hydraulic wind energy systems ... Keywords: wind, tide, energy, power, hydraulic

Jack A. Jones; Allan Bruce; Adrienne S. Lam

2013-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "land areas wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

WINDExchange: Wind Economic Development  

Wind Powering America (EERE)

help you analyze the economics of a small wind electric system and decide whether wind energy will work for you. Wind Energy Finance Online Calculator Wind Energy Finance developed...

382

Exploiting Wind Versus Coal  

Science Journals Connector (OSTI)

...be offset with turbine mass production...of installed turbines, more than the...Denmark have wind parks offshore, where winds...of installed turbines, more than the...Denmark have wind parks offshore, where winds...

Mark Z. Jacobson; Gilbert M. Masters

2001-08-24T23:59:59.000Z

383

Technological Implementation of Renewable Energy in Rural?Isolated Areas and Small?Medium Islands in Indonesia: Problem Mapping And Preliminary Surveys of Total People Participation in a Local Wind Pump Water Supply  

Science Journals Connector (OSTI)

This article discusses a formulation of problem mapping and preliminary surveys of total people participation in a local wind pump (LWP) water supply in term of technological implementation of renewable energy (RE) in rural?isolated areas and small?medium islands in Indonesia. The formulation was constructed in order to enhance and to promote the local product of RE across Indonesia. It was also addressed to accommodate local potencies barriers and opportunities into a priority map. Moreover it was designed into five aspects such as (1) local technology of the RE: a case of pilot project of the LWP; (2) environmental?cultural aspects related to global issues of energy?renewable energy; (3) potencies and barriers corresponding to local national regional and international contents; (4) education and training and (5) gender participation. To focus the formulation serial preliminary surveys were conducted in five major areas namely: (1) survey on support and barrier factors of the aspects; (2) strategic planning model a concept A?B?G which stands for Academician?Business people?Government; (3) survey on background based knowledge on energy conservation; (4) survey on gender participation in energy conservation and (5) survey on local stakeholder involvement. Throughout the surveys it has been notified that the concept needs to be developed to any level of its component since its elements were identified in tolerance values such as high potency value of the LWP development (95%); a strong potency of rural area application (88%); a medium background of energy energy conservation (EC) identified in a range of 56%?72% sufficient support from local stakeholders and gender participation.

Ahmad Taufik

2007-01-01T23:59:59.000Z

384

A Climatological Study of Thermally Driven Wind Systems of the U.S. Intermountain West  

Science Journals Connector (OSTI)

This paper investigates the diurnal evolution of thermally driven plain-mountain winds, up- and down-valley winds, up- and downslope winds, and land-lake breezes for summer fair weather conditions in four regions of the Intermountain West where ...

Jebb Q. Stewart; C. David Whiteman; W. James Steenburgh; Xindi Bian

2002-05-01T23:59:59.000Z

385

Floating Offshore Wind Turbine Dynamics: Large-Angle Motions in Euler-Space  

E-Print Network (OSTI)

Floating Offshore Wind Turbine Dynamics: Large-Angle Motions in Euler-Space Bert Sweetman Texas A offshore wind turbines beyond sight of land, where waters tend to be deeper, and use of floating structures wind turbines in deep water, where environmental forcing could subject the rotor to meaningful angular

Sweetman, Bert

386

Conceptual Design of Floating Wind Turbines with Large-Amplitude Motion  

E-Print Network (OSTI)

of spar-type floating offshore wind turbines is investigated in detail. Three conceptual designs based for siting offshore wind turbines beyond sight of land, where waters tend to be deeper, and use of floating importance. The first full-scale offshore floating wind turbine in the world, Hywind, has been installed

Sweetman, Bert

387

THE INFLUENCE OF WAVES ON THE OFFSHORE WIND Bernhard Lange, Jrgen Hjstrup*  

E-Print Network (OSTI)

THE INFLUENCE OF WAVES ON THE OFFSHORE WIND RESOURCE Bernhard Lange, Jørgen Højstrup* Risø National and waves and thus in air-sea interaction in general. For predicting the offshore wind climate'8&7,21 The favourable wind resource at offshore compared to land sites is caused by the very low surface roughness

Heinemann, Detlev

388

wind power station  

Science Journals Connector (OSTI)

wind power station [It may consist of just one wind turbine or a network of windmills] ? Windkraftanlage

2014-08-01T23:59:59.000Z

389

Agriculture and Land Use National Greenhouse Gas Inventory Software | Open  

Open Energy Info (EERE)

Agriculture and Land Use National Greenhouse Gas Inventory Software Agriculture and Land Use National Greenhouse Gas Inventory Software Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Agriculture and Land Use National Greenhouse Gas Inventory Software Agency/Company /Organization: Colorado State University Partner: United States Agency for International Development, United States Forest Service, United States Environmental Protection Agency Sector: Land Focus Area: Forestry, Agriculture Topics: GHG inventory Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.nrel.colostate.edu/projects/ghgtool/index.php Cost: Free Agriculture and Land Use National Greenhouse Gas Inventory Software Screenshot References: Agriculture and Land Use National Greenhouse Gas Inventory Software[1]

390

American Institute of Aeronautics and Astronautics An Experimental Study on the Performances of Wind  

E-Print Network (OSTI)

development of offshore wind farms, which will play more important role in the coming years, onshore wind farm. To realize this target, exploitation of areas with high wind potential such as deep offshore and mountainous must continue to contribute to the overall growth of wind energy. Before the wind farm is actually

Hu, Hui

391

NREL: Wind Research - Small Wind Turbine Webinars  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Wind Turbine Webinars Small Wind Turbine Webinars Here you will find webinars about small wind turbines that NREL hosted. Introducing WindLease(tm): Making Wind Energy Affordable NREL and the American Solar Energy Society (ASES) Wind Division co-hosted this webinar. (Text Version.) Date: August 1, 2013 Run Time: 40 minutes Joe Hess, VP of Business Development at United Wind, described United Wind's WindQuote and WindLease Program and explained the process from the dealer's and consumer's perspective. Texas Renewable Energy Industries Association NREL and the American Solar Energy Society (ASES) Wind Division co-hosted this webinar. (Text Version). Date: March 7, 2013 Run Time: 1 hour Russel Smith, Texas Renewable Energy Industries Association executive director and co-founder, provided an overview of the trade association

392

New England Wind Forum: Small Wind  

Wind Powering America (EERE)

Wind for Schools Project Funding Case Studies: Thomas Harrison Middle School, Virginia Wind for Schools Project Funding Case Studies: Thomas Harrison Middle School, Virginia August 26, 2013 Workshop Explores Information's Role in Wind Project Siting: A Wind Powering America Success Story November 19, 2012 More News Subscribe to News Updates Events Renewable Energy Market Update Webinar January 29, 2014 Strategic Energy Planning: Webinar February 26, 2014 Introduction to Wind Systems March 10, 2014 More Events Publications 2012 Market Report on Wind Technologies in Distributed Applications August 12, 2013 More Publications Features Sign up for the New England Wind Forum Newsletter. New England Wind Forum About the New England Wind Forum New England Wind Energy Education Project Historic Wind Development in New England State Activities Projects in New England

393

NREL: Wind Research - Small Wind Turbine Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Wind Turbine Development Small Wind Turbine Development A photo of Southwest Windpower's Skystream wind turbine in front of a home. PIX14936 Southwest Windpower's Skystream wind turbine. A photo of the Endurance wind turbine. PIX15006 The Endurance wind turbine. A photo of the Atlantic Orient Corporation 15/50 wind turbine at the National Wind Technology Center. PIX07301 The Atlantic Orient Corporation 15/50 wind turbine at the National Wind Technology Center. NREL supports continued market expansion of small wind turbines by funding manufacturers through competitive solicitations (i.e., subcontracts and/or grants) to refine prototype systems leading to commercialization. Learn more about the turbine development projects below. Skystream NREL installed and tested an early prototype of this turbine at the

394

Community Wind Toolkit | Open Energy Information  

Open Energy Info (EERE)

Wind Toolkit Wind Toolkit Jump to: navigation, search "Community wind" refers to a class of wind energy ownership structures. Projects are considered "community" projects when they are at least partially owned by individuals or businesses in the state and local area surrounding the wind power project. The community element of these projects can be defined narrowly so that ownership is concentrated in the county or region where the project is built, or it may be defined broadly so that project investors are from the state where the project is sited. Furthermore, the extent of local ownership may range from a small minority share to full ownership by persons in the immediate area surrounding the wind project site. Potential project owners include local farmers,

395

Wind Powering America Webinar: Wind Power Economics: Past, Present, and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Economics: Past, Present, Power Economics: Past, Present, and Future Trends Wind Powering America Webinar: Wind Power Economics: Past, Present, and Future Trends November 23, 2011 - 1:43pm Addthis Wind turbine prices in the United States have declined, on average, by nearly one-third since 2008, after doubling from 2002 through 2008. Over this entire period, the average nameplate capacity rating, hub height, and rotor swept area of turbines installed in the United States have increased significantly, while other design improvements have also boosted turbine energy production. In combination, these various trends have had a significant-and sometimes surprising-impact on the levelized cost of energy delivered by wind projects. This webinar will feature three related presentations that explore these

396

area | OpenEI  

Open Energy Info (EERE)

area area Dataset Summary Description These estimates are derived from a composite of high resolution wind resource datasets modeled for specific countries with low resolution data originating from the National Centers for Environmental Prediction (United States) and the National Center for Atmospheric Research (United States) as processed for use in the IMAGE model. The high resolution datasets were produced by the National Renewable Energy Laboratory (United States), Risø DTU National Laboratory (Denmark), the National Institute for Space Research (Brazil), and the Canadian Wind Energy Association. The data repr Source National Renewable Energy Laboratory Date Released Unknown Date Updated Unknown Keywords area capacity clean energy international National Renewable Energy Laboratory

397

Heuristic correction of wind speed mesoscale models simulations for wind farms prospecting and micrositing  

Science Journals Connector (OSTI)

Abstract The distribution of surface-level wind speeds over a given area is important information that is related to several processes in wind farm prospecting, design and micrositing. This information is often obtained from simulations using mesoscale models that take variables from global models as starting points. Improved outputs from mesoscale models can lead to reduced error compared to real wind speeds in the study area if in situ wind speed measurements are available. In this paper, we present several techniques to correct surface wind speed simulations from mesoscale models using data from measuring stations in wind farms. Specifically, we propose different heuristic corrections of the outputs from mesoscale models by means of surface fitting between the Weibull parameters of the wind speed series (from the mesoscale model) and those from the measuring stations (real wind speed) in the wind farm. The proposed methodology has direct applications in wind farm design, site prospection and micrositing. The good performance of our method is evident in the more accurate surface wind speeds obtained from mesoscale models in two wind farm prospection sites in Spain, where several measuring towers are installed.

B. Saavedra-Moreno; S. Salcedo-Sanz; C. Casanova-Mateo; J.A. Portilla-Figueras; L. Prieto

2014-01-01T23:59:59.000Z

398

On the effect of spatial dispersion of wind power plants on the wind energy capacity credit  

Science Journals Connector (OSTI)

Wind energy is now a mature technology and can be considered as a significant contributor in reducing CO2 emissions and protecting the environment. To meet the wind energy national targets, effective implementation of massive wind power installed capacity in the power supply system is required. Additionally, capacity credit is an important issue for an unstable power supply system as in Greece. To achieve high and reliable wind energy penetration levels into the system, the effect of spatial dispersion of wind energy installations within a very wide area (e.g. national level) on the power capacity credit should be accounted for. In the present paper, a methodology for estimating the effect of spatial dispersion of wind farm installations on the capacity credit is presented and applied for the power supply system of Greece. The method is based on probability theory and makes use of wind forecasting models to represent the wind energy potential over any candidate area for future wind farm installations in the country. Representative wind power development scenarios are studied and evaluated. Results show that the spatial dispersion of wind power plants contributes beneficially to the wind capacity credit.

George Caralis; Yiannis Perivolaris; Konstantinos Rados; Arthouros Zervos

2008-01-01T23:59:59.000Z

399

Coastal Public Lands Management Act (Texas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coastal Public Lands Management Act (Texas) Coastal Public Lands Management Act (Texas) Coastal Public Lands Management Act (Texas) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility Industrial Construction Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Texas Program Type Siting and Permitting Provider Texas General Land Office The coastal public lands of the state are managed in accordance with the following principles: (a) The natural resources of the surface land, including their aesthetic value and their ability to support and nurture all types of marine life and wildlife, shall be preserved. (b) Preference

400

Potential wind power generation in South Egypt  

Science Journals Connector (OSTI)

Egypt is one of the developing countries. The production of electricity in Egypt is basically on petroleum, natural gas, hydro-power and wind energy. The objective of this work to prove the availability of sufficient wind potential in the wide area of deep south Egypt for the operation of wind turbines there. Nevertheless, it gives in general an approximate profile which is useful to the wind parks design for this area. The data used in the calculation are published and analyzed for the first time. The diagrams of the measured wind data for three meteorological stations over a period of two years (wind speed, frequency, direction), wind shear coefficient, the mean monthly and annual wind speed profile for every location are presented. Monthly Weibull parameters, standard deviation and coefficient of variation have been statistically discussed. A comparison of the rose diagrams shows that the wind speed is more persistent and blow over this region of Egypt in two main sectors N and NNW with long duration of frequencies from 67% to 87% over the year with an average wind speed in the range 6.8–7.9 m/s at the three stations. Evaluation of monthly wind energy density at 10 m height by two different methods was carried out. And the final diagram for every site shows no significant difference between them. The annual natural wind energies at 70 m A.G.L. lie between 333 and 377 W/m2 for Dakhla South and Kharga stations, respectively, which is similar to the inland wind potential of Vindeby (Denmark) and some European countries. These results indicate that Kharga and Dakhla South locations are new explored sites for future wind power generation projects.

Ahmed Shata Ahmed

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "land areas wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

MODIS Land Product Subsets  

NLE Websites -- All DOE Office Websites (Extended Search)

Validation > MODIS Land Subsets Validation > MODIS Land Subsets MODIS Land Product Subsets Overview Earth, Western Hemisphere The goal of the MODIS Land Product Subsets project is to provide summaries of selected MODIS Land Products for the community to use for validation of models and remote-sensing products and to characterize field sites. Output files contain pixel values of MODIS land products in text format and in GeoTIFF format. In addition, data visualizations (time series plots and grids showing single composite periods) are available. MODIS Land Product Subsets Resources The following MODIS Land Product Subsets resources are maintained by the ORNL DAAC: MODIS Land Products Offered Background Citation Policy Methods and formats MODIS Sinusoidal Grid - Google Earth KMZ Classroom Exercises

402

Western Employee Presents Wind Award to Minnkota | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Western Employee Presents Wind Award to Minnkota Western Employee Presents Wind Award to Minnkota Western Employee Presents Wind Award to Minnkota April 7, 2011 - 2:47pm Addthis Randy Manion Director of Renewable Energy, Western Area Power Administration What are the key facts? The Wind Cooperative of the Year award was created in 2002 to recognize electric cooperatives for leadership in wind development. The 2011 award recognized Minnkota Power Cooperative for developing North Dakota's first utility-owned wind turbine and investing in wind energy. Wind now represents 30 percent of the cooperative's total generation and transmission energy requirements. As the Renewable Energy Program manager for the Western Area Power Administration, I had the opportunity to showcase the Department of Energy's Wind Powering America initiative at the National Rural Electric

403

Waste Isolation Pilot Plant, Land Management Plan  

SciTech Connect

To reflect the requirement of section 4 of the Wastes Isolation Pilot Plant Land Withdrawal Act (the Act) (Public Law 102-579), this land management plan has been written for the withdrawal area consistent with the Federal Land Policy and Management Act of 1976. The objective of this document, per the Act, is to describe the plan for the use of the withdrawn land until the end of the decommissioning phase. The plan identifies resource values within the withdrawal area and promotes the concept of multiple-use management. The plan also provides opportunity for participation in the land use planning process by the public and local, State, and Federal agencies. Chapter 1, Introduction, provides the reader with the purpose of this land management plan as well as an overview of the Waste Isolation Pilot Plant. Chapter 2, Affected Environment, is a brief description of the existing resources within the withdrawal area. Chapter 3, Management Objectives and Planned Actions, describes the land management objectives and actions taken to accomplish these objectives.

Not Available

1993-12-01T23:59:59.000Z

404

Large-eddy simulation of offshore wind farm  

Science Journals Connector (OSTI)

A hybrid numerical capability is developed for the simulation of offshore wind farms in which large-eddy simulation is performed for the wind turbulence and a potential flow based method is used for the simulation of the ocean wave field. The wind and wave simulations are dynamically coupled. The effect of wind turbines on the wind field is represented by an actuator disk model. This study focuses on the effect of wind-seas and the turbine motion is treated as negligibly small. A variety of fully-developed and fetch-limited wind-sea conditions and turbine spacings are considered in the study. Statistical analyses are performed for the simulation results with a focus on the mean wind profile kinetic energy budget in the wind field and the wind turbine power extraction rate. The results indicate that the waves have appreciable effect on the wind farm performance. The wind turbines obtain a higher wind power extraction rate under the fully developed wind-sea condition compared with that under the fetch-limited condition. This higher extraction rate is caused by the faster propagating waves and the lower sea-surface resistance on the wind when the wind-seas are fully developed. The wave-induced difference can be as high as 8% with the commonly used turbine spacing in commercial land-based wind farms s x = 7 (with s x being the ratio of streamwise turbine spacing to the turbine diameter). Such level of difference is noteworthy considering the previous understanding that direct wave-induced disturbance to the wind field decays exponentially away from wave surface.

2014-01-01T23:59:59.000Z

405

MODIS Land Products Subsets  

NLE Websites -- All DOE Office Websites (Extended Search)

Data for Selected Field Sites (n=1147) Data for Selected Field Sites (n=1147) Obtain MODIS data for areas centered on selected field sites or flux towers from around the world. The goal of the MODIS Subsets for Selected Field Sites is to prepare summaries of selected MODIS Land Products for the community to use for validation of models and remote sensing products and to characterize field sites. Search for data: By Site from a Map Server from Google Earth (Install Google Earth) From FTP site (ASCII) Methods Data products were first subsetted from one or more 1200x1200-km MODIS tiles to 25 x 25-km arrays by the MODIS Science Data Support Team (MODAPS). These products were further subsetted (7x7) and reformatted from their native HDF-EOS to ASCII using version 2.2 of the MODIS Reprojection Tool (MRT) in combination with code developed at the ORNL DAAC.

406

NREL: Wind Research - Site Wind Resource Characteristics  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Wind Resource Characteristics Site Wind Resource Characteristics A graphic showing the location of National Wind Technology Center and its wind power class 2. Click on the image to view a larger version. Enlarge image This graphic shows the wind power class at the National Wind Technology Center. You can download a printable copy. The National Wind Technology Center (NWTC) is on the Great Plains just miles from the Rocky Mountains. The site is flat and covered with short grasses. The terrain and lack of obstructions make the site highly suitable for testing wind turbines. Take a tour of the NWTC and its facilities to better understand its location and layout. Another prime feature of the NWTC is the strong directionality of the wind - most of the strong winds come within a few degrees of 285°. West of

407

Impact of turbulence, land surface, and radiation parameterizations on simulated boundary layer properties in a coastal environment  

E-Print Network (OSTI)

structure and wind patterns can be highly variable due to a combination of sea- land breeze circulations, strong nocturnal low-level jets, and larger-scale diurnal wind oscillations with the oscillation period close to one diurnal cycle because of the proximity to the critical latitude. These complex wind

Clements, Craig

408

Wind Energy Assessment Study for Nevada -- Tall Tower Deployment (Stone Cabin): 26 June 2005 - 31 December 2007  

SciTech Connect

The objective of this work effort was to characterize wind shear and turbulence for representative wind-developable areas in Nevada.

Koracin, D.; Reinhardt, R.; McCurdy, G.; Liddle, M.; McCord, T.; Vellore, R.; Minor, T.; Lyles, B.; Miller, D.; Ronchetti, L.

2009-12-01T23:59:59.000Z

409

Wind power project siting workshop: emerging issues and technologies  

SciTech Connect

With wind power development extending more broadly across the various regions of the United States, and with new participants entering the wind development business, AWEA developed a workshop on the various ways in which wind power projects affect--and don't affect--elements of the human and natural environment. Over 180 people gathered in Portland, OR on October 13-14, 2004 to participate in a day and a half of presentations by 20 leading industry specialists. Their presentations covered emerging issues of project siting, such as bat interactions and wildlife survey techniques, and methods of generating local support for wind projects. Workshop topics included: Avian and Bat Research Updates; Wildlife Survey Technologies & Techniques; Technical Issues such as Noise, Aesthetics, and Lighting; National Environmental Policy Act (NEPA) Scenarios and Federal Land Policies; Tribal & Community Relations; Federal & State Permitting Process; and Bureau of Land Management Wind Power Developments.

anon.

2004-12-01T23:59:59.000Z

410

The Inside of a Wind Turbine | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Inside of a Wind Turbine The Inside of a Wind Turbine The Inside of a Wind Turbine 1 of 17 Tower: 2 of 17 Tower: Made from tubular steel (shown here), concrete, or steel lattice. Supports the structure of the turbine. Because wind speed increases with height, taller towers enable turbines to capture more energy and generate more electricity. Generator: 3 of 17 Generator: Produces 60-cycle AC electricity; it is usually an off-the-shelf induction generator. High-speed shaft: 4 of 17 High-speed shaft: Drives the generator. Nacelle: 5 of 17 Nacelle: Sits atop the tower and contains the gear box, low- and high-speed shafts, generator, controller, and brake. Some nacelles are large enough for a helicopter to land on. Wind vane: 6 of 17 Wind vane: Measures wind direction and communicates with the yaw drive to orient the

411

Stakeholder Engagement and Outreach: Roles and Responsibilities for Wind  

Wind Powering America (EERE)

Roles and Responsibilities for Wind for Schools Participants Roles and Responsibilities for Wind for Schools Participants The following section describes the roles and responsibilities of each entity involved in a Wind for Schools project. Note that the structure was not rigidly defined to allow each state to implement the project as was most appropriate. School and Community Wind Application Center State Facilitator Wind Powering America Local Utility or Electric Cooperative State Energy Office School and Community In order for a Wind for Schools project to succeed, many people in the school community supported the concept, including the science teacher, the school principal and administration, the district superintendent and administration, and the school board. The school provided land for the project, support for the wind turbine interconnection to the school

412

ANL Wind Power Forecasting and Electricity Markets | Open Energy  

Open Energy Info (EERE)

ANL Wind Power Forecasting and Electricity Markets ANL Wind Power Forecasting and Electricity Markets Jump to: navigation, search Logo: Wind Power Forecasting and Electricity Markets Name Wind Power Forecasting and Electricity Markets Agency/Company /Organization Argonne National Laboratory Partner Institute for Systems and Computer Engineering of Porto (INESC Porto) in Portugal, Midwest Independent System Operator and Horizon Wind Energy LLC, funded by U.S. Department of Energy Sector Energy Focus Area Wind Topics Pathways analysis, Technology characterizations Resource Type Software/modeling tools Website http://www.dis.anl.gov/project References Argonne National Laboratory: Wind Power Forecasting and Electricity Markets[1] Abstract To improve wind power forecasting and its use in power system and electricity market operations Argonne National Laboratory has assembled a team of experts in wind power forecasting, electricity market modeling, wind farm development, and power system operations.

413

Modelling and analysis of a novel wind turbine structure  

Science Journals Connector (OSTI)

This study introduces a novel wind turbine structure for an urban environment. A computational modelling has been conducted to investigate the effect of the new structure on the flow behaviour of entrance wind through the structure and the feasibility of the new wind turbine working at different wind speeds in an urban area. The wind flow behaviour through a chamber of the wind turbine structure has resulted in an increase of 1.3 times of the wind velocity at the outlet of the wind turbine. This is equivalent to 2.5 times increase of wind energy. The wind tunnel tests were carried out to validate the simulation results. There is a good correlation between the experimental and computational results. It is evident that the presented computational method can predict and evaluate the performance of this new type of shroud structure in an urban environment.

Xu Zhang; Yong K. Chen; Rajnish K. Calay

2013-01-01T23:59:59.000Z

414

Jilin Taihe Wind Power Limited | Open Energy Information  

Open Energy Info (EERE)

Taihe Wind Power Limited Taihe Wind Power Limited Jump to: navigation, search Name Jilin Taihe Wind Power Limited Place Zhenlai, Jilin Province, China Sector Wind energy Product Top Well and Tianjin DH entered into a contract to establish a joint venture in Zhenlai, in Chinaâ€(tm)s Jilin province to develop a 50MW wind farm in the area under the name Jilin Taihe Wind Power Limited. References Jilin Taihe Wind Power Limited[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Jilin Taihe Wind Power Limited is a company located in Zhenlai, Jilin Province, China . References ↑ "Jilin Taihe Wind Power Limited" Retrieved from "http://en.openei.org/w/index.php?title=Jilin_Taihe_Wind_Power_Limited&oldid=347531

415

Wind Technologies & Evolving Opportunities (Presentation)  

SciTech Connect

This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

Robichaud, R.

2014-07-01T23:59:59.000Z

416

An Exploration of Wind Energy & Wind Turbines | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

An Exploration of Wind Energy & Wind Turbines An Exploration of Wind Energy & Wind Turbines Below is information about the student activitylesson plan from your search. Grades...

417

A National Offshore Wind Strategy: Creating an Offshore Wind...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in...

418

20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology...  

Office of Environmental Management (EM)

20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply U.S. Offshore Wind Manufacturing and Supply Chain Development Wind Program Accomplishments...

419

Wind pro?le assessment for wind power purposes.  

E-Print Network (OSTI)

??Preliminary estimation of wind speed at the wind turbine hub height is critically important when planning new wind farms. Wind turbine power output is proportional… (more)

Sointu, Iida

2014-01-01T23:59:59.000Z

420

Collegiate Wind Competition Engages Tomorrow's Wind Energy Innovators...  

Office of Environmental Management (EM)

Collegiate Wind Competition Engages Tomorrow's Wind Energy Innovators Collegiate Wind Competition Engages Tomorrow's Wind Energy Innovators January 6, 2014 - 10:00am Addthis 2014...

Note: This page contains sample records for the topic "land areas wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Wind for Schools Project Power System Brief, Wind Powering America...  

Wind Powering America (EERE)

Wind Powering America Fact Sheet Series Energy Efficiency & Renewable Energy Wind for Schools Project Power System Brief Wind for Schools Project Power System Brief Wind for...

422

Penobscot Indian Nation's Strategic Energy Planning Efficiency on tribal Lands  

SciTech Connect

The energy grant provided the resources to evaluate the wind, hydro, biomass, geothermal and solar resource potential on all Penobscot Indian Naiton's Tribal lands. The two objectives address potential renewable energy resources available on tribal lands and energy efficiency measures to be taken after comprehensive energy audits of commercial facilities. Also, a Long Term Strategic Energy Plan was developed along with a plan to reduce high energy costs.

Sockalexis, Mike; Fields, Brenda

2006-11-30T23:59:59.000Z

423

Characterizing the Impact of Land Use and Land Cover Change on Freshwater Inflows  

E-Print Network (OSTI)

in mean annual and winter precipitation. Analyses of Landsat images of the watershed using an unsupervised classification method showed an increase in forest, urban and irrigated land by 13, 42 and 7%, respectively, from 1987 to 2002. Urbanized areas were...

Ferijal, Teuku

2009-05-15T23:59:59.000Z

424

Wind Energy Ordinances (Fact Sheet), Wind And Water Power Program (WWPP)  

Wind Powering America (EERE)

With increasing energy demands in the With increasing energy demands in the United States and more installed wind projects, rural communities and local governments with limited or no experi- ence with wind energy are now becom- ing involved. Communities with good wind resources are increasingly likely to be approached by entities with plans to develop wind projects. These opportunities can create new revenue in the form of construction jobs and land lease payments. They also create a new responsibility on the part of local governments to regulate wind turbine installations through ordinances. Ordinances, often found within munici- pal codes, provide various degrees of control to local governments. These laws cover issues such as zoning, traffic, con- sumer protection, and building codes.

425

Wind/Wave Misalignment in the Loads Analysis of a Floating Offshore Wind Turbine: Preprint  

SciTech Connect

Wind resources far from the shore and in deeper seas have encouraged the offshore wind industry to look into floating platforms. The International Electrotechnical Commission (IEC) is developing a new technical specification for the design of floating offshore wind turbines that extends existing design standards for land-based and fixed-bottom offshore wind turbines. The work summarized in this paper supports the development of best practices and simulation requirements in the loads analysis of floating offshore wind turbines by examining the impact of wind/wave misalignment on the system loads under normal operation. Simulations of the OC3-Hywind floating offshore wind turbine system under a wide range of wind speeds, significant wave heights, peak-spectral periods and wind/wave misalignments have been carried out with the aero-servo-hydro-elastic tool FAST [4]. The extreme and fatigue loads have been calculated for all the simulations. The extreme and fatigue loading as a function of wind/wave misalignment have been represented as load roses and a directional binning sensitivity study has been carried out. This study focused on identifying the number and type of wind/wave misalignment simulations needed to accurately capture the extreme and fatigue loads of the system in all possible metocean conditions considered, and for a down-selected set identified as the generic US East Coast site. For this axisymmetric platform, perpendicular wind and waves play an important role in the support structure and including these cases in the design loads analysis can improve the estimation of extreme and fatigue loads. However, most structural locations see their highest extreme and fatigue loads with aligned wind and waves. These results are specific to the spar type platform, but it is expected that the results presented here will be similar to other floating platforms.

Barj, L.; Stewart, S.; Stewart, G.; Lackner, M.; Jonkman, J.; Robertson, A.

2014-02-01T23:59:59.000Z

426

Land Reclamation Act (Missouri)  

Energy.gov (U.S. Department of Energy (DOE))

It is the policy of the state to balance surface mining interests with the conservation of natural resources and land preservation. This Act authorizes the Land Reclamation Commission of the...

427

Argonne National Laboratory Develops Extreme-Scale Wind Farm Simulation Capabilities  

Energy.gov (U.S. Department of Energy (DOE))

Researchers at DOE's Argonne National Laboratory are developing a computational simulation tool to conduct studies of complex flow and wind turbine interactions in large land-based and offshore wind farms that will improve wind plant design and reduce the levelized cost of energy. Simulations on a wind-plant-scale require accurate simultaneous resolution of multiple flow scales, from mesoscale weather to turbine-blade scale turbulence, which presents special demands on the computational solver efficiency and requires extreme scalability.

428

2009 Wind Technologies Market Report  

E-Print Network (OSTI)

Prepared for the Utility Wind Integration Group. Arlington,Arizona Public Service Wind Integration Cost Impact Study.an Order Revising the Wind Integration Rate for Wind Powered

Wiser, Ryan

2010-01-01T23:59:59.000Z

429

2010 Wind Technologies Market Report  

E-Print Network (OSTI)

2010. SPP WITF Wind Integration Study. Little Rock,an Order Revising the Wind Integration Rate for Wind PoweredPacifiCorp. 2010. 2010 Wind Integration Study. Portland,

Wiser, Ryan

2012-01-01T23:59:59.000Z

430

2011 Wind Technologies Market Report  

E-Print Network (OSTI)

and K. Porter. 2011. Wind Power and Electricity Markets.41 6. Wind Power Priceat Various Levels of Wind Power Capacity Penetration Wind

Bolinger, Mark

2013-01-01T23:59:59.000Z

431

Sandia National Laboratories: Wind Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

EnergyWind Resources Wind Resources Comments are closed. Renewable Energy Wind Energy Wind Plant Optimization Test Site Operations & Maintenance Safety: Test Facilities Capital...

432

Sandia National Laboratories: wind energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Energy Manufacturing Lab Helps Engineers Improve Wind Power On November 15, 2011, in Energy, News, Partnership, Renewable Energy, Wind Energy Researchers at the Wind Energy...

433

Wind Energy | Department of Energy  

Office of Environmental Management (EM)

Wind Energy Wind Energy Below are resources for Tribes on wind energy technologies. 2012 Market Report on Wind Technologies in Distributed Applications Includes a breakdown of...

434

New England Wind Forum: Issues Affecting Public Acceptance of Wind Energy  

Wind Powering America (EERE)

Issues Affecting Public Acceptance of Wind Energy Issues Affecting Public Acceptance of Wind Energy Wind farm proponents seek to identify locations with the greatest wind resource and the smallest population. This approach mitigates human interaction and impact whenever possible. Uninhabited areas are scarce in New England, however. Due to the region's population density, many of the region's windy locations - which include coastal areas and high elevations - are in view of nearby communities or valued for their natural beauty or recreational value. As a result, the importance of public acceptance is magnified in determining the viability of wind power installations. Further complicating public acceptance of wind power installations is the local nature of wind project impacts compared to wind power's substantial benefits. All forms of energy have impacts on their surroundings, and our society requires power plants to satisfy its demand for electricity. On a regional and broader scale, wind power's benefits are considerable, and surveys show that the majority of the population supports wind power when compared to the alternatives. In light of these benefits and the broad public support, some communities focus on the question of "compared to what?" and then embrace wind power proposals.

435

Wind Vision Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Jump to: navigation, search Name Wind Vision Wind Farm Facility Wind Vision Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Wind Vision Developer Wind Vision Location St. Ansgar IA Coordinates 43.348224°, -92.888816° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.348224,"lon":-92.888816,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

436

High Winds Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Winds Wind Farm Winds Wind Farm Jump to: navigation, search Name High Winds Wind Farm Facility High Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser PPM Energy Inc Location Solano County CA Coordinates 38.124844°, -121.764915° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.124844,"lon":-121.764915,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

437

Implementation and economical study of HAWT under different wind scenarios  

Science Journals Connector (OSTI)

Abstract Wind energy has seen a tremendous growth over the past decade and continues to grow into a major player into the renewable energy market. More than 3% of global electricity supply comes from wind power in 2012. The technology continues to mature thereby reducing the deployment cost at a value competing with the least expensive natural gas power plant. Diligent analysis of the wind including average wind speed, wind gust, boundary layer, seasonal and diurnal wind pattern adding to land mortgage, public perception, road and grid accessibility are all key factors for successful and profitable wind turbine implementation. In this work, the implementation of wind energy in Abu Dhabi was considered. In this study the annual wind data recorded every 10 min at Masdar metrological station over a period of three years from 2010 to 2012 are analyzed. The probability density distributions are derived from time series data and the distributional parameters are identified. It is followed by fitting the measured wind data with the maximum likelihood Weibull distribution. The power curves of two commercially available horizontal axis wind turbines (HAWTs) a large size 600 kW and small size 3.5 kW are coupled with the modelled data to account for the annual energy production and capacity factor. Considering the turbine efficiency, economical study that evaluates the cost of wind energy implementation, returns on investment are conducted accounting for capital cost, annuity, depreciation and operation and maintenance.

Franklyn Kanyako; Isam Janajreh

2014-01-01T23:59:59.000Z

438

White Etch Areas: Metallurgical Characterization and Atomistic...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Atomistic Modeling Presented by R. Scott Hyde of Timken Company at the 2014 Wind Turbine Tribology Seminar Timken Hyde White Etch Areas ANL Presentation Oct 2014...

439

Redevelopment of Areas Needing Redevelopment Generally (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

Redevelopment commissions are responsible for developing plans and managing tools used to address conditions of blight (redevelopment areas) and underutilized land of economic significance ...

440

EA-1611: Colorado Highlands Wind Project, Logan County, Colorado...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project, Logan County, Colorado EA-1611: Colorado Highlands Wind Project, Logan County, Colorado SUMMARY DOE's Western Area Power Administration prepared an EA in 2009 to assess...

Note: This page contains sample records for the topic "land areas wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Offshore Wind Research and Development | Department of Energy  

Office of Environmental Management (EM)

and advanced technology demonstration. Technology Development Offshore wind turbines are frequently located far from shore, more than 60 percent, are in areas where...

442

Development of learning material to wind power courses.  

E-Print Network (OSTI)

??Wind power plants are more and more commonly used as power production units, which lead to an increased demand of educated personnel within the area.… (more)

Bruhn, Kristin; Lorensson, Sofia

2009-01-01T23:59:59.000Z

443

New England Wind Forum: Wind Compared to the Cost of Other Electricity  

Wind Powering America (EERE)

Wind Compared to the Cost of Other Electricity Generation Options Wind Compared to the Cost of Other Electricity Generation Options Figure 1: Average Cumulative Wind and Wholesale Power Prices by Region The chart shows average cumulative wind and wholesale power prices by region. Click on the graph to view a larger version. View a larger version of the graph. In terms of direct costs, larger wind farms in windier areas are now considered economically competitive with "conventional" fossil fuel power plants in many locations. In New England, direct costs for wind power at larger sites with strong winds are approaching the cost of alternatives, particularly given the recent high natural gas and oil prices. Figure 1 compares wind contract prices1 with wholesale electricity market prices in different U.S. regions for 2006. Although not directly comparable to wind prices due to wind's production timing and intermittence, the value of wind Renewable Energy Credits and carbon offsets, and the cost of wind integration and transmission, the average wholesale market energy price is a good indicator of the cost of alternative generation options. This graph demonstrates several points:

444

Quantifying the hurricane risk to offshore wind turbines  

Science Journals Connector (OSTI)

...Quantifying the hurricane risk to offshore wind turbines 10.1073/pnas.1111769109...observed in typhoons, but no offshore wind turbines have yet been built in the...Gulf coast is 460 GW (2). Offshore wind turbines in these areas will be at...

Stephen Rose; Paulina Jaramillo; Mitchell J. Small; Iris Grossmann; Jay Apt

2012-01-01T23:59:59.000Z

445

Performance of building cladding in urban environments under extreme winds  

E-Print Network (OSTI)

Performance of building cladding in urban environments under extreme winds By Tiphaine Williamsa ABSTRACT: When tropical storms, hurricanes, typhoons and other extreme wind events make landfall-rise construction in these regions, as well as other areas impacted by extreme wind events, generally reveal

Kareem, Ahsan

446

Revisiting the Long-Term Hedge Value of Wind Power in an Era of Low Natural Gas Prices  

E-Print Network (OSTI)

other words, adding wind power to a portfolio of generatingexcellent wind resource areas are already selling power towhich wind power projects in the U.S. sell their power to

Bolinger, Mark

2014-01-01T23:59:59.000Z

447

Marginal, Erodible Land Retirement Policy (Minnesota) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marginal, Erodible Land Retirement Policy (Minnesota) Marginal, Erodible Land Retirement Policy (Minnesota) Marginal, Erodible Land Retirement Policy (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Minnesota Program Type Environmental Regulations It is state policy to encourage the retirement of marginal, highly erodible

448

Environmental Land Use Restriction (Connecticut) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Land Use Restriction (Connecticut) Environmental Land Use Restriction (Connecticut) Environmental Land Use Restriction (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Connecticut Program Type Siting and Permitting Provider Department of Energy and Environmental Protection

449

Florida Environmental Land and Water Management Act (Florida) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Florida Environmental Land and Water Management Act (Florida) Florida Environmental Land and Water Management Act (Florida) Florida Environmental Land and Water Management Act (Florida) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Florida Program Type Siting and Permitting Provider Florida Department of Economic Opportunity

450

Land Use - Smart Planning (Iowa) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Use - Smart Planning (Iowa) Use - Smart Planning (Iowa) Land Use - Smart Planning (Iowa) < Back Eligibility Local Government Municipal/Public Utility Rural Electric Cooperative Schools State/Provincial Govt Tribal Government Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Iowa Program Type Environmental Regulations Provider Iowa Department of Natural Resources State agencies, local governments, and other public entities engaging in land use planning shall work to promote clean and renewable energy use, increased energy efficiency, and sustainable design and construction standards, while emphasizing the protection, preservation, and restoration of natural resources, agricultural land, and cultural and historic

451

Alabama Land Recycling And Economic Redevelopment Act (Alabama) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Land Recycling And Economic Redevelopment Act (Alabama) Land Recycling And Economic Redevelopment Act (Alabama) Alabama Land Recycling And Economic Redevelopment Act (Alabama) < Back Eligibility Commercial Construction Developer Industrial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Alabama Program Type Environmental Regulations Provider Department of Environmental Management This article establishes a program, to be implemented, maintained, and administered by the Alabama Department of Environmental Management, to encourage the voluntary cleanup and the reuse and redevelopment of environmentally contaminated properties. The article states criteria for applicant participation and property qualification in the voluntary cleanup

452

Protection of Public Parks and Recreational Lands (Texas) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Protection of Public Parks and Recreational Lands (Texas) Protection of Public Parks and Recreational Lands (Texas) Protection of Public Parks and Recreational Lands (Texas) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Texas Program Type Siting and Permitting Provider Texas Parks and Wildlife Department

453

Regulations for Land Disturbing Activities (North Carolina) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regulations for Land Disturbing Activities (North Carolina) Regulations for Land Disturbing Activities (North Carolina) Regulations for Land Disturbing Activities (North Carolina) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State North Carolina Program Type Siting and Permitting The law requires installation and maintenance of sufficient erosion control

454

Iowa Land Recycling and Environmental Remediation Standards Act (Iowa) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Iowa Land Recycling and Environmental Remediation Standards Act Iowa Land Recycling and Environmental Remediation Standards Act (Iowa) Iowa Land Recycling and Environmental Remediation Standards Act (Iowa) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Iowa Program Type Environmental Regulations Provider Iowa Department of Natural Resources

455

Wind pump systems  

Science Journals Connector (OSTI)

The application of wind mills for water pumping is of lesser importance ... it is useful to discuss this type of wind energy application in a wind energy book targeted at development and planning...

Prof. Dr.-Ing. Robert Gasch; Prof. Dr.-Ing. Jochen Twele

2012-01-01T23:59:59.000Z

456

NREL: Wind Research - Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

the National Wind Technology Center (NWTC) support the installation and testing of wind turbines that range in size from 400 watts to 5.0 megawatts. Engineers provide wind...

457

Fixed Offshore Wind Turbines  

Science Journals Connector (OSTI)

In this chapter, a perspective of offshore wind farms, applied concepts for fixed offshore wind turbines, and related statistics are given. One example of a large wind farm, which is successfully operating, is st...

Madjid Karimirad

2014-01-01T23:59:59.000Z

458

Wind Power Today  

SciTech Connect

Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

Not Available

2006-05-01T23:59:59.000Z

459

Wind Power Today  

SciTech Connect

Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

Not Available

2007-05-01T23:59:59.000Z

460

IEA Wind Task 26 - Multi-national Case Study of the Financial Cost of Wind  

Open Energy Info (EERE)

IEA Wind Task 26 - Multi-national Case Study of the Financial Cost of Wind IEA Wind Task 26 - Multi-national Case Study of the Financial Cost of Wind Energy, Work Package 1, Final Report Jump to: navigation, search Tool Summary Name: IEA Wind Task 26 - Multi-national Case Study of the Financial Cost of Wind Energy, Work Package 1, Final Report Agency/Company /Organization: National Renewable Energy Laboratory Partner: International Energy Agency Sector: Energy Focus Area: Wind Topics: Market analysis, Technology characterizations Resource Type: Case studies/examples, Dataset, Technical report Website: nrelpubs.nrel.gov/Webtop/ws/nich/www/public/Record?rpp=25&upp=0&m=2&w= Country: Denmark, United States, Spain, Netherlands, Germany, Sweden, Switzerland Cost: Free UN Region: Northern America, Northern Europe, Western Europe

Note: This page contains sample records for the topic "land areas wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Practical method for estimating wind characteristics at potential wind-energy-conversion sites  

SciTech Connect

Terrain features and variations in the depth of the atmospheric boundary layer produce local variations in wind, and these variations are not depicted well by standard weather reports. A method is developed to compute local winds for use in estimating the wind energy available at any potential site for a wind turbine. The method uses the terrain heights for an area surrounding the site and a series of wind and pressure reports from the nearest four or five national Weather Service stations. An initial estimate of the winds in the atmospheric boundary layer is made, then these winds are adjusted to satisfy the continuity equation. In this manner the flow is made to reflect the influences of the terrain and the shape of the boundary-layer top. This report describes in detail the methodology and results, and provides descriptions of the computer programs, instructions for using them, and complete program listings.

Endlich, R. M.; Ludwig, F. L.; Bhumralkar, C. M.; Estoque, M. A.

1980-08-01T23:59:59.000Z

462

Impacts of wind power on PJM market development  

Science Journals Connector (OSTI)

Recently, there has been a substantial growth in wind energy in the USA. An increasing number of states are experiencing market design, planning and investment in wind energy with this growth. Currently, wind installations exist in more than half of the states. This paper explores the market factors that have been driven and affected by large-scale wind energy development in the USA, particularly in PJM control area that have achieved in recent years and will have a substantial amount of wind energy investment in the next 10â??15 years. In this paper, we also identify the key issues for wind power planning and interconnection.

Zhenyu Fan; Hui Ni

2008-01-01T23:59:59.000Z

463

Wind speed estimation using multilayer perceptron  

Science Journals Connector (OSTI)

Abstract Wind speed knowledge is prerequisite in the siting of wind turbines. In consequence the wind energy use requires meticulous and specified knowledge of the wind characteristics at a location. This paper presents a method for determining the annual average wind speed at a complex terrain site by using neural networks, when only short term data are available for that site. This information is useful for preliminary calculations of the wind resource at a remote area having only a short time period of wind measurements measurement in a site. Artificial neural networks are useful for implementing non-linear process variables over time, and therefore are a useful tool for estimating the wind speed. The neural network used is multilayer perceptron with three layers and the supervised learning algorithm used is backpropagation. The inputs used in the neural network were wind speed and direction data from a single station, and the training patterns used correspond to sixty days data. The results obtained by simulating the annual average wind speed at the selected site based on data from nearby stations with correlation coefficients above 0.5 were satisfactory, compared with actual values. Reliable estimations were obtained, with errors below 6%.

Ramón Velo; Paz López; Francisco Maseda

2014-01-01T23:59:59.000Z

464

Wind farm noise  

Science Journals Connector (OSTI)

Arrays of small wind turbines recently coined as “wind farms” offer several advantages over single larger wind turbines producing the same electrical power. Noise source characteristics of wind farms are also different from those associated with a single wind turbine. One?third octave band noise measurements from 2 Hz to 10 kHz have been made and will be compared to measurements of noise produced by a single large wind turbine. [J. R. Balombin Technical Memorandum 81486.

Gregory C. Tocci; Brion G. Koning

1981-01-01T23:59:59.000Z

465

Simulating Turbulent Wind Fields for Offshore Turbines in Hurricane-Prone Regions (Poster)  

SciTech Connect

Extreme wind load cases are one of the most important external conditions in the design of offshore wind turbines in hurricane prone regions. Furthermore, in these areas, the increase in load with storm return-period is higher than in extra-tropical regions. However, current standards have limited information on the appropriate models to simulate wind loads from hurricanes. This study investigates turbulent wind models for load analysis of offshore wind turbines subjected to hurricane conditions. Suggested extreme wind models in IEC 61400-3 and API/ABS (a widely-used standard in oil and gas industry) are investigated. The present study further examines the wind turbine response subjected to Hurricane wind loads. Three-dimensional wind simulator, TurbSim, is modified to include the API wind model. Wind fields simulated using IEC and API wind models are used for an offshore wind turbine model established in FAST to calculate turbine loads and response.

Guo, Y.; Damiani, R.; Musial, W.

2014-04-01T23:59:59.000Z

466

NREL: Wind Research - Midsize Wind Turbine Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Midsize Wind Turbine Research Midsize Wind Turbine Research To facilitate the development and commercialization of midsize wind turbines (turbines with a capacity rating of more than 100 kW up to 1 MW), the U.S. Department of Energy (DOE) and NREL launched the Midsize Wind Turbine Development Project. In its latest study, NREL determined that there is a substantial market for midsize wind turbines. One of the most significant barriers to the midsize turbine market is the lack of turbines available for deployment; there are few midsize turbines on the market today. The objectives of the Midsize Wind Turbine Development Project are to reduce the barriers to wind energy expansion by filling an existing domestic technology gap; facilitate partnerships; accelerate maturation of existing U.S. wind energy businesses; and incorporate process improvement

467

Diablo Winds Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Diablo Winds Wind Farm Diablo Winds Wind Farm Facility Diablo Winds Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser Pacific Gas & Electric Co Location Altamont Pass CA Coordinates 37.7347°, -121.652° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.7347,"lon":-121.652,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

468

Wind for Schools (Poster)  

SciTech Connect

As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses, by installing small wind turbines at community "host" schools, by implementing teacher training with interactive curricula at each host school. This poster provides an overview of the first two years of the Wind for Schools project, primarily supporting activities in Colorado, Kansas, Nebraska, South Dakota, Montana, and Idaho.

Baring-Gould, I.

2010-05-01T23:59:59.000Z

469

Wind Turbine Tribology Seminar  

Energy.gov (U.S. Department of Energy (DOE))

Wind turbine reliability issues are often linked to failures of contacting components, such as bearings, gears, and actuators. Therefore, special consideration to tribological design in wind...

470

Wind energy bibliography  

SciTech Connect

This bibliography is designed to help the reader search for information on wind energy. The bibliography is intended to help several audiences, including engineers and scientists who may be unfamiliar with a particular aspect of wind energy, university researchers who are interested in this field, manufacturers who want to learn more about specific wind topics, and librarians who provide information to their clients. Topics covered range from the history of wind energy use to advanced wind turbine design. References for wind energy economics, the wind energy resource, and environmental and institutional issues related to wind energy are also included.

None

1995-05-01T23:59:59.000Z

471

Northern Wind Farm  

NLE Websites -- All DOE Office Websites (Extended Search)

a draft environmental assessment (EA) on the proposed interconnection of the Northern Wind Farm (Project) in Roberts County, near the city of Summit, South Dakota. Northern Wind,...